
MANUSCRIPT SUBMITTED TO IEEE TRANSACTIONS ON MULTIMEDIA, JULY, 2023 1

Activating More Information in
Arbitrary-Scale Image Super-Resolution

Yaoqian Zhao, Qizhi Teng, Member, IEEE, Honggang Chen, Member, IEEE, Shujiang Zhang,
Xiaohai He, Member, IEEE, Yi Li, Ray E. Sheriff, Senior Member, IEEE

Abstract—Single-image super-resolution (SISR) has experi-
enced vigorous growth with the rapid development of deep
learning. However, handling arbitrary scales (e.g., integers, non-
integers, or asymmetric) using a single model remains a challeng-
ing task. Existing super-resolution (SR) networks commonly em-
ploy static convolutions during feature extraction, which cannot
effectively perceive changes in scales. Moreover, these continuous-
scale upsampling modules only utilize the scale factors, without
considering the diversity of local features. To activate more
information for better reconstruction, two plug-in and compat-
ible modules for fixed-scale networks are designed to perform
arbitrary-scale SR tasks. Firstly, we design a Scale-aware Local
Feature Adaptation Module (SLFAM), which adaptively adjusts
the attention weights of dynamic filters based on the local features
and scales. It enables the network to possess stronger represen-
tation capabilities. Then we propose a Local Feature Adaptation
Upsampling Module (LFAUM), which combines scales and local
features to perform arbitrary-scale reconstruction. It allows the
upsampling to adapt to local structures. Besides, deformable
convolution is utilized letting more information to be activated in
the reconstruction, enabling the network to better adapt to the
texture features. Extensive experiments on various benchmark
datasets demonstrate that integrating the proposed modules
into a fixed-scale SR network enables it to achieve satisfactory
results with non-integer or asymmetric scales while maintaining
advanced performance with integer scales.

This work was supported in part by the National Natural Science Foundation
of China (No. 62001316), in part by the Research Fund of Guangxi Key
Lab of Multi-source Information Mining & Security (No. MIMS22-14), in
part by the Opening Foundation of Key Laboratory of Computer Vision
and System, Ministry of Education, Tianjin University of Technology, China
(No. TJUT-CVS20220001), in part by the Open Foundation of Yunnan
Key Laboratory of Software Engineering under Grant (No. 2023SE206),
in part by the Opening Foundation of Zhejiang Intelligent Transportation
Engineering Technology Research Center, China (No. 2023ERCITZJ-KF15),
and in part by the Fundamental Research Funds for the Central Universities
(No. SCU2023D062 and No. 2022CDSN-15-SCU). (Corresponding author:
Honggang Chen.)

Yaoqian Zhao is with the College of Electronics and Information Engi-
neering, Sichuan University, Chengdu 610065, China, and also with Guangxi
Key Lab of Multi-source Information Mining & Security, Guangxi Normal
University, Guilin 541004, China (email: 244716386@qq.com).

Qizhi Teng and Xiaohai He are with the College of Electronics and
Information Engineering, Sichuan University, Chengdu 610065, China (e-
mail: qzteng@scu.edu.cn; hxh@scu.edu.cn).

Honggang Chen is with the College of Electronics and Information En-
gineering, Sichuan University, Chengdu 610065, China, also with the Key
Laboratory of Computer Vision and System, Ministry of Education, Tianjin
University of Technology, Tianjin 300384, China, and also with the Yunnan
Key Laboratory of Software Engineering, Yunan University, Kunming 650600,
China (e-mail: honggang chen@scu.edu.cn).

Shujiang Zhang is with the Zhejiang Intelligent Transportation Engineer-
ing Technology Research Center Enjoyor Technology Co., Ltd., Hangzhou
311400, China (e-mail: 34209310@qq.com).

Yi Li is with the D.I. Sinma (Sichuan) Machinery Co., Ltd., Suining, China
(e-mail: 943787101@qq.com).

Ray E. Sheriff is with the Department of Computer Science, Edge Hill Uni-
versity, Ormskirk L394QP, United Kingdom (e-mail: Sheriffr@edgehill.ac.uk).

(a)

×1.9
×

1.
9

×3.8

×
1.

6

Bicubic ArbSR Ours GT

(b)

Fig. 1. Activating more information makes the reconstructed image better
adapt to the content of the image. (a) The receptive field is deformed based
on the texture of the image. (b) Comparison of visual results achieved by
Bicubic, ArbSR [8] and proposed model for asymmetric scale factors and
non-integer scale factors.

Index Terms—Super-resolution, arbitrary-scale, scale-aware,
local feature adaptation, dynamic convolution, deformable con-
volution.

I. INTRODUCTION

S INGLE image super-resolution (SISR) aims to restore a
high-resolution (HR) image from its low-resolution (LR)

version. It is a challenging ill-posed issue and also a long-
lasting fundamental task in the field of computer vision.
The emergence of deep learning has led to the proposal of
convolutional neural network (CNN)-based image SR methods
[1]–[7], which have shown remarkable superiority.

In real-world scenarios such as medical imaging [9], [10],
remote sensing [11], [12], and security surveillance [13], [14],
it is often necessary to upscale LR images to multiple different
scales, including non-integer and asymmetric, because images
at different scales exhibit distinct details. However, most SR
methods do not support arbitrary-scale reconstruction in a
single model. If there is a need to upscale images to different
scales, multiple models would have to be retrained, which is
clearly a wasteful use of resources.

To address this issue, there have been some methods
proposed that support multiple scales and arbitrary scales.
The first category includes methods that support multiple

MANUSCRIPT SUBMITTED TO IEEE TRANSACTIONS ON MULTIMEDIA, JULY, 2023 2

integer scale factors in a single model, such as MDSR [15],
using multiple branches to handle multi-scale tasks. However,
MDSR [15] can only deal with integer scale factors after train-
ing. The second category includes methods that can achieve
arbitrary-scale SR. MetaSR [16] is a groundbreaking work in
continuous-scale SR, where it predicts the upsampling weights
dynamically for different scale factors using a fully connected
(FC) neural network in the upsampling process through meta-
learning [17]. MetaSR [16] has achieved good performance
on arbitrary-scale SR tasks. However, it only utilizes scale
information in the upsampling process, and the features in
the backbones are the same regardless of the scale, which
obviously requires improvement. Additionally, MetaSR [16]
cannot handle asymmetric scale factors.

ArbSR [8] introduces the use of scale information in the
feature extraction of the backbone network and can handle
non-integer and asymmetric scale factors concurrently. How-
ever, in the upsampling process, ArbSR [8] only utilizes
scale factors and position information to generate dynamic
convolutional kernels, where the filter weights are position-
dependent. This results in a significant drawback: when the
sizes of different input images and the scale factors are the
same, the corresponding position’s upsampling filter weights
are the same, which is clearly not optimal. For the same
position in different images, since the pixel values vary, the
filter weights should also vary accordingly. For example, the
filter weights in the edge regions should be different from
those in the smooth regions. Therefore, it is necessary to
incorporate local image features to collaboratively generate
dynamic upsampling convolutional kernels.

These methods use fixed receptive fields for reconstruc-
tion during the upsampling process, which means pixels at
different positions refer to information only from their fixed
square-shaped local regions. However, due to the diversity
of image content, dynamically determining the receptive field
based on texture features makes the network highly adaptive
to the image content and improves its ability to focus on
pertinent image regions, as shown in Fig. 1(a). This requires
learning additional offset information. Therefore, we introduce
deformable convolution to satisfy this requirement.

To activate more information, we propose two plug-in
modules that enable a fixed-scale network to achieve arbitrary-
scale SR in a single model, making the reconstruction process
more adaptive to the local structure of the image. The modules
we developed are the Scale-aware Local Feature Adaptation
Module (SLFAM) and the Local Feature Adaptation Upsam-
pling Module (LFAUM). In order to enable the network to
adapt to scale factors and local image features during the
feature extraction process, we introduce the SLFAM based
on dynamic convolution [18]. This module is capable of
generating dynamic scale-aware local feature adaptive filters,
allowing the network to extract image features at different
scales and regions. To achieve arbitrary-scale SR, we propose
the LFAUM based on deformable convolution [19], [20]. It
enables the receptive field to adaptively change its range and
direction during the image reconstruction process, enhancing
the network’s ability to model geometric transformations and
generating SR images that are more adaptable to the texture

of the image.
The proposed modules have low computational cost and

strong adaptability, making it easy to integrate them into
existing state-of-the-art (SOTA) SR methods. By inserting
SLFAM into the backbone network and replacing the upsam-
pling module at the end of the network with our LFAUM,
we can transform the original fixed-scale SR network into a
continuous-scale SR network. Equipped with our modules, the
fixed-scale SR network can generate super-resolved images
with clear texture features at asymmetric and non-integer scale
factors, while keeping advanced performance at integer scales,
as shown in Fig. 1(b).

Our major contributions in this work are as follows:
1) We propose two efficient plug-in modules that can be

combined with existing fixed-scale networks to achieve
arbitrary-scale SR tasks.

2) SLFAM is developed to address the lack of adaptability
to scale and local structures in the feature extraction
process by generating dynamic adaptive convolutional
kernels.

3) LFAUM is designed to handle arbitrary-scale recon-
struction tasks and achieve multiple information fusion
during the upsampling process.

4) Extensive experimental results illustrate the effectiveness
of the proposed method, which significantly improves
the baseline results. Both objective metrics and visual
quality outperform SOTA arbitrary-scale SR methods.

The remainder of this paper is organized as follows. Section
II introduces the related works. We propose two efficient
plug-in modules for arbitrary-scale SR tasks in Section III.
In Section IV, experiments and discussions are presented to
illustrate the performance of the proposed modules.Finally, we
conclude this paper in Section V.

II. RELATED WORKS

In this section, we will briefly review fixed-scale single
image super-resolution (SISR) algorithms in the field of deep
learning and then discuss some related works on arbitrary-
scale SR.

A. Single Image Super-Resolution

Existing SISR algorithms can be grouped into three main
categories: interpolation-based [21]–[23], reconstruction-based
[24]–[26], and learning-based [27]–[32]. Early learning-based
methods, such as exemplar or dictionary-based approaches,
rely on external image databases to generate HR images by
transferring relevant patches from the database images.

Deep neural networks can learn end-to-end mappings from
LR space to HR space. Due to their powerful feature represen-
tation and model fitting capabilities, CNN-based SR methods
[33], [34] show significant advantages over traditional meth-
ods. CNN-based algorithms are broadly categorized into two
types: the pre-upsampling SR model and the post-upsampling
SR model. The former one, SRCNN [1] for example, up-
samples the LR image to the demanded size firstly and then
uses a CNN to recover high-frequency details. VDSR [35]
introduces residual learning for SR model training. However,

MANUSCRIPT SUBMITTED TO IEEE TRANSACTIONS ON MULTIMEDIA, JULY, 2023 3

pre-upsampling leads to subsequent feature extraction opera-
tions being performed in a high-dimensional space, resulting
in time-consuming and high computational costs processes.

To address this issue, researchers proposed post-upsampling
SR methods to enhance computational efficiency, which firstly
study the low-dimensional space features of LR images and
then connect a learnable reconstruction layer to upsample the
features. Lim et al. [36] introduce EDSR, a very deep and
wide network, which trains large-scale SR models by utilizing
residual scaling techniques and removing batch normalization
layers. RDN [37] propose dense feature fusion for image
SR. RCAN [38] and SAN [39] respectively introduce chan-
nel attention mechanisms and second-order channel attention
to enhance SR performance. HAT [40] combines channel
attention [41] and window-based self-attention mechanisms,
leveraging their complementary advantages in global statistical
information and local fitting capabilities, further improving SR
performance. Post-upsampling methods become the commonly
used frameworks in the field of SR because of the fewer
resources consumed in training and inference processes. Many
of these methods utilize an upsampling module called the
PixelShuffle convolution layer, which is introduced by Shi
et al. [42]. This layer generates multiple channels through
convolution and then integrates the pixels of each channel
to achieve upsampling functionality. The deconvolution layer
[43] is another end-to-end learnable reconstruction layer,
which achieves upsampling by performing the operation of
padding and interpolation on the feature map using the inverse
convolution kernel.

While these SISR methods achieve promising results, they
all require training of separate models for specific integer scale
factors, such as ×2, ×3, or ×4, and they cannot achieve SR
with fractional scale factors. Considering the limitations of
memory and computational resources, this clearly restricts the
practical deployment of these models.

B. Arbitrary-Scale SR

In practical scenarios, users often need to upscale images to
arbitrary sizes. To address this issue, Lim et al. [15] propose
the MDSR model, which consists of multiple upsampling
branches designed for different scale factors. Unfortunately,
MDSR [15] cannot effectively handle fractional scale factors
for SR.

Inspired by meta-learning [17], Hu et al. [16] propose
MetaSR, which uses the scale factors as input to predict
the weights of the upsampling filters, enabling arbitrary-scale
reconstruction in a single model. However, MetaSR [16] does
not utilize scale information within the backbone network,
resulting in the absence of differentiated features for images
of different scales during the feature extraction.

To fully leverage scale information, Fu et al. [44] propose
RSAN, which utilizes scale information as prior knowledge
to learn discriminative features, with the aim to achieve better
performance. To learn continuous image representations, LIIF
[45] trains the network with implicit neural representations.
LTE [46] introduces an advantage frequency estimator based
on LIIF [45], which improves the performance.

However, the aforementioned methods are unable to achieve
SR images with asymmetric scale factors. To address the issue,
Hu et al. [8] propose ArbSR [8], which utilizes conditional
convolution to generate dynamic scale-aware kernels, enabling
SR for images with asymmetric and non-integer scale factors.
This method predicts the upsampling filters weights based
solely on scale factors and coordinate information. However,
when the input image sizes and upscaling factors are the same,
the corresponding weights of the upsampling filters at different
positions are identical, which clearly overlooks the influence
of content on the upsampling filters.

In order to fully utilize the information of the content,
the weights of the upsampling convolutional kernels should
not only be position-dependent but also content-dependent.
Dynamic convolutional kernels generated by combining scales
and local feature information can reconstruct images with
richer details and finer textures.

III. METHODOLOGY

To solve the problem of arbitrary-scale SR, we propose two
plug-in modules, the Scale-aware Local Feature Adaptation
Module (SLFAM) and the Local Feature Adaptation Upsam-
pling Module (LFAUM). Plug-in modules are more flexible
and adaptable than a whole network, which can easily be
combined with a fixed-scale network, such as EDSR [36],
RDN [37] and RCAN [38], to generate arbitrary-scale SR
results. This section mainly introduces the details of our
implementation.

A. Overall Structure

The overall network structure of our arbitrary-scale SR
algorithm is demonstrated in Fig. 2. The network is divided
into three sections: shallow feature extraction, deep feature
extraction, and arbitrary-scale upsampling. Firstly represent
the LR image and the paired ground truth as ILR and IHR,
respectively. SR task is aimed at generating an image ISR with
the identical spatial resolution as IHR. Then, ILR is processed
through shallow feature extraction to obtain the feature F0:

F0 = f0(ILR) (1)

where f0(·) represents the shallow feature extraction using a
3x3 convolutional layer.

The deep feature extraction module takes the shallow feature
F0 and two scale factors, rh and rw in the horizontal and
vertical directions, as inputs. It consists of multiple residual
groups (RG) that generate the deep feature F1. The proposed
SLFAM is plugged into the deep feature extraction, with each
RG followed by a SLFAM. Therefore, the obtained deep
feature F1 can be represented as:

F1 = fn(...(f2(f1(F0, rh, rw)))) (2)

where fi(·) (for i ranging from 1 to n) represents the i-th
backbone RG module and a SLFAM connected in series.

As for upsampling, the proposed LFAUM enables arbitrary-
scale SR in a single model. To make the network adapt to
scale factors and local features, the upsampling process takes
the deep feature F1, along with the scale factors rh and rw as

MANUSCRIPT SUBMITTED TO IEEE TRANSACTIONS ON MULTIMEDIA, JULY, 2023 4

C
O

N
V

SL
FA

M

R
G

Scale
[,]hr wr

LF
A

U
M

+
×1.8
×3.3

×1.2

×3.5
LR

SR

Attention

Attention

DWG

DWG

Depthwise
seperable

convolution

Scale
[,]hr wr

C

+

× × × ×

Dynamic weight generator (DWG)Scale-aware local feature
adaptation module (SLFAM)

+ Summation

C Concat

LFAUM

Local feature
adaptation

upsampling module

RG

Residual group

Dynamic
weight

21 3 n…

C
O

N
V

R
G

R
G

SL
FA

M

SL
FA

M

pw dw

Feature
pw

Pointwise
weight

Depthwise
weightdw

+

Fig. 2. Architectures of proposed networks. The details of LFAUM are shown in Fig. 3.

inputs. After being processed by LFAUM, the final SR image
ISR is obtained:

ISR = fu(F1, rh, rw) (3)

Here, fu(·) represents the reconstruction process performed by
the LFAUM.

Regarding the training optimization of the model, the L1

loss is adopted as the loss function for the SR network, defined
as follows:

L(θ) = ||ISR − IHR||1 (4)

where θ represents the parameters of the SR network, ISR

represents the reconstructed HR images generated by the
network, and IHR represents the corresponding ground truth
HR images.

B. Scale-Aware Local Feature Adaptation

For different scale factors, conventional SR methods usually
require training separate networks to extract LR features
specific to each scale factor, where each scale factor of the
SR task has its own corresponding network weights. However,
training separate networks for each scale factor is not feasible
under the condition of arbitrary-scale image SR, especially for
non-integer scale factors. Therefore, there is a need to train
a single model to address arbitrary-scale problems. Although
SR tasks with different scale factors share similarities, the
fundamental differences exist, particularly when there is a
significant difference in scale factors. Extracting features with
specific scales is the vital aspects to accomplish arbitrary-scale
SR in a single model.

If we only use the feature extraction network of the back-
bone network to extract features, the weights of the feature
extraction network will be fixed for different scale factors,
resulting in the extraction of the same features. Obviously,

this is unsatisfactory; for different scale factors, the extracted
features should be different. As the scale factor increases,
more pixels need to be reconstructed, and when restoring the
HR image, more attention should be given to high-frequency
detail features. Otherwise, the reconstructed image may appear
blurry. Additionally, in extracting these features, it is not
only related to the scale factor, but also related to the local
features. For example, the convolutional weights of the edge
region are obviously different from those of the smooth region,
which provides the necessity for introducing local features
into the feature extraction network. Therefore, to activate more
information, it is necessary to introduce scale factors and local
feature information during the feature extraction process to
extract scale-aware local structure adaptive features.

Inspired by the dynamic convolution proposed by Chen et
al. [18], we propose combining scale and feature information
to generate learnable multiple attention weights for multiple
parallel convolutional kernels. Then the attention weights are
used to aggregate the multiple parallel convolutional kernels
into a single kernel. This allows for the extraction of adaptive
features based on the input features and scale. The proposed
SLFAM is illustrated in Fig. 2.

The dynamic attention weights are generated using a
lightweight attention network, inspired by the network struc-
ture of SENet [41]. Given the input feature FLR and the
two scale factors rh and rw, for the vertical and horizontal
directions respectively, the vector [rh, rw] is first expanded to
match the size of FLR in the channel dimension. Then, the
expanded vector is concatenated with FLR. The concatenated
features go through adaptive average pooling, followed by two
fully connected (FC) layers. Finally, the Softmax function is
applied to obtain K dynamic attention weights.

The dynamic convolution part consists of K parallel con-
volutions, where K convolutional kernels of the same size are

MANUSCRIPT SUBMITTED TO IEEE TRANSACTIONS ON MULTIMEDIA, JULY, 2023 5

aggregated into one kernel using the dynamic attention weights
πk. The process can be expressed as follows:

W (F, rh, rw) =

K∑
k=1

πk(F, rh, rw)Wk (5)

b(F, rh, rw) =

K∑
k=1

πk(F, rh, rw)bk (6)

Here, Wk and bk represent the weights and biases of the K-th
convolutional kernel, respectively. πk is the attention weight
corresponding to the convolutional kernel. The values of πk

satisfy the following conditions:

0 ≤ πk(F, rh, rw) ≤ 1 (7)

K∑
k=1

πk(F, rh, rw) = 1 (8)

To further reduce the number of parameters, inspired by
depthwise separable convolution [47], the aggregated single
convolutional kernel is split into depthwise convolutional
kernels (dw) and pointwise convolutional kernels (pw). The
depthwise convolution operates only on the 2D plane with-
out changing the number of channels. Since the depthwise
convolution does not utilize the feature information from
different channels at the same spatial position, the pointwise
convolution is used to combine the features from different
channels. These two operations are performed by different
dynamic convolution modules:

pw = fd1(Concat(FLR, rh, rw)) (9)

dw = fd2(Concat(FLR, rh, rw)) (10)

Here, FLR is the input feature, rh and rw are the scale factors
in the horizontal and vertical directions. fd1(·) and fd2(·)
represents the dynamic convolution process.

Assuming that the original feature F ∈ R64×H×W is
convolved with the original convolutional kernel W ∈
R64×64×3×3, the number of parameters in the kernel is 36864.
By using depthwise separable convolution, the number of
parameters becomes the sum of the depthwise convolutional
kernel W ∈ R64×1×3×3 and the pointwise convolutional
kernel W ∈ R64×64×1×1, which is 4672, accounting for
only 12.67% of the original convolutional kernel. Moreover,
generating pw and dw separately through attention networks
allows them to better adapt to the scale and local features at
the channel and pixel levels.

The input feature FLR is first convolved with the dw kernel
and then convolved with the pw kernel. Finally, the output
feature of this module, denoted as F

′

LR, is obtained:

F
′

LR = FLR ∗ dw ∗ pw (11)

Considering the potential instability introduced by dynamic
convolution, an annealing strategy [18] is employed. At the
beginning of training, a large temperature coefficient τ is
added to the Softmax function, which makes the attention

weights approach a uniform distribution. The specific process
is defined by the following equation:

πk =
exp(ζk/τ)∑K
i=1 exp(ζi/τ)

(12)

Here, ζk represents the input feature of the Softmax function.
In the original Softmax function, τ= 1. As it increases, the
Softmax output becomes sparser. As the number of iterations
increases, the training gradually stabilizes, and the tempera-
ture coefficient τ decreases continuously until it reaches 1.
This ensures both training stability and accelerated network
convergence.

C. Local Feature Adaptation Upsample

For integer scale image SR tasks, in a commonly used
upsampling method PixelShuffle [42], the amount of upsam-
pling kernels is pre-defined for each scale factor. However, in
the case of arbitrary-scale SR tasks, the mapping relationship
between the pixels of the LR image and the corresponding
pixels of the HR image is related to scale factors. This means
that different scale factors correspond to different mapping
functions. Therefore, it is not possible to predefine the number
of upsampling filters for arbitrary scale factors.

To address this issue, methods like MetaSR [16] and ArbSR
[8] utilize the scale factor as an input to predict the upsampling
kernels weights dynamically, enabling the generation of HR
images at arbitrary scales. However, these methods only use
the scale factor and coordinate information to predict the up-
sampling kernels weights, without considering that the weights
should also be content-dependent.

To achieve this, we propose a Local Feature Adaptation
Upsampling Module (LFAUM) that combines the scale factor
and the local features of the LR image to jointly predict
the upsampling kernels weights. The predicted upsampling
kernels determine the value of each SR pixel based on its
corresponding nearest neighboring LR pixel. However, since
the number of HR pixels is much greater than the number
of LR pixels, it is inevitable that multiple HR pixels will
map to the same LR pixel. Meanwhile, the impact of local
content differences of LR image should also be taken into
account in the reconstruction of the upsampling kernel weight
of SR pixel. In such cases, it is necessary to introduce scale
information, position information and local features to predict
the upsampling kernels weights and to distinguish different
HR pixels that mapped to the same LR pixel.

The structure of the LFAUM is illustrated in Fig. 3. The
input LR feature FLR ∈ RCin×H×W is fed into this up-
sampling module to obtain the output HR feature FHR ∈
RCout×(rhH)×(rwW), where Cin and Cout represent the input
and output channels, respectively. Finally, the feature FHR is
mapped onto the HR image space using convolutions.

From Fig. 3, it can be seen that the relative position matrix
P consists of four parts, including the scale factors rh and rw
for the image’s horizontal and vertical dimensions, as well as
the relative position matrices R(x) and R(y). The purpose of
taking the reciprocal of the scale factors rh and rw is to map
the data onto the range of 0 to 1, consistent with the size of

MANUSCRIPT SUBMITTED TO IEEE TRANSACTIONS ON MULTIMEDIA, JULY, 2023 6

C
on

v

C

R
eL

U

C
on

v
Convolution

operation

Coordinate matrix

SR

Weights
Deformable

filter

Weights prediction

hr
wr
()R x
()R y

LRF
Unfold

HRF
HR

SRF

P

Fig. 3. The structure of local feature adaptation upsampling module.

the input image data. The relative position matrix P contains
the coordinate offset relationships when projecting HR pixel
values to the LR image space. For each pixel (x, y) in the HR
space, the corresponding LR pixel position coordinates L(x)
and L(y) after direct projection to the LR space are calculated
as follows:

L(x) =
x+ 0.5

rh
− 0.5 (13)

L(y) =
y + 0.5

rw
− 0.5 (14)

Since the obtained x and y coordinates from the above
equations will be projected onto the continuous space of the
LR image size, while the actual LR image coordinates are
discrete, we introduce the relative position coordinates R(x)
and R(y):

R(x) = L(x)− ⌊x+ 0.5

rh
⌋ (15)

R(y) = L(y)− ⌊y + 0.5

rw
⌋ (16)

The relative position coordinates R(x) and R(y) are obtained
by calculating the relative positional offsets of L(x) and
L(y) to the nearest LR image coordinates. Their values are
constrained within the range of 0 to 1.

To facilitate the convolution operation, the FLR is unfolded
using the unfold function according to the k × k kernel,
resulting in a feature matrix of size F

′

LR ∈ RCin×(k∗k)×H×W .
Then, based on the mapping function from HR pixels to
the corresponding LR pixel values, the unfolded features are
transformed into FHR ∈ RCout×(rhH)×(rwW). FHR is then
concatenated with the relative position matrix P , and the filter
weights are generated using the following process:

W = f(Concat(FHR, P)) (17)

where f (·) consists of two 1×1 convolutions and an activation
function.

However, due to the differences in upsampling scale fac-
tors and position, fixed-shaped upsampling filters may cause
certain deformations in objects. Therefore, for visual tasks
that require fine localization, such as SR, it is necessary to
determine the size and range of the receptive field adaptively.

In order to activate more information for superior upsam-
pling, we learn additional offset values of the receptive field

from the LR features. These offset values are then used to
adaptively change the spatial sampling positions during the re-
construction process, thereby enhancing the focus on pertinent
image regions. Additionally, for each pixel’s upsampling filter,
we not only learn the offset values of the receptive field but
also learn the feature modulation amplitude. This allows the
module to alter the spatial distribution and relative influence
of the features, further enhancing the geometric transformation
modeling ability of the entire network.

The specific process is as follows:

R = (−1,−1), (−1, 0), ..., (1, 1) (18)

The grid R defines the size and expansion of the receptive
field, which corresponds to a convolutional kernel with a size
of 3×3. For each position p0 on the output feature map FSR,
we have:

FSR(p0) =
∑
pn∈R

w(pn) ∗ FHR(p0 + pn) (19)

where pn enumerates the positions in R.
In our deformable upsampling, the regular grid R

is adaptively adjusted based on the learned offsets
δpn|n = 1, 2, ..., N , and the feature distribution is modified
based on the learned modulation scalar ∆mp. Here, N is the
number of points in the grid R, δpn includes the offsets in
both the horizontal and vertical directions, and ∆mp ranges
from 0 to 1. The equation is modified as follows:

FSR(p0) =
∑
pn∈R

w(pn) ∗ FHR(p0 + pn + δpn) ∗∆mp (20)

Now, the upsampling is performed at irregular offset po-
sitions (p0 + pn + δpn). Since δpn is usually a fractional
value, it cannot directly correspond to the feature value of
a pixel. Therefore, the feature value at the sampling point is
obtained through bilinear interpolation with the nearest four
neighboring pixels.

The final feature values of the output image FSR are
determined by the combination of FHR and the deformed
upsampling dynamic convolutional kernel Wdconv:

FSR(x, y) = FHR(x, y) ∗Wdconv (21)

The introduction of deformable convolution makes the net-
work have stronger geometric modeling ability during up-
sampling, so as to adapt to the characteristics of the image
content itself and avoid the offset caused by the fixed shape
upsampling kernels.

The incorporation of scale information, relative positions,
local features, and receptive field offsets in the deformed
upsampling dynamic convolutional kernel allows for a more
detailed reconstruction of the image, approaching the quality
of the HR image.

IV. EXPERIMENTS

In this section, we first introduce the datasets, metrics and
implementation details. Then, we compare our model with
the SOTA methods on both symmetric and asymmetric scale
factors.

MANUSCRIPT SUBMITTED TO IEEE TRANSACTIONS ON MULTIMEDIA, JULY, 2023 7

TABLE I
AVERAGE RESULTS OF PSNR (dB) AND SSIM FOR SYMMETRIC SCALE FACTORS ON FIVE BENCHMARK DATASETS. THE BEST AND SECOND-BEST

RESULTS ARE MARKED IN RED AND BLUE COLORS, RESPECTIVELY.

Methods Metrics Set5 Set14 BSD100 Urban100 Manga109
×2 ×1.6 ×1.55 ×2 ×1.5 ×1.65 ×2 ×1.4 ×1.85 ×2 ×1.9 ×1.95 ×2 ×1.7 ×1.95

Bicubic PSNR 33.66 36.10 36.24 30.24 32.87 31.83 29.56 32.95 30.11 26.88 27.25 27.05 30.80 32.91 31.12
SSIM 0.9299 0.9555 0.9578 0.8688 0.9268 0.9020 0.8431 0.9031 0.8581 0.8410 0.8510 0.8460 0.9339 0.9579 0.9379

RCAN [38] PSNR 38.27 40.53 40.77 34.12 37.23 36.08 32.40 36.86 33.16 33.18 33.17 32.84 39.42 41.15 39.39
SSIM 0.9614 0.9755 0.9749 0.9216 0.9580 0.9482 0.9021 0.9639 0.9202 0.9374 0.9441 0.9401 0.9788 0.9897 0.9804

MetaSR [16] PSNR 38.22 40.63 40.93 34.04 37.51 36.17 32.35 36.88 33.22 33.12 33.62 33.30 39.32 41.30 39.59
SSIM 0.9612 0.9754 0.9757 0.9213 0.9575 0.9480 0.9019 0.9639 0.9194 0.9358 0.9425 0.9397 0.9782 0.9891 0.9803

ArbSR [8] PSNR 38.24 40.66 40.97 34.09 37.53 36.28 32.39 36.87 33.23 33.14 33.55 33.25 39.37 41.32 39.56
SSIM 0.9613 0.9754 0.9759 0.9215 0.9581 0.9476 0.9021 0.9644 0.9206 0.9367 0.9439 0.9400 0.9785 0.9896 0.9803

LIIF [45] PSNR 38.18 40.61 41.00 33.97 37.45 36.25 32.32 36.91 33.14 32.87 33.52 33.20 39.21 41.32 39.52
SSIM 0.9610 0.9753 0.9751 0.9210 0.9578 0.9472 0.9011 0.9632 0.9191 0.9352 0.9425 0.9386 0.9774 0.9886 0.9794

LTE [46] PSNR 38.30 40.69 41.18 34.25 37.69 36.45 32.44 36.92 33.26 33.38 34.11 33.83 39.53 41.69 39.87
SSIM 0.9615 0.9756 0.9755 0.9231 0.9599 0.9498 0.9023 0.9646 0.9198 0.9388 0.9454 0.9427 0.9791 0.9903 0.9810

CLIT [56] PSNR 38.26 40.69 41.11 34.21 37.68 36.38 32.39 36.94 33.25 33.13 34.09 33.85 39.49 41.62 39.81
SSIM 0.9614 0.9751 0.9754 0.9224 0.9588 0.9489 0.9020 0.9639 0.9199 0.9363 0.9437 0.9430 0.9789 0.9897 0.9809

Ours PSNR 38.34 40.73 41.15 34.48 37.79 36.54 32.48 36.98 33.35 33.51 34.35 34.03 39.65 41.67 39.95
SSIM 0.9616 0.9756 0.9760 0.9245 0.9610 0.9510 0.9026 0.9645 0.9205 0.9406 0.9475 0.9442 0.9793 0.9902 0.9812

×3 ×2.4 ×2.75 ×3 ×2.8 ×2.95 ×3 ×2.2 ×2.15 ×3 ×2.3 ×2.35 ×3 ×2.7 ×2.55

Bicubic PSNR 30.39 32.41 31.06 27.55 27.84 27.46 27.21 28.88 29.12 24.46 25.91 25.72 26.95 27.77 28.27
SSIM 0.8682 0.9072 0.8845 0.7742 0.7932 0.7790 0.7385 0.8185 0.8235 0.7370 0.8070 0.8020 0.8556 0.8790 0.8907

RCAN [38] PSNR 34.76 36.51 35.31 30.62 30.90 30.53 29.31 31.31 31.68 29.01 31.34 31.15 34.42 35.50 36.06
SSIM 0.9299 0.9484 0.9364 0.8482 0.8630 0.8538 0.8111 0.8811 0.8873 0.8702 0.9181 0.9155 0.9499 0.9607 0.9654

MetaSR [16] PSNR 34.76 36.58 35.36 30.58 31.00 30.56 29.29 31.44 31.70 28.96 31.43 31.20 34.40 35.55 36.21
SSIM 0.9305 0.9482 0.9377 0.8471 0.8616 0.8528 0.8099 0.8801 0.8863 0.8665 0.9144 0.9118 0.9488 0.9591 0.9643

ArbSR [8] PSNR 34.76 36.59 35.39 30.64 31.01 30.59 29.32 31.48 31.72 28.98 31.48 31.26 34.55 35.64 36.27
SSIM 0.9306 0.9487 0.9375 0.8477 0.8622 0.8534 0.8115 0.8815 0.8877 0.8674 0.9156 0.9127 0.9501 0.9608 0.9656

LIIF [45] PSNR 34.68 36.47 35.38 30.53 30.97 30.56 29.26 31.47 31.67 28.82 31.30 31.09 34.17 35.49 36.18
SSIM 0.9293 0.9479 0.9356 0.8470 0.8615 0.8527 0.8099 0.8801 0.8858 0.8663 0.9142 0.9116 0.9478 0.9585 0.9633

LTE [46] PSNR 34.89 36.66 35.51 30.80 31.28 30.83 29.39 31.59 31.78 29.29 31.95 31.77 34.77 35.94 36.52
SSIM 0.9318 0.9504 0.9381 0.8502 0.8647 0.8559 0.8128 0.8831 0.8888 0.8730 0.9218 0.9173 0.9508 0.9616 0.9663

CLIT [56] PSNR 34.80 36.69 35.47 30.78 31.30 30.72 29.34 36.93 31.75 29.04 31.85 31.79 34.63 35.80 36.39
SSIM 0.9310 0.9496 0.9373 0.8503 0.8652 0.8560 0.8124 0.8824 0.8884 0.8706 0.9185 0.9159 0.9503 0.9610 0.9659

Ours PSNR 34.97 36.73 35.54 30.90 31.36 30.87 29.45 31.58 31.83 29.37 32.06 31.86 34.86 36.01 36.57
SSIM 0.9316 0.9499 0.9382 0.8510 0.8657 0.8565 0.8137 0.8838 0.8898 0.8741 0.9223 0.9191 0.9513 0.9617 0.9670

×4 ×3.1 ×3.25 ×4 ×3.2 ×3.95 ×4 ×3.2 ×3.55 ×4 ×3.7 ×3.85 ×4 ×3.4 ×3.65

Bicubic PSNR 28.42 29.89 29.21 26.00 26.98 26.32 25.96 26.91 26.32 23.14 23.38 23.14 24.89 25.97 25.41
SSIM 0.8104 0.8622 0.8532 0.7227 0.7595 0.7252 0.6675 0.7235 0.6990 0.6585 0.6819 0.6702 0.7866 0.8280 0.8108

RCAN [38] PSNR 32.63 34.37 33.92 28.85 30.00 28.72 27.75 28.86 28.27 26.75 27.20 26.89 31.20 32.76 32.04
SSIM 0.9002 0.9264 0.9232 0.7889 0.8336 0.7929 0.7436 0.7953 0.7780 0.8087 0.8285 0.8182 0.9173 0.9585 0.9417

MetaSR [16] PSNR 32.56 34.46 33.98 28.85 30.08 28.73 27.75 28.86 28.30 26.71 27.25 26.93 31.33 33.00 32.22
SSIM 0.8984 0.9245 0.9216 0.7872 0.8329 0.7902 0.7423 0.7932 0.7774 0.8083 0.8276 0.8183 0.9180 0.9592 0.9424

ArbSR [8] PSNR 32.55 34.50 34.03 28.87 30.08 28.74 27.76 28.93 28.33 26.68 27.22 26.90 31.36 33.12 32.29
SSIM 0.8992 0.9251 0.9225 0.7883 0.8330 0.7923 0.7441 0.7958 0.7785 0.8047 0.8245 0.8142 0.9196 0.9611 0.9436

LIIF [45] PSNR 32.50 34.47 34.12 28.80 30.09 28.85 27.74 28.90 28.34 26.68 27.23 26.94 31.20 32.87 32.11
SSIM 0.8988 0.9256 0.9212 0.7874 0.8321 0.7914 0.7420 0.7937 0.7764 0.8040 0.8238 0.8135 0.9170 0.9582 0.9414

LTE [46] PSNR 32.81 34.69 34.16 28.94 30.33 28.87 27.81 29.00 28.42 26.94 27.86 27.40 31.67 33.42 32.61
SSIM 0.9018 0.9286 0.9242 0.7904 0.8351 0.7944 0.7450 0.7969 0.7799 0.8100 0.8298 0.8195 0.9115 0.9527 0.9359

CLIT [56] PSNR 32.69 34.60 34.17 28.98 30.22 28.79 27.82 28.95 28.40 26.91 27.81 27.31 31.58 33.24 32.56
SSIM 0.9005 0.9263 0.9238 0.7911 0.8367 0.7945 0.7452 0.7967 0.7794 0.8094 0.8285 0.8193 0.9203 0.9624 0.9446

Ours PSNR 32.83 34.69 34.20 29.00 30.31 28.89 27.88 29.04 28.45 27.03 27.94 27.46 31.69 33.50 32.69
SSIM 0.9017 0.9281 0.9245 0.7918 0.8368 0.7955 0.7462 0.7976 0.7809 0.8130 0.8325 0.8228 0.9205 0.9619 0.9447

A. Datasets and Metrics

We use the DIV2K dataset [48] as the training set and
evaluate the model on five benchmark datasets, including Set5
[49], Set14 [50], BSD100 [51], Urban100 [52], and Manga109
[53]. Following the settings of previous works, we use the peak
signal-to-noise ratio (PSNR) and structural similarity index
(SSIM) [54] calculated on the transformed Y channel in the
YCbCr space as the evaluation metrics. We crop borders for
fair comparison.

B. Implementation Details

Following ArbSR [8], for symmetric scale factors, where the
vertical and horizontal reconstruction factors are the same, we
generate LR training images for each scale factor from 1 to
4 with a stride of 0.1 (i.e., 1.1, 1.2, ..., 3.9, 4.0) during the
training phase. For asymmetric scale factors, we generate LR
training images for each asymmetric scale factor by varying
the vertical and horizontal factors with a stride of 0.5 (i.e.,
×1.5
×2.0 , ×1.5

×2.5 , ..., ×4.0
×3.0 , ×4.0

×3.5). In each batch, we randomly

MANUSCRIPT SUBMITTED TO IEEE TRANSACTIONS ON MULTIMEDIA, JULY, 2023 8

TABLE II
AVERAGE RESULTS OF PSNR (dB) AND SSIM FOR ASYMMETRIC SCALE FACTORS ON FIVE BENCHMARK DATASETS. THE BEST AND SECOND-BEST

RESULTS ARE MARKED IN RED AND BLUE COLORS, RESPECTIVELY.

Methods Metrics
Set5 Set14 BSD100 Urban100 Manga109

×1.5
×4

×1.5
×3.5

×1.6
×3.05

×4
×2

×3.5
×2

×3.5
×1.75

×4
×1.4

×1.5
×3

×3.5
×1.45

×1.6
×3

×1.6
×3.8

×3.35
×1.55

×2.5
×2

×2.8
×3.5

×3.35
×2.7

Bicubic
PSNR 30.01 30.83 31.40 27.25 27.88 27.27 27.45 28.86 27.94 25.93 24.92 25.19 29.61 26.47 26.86
SSIM 0.8640 0.8792 0.8877 0.7663 0.7937 0.7668 0.7501 0.8180 0.7739 0.8076 0.7541 0.7714 0.9135 0.8418 0.8537

RCAN [38]
PSNR 34.14 35.05 35.67 30.35 31.02 d31.21 29.35 31.30 29.98 30.72 28.81 29.34 37.48 33.31 33.82
SSIM 0.9230 0.9359 0.9397 0.8419 0.8638 0.8726 0.8125 0.8776 0.8394 0.9069 0.8687 0.8963 0.9715 0.9493 0.9529

MetaSR [16]
PSNR 34.20 35.17 35.81 30.40 31.05 31.33 29.43 31.26 30.09 30.73 29.03 29.67 37.74 33.61 34.23
SSIM 0.9235 0.9364 0.9403 0.8435 0.8655 0.8742 0.8135 0.8786 0.8404 0.9070 0.8688 0.8964 0.9727 0.9515 0.9531

ArbSR [8]
PSNR 34.37 35.40 36.05 30.55 31.27 31.54 29.54 31.40 30.22 31.13 29.36 30.04 37.93 33.81 34.41
SSIM 0.9246 0.9375 0.9414 0.8467 0.8687 0.8774 0.8147 0.8798 0.8416 0.9116 0.8734 0.9010 0.9736 0.9524 0.9541

LIIF [45]
PSNR 34.30 35.29 35.99 30.51 31.16 31.56 29.47 31.35 30.22 30.95 29.28 29.92 37.88 33.74 34.34
SSIM 0.9244 0.9373 0.9412 0.8462 0.8673 0.8777 0.8140 0.8791 0.8409 0.9096 0.8714 0.8990 0.9734 0.9512 0.9546

LTE [46]
PSNR 34.53 35.48 36.14 30.70 31.52 31.69 29.62 31.45 30.27 31.33 29.61 30.28 38.02 34.01 34.69
SSIM 0.9260 0.9389 0.9428 0.8492 0.8703 0.8807 0.8155 0.8806 0.8424 0.9140 0.8758 0.9034 0.9740 0.9527 0.9545

CLIT [56]
PSNR 34.47 35.49 36.11 30.67 31.44 31.70 29.58 31.42 30.25 31.26 29.53 30.32 37.99 33.95 34.58
SSIM 0.9252 0.9381 0.9420 0.8481 0.8701 0.8808 0.8151 0.8802 0.8420 0.9131 0.8749 0.9035 0.9739 0.9527 0.9543

Ours
PSNR 34.62 35.61 36.20 30.83 31.60 31.85 29.67 31.51 30.33 31.49 29.70 30.41 38.27 34.12 34.85
SSIM 0.9269 0.9397 0.9438 0.8506 0.8723 0.8816 0.8158 0.8805 0.8429 0.9158 0.8772 0.9056 0.9753 0.9537 0.9561

crop patches of size 50×50 as inputs. We also apply random
vertical or horizontal flipping and randomly rotate the images
by 90°for data augmentation. The Adam method [55] is used
as optimization with β1=0.9 and β2=0.99. The initial learning
rate is set to 1×10−4 and is halved every 30 epochs. We
train our model for 150 epochs with a batch size of 8. The
loss function used is L1 loss. To address the issue of gradient
explosion when training arbitrary-scale SR models, we use the
pretrained model of the RCAN [38] network with ×4 scale
factor. Additionally, only integer scale factors (i.e., ×2, ×3,
×4) are used for training in the first epoch. Non-integer scale
factors are randomly selected starting from the second epoch
to ensure training stability. Our model is trained on two Nvidia
GeForce GTX 1080Ti GPUs using the PyTorch framework.

C. Results for SR with Symmetric Scale Factors

In this section, we compare our proposed network with
RCAN [38], MetaSR [16], ArbSR [8], LIIF [45], LTE [46],
and CLIT [56] on SR tasks with symmetric scale factors
(both integer and non-integer scale factors). MetaSR [16]
introduces a groundbreaking meta-upsampling module for
arbitrary-scale upsampling. ArbSR [8] is the first method to
achieve asymmetric scale factors reconstruction in arbitrary-
scale SR. LIIF [45] and LTE [46] are the SOTA methods
in arbitrary-scale SR based on implicit function. The CLIT
[56], based on Transformer, is also a SOTA arbitrary-scale SR
method. Since the RCAN [38] network itself only supports
integer scale factors of ×2, ×3, and ×4, we handle non-integer
scale factors using RCAN+Bicubic method. For example, for
a scale factor of ×2.7, we first perform ×3 SR using the
RCAN [38] network on the LR image, and then downsample
the reconstructed image using bicubic interpolation to obtain
the desired ×2.7 SR outcome. To ensure a fair comparison,
we retrain the models using the official released code.

1) Quantitative Results: Table I provides the average PSNR
and SSIM of different algorithms on the Set5, Set14, BSD100,
Urban100, and Manga109 benchmark datasets. From the table,
it can be observed that our network shows improvements
over the baseline RCAN [38] for integer scale factors, and
significantly outperforms RCAN [38] for non-integer scale
factors. For example, our network achieves better performance
than RCAN [38] for ×2 SR on Set5 (PSNR: 38.34 dB vs.
38.27 dB; SSIM: 0.9616 vs. 0.9614), and shows a more
significant advantage for ×1.55 SR (PSNR: 41.15 dB vs. 40.77
dB; SSIM: 0.9760 vs. 0.9749).

Compared to SOTA methods, our network is better than
them overall with most scale factors. For example, compared
to LTE [46], the PSNR of our network improves by 0.24 dB on
×1.9 scale factors SR on Urban100 while the SSIM improves
by 0.0021.

It is worth noting that our method performs better on the
Urban100 dataset compared to the other benchmark datasets.
This is mainly due to the fact that the Urban100 dataset
consists of various architectural images with richer object
edges and details. Our method, which considers scale, position,
and local feature information to generate upsampling filters,
achieves better restoration results in edge details compared to
the other methods.

2) Qualitative Results: Fig. 4 presents the visual results
of different SR algorithms at multiple symmetric scales. In
particular, Fig. 4(a) shows the SR result of the image “img013”
from the Urban100 dataset at a symmetric scale factor of ×1.9.
From the results, it is evident that most of the comparative
algorithms produce blurred outputs and fail to reconstruct
parallel lines clearly. In contrast, our algorithm can perceive
dense lines and generate finer details. The reconstructed result
in Fig. 4(c) demonstrates that only our model can faithfully
reconstruct the triangular patterns in the image, yielding better
perceptual quality and fewer artifacts. In terms of visual

MANUSCRIPT SUBMITTED TO IEEE TRANSACTIONS ON MULTIMEDIA, JULY, 2023 9

HR Bicubic MetaSR ArbSR

LIIF LTE CLIT Ours“img013” from Urban100 (×1.9)

(a)

HR Bicubic MetaSR ArbSR

LIIF LTE CLIT Ours“97033” from BSD100 (×3.0)

(b)

“MomoyamaHaikagura”
from Manga109 (×3.4)

HR Bicubic MetaSR ArbSR

LIIF LTE CLIT Ours

(c)

Fig. 4. Visual comparison for SR with symmetric scale factors.

effects, we observe that our model exhibits significant ad-
vantages in recovering intersecting grids, repetitive textures,
and other high-frequency dense details, which are sensitive to
scale changes. This is attributed to the incorporation of scale
and local feature information during the upsampling process
in our model, enabling the upsampling convolutional kernels
to undergo geometric transformations based on local features.
As a result, the reconstructed outputs adapt well to the image
content.

D. Results for SR with Asymmetric Scale Factors

In this section, we conduct a comparison between our
proposed model and several existing methods including RCAN
[38], MetaSR [16], ArbSR [8], LIIF [45], LTE [46], and
CLIT [56]. Except for ArbSR [8], the other algorithms do
not support asymmetric scale factors in both horizontal and
vertical directions. To facilitate the comparison, we adopt the

RCAN+Bicubic approach. For example, when the scale factor
is ×1.5/×3.0, we first reconstruct the LR image using the com-
parison algorithm at a scale factor of ×3, and then downsample
the reconstructed image using bicubic interpolation to achieve
the desired size for the horizontal scale factor of ×1.5. This
process yields the ×1.5/×3.0 scale factor image. We evaluate
their performance on SR tasks with asymmetric scale factors.

1) Quantitative Results: Table II presents the average
PSNR and SSIM of different algorithms on the Set5, Set14,
BSD100, Urban100 and Manga109 benchmarks. Since al-
gorithms like MetaSR [16] and LIIF [45] do not support
asymmetric scales, their performance is affected by the down-
sampling operation, resulting in less improvement compared
to the RCAN [38] network. Our model takes into account the
different effects of horizontal and vertical scaling on image SR
during training and incorporates LR images with asymmetric
scales. Therefore, our model exhibits significant performance
improvement. For instance, our method achieves noticeable

MANUSCRIPT SUBMITTED TO IEEE TRANSACTIONS ON MULTIMEDIA, JULY, 2023 10

HR Bicubic MetaSR ArbSR

LIIF LTE CLIT Ours“203027” from BSD100 (×1.5/×3)

(a)

HR Bicubic MetaSR ArbSR

LIIF LTE CLIT Ours“barbara” from Set14 (×3.5/×2.0)

(b)

HR Bicubic MetaSR ArbSR

LIIF LTE CLIT Ours“img022” from Urban100 (×1.6/×3.8)

(c)

Fig. 5. Visual comparison for SR with asymmetric scale factors.

improvement over SOTA algorithms such as LTE [46] and
CLIT [56] on the ×2.5/×2.0 SR task in Manga109 dataset
(PSNR: 38.27 dB vs. 38.02 dB vs. 37.99 dB; SSIM: 0.9753
vs. 0.9740 vs. 0.9739). Clearly, this is attributed to the diverse
information utilized by our model, including local features
and scales, allowing for better detail restoration based on the
content of the image.

2) Qualitative Results: Fig. 5 showcases the visual results
of different SR reconstruction algorithms on multiple asym-
metric scale factors. In Fig. 5(b), it can be observed that most
SR results suffer from blurred textures, incorrect patterns, and
significant loss of edge details. In contrast, our model excels in
generating fine texture details while accurately perceiving local
line orientations, leading to superior visual quality. In Fig.
5(a), it is evident that most algorithms fail to faithfully restore
repetitive textures, resulting in distortion artifacts, whereas
only our method successfully recovers dense lines with clarity.

Our model effectively utilizes the features within the neigh-
borhood, enhancing the focus on pertinent image regions and
demonstrating better perceptual capabilities for edge and high-
frequency details. This ability minimizes deviations during
the reconstruction process and preserves the original dense

repetitive structures, contributing to the outstanding visual
performance of our model on asymmetric scale factor SR
tasks.

E. Generalization Performance

In this section, we compare our method with MetaSR
[16], ArbSR [8], LIIF [45], LTE [46], and CLIT [56] on
generalization performance. We first compare the performance
of these methods on out-of-scale (>×4) SR experiments.
Then, we provide the visualization results of our proposed
method on real-world images.

1) Results for Out-of-scale SR: To explore the generaliza-
tion performance on unseen scales, we evaluate the PSNR
and SSIM of different methods for out-of-scale SR on five
benchmark datasets and the DIV2K validation set [48], as
shown in Table III and Table IV. The reason for including
the DIV2K validation set here is that its image resolution is
large, which is suitable for large-scale SR task. Although the
scale factors in the training distribution is ×1 to ×4 only, our
proposed method still shows strong representation capability
on large scale factors since the method fully considers the

MANUSCRIPT SUBMITTED TO IEEE TRANSACTIONS ON MULTIMEDIA, JULY, 2023 11

TABLE III
AVERAGE RESULTS OF PSNR (dB) AND SSIM FOR OUT-OF-SCALE SR ON FIVE BENCHMARK DATASETS. THE BEST AND SECOND-BEST RESULTS ARE

MARKED IN RED AND BLUE COLORS, RESPECTIVELY.

Methods Metrics
Set5 Set14 BSD100 Urban100 Manga109

×6 ×6.25 ×8 ×5.25 ×5.8
×6.2

×8 ×6 ×6.75 ×7.5
×8

×5.75 ×6 ×6.25
×6.75

×6.3
×5.6

×6.75 ×8

Bicubic
PSNR 24.17 23.70 22.74 23.23 23.10 21.12 23.69 23.11 22.79 20.73 20.82 20.53 21.51 20.95 19.81
SSIM 0.6732 0.6502 0.5992 0.6118 0.6052 0.4966 0.5728 0.5333 0.5107 0.5796 0.5850 0.5673 0.6557 0.6353 0.5973

MetaSR [16]
PSNR 29.04 28.55 26.96 27.10 26.47 24.97 25.90 25.24 24.87 24.37 24.04 23.57 26.99 25.99 24.73
SSIM 0.8432 0.8309 0.7842 0.7791 0.7557 0.6941 0.7052 0.6687 0.6471 0.7655 0.7516 0.7307 0.8407 0.8161 0.7763

ArbSR [8]
PSNR 29.06 28.60 27.05 27.17 26.47 25.01 25.89 25.30 24.85 24.40 24.07 23.61 27.10 26.08 24.90
SSIM 0.8437 0.8322 0.7872 0.7816 0.7557 0.6958 0.7047 0.6721 0.6459 0.7667 0.7529 0.7325 0.8429 0.8186 0.7821

LIIF [45]
PSNR 29.15 28.73 27.14 27.38 26.60 25.15 25.98 25.53 24.95 24.44 24.20 23.75 27.30 26.37 25.04
SSIM 0.8458 0.8355 0.7901 0.7890 0.7607 0.7019 0.7095 0.6850 0.6518 0.7684 0.7584 0.7388 0.8467 0.8262 0.7868

LTE [46]
PSNR 29.32 29.03 27.26 27.46 26.68 25.16 26.01 25.61 25.03 24.79 24.62 23.93 27.78 26.41 25.12
SSIM 0.8498 0.8429 0.7939 0.7917 0.7637 0.7023 0.7110 0.6895 0.6565 0.7824 0.7757 0.7468 0.8544 0.8273 0.7895

CLIT [56]
PSNR 29.41 28.97 27.34 27.49 26.66 25.35 26.08 25.63 25.01 24.86 24.66 23.91 27.90 26.69 25.30
SSIM 0.8519 0.8415 0.7964 0.7928 0.7629 0.7105 0.7147 0.6906 0.6553 0.7851 0.7773 0.7459 0.8560 0.8341 0.7953

Ours
PSNR 29.45 29.09 27.40 27.58 26.79 25.42 26.07 25.66 25.05 24.98 24.73 24.04 27.88 26.79 25.41
SSIM 0.8528 0.8444 0.7982 0.7959 0.7678 0.7135 0.7142 0.6922 0.6577 0.7897 0.7800 0.7516 0.8558 0.8363 0.7988

TABLE IV
AVERAGE RESULTS OF PSNR (dB) AND SSIM ON DIV2K VALIDATION SET. THE BEST AND SECOND-BEST RESULTS ARE MARKED IN RED AND BLUE

COLORS, RESPECTIVELY.

Methods Metrics
In-scale Out-of-scale

×2 ×3 ×4 ×6 ×8.5 ×12 ×15.5 ×18 ×24 ×30

Bicubic
PSNR 31.01 28.22 26.66 24.82 23.45 22.27 21.42 21.00 20.19 19.59
SSIM 0.8942 0.8128 0.7602 0.6963 0.6500 0.6128 0.5881 0.5768 0.5567 0.5436

MetaSR [16]
PSNR 35.00 31.27 29.25 26.88 24.83 23.73 22.69 22.18 21.17 20.47
SSIM 0.9541 0.9005 0.8454 0.7678 0.6966 0.6593 0.6257 0.6101 0.5813 0.5634

ArbSR [8]
PSNR 34.96 31.24 29.26 26.90 24.89 23.77 22.75 22.25 21.23 20.50
SSIM 0.9540 0.8998 0.8457 0.7685 0.6987 0.6606 0.6276 0.6122 0.5829 0.5641

LIIF [45]
PSNR 34.99 31.26 29.27 26.99 25.02 23.89 22.84 22.34 21.31 20.59
SSIM 0.9541 0.9003 0.8460 0.7715 0.7032 0.6646 0.6304 0.6149 0.5851 0.5663

LTE [46]
PSNR 35.04 31.32 29.33 27.04 25.07 23.95 22.90 22.40 21.36 20.64
SSIM 0.9542 0.9017 0.8478 0.7733 0.7049 0.6666 0.6323 0.6167 0.5865 0.5675

CLIT [56]
PSNR 35.10 31.38 29.40 27.12 25.11 24.01 22.96 22.45 21.38 20.64
SSIM 0.9544 0.9031 0.8499 0.7760 0.7063 0.6687 0.6342 0.6183 0.5870 0.5673

Ours
PSNR 35.17 31.46 29.46 27.16 25.17 24.06 22.99 22.49 21.40 20.66
SSIM 0.9546 0.9049 0.8517 0.7774 0.7084 0.6703 0.6352 0.6195 0.5876 0.5680

impact of scale factors on dynamic attention weights in feature
extraction. For example, as shown in Table IV, our method
achieves clear improvement over LTE [46] on the ×18 SR
task on DIV2K validation set (PSNR: 22.49 dB vs. 22.40 dB;
SSIM: 0.6195 vs. 0.6167). Due to the ability to flexibly recover
images of the proposed LFAUM, our model also exhibits
strong modeling ability on asymmetric large scale factors.
For instance, as shown in Table III, on the ×6.25/×6.75 SR
task in Urban100, our network outperforms the SOTA method
CLIT [56] (PSNR: 24.04 dB vs. 23.91 dB; SSIM: 0.7516 vs.
0.7459). The visual comparisons for SR algorithms on out-
of-scale SR task are shown in Fig. 6. From the results, our
proposed network is still able to reconstruct SR in clearer
and more natural details at both symmetric and asymmetric
scales for out-of-scale SR. In Fig. 6(c), it is shown that our
method can clearly recover the lines of the window with
less blurring and artifacts, which reveals that the model has

excellent generalization performance.
2) Visualization Results of Real-world Images: To evaluate

the generalization performance of our model for real-world
image SR, we test our network on real-world images using
RealSR [57] dataset, and present the results in Fig. 7. Com-
pared to the conventional interpolation method, our proposed
network has sharper and more natural edges. For example, as
shown in Fig. 7(a), the characters in the street sign recon-
structed by our method are still recognizable. These results
show that the proposed method still maintains a satisfactory
capability in the SR task of real-world images.

F. Ablation Study

In this section, firstly, we conduct ablation experiments to
validate the effectiveness of each module. The dataset we use
is Urban100 [52], if not specified. We use RCAN [38] as the
baseline and introduce six variants, all of which are trained

MANUSCRIPT SUBMITTED TO IEEE TRANSACTIONS ON MULTIMEDIA, JULY, 2023 12

“DualJustice”
from Manga109 (×6.75)

HR Bicubic MetaSR ArbSR

LIIF LTE CLIT Ours

(a)

“86016” from BSD100 (×7.5/×8)

HR Bicubic MetaSR ArbSR

LIIF LTE CLIT Ours

(b)

“0812” from DIV2K (×12)

HR Bicubic MetaSR ArbSR

LIIF LTE CLIT Ours

(c)

Fig. 6. Visual comparison for SR on out-of-scale factors.

for 150 epochs. Secondly, we discuss the model complexity
and inference time.

1) SLFAM and LFAUM Ablation Study: The main inno-
vation of this paper lies in the proposal of two efficient
and pluggable modules, namely SLFAM and LFAUM. In the
SLFAM, dynamic convolution is utilized to generate dynamic
convolutional kernels and incorporate local feature information
during the process to enable the learned kernels to adapt to
different regions local structures. Subsequently, we employ
depth separable convolution to reduce model parameters and
enhance the representation capacity of dynamic convolutional
kernels. In the LFAUM, we integrate scale and local feature
information to generate adaptive upsampling convolutional
kernels and use depth separable convolution to achieve adap-
tive offset of the receptive field of upsampling convolutional

kernels, enhancing the network’s capability to model geo-
metric transformations. To validate the effectiveness of these
components, we conduct ablation experiments on these two
modules.

a) For LFAUM: we use RCAN [38] as the baseline. The
bicubic method mentioned earlier is adopted for downsampling
for non-integer or non-symmetric scale factor SR. To enable
RCAN [38] to achieve arbitrary-scale SR within a single
model, a simple solution is replacing the PixelShuffle layer
[52] with a bicubic layer, which we refer to as Variant 1.
To validate the effectiveness of LFAUM, we introduce two
additional variants. In Variant 2, we remove the operation
of learning receptive field offsets in LFAUM and perform
upsampling solely based on local features, scale information,
and position information to generate dynamic convolutional

MANUSCRIPT SUBMITTED TO IEEE TRANSACTIONS ON MULTIMEDIA, JULY, 2023 13

“Canon_009_LR2”
from RealSR (×2)

“Canon_009_HR” from RealSROurs

Bicubic

(a)

“Nikon_020_LR4”
from RealSR (×4)

“Nikon_020_HR” from RealSROurs

Bicubic

(b)

Fig. 7. Visualization result of the proposed method on real-world images.

TABLE V
PSNR (dB) RESULTS ACHIEVED BY OUR NETWORK WITH DIFFERENT SETTINGS ON URBAN100 BENCHMARK.

Methods
SLFAM LFAUM

×1.7 ×2 ×2.95 ×3.1 ×1.3
×3.9

×2
×3.3Dy-conv Local feature Dep-conv Local feature Def-conv

RCAN [38] % % % % % 35.17 33.18 29.06 28.84 28.79 29.85

Variant 1 % % % Bicubic 34.96 32.90 28.35 27.97 27.88 28.71

Variant 2 % % % ! % 35.21 33.33 29.20 28.82 28.80 29.94

Variant 3 % % % ! ! 35.30 33.40 29.31 28.92 28.89 30.01

Variant 4 ! % % ! ! 35.37 33.46 29.38 29.00 28.94 30.06

Variant 5 ! ! % ! ! 35.41 33.45 29.42 29.06 28.99 30.10

Variant 6 ! ! ! ! ! 35.43 33.51 29.44 29.10 29.05 30.12

kernels. In Variant 3, we add deformable convolution operation
and utilize the complete LFAUM for upsampling reconstruc-
tion.

Table V shows that when using bicubic upsampling, the
PSNR values are relatively low. By gradually adding scale
and position information, local feature information, and feature
offset information, the performance is significantly improved
(e.g., 28.92 dB vs. 27.97 dB for ×3.1 SR). This is because our
upsampling layer can perceive scale-aware feature-adaptive
dynamic filters, while bicubic method uses fixed filters that
cannot adapt well to images with different scales and contents.
Especially with the addition of deformable convolution, the
reconstruction ability of the model in the complex local
region is greatly enhanced, and the PSNR is also significantly
improved.

b) For SLFAM: we introduce three additional variants
while keeping LFAUM as the upsampling layer. In Variant 4,
we use dynamic convolution to generate scale-aware convolu-
tional kernels and apply them to the features. It is important
to note that the input for generating dynamic convolutional
kernels only includes scale information and does not include
local features of the image. Additionally, there is only one
generated dynamic convolutional kernel instead of separately

generating depthwise kernels and pointwise kernels, which
means the operation of depthwise separable convolution is not
included. For Variant 5, we introduce local feature information
into the attention network that generates dynamic convolu-
tional kernels, to investigate the importance of the network’s
adaptation to local features. Finally, we use the complete
SLFAM as Variant 6, which incorporates the operation of
depthwise separable convolution based Variant 5. From Table
V, it can be observed that both the scale-aware dynamic
convolution and the utilization of local features contribute to
performance improvement (e.g., 30.01 dB vs. 30.10 dB for
×2/×3.3 SR).

The reason why Variant 5 outperforms Variant 4 is that
Variant 4 does not consider the differences in local features
between different regions of the image. The region with simple
structure and the region with complex details obviously have
different convolutional kernels, which should be distinguished
in feature extraction to adapt to the local information of the
image. By utilizing our scale-aware feature-adaptive convo-
lutional kernels, the network can focus on image content
based on scale information and local features, resulting in
the generation of fine details. Variant 6, with the inclusion
of depthwise separable convolution, increases the complexity

MANUSCRIPT SUBMITTED TO IEEE TRANSACTIONS ON MULTIMEDIA, JULY, 2023 14

of the network as both depthwise and pointwise kernels are
generated dynamically, allowing attention to be focused on
both channel and pixel levels. Although the number of param-
eters increases compared to generating a single convolutional
kernel due to the two attention branches, the overall number of
parameter decreases significantly when performing subsequent
convolutions with depthwise separable convolution, resulting
in a reduction in overall parameter count.

TABLE VI
PSNR (dB) RESULTS ACHIEVED BY PROPOSED METHOD WITH DIFFERENT
SETTINGS OF DYNAMIC CONVOLUTION WEIGHTS ON SET5. THE RUNNING

TIME IS AVERAGED OVER B100 FOR ×4 SR.

Branches Params. Time ×1.6 ×2.4 ×3.1 ×1.5
×4

×1.5
×3.5

×1.6
×3.05

1 17.00M 0.10s 40.28 36.40 34.24 33.96 35.07 35.75

2 17.02M 0.11s 40.72 36.73 34.67 34.55 35.57 36.18

4 17.08M 0.11s 40.73 36.73 34.69 34.62 35.61 36.20

8 17.20M 0.12s 40.73 36.75 34.68 34.64 35.64 36.21

2) Discussion on the Dynamic Convolution Weights: Scale-
aware dynamic convolution provides adaptive and refined con-
volution kernel selection for feature extraction. In this section,
we first study the effect of the number of dynamic convolution
weights on the model performance. Then we explore the
relationship between the dynamic convolution weights and the
reconstruction scale factors.

a) Number of Dynamic Convolution Weights: Dynamic
convolution generates multiple dynamic weights through at-
tention branch. To explore the impact of dynamic convolu-
tion weights, we compare the effect of different numbers of
weights on the network in Table VI. When only one single
weight exists, the dynamic convolution is downgraded to a
regular convolution with static kernels, which cannot deal
with multiple scale factors and image contents effectively.
Therefore, the performance of Variant 1 decreases from 40.73
dB to 40.28 dB on ×1.6 SR. As the number of dynamic
convolution weights increases, the network shows improved
performance on symmetric scale factors and more significant
effects on asymmetric scale factors. Particularly, there is
significant improvement for highly asymmetric scale factors
(e.g., 34.65 dB vs. 33.96 dB on ×1.5/×4 SR). To achieve a
preferable trade-off between model size and performance, we
choose four dynamic convolution weights as the default setting
since having more than four attention branches does not bring
significant performance improvement.

b) Relationship with Scale Factors: In Fig. 8, we show
the relationship between dynamic attention weights (i.e.,
depth-wise convolution weight πdw and point-wise convolu-
tion weight πdw) and scale factors and image content respec-
tively. We set the attention branch to four and choose the
average result on Set5 [49] as a reference. From this, we
get the four weights π1

dw, π2
dw, π3

dw and π4
dw of the depth-

wise branch and π1
pw, π2

pw, π3
pw and π4

pw of the point-wise
branch. When the upsampling scale is small, it is mainly π1

dw

and π1
pw that are activated, which values are close to 1. The

remaining weights have values close to 0, which is equivalent
to a conventional convolution. This means that conventional
static convolution can meet the requirements of the model to
achieve small-scale SR tasks. As the scale factor increases, the

��� ��� ��� ��� ��� ��� ��� ���

���

���

���

���

���

Va
lue

S c a l e F a c t o r

������ ��
�
��

����� ��
�
��

����� ��
�
��

����� ��
�
��

Fig. 8. Relationship between dynamic weights and scale factors on Set5
dataset.

values of weight π1
dw and π1

pw decrease, while the values of
weight π2

dw, π3
dw, π4

dw, π2
pw, π3

pw and π4
pw gradually increase,

and more convolution kernels are activated. This indicates that
the larger the scale factor, the stronger the dependence of the
model on the scale-aware dynamic convolution. Because the
scale-aware dynamic convolution fully considers the impact
of scale on the model, and enhances the adaptability of the
network to large-scale upsampling. These results validate the
effectiveness of the dynamic weight generator.

DI=29.7115

DI=30.7762

DI=28.5625

Ours

MetaSR

ArbSR

LAM attribution SR resultsHR image with
the selected region

Area of
contribution

Fig. 9. LAM [58] results and visual comparison for different methods.

G. Attribution Analysis

In order to verify whether our model activates more pixels,
we conduct attribution analysis of different methods through
local attribution maps (LAM) [58] and diffusion index (DI), as
shown in Fig. 9. LAM attribution represents the contribution
of each pixel to the SR result of a given patch. DI is a
statistical dispersion measure, and the larger the DI value,
the more pixels contribute to the SR result. According to the
results, our method activates more pixels than MetaSR [16]

MANUSCRIPT SUBMITTED TO IEEE TRANSACTIONS ON MULTIMEDIA, JULY, 2023 15

and ArbSR [8]. The reason is that our module integrates a
variety of information such as scale factor, local feature, pixel
projection position and receptive field offset into the network,
enabling the network to make full use of image information
for reconstruction, significantly increasing the complexity of
the network. This conclusion confirms the effectiveness of our
network.

��������������������������	���	���
�
�	��

�	��

�	��

�	��

�	��

�	��

�	�	

�	�
 O u r s

M e t a S RA r b S R
L I I F

L T E C L I T

R C A N R D N
S A N

PS
NR

 (d
B)

I n f e r e n c e T i m e (s)

1 5 1 7 1 9 2 1 2 3 2 5

P a r a m e t e r s (M)

Fig. 10. Inference time and number of parameters for SR algorithms.

H. Investigation of Model Complexity and Inference Time

In this section, we evaluate the computational complexity
of the models based on their inference time and number of
parameters. Fig. 10 compares the running time (s) and PSNR
(dB) of different algorithms. The running time is the average
time taken to reconstruct images on ×1.5 scale using the Set14
dataset. Fig. 10 compares the numbers of parameters (M) and
PSNR of different algorithms. From these two figures, it can
be observed that our model has an average running time that
is 0.3s lower than CLIT [56], and slightly higher than ArbSR
[8] and LTE [46], which overall ensures the speed of the
network. In terms of parameter count, our network introduces
two sets of pluggable modules based on RCAN [38], resulting
in a parameter increase of 0.15M compared to ArbSR [8].
Although there is a slight increase in parameter count, it
does not significantly affect the running time, while achieving
a noticeable improvement in PSNR. Overall, our method
demonstrates certain advantages in terms of computational
complexity.

V. CONCLUSION

To activate more information for better reconstruction, we
propose two plug-in high-performance modules for arbitrary-
scale super-resolution tasks. Both modules can be easily com-
bined with existing fixed-scale super-resolution networks to
produce results with non-integer and asymmetric scale factors.
SLFAM based on dynamic convolution can generate dynamic
kernel according to scale factors and local structure, and
extract adaptive features. LFAUM based on depth separable
convolution generates adaptively using convolution kernel by
fusing scale and local feature information, and learns offset
to make the upsampling receptive field change direction and
range adaptively according to image texture, thus generating

SR image with high adaptability to image content. Extensive
experimental results have demonstrated to verify the effective-
ness of proposed module, and the performance advantage of
our module is significant in the case of similar complexity.

REFERENCES

[1] C. Dong, C. C. Loy, K. He, and X. Tang, “Image super-resolution using
deep convolutional networks,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 38, no. 2, pp. 295–307, 2015.

[2] H. Chen, X. He, L. Qing, Y. Wu, C. Ren, R. E. Sheriff, and C. Zhu,
“Real-world single image super-resolution: A brief review,” Information
Fusion, vol. 79, pp. 124–145, 2022.

[3] S. Anwar, S. Khan, and N. Barnes, “A deep journey into super-
resolution: A survey,” ACM Computing Surveys, vol. 53, no. 3, pp. 1–34,
2020.

[4] B. B. Moser, F. Raue, S. Frolov, S. Palacio, J. Hees, and A. Den-
gel, “Hitchhiker’s guide to super-resolution: Introduction and recent
advances,” IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 45, no. 8, pp. 9862–9882, 2023.

[5] F. Li, Y. Wu, H. Bai, W. Lin, R. Cong, and Y. Zhao, “Learning
detail-structure alternative optimization for blind super-resolution,” IEEE
Transactions on Multimedia, vol. 25, pp. 2825–2838, 2023.

[6] H. Wang, X. Chen, B. Ni, Y. Liu, and J. Liu, “Omni aggregation
networks for lightweight image super-resolution,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2023, pp. 22 378–22 387.

[7] Y. Liu, S. Wang, J. Zhang, S. Wang, S. Ma, and W. Gao, “Iterative
network for image super-resolution,” IEEE Transactions on Multimedia,
vol. 24, pp. 2259–2272, 2022.

[8] L. Wang, Y. Wang, Z. Lin, J. Yang, W. An, and Y. Guo, “Learning a
single network for scale-arbitrary super-resolution,” in Proceedings of
the IEEE/CVF International Conference on Computer Vision, 2021, pp.
4801–4810.

[9] M.-I. Georgescu, R. T. Ionescu, A.-I. Miron, O. Savencu, N.-C. Ris-
tea, N. Verga, and F. S. Khan, “Multimodal multi-head convolutional
attention with various kernel sizes for medical image super-resolution,”
in Proceedings of the IEEE/CVF Winter Conference on Applications of
Computer Vision, 2023, pp. 2195–2205.

[10] H. Yang, Z. Wang, X. Liu, C. Li, J. Xin, and Z. Wang, “Deep learning
in medical image super resolution: a review,” Applied Intelligence, pp.
1–26, 2023.

[11] K. Chen, W. Li, S. Lei, J. Chen, X. Jiang, Z. Zou, and Z. Shi,
“Continuous remote sensing image super-resolution based on context
interaction in implicit function space,” IEEE Transactions on Geoscience
and Remote Sensing, vol. 61, pp. 1–16, 2023.

[12] H. Wu, N. Ni, and L. Zhang, “Learning dynamic scale awareness and
global implicit functions for continuous-scale super-resolution of remote
sensing images,” IEEE Transactions on Geoscience and Remote Sensing,
vol. 61, pp. 1–15, 2023.

[13] G. Gao, L. Tang, F. Wu, H. Lu, and J. Yang, “JDSR-GAN: Constructing
an efficient joint learning network for masked face super-resolution,”
IEEE Transactions on Multimedia, vol. 25, pp. 1505–1512, 2023.

[14] A. Agarwal, N. Ratha, M. Vatsa, and R. Singh, “Impact of super-
resolution and human identification in drone surveillance,” in 2021
IEEE/CVF International Workshop on Information Forensics and Se-
curity (WIFS), 2021, pp. 1–6.

[15] B. Lim, S. Son, H. Kim, S. Nah, and K. Mu Lee, “Enhanced deep
residual networks for single image super-resolution,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition
Workshops, 2017, pp. 136–144.

[16] X. Hu, H. Mu, X. Zhang, Z. Wang, T. Tan, and J. Sun, “Meta-SR: A
magnification-arbitrary network for super-resolution,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2019, pp. 1575–1584.

[17] C. Lemke, M. Budka, and B. Gabrys, “Metalearning: a survey of trends
and technologies,” Artificial Intelligence Review, vol. 44, pp. 117–130,
2015.

[18] Y. Chen, X. Dai, M. Liu, D. Chen, L. Yuan, and Z. Liu, “Dynamic
convolution: Attention over convolution kernels,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2020, pp. 11 030–11 039.

[19] J. Dai, H. Qi, Y. Xiong, Y. Li, G. Zhang, H. Hu, and Y. Wei, “Deformable
convolutional networks,” in Proceedings of the IEEE/CVF International
Conference on Computer Vision, 2017, pp. 764–773.

MANUSCRIPT SUBMITTED TO IEEE TRANSACTIONS ON MULTIMEDIA, JULY, 2023 16

[20] X. Zhu, H. Hu, S. Lin, and J. Dai, “Deformable convnets v2: More
deformable, better results,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2019, pp. 9308–9316.

[21] Y. Romano, M. Protter, and M. Elad, “Single image interpolation
via adaptive nonlocal sparsity-based modeling,” IEEE Transactions on
Image Processing, vol. 23, no. 7, pp. 3085–3098, 2014.

[22] S. Zhu, Z. He, S. Liu, and B. Zeng, “Mmse-directed linear image
interpolation based on nonlocal geometric similarity,” IEEE Signal
Processing Letters, vol. 24, no. 8, pp. 1178–1182, 2017.

[23] W. Dong, L. Zhang, R. Lukac, and G. Shi, “Sparse representation
based image interpolation with nonlocal autoregressive modeling,” IEEE
Transactions on Image Processing, vol. 22, no. 4, pp. 1382–1394, 2013.

[24] J. Jiang, X. Ma, C. Chen, T. Lu, Z. Wang, and J. Ma, “Single
image super-resolution via locally regularized anchored neighborhood
regression and nonlocal means,” IEEE Transactions on Multimedia,
vol. 19, no. 1, pp. 15–26, 2016.

[25] H. Chen, X. He, L. Qing, and Q. Teng, “Single image super-resolution
via adaptive transform-based nonlocal self-similarity modeling and
learning-based gradient regularization,” IEEE Transactions on Multime-
dia, vol. 19, no. 8, pp. 1702–1717, 2017.

[26] G. Chantas, S. N. Nikolopoulos, and I. Kompatsiaris, “Heavy-tailed self-
similarity modeling for single image super resolution,” IEEE Transac-
tions on Image Processing, vol. 30, pp. 838–852, 2020.

[27] J. Sun, Z. Xu, and H.-Y. Shum, “Image super-resolution using gradient
profile prior,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2008, pp. 1–8.

[28] J. Yang, Z. Wang, Z. Lin, S. Cohen, and T. Huang, “Coupled dictio-
nary training for image super-resolution,” IEEE Transactions on Image
Processing, vol. 21, no. 8, pp. 3467–3478, 2012.

[29] K. Zhang, X. Gao, D. Tao, and X. Li, “Single image super-resolution
with non-local means and steering kernel regression,” IEEE Transactions
on Image Processing, vol. 21, no. 11, pp. 4544–4556, 2012.

[30] W. Li, J. Li, G. Gao, W. Deng, J. Zhou, J. Yang, and G.-J. Qi,
“Cross-receptive focused inference network for lightweight image super-
resolution,” IEEE Transactions on Multimedia, 2023.

[31] F. Li, Y. Wu, H. Bai, W. Lin, R. Cong, and Y. Zhao, “Learning
detail-structure alternative optimization for blind super-resolution,” IEEE
Transactions on Multimedia, vol. 25, pp. 2825–2838, 2023.

[32] Y. Zhang, L. Dong, H. Yang, L. Qing, X. He, and H. Chen, “Weakly-
supervised contrastive learning-based implicit degradation modeling for
blind image super-resolution,” Knowledge-Based Systems, vol. 249, p.
108984, 2022.

[33] C. Tian, Y. Xu, W. Zuo, B. Zhang, L. Fei, and C.-W. Lin, “Coarse-to-
fine cnn for image super-resolution,” IEEE Transactions on Multimedia,
vol. 23, pp. 1489–1502, 2020.

[34] D. Zhang, J. Shao, Z. Liang, L. Gao, and H. T. Shen, “Large factor
image super-resolution with cascaded convolutional neural networks,”
IEEE Transactions on Multimedia, vol. 23, pp. 2172–2184, 2020.

[35] J. Kim, J. K. Lee, and K. M. Lee, “Accurate image super-resolution using
very deep convolutional networks,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2016, pp.
1646–1654.

[36] B. Lim, S. Son, H. Kim, S. Nah, and K. Mu Lee, “Enhanced deep
residual networks for single image super-resolution,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition
Workshops, 2017, pp. 136–144.

[37] Y. Zhang, Y. Tian, Y. Kong, B. Zhong, and Y. Fu, “Residual dense
network for image super-resolution,” in Proceedings of the IEEE Ron-
ference on Computer Vision and Pattern Recognition, 2018, pp. 2472–
2481.

[38] Y. Zhang, K. Li, K. Li, L. Wang, B. Zhong, and Y. Fu, “Image super-
resolution using very deep residual channel attention networks,” in
Proceedings of the European Conference on Computer Vision, 2018,
pp. 286–301.

[39] T. Dai, J. Cai, Y. Zhang, S.-T. Xia, and L. Zhang, “Second-order
attention network for single image super-resolution,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2019, pp. 11 065–11 074.

[40] X. Chen, X. Wang, J. Zhou, Y. Qiao, and C. Dong, “Activating more
pixels in image super-resolution transformer,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2023, pp. 22 367–22 377.

[41] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2018, pp. 7132–7141.

[42] W. Shi, J. Caballero, F. Huszár, J. Totz, A. P. Aitken, R. Bishop,
D. Rueckert, and Z. Wang, “Real-time single image and video super-
resolution using an efficient sub-pixel convolutional neural network,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2016, pp. 1874–1883.

[43] M. D. Zeiler and R. Fergus, “Visualizing and understanding convo-
lutional networks,” in Proceedings of the European Conference on
Computer Vision, 2014, pp. 818–833.

[44] Y. Fu, J. Chen, T. Zhang, and Y. Lin, “Residual scale attention network
for arbitrary scale image super-resolution,” Neurocomputing, vol. 427,
pp. 201–211, 2021.

[45] Y. Chen, S. Liu, and X. Wang, “Learning continuous image representa-
tion with local implicit image function,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2021, pp.
8628–8638.

[46] J. Lee and K. H. Jin, “Local texture estimator for implicit representation
function,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2022, pp. 1929–1938.

[47] F. Chollet, “Xception: Deep learning with depthwise separable convolu-
tions,” in Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 2017, pp. 1251–1258.

[48] E. Agustsson and R. Timofte, “NTIRE 2017 challenge on single image
super-resolution: Dataset and study,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition Workshops,
2017, pp. 126–135.

[49] M. Bevilacqua, A. Roumy, C. Guillemot, and M. L. Alberi-Morel, “Low-
complexity single-image super-resolution based on nonnegative neighbor
embedding,” in Proceedings of the British Machine Vision Conference,
2012, pp. 135.1–135.10.

[50] R. Zeyde, M. Elad, and M. Protter, “On single image scale-up using
sparse-representations,” in Curves and Surfaces: 7th International Con-
ference, 2012, pp. 711–730.

[51] D. Martin, C. Fowlkes, D. Tal, and J. Malik, “A database of human
segmented natural images and its application to evaluating segmen-
tation algorithms and measuring ecological statistics,” in Proceedings
of IEEE/CVF International Conference on Computer Vision, 2001, pp.
416–423.

[52] J.-B. Huang, A. Singh, and N. Ahuja, “Single image super-resolution
from transformed self-exemplars,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2015, pp.
5197–5206.

[53] Y. Matsui, K. Ito, Y. Aramaki, A. Fujimoto, T. Ogawa, T. Yamasaki,
and K. Aizawa, “Sketch-based manga retrieval using manga109 dataset,”
Multimedia Tools and Applications, vol. 76, pp. 21 811–21 838, 2017.

[54] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image
quality assessment: from error visibility to structural similarity,” IEEE
Transactions on Image Processing, vol. 13, no. 4, pp. 600–612, 2004.

[55] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in Proceedings of the International Conference on Learning Represen-
tations, 2015, pp. 1–15.

[56] H.-W. Chen, Y.-S. Xu, M.-F. Hong, Y.-M. Tsai, H.-K. Kuo, and C.-
Y. Lee, “Cascaded local implicit transformer for arbitrary-scale super-
resolution,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2023, pp. 18 257–18 267.

[57] J. Cai, H. Zeng, H. Yong, Z. Cao, and L. Zhang, “Toward real-world
single image super-resolution: A new benchmark and a new model,” in
Proceedings of the IEEE/CVF International Conference on Computer
Vision, 2019, pp. 3086–3095.

[58] J. Gu and C. Dong, “Interpreting super-resolution networks with local
attribution maps,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2021, pp. 9199–9208.

