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Abstract

Kaposi’s Sarcoma-associated herpesvirus (KSHV) is an oncogenic herpesvirus that ex-

hibits a characteristic bi-phasic life cycle, existing in a suppressed latent cycle or an ac-

tively replicating lytic cycle. One aspect of gene expression regulation crucial in control-

ling this is the post-transcriptional level. Circular RNAs (circRNA) are covalently closed

loops of RNA whose primary function is believed to be by acting at this level, as miRNA

sponges, whereby they modulate the abundance of cognate miRNAs and downstream

target mRNAs. Given the extensiveness of miRNA targeting networks, circRNAs repre-

sent efficient targets of viral dysregulation as they sit at the top of hierarchical networks

of such interactions, termed competing endogenous RNA (ceRNA) networks. Initial stud-

ies have highlighted the involvement of circRNA miRNA sponges in KSHV’s life cycle

and pathogenesis, but much remains to be elucidated and their functional characterisa-

tion is limited. To this end, the first half of this study aimed to construct and analyse

a circRNA ceRNA network of differentially expressed circRNAs, miRNAs and mRNAs to

characterise the involvement and purpose of dysregulation of this level of regulation. This

revealed several cellular circRNAs, primarily circBAGE3, circLRCH3, circSH3PXD2A and

circSMG1P1 as highly influential in the network, while the network may be targeted to pro-

mote RNA synthesis and gene expression to drive lytic replication. Such a finding rep-

resents a novel mechanism by which KSHV modulates cellular non-coding RNA-based

regulatory systems to promote the progression of its life cycle.

Viral-host interplay is believed to underpin much of KSHV’s pathogenesis and to con-

tribute to Kaposi Sarcoma (KS), the cancer it is named after. However, little is known

about the individual determinants for the development of KS, primarily the influence of

host factors. Recent developments in transcriptomics applied to KS lesion tissue has en-

abled many of these determinants to begin being elucidated, but in-depth analysis is lack-

ing. Thus, in the second half of this study, we modelled and analysed the transcriptome

of KS lesions by weighted gene co-expression network analysis (WGCNA). Module par-

titioning revealed a positive association between latent and some lytic genes and lesion

development, while hub gene analysis suggested importance of the Ras/ERK/ETS1 axis

and structural maintenance of chromosomes (SMC) proteins to this process. Differential

gene co-expression analysis revealed two key factors, SIMC1 and LRRK2, as possible

determinants in the transformation of healthy tissue. Such analyses help to identify and

characterise novel candidate determinants that drive the oncogenesis of KSHV.
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vOX2 Viral CD200 homologue
vPK Viral protein kinase
VZV Varicella-Zoster virus
wED Weighted euclidean distance
WGCNA Weighted gene co-expression network analysis
WT Wild-type
wTO Weighted topological overlap
XKR4 XK related 4
ZEB1 Zinc Finger E-Box Binding Homeobox 1
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ZFHX4 Zinc Finger Homeobox 4
ZKSCAN1 Zinc Finger With KRAB And SCAN Domains 1
ZSWIM5 Zinc Finger SWIM-Type Containing 5
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1 Introduction
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1.1 Herpesviruses

Herpesviruses are a broad collection of viruses that share a common phylogenetic origin

as well as similarities in their virion and genome architecture, life cycle and infectious

dynamics. They are all enveloped, large (>100kb) linear double-stranded DNA (dsDNA)

viruses that exhibit bi-phasic life-cycles, whereby they undergo either a dormant latency

or an actively replicating lytic replication cycle. The prior is associated with minimal gene

expression and genome replication, while the later involves the expression of most genes,

with the eventual production of infectious progeny virions.

Herpesviruses belong to Herpesviridae, a diverse family within the broader order Her-

pesvirales (Fig 1.1). Members of Herpesviridae can infect all forms of complex life as

well as microorganisms and even prokaryotes. Within Herpesviridae there are 9 major

herpesviruses that infect humans (often termed "human herpesviruses", HHVs) and gen-

erally these are the most well-studied members. They include Herpes simplex virus-1 and

2 (HSV-1/2), varicella-zoster virus (VZV), cytomegalovirus (HCMV), human herpesvirus 6

variants A/B (HHV6A/B) human herpesvirus 7 (HHV7), Epstein-Barr virus (EBV) and Ka-

posi’s Sarcoma-associated herpesvirus (KSHV) [1]. These can be grouped into 3 based

on phylogeny, with HSV-1, HSV-2 and VZV belonging to the α-herpesviruses, HCMV,

HHV-6 and -7 belonging to the β-herpesviruses and KSHV and EBV belonging to the γ-

herpesviruses [2]. While sharing common phylogenetic origins such herpesviruses vary

not just in their genome sequence and structure but also in the cell types that they are

able to infect, their life cycle and the pathologies that they are associated with [3]. Overall

they represent a diverse and clinically important family of viruses for which much remains

uncharacterised.

1.1.1 Alpha-Herpesviruses

As well as differing at a genetic level, human α-herpesviruses vary from β- and γ-herpesviruses

in features of their life cycle and pathology. Specifically, unlike the latter two they have

relatively short replication cycles and their infection progresses through to their rapid

dissemination in cultured cells [4]. In vivo, they primarily infect and undergo such lytic

replication in epithelial cells, but tend to latently infect terminally differentiated and non-

replicative neuronal cells [2]. Because of this, unlike β- and γ-herpesviruses, they don’t

tether their genome to the host chromosome [4].
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Figure 1.1: Phylogeny of human herpesviruses. Figure adapted from [5].

1.1.2 Beta-Herpesviruses

β-herpesviruses have similarities to both α- and γ-herpesviruses, but are phylogenetically

closest to γ-herpesviruses (Fig 1.1). Like β-herpesvirus, initial infection tends to default

to lytic replication, however this process is much slower, more like that observed for γ-

herpesviruses [4, 4]. Moreover, similarly to γ-herpesviruses, lytic infection is associated

with differentiation of infected cells, which tend to be lymphoreticular cells of the lymphoid

organs [6].

1.1.3 Gamma-Herpesviruses

γ-herpesvirus’s infection cycles vary from most α- and β-herpesviruses and this con-

tributes to their pathogenicity. Infection by γ-herpesviruses generally progresses to la-

tency after an initial burst of lytic gene expression [4]. However in vivo, establishment of

latency varies by cell tropisms as, while γ-herpesviruses can infect a range of cell types

including lymphocytes, epithelial and endothelial cells, they generally establish latency in

B lymphocytes [4]. Nonetheless, the establishment of latency is a major reason for their

propensity to persist in infected hosts, alongside their capacity to cause chronic illnesses.

Accordingly, γ-herpesviruses are those most associated with cancers and this aspect of

their interaction with hosts has garnered much research and makes them of paramount

clinical relevance [4].

Further γ-herpesviruses related to KSHV (and to a lesser extend EBV) are often used as
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models of human γ-herpesviruses [7, 8]. These include Murine Herpesvirus 68 (MHV-68)

and Herpesvirus Saimiri (HVS) that, like KSHV, are grouped into the Rhadinovirus genus

and respectively infect mice and primates [7, 8]. Rhadinovirus 1 and 2 (RV1 and RV2)

are less well-studied Rhadinoviruses that are even more closely related to KSHV and

infect old world primates [9]. Despite infecting different organisms, many insights gained

from these herpesviruses have relevance to all γ-herpesviruses and herpesviruses in

general.
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1.2 Kaposi’s Sarcoma-associated Herpesvirus

Since Kaposi’s Sarcoma-associated Herpesvirus’s (KSHV’s) discovery its association

with chronic and complex pathologies was immediately evident. This is in-part due to its

discovery via isolation from Kaposi’s Sarcoma (KS), a highly vascular AIDS-associated

lesion, from which it derives its name and was subsequently found to be the primary

causative agent of [10]. It is now known to drive at least 2 further cancer/cancer-like

diseases including primary effusion lytmphoma (PEL), multicentric Castlemann’s disease

(MCD), alongside several further illnesses including Kaposi sarcoma inflammatory cy-

tokine syndrome (KICS) and immune reconstitution inflammatory syndrome (IRIS), all

detailed in a later section (Section 1.3.6) [11]. While KSHV is capable of causing illness

in immunocompetent individuals, its maladies are generally associated with immunocom-

promised patients, particularly with AIDS and as such its epidemeology generally follows

that of HIV, with high prevalence in Sub-Saharan Africa [12, 13]. It is now known to infect

humans and is the only known member of the Rhadinovirus genus to do so.

Phylogenetically, it has features common and variable when compared to other γ-herpesviruses.

As a Rhadinovirus, it is most-closely related to RV1, followed by RV2, for which it shares

many genes unique to only these viruses (Fig 1.2). However it also has many similarities

with the more well-studied γ-herpesvirus EBV, which also infects humans and is onco-

genic, driving various lymphomas as well as certain nasopharyngeal and gastric carci-

nomas [14]. However KSHV varies in the exact nature of its life cycle, the pathologies

it causes as well as the gene repertoire that it encodes (Fig 1.2). While the relationship

between KSHV and human disease is well-established, the underlying mechanisms that

underpin this association remain unclear.
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1.2.1 Genome organisation

Figure 1.2: KSHV genes and genome organisation. Arrows correspond to differing tran-
scripts produced by each locus, with solid lines corresponding mature spliced transcripts
and dashed lines corresponding to introns. Known polyadenylation sites are marked with
an asterix. ORFs are coloured according to their conservation, with genes conserved
across all herpesviruses in light blue, genes conserved in β- and γ-herpesviruses in dark
blue, γ-herpesviruses in grey, γ-2-herpesviruses (including EBV) in green, HVS/RV2
Rhadinoviruses in orange, HVS rhadinovirus in red and KSHV-only in brown. Where
numbers refer to ORFs, (ORF4, ORF7, ORF8 etc..), genes starting with "K" are γ-2-
herpesvirus-specific genes. TR = terminal repeat, LIR = long inverted repeats, DR =
direct repeats, OLAP = origin of lytic replication associated protein and PAN = polyadeny-
lated nuclear transcript. Figure is adapted from [15].

The genome of KSHV comprises ∼165 kb of linear dsDNA, sub-divided into two main

components. The first comprises the ∼ 135kbp central "long unique region" (LUR) that

contains all the coding and non-coding potential of the virus. This LUR region is flanked

on either side by GC-rich 801bp long terminal repeat (TR) sequences that encompass the

remaining ∼30 kb [13]. These TR regions mediate circularisation of the viral genome dur-

ing lytic and latent replication, as well as facilitating its attachment to host chromosomes

[13].

The genome contains over 95 genes, many of which contain open-reading frames (ORFs)
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that express mRNAs which are translated by cellular machinery to produce >78 proteins,

which facilitate many functions during viral life-cycle (Fig 1.2 & Table 1.1,1.2 & 1.3). These

include receptor binding glycoproteins and proteins involved in viral genome replication

and gene expression, virion assembly and egress, virion structure (capsid), the tegument

as well as those that target host processes such as gene expression, immunomodulation,

cellular replication, proliferation and the cell cycle (Table 2.3) [16–18]. Moreover many of

these have described and proposed roles in cellular transformation and tumourigenesis

[19]. These are broadly split into the latency locus (Kaposin-ORF73) at the 3’ end of the

genome downstream of ORF69, while all genes upstream of this locus encode lytic gene

products (Fig 1.2 & 1.4). ORF74/5 and K14/15 are unusual lytic genes in that they are 3’

to the latency locus (Fig 1.2).

As well as containing protein coding genes, KSHV encodes several non-coding RNAs

that perform a range of cellular functions. These include the polyadenylated nuclear tran-

script (PAN), antisense-to-latency (ALT) transcript transcribed antisense to the latency

region, T3.0 and T1.2 which overlaps with the ORF50 gene and K7.3 that overlaps anti-

sense to PAN [17, 20]. Moreover like most herpesviruses, KSHV encodes a cohort of 12

pre microRNAs (miRNAs) [15, 21]. Recent studies have identified several further more

esoteric gene products such as circular RNAs (discussed in a later section) [22–27].

While most ORFs (ORF4-ORF75) show some conservation between γ-herpesviruses

and HHVs, KSHV and other related Rhadinoviruses encode some genes unique to their

genus. These include at least 15 unique protein-coding genes that are denoted by "K" and

a number (1-15) (Fig 1.2) [13]. Additionally many KSHV genes, including protein coding

but also miRNAs, are orthologous to host genes [28–30]. In summary the structure of

KSHV’s genome relates to its life-cycle, while the pattern and expression characteristics

of the genes that it encodes reflect its bi-phasic replication.
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ORF Alias Grouping Full Name/Function
K12A KapA Classical Latent Kaposin A
K12B KapB Classical Latent Kaposin B
K12C KapC Classical Latent Kaposin C
mIRregion miR-Ks/K-miRs Classical Latent viral miRNAs
ORF71 vFLlP Classical Latent Viral FADD-like interleukin-1-B-converting enzyme [FLICE/

caspase 8]-inhibitory protein
ORF72 vCycl Classical Latent Viral cyclin D2 homologue
ORF73 LANA Classical Latent Latency associated nuclear antigen
K1 - Relaxed_Latent B cell receptor homologue
K14 vOX2 Relaxed_Latent Viral CD200 homologue
K15a LMP1/2 Relaxed_Latent EBV LMP1/2 orthologue
K2 vIL-6 Relaxed_Latent Viral interleukin 6 homologue
K5 - Relaxed_Latent E3 Ubiquitin ligase
ORF74 vGPCR Relaxed_Latent Viral G-protein coupled receptor
ORF75 - Relaxed_Latent FGARAT protein
vIRF-3 - Relaxed_Latent viral interferon regulatory factor 3
K4.2A - Immediate Early -
K8 bZIP Immediate Early Basic leucine zipper protein
ORF45 - Immediate Early RSK activator
ORF50 RTA Immediate Early Replication and transcription activator
ORF57 MTA Immediate Early mRNA export/splicing

Table 1.1: Details on KSHV’s classical and relaxed latent and immediate early lytic genes.
Table adapted from [31].
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ORF Alias Grouping Full Name/Function
K3 - Early Lytic E3 Ubiquitin ligase
K4 vCCL2, vMIP-

1a
Early Lytic Viral MIP-1B homologue

K4.1 vCCL3 Early Lytic viral chemokine (C-C) ligand 2 homologue
K4.2 - Early Lytic -
K6 vCCL2, vMIP-

1a
Early Lytic Viral MIP-1a homologue

K7 - Early Lytic Mitochondrial membrane protein
OLAP - Early Lytic Origi-l of lytic replication associated protein
ORF10 - Early Lytic Regulator of Interferon Function
ORF11 - Early Lytic Promotes specialised ribosome biogenesis
ORF16 vBcl-2 Early Lytic vBcl-2 homologue
ORF17 - Early Lytic Protease
ORF17.5 - Early Lytic Assembly protein
ORF18 - Early Lytic Late gene regulation
ORF2 - Early Lytic Dihydrofolate reductase
ORF21 vTK Early Lytic Thymidine kinase
ORF24 - Early Lytic Viral pre-initiation complex protein
ORF29A - Early Lytic packaging protein
ORF29B - Early Lytic packaging protein
ORF30 - Early Lytic Late gene regulation
ORF31 - Early Lytic Nuclear and cytoplasmic
ORF34 - Early Lytic -
ORF35 - Early Lytic -
ORF36 vPK Early Lytic Serine protein kinase
ORF37 SOX Early Lytic Host shut-off factor
ORF38 - Early Lytic Myristylated protein
ORF4 KCP Early Lytic Complement binding protein
ORF40 - Early Lytic Helicase
ORF40A - Early Lytic -
ORF41 - Early Lytic Primase
ORF44 - Early Lytic Helicase
ORF46 - Early Lytic Uracil deglycosylase
ORF48 - Early Lytic -
ORF49 - Early Lytic Activates JNK/p38
ORF4A - Early Lytic -
ORF54 - Early Lytic dUTPase/lmmunmodulator
ORF56 - Early Lytic DNA replication
ORF59 - Early Lytic Processivity factor
ORF6 - Early Lytic ssDNA Binding protein
ORF60 - Early Lytic Ribonucleoprotein reductase
ORF61 Early Lytic Ribonucleoprotein reductase
ORF62 TRI1 Early Lytic Viral capsid triplex
ORF63 - Early Lytic NLR homologue
ORF64 - Early Lytic Deubiquiti-se
ORF66 - Early Lytic capsid
ORF67 - Early Lytic Nuclear egress complex
ORF67A - Early Lytic -
ORF69 - Early Lytic BRLF2 Nuclear egress
ORF7 - Early Lytic virion protein
ORF9 - Early Lytic DNA Polymerase
PAN Nut1 Early Lytic Late gene expression
vIRF-1 - Early Lytic viral interferon regulatory factor 1
vIRF-2 - Early Lytic viral interferon regulatory factor 2
vIRF-4 - Early Lytic viral interferon regulatory factor 4

Table 1.2: Details on KSHV’s early lytic genes. Table adapted from [31].
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ORF Alias Grouping Full Name/Function
K8.1 - Late Lytic Glycoprotein
K8a - Late Lytic -
ORF19 - Late Lytic Genome packaging protein
ORF20 - Late Lytic ORF59-associated protein
ORF22 gH Late Lytic Glycoprotein H
ORF23 - Late Lytic Glycoprotein associated with late gene trancription
ORF25 MCP Late Lytic Minor capsid protein
ORF26 TRI2 Late Lytic Viral capsid triplex
ORF27 - Late Lytic Glycoprotein
ORF28 - Late Lytic EBV BDLF3 homologue
ORF32 - Late Lytic Tegument protein
ORF33 - Late Lytic Tegument protein
ORF39 gM Late Lytic Glycoprotein M
ORF42 - Late Lytic Tegument protein
ORF43 - Late Lytic Capsid portal protein
ORF47 gL Late Lytic glycoprotein L
ORF4B - Late Lytic -
ORF52 - Late Lytic Tegument protein
ORF53 gN Late Lytic Glycoprotein N
ORF55 - Late Lytic Tegument protein
ORF58 - Late Lytic EBV BMRF2 homologue
ORF65 SCP Late Lytic Smallest capsid protein
ORF68 - Late Lytic Glycoprotein
ORF70 - Late Lytic thymidylate synthasee
ORF8 gB Late Lytic Glycoprotein B

Table 1.3: Details on KSHV’s late lytic genes. Table adapted from [31].

Figure 1.3: Genomic arrangement of KSHV miRNAs. Figure adapted from [32].

1.2.2 Unique coding sequence annotation

Many KSHV and herpesviral transcripts show extensive overlap and complex regulatory

schemas, with differential promoter usage, splicing and antisense transcription [15, 21].

For example ORF57, vIRF-2, -3 and -4 and ORF50 are spliced, while anti-sense tran-

scription occurs from a locus overlapping with K1-11, K4.1, PAN, ORF3, 50, 58, 59, 71-3

[15]. Previous annotations used for RNA-Sequencing (RNA-Seq) didn’t account for this,

however a pair of recent studies have aimed to further investigate this and provide an an-

notation and associated quantification schema in order to mitigate some of these issues

and provide high-confidence viral gene expression estimates [15, 17, 21, 33]. Key to this

is the delineation of "unique coding sequence" (UCDS) features that shrink the canonical

ORF annotations to be greater than the RNA-Seq library read-length apart, to eliminate

ambiguous overlap between annotated features [15, 17]. Such feature annotations have
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Figure 1.4: Genomic and transcript structure of the latency locus and associated UCDS
feature annotations [15]. Figure adapted from [15].

been developed for KSHV and applied to interrogate viral gene expression in a panel of

cell lines as well as KS lesion tissue, while similar annotations have been developed for

EBV [15, 18, 33].

Many of KSHV’s transcribed mRNAs are polycistronic and such transcripts can be of dif-

fering lengths, thus comprising differing numbers of ORFs and encoded features. This

includes the latency locus where differential promoter usage of the P1, P3 and P5 pro-

moter drivers differential inclusion of ORF71, ORF71 and ORF73 (Fig 1.4) [15]. This can

result in ambiguity in the attribution of mapped RNA-Seq reads to ORFs in polycistronic

transcripts, particularly as the same loci can be transcribed with different combinations

of ORFs [15]. Importantly, Bruce et al., 2017 observed a step-wise gradient of aligned

reads between successive ORFs in polycistronic transcripts, implying redundancy in the

expression measurements of downstream ORFs relative to those upstream [15, 17, 34].

The UCDS schema accounts for this as the measured counts for each downstream ORF

encoded were subtracted from those upstream [15]. Moreover, in the case of the P1, P3

and P5 latency promoters, the abundance of exons transcribed immediately downstream

are used in the UCDS schema as proxies for their activities [18].

Spliced or overlapped transcripts are also modified in order to account for more complex

structures and to limit ambiguity. For example, the Kaposin locus can be spliced to form

3 main isoforms, K12A, B and C [15]. This involves the inclusion of the DR5 and DR6

repeat sequences as proxies for K12B and K12C respectively. However there remains

some ambiguity in the quantification of reads for these two genes when measuring their

expression by the abundance of the DR5/6 repeat sequences (Fig 1.4) [15].
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Interestingly, the structure and location of most of the virally encoded miRNAs makes

a measurement of their abundances quantifiable from long-read RNA-Seq data. This

is because the miRNAs are transcribed from 2 genomic loci: one intronic encoding 10

premiRNAs (20 miRNAs) and one within an exon of the Kaposin gene, encoding 2 pre-

miRNAs (5 miRNAs) (Fig 1.3) [32]. While the latter 2 miRNAs are difficult to disambiguate

due to their confounding with the Kaposin locus, Bruce et al., 2017 provided an annotation

that corresponds to the intron the remaining 10 viral miRNAs (miR-K1 to K9 and miR-K-

11) are encoded by, enabling a proxy measurement for their collective abundance [15].

This annotation as well as those previously described allow for an expanded, as well as

more accurate and reliable, estimation of the expression of viral genes from short read

RNA-Seq data.

1.2.3 Virion Structure

Figure 1.5: KSHV virion capsid structure.

The structure of KSHV’s virion is reminiscent of most herpesviruses. This includes a

four-layered structure comprising the genomic core, encased in a icosapentahedral pro-

tein capsid, surrounded by a semi-amorphous protein tegument and a final lipid bilayer

studded with glycoproteins (Fig 1.5) [2].
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Notably the capsid of KSHV comprises the same overall structure as HSV-1 and HCMV

despite differing sequences of the proteins that constitute its capsomers [35]. 5 ORFs

(ORF25, ORF26, ORF62, ORF65 and ORF43) encode for 4 heteromutlimeric capsomer

proteins that comprise the viral capsid [13]. These capsomers comprise hexamers and

pentamers of the major capsid protein (MCP, ORF25) which are held together with the aid

of the smallest cap protein (SCP, ORF65), alongside heterotrimeric triplexes comprising

one Tri2 (minor capsid protein, ORF26) and two Tri1 (ORF62) proteins [36]. MCP Pen-

tamers are present at the capsid vertices and MCP hexamers are present at the faces

of the capsid, however one pentamer in every capsid is replaced with a portal complex

that comprises dodecameric ORF43 protein [36]. This capsid acts to contain and protect

the viral dsDNA genome. Additional studies have indicated that various RNA species

are present in the viral capsid as well, including mRNAs as well as viral and host miR-

NAs, "unusual small" RNAs (usRNAs) and circular RNAs (circRNAs) have been identified

[26, 37].

The viral capsid is surrounded by a tegument layer, which contains at least 13 confirmed

viral proteins, including a pentameric capsid associated tegument complex (CATC) that

comprises ORF19, 32 and 65, alongside ORF7, 11, 21 33, 45, 50, 52, 55, 63 and ORF75

in the general tegument (Fig 1.5) [13]. While some of these proteins have historically had

poorly characterised functions, work in recent years has indicated some of these as being

involved in a range of key processes. This includes ORF11 with recently described roles

in modulating specialised ribosomes, ORF75 which dissipates anti-viral ND10 bodies

and ORF45 which has proposed roles in suppressing TLR signalling, promoting viral

envelopment and activating ribosomal protein S6 kinase [38, 39]. Various host proteins

have been observed to be incoorporated into the KSHV virions, including HSP70/90,

which are important for the formation of viral replication and transcription compartments

[40]. This tegument layer was canonically considered amorphous, however more recent

research has suggested at least two semi-structured layers; the inner "capsid-associated"

and outer "membrance-associated" layers (Fig 1.5).

The virus is shrouded in a lipid bilayer derived from the cellular nuclear membrane that

forms an envelope around the tegument. Like most viruses, this layer is embedded with

glycoproteins that mediate interactions with host cells. These membrane proteins are

composed of ORF8, K8.1A/B, ORF22, ORF47, ORF39, ORF53, ORF28, ORF66 [13] (Fig

1.5). Further proteins found in KSHV virions via proteomics include ORF9, 23, 35, 48, 58,

72, K3, K9 (vIRF-1), K10 (vIRF-4) and K10.5 (vIRF-3) [41]. These may be bound to the

genome and capsid or associated proteins or present in the viral tegument. In general,
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KSHV’s virion structure is reminiscent of many dsDNA viruses, including herpesviruses

and is relatively well understood.

1.2.4 Cell tropisms

KSHV can infect a range of cell types, including endothelial and epithelial cells, ker-

atinocytes, B cells and monocytes. B cells in particular are a major target for KSHV

and are considered an important reservoir of infection and transformation, that directly or

indirectly contirbute to KSHV’s pathologies.

In vitro infection does not necessarily imply biologically relevant infection of cells in vivo

and much cell line work doesn’t immediately translate to in vivo settings. For example,

while not historically considered major targets, KSHV has been shown to enter both CD4+

and CD8+ primary human tonsillar T cells, resulting in a form of abortive lytic replication

and no infectious virion production [42]. Conversely, KSHV’s DNA has been isolated from

rare T cell lymphomas, implying pathogenically-relevant evidence for KSHV’s association

with T cells [42]. Moreover, KSHV can infect fibroblasts and keratinocytes in vitro, how-

ever limited detection of KSHV antigens in these cell types have been observed in KS

lesions [42].

1.2.5 Primary infection and establishment of latency

KSHV entry into cells is a complex and highly coordinated process. KSHV first binds

to heparin sulfate via several of its envelope glycoproteins (gB, gHgL, K8.1 and ORF4),

followed by binding to integrin (α3β1, αVβ3 and αδβ5) and xCT (Fig 1.6) [37, 43]. En-

gagement of these host receptors stimulates the recruitment of various host factors that

modulate a suite of cellular signalling pathways to facilitate successful entry and estab-

lishment of infection, including PI3K, Rho GTPases, Src, ERK, FAK, PKCδ, NF-kB, c-Cbl,

GEF-C3G, CIB1, Crk, p130Cas, ROS and Dia-2 [37]. These induce several transcrip-

tion factors, namely ERK1’s downstream effectors AP-1, STAT1, MEF2, c-Myc and ATF2,

alongside NF-kB and NRF2 [44]. Once efficient binding has been initiated, KSHV enters

cells via endocytosis, specifically clathrin-mediated or via macropinocytosis and mem-

brane blebbing. In order to properly enter the cell, KSHV must be released from these

vesicles via a poorly defined process of fusion of it and the vesicle’s membranes [45].

Once the virus has entered the cytosol, several steps proceed that results in the virus’s

deposition into the nucleus, the site of both latent and lytic replication. Firstly, tegument

proteins and transcripts are released, which include ORF50, ORF73 and ORF59, which
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have been hypothesised to play roles during these initial stages of de novo infection by

modulatin ghost and viral processes [13]. Next it is transported to the nucleus along

microtubules. To facilitate entry into the nucleus, the viral genome undergoes extrusion

through the capsid portal complex via the nuclear pore in a process predominantly medi-

ated by ORF19 [46].

Like cellular genomes, epigenetics plays a key role in regulating KSHV’s gene expres-

sion and life cycle. However KSHV’s genomes are epigenetically naive upon entry and

must undergo rapid chromatinisation, with wave of active H3K4me3 and H3K27ac mark

depositions which enables an abortive gene expression program that resembles early

lytic replication [44]. After 24-72hrs, KSHV’s epigenetic profile shifts towards a repressive

state with enrichments of repressive H3K27me3 and H2AK119 ubiquitinylation marks,

resulting in latency [47]. One contributor to this is the recruitment of the polycombe re-

pressive complex (PRC) in particular EZH2, by the latency associated nuclear antigen

(LANA), encoded by ORF73, among other factors that facilitate the silencing of most

lytic genes via addition of repressive histone acetylation and methylation marks [48, 49].

Cohesion complexes (formed from SMC1/3 heterodimers and accessory proteins) and

CTCF play key roles in recruiting PRC components and overal transcriptional silencing

of the nascent viral genome [50]. Importantly while most of the viral’s lytic genes gain

repressive modifications, the latency locus remains as euchromatin with an enrichment

of active H3K4me3 and H3K27ac marks [48]. The eventual end result of this process is

the repression of lytic gene expression, which facilitates the eventual shift towards latency

exhibited ∼72hrs post-infection.

Genome circularisation is known to be essential for episome maintenance during latency,

as well rolling circle replication during lytic replication [51]. How this process is accom-

plished is not fully understood however EBV is know to make use of the activation of DNA

damage response (DDR) signalling [52]. An additional key step in establishing latency is

the tethering of the viral episome to host chromosomal centromere complexes by LANA

[53]. To facilitate this, LANA’s N-terminal domain binds H2A and H2B histones, while its

DNA binding domain (DBD) binds to the TR regions of the viral genome [15]. Additional

chromatin- and chromosome-associated proteins are known to be important, including

BRD2 and BRD4, the centromere protein CENPF, cohesin and CTCF [50]. Recent work

has indicated that episome binding is localised to ChAHP (comprising CDH4, ADNP and

HP1γ)-rich regions of host chromosomes via LANA-CHD4 binding to the proximal ter-

minal repeat regions as well as the PAN RNA promoter [53]. Genome circularisation is

particularly key for proper tethering of the viral episome to host chromosomes, which fa-
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Figure 1.6: Life cycle of KSHV. Figure adapted from [11].

cilitates replication and segregation of the episome with host cellular genomic replication

and daughter cell segregation, respectively.

1.2.6 Latency

It is largely because of latency that KSHV is able to persist, both in cell culture and in

infected complex organisms as it facilitates the duplication and segragation of the viral

episome alongside the host’s genome, alongside the evasion of the host’s immune sys-

tem (Fig 1.6) [47]. Genes believed to be expressed during latency can be split into the

"classical" latent genes (ORF71, ORF72, ORF73, kaposin (K12A, B & C) and 25 miRNAs)

which are encoded by the latency locus and have been strongly associated with latency.

However further canonically lytic genes have been observed to be co-expressed with the

classical latent genes during latency [15]. Many of these lytic genes are encoded near the

latency locus and include ORF74, ORF75, K14, K15, K1, K2, K5 and vIRF-3, depending

on the exact cell line and study (Fig 1.2) [15, 18]. These genes (hereby termed "relaxed

latent" genes) have been suggested to be expressed via a "leaky" or "relaxed" expression

of some lytic genes during latency or during bouts of spontaneous lytic abortive replica-

tion within predominantly latently infected cell populations [14]. The status of these genes

as truly expressed during latency remains unconfirmed, however.
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Of the latency genes ORF73 (LANA) has pleiotropic roles in latently infected cells, as

well as roles in proper viral DNA replication and persistence. These include targeting

signalling pathways and host TFs, such as NF-kB, JAK-STAT and various aspects of

epigenetic machinery (Fig 1.7) [54]. Importantly, it directly inhibits the expression and

activity of the key instigator of lytic replication, the replication and transcription activator

(RTA) protein (ORF50), thus promoting latency by inhibiting the induction of lytic repli-

cation (Fig 1.7) [14]. It also represses lytic gene expression via DNA methyltransferase

(DMNTs) or lysine demethylases (KDM)-mediated repression of lytic gene expression

and lytic replication via MDM2-mediated degradation of p53, a key factor for proper lytic

viral genomic replication (Fig 1.6) [47]. It also indirectly represses lytic gene expression

via recruitment of the SUMO-2 histone SUMOylation complex thus regulating chromatin

conformation and recruiting Krüppel-associated box domain-associated protein 1 (KAP1)

to lytic promoters, facilitating their transcriptional repression [55]. Additionally, LANA di-

rectly competes with RTA to bind RBP-Jk, a key co-factor for RTA’s transactivation activity

[47].

Other latent factors contribute to latency. For example vFLIP (encoded by ORF71) ac-

tivates the inhibitor of kB kinase (IKK) which subsequently phosphorylates the inhibitor

of kB (IkB) complex to facilitate its degradation, promoting constitutive activation of NF-

kB to induce the expression of anti-apoptotic genes (Fig 1.7) [56]. One consequence of

this NF-kB activation is to promote the expression of the key PRC component H3K27

methyltransferase EZH2, thus promoting latency [47]. vFLIP also inhibits autophagy in

latently infected lymphoctes and endothelial cells, which limits cellular senescence [56].

Additionally, the viral cyclin D2 homologue, vCyclin (encoded by ORF72) helps main-

tain (and establish) latency as it phosphorylates nucleophosmin (NPM) in latently and

de novo infected cells, which facilitates recruitment of the histone deacetylase HDAC1

to promote transcriptional repression (Fig 1.6) [56]. The viral miRNAs also have known

roles in suppressing lytic replication; by directly targeting viral transcripts such as RTA

(miR-K7/K9), or by indirectly targeting pro-lytic host factors [32]. The role of the latent

genes in oncogenesis are discussed in later sections (Section 1.2.10).

1.2.7 Lytic Replication

While infection eventually defaults to latency maintained by LANA, a range of triggers

result in increased KSHV gene expression that can result in the induction of lytic replica-

tion. For example, environmental changes can drive this, including hypoxia and oxidative

stress, co-infection and inflammatory and growth factors [57]. Additional changes to the
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Figure 1.7: Signalling pathways targeted by KSHV.

cellular signalling and contexts can activate lytic replication such as calcium ion influx,

MAPK, PKA and PI3K pathway activation and adrenergic signalling, alongside epigenetic

modifications that promote de-repression of the viral episome [53, 58, 59]. Co-infection

can also trigger lytic replication, including the presence of bacterial metabolites, HIV-1

proteins such as Tat and HSV-1/2, HCMV, HHV-6/7 and HPV co-infection [51]. Overall,

these triggers shift the balance between LANA and RTA activity in favour of RTA, trigger-

ing the lytic gene expression cascade [14, 47, 51].

As LANA is to latency, RTA is the key orchestrator of lytic replication and usually con-

sidered the first transcript to be expressed during it and as such is its major driver. Ac-

cordingly its expression in latently infected cells is sufficient for induction and progression

of a productive lytic replication cycle [14, 51]. To facilitate this it can activate the ex-

pression of many lytic viral genes (including itself and many host genes) via three main

mechanisms (Fig 1.8) [51, 60]. The first is direct binding to and activation of transcrip-

tion via its N-terminal DNA binding domain binding to RTA response elements (RREs) in

promoters, while its C-terminal host factor recruitment transactivation domain, which re-

cruits key proteins that facilitate transcription, including RNAPII (Fig 1.8) [60]. Secondly, it

can complex with a range of co-factors including the downstream effectors of Notch and

MAPK signalling, RBP-Jk and AP-1, respectively, which enables it to bind and induce

the transcription of genes whose promoters don’t contain RREs (Fig 1.8) [61, 62]. Third,
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RTA also has E3 ubiquitin ligase activity that facilitates its modulation and degradation

of many transcriptional repressors including the host-encoded Zinc finger protein of the

cerebellum 2 (ZIC2), Hey1 and ID as well as LANA (Fig 1.8) [63, 64]. This multi-pronged

regulatory schema emphasises the potency of RTA in driving lytic gene expression and

replication.

Upon sufficient expression and activity of RTA the lytic cycle is induced. Classically

this proceeds in a triphasic cascade of the overlapping expression of sets of genes de-

fined as the "lytic cascade", comprising the immmediate early (IE), early (E) and late

(L) lytic genes (Fig 1.9). IE genes were originally defined by their transcription not be-

ing cyclohexamide-resistant and thus independent of de novo translation [65, 66] (Fig

1.9). RTA is the archetypal IE lytic gene while other genes such as K8 (bZIP), PAN,

ORF45 and ORF57 are sometimes considered IE genes, however this is debated and

context-dependent [15]. Otherwise these latter genes are usually considered E lytic (or

sometimes delayed early (DE) lytic) genes and prime the virus and cell to undergo viral

transcription and DNA replication, as well as immunomodulation (Fig 1.9) [14, 18, 67].

Late genes tend to mediate viral assembly and thus encode capsid and other structural

proteins as well as those involved in viral egress and release from the cell (Fig 1.9) [18].

Note that such classifications (E, IE and L genes) generally refer to when expression of

these viral genes is detectable, not when they are maximally expressed. However there

is overlap as IE, E and L lytic genes tend to be maximally expressed 0-8hrs, 8-24hrs

and 48-72hrs post lytic induction, respectively, but this varies by cell type and broader

environmental context [18].

ORF57 (MTA) is a key lytic gene that is required for proper lytic progression and infec-

tious virion production [68, 69]. It has key roles in proper splicing and nuclear export of

intronless viral transcripts and through this, evasion of nonsense-mediated decay (NMD)

and subsequent immune responses or apoptosis [68, 70]. Interestingly in more recent

years, ORF57 has been proposed to promote the biogenesis via back-splicing of host

and viral circular RNAs (circRNAs) [27, 71] (discussed further in Section 1.4.6).

PAN is one of the earliest and the most highly expressed lytic transcripts in cells under-

going lytic replication. Several debated roles have been proposed for its function. These

include sequestering RNAPII in proximity to the viral genome or acting as a scaffold to

recruit UTX/JMJD3 to facilitate the removal of repressinve H3K27me3 marks [72, 73].

Alternatively it has been suggested to directly promote lytic gene expression by sup-

pressing LANA activity either by directly binding and sequestering it and, most recently,

competing with LANA to bind CHD4 which promotes dissociation of the viral episome
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from host chromosomes to facilitate lytic gene expression [13, 53]. An additional viral

lncRNA, T3.0, encodes small ORFs that can be translated to generate the micropeptide

vSP-1 that binds RTA and prevents its ubiquitinylation and subsequent degradation [74].

As previously stated, early lytic genes encode proteins that facilitate lytic genome repli-

cation. For example, those that result in the generation of ribonucleotide and nucleotide

substrates for transcription and genomic replication, respectively (Table 1.2) [15, 21, 66].

Once enough of these genes have been expressed into proteins they assemble to repli-

cation complexes that begin the process of lytic genome replication [51]. Like many

DNA viruses this proceeds via a rolling-circle mechanism whereby nascent genomes are

synthesised as periodic concatamers that must be cleaved prior to encapsidation. This

replication process initiates at one of two ori-Lyt sites [41]. Interestingly like LANA, RTA

also facilitates the initiation of replication as it is recruited to ori-Lyt by an RRE, alongside

bZIP, to promote lytic replication [75, 76].

One notable early gene is ORF37, which encodes SOX, termed the "host shut-off factor".

It is an alkaline endonuclease that cleaves cellular transcripts via a loose degenerate

RNA sequence motif [77]. In fact, SOX’s primary function is to degrade a majority ( 75%)

of host transcripts in order to promoter immune evasion as well as favour expression of

viral genes [78–80]. However SOX also has DNase activity is also believed to cleave viral

genomes from newly synthesised concatemers [81].

Early genes also encode a complex termed the late gene transcription complex that fa-

ciliates the expression of late lytic genes [82]. Accordingly late lytic genes were originally

defined as dependent on viral genome replication as evidenced by the sensitivity of their

expression to gangcyclovir, which inhibits viral genome replication, and phosphonoacetic

acid (PAA), which inhibits viral DNA polymerase activity (Fig 1.9) [83]. Therefore the func-

tions that they encode, virion assembly and egress, capsid etc, are generally believed to

not occur until newly synthesised genomes are present to be packaged.

The later stages of lytic replication, namely capsid assembly, virion egress and release

are poorly defined. In terms of assembly, KSHV capsomers are believed to self-assemble

in a similar manner to other herpesviruses (Fig 1.6) [51]. Virion egress is assumed to

follow several steps common to herpesviruses, whereby it exits the nucleus, undergoes

tegumentation (formation of the tegument) in the cytoplasm, gains an envelope and exit

cells (Fig 1.6) [51]. The end result of effective lytic replication is the formation of new

infectious virion particles which exit the cell to infect further naive cells. The role of lytic

genes in oncogenesis are described in a later section (Section 1.2.12).
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Figure 1.8: Mechanisms of KSHV RTA’s regulation of gene expression.

Figure 1.9: KSHV’s lytic gene cascade.

1.2.8 Study of KSHV in vitro

The study of KSHV’s life cycle and general molecular biology has predominantly occurred

in transformed cell lines that stably maintain the viral episome. In vitro various meth-

ods have been developed to induce lytic replication in an experimental setting, including

the chemical inducers 12-O-tetradecanoyl-phorbol-13-acetate (TPA) and sodium butyrate

(NaBu) [51]. A more developed system is the TREx-RTA model, which comprises trans-

formed cell lines containing KSHV’s latent episome alongside an ORF50 (RTA) gene

cassette under the control of a Doxycycline (Dox)-inducible promoter. Using this sys-
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tem, introduction of Dox to the cell culture triggers ORF50 expression, thus facilitating the

reactivation of latent KSHV into lytic replication [84]. These methods and variations on

them have allowed for the reproducible induction of lytic replication within controlled lab-

oratory settings, allowing many facets of KSHV’s life cycle and pathogenesis to isolated

and elucidated.

1.2.9 Infection state heterogeneity

While latent and lytic gene expression programs are often considered mutually exclusive,

there is considerable overlap in terms of the expression of canonically latent and lytic

genes, both within-cells and at the cell population level. Namely that most latent genes

are still expressed during the lytic cycle, while LANA in particular has a long half life of

several days and is transcribed from a second, lytic-specific promoter [55]. Moreover in

populations of cells, both in cell culture and in vivo tissues, different cells can undergo

latency or lytic replication, with the latter believed to be important for the persistence of

KSHV in the cell population as a whole, by enabling de novo infection of further cells [51].

Recent single cell RNA-Seq (scRNA-Seq) studies on PEL and epithelial cell lines, primary

cells and a 3D organoid model have emphasised such heterogeneity, with cells cluster-

ing into latent, IE, E and L lytic gene expression, as well as various apparent hybrid la-

tent/lytic gene expression programs [85? –89]. Working in KSHV-infected iSLK.219 cells,

one study by Tabtieng et al., 2022 identified a sub-population of IFN-1β-expressing early

lytic cells, with particularly high K5 expression and an enrichment for NF-kB transcription

family members [89]. Interestingly this reflected a previous study on Herpes simplex virus

(HSV) in which a sub-population of IFN-producing abortive lytically replicating cells were

observed [6]. The 3D structure of tissue has also been shown to be important as by us-

ing a 3D air-liquid interface (ALI) organoid model of oral epithelial cells, Jung et al., 2022

greater expression of lytic genes in the superficial layers while the basal layers exhibited

greater latent gene expression, reminiscent of HPV infection of the epidermis [85].

While no scRNA-Seq studies have been performed from in vivo biopsies, variable in-

fection programs have been observed from biochemical and bulk RNA-Seq studies into

KSHV-induced pathologies, including KS, with lesions showing predominantly latent, lytic

or mixed expression profiles [67]. This did show some dependency on the patient and

type of infection as, at least in Lidenge et al., 2020, nearly all endemic samples exhib-

ited predominant lytic replication while most epidemic samples showed lytic or mixed.

This likely relates to the absence of HIV-1 as, interestingly, HIV-1 co-infection is known

to stimulate lytic replication and HIV-1 and KSHV gene products are known to synergis-



35

tically contribute to transformation and associated processes [90–92]. Generally «5% of

infected cells in KS undergo spontaneous lytic viral reactivation [13]. Such studies and

the ones previously discussed emphasise the additional complexity of studying KSHV in

an in vivo context and the gulf between such contexts and 2D cell line culture models.

1.2.10 Latent oncogenes

KSHV’s canonical latent genes are the most strongly associated with oncogenesis and

as such they are believed to be the predominant drivers of KS, among the other virally-

induced cancers. Several contextual clues for this come from the detection of their ex-

pression in and association with KSHV-driven pathologies, including KS lesions and PEL

cells [67, 93, 94]. Moreover the ectopic expression of at least ORF71, ORF72 and ORF73

has been shown to induce tumours in animal models [95–97]. However how they facilitate

this varies, dependent on their interactions and below details how each classical latent

gene product has been suggested to contribute to oncogenesis.

LANA As the major promoter of latent persistence as well as having extensive capacity

to modulate pro-growth and mitogenic pathways, LANA is assumed to be a great con-

tributor to the oncogenic potential of KSHV. One aspect of this is likely its modulation

of aspects of the DNA damage response (DDR) by inhibiting the major tumour suppres-

sors p53 and pRb (Fig 1.7) [52]. Interestingly, the activity of LANA and HRas have been

shown to be mutually enhancing, acting to promote transformation of primary rat cells

[98]. LANA can additionally induce the modification of proteins, including itself [47]. This

in particular enables several of its interactions with factors involved in mitotic process and

DNA binding [47, 54]. For example LANA binds and inhibits GSK3β leading to accumu-

lation of β-catenin in the cytoplasm that facilitates increased LEF-mediated expression

of c-Myc and cyclin D, promoting cellular growth (Fig 1.7) [52, 99]. GSK3β and pRB

are G1/S checkpoint proteins and as such LANA’s inhibition of these proteins modulates

transition through this boundary [98]. Moreover LANA itself is regulated by by a range of

cellular kinases. For example, LANA’s interaction with chromatin and repression of lytic

gene expression is promoted by phosphorylation by glycogen synthase 3 (GSK3), casein

kinase 1 (CK1) and ribosomal S6 kinase (RSK) (Fig 1.7) [47]. As such it effectively sits at

a nexus between host cellular signalling pathways and viral processes. Overall, LANA is

perhaps the most well-characterised viral oncogene and its role in KSHV-driven cancers

is paramount.
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vCyclin KSHV vCyclin (ORF72) is a cellular cyclin D2 homologue that can complex with

cyclin-dependent kinases (CDKs) to form cell cycle-modulatory and thus pro-oncogenic

complexes, as well as modulating various onocgenic processes (Fig 1.7) [99]. Like LANA,

it can inactivate pRb by phosphorylation in complex with CDK6 and possibly p53 in com-

plex with CDK9 (Fig 1.7) [52]. Moreover, the vCyclin-CDK6 complex is able to further

target proteins involved in autophagy and apoptosis (Bcl-2), chromatin remodeling (his-

tone H1), genome stability and replication (NPM, CDC6, ORC1) [100]. The vCyclin/CDK6

complex can activate Notch to promote cell cycle progression and lymphamogenesis (Fig

1.7) [101]. Thus ORF72 is a knonw oncogene with potent transforming potential.

vFLIP ORF71 (vFLIP) is suggested to contribute to oncogenesis directly via modula-

tion of cellular processes and indirectly via its immunomodulation of cells and whole-

organisms. For example it contains death domains that can interact with caspase 8 as

well as FADD to prevent caspase 8’s cleavage, thus inhibiting apoptosis [52]. Similarly

its persistent activation of NF-kB further contributes to apoptotic evasion as it prevents

TNFα-induced apoptosis (Fig 1.7) [52]. vFLIP is also proposed to contribute to exces-

sive endothelial-to-mesemchymal transition (EndMT) of infected endothelial cells via ac-

tivation of Notch signalling, which may contribute to the development of KS (Fig 1.7)

[87, 99]. Moreover it inhibits autophagy by prevening ATG3 processing of LC3 to mitigate

oncogene-induced senescence (OIS) in response to vCyclin’s activity [102]. Therefore

ORF71’s proposed pro-oncogenic roles is believed to be mediated by its immunomodu-

lation as well as inhibition of apoptotic and autophagic processes.

Kaposins K12A and B are some of the most abundantly detected genes in KS lesions

and PEL cells and have long been observed to have pro-oncogenic roles [18, 52, 67, 93].

K12A has been suggested to activate the ERK/MAPK pathway via interaction with the

ARF guanine nucleotide exchange factor cytohesin-1 as well as modulating adhesion

junctions and the cytoskeleton (Fig 1.7) [103]. However there is ambiguity as miR-K10a

is embedded within K12A’s coding sequence and found to target p27 and p120 to dys-

regulate the cell cycle and adherens junctions, respectively, thus these miRNAs and not

Kaposin A proteins may responsible for the observed transformting potential of the K12A

(Fig 1.3) [104].

K12B has been shown to modulate the host cell by impacting mRNA stability. It impedes

the degradation of cytokine mRNAs by directly binding and activating MK2, a target of p38

MAPK, with immunomodulatory consequences (Fig 1.7) [105, 106]. Moreover it stabilises

PROX1, the master regulator of lymphatic endothelial cell differentiaiton and has been
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suggested to be critical in driving the shift towards a lymphatic phenotype characteristic

of KSHV-infected endothelial cells, both in vitro and in KS tissue [107]. Consequently

K12B is sufficient but not necessary to induce KS spindle cell-like morphology including

tubule and actin stress fibre formation in cultured endothelial cells [108]. Therefore K12B

as been strongly linked to the transformed phenotype observed in KS lesion tissue.

Viral miRNAs KSHV encodes a repertoire of 25 mature viral miRNAs that are some

of the most highly abundant miRNAs types in PEL cells and are suggested to be ex-

pressed at even higher levels in vivo [32, 109, 110]. As previously stated viral miRNAs

target a plethora of host and viral transcripts and all together can modulate aspects of

the cell cycle, cell growth and proliferation, apoptosis, the immune system as well as viral

latency [32]. Targets that facilitate immune evasion include IRAK1 and MyD88 (by miR-

K12-9 and miR-K12-5, respectively) whose down-regulation limits TLR/IL-1R signalling.

MICB mRNA is targeted by miR-K12-11 to promote cytotoxic T lymphoctye (CTL) evasion

[52]. The cellular miR-155 ortholog miR-K12-11 has been suggested to prime B cells for

transformation [52]. Anti-apoptotic targets include TGF-β type II receptor (TβRII), TNF-

like weak inducer of apoptosis (TWEAK) receptor (TWEAKER) and caspase 3 [111–113].

Mitogenic targets include the DUSP1 (targeted by miR-K12-11 and -1) whose suppres-

sion promotes MAPK signalling and cell invasion [32]. Cumulatively the impact of viral

miRNAs on cells is one of high transforming potential via targeting of immune, anigogenic,

cell cycle and apoptotic-related functions.

1.2.11 The contribution of lytic replication to oncogenesis

While latency has been most strongly associated with oncogenesis, various lytic genes

as well as the process of lytic replication in general has been observed to be critical for

oncogenesis. While this may be partly explained by lytic replication’s proposed necessity

in maintaining a stably infected population of cells to facilitate persistence, more direct

oncogenic effects have been proposed. Support for a role of lytic replication and gene

expression as a contributor to KSHV-induced oncogenesis includes observations of the

high expression of several lytic genes including ORF75, ORF74, K14 and K15 in KS

and PEL. Further support comes from the observation that ectopic expression of several

lytic genes can promote tumourigenesis including K1, vIL6 and ORF74 [114–118]. More-

over treatment of KS patients with drugs that inhibit lytic replication can lead to regres-

sion of lesions [14]. Finally, lytic replication has been shown to induce the accumulation

of DNA damage, despite p53 being activated, indicating dysregulation to cellular DDR
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and surveillance mechanisms [56, 119]. Overall this implicates lytic replication in driving

KSHV-driven cancers, however the exact contributions, mechanisms and importance of

each remain unclear.

Two possibly complementary mechanisms have been proposed for how lytic replication

drives oncogenesis. The first is the phenomenon of abortive lytic replication, whereby

predominantly latently infected populations of cells undergo a stunted lytic cycle that

doesn’t culminate in virion production (Fig 1.10). Such gene expression programs have

been observed in KSHV-infected CD19+ T- and KS spindle cell lines in vitro, alongside

an endothelial lineage of cells transduced with a KSHV bacterial artificial chromosome

(mECK36), the latter of which had the capacity to form KS-like tumours in mice [120, 121].

Little is known about the mechanisms that drive abortive lytic replication, particularly in

an in vivo context, however deletion of RTA’s co-factor RBPJk, fatty acid depletion and

prevention of RTA’s inhibition of PARP1 results in forms of abortive lytic replication that

result in no virion production [122, 123]. Moreover it is entirely possible that lytic gene

expression during de novo infection of uninfected cells in a cell population facilitates this

abortive lytic cycle (Fig 1.11). The alternative proposal is suggested to be due to the

release of pro-oncogenic lytic factors in paracrine from the fraction of cells in a population

undergoing lytic replication, which interact with latently infected cells to drive their trans-

formation (Fig 1.11). Whether either of these mechanisms occur exclusively or mutually

is not known and very little research exists into their importance in an in vivo setting.
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Figure 1.10: Proposed mechanismsfor abortive lytic replication.

Figure 1.11: Contribution of paracrine signalling by either lytically replicating cells or de
novo infected cells to the oncogenesis of latently infected cells.
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1.2.12 Lytic oncogenes

vGPCR ORF74 (vGPCR) is a constitutively active human IL8R homolog capable of

binding IL-8 as well as CC and CXC-family cytokines, with long- proposed pro-oncogenic

roles [52]. It is capable of activating a range of pathways including PKC, PI3K, RhoA/Rac,

NFkB, MAPK and PLC to induce the activity of TFs including AP1, NFAT, HIF-1α and

CREB to promote VEGF, PDGF and pro-inflammatory cytokine-expression (Fig 1.7) [14,

124]. Because of this up-regulation of secreted factors, vGPCR is believed to predomi-

nantly promote oncogenesis in a paracrine manner. Interestingly, the ectoptic expression

of vGPCR in mice has been showen to result in vascularised lesions that resemble KS

[117]. Like vFLIP, vGPCR signalling is also proposed to promote EndMT via induction

of Notch signalling (Fig 1.7) [99], In a more unique study, Krause et al., 2016 proposed

an additional oncogenic mechanism driven by ORF74 termed the "miR-34 effect" [125].

This is based on the observation of a pair of cell lines ectopically expressing ORF74,

where they observed increased expression of miR-34a by vGPCR, which suppressed

the expression of several genes involved in genome maintenance [125]. Which of these

mechanisms is the most present in driving true oncogenesis is not clear, however.

K15 Like vGPCR, K15 is a transmembrane protein that localises to lipid rafts and thus

acts as a conduit for the transmission of signals from the extracellular environment to in-

tracellular processes. It is the most 3’ proximal gene encoded downstream of the latency

locus and is expressed at low levels in latently infected PEL cells and strongly induced

during lytic reactivation [52]. It contains SH2 and SH3 and TRAF-binding domains on its

cytoplasmic tail, that facilitate constitutive phosphorylation by Src kinases results in IL-6, -

8 and -1β/α, CCL2/20, CXCL3 and COX2 activity via activation of Ras/MAPK, JNK/SAPK,

NFAT, AP1 and NF-kB pathways (Fig 1.7) [52, 126, 127]. It also suppresses BCR-induced

calcium influx to promote latency and is able to recruit PLCγ to regulate calcineurin-NFAT

pathways which promotes angiogensis [126, 128, 129]. While K15 has been implied to be

involved in oncogenesis, compared to the more predominant proposed viral oncogenes

(ORF73, ORF72, ORF71, ORF74 etc), it remains relatively poorly understood.

vIL6 K2 (vIL-6) is an homolog of cellular IL-6 and as such targets the same processes,

having pro-inflammatory and immunomodulatory effects. In fact it is hyper-active as it

can activate the gp130 receptor independent of gp80 co-receptor to activate JAK/STAT,

PI3K/Akt and MAPK pathways inducing C/EBPL, c-jun and host IL-6, alongside inhibiting

IFN signalling [130]. Like K15, vIL6 (K2) is expressed in low levels during latency and
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is up-regulated during lytic replication. It can also induce VEGF expression and conse-

quential neoangiogenesis and tubule formation (Fig 1.13) [92]. Of the lytic oncogenes, it

has a realtively well-established theoretical basis for its role in driving oncogenesis.

K1 K1 is a cellular BCR homologue expressed on cell and ER membranes that influence

a range of processes. its oligomerisation triggers autophosphorylation of its intracellular

immunoreceptor tyrosine-based activation motif (ITAM) motif, facilitating the recruitment

of several SH2-containing proteins including PI3K/Akt/mTOR, PLCγ, Vav, Syk, Lyn, Ras-

GAP and Grb2 and facilitates the activation of NFkB, NFAT, Oct-1 and AP-1 transcription

factors (Fig 1.7) [52]. Such extensive interactions likely contribute to its oncogenic po-

tential, for example Akt activation inactivates pro-apoptotic forkhead (FKHR) transcription

factors, HSP40/90 binding is anti-apoptotic and it induces VEGF production via MMP9

activation, alongside the expression of inflammatory cytokines including IL-6, -8, -10, -

1β and GM-CSF [14, 52]. Moreover Lee et al., 2000 proposed a mechanism whereby

K1 down-regulates surface expression of the BCR by interfering with its trafficking [131].

Overall K1’s high interactivity implicates it in having potent cell and organismal modula-

tory activities.

ORF57 ORF57 is expressed early in lytic replication and promotes the transcription,

splicing and nuclear export of many viral mRNAs. One pro-oncogenic mechanism was

proposed to be due to ORF57’s sequestration of the hTRex export complex away from

sites of cellular transcription, resulting in the formation of R-loops [68]. This was ob-

served alongside an enrichment of a range of proteins involved in non homologous end

joining (NHEJ) [68]. The authors also suggested another mechanism linking chromo-

some instability to ORF57’s sequestration of hTREX, whereby sequestration of UAP56

(a component of hTREX) results in premature sister chromatid separation, resulting in

micronuclei formation. Both R loop and micronuclei formation are known to be trigger

DNA damage [132, 133]. However the relevance of this to driving in vivo transformation

and tumourigenesis remains to be confirmed.

vIRFs The vIRFs (vIRF-1, -2, -3 and -4) are believed to primarily contribute to oncogen-

esis by inhibiting the transcription of pro-inflammatory factors, in particular IFNs, inhibiting

apoptosis, proper immune responses and cell cycle arrest [14]. These tend to antagonise

host IRF function by binding them and preventing their transcriptional activity, however the

exact mechanism varies depending on the isoform [14]. VIRF-1 in particular has been

shown to bind and repress p53 transcription thus inhibiting apoptosis, namely via the
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ATPM/p53 DNA damage response pathway (Fig 1.7) [134]. However the importance of

each individual vIRF to oncogenesis isn’t clear.

ORF36 ORF36 (vPK) is an analog of Ribosome S6 Kinase (RSK) which acts down-

stream of mTOR. It phosphorylates RSP6K to up-regulate protein synthesis, promoting

growth, cell proliferation and angiogenesis (Fig 1.7) [135].

vCCLs KSHV encodes 3 viral CC-chemokine ligands (vCCLs), vCCL1 (K6), vCCL2

(K4) and vCCL3 (K4.1) which are cellular MIP1α, MIP1β and CCL2 homologues, respec-

tively [99]. They bind their cellular homologues and, depending on the exact combination

of viral and host proteins, either inhibit or promote the activities of the latter [14]. More-

over they have been proposed to limit Th1 cellular responses and favour Th2 to limit

efficient anti-viral and anti-cancer responses [136]. Thus their functions are primarily im-

munomodulatory and so they likely promote oncogenesis by facilitating immune evasion

and modulation of the immune environment.

vBcl-2 ORF16 (vBcl-2) and host Bcl-2 are important to promoting KS development, in-

teracting directly with cellular factors such as Beclin-2 to prevent apoptosis and autophagy

in KSHV-infected cells [14, 137].
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1.3 Kaposi Sarcoma

KS was first described 150 years ago by Moritz Kaposi, however after over 100 years

little progress was made into what caused it [138]. However, the HIV-1 epidemic of

the late 20th century provided a "smoking gun" as it’s strong association with AIDS-

endemic regions not only led to its classification as an AIDS defining illness but impli-

cated a pathogen-mediated cause [138]. This was confirmed in 1994 with the isolation

of KSHV from KS lesions and the observation of its consistent detection in such lesion

tissue [139]. Subsequent research implication of the virus’s replication and associated

gene expression as the driving factor in lesion development [138]. However because of

the relative recency of this association, alongside KS’s predominant occurrence in low

and middle-income regions of the world, the interface between the virus and the host re-

mains poorly studied; in-particular the influence of the latter. Moreover further factors are

involved than immunosuppression and the influence of viral replication and gene expres-

sion, as evidenced by, for example, various presentations of KS that occur in apparently

immunocompetent individuals. Thus the specific mechanisms that underlie the develop-

ment of KS remains to be properly elucidated. The proceeding section will discuss clinical

presentations of KS, it’s epidemiology and the influence of host factors, the contribution of

cell types and associated angiogenic and immunological factors, additional KS-induced

pathologies and how they may relate to KS and a final discussion on the state of unbiased

transcriptomic methods applied to KS.

1.3.1 Clinical Presentations

Compared to other similar lesions and cancers, KS is considered relatively slow-progressing

and capable of cycles of growth and recession, however this depends on the exact pre-

sentation and additional factors [140]. Accordingly KS has been grouped into four major

classifications. Two are associated with immunosuppression, with the most common and

well-studied being AIDS-associated epidemic KS, alongside iatrogenic KS, that results

from chemotherapy that suppresses the immune system [38]. The other two, classical KS

and endemic KS, are not directly associated or co-morbid with obvious immune suppres-

sion or AIDS but may show some association with demographics and population genetics

[38, 141, 142]. The epidemic variant tends to be the most aggressive form, however the

endemic form is progressive and is capable of systemic dissemination [140]. Iatrogenic

KS can be aggressive but usually fully regresses upon cessation of immunosuppression

and thus is readily treatable [143]. Classical KS is usually indolent and generally presents
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in elderly men of Mediterranean and Ashkenazi Jewish descent. Additionally, a fifth form

of KS termed "nonepidemic KS" has been proposed that resembles classical KS but is

present in young men who have sex with men (MSM) [144].

Initial presentation of KS is as a discoloured dark red/brown patch on the skin, that pro-

gresses to a raised flat plaque stage, to a defined nodular stage and then to further less

well-defined and potentially divergent stages [38]. These cutaneous lesions tend to be

localised to the lower portions of the body in which chronic lymphoedema is often asso-

ciated [38, 141]. With increasing progression, lesions coalesce and spread to mucosae,

with subsequent stages progressing to lymphadenopathic (involvement of proximal lymph

nodes), florid (extensive invasion of local surrounding tissues) and/or infiltrative (invasion

of more distant tissues, including musculoskeletal tissue and visceral organs) [137, 140].

This presentation in internal regions is associated with a more advanced and aggressive

form of the disease that has poor prognosis, which is usually indicative of a co-occurrence

of other KSHV-associated diseases [94].

KS lesions are characteristically highly vascular and this confers their distinctive colour.

This is in-part due to KSHV being able to infect and transform blood/lymphatic endothe-

lial cells (BECs/LECs) and mesemchymal cells (alongside more, less defined cell types),

causing their expansion and an increase in vascular and lymphangiogenic signals, pro-

moting new blood/lymphatic vessel in-growth. Moreover KSHV-infected endothelial cells

shift towards a unique spindle-shaped morphology characteristic of the pathology, termed

"KS spindle cells", which are considered the major transformed cell type in KS lesions

[87]. Early patch stage lesions generally comprise fewer defined spindle cells, but with

high vasculsarisation and immune infiltration [141]. Interlaced bundles of spindle cells

and defined vascular spaces are present in plaque stage lesions, alongside increased in-

flammatory infiltration, in particular lymphocytes, plasma cells, dendritic cells and macrophages

[141]. Late stage nodular lesions predominantly comprise intersecting fascicles and

sheets of KS spindle cells that resemble fibrosarcoma, alongside the continued presence

of neoangiogenesis [135, 141]. Notably, limited differences in terms of gene expression

have been observed between the differing cutaneous morphological stages [67].

Further secondary co-morbidities can occur due to the presence of KS lesions that relate

to their particular physiological location [141]. For example ulcerative KS presentations on

mucosal tissue can cause pain, edema and cellulitis, while gastrointestinal KS can cause

bleeding, diarrhoea, malabsorption leading to weight loss and pulmonary lesions can be

associated with dyspnea, cough and hemoptysis [140, 141]. Bone involvement is associ-

ated with loss of function of the affected limbs due to damage of the muscles, bones and
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surrounding connective tissue [140]. KS and KS-associated diseases have been linked

to cardiovascular diseases, possibly due to the excessive dysregulation of angiogenesis

innate to KS [120]. Other than physiological impacts, such as the stigmatism associated

with the often very visible lesions, can lead to social isolation and psychological distress

[137].

1.3.2 Epidemiology

While KSHV is capable of causing illness in immunocompetent individuals, its infection

and thus maladies are most frequently associated with immunocompromisation. As pre-

viously stated, as an AIDS-defining illness it is strongly associated with HIV-1 and the

two’s epidemiology show high overlap. This includes high prevalence in Sub-Saharan

Africa reaching as high as 90% in some areas where it is considered endemic (Fig 1.12).

Conversely its seroprevalence is as low 10% in most populations of the US, Asia and

Northern Europe[135]. Such geographic segregation into endemic/non-endemic regions

can be misleading however as differing populations within such regions show differing

seroprevalences. For example, seroprevalence is greater in some areas of the Mediter-

ranean (20-30%), while adults of the Kazak and Uyghur population in Xinjiang province

of China (where KS is also considered endemic) show higher seroprevalence (20-40%)

than most regions of the rest of the country [145]. Moreover KS tends to show a bimodal

distribution in terms of prevalence with age, with a peak for children of both sexes aged

4-9 followed by one in the adult population [140].

Given its association with HIV-1 and AIDS, KS increased in frequency during the world-

wide AIDS epidemic. As such in non-classically endemic regions, like HIV-1, it tended

to present more frequently in "men who have sex with men" (MSM) as well as in those

who exhibit IV drug usage [146]. However KS is generally more prevalent in men re-

gardless of sexual orientation and this has been suggested to be due to variations in

hormones and sex-specific factors [147]. Given the relatively global prevalence of the

AIDS-associated epidemic form of KS, it garnered more attention from more developed

nations and as such is the most studied form [38]. Moreover given the strong association

with AIDS, treatment with anti-retrovirals is typically the most effective and frequently ap-

plied method of therapy. Despite this however, epidemic KSV remains a leading cancer

and cause of death for people at high risk of or living with HIV-1 [16, 38, 148? ].

Transmission is believed to be most frequently via saliva during, for example, close sex-

ual contact, and like most sexually transmitted infections (STIs), risky sexual behaviour

such as the number of sexual partners or duration of sex has been linked to KSHV’s
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transmission. KSHV is frequently detectable in saliva and its secretion from oral epithelial

cells is known to be 2 to 3-fold higher in titer relative to other anatomical locations [85].

Interestingly, the study by Jung et al., found that the establishment of a productive KSHV

infection of 3D oral epithelial organoid model was only successful upon damage to the

superficial and intermediate layer to expose the basal layer [85]. They suggested that this

may be due to the presence of entry receptors, integrin β1 and CD98 being mostly limited

to such basal layers and that KSHV infection of the oral epithelial layer may be similar to

the human papilloma virus (HPV) which shows a similar dependency on access to the

basal layer. This may provide one mechanistic explanation as to how KSHV is able to be

transmitted from one host to the next.

Other mechanisms of transmission have been proposed but remain poorly characterised.

Blood-to-blood transmission is not confirmed as a major route of transfer, but some stud-

ies have indicated that use of blood products and blood transfusion can lead to transmis-

sion. This uncertainty may be because viraemia in KSHV-infected individuals is generally

quite low and uncommon, and notably KSHV is undetectable in serum in about 50% of

patients with KS [67, 149]. Similarly, blood sucking insects have been suggested as trans-

mission vectors, but there is little evidence to support this notion [149]. The importance

of different transmission routes does vary between endemic and non-endemic regions as

for example one report linked blood-to-blood transmission as being relevant in Ugandan

adults, while mother-to-child transmission has been suggested to be more important in

other endemic areas [140].

Host factors associated with KS are generally believed to be those that promote either

the immunosuppression that facilitates KSHV’s enhanced survival and replication, or the

progression of the disease. The latter case includes processes that contribute to the

accelerated angiogenesis, cellular differentiation and chronic inflammation innate to KS

[140]. Little is known in terms of contributing genetics, however assessment of this is diffi-

cult due to the inherent demographic biases to susceptible populations [120]. While older

reports suggested that the HLA-DR5 genotype predisposed to KS, subsequent studies

failed to confirm this [149]. Potential clues to the influence of genetic determinants may lie

in KSHV’s high seropositivity and bias observed in elderly male patients of Eastern Euro-

pean, Mediterranean and Jewish ancestry [120]. Other than HIV-1, further co-morbidities

have been associated with KSHV transmission including infection by malaria and other

parasites alongside skin diseases and diabetes [13]. Additionally co-infection with other

herpesviruses (including EBV and HSV-1) have been suggested to enhance the oncoge-

nesis of KSHV.
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Figure 1.12: Global distribution of Kaposi Sarcoma. Figure adapted from [152].

Further more esoteric factors have also been linked to KSHV transmission including skin

hygiene as well as recreational inhalation of nitric oxide (NOS) and nitrite compounds

[12, 13, 149]. This is suggested to be due to NOS-mediated immune system suppres-

sion and modulation of endothelial cell function, alongside downstream metabolites being

known mutagens [149]. One interesting suggestion is the proximity of populations to vol-

canic soils and clays rich in iron and aluminosilicate, which have been suggested to ac-

cumulate in leukocytes, conferring modest immunosuppression and a productive inflam-

matory environment [150]. Moreover addition of iron salts to KS-like spindle cell culture

has been shown to promote their growth via increased expression of pro-inflammatory

cytokines such as IL-6 [149]. Iron reserves are also typically lower in women than men,

while lesions in women are often lost before or during pregnancy, which may indicate a

non-hormonal contributor to the sex disparity observed in KS [151]. However many of

these factors remain unconfirmed and consequently largely hypothetical.

1.3.3 The Cellular Origins of KS

Despite having differing clinical characteristics, all forms of KS show similar histopatho-

logical characteristics [99, 141]. Central to this is the KS spindle cell, which is considered

the major tumour cell within lesion tissue [135]. This is in-part because spindle cells

generally increase in abundance with progression through patch, plaque and nodular

morphologies as well as numerous histological and in vitro studies [135, 140].

KS does not fit the classical dogma of monoclonality that is often attached to cancerous

neoplasms, which states that cancers tend to evolve via an iterative process of clonal ex-
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pansions, resulting in a majority of cells being from the same clonal line and thus progress

towards monoclonality. Instead KS generally presents polyclonally, or as an oligoclonal

expansion of virally-infected KS proto-spindle cells which undergo extenisve morpholog-

ical changes and as such their initial origin is still debated [12]. In-part because of the

above, the cellular origin of spindle cells is variable and still debated. This is in part to the

fact that KS can infect a range of host cell types including endothelial cells, dendritic cells,

monocytes, B cells, fibroblasts and epithelial cells. In addition markers of the lymphatic

endothelium (ERG, PROX1, VEGFR3, LYVE-1 and podoplanin) and vascular endothe-

lium (CD34, CD31 and CD36) are readily detectable on these spindle cells [13, 135].

Moreover spindle cells are poorly differentiated and express further markers of varying

cell types including markers of smooth muscle, mesemchymal and dendritic cells, along-

side macrophages, thus do not fully represent one apparent cellular origin [153]. Instead

recent research points towards KSHV’s capacity to drive differing cell types towards a

common phenotype (KS spindle cells), that is assumed to promote and be promoted by

KSHV’s replication and gene expression. Namely KSHV is known to infect and drive

the differentiation of BECs towards a LEC-like state and vice versa for LECs [154? –

156]. Conversely, KS spindle cells have characteristics similar to mesemchymal cells

[157]. Moreover, during in vitro experiments on both primary and immortalised cell lines,

KSHV has been demonstrated to instigate both endothelial-to-mesemchymal transition

(EndMT) and mesemchymal-to-endothelial transition (MEndT), both of which have been

suggested to contribute to the phenotype and progression of KS lesions [87]. This has

led to recent suggestions that the cell-of-origin of KS spindle cells are mesemchymal cells

that undergo MEndT to become more LEC/BEC-like, but not fully commit and end in an

undefined state that exhibit the spindle cell phenotype [87, 141, 154, 158]. Conversely

however, B cells and monocytes represent major reservoirs of KSHV in infected hosts

and may represent the initial viral source, if not the cellular source of KS in vitro.
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1.3.4 Angiogenesis and lymphangiogenesis in KS

Figure 1.13: KSHV’s interplay with angiogenesis and lymphangiogenesis. Red genes
indicate those that generally promote angiogenesis, yellow are those that predominantly
promote lymphangiogenesis, white indicate promoting both or not specifically related to
either while others indicate viral genes. Figure adapted from [159].

KSHV Gene Effect
gB Increased VEGF-A secretion.
K8.1 Increased VEGF-A secretion.
Kl Increased VEGF-A secretion; Disrupted VE-cadherin signaling.
LANA-1 HIF-1 stability.
vIRF3 HIF-1 stability.
vGPCR HIF-1 stability; Increased VEGF-A secretion; Increased

angiopoietin-1 secretion; Increased angiopoietin-like 4 secre-
tion; Disrupted VE-cadherin signaling.

vIL-6 Increased VEGF-A secretion; Increased angiopoietin-1 secretion.
Viral miRNAs Downregulation of thrombospondin-1; down-regulation of MAF.
vCCLs Chemoattraction.
K5 Degradation of VE-cadherin; Degradation of PECAM-1.
ORF57 Promotes the biogenesis of circHIPK3 which de-represses DLL4 and

Notch signalling by sponging miR-30c.
K12B Targets PROX1 activity.

Table 1.4: Known pro-angiogenic and lymphangiogenic roles of KSHV genes. Table
adapted from [159].
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Angiogenesis and lymphangiogenesis are related process that are important for the ini-

tial development and progression of most tumours as they provide a readily available

source of glucose and metabolites, alongside immunomodulatory and growth factors

[160]. Cancer cells generally facilitate this by excessive secretion of factors that trigger

non-proliferating proximal endothelial cells (ECs) to differentiation and grow [160]. This

appears particularly true for KS, given the characteristic extensive and leaky neovascu-

larisation which causes the accumulation of red blood cells and thus KS’s characteristic

dark purple colour [99].

Angiogenesis and lymphangiogenesis occur via the sprouting of new vessels from pre-

existing vasculature along chemokine gradients and into previously avascular spaces.

This process involves several stages. These include degradation of the basement mem-

brane, initial sprouting of vessels by EC proliferation and migration, tube formation and

recruitment of smooth muscle cells or pericytes to generate mature new vessels [161].

Angiogenesis is a dynamic process whereby vessels are constantly remodelled; ebbing

and extending, shrinking and growing depending on the needs of the tissue [161]. Apop-

tosis is important for this process to limit aberrant growth and accordingly this process

tends to be absent or aberrant in KS lesions [160, 161].

Major angiogenic and lytmphangiogenic pathways include VEGF signalling, whereby se-

creted VEGF ligands binding cognate receptors (VEGFRs) such as VEGFR1/3 (FLT1/4)

and VEGFR2 (KDR), predominantly expressed on ECs (Fig 1.13) [160, 161]. This activity

acts in autocrine and paracrine, and typically has pro-mitogenic effects [159]. Moreover

differential VEGF-VEGFR combinations have differing effect, as VEGF-A and its cognate

receptor VEGFR1 (FLT1) are predominantly pro-angiogenic, while VEGF-C/D and their

cognate receptor VEGFR3 (FLT4) are predominantly lymphangiogenic and VEGFR2 is

context-dependent (Fig 1.13) [162]. The major downstream consequences of VEGF-

VEGFR binding is ERK signalling, which up-regulates the key TFs ETS1 and ETS2,

promoting both angiogenesis and lymphangiogenesis (Fig 1.13) [163, 164]. MAF and

hypoxia, and PROX1 are key regulators of VEGF-mediated angiogenesis and lymphan-

giogenesis, respectively (Fig 1.13). Of the viral genes, at least K5, K1, vIL6, vIRF3 the

vCCls, glycoproteins gB and K8.1 and vGPCR all additionally target angiogenesis (Table

1.4) [159].

Another pro-angio- and lymphangio-genic pathway critical to KSHV is Notch signalling,

whereby Notch receptor binding to cognate ligands Delta-like (DLL1/4 etc) and Jagged/Serrate

(JAG1/2) promotes cleavage and subsequent internalisation of Notch’s extracellular (EC)

and intracellular (IC) domains, respectively (Fig 1.13). Notch signalling is a potent activa-
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tor of lytic replication by activating RTA’s co-activator RBPJk, with both Notch3 and DLL4

being highly expressed in KS and KSHV-transformed cells [71, 165]. Similarly Oct-1, a

further co-activator of RBPJ is important in angiogensis as are STAT3/6, which are consti-

tutively expressed in KSHV infected cells [160]. Further effectors of Notch include Hey-1

and Hes, the prior of which which promote angiogensis and regulates bone morpho-

genetic proteins (BMPs), which themselves regulate angiogenesis [160]. BMP signalling

has been implicated in KSHV’s tumourigenic properties [166].

Wnt signalling is another major driver of both angio- and lymphangio-genesis, predom-

inantly via the activity of the canonical Wnt protein downstream transcription factor β-

catenin (Fig 1.13). β-catenin is inactivated by phsophorylation by a range of cellular

factors including GSK3β, Axin, CK1/2, protein phosphatase 2A (PP2A) and adenoma-

tous polyposis coli (APC) and activation of upstream Wnt signalling components leads to

β-catenin’s de-repression by these factors [167]. In fact inhibition of GSK3β by LANA is

one major proposed mechanism by which KSHV promotes angiogenesis, while vGPCR

is known to activate it via PI3K/Akt-mediated inactivation of GSK3β [168, 169]. However

at least two lytic gene products, vIRF-4 and ORF36, are believed to suppress it, likely

due to the importance of β-catenin to effective IFN responses [169].

Several ncRNAs have roles in regulating angiogenesis. Many miRNAs, typically termed

"angioMiRs", are known to target a range of angiogenic-related processes [170]. These

include include miR-574-5p, miR-92a and miR-27a-3p, which all promote α-catenin sig-

nalling, which has similar roles to β-catenin signalling. Moreover various lncRNAs and

circRNAs also have proposed roles in angiogenesis. For example SLCO4A1-AS1 im-

pairs β-catenin/GSK3β association thus promoting the priors activity [171]. Similarly cir-

cRNA_102171 (circSMURF2) has been proposed to suppress CTNNBIP1, an inhibitor of

β-catenin, by preventing β-catenin/CTNNBIP1 association, likely via direct circSMURF2-

CTNNBIP1 interaction, promoting β-catenin/TCF/LEF transcriptional activity and subse-

quent migration and progression of papillary thyroid cancer [172]. Additionally circHIPK3

is up-regulated during KSHV lytic replication and binds and suppresses the abundance

of miR-30c as well as miR-29b, miRNAs with tumour suppressive functions [71]. This

is in order to de-repress their target DLL4 and thus promote Notch-mediated functions,

potentially including angiogenesis, alongside promoting cell cycle progression and lytic

replication [71]. This was found to be dependent on ORF57 and to a lesser extent host

RGG1/2 (Table 1.4) [71].
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1.3.5 KS and the immune system

KSHV’s relationship with the immune system is of critical important to the development

of KS [11]. This is most obviously emphasised via it’s predominance in immunocom-

promised individuals, namely those with AIDS and the obvious defective T cell immune

responses conferred by the condition. This is predominantly believed to be due to re-

duced immune system-mediated restriction of viral persistence and lytic replication, en-

abling greater rates of viral replication and gene expression. However, KS’s 10,000-

fold increased prevalence in AIDS individuals has been suggested to also be in some-

part a consequence of the extensive systemic modulation of cytokines innate to AIDS

[99]. Indeed the establishment of KS involves the development of a pro-inflammatory

environment, while complex immune cell infiltration is a common feature of KS lesions

[16, 67, 94]. For example, KS patient sera contains elevated IL-6 and TNFα, however

there is further complexity as an up-regulation of the immunosuppressive IL-10 has been

previously observed as well [136].

Another reason that immune processes are important to KS is their tight coupling to an-

giogenesis, as many cytokines also induce angiogenesis [136, 141, 173]. At least some

of this is mediated by the importance of M2-type macrophages in helping orchestrate

angiogenesis, as well as associated processes. One such process is wound healing,

which shows some parallels with the development of KS. For example KS is associated

with the Koebner phenomenom; whereby KS lesion tend to occur at pro-inflammatory

sites such as regions that have undergone injury or trauma [141, 173]. Additionally both

KS and wound healing involve EndMT to facilitate migration of cells towards damaged

or cancerous tissue, respectively [99]. This process is driven by the expression of in-

flammatory cytokines IL-1β, TNFα and TGFβ, however the latter appears dispensible for

KSHV-mediated EndMT [174].

In-line with the extensive pro-inflammatory environment and increased viral replication

and gene expression present in KS lesions, extensive immune inflitration has been ob-

served [67, 94]. This includes extensive invasion by phagocytes (monocytes, macrophages

and dendritic cells), T cells, B cells, mast cells and granulocytes (particularly mast cells)

[175]. Mast cells in particular are enriched in KS lesions and spindle cells and may be

key mediators of the pro-inflammatory environment [94, 175]. Similarly macrophages and

monocytes have been frequently proposed to contribute to KS development, particularly

the wound-healing pro-angiogenic M2 variant [94].

The specific forms of T cells present in KS lesions may relate to the its development
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as well. While the presence of AIDS and similar immunodeficiencies result in reduced

Th1 and thus CD8+ cytotoxic T cells, the increased production of vCCLs associated with

increased lytic replication in KS lesions has been proposed to increase Th2 cell infiltration

[136]. This has been suggested to promote an improper and pro-inflammatory adaptive

immune response in KS lesions, exacerbating it’s development.

1.3.6 Further KSHV Pathologies

KSHV is a contributor to 2 confirmed additional major pathologies: primary effusion lym-

phoma (PEL) amd multicentric castelamn’s disease (MCD). PEL is a very aggressive

non-solid lymphoma that comprises predominantly monoclonal populations of latently in-

fected B cells that expand within internal body cavities, with high copy numbers (50-100)

of viral genomes per cell [52]. Like KS, PEL is associated with AIDS as well as HAART

and viral load has been suggested to be associated with the progression of PEL [176].

Moreover PEL is notable as many of the stable cell lines that are used in in vitro laboratory

settings to study KSHV, including KS-1, BCBL-1, BCP-1 and JSC-1 which contain latently

infected KSHV, were derived from such tissue [177]. Therefore a majority of knowledge

of KSHV’s transforming potential on infected cells has been determined in the context of

already transformed B cells and so may not directly be applicable to KS.

MCD is associated with but not always caused by KSHV infection as the virus is found

in only ∼50% of MCD patients. It is characterised as a disseminated lymphadenopathy

driven by the uncontrolled growth and proliferation of IgM γ-restricted plasmablasts [52,

160] This tends to occur within B cell follicular mantle zones and involved B cells tend

to be large and exhibit nuclei of cells undergoing replication (open phase nucleus), with

multiple nucleioli [52, 160]. Interestingly, relative to PEL And KS cells, greater rates of

lytic replication tend to be observed in MCD and it is believed to be largely driven by

aberrant cytokine activity that is believed to be largely driven by vIL6, whose detectable

expression is associated with worse prognosis [52].

Perhaps unsurprisingly considering the immune modulation innate to KSHV-induced dis-

eases, at least two aberrant systemic inflammation-related disorders have been associ-

ated with KSHV [52]. One is KSHV-associated inflammatory cytokine syndrome (KICS)

that is associated with vIL-6 and viral miRNAs, alongside host IL-6, IL-10 and C-reactive

protein [178]. However as it is often associated with KS and is often diagnosed by the ex-

clusion of a diagnosis of MCD, it has been suggested to not be a distinct pathology [52].

The second is immune reconstitution inflammatory syndrome (IRIS), which has been

suggested to be due auto/pathogen-antigen recognition due to restoration of functional
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CD4+ T cells in patients undergoing HAART [179]. Interestingly IRIS is characterised

by the emergence of previously undetectable KS (unmasking KS) or rapid progression

of existing KS (paradoxical KS), underlining the importance of immune responses to the

pathogenesis of KS, but also that immune suppression isn’t always directly stimulatory to

KS development [179].

As well as KS, MCD, PEL, KICS and IRIS less concrete or confirmed links have been

made between KSHV and other pathologies. For example a recent study indicated an

association between KSHV and osteosarcomas in the Uyghur population of the Xin-

jiang provence of Western China [180]. Further clinical conditions associated with KSHV

include skin carcinomas, angiosarcomas, angiolymphoid hyperplasia and eosinophilia,

multiple myeloma, AIDS-associated immunoblastic lymphoma, primary central nervous

system lymphoma, post-transplantation lymphoproliferative disorders and pulmonary in-

flammatory myofibrolaastic tumours [120, 160].

1.3.7 Recent developments in transcriptomics applied to KS

While KS has been studied for over 150 years, very limited global analyses have been

performed into the dysregulation of gene expression in KS. However over the course of

the past few years, several studies have been undertaken involving RNA-Seq profiling of

KS tumours biopsies in order to elucidate factors that may drive its development [16, 67,

94]. While these studies are limited by their small scope and size alongside the highly

heterogeneous nature of KS lesions, insights some key insights have been gained. The

purpose of this section is to highlight how these methods have been applied and what

has been learned from them.

The first is Tso et al., 2018 which profiled and compared epidemic KS (AIDS-associated)

and matched control biopsy tissues from 4 patients and identified net up-regulation of

viral expression that varied substantially within the tumours [16]. They found that vi-

ral genes clustered along functional lines, with distinct clusters for those involved in lytic

gene expression, latency and immunomodulation and structural genes. TGFB1, S100A9,

ERG, ETS1 and SPI1 and ADIPOQ, PPARG, IRS1, ERS2 and SREBF1 were the most

activated and inhibited TFs, respectively. Moreover IFNα signalling and CIBERSORT en-

richments showed a significant enrichment of B cells, macrophages and NK cells, indicat-

ing a pro-inflammatory environment producing immunogenic chemoattractants. Glucose

metabolism was reduced, reminiscent of the Warburg effect, however unlike what would

be expected from the effect, lipid metabolism and PPARγ signalling was also depleted.

The same group performed a follow up study utilising the same 4 (resequenced) samples
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and 18 additional samples, 6 of which were from endemic, non HIV-1 co-infected patients

[67]. Interestingly they showed surprisingly similar correlations between the transcrip-

tomics of epidemic and endemic KS samples, with the major difference being a greater

magnitude of differential expression between lesion and control for endemic relative to

epidemic samples. Only 428 genes were differentially expressed, while just 27 genes

were uniquely differentially expressed between the two. The latter included a potent

growth factor and regulator of glucose transport and glycogen synthesis IGF1, T cell

surface glycoproteins involved in CD8 T-cell stimulation, microtubule associated protein

RP/EB family member 3 (MAPRE3), CD8A and CD28 and interferon-induced helicase

C domain-containing protein 1 (IFIH1) that were also higher in endemic samples than in

epidemic samples [67]. They suggested that these observations was due to the reduced

dysregulation of gene expression required to induce lesion formation with AIDS. More-

over non-KS and control tissue showed no significant differentially expressed genes, as

did the plaque and nodular lesion comparison. Lesion samples also exhibited latent, pre-

dominantly lytic or a mixed gene expression profile. This was similar to an older study

by Hosseinipour et al., 2002 that performed comprehensive qRT-PCR profiling of the ex-

pression of all known viral genes in 35 ART-/chemotherapy naive epidemic KS patients

[148].

Another study by Ramswami et al., 2022 compared the transcriptome profiles between

skin and gastroinitestial KS alongside matched controls from patients living in the USA

[94]. They found much similarity between the expression profiles and enriched functions

when comparing lesions to matched controls, such as the IL-6, HIF1a signalling and the

granulocyte adhesion and diapedesis pathway. Moreover, the key VEGF receptor FLT4

as well as CD5L, predominanlty released by macrophages, was up-regulated in KS vs

matched controls for skin and GI KS. In contrast to Tso et al., 2018 and Lidenge et al.,

2020, no dysregulation of glucose or lipid metabolic processes was observed [16, 67].

They did however observe an up-regulation of VEGFR2/3 and KDR, IL-6, IL-10 and the

type I IFN receptor IFNAR2 alongside enrichment of BCR signalling in cutaneous but not

GI KS, alongside an enrichment of IL-1α and associated signalling in GI KS. In terms of

viral genes they observed that ORF75 correlated positively with latent and genes induced

by K2, but not lytic genes themselves [94]. Additionally, the expression of vIRFs was

found to be variable across the cohort. By also comparing CIBERSORTx-deconvolved

immune cell proportions between matched control and KS lesions, they were able to show

a decrease in follicular helper T cells and T regulatory cells in GI but not skin KS, while M1

macrophages were enriched in KS lesions in most skin but not GI patients [94]. Finally

in subsequent studies on lymphatic endothelial cell culture, they observed an increase in
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the pro-inflammatory IL-6 and IFNγ which favour M1 polarisation, alongside a decrease

in cytokines that favour M2 [94].

In another study, Rose et al., 2018 applied their previously developed their UCDS feature

schema investigated the landscape of viral gene expression in 41 epidemic KS lesions

from 30 patients (11 providing 2 samples) [15, 17]. Interestingly in these lesions they

that the majority of transcription originated from the P3 promoter that flanked ORF72 and

little from the P1 promoter that is predominantly used in cell lines indicating differential

promoter usage between KS and most in vitro models [17]. They also identified highly

variable splicing between an upstream ORF (uORF) between the P3 promote and ORF72

CDS, the DR5 and DR6 repeats and the canonical Kaposin A (K12A) ORF and variable

start codons which they suggested indicated further Kaposins: Kaposin D and E, as well

as A, B and C [17]. Like Lidenge et al., 2020 they identified lesions with either predomi-

nantly latent, lytic or mixed gene expression profiles, with the prior showing greater total

viral expression indicating that a predominant latent gene expression profile was not just

common to endemic KS [17, 67]. Moreover they also found no considerable differences

between the viral gene expression profiles of nodular, macular (flat, plaque-like) or fun-

gating (ulcerations and necrosis) lesions.

Overall these studies have provided an insight into the dysregulation of gene expression

in KS and a firm foundation for further more in-depth research.
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1.4 Regulation of cellular and viral gene expression by circular RNA com-

peting endogenous RNA networks

1.4.1 An RNA-centric view of gene expression

The canonical view of gene expression encompassed by the central dogma centers on

the model that genes are transcribed as messenger RNA (mRNA), which encode genetic

information that is are subsequently translation into protein to confer a phenotypic effect.

In this model, RNA acts as the central mediator of "messages" from genomically encoding

genetic information to its expression as functionally effective proteins. However further

work revealed the existence of "non-coding" RNA (ncRNA) with the discovery of transfer

RNA (tRNA) and ribosomal RNA (rRNA), key to the process of translation. This empha-

sises that RNA has functions independent of translation and thus beyond just being a

temporary conduit of information.

It wasn’t until the turn of the 1990s that the diversity and regulatory extent of ncRNAs

began to be fully appreciated. This was with the discovery and functional characterisa-

tion of lncRNAs and miRNAs, which were found to confer regulation of gene expression

at levels of gene expression upstream or downstream of translation. Since, the number

and diversity of ncRNAs has exploded. More recent additions to the ncRNA family are

pseudogenes and enhancer RNAs (eRNA), small nuclear (snRNAs) and small nucleolar

(snoRNAs), alongside tRNA-derived fragments [181]. Further esoteric examples of ncR-

NAs include RNAs that function as enzymes or ribozymes, such as RNase P, Twister,

Hammerhead ribozymes and some components of the spliceosome [182, 183]. It is likely

that these categories will continue to expand and increase in number as research pro-

gresses.

NcRNAs have been found in all cellular organisms studied to date as well as most viruses.

Moreover their expression is consistent with them being functional rather than "transcrip-

tional noise" or a result of false positives by detection methods. In fact, while some

estimates put the total protein-coding proportion of the human genome as just ∼2%, up

to 75% of the genome has been proposed to be transcribed, which would indicate that

the majority of transcripts sequences exert their function via non-coding means [184].

Moreover the abundances of many ncRNAs, especially tRNAs and rRNAs, but also lncR-

NAs and miRNAs are comparable and in some cases surpass the abundances of most

mRNAs within cellular environments. Importantly, such ncRNAs show differential abun-

dances between varying biological conditions indicating their context-specific expression,

with follow-up functional studies identifying mechanisms that associate them with the
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conditions of interest. Overall while 100s of ncRNAs of various types have now been

well-characterised, as with much of genome-scale biology, the unknowns outweigh the

knowns and as such the study of most ncRNA species remains in relative infancy.

1.4.2 Regulation of gene expression by miRNAs

While transcriptional, translation and post-translational control of gene expression are all

extensive, one aspect of regulation that has garnered interest in the past 2 decades is that

of post-transcriptional control. This occurs at the level of regulation of the stability, locali-

sation and activity of mRNAs. Moreover it is an efficient mechanism of regulation, being

that mRNA is the critical and importantly transient thus dynamic mediator of information

flow through the process of gene expression. This level of control of gene expression

is one key role for many non-traditional ncRNAs (ie other tha tRNAs, rRNAs). Probably

the most well-characterised plays in this are miRNAs, that act as the primary effectors

of the process dubbed "RNA interference" (RNAi). This is the process whereby miRNAs

are able to repress the expression of genes based on their binding to (canonically the 3’

UTRs of) mRNAs for which they share sequence complementarity. In doing this, they are

able to induce either the destabilisation and/or degradation of bound mRNAs, or inhibit

their translation.

The biogenesis of miRNAs is relatively well-understood. They are transcribed from inter-

or intra-genic loci as concatenated primary miRNAs (pri-miRNAs) or "mirtons" from be-

spoke or shared promoters or due to sense or antisense read-through transcription (Fig

1.14) [185]. Such precursors are processed by the ribonuclease DICER in complex with

DGCR8 in the canonical pathway, or spliceosomes in the non-canonical pathway of bio-

genesis (Fig 1.14). Both pathways produce precursor miRNAs (pre-miRNAs) as hairpins,

with each strand of the stem encoding potential miRNAs with reverse complementarity

[185]. These pre-miRNA hairpins are then translocated out of the nucleus to the cy-

toplasm in complex with the exportin XPO5 [185]. Pre-miRNAs are then cleaved by the

ribonuclease Dicer in complex with TRBP/PACT and ADAR1 to release the 5’ and 3’ stem

strands, either of which can become a miRNA (hence -3p and -5p notation). Which exact

stem is processed into a mature miRNA depends on a range of factors that govern this

process, termed target-mediated miRNA protection (TMMP) [185].

The mechanisms and determinants by which miRNAs facilitate RNAi have been well-

characterised. Importantly, miRNAs encode a 5’ "seed" sequence that is relatively short

(7-9nt) and shares at least partial complementarity with target transcripts [186]. Such

sequence complementarity is the primary determinant of miRNA targeting, while the re-
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laxation from full complementarity allows for promiscuity in target sequences. Further

factors also facilitate miRNA binding such as 3’ end complementarity, RNA secondary

structure, ADAR-editing, methylation, intrinsic or protein binding-induced stability, non-

canonical (5’ and CDS/ORF) binding location and the capacity for sequence bulges in or

around the seed sequence [185, 186]. MiRNAs are typically loaded into Argonaute (AGO)

proteins to form RNA-induced silencing complexes (RISCs) that enable their canonical

pathway of repression of target transcripts. MiRNA association into miRISC complexes

also facilitates their transport, proper targeting and stability. The canonical mode of ac-

tion of miRNAs is that they bind and induce the cleavage and subsequent degradation of

target transcripts. This canonical pathway proceeds via miRISC-triggered depolyadeny-

lation, decapping and subsequent exonuclease (XRN1 etc)-mediated degradation [185].

In addition, non-canoncial pathways that don’t rely on cleavage and degradation but still

induce target repression also exist. These include AGO2 competition with translational

pre-initiation complexes for binding to the 5’ mRNA cap as well as targeting bound mR-

NAs to P-bodies, which are sites of translational repression that accumulate messenger

ribonucleoprotein (mRNP) complexes [187].

1.4.3 The competing endogenous RNA hypothesis

Figure 1.15: The competing endogenous RNA hypothesis. Where MBS is miRNA bind-
ing site, ceRNA is competing endogenous RNA, miRNA is micro RNA.
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Figure 1.14: Biogenesis of miRNAs. Figure adapted from [185].
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The human genome encodes 100s of miRNAs, each of which can target 10s-100s of

transcripts and accordingly at least 40% of protein coding genes have been proposed to

be directly regulated by miRNA-driven RNAi [185]. Many of these potential miRNA target

"regulons" overlap and thus the landscape of miRNA targets in the cell can be consid-

ered an interconnecting network with miRNAs as the main mediators. Given this network

perspective on miRNA function, Seitz et al., proposed the foundation of the "competing

endogenous RNA" (ceRNA) hypothesis, which was later formalised as the competing en-

dogenous RNA (ceRNA) network hypothesis by Salmena et al., [188, 189]. The ceRNA

network hypothesis states that non-structural RNAs of sufficient size (primarily mRNAs,

lncRNAs, pseudogenes and isolated 3’UTRs) compete to bind a shared pool of miRNAs

that is of a finite size and thus, changes in the abundance of one target can influence the

abundance of another if they share common miRNAs (Fig 1.15). In this way, traditional

RNAi can be viewed as a cis-regulatory mechanism of miRNA, while the ceRNA mecha-

nism can be viewed as a trans-regulatory mechanism [190]. Thus the ceRNA hypothesis

proposes extensive crosstalk between transcripts that adds another post-transcriptional

layer of regulation to gene expression [188, 189].

A logical continuation of the ceRNA hypothesis is that targets of miRNA regulation are

also able to regulate the abundance of miRNAs by limiting the size of the free pool, in a bi-

directional reciprocal relationship. Specifically, transcripts that have the capacity to bind

but not be cleaved, destabilised or inhibited by a miRNA have the potential to influence

the abundances of a considerable number of mRNA targets that are targeted by common

miRNAs. Later terminology characterised many such transcripts "miRNA sponges" due

to their capacity to continually sequester miRNA away from the free cellular pool [191].

One archetypal example of a validated miRNA sponge is PTENP1 which forms a ceRNA

network with PTEN and sponges several miRNAs, including miR-17, miR-21, miR-19 and

miR-26 families that otherwise suppress PTEN mRNA [192]. Similar mechanisms exist

for KRAS and its pseudogene KRAS1P as well as the isolated expression of CD44 3’UTR

[189]. Since then, many studies have characterised 100s of putative miRNA sponges that

regulate 100s of miRNAs and thus potentially 1000s of transcripts. Importantly, while still

a hypothesis, many studies have provided evidence for the existence of at least individual

ceRNAs acting to regulate the expression of mRNAs, providing evidence for the occur-

rence, if not the extent, of ceRNA mechanisms that operate in a cellular environment.
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1.4.4 Studying ceRNA networks

Due to representing non-covalent and subtle interactions between 10s-100s of interact-

ing components, ceRNA networks are by nature difficult to study by most naive molecular

biochemical approaches. Moreover, the biological effect of ceRNA networks are likely

minute and difficult to detect or otherwise deconvolve from other regulatory mechanisms.

Accordingly many studies that utilise such classical laboratory-based approaches tend

to be limited to the investigation of one or at most a handful of individual miRNAs, one

miRNA sponge and several target transcripts. A consequence of this is that without

accounting for the influence of the other interactors in a ceRNA network, the cause of

a change in one element of the network may be wrongly attributed to the direct per-

turbation of a component (ie a miRNA or miRNA sponge), when this perturbation may

instead have indirect effects on whatever variable is used as a read-out [191]. Accord-

ingly, the analysis of such regulatory circuits tends to lend itself to systems-based network

analysis methods which utilise high-dimensional ’omics data-sets. Such holistic analysis

attempts to capture the full scale of underlying ceRNA networks and consider all com-

ponents together rather than in a gene-by-gene manner [191]. Network models tend to

be constructed by defining links (edges) between miRNAs and their targets using either

predictive algorithms, databases of prior knowledge, co-expression or a combination of

all three. Networks can then be interrogated via various network analytical methods.

These include centrality analyses, which rank network components such as miRNAs, tar-

gets and miRNA sponges (nodes) by their relative interconnectivity in the network, with

the aim of identifying highly interconnected hub nodes. Such network approaches have

proved fruitful in identifying novel ceRNAs and ceRNA regulatory networks in a range

of contexts [193]. However given the recency of the ceRNA network model proposal,

the true extent of ceRNA network regulation within cells and between biological contexts

remains largely unexplored.

1.4.5 CeRNAs and viruses

Many viruses encode their own miRNAs, while infection by many more are known to

dysregulate a range of cellular miRNAs. As previously stated, this includes KSHV’s two-

dozen unique miRNA species that modulate the expression of a range of genes involved

in immune modulation, metabolic processes, angiogenesis and oncogenic processes (Fig

1.3) [32]. Additionally viruses encode many other ncRNAs, including lncRNAs, such as

those encoded by KSHV, EBV and HCMV, among many others [15, 194].
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Given that viruses exploit or are influenced by essentially all levels of gene expression

regulation, as well as many encoding their own miRNAs or exploiting host miRNAs, it

stands to reason that some also exploit or are influenced by ceRNA network-based reg-

ulation. Indeed, one prime example is Hepatitis C virus (HCV), an RNA virus whose

genomic RNA sponges miR-122, a highly expressed miRNA in hepatocytes, resulting in

global de-repression of the targets of miR-122 including those involved in lipid biogene-

sis (among other processes) [195]. Most interestingly for KSHV, the related Herpesvirus

samiri (HVS) has been shown to express highly abundant miRNA sponges, termed the

herpesviral U-rich RNAs (HSUR1 and HSUR2), which resemble snRNAs and sponge

miR-27a [196]. MiR-27a is a known anti-viral miRNA and thus HSUR-mediated repres-

sion has been shown to promote viral replication [196]. Murine cytomegalovirus (MCMV)

encodes similar transcripts that also target miR-27 [197]. Moreover K. Ahn et al., showed

that in clinical isolates, the human cytomegalavirus (HCMV) expressed the “miRNAdecay

element” (miRDE) from an intergenic region of its genome that specifically destabilises

miRNAs of the miR-17-92 cluster [198]. Thus the potential role of ceRNAs in regulat-

ing viral replication has been proven in some cases, in-particular for herpesviruses like

KSHV.

miRNA Targets Functions
miR-K12-1 Casp3 Apoptosis

NFkB signaling KSHV latency
THBS1 Cell adhesion, migration, and angiogenesis
p21 Cell cycle arrest
STAT3 IkBα/NFkB/IL-6 signaling pathway

miR-K12-3 Casp3 Apoptosis
nuclear factor I/B KSHV latency
GRK2 KSHV latency and angiogenesis, dissemina-

tion
THBS1 Cell adhesion, migration, and angiogenesis
C/EBPβ p20 (LIP) Influence the secretion of IL-8 and 10 and im-

mune response
miR-K12-4 Casp3 Apoptosis

Rbl2 KSHV latency
miR-K12-5 BCLAF1 KSHV latency

MYD88 Regulating the TLR/IL-1R signaling cascade
Tmskα1 Apoptosis and angiogenesis

miR-K12-6 THBS1 Cell adhesion, migration, and angiogenesis
Bcr Angiogenesis
SH3BGR Angiogenesis and dissemination
MAF Angiogenesis

miR-K12-11 MAF Angiogenesis [199]

Table 1.5: Validated functions of KSHV viral miRNAs. Adapted from [32].
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1.4.6 Circular RNAs

One class of ncRNAs that has garnered a lot of attention in recent years are circular

RNAs (circRNAs). These are covalently-closed loops of RNA that are notably distinct

from linear species or other circularised RNAs (such as intronic lariats that are a bi-

product of splicing) in that they have no 3’ or 5’ termini [200]. As such they lack structures

and features present in canonical mRNA species, such as a m7G 5’ cap and polyA tails.

Moreover their lack of 3’ and 5’ termini and unique circular shape also confers resistance

from exonuclease activity. Accordingly they are highly stable, exhibiting half-lives of 10s

of hours, even in the complex environment of serum or the extracellular milieu [201].

They are also broadly expressed and have been observed to be generated from 1000s

of human genes and can in theory be expressed from essentially any gene capable of

being spliced [202–204].

Biogenesis of circRNAs occurs via a process called “back-splicing”, whereby the 3’ splice

site of a downstream exon is spliced to the 5’ splice site of an upstream exon, result-

ing in a “scrambled” order of exons in a reverse orientation relative to their genomically

encoded order (Fig 1.16) [200]. This is proposed to be mediated by the host splicing ma-

chinery but expedited by factors that bring back splice sites into proximity [204]. These

include inverted repeats in regions flanking the backspliced sites (such as ALU elements)

and consequently factors that modify or regulate these sequences, including ADAR1 or

hnRNP-C/L [202, 204]. Moreover RNA binding proteins (RBPs), such as human QKI,

SFPQ and Drosophilia melanogaster muscleblind (MBL) have been found to regulate cir-

cRNA biogenesis and are generally proposed to work in a similar manner, by binding to

regions of transcripts with reverse complementarity to form stem loops [202]. Several

viral factors have also been suggested to promote back-splicing such as KSHV ORF57

[71]. An alternative biogenic mechanism for some circRNA is that they are derived from

excised skipped exons present in RNA lariats that result from canonical linear splicing

[205]. Additionally like mRNAs, multiple (up to dozens of) circRNA isoforms (ISO circR-

NAs) can be generated from the same genes (termed circRNA "hotspots"). Examples

include the CSPP1, BIRC6, ATM, MTHFD1, SOX5 and ARHGEF12 and XPO1 [206].

Overall while some determinants and mechanisms for circRNA biogenesis have been

proposed, most understanding of their biogenesis remains largely hypothetical.

The extensiveness of circRNA expression wasn’t apparent until the application of high-

throughput NGS methods [203, 204]. Their detection in such data (as well as bespoke

microarrays) depends on the reversed-orientation sequence termed the “backsplice” se-

quence and it’s reversed nature relative to the parental gene (Fig 1.16). This backsplice
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Figure 1.16: Biogenesis and detection of exonic circRNAs.

sequence is in theory infrequent in the transcriptome and thus unique to circRNAs from

any one gene, and as such can be used to quantify the relative expression of circRNA

at a genome-wide scale. For RNA-Seq, this usually involves mapping reads to artificial

references comprising predicted sequences for circRNA backsplice sequences, while for

microarrays probes are generated that are complementary to these sequences (Fig 1.16).

Using such methods, multiple studies have shown that both on a global scale (ie the ex-

pression profile) and at a gene, case-by-case level, circRNA expression varies between

different diseases states and physiological conditions [203]. Importantly, the abundance

of many linear RNAs and their respective circRNA generated from the same parent ge-

nomic loci show poor correlation, indicating that any alteration in circRNA abundance is

likely specific, affecting just the circular RNA and not as a result of general up-regulation

of the parent genomic loci [200]. Thus high-throughput methodologies have been cru-

cial in the extensive characterisation of circRNA expression, which has enabled follow-up

studies showing their context-specific expression, providing evidence for their existence

relating to functional entities and not "transcriptional noise" as once assumed.
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1.4.7 Functions of circRNAs

Figure 1.17: Functions of circRNAs. (A) Some circRNAs (in-particular EIciRNAs) regu-
late transcription of linear mRNA from their parental genes [207]. (B) Some circRNAs can
be translated via ribosome loading to M6A sites or IRES-like elements [208]. (C) CircR-
NAs can act as protein sponges [209]. (D) CircRNAs can sponge miRNAs to de-repress
their target transcripts [210]. (E) CircRNAs can expediate the proteasomal degradation
of proteins by binding them and bringing them into physical proximiate to the 26S pro-
teasome. (F) CircRNAs can bind to mRNA and stabilise them. (G) Some circRNAs can
compete for splicing components or sequester pre-mRNA components from mRNA [210].
(H) CircRNAs can be secreted in exosomes [211]. (I) circRNAs can act as scaffolds or
hubs for protein signalling or activity [212].

As with the linear products of genes, circRNAs can be categorised into different bio-

types. Several of these biotypes have been described, with the most abundant and ex-

tensively studied being exonic circRNAs, which are entirely composed of exons. Further

types of circRNAs are less well studied and include intronic circRNAs (ciRNAs), derived

from introns and exon-intron circRNAs (EIciRNAs) which contain both introns and ex-

ons [207, 213]. Additional circRNAs biotypes include intergenic circRNAs, which aren’t

attributable to a known gene and those encoded sense or anti-sense overlapping with

known genes [206]. Some circRNAs modulate the expression of linear products from
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their parent genes. For example circRNAs and EIciRNAs are both nuclearly located and

are both proposed to regulate expression from their parental genes by interacting with

RNAPII and splicing components (Fig 1.17A) [207, 213]. Much of this relates to their

predominant nuclear localisation. More-generally, circRNA biogenesis has been sug-

gested to directly compete with linear splicing thus antagonise mRNA biogenesis from

their parental genes (Fig 1.17G) [214].

A majority of interest is focused on cytoplasmically-localised circRNAs which predomi-

nantly include exonic circRNA, likely due to these biotypes containing spliced exons with

functional exporting signals. Of most relevance to this study is the role of (exonic) cir-

cRNAs in binding miRNA and this is further discussed in the next section (Fig 1.17D).

However further functions have been described. For example, several circRNAs have

been observed to act as protein sponges, sequestering proteins from their functional tar-

gets thus acting analagous to miRNA sponges (Fig 1.17C). One example is generalised

to many cytoplasmic circRNAs, which act as endogenous inhibitors for protein kinase R

(PKR) and are degraded by RNase L upon viral infection (or poly I:C treatment) in order

to facilitate PKR activation during innate immune responses [209]. Another mechanism

is facilitated by the nuclearly-localised circANRIL, which acts as a competitive inhibitor

of pre-rRNA to bind PES1, inhibiting maturation and thus ribosome biogenesis [215].

Additionally several exonic (for example circFOXO3) and at least one intronic (ciINS2)

circRNAs can act a scaffold for proteins (Fig 1.17G) [202, 212].

Perhaps unsurprisingly, some reports have suggested that at least a subset of cytoplas-

mic exonic circRNAs may be translated, which is proposed to be mediated by RNA methy-

lation or small IRES-like sequences (Fig 1.17B) [208, 216]. Therefore like many lncRNAs,

their classification as "non-coding" is not strictly true. Nonetheless, one interesting exam-

ple is a circRNA generated from the β-catenin gene (circβ-catenin), whose circularisation

was found to be result in a truncated β-catenin translation product [217]. This shortened

isoform was found to stabilise full-length β-catenin by acting as a competitive decoy for

GSK3β inactivating phosphorylation. This was found to attenuate Wnt/β-catenin pathway

signalling and promote Huh7 liver cancer cell growth in vitro, alongside exograft metasta-

sis and tumourigenesis in nude mice [217]. Interest in the translation of circRNA is both

interesting from an academic perspective but also for biotechnological reasons as they

may represent efficient mechanisms to produce large quantities of protein-products in a

stable and programmable manner [? ].

More esoteric functions of exonic circRNAs have also been described. These include

circRNAs that have been found that regulate gene expression by binding to mRNAs to
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stabilise them (Fig 1.17F). Moreover, one unique mechanism employed by circPABPC1

involves physically interacting with the 26S proteasome and ITGB1, to bring the latter into

proximity with the former and thus inducing the degradation of the latter (Fig 1.17E) [218].

It seems likely that further research into circRNAs will reveal more examples of members

with novel functions.

Different circRNA biotypes show differential localisation into the nucleus, cytosol, cyto-

plasm, ribosome and exosomes [219]. Various factors appear to regulate circRNA lo-

calisation, other than the exact biotype of the circRNAs. In terms of exonic circRNAs,

length and GC content plays a key role in transportation as longer circRNAs or circRNAs

with lower GC contents tend to be cytoplasmic, while the opposite tend to be nuclear

[202, 219]. Additionally circRNAs of different lengths are exported via different mech-

anism [202]. Moreover the predominantly cytoplasmic exonic circRNAs have been pro-

posed to localise to specific sub-cellular regions in a manner similar to mRNA (localisation

motifs and RNA bound protein complexes) to facilitate their spatial concentration [219].

Finally, circRNAs can be secreted into exosomes and such presence in blood and inter-

stitual fluid, alongside their stability, has led to their proposed roles as biomarkers [220]

(Fig 1.17F). Therefore as with most linear gene products, the localisation of circRNAs is

dependent on their biotype and this has consequences for their possible functions.

1.4.8 Circular RNAs as competing endogenous RNAs

As previously stated, circRNA’s are proposed to act as miRNA sponges in the context

of ceRNA networks. Exonic circRNAs in-particular are generally considered the major

miRNA sponge candidates due to their cytoplasmic localisation and stability [202]. In-

deed, all validated miRNA sponge circRNAs are exonic, implying that this is a mechanism

exclusively carried out by these circRNA biotypes [221]. Stability is a crucial feature of

circRNAs relating to their role as miRNA sponges, as while they are generally poorly and

slowly expressed, their longevity means that they can accumulate to abundances that

can have appreciable biological effects [201, 202]. This, combined with the idea that they

may concentrate in localised regions, means that they may be able to fine-tune and direct

ceRNA networks and may even introduce thresholding effects on miRNA activity [222].

Examples of circRNAs acting as ceRNAs have been investigated and consistently vali-

dated. A prime example is the mouse circRNA circSry, which contains 16 miR-138 bind-

ing sites and has been shown to regulate spermatogenesis via modulation of miR-138’s

target γH2AX [223]. Additionally the first example of a circRNA that could bind a miRNA

was the circular CDR1 antisense transcript (circCDR1 or ciRS-7) which contains over
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70 binding sites for miR-7 and was found to be up-regulated in colorectal cancer (CRC)

tumours [224, 225]. Another circRNA, circHIPK3, sponges a range of miRNA, including

miR-193a, miR-29a, miR-29b, miR-30c, miR-124, miR-152, miR-7, miR-338, miR-379

and miR-584, miR-375 and miR-10b-5p [202, 226–228]. Moreover circ-9119 has been

found to sponge miR-26a and miR-136 to de-repress TLR3 and RIG-I expression, which

suppressed inflammatory responses upon poly I:C treatment of murine Leydig and Ser-

toli cells [229]. These examples introduce another feature of circRNAs that makes then

"ideal" as miRNA sponges, that they can bind multiple miRNAs and thus can can influ-

ence many different miRNAs involved in different processes and/or sequester multiple

copies of identical miRNAs. Therefore the regulatory potential of circRNAs in as miRNA

sponges in ceRNA networks is extensive and supported by case-by-case functional stud-

ies.

1.4.9 Circular RNAs and viruses

The first circRNA discovered was actually generated by a virus. This was in a study from

1986 by Kos et al., that applied electron microscopy on the purified ssRNA genome of

hepatitis delta virus’s (HDV), finding them to be structured as covalently closed loops

[230]. However this can be considered a somewhat special case that relates to the

uniqueness of the virus. Instead, a more recent and extensive area that circRNAs are

of interest in the context of viruses is their role as miRNA sponges. This is largely due

to their capacity to regulate 100s of genes meaning that miRNA sponges may represent

attractive targets to facilitate viral manipulation of cellular behaviour. These include host

circRNAs that show specific disruption during viral infection, alongside the identification

of virally-encoded circRNAs by viruses.

Most study into host circRNAs dysregulated by viruses have focused on exonic circR-

NAs,and in-particular their role as miRNA sponges. One study identified 516 dysregu-

lated circRNAs during early HIV infection that regulated a 21 miRNA, 903 mRNA net-

work that regulated HIV-1 replication by modulating the abundance of IL-5, CCNK and

CDKN1A [231]. Another example by Wei et al., 2018 identified 162 differentially ex-

pressed circRNAs between chronic HBV and healthy liver samples, with 30 being ISO

circRNAs generated from 3 genes, MTHFD1, SOX5 and ARHGEF12 [224]. A similar

study used a circRNA microarray to detect circRNAs in clinical HBV-infected hepatocel-

lular carcinoma (HCC) samples that determined the importance of the up-regulated cir-

cRNA_100338 in suppressing miR-141-3p, de-repressing targets including the oncogene

MTSS1 [224]. These two examples are of relevance to KSHV As they implicate circRNAs
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as having putative roles in the development and/or progression of virally-driven cancers.

The only true backspliced virus circRNAs have been identified to be produced predomi-

nantly by dsDNA viruses. These include predominantly herpesviruses (γ, KSHV, EBV,

rhesus lymphocryptoviruse (rLCV) and MHV68, β, HCMV and α poultry mareks dis-

ease virus (MDV)), the carp Cyprinivirus Cyprinid herpesvirus 2 (CyHV-2), human β-

coronaviruses (SARS-CoV-1, -2 and MERS-CoV-2), human papillomavirus (HPV), hu-

man Merkel Cell Polyomavirus (MCV) and rat polyomavirus 2 (Fig 1.18) [23, 23, 26, 232–

237]. In addition, there is evidence that some RNA viruses encode circRNAs, including

HBV, Respiratory syncytial virus (RSV), Zika virus, Zaire Ebolavirus and HIV (Fig 1.18)

[238–240]. In support of circRNA’s existence as functional entities that do not arise from

mis-splicing, in at least EBV and rLCV, Underleider et al., showed conservation of two

latently expressed circRNAs between these two viruses [241]. Moreover orthologous,

diverse but low abundance circRNAs have been detected from the OriLyts from KSHV,

EBV, rLCV and MHV68 [20, 241]. These examples give tantalising leads into extensive

biogenesis of circRNAs by viruses.

Some viral circRNAs have also been functionally characterised. One interesting example

is MCV’s circMCV-T, expressed during lytic replciation from the T antigen locus and en-

coded antisense to the viral miRNA MCV-miR-M1 (Fig 1.18) [237]. Such overlap means

that the circRNA and miRNA share sequence complementarity and because MCV-miR-

M1 inhibits MCV lytic viral replication, promoting latency, its sponging by circMCV-T has

been found to help drive the virus into its lytic replication cycle. Conversely HPV encodes

a viral circRNA generated from its E7 oncoprotein locus (circE7) that is translated to gen-

erate E7 protein that promotes invasion, metastasis and cell growth of infected cells (Fig

1.18) [242]. This circRNA was modified with an N6-methyladenosine (m6A) site that fa-

cilitated ribosome loading, a mechanism that is proposed to be important to facilitate the

translation of viral and cellular eukaryotic circRNAs [243]. Both these examples exem-

plify unique mechanisms by how viruses utilise self-encoded circRNAs to regulate their

life-cycle or promote their pathogenesis.

CircRNAs roles as miRNA sponges have also been shown to be important during vi-

ral infection and virus-associated disease. Several circRNAs have been identified ex-

pressed from Epstein Barr Virus (EBV) during both latency and lytic replication (Fig 1.18)

[20, 232, 241, 244, 245]. One example is expressed from the latency gene circLMP2A

and was found to suppress and promote the expression of miR-3908 and TRIM59, re-

spectively [245]. TRIM59 represses p53 and thus circLMP2A was found to reduce p53

abundance, which promoted cancer stemness of infected cancer cells [245]. In addition
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Figure 1.18: Examples of viral circRNAs and circRNAs important to viral infection.

circRNAs have recently been found to be produced by the β-herpesvirus HCMV, which

were predicted to sponge a range of miRNAs to modulate DNA replication [246]. In a

more large-scale study, Chen et al., 2022 mined viral circRNAs from 41 samples com-

prising (KSHV-, EBV-, rLCV-, MERS-CoV-, HBV- and HPV-) virally infected cell lines and

lympohmas, lung adeno-, cervical and gastric cacrinomas [232]. They identified 3̃912 vi-

ral circRNAs and by integrating with miRNA target prediction algorithms and databases,

identified novel miRNA-circRNA-miRNA axes including 21 KSHV circRNAs with miR-

6848-5p, 18 with miR-3085-5p, 10 with either miR-6858-5p or miR-8063 [232]. This

indicates that the interactions between viruses and ceRNA networks may be extensive in

scale, frequent between viruses and biologically relevant to virus-associated disease.

1.4.10 KSHV-encoded circRNAs

Like HCMV’s miRDE and HVS’s HSURs, KSHV’s lncRNAs were initially proposed to act

as miRNA sponges, given the high abundances that they reached, particularly PAN. Sur-

prisingly however such transcripts have not been predicted or reported to bind miRNA,

making their role as miRNA sponges unlikely [247]. However both host and viral circR-

NAs have emerged as having roles in ceRNA networks as miRNA sponges, regulating

processes relevant to KSHV biology and pathology, including cellular proliferation, motility

and metastasis, apoptosis, cell cycle progression and angiogenesis [216].

Several KSHV-encoded putative circRNAs have been detected and a handful have been
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validated. The most abundant and well-studied are those generated from the vIRF4 lo-

cus and to a lesser extent the PAN/K7.3 locus (Fig 1.18) [23, 24, 244]. Notably however,

there is some ambiguity for the latter circRNAs as they are co-expressed with linear

PAN, circRNAs backsplice reads attributed to them were detected from antisense over-

lapping loci and they have not been detected in all studies into KSHV-generated circRNAs

[23, 24, 27, 244]. However both circvIRF4, circPANs and circK7.3s have been detected

in abundances greater than LANA in KS, PEL and MCD tissue, in at least two studies, in-

dicating their expression in vivo [23]. They have also been found to be incorporated into

virions [26]. Further detected KSHV circRNAs include those overlapping with ORF34

(kcirc54), ORF35/36 (kcirc55) and ORF36/37 (kcirc57), alongside one encoded within

the T0.7 region which also encodes miR-K12-10 and -12, which show 5’ and 3’ comple-

mentarity, leading to the proposal that circT0.7 may be able to bind these viral miRNAs

analogously to MCV’s circMCV-T and MCV-miR-M1(Fig 1.18) [23, 26, 26].

Most detected KSHV circRNAs are exonic, however intron-retained circRNAs have been

detected produced from KSHV’s vIRF4 and vLCV’s RPMS1 gene [20, 26]. Limited func-

tion of each circRNA has been determined except for kcirc54 and kcirc55 which were

found to suppress PAX2 and promote EGRR3 and FGF13 mRNA upon over-expression,

relative to a circGFP control, alongside targeting genes enriched for cell cycle progression

as well as p53 signalling [23, 24]. Additionally, like for some lncRNAs, KSHV circRNAs

have been suggested to directly bind and inhibit mRNA that they share complementar-

ity for, and Tagawa et al., found enrichments for cell cycle progression and Wnt/Notch

signalling in such mRNAs [23]. Moreover the presence of detected circRNAs originating

from regions overlapping the OriLyts of γ herpesviruses may suggest a role in viral ge-

nomic replication. It should be noted that such detection is predominantly derived from

RNA-Seq data alone and thus is relatively poor evidence, without follow-up biochemical

validation and functional studies.

In terms of biogenesis, KSHV ORF57 is believed to be involved as its knockdown has

been shown to decrease the number of detectably differentially expressed circRNAs, rel-

ative to unaltered controls [27]. Similarly, vIRF1 has been found to promote the expres-

sion of at least one host circRNA [235]. Moreover there is some evidence suggest and

involvement that the RBPs MYBL2, SRSF3, FUS, QKI and RBM33 [24]. However much

of this research is yet to be formalised.
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1.4.11 KSHV and host circRNAs

A handful of studies have investigated the dysregulation of host circRNAs during infec-

tion by KSHV and, compared to viral circRNAs, such circRNAs have better functional

characterisation as miRNA sponges [23, 24, 71]. Alongside identifying and character-

ising vIRF4, one set of studies by Tagwa et al., identified hsa_circ_0001400 (encoded

by RELL1, circRELL1) that was up-regulated upon KSHV infection and first found to

suppress viral gene expression [23]. It was later found to also be induced upon infec-

tion by EBV and HCMV and found to specifically inhibit lytic transcription, promoting

latency of KSHV in primary endothelial cells [248]. Loss of function mutation studies

indicated that circRELL1 promotes PI3K/Akt, pro-inflammatory (TNFα, IL-6) and T cell

signalling while suppressing PTEN and GADD45 signalling, alongside directly interact-

ing with and stabilising the mRNA of the mTOR complex gene TTI1 [248]. An addi-

tional circRNA found to be up-regulated in KSHV infected cells is circARGEF1, which

was found to be induced by vIRF1 binding to ARGEF1’s promoter in-complex with LEF1

[235]. CircARGEF1 was then found to sponge the tumour suppressor miRNA miR-125a-

3p, resulting in subsequent de-repression of GLRX3 to promote pro-oncogenic processes

such as angiogenesis, cell motility and proliferation [235]. In another study, by compar-

ing the transcriptomes of WT and vFLIP-mutant KSHV-infected lytically replicating iSLK

cells, Sheng et al., identified a ceRNA network comprising 16, 90, 40 and 6 differen-

tially expressed circRNAs, lncRNAs, mRNAs and miRNAs, respectively [249]. This net-

work was found to be enriched for riboflavin and thiamine metabolism. The authors then

went on to validate 2 ceRNA axes, lncRNA AL031123.1/hsa-miR-378i/SPEG/FOXQ1 and

hsa_circ_0070049/hsa-miR-378i/SPEG/FOXQ1, whereby vFLIP mutation down-regulated

the constituent ceRNAs, up-regulating miRNAs and thus suppressing SPEG and FOXQ1

[249]. Therefore while few in number, the studies that exist have provided some interest-

ing examples of which host circRNAs are dysregulated during KSHV infection as well as

providing some functional association of relevance to KSHV’s life cycle and pathology.

Finally in a recent study by Harper and other members of our group, we have shown

that circHIPK3 is up-regulated upon induction of and essential for KSHV lytic replication

in a manner dependent on ORF57 [71]. Next circHIPK3 was found to sponge miR-30c

and -29b, with the latter found to de-repress its target the Notch ligand DLL4 which was

found to be important for KSHV replication in B cells, alongside having pre-defined roles

in KSHV pathogenesis and angiogenesis [71]. However this study was relatively small-

scale in that it focused on just a single circRNA and at most 3 miRNAs and as such a

more broad perspective may provide further scope for the extent of circRNA dysregulation
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during KSHV reactivation.
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1.5 Aims of the study

For the KSHV ceRNA network chapters (Sections 3 & 4):

• Quantify changes to the expression of circRNAs, miRNAs and mRNAs upon the

induction of lytic reactivation of KSHV.

• Model the relations between these features in the form of a predicted ceRNA net-

work.

• Analyse this network in order to determine the purpose of its dysregulation and how

this may influence KSHV.

For the KS biopsy sample co-expression network chapter (Section 5):

• Build a co-expression network model for KS biopsy tissue from publicly available

bulk RNA-Seq data.

• Interrogate this network model by applying module analyses in order to characterise

the transcriptome of KS lesions.

• Identify a set of co-expressed and differentially co-expressed hub genes as candi-

date drivers of KS lesion development.
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2 Methods

Given the nature of this thesis being largely in two parts (split between the first and second

results chapters [Section 3 & 4] on circRNA-miRNA ceRNA networks, and the third results

chapter [Section 5] on co-expression networks applied to RNA-Seq data derived from KS

lesion tissue biopsies), the following Methods chapter is split into 3 sections. The first

(Section 2.1), comprises methods common to all results chapters, the second (Section

2.2) comprises methods unique to the first and second results chapters (Section 3 & 4)

and the third (Sections 2.3) contains methods unique to the third results chapter (Section

5).

2.1 Common Methods

2.1.1 Annotation and Genome Data Accession

The Homo sapiens GRCh38 genome build .fasta and annotation .gtf files were down-

loaded from Gencode (v43). The NC_009333.1 GK18 KSHV genome build was down-

loaded from the NCBI website while the .gtf annotations were based on the specific

unique coding sequence (UCDS) feature annotation provided by Prof Tim Rose of the

University of Washington (described more in Section 2.1.2) [15, 18]. These annotations

were used for all analyses, unless otherwise stated.

2.1.2 Gene Expression Data Normalisation

The UCDS schema views the counts of downstream ORFs as a linear combination of the

number of reads mapping to that ORF relative and the number of reads mapping to the

upstream ORFs sharing the same polycistronic transcript [18, 250]. To account for this,

read counts for upstream ORFs were subtracted from downstream ORFs that shared

polycistronic transcripts, with annotations derived from Bruce et al., and Rose et al., and

each pairwise subtraction detailed in Table 2.1. Mapping regions between ORFs were

shrunk to be at least 75 bp apart to limit read mapping ambiguity. Additional changes

included separating ORF73 into two separate features; ORF73a and ORF73b in order to

mitigate difficulty aligning to the internal repetitive region present in the native ORF.

Data were then normalised via a series of steps common to most transcriptomic data

analyses. Host and viral count data were subject to TPM-normalisation, using the sum

of gene-wise exon and UCDS feature lengths for host and viral genes as feature lengths,

respectively. Alternatively, "Counts-per-million” (CPM)-normalisation was performed us-
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Downstream ORF Upstream ORF
ORF8 ORF7
ORF9 ORF8
ORF10 ORF9
ORF11 ORF10
K2 ORF2
K4.1 K4.2A
K4.2A K4.2
PAN K7
ORF17.5 ORF17
ORF19 ORF20
ORF22 ORF21
ORF23 ORF24
ORF31 ORF30
ORF32 ORF31
ORF33 ORF32
ORF35 ORF34
ORF36 ORF35
ORF37 ORF36
ORF38 ORF37
ORF42 ORF43
ORF45 ORF46
ORF46 ORF47
ORF47 ORF48
K8a ORF50
ORF57 ORF56
ORF58 ORF59
ORF60 ORF61
ORF64 ORF63
ORF65 ORF66
ORF66 ORF67
ORF67 ORF67A
ORF69 ORF68
ORF71 ORF72
ORF74 K14
ORF75 K15a

Table 2.1: Table of KSHV UCDS upstream ORFs to subtract (right) from downstream
ORFs (left).

ing the cpm() function from the Bioconductor package edgeR (3.40.2) [251]. In most

cases, normalised data were pseudocount, Log2 transformed (log2(x+1), where x is the

gene-wise TPM/CPM).

2.1.3 Hierarchical Clustering Analyses

Correlation heatmaps were constructed predominantly using Spearman’s rank correlation

unless otherwise specified. Hierarchical clustering analyses for heatmap figures were

performed using the default settings of the R package ComplexHeatmap and the hclust()
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functions, using agglomerative average linkage clustering [252]. Euclidean distance was

used primarily as a distance metric, unless otherwise specified.

2.1.4 Principal Components Analyses

Gene expression values were either transformed via CPM- and TPM-normalisation for

ceRNA miRNA/RNA-Seq and KS biopsy RNA-Seq data, respectively, prior to principal

components analyses (PCA). For all PCAs, centered and scaled Log2 gene-wise expres-

sion values were used as input. For the full and lesion-only comparisons, all detected

genes were used as input, while for module eigengene (ME) computation, PCAs were

performed on the module-wise gene expression matrices, as further detailed in Section

2.3.7. Raw circRNA microarray data was quantile-normalised prior to PCA. PCAs were

performed using the prcomp() function of the factoextra R package.

2.1.5 Centrality analysis

Hub scores were calculated using the Influential R package (v2.2.6) [253]. Hub scores

for ceRNA networks (Section 4.4) were calculated as directed, not allowing loops and

measuring both weighted in-degree and out-degree. Hub scores for WGCNA hub net-

works (Section 5.7) were calculated with the undirected setting and incorporating weight.

Geodesic paths were calculated using the centiserve package (v1.0.0), selecting for a

maximum of 2-steps, ignoring edge weights and for both in- and out-degree. K-core

decomposition was performed using igraph, selecting for K = 1, 2, 3 and 4 and set to

mode="all" (ignoring edge direction).

2.1.6 Gene Set Annotations

Gene sets were derived from a range of sources. These include the gene ontology (GO)

database, primarily using the biological process (BP) sub-categorisation. Endothelial cell

(EC), fibroblast and various immunological cell type-specific gene signature gene sets

were accessed via the MCPcounter R package, or from the SCtype database of single-

cell marker genes [254, 255]. Additional single-cell gene sets were defined from Tabtieng

et al., [89].

Additional custom host gene sets were constructed. These comprise lymphatic EC (host

LEC) and blood EC (host BEC) cell-specific gene signatures that were derived from a

literature search of genes that were validated to be up-regulated in LECs relative to BECs

and vice versa. Additionally, a set of 163 host genes whose expression was shown to be
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specifically and directly activated by ORF50 in a study by Papp et al., [60]. The 163

genes were filtered based on the presence of called RTA peaks in their promoters with

concomitant significant up-regulation in a differential expression analyses. Such genes

were termed "core RTA-inducible genes" or "Core-RIGs". Additionally, a set of 167 host

genes, found to be significantly enriched (FDR < 0.25) in a CRISPR-Cas9 screen of

latently infected TIME cells were derived from Holmes et al.,. These genes were termed

"Essential to infection" or "Holmes 2020" [57].

Viral gene sets were also defined. These predominantly derived from Bruce et al.,, up-

dated with observations from more recent studies. These sets used included grouping

viral genes based on 9 functional categories (Table 2.3), the maximal expression timing of

genes post lytic reactivation in BCBL1 cells (Table 2.4) and which viral genes were known

to be directly RTA-activated (Table 2.5) [15]. An additional annotation of viral genes was

based on more classical segregation into classical and relaxed latent, immediate early,

early and late lytic genes (Table 2.2). Additionally gene sets were defined as those that

showed cell line-specific enrichment from Bruce et al., (defined by cell line-specific Z-tests

for significant deviation from mean expression across cell lines, p<0.05) [15].
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Gene Classification Viral Genes
Total All 93 viral genes in the network (below)
Classical latent ORF71, ORF72, ORF73, K12A, K12A, K12B, K12C, viral

miRNAs (mIRregion)
Relaxed Latent ORF74, ORF75, K1, K2, K14 K15, vIRF-3
Immediate early lytic ORF45, ORF50, ORF57, K4.2A, K8
Early Lytic ORF2, ORF4, ORF4A, ORF6, ORF7, ORF9, ORF10,

ORF11, ORF16, ORF17, ORF17.5, ORF18, ORF21,
ORF24, ORF29A, ORF29B, ORF30, ORF31, OF34,
ORF35, ORF36, ORF37, ORF38, ORF40. ORF40A,
ORF41, ORF44, ORF46, ORF48, ORF49, ORF54, ORF56,
ORF59, ORF60, ORF61, ORF62, ORF63, ORF64, ORF66,
ORF67, ORF67A, PAN, vIRF-1, vIRF-2, vIRF-3, PAN, K1,
K3, K4, K4.1, K4.2, K5, K6, K7, OLAP

Late Lytic ORF8, ORF19, ORF20, ORF22, ORF23, ORF25, ORF26,
ORF27, ORF28, ORF32, ORF39, ORF42, ORF43, ORF47,
ORF4B, ORF52, ORF53, ORF55, ORF58, ORF65, ORF68,
ORF70, ORF7

Table 2.2: Table of traits relating to viral gene expression.
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Gene Function Viral Genes
Capsid ORF17.5, ORF25, ORF26, ORF43, ORF62, ORF65,

ORF66
Envelope & Membrane ORF8, ORF22, ORF23, ORF28, ORF39, ORF47, ORF48,

ORF53, ORF58, K4.2A, K8.1
Gene Expression ORF11, ORF18, ORF30, ORF31, ORF34, ORF37, ORF49,

ORF50, ORF57, PAN, K8, K8a
Immune Modulation ORF4, ORF4A, ORF4B, ORF10, ORF45, ORF63, ORF74,

ORF75, K1, K2, K3, K4, K4.1, K4.2, K5, K6, K14, vIRF-1,
vIRF-2, vIRF-3, vIRF-4

Mitogenesis & Cell Cy-
cle

ORF16, ORF71, ORF72, ORF73, K7, K12A, K12B, K12C,
K15

Replication ORF2, ORF6, ORF7, ORF9, ORF20, ORF36, ORF40,
ORF40A, ORF41, ORF44, ORF46, ORF54, ORF56,
ORF59, ORF60, ORF61, ORF70, OLAP

Tegument ORF19, ORF21, ORF32, ORF33, ORF52, ORF64
Virion Assembly &
Egress

ORF17, ORF24, ORF29A, ORF29B, ORF38, ORF42,
ORF55, ORF67, ORF67A, ORF68, ORF69

NA mIRregion (viral miRNAs), ORF35, ORF27

Table 2.3: Table of traits relating to the function of viral genes.

Maximal Expression
Timing

Viral Genes

Latent ORF71, ORF72, ORF73, K12A, K12A, K12B, K12C, mIR-
region (viral miRNAs)

Primary (0-10hrs) ORF11, ORF57, ORF50, K8, ORF4, vIRF-4, ORF10, K6,
K5, K4, K2, ORF45, ORF74, K14, ORF16, K7, ORF9,
ORF6, ORF69, ORF55, ORF67

Secondary (10-24hrs) ORF66, ORF65, ORF26, ORF53, ORF47, ORF38, ORF48,
ORF8, ORF18, ORF49, ORF34, vIRF-1, vIRF-2, vIRF-3,
ORF4B, ORF4A, K3, K4.1, K4.2, ORF27, ORF70, ORF61,
ORF59, ORF46, ORF2, ORF56, ORF52, ORF64, ORF42,
ORF38, ORF17

Tertiary (48-72hrs) ORF43, ORF25, ORF62, ORF23, ORF22, K8.1, ORF28,
ORF37, ORF30, ORF31, K1, ORF75, K15, ORF20,
ORF44, ORF41, ORF40A, ORF36, ORF54, ORF21,
ORF32, ORF63, ORF19, ORF29A, ORF29B, ORF24

NA ORF17.5, ORF58, K4.2A, PAN, K8a, ORF35, OLAP,
ORF60, ORF7, ORF40, ORF33, ORF67A, ORF68

Table 2.4: Table of traits relating to the expression timings of viral genes.
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RTA-Responsiveness Viral Genes
Responsive K12A, PAN, K8a, ORF57, K2, K14, ORF6, ORF8, vIRF-1,

K3, ORF59, ORF56, ORF52, K8.1, K8a, ORF37, K1, K15,
ORF21

Non-Responsive ORF73, ORF72, ORF71, mIRregion, K12A, K12B, K12C,
ORF17.5, ORF58, K4.2A, ORF35, OLAP, ORF60, ORF7,
ORF40, ORF33, ORF67A, ORF68, ORF11, ORF50, K8,
ORF4, vIRF-4, ORF10, K6, K5, K4, ORF45, ORF74,
ORF16, K7, ORF9, ORF69, ORF55, ORF67, ORF66,
ORF65, ORF26, ORF53, ORF47, ORF39, ORF48, ORF18,
ORF49, ORF34, vIRF-3, vIRF-2, ORF4B, ORF4A, K4.1,
K4.2, ORF27, ORF70, ORF61, ORF46, ORF2, ORF64,
ORF42, ORF38, ORF17, ORF43, ORF25, ORF62, ORF23,
ORF22, ORF28, ORF30, ORF31, ORF75, ORF20, ORF44,
ORF41, ORF40A, ORF36, ORF54, ORF32, ORF63,
ORF19, ORF29B, ORF29A, ORF24

Table 2.5: Table of traits relating to responsiveness of viral genes to RTA.

Cell Line Viral Genes
Vero K6, OLAP, ORF4B, K1, K3, K4, K4.1, K4.2, K5, K7, ORF23,

ORF4A, ORF56, ORF58, ORF60, ORF64, ORF66, ORF70,
ORF74

BCBL-1 K14, K2, K6, K8a, OLAP, ORF10, ORF32, ORF38, ORF45,
ORF49, ORF4B, ORF50, ORF54, ORF71, ORF73, PAN,
vIRF-1

TIME K4.1, ORF74, ORF56, K2, K8a, ORF10, ORF32, ORF50,
ORF54, K12A, K12B, K12C, K15, K4.2A, K8.1, mIRregion
(viral miRNAs), ORF11, ORF25, ORF26, ORF29A, ORF34,
ORF35, ORF36, ORF37, ORF41, ORF46, ORF47, ORF57,
ORF6, ORF61, ORF62, ORF63, ORF67A, ORF7, ORF72,
ORF8, ORF9, vIRF-2, vIRF-3, vIRF-4

BEC K4.1, ORF26, ORF23, ORF28, ORF29B, ORF31, ORF67
LEC mIRregion (viral miRNAs), K5, ORF68

Table 2.6: Table of traits relating to the highest expressed viral genes in a panel of cell
lines.
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2.2 Competing endogenous RNA network specific methods

2.2.1 Sample Design

Data used in Section 3 & 4 were generated from RNA extracted from TREx-RTA-BCBL1

cells prior to (latently infected) or a set number of hours post-treatment with Dox (lytically

replicating) [256]. Three primary sets of data were used: miRNA-Seq, total RNA-Seq

and a circRNA microarray dataset. To enrich for the miRNA fraction, extracted RNA was

run on an agarose gel and bands that corresponded to RNA < 200 nucleotides in length

were extracted, while total RNA was rRNA-depleted for the total RNA-Seq and RNA was

treated with RNase R to deplete linear RNAs and thus enrich for circular transcripts for

the circRNA microarray. The small and total RNA-Seq were generated by the Whitehouse

Lab at the University of Leeds, namely Belinda Banquero and Becky Foster, respectively

and were sequenced at the Next-Generation Sequencing (NGS) facility at St James’s

Hospital, Leeds. RNA for the circRNA microarray was extracted by Katie Harper and

sent to Arraystar for RNase R-depletion, hybridisation and within-array normalisation.

Total RNA-Seq samples were taken pre-Dox treatment (0hr) and 8 and 20hrs post-Dox

treatment. miRNA-Seq samples were taken pre-Dox treatment (0hr) and 16 and 24 hrs

post-Dox treatment. CircRNA microarray samples were taken pre-Dox treatment (0hr)

and 20hrs post-Dox treatment. The total RNA-Seq and circRNA microarrays were done

in duplicate, while miRNA-Seq was done in triplicate. Note that none of the total RNA-

Seq, circRNA microarray or miRNA-Seq data were taken from the same cells or during

the same experiments, however experimental culture conditions and extraction methods

were maintained as constant. These data were used for both Section 3 & 4.

2.2.2 Annotation and Genome Data Accession

Viral transcript 3’ UTR annotations were derived from McClure et al., 2013 [66]. Host and

viral miRNA annotations were derived from miRBase [257]. All other genome annotation

and sequence files were identical to those used in Section 2.1.1.

2.2.3 Differential expression analyses

For miRNA-Seq, all genes were filtered to remove those with zero counts in all samples,

while for total RNA-Seq, genes with less than 3 counts in any sample were excluded from

the analysis. Differential expression of miRNA-Seq and total RNA-Seq was performed

using DESeq2 (v1.38.3), using DESeq2’s standard "median-of-ratios" (MOR) normali-
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sation approach [258]. Additionally the differential gene elimination strategy (DEGES),

implemented in the TCC package, v1.38.0, was also used to identify non-differentially

expressed genes on which scaling factors were calculated from [259]. DEGES was per-

formed with 5 iterative rounds of 5000 genes. KSHV features were excluded prior to

calculation of size factors and were re-introduced prior to normalisation by scaling fac-

tors. DEGES scaling factor calculation, library normalisation and DESeq2 differential

expression were performed independently at the gene- and transcript-level.

CircRNA microarray samples were initially processed by Arraystar, then normalised via

quantile-normalisation using the normalize.quantiles() function of the Bioconductor pack-

age preprocessCore (1.60.2). CircRNA microarray differential expression was performed

using the limma package (v3.54.2).

Raw p-values for all differential expression results (circRNA microarray, total and small

RNA-Seq) were transformed by Benjamini-Hochberg (BH) method to adjust for multiple

testing and circRNA and small RNA-Seq differential expression results filtered by BH-

adjusted P-value (FDR) < 0.05, while total RNA-Seq differential expression results were

filtered with an FDR<0.01. Differentially expressed circRNAs were filtered to remove

those with |log2FC| < 0.65 and log2AE > 8.

2.2.4 KSHV host shut-off factor SOX binding site analyses

SOX cleavage site data and python scripts to identify putative SOX sites were downloaded

from the supplementary data of Gaglia et al., [77]. Single nucleotide SOX cleavage site

locations were extended by 25 nt each side and converted to a BED file from which fasta

sequence files were assembled and these input to the “create_pwm_wbkg.py” script as

in Gaglia et al., to generate a SOX motif position weight matrix (PWM). This PWM was

then scanned against transcripts using the “score_motif_wholetransc.py”.

2.2.5 Competing endogenous RNA network construction via miRNA target pre-

diction

MiRNA-Target prediction between miRNAs and targets (circRNAs, viral and host protein-

coding gene 3’ UTRs) was performed using the miRanda and RNAhybrid miRNA target

prediction algorithms [260]. MiRanda was run with defaults while RNAhybrid was per-

formed allowing for a maximum target length of 25000 and constraining the binding helix

to be between 2’ and 9’ relative to the miRNA 5’ end. Putative miRNA-target interaction

pairs were taken as the intersection between the miRNA-target pairs predicted by mi-
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Randa and RNAHybrid with a miRanda score > 150 and RNAhybrid minimal-free-energy

(MFE) < -10. Gene-level 3’ UTRs were defined as being any 3’ UTRs in transcripts orig-

inating from a gene that were detected in the samples and as differentially expressed

(FDR<0.05). Cellular 3’ UTR sequences were accessed from biomaRt (v2.54.0). Cir-

cRNAs used for network construction were as described in Section 2.2.3, additionally

retaining only exonic circRNA and then filtering those less than 200nt and greater than

10000nt. Differentially expressed protein coding/viral genes were those identified using

the DESeq2 MOR method as in Section 2.2.3. CeRNA network construction Kamada-

Kawai layout algorithm implementation and visualisation was primarily performed using

the igraph R package (v1.4.1).

To confirm the specificity of the differentially expressed miRNAs for circRNAs permuta-

tion tests were employed. This involved randomly selecting 310 (the same number as

the number of differentially expressed candidate exonic circRNAs chosen for network

construction) detected (above expression thresholds, see Section 2.2.3) circRNAs and

performing miRNA target predictions. 2500 permutations were performed and p-values

calculated as the proportion of permutations where the number of miRNA binding sites

in randomly selected exonic circRNAs exceeded that for the 310 differentially expressed

exonic circRNAs.
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2.3 Kaposi sarcoma co-expression network specific methods

2.3.1 Description of the data-set

The data-set generated by Lidenge et al., 2020 under accession code GSE147704 was

used for the present study [67]. The study carried about by these authors was concerned

with comparing the gene expression profiles of KS lesion samples relative to matched

controls and comparing differential expression between epidemic and endemic KS lesion

samples. The data-set comprises RNA-Seq data from 27 patients; 3 (male) with no KS

presentation or HIV-1 infection, or any other known relevant morbidities (hereby termed

"healthy" biopsy samples) and 24 (16 males and 8 females) from patients with cuta-

neous Kaposi’s Sarcoma (KS) (Table 2.7). From the 24 KS patients, biopsies were taken

from KS lesions (hereby termed "lesion" or "KS lesion" biopsy samples) and un-involved

control tissue (hereby termed "control" biopsy samples) and sequenced, resulting in a

matched set of 48 lesion and control samples. Control samples were predominantly taken

controlaterally, except for patients 3139, 037 and 3122, where, due to KS involvement on

the contralateral surface, samples were taken ipsilaterally [67].

Patients could be further stratified based on whether patients had HIV-1 co-infection or

not, otherwise known as "epidemic" KS and "endemic" KS, respectively, with 18 patients

being epidemic, 6 patients being endemic (Table 2.7). Additionally, lesion samples could

be stratified based on whether biopsies were taken from differing morphologies: 13 nodu-

lar, 10 plaque and one patch (Table 2.7). However as the single patch lesion represented

the lone resident of its group, it and its paired control sample were discarded, leaving 23

patients, each with paired lesion and control samples.

Additional patient-wise traits were recorded, including months of detectable KS (ranging

from 0.8 to 48 months and median 4), months of anti-retroviral therapy (ART) therapy

(ranging from 0 to 121.7 and median 0), detectable serum KSHV levels, which ranged

from below detectable levels (BDL) to 28,000 cps/mL and HIV-1 serum levels in epidemic

samples, which ranged from 0.7 cps/mL to 100,000,000 cps/mL and 0 in all endemic

samples. Patients had a minimum age of 24, a median age of 32 and maximum age of

66.

Library sizes ranged from 8-40 million reads and were sequenced at a mean read length

of 75bp. Data were split between 4 batches, with most traits being balanced between

them (Fig 2.1). This was except for the endemic samples, which were entirely within

batch 2 and as such confounded. The possible consequences of this are explored further

further in Section 5.2.
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Sample Type N. Samples HIV-1 Description
Healthy 3 None Biopsy Skin samples taken from

patients with no KS, no AIDS or
any known morbidities

KS lesion biopsy 18 Epidemic Biopsy samples taken from KS
lesions present on the skin of pa-
tients with epidemic KS (AIDS
co-morbidity)

KS lesion biopsy 6 Endemic Biopsy samples taken from KS
lesions present on the skin of pa-
tients with endemic KS (no AIDS
co-morbidity)

Non-KS control biopsy 18 Epidemic Biopsy samples taken from non-
KS region of skin on patients
with epidemic KS (AIDS co-
morbidity)

Non-KS control biopsy 6 Endemic Biopsy samples taken from non-
KS region of skin on patients
with endemic KS (no AIDS co-
morbidity)

Table 2.7: Features and Layout of Samples in Data-Set

Figure 2.1: Distribution of sample-wise traits between sequencing batches. The data-set
generated by Lidenge et al., 2020 was annotated with several sample-wise measured
traits. The proportion of samples belonging to individual sample traits is presented. Sam-
ples are split between batched (b1, b2, b3 & b4).

2.3.2 Dataset justification and prior recapitulation of Lidenge et al.,’s findings

This dataset was selected for study due to it being the first publicly available cohort of KS

tumour biopsy tissues samples that was of sufficient size to enable reliable calculation of

empirically-defined gene expression profile similarity measures and thus co-expression

analyses. Moreover, the presence of matched lesion and control samples facilitated the

inclusion of information about genes different (in terms of expression and co-expression)
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specifically in lesion vs non-lesion tissue, while accounting for between-patient hetero-

geneity. These data were used for all analysis in Section 5.

Much of the analysis performed by Lidenge et al., was recapitulated during the course

of this study and some of the results are demonstrated as figures in the Appendix (Sec-

tion 7). We were able to reconstitute all of their findings and slightly adapt them for the

purposes of the present study. These included the following:

1. PC1 of a paired lesion/control sample PCA separated by healthy and control sam-

ples (Fig S5).

2. Endemic lesion samples showed a greater magnitude of dysregulation of gene ex-

pression relative to control samples, both in terms of both log2 fold-change of dif-

ferential expression and also variance components in the paired samples PCA (Fig

5.2 & S5).

3. Healthy and control samples showed no detectable differences in gene expression

(data not shown, see Lidenge et al.,).

4. Lesion samples in the dataset showed predominantly latent, lytic or mixed expres-

sion profiles (data not shown, see Lidenge et al.,).

Note that because of finding 3, we discarded the healthy biopsy samples from subsequent

analyses.

2.3.3 RNA-Seq Library Data Accession and Processing

Lidenge et al., RNA-Seq .fastq files were accessed from the NCBI Sequence Read

Archive (SRA) via its European Nucleotide Archive (ENA) proxy server, using the Enabrowser-

tools command line tool. These data were generated using the Illumina’s TruSeq RNA

Library Prep Kit to generate stranded and single libraries, which were sequenced on an

Illumina’s NextSeq HighOutput v2 platform. Sample metadata was accessed from the

source paper, Lidenge et al.,, or using the R package GEOquery (v2.66.0). All sub-

sequent data quality control, processing, alignment and quantification was performed

using a bespoke Snakemake pipeline using various UNIX command-line based tools, un-

less otherwise stated. Firstly, .fastq data were quality filtered using fastp (v0.23.2), with

minimum quality and length 20 and 25, trimming any 3’ poly nucleotide tracts of 10 or

greater and using the Illumina universal adapter sequence "AGATCGGAAGAG" to re-

mote adapter sequences [261]. Fastqc and MultiQC were used to generate .fastq quality

reports.
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Alignment was then performed using the STAR read aligner [262]. Firstly, separate

genome indices were constructed for the host genome and viral genomes respectively,

using a bash script with the STAR index function, using arguments –sjdbOverhang of 74

(mean read length) and –genomeSAindexNbases 14 or 7 for host and viral genomes,

respectively. RNA-Seq libraries were then aligned against the host genome index, using

arguments –alignIntronMax 250000, –outSAMmultiNmax 5 and unaligned reads were

then extracted as .fastq files. These unmapped reads were then aligned against the vi-

ral genome with options –alignIntronMax 10000 and –outSAMmultNmax 1. Both rounds

of alignment used the options –outMultimapperOrder Random, –outSAMtype and BAM

SortedByCoordinate. Genes-level counts were then quantified using HTSeq-count, with

arguments -m "intersection-nonempty", -s "no", -i "gene id" and feature set to "gene"

[263].

2.3.4 Differential expression analyses

Differential expression analyses were performed using the DESeq2 and Limma R pack-

ages [258, 264]. These included comparing all lesion samples to matched control biop-

sies and comparing paired lesion and control samples for endemic and epidemic patients

separately. For the prior, un-transformed RNA-Seq count data were used, while batch,

sex, HIV-1 co-infection (epidemic or endemic KS), months of ART, months of KS, HIV

serum level, age and HIV-1 co-infection were all included as covariates/factors as model

parameters. DESeq2 was used to perform this differential expression, filtering with an

FDR<0.001 and |log2FC| > 0.5. For the separate endemic and epidemic comparisons,

log2-transformed TPM expression data were used. This was because this comparison

was to test the efficacy of including the endemic/epidemic KS labels in the model for-

mulation during batch correction and Combat, which was determined as optimal, takes

as input and outputs Gaussian-distributed data, necessitating log2-transformation (ex-

plained more in Section 5.2). This was except for ComBat-Seq, which takes RNA-Seq

integer count data as input. Note that aside from the comparison on non batch-adjusted

data, batch was not included as a factor in these comparisons, however age and months

of KS were. For the epidemic-only comparison, HIV-1 level was additionally included in

the models. Genes were determined significant if they had an FDR < 0.01. All numeric

covariates (HIV-1 serum level, age, months ART treatment) were Z-scaled prior to inclu-

sion in all models. For all comparisons, inclusion of patient in model formulations was not

possible due to confounding with other factors, predominantly batch. All DESeq2-based

differential expression analyses were performed using the apeglm log2FC-shrinkage es-
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timator [265].

2.3.5 Network Construction

Gene co-expression network construction and analysis was performed using the WGCNA

R package [266]. Firstly, the lesion sample expression data were filtered to remove the

lower 5% and 25% of genes by mean and variance of expression, respectively. Next, each

gene was correlated using Spearman’s rank and subsequent pairwise gene-gene corre-

lations. Next, the resultant correlation matrix was subject to the "signed hybrid" trans-

formation, which makes use of a hybrid soft- and hard-thresholding on the gene-gene

correlation edges. Specifically, any negative correlations were set to zero, while posi-

tive correlations were retained. Next, all non-zero correlation values were transformed

by raising them to the power of the soft-thresholding parameter β, optimally chosen as 6

(See Fig 5.4). Correlations were retained and raised to the power of a constant β. Finally,

the resultant signed-hybrid network was transformed by computation of the topological

overlap matrix (TOM). TOM calculation further transforms the pairwise gene similarity for

gene i and j, with the TOM between such pairs of genes being denoted as ωij and is

calculated as in (Eq 1). Broadly, it is a measure of how connected the neighbours of pairs

of nodes are and so its calculation further weights the connectivity of nodes that share a

similar neighbourhood.

ωij =

∑
u aiuauj + aij

min{
∑

u aiu,
∑

u aju}+ 1− aij
(1)

Where aij is the soft-thresholded edge correlation between gene i and j and aun is the

adjacency (edge-weight) between pairs of genes u and n, where u is a neighbour of both

i and j and n ∈ {i, j}.

2.3.6 Initial module partitioning

Initial cluster partitioning proceeded by first calculating a dissimilarity matrix, DΩ as

DΩ = 1−Ω, where Ω is the weighted topological overlap matrix calculated in the previous

section (Section 2.3.5). Genes were then clustered using average linkage agglomera-

tive clustering, implemented in the ‘hclust()‘ function of the ‘stats‘ R package. Clusters

were then defined using the dynamic hybrid method for cluster assignment, using the

‘cutTreeDynamic()‘ function of the WGCNA R package [266, 267]. This method is a hy-

brid between hierarchical clustering and a modified k -medioid approach that proceeds in

two steps; the first iterates from the lowest to highest point of the dendrogram, merging
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branches based on fulfilment of 4 main criteria. All criteria were set to default except for

minimum module size which was set to 75 genes. The second step ignores the dendro-

gram and attempts to group the unassigned genes into identified modules based on their

relative proximity to the modules, as assessed via the k -medioids approach. This was

performed with the options deepSplit = 2, minClusterSize = 75 and pamRespectsDendro

= FALSE. Every other option was default. For further details on the methods outlined

in this section, readers are directed to Langfelder et al.,, specifically the supplementary

PDF provided with the paper [266].

2.3.7 Module eigengenes and module merging

In order to summarise the expression profile of modules, which could include 1000s of

genes, module eigengenes (MEs) were calculated as PC1 of a PCA performed on the

module-wise gene expression matrix. The resultant sample-wise eigenvalues in the PC1

eigenvector were taken to represent the relative activity of the module in the sample.

Correlation of genes with MEs provides one metric for how closely related the expression

profile of genes are with the module as whole. Thus as an additional quality-control step

for module assignments, modules were further merged based on the correlations of their

constituent genes with MEs. Broadly, this was dependent on testing whether a threshold

number of genes correlated more strongly with a ME of a external module, relative to the

gene’s correlation with the ME of its parents module.

2.3.8 Weighted Gene Co-expression Network Analysis Hub Gene Identification

Hub genes were defined via a pair of WGCNA-specific metrics. These include module

membership (MM), which defines the correlation of the hub genes with module eige-

negenes and can be further split into parental MM (pMM), or the MM of the gene with

the module it is a constituent of, and global MM (gMM), which corresponds to the mean

absolute MM of the gene to all network modules. In effect, pMM can be viewed as a

module-wise global measure of centrality while gMM can be viewed as a network-wise

global measure of centrality [266]. The second was connectivitiy, which is the sum of the

edge weights connecting to that gene, which can further be split into intramodular con-

nectivity (iC) and global connectivity (gC), which correspond to the connectivity of a gene

to genes within its parent module and to all genes in the network, respectively [266]. Sim-

ilarly to MM, iC and gC represent comparatively modular and global measures of network

centrality, respectively.
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In accordance with the above, two sets of candidate hub genes were defined; intramod-

ular hub (module hub genes) genes and global network hub genes (global hub genes).

Host hub genes were defined as the intersection of the top 10% of host genes by pMM

and iC for modular hub genes and the top 10% of host genes by gMM and gC. Viral

hub genes were defined as the intersection of the top 35% of viral genes by pMM and

iC for modular hub genes and the top 35% of viral genes by gMM and gC. Candidate

hub genes were further filtered based on whether they were significantly differentially ex-

pressed between lesion and control samples, explained in more detail in Section 2.3.4).

This resulted in a final set of hub genes. Subsequent hub scores were then calculated as

outlined in (Section 2.1.5).

2.3.9 Simplification of GO terms with Revigo

The results of many ontological analyses can result in a long list of terms from which it can

be hard to garner biological insight. However as some ontological databases, particularly

the Gene Ontology (GO) database, are arranged in a hierarchical tree manner, functional

redundancy is present. Specifically terms are arranged as a directed acyclic graph, with

"child" terms branching off from "parental" terms. The Revigo method, implemented in

the R package rrevigo (v1.5.4) simplifies ontology terms based on whether the distance

metric ("semantic similarity", chosen as the "Relevance" or "Rel" measure) between a

child and parent term exceeds a provided threshold (chosen as Rel > 0.7). Using this

distance metric and threshold, as well as a GO term-wise vector of numeric values to rank

terms by (chosen to be the -log10 adjusted p-value for ontological enrichment), Revigo

clusters terms and chooses the most representative term for that cluster. For further detail

on semantic similarity and simplification of GO terms with Revigo, readers are directed to

Supek et al., 2011 [268].

2.3.10 Differential Correlation Network Analysis

Differential network analysis was performed using the differential gene correlation anal-

ysis (DGCA) R package, testing for differential correlations between genes in lesion rel-

ative to control biopsy samples [269]. Spearman’s ρ correlation was used to construct

the initial lesion- and control-sample correlation matrices. The DGCA method then trans-

forms the correlations via Fisher’s Z-transform to convert them to normally-distributed

Z-scores (z) as in Eq 2 where. Variance (σ2) is then determined from these distributions

as in Eq 3, where n is the sample size of the calculated correlation, assuming bivariate

normality. Next, the difference between Z-scores calculated as in Eq 4, where σ2
zx is the
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variance of the Z-score in condition x, where x ∈ {lesion, control}.

z = atanh(ρ) =
1

2
ln

(
1 + ρ

1− ρ

)
(2)

σ2 =
1.06

n− 3
(3)

δz =
(z1 − z2)√

|σ2
zlesion

− σ2
zcontrol

|
(4)

Raw two-sided p-values were then calculated from the gene-wise differences in z-scores

(dz) from the standard normal distribution. 100 Sample permutations were performed in

order to determine empirical p-values over a range of λ tuning values and the proportion

of null p-values determined by fitting a cubic spline. Q-values were then calculated from

these null p-value proportions. Differential edges were filtered at FDR < 0.05.

Differentially correlated edges were then classified based on the direction of the change,

with 9 total classes as shown in Table 2.8. Edges are classified based on whether the

gene-wise correlations remain positive (+/+), remain negative (-/-), are unchanged (show

a non-significant difference) (0/0), change from positive to none (+/0), change from pos-

itive to negative (+/-), change from negative to none (-/0), change from none to positive

(0/+), change from negative to positive (-/+) or none to negative (0/-).

ρ > 0, p < α p < α ρ > 0, p < α

ρ > 0, p < α +/+ +/0 +/-
p < α 0/+ 0/0 0/-
ρ < 0, p < α -/+ -/0 -/-

Table 2.8: DGCA differentially correlated edge classes.
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3 Identification of circRNAs, miRNAs and linear RNAs differ-

entially expressed during KSHV reactivation
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3.1 Chapter Introduction

Over 30 years of research has emphasised the importance of post-transcriptonal regu-

lation of mRNA as a key step in gene expression. One of the most studied and char-

acterised mechanisms is RNA interference (RNAi), predominantly mediated by miRNAs.

Canonically RNAi is facilitated by miRNAs binding in complex with Argonaute proteins

(miRISC complexes), to miRNA binding sites (MBSs) in 3’ untranslated regions (UTRs)

of messenger RNAs (mRNAs) [185]. This induces repression via recruitment of dead-

enylation and decapping enzyzmes, resulting in exonuclease-degradation [185].

MiRNA-based repression has been shown to be primarily mediated by changes in the

abundances of the miRNAs themselves, whereby cognate targets are repressed or de-

repressed upon up- and down-regulation of miRNAs between differing biological condi-

tions [185, 186]. This includes host and viral transcripts and accordingly miRNAs have

emerged as key mediators of viral infection [32]. Additionally many viruses encode their

own miRNAs that have been shown to modulate a range of cellular and viral processes

[15, 18, 237].

One such virus is Kaposi’s Sarcoma associated herpesviruse (KSHV). KSHV encodes 25

viral miRNAs that modulate the abundance of various host transcripts. Like all known her-

pesviruses KSHV can undergo distinct latent and lytic gene expression profiles; with min-

imal viral gene expression, but including the viral miRNAs, and the increased expression

of the majority of viral transcripts, respectively [32, 67]. Accordingly while many genes are

dysregulated during latent infection, lytic replication involves large-scale changes in host

gene expression and modulation of the cellular environment to facilitate virion production

[270]. This is mediated by the expression of specific viral factors that directly target such

processes or indirectly by modulating host factors that regulate these processes. One

example is the viral endonuclease SOX (ORF37), which degrades the majority of host

transcripts during lytic reactivation [79].

One common method to investigate miRNA-mediated repression of transcripts is to mea-

sure the abundances of miRNAs and target transcripts in a range of conditions and com-

pare changes to infer co-regulation. While this was historically done laboriously through

measuring the abundance of genes and transcripts via classical molecular biology ap-

proaches (qRT-PCR etc), the advent of ’omics technologies including microarrays but

particularly RNA-Seq, has enabled unbiased global profiling of their abundances. Such

approaches allow efficient "top-down" global modelling of their interactions from a sys-

tems biology perspective. This perspective has led to the suggestion that miRNAs act in
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consorted networks that can modulate the abundances of transcripts to facilitate complex

gene expression programs [188, 189].

Accordingly one insight in recent years was that various transcripts can bind to miRNAs

and not be appreciably degraded by them, thereby sequestering them away from the free

pool of miRNAs that are available to repress host transcripts [191]. Therefore such tran-

scripts, termed "miRNA sponges", can positively modulate the abundances of transcripts

targeted by such sponged miRNAs and all 3 comprise the elements of sponge-miRNA-

mRNA axes. Such miRNA sponge-miRNA-mRNA networks are often termed "competing

endogenous RNA" (ceRNA) networks [189]. Circular RNAs (circRNAs), which are formed

via reversed-orientation "back-splicing" of exons to form covalently closed loops of RNA,

have emerged in as prime miRNA sponge candidates and as key regulators of ceRNA

networks [202, 271]. Importantly recent work over the past 5 years has highlighted the

importance of circRNAs to KSHV’s life cycle and pathogenesis [23, 24, 26, 244].

Thus the goals of this chapter are to profile changes in gene expression between latent

and lytically infected cells. Small RNA-Seq, total RNA-Seq and circRNA microarrays were

utilised to investigate global changes in miRNAs, linear RNAs and circRNAs, respectively.

Additionally the influence of SOX on host transcripts was investigated and assessed.

The culmination of this was the identification of sets of circRNAs, miRNAs and linear

RNAs that showed changes between latency and lytic replication which could be used for

subsequent ceRNA network construction.
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3.2 Reactivation of KSHV induces a predominant down-regulation in host

miRNAs

As miRNAs are at the interface between circRNAs and mRNAs, identifying those showing

a change in expression between latent and lytic replication is the first step in characteris-

ing a ceRNA network operating this process. To begin, RNA fractions of latently infected

(0hr time-point, pre Dox-induction) and lytically reactivated (16 and 24 hr time-points

post Dox-induction) TREx-RTA-BCBL1 cell’s were sequenced, aligned and quantified.

Next differential expression analysis was performed between 0 and 16 and 0 and 24

hrs. From this it firstly became apparent that there was little change in miRNAs prior to

and 16 hrs post lytic reactivation, with just 3 miRNAs signficantly differentially expressed.

Of these, two were down-regulated (miR-424-3p and miR-148a-5p) and one was up-

regulated (miR-3609). In contrast when comparing the 0 and 24 hr time points, a clearer

distinction emerged; 25 miRNAs were significantly differentially expressed, with 20 be-

ing down-regulated and 5 up-regulated (Fig 3.1 & Table 3.1). Indeed, miRNA clustered

based on whether they were up- or down-regulated at 24hrs, relative to 0hrs (Fig 3.2).

The top 3 up-regulated miRNAs were miR-196a-3p, miR-3609 and miR-375-3p, while the

top down-regulated miRNAs were miR-92a-1-5p, miR-29b-1-5p and miR-27a-5p. Several

well-studied miRNAs were differentially expressed, including miR-92a-1-5p and miR-29b-

1-5p, but also the miR-30 family members miR-30b and miR-30c and miR-26b-3p [272].

In summary this section has facilitated the identification of a set of miRNAs dysregulated

upon reactivation of KSHV from latency to it’s lytic replication cycle.
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Figure 3.1: Differential expression of miRNAs between latently infected BCBL1 cells and
cells 24hrs into lytic replication. Differential expression was performed between triplicate
miR-Seq profiles in latency and 24 hours post Dox-mediated induction of KSHV reactiva-
tion, using TREx-RTA-BCBL1 cells. Differential expression was performed using DESeq2
(as further detailed in Methods Section 2.2.3). Distribution of log2 fold-changes between
latency and 24 hrs post reactivation (A). Distribution of miRNA log2 average expression
(log2AE) (B). Volcano plot of differential expression results (C). MA plot of log2FCs vs
log2AEs for miRNAs. MiRNAs are coloured according to whether the were significantly
(FDR < 0.05) differentially expressed (blue) or not (grey).
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miRNA AE Log2FC FDR
miR-196a-3p 2.01 2.29 2.808812e-02
miR-3609 9.77 1.89 1.312897e-03
miR-375-3p 5.21 1.77 2.808812e-02
miR-181d-5p 10.18 0.73 3.257994e-02
miR-301a-3p 13.95 0.37 4.442729e-02
miR-21-3p 14.99 -0.45 7.642672e-03
miR-424-3p 8.63 -1.25 7.519954e-03
miR-3689a-3p 7.73 -1.30 3.257994e-02
miR-148a-5p 9.40 -1.41 2.161286e-04
miR-671-3p 7.36 -1.65 2.376432e-02
miR-26b-3p 5.92 -1.72 7.642672e-03
miR-30b-3p 5.82 -1.74 3.487538e-02
miR-25-5p 7.12 -1.75 1.312897e-03
miR-181a-3p 9.40 -1.85 5.829772e-05
miR-6728-3p 2.01 -2.17 2.775447e-02
miR-30c-1-3p 4.81 -2.24 2.535209e-02
miR-23a-5p 3.89 -2.40 2.989346e-02
miR-488-5p 2.26 -2.41 3.556106e-02
miR-6734-5p 2.37 -2.61 1.980717e-02
miR-128-1-5p 6.75 -2.65 3.082831e-04
miR-590-5p 2.64 -2.68 5.655284e-03
miR-5087 3.18 -2.96 1.561490e-02
miR-27a-5p 6.00 -3.05 2.161286e-04
miR-29b-1-5p 5.41 -3.21 7.642672e-03
miR-92a-1-5p 5.99 -3.47 2.161286e-04

Table 3.1: Statistics associated with differentially expressed miRNAs. MiRNA = mi-
croRNA, AE = Average Expression (CPM), log2FC = Log2 Fold-Change, FDR = False
Discovery Rate (Benjamini-Hochberg-adjusted)
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Figure 3.2: Heatmap of the relative miRNA expression during KSHV reactivation. Dif-
ferentially expressed miRNAs were determined at 24hrs post Dox-induced KSHV reacti-
vation relative to 0hrs (pre-induction/latency) in TREx-RTA-BCBL1 cells (FDR<0.05, BH-
adjusted). MiRNA expression was CPM-normalised, Z-scaled and clustered using hier-
archical agglomerative clustering. Heatmap is coloured by Z-score. Heatmap columns
represent samples and triplicate replicates are grouped for 0, 16 and 24hrs post-Dox
treatment.
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3.3 Total RNA-Seq reveals global mean trend for the down-regulation of

host transcripts

Next, analysis focused on the changes to the non-small, linear RNA fraction of the tran-

scriptome. Duplicate total RNA samples were taken prior to and 8 and 24 hrs post lytic

reactivation of TREx-BCBL-1 cells. Reads were aligned against the human and then

KSHV genomes and transcripts quantified at the gene-level. Subsequent analyses were

then performed to investigate changes to gene expression during reactivation.

A principal components analysis (PCA) was performed in order to characterise the major

sources of variance in the data-set. This showed that principal component 1 (PC1) was

strongly associated with time post-reactivation; indicating that the majority of variance

(67.38%) was due to the dysregulation of gene expression with increasing progression

through the lytic cycle (Fig 3.3). PC2 explained 12.4% of the variance and was most

strongly associated with variance between the two replicates. However there was a no-

table divergence between replicates at each time point as lytic replication progressed,

with the 24hr time-points being the most distinct from eachother (Fig 3.3). This is reflec-

tive of a known property of herpesvirus lytic reactivations in that their lytic transcriptional

dynamics can diverge between even identically treated biological replicates, resulting in

relatively distinct end-states [51]. This is most likely due to the exponential nature of lytic

reactivation as being a cascade-like process that is susceptible to subtle stochastic vari-

ance in cellular and external environmental states. The discrepancy between the relative

proportion of viral genes may explain some of this as the replicate with the greatest pro-

portion of viral reads showed the greatest separation from the latent (0hr) sample (Fig

3.3 & 3.4c).

Two issues needed to be accounted for to provide a proper assessment of differential

expression, in order to identify a robust set of differentially expressed genes. First, KSHV

expresses the host shuf-off factor SOX early in during lytic replication, which degrades the

majority (∼75%) of host transcripts. This represents a global decrease in host transcripts

which RNA-Seq cannot innately detect due to it being limited to detecting only propor-

tional abundances of total transcript pools [77]. Second, there is a large up-regulation

of viral transcripts during this process, which inflate from occupying 0.15%/0.048% to

13.19%/8.71% (for replicates 1 and 2, respectively) of the total library read depths (Table

3.2 & Fig 3.4a & c). If not accounted for, this may result in an apparent but possibly

artificial down-regulation of host transcripts due to competition for read depth (Fig 3.4b

& S1a). To investigate changes further, one tool that has been developed is the differ-

entially expressed genes elimination strategy (DEGES) [259]. After 5 iterations of the
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DEGES procedure, this resulted in a trend for apparent down-regulation of host genes

(342 up-, 4650 down-regulated), with median log2FC = -0.96 (Fig 3.4d). While not an

estimate of the true global change in gene expression, this provides some evidence for a

net down-regulation of genes that is not confounded by increased competition with viral

genes, due to their large up-regulation.

The effect of SOX and increased viral gene expression have competitive effects that pre-

cludes determination of true log2FCs. One thing that was observed upon trialling dif-

ferential expression methods was that unlike other methods DESeq2 resulted a near

zero-centered median (0.06) (Fig 3.4e). Conversely, edgeR’s TMMapproach resulted in

a strong tendency for down-regulation, much like DEGES (Fig S1b). From a pragmatic

perspective, this could be interpreted as facilitating the identification of host genes that

deviate from the SOX-mediated trend for down-regulation. Interestingly this predominant

up-regulation was particularly skewed for protein-coding transcripts (814 up-, 277 down-

regulated) and pseudogenes (41 up-, 23 down-regulated), but not lncRNAs (367 up-, 303

down-regulated) (Fig 3.4f). Additionally, one important thing to note is that log2FCs cal-

culated for all differential expression schemas were highly correlated, indicating that the

DESeq2 approach didn’t scramble the relative rankings of genes and so this aspect is

representative of DEGES "truer" estimate of differential expression.

Cumulatively the main focus of this chapter has been to identify a set of differentially

expressed protein-coding genes. Despite being confounded by fundamental limitations

of short-read RNA-Seq technology, we believe that a set of host genes has been identified

that are amenable to downstream network construction.

Set 0hr (R1) 0hr (R2) 8hr (R1) 8hr (R2) 20hr (R1) 20hr (R2)
Total 6155683 8413230 4879405 6028907 1958178 3435050
Host 6146154 8409159 4721313 5850236 1699828 3135660
Viral 4071 9529 158092 178671 258350 299390

Table 3.2: Total-, host- and viral-aligned RNA-Seq library read counts per sample.
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Figure 3.3: Principal components analysis (PCA) performed on duplicate total RNA-Seq
profiles prior to and post reactivation. Total RNA-Seq was extracted during latency prior to
(0hr) and 8 and 20hrs post-lytic reactivation. PCA analysis were performed on centered
and scaled gene expression data. Data points are coloured according to the time in which
samples were taken. Percentages associated with axis labels represent the percentage
of variance explained by each PC. Lines represent links between data points taken from
each replicate.
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(a) Gene CPM over time. (b) CPM-derived Log2FCs. (c) % host & viral reads.

(d) DEGES-derived scaling factors.

(e) DESeq2’s MOR-derived scaling factors.

(f) Up- and down-regulated genes by biotype.

Figure 3.4: Differential expression between latent and lytic cells. Differential expression
using DESeq2 was performed between 0 (latency) and 24 hours post Dox-mediated in-
duction of TREx-RTA-BCBL1 cells. The mean Log2 CPM expression for the top 250 host
genes by variance and all viral genes were extracted and shown for 0, 16 and 24hrs
(a). Log2 fold-changes (log2FCs) were manually calculated between 24 and 0hrs, where
red line indicates median log2FC (b). Percentage of reads mapping to the host and vi-
ral genomes split by replicate and time point (c). Differential expression was performed
using the DEGES method-derived (d) and DESeq2 median-of-ratios (MOR)-method (e)
scaling factors. Volcano plots showing -log10 adjusted p-value and log2FC are shown in
leftmost plots while MA plots showing log2 average expression (log2AE) against log2FC.
Genes/genomes are coloured according to whether they were not significantly differen-
tially expressed (FDR≥0.05) (grey) or were significantly differentially expressed host (or-
ange) or viral (purple) genes. Red lines in MA plots (d & e) indicates the median log2FC
for all genes, regardless of significance. The number of significantly differentially ex-
pressed genes stratified by viral, pseudogene, protein-coding and lncRNAs (f).
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3.4 Down-regulated host genes are enriched for KSHV endonuclease SOX’s

degenerate cleavage motif

Despite the suggestions of the previous section, there is still ambiguity as to whether

SOX is responsible for the observed net down-regulation of host genes. To provide con-

fidence in the the assertion that SOX was driving this process, SOX sites in up- and

down-regulated genes were compared. One approach to provide some confidence in the

impact of SOX was to test whether the down-regulated set of genes were significantly

enriched for genes targeted by SOX, relative to the up-regulated set. Gaglia et al., 2015

characterised SOX’s degenerate RNA targeting motif and identified a set of 129 genes

that were targeted and spared its degrading effect [77]. Cross-referencing of these genes

with the DEGES differentially expressed genes identified in the previous section revealed

few in common and no statistically significant enrichment in the down-regulated genes

(Table 3.3a). This could likely be explained by differences in the transcriptomes between

the cells used in their study, iSLK cells (which is derived from an adrenocarcinoma con-

taminant) and BCBL-1 cells, PEL cells derived from transformed B cells [77].

Gaglia et al., 2015 also defined the targeting motif of SOX, which could be used to predict

SOX sites in the set of differentially expressed genes identified in the previous section,

thus improving the power and specificity of the previous analysis. To further investigate

SOX binding sites, salmon was used to quantify transcript abundances across the sam-

ples, retaining transcripts originating from genes identified differentially expressed via the

DEGES method [273]. This resulted in 15186 detected transcripts originating from 2925

(58.59%) of the DEGES-derived differentially expressed genes. Next, the position-weight

matrix (PWM) for SOX’s motif generated by Gaglia et al., 2015 was scanned against these

transcripts and the PWM score filtered for sequential values, which resulted in many pu-

tative SOX sites in transcripts derived from the differentially expressed genes (Table 3.3b,

Fig 3.5). Importantly there was a strong statistically significant enrichment of putative

sites in transcripts of down-regulated relative to up-regulated genes for sets of sites up

to those filtered with a minimum PWN score greater than 6 (Fig 3.5 & Table 3.3b). Ad-

ditionally, predicted SOX target genes showed a significantly more negative log2FC than

than non-targets (p<0.00005, W=2867421, two-sided Wilcoxon rank sum test). Correla-

tion between the PWM score of transcripts and their LFC indicate that the confidence of

binding does not correlate with the observed down-regulation of host genes, however this

was also observed by Gaglia et al., 2015.

Overall such evidence of an enrichment of SOX cleavage sites in down-regulated genes

provides support for the notion that SOX is responsible for the predominant down-regulation
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of genes observed via the DEGES method. This helps confirm that SOX-driven down-

regulation of genes is the predominant mediator of down-regulation and justifies the de-

cision to use the DESeq2 MOR-method for further analysis.

Total Genes N. Genes with SOX % Tx with SOX P
Up Down Up Down Up Down -
223 4645 3 233 1.29 % 1.85% 0.38

(a) SOX binding sites for differentially expressed genes.

PWM
Score

Total Genes N. Genes with
SOX

% Genes with
SOX

P

Up Down Up Down Up Down
0 194 2731 110 2730 56.70% 99.96% 1.60e-106
1 - - 110 2721 56.70% 99.63% 1.94e-95
2 - - 109 2666 56.19% 97.62% 1.46e-67
3 - - 108 2536 55.67% 92.86% 9.48e-41
4 - - 101 2279 52.06% 83.45% 3.70e-22
5 - - 90 1906 46.39% 69.79% 5.66e-11
6 - - 75 1434 38.66% 52.51% 1.24e-4
7 - - 51 916 26.29% 33.54% 0.022
8 - - 24 407 12.37% 14.90% 0.20
9 - - 7 89 3.61% 3.26% 0.70
10 - - 1 16 0.52% 0.59% 0.69

(b) Predicted SOX binding sites in DEGES genes

Table 3.3: Enumeration and percentage of known (a) and predicted (b) SOX sites in
transcripts originating from differentially expressed genes, iteratively filtering by minimum
PWM score < 1-10. Where SOX = KSHV host shut-off endouclease encoded by ORF37;
PWM = position weight matrix; Tx = transcript; P = raw p-values.
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Figure 3.5: Predicted SOX motifs in transcripts produced by differentially expressed
genes. Predicted binding sites for KSHV’s host shut-off lytic gene SOX (ORF37)
in Salmon-detected transcripts produced by differentially expressed genes using the
position-weight matrix (PWM), derived from Glaunsinger et al., 2015 (described more
in Methods Section 2.2.4). Transcripts were quantified via salmon and cross-referenced
with the significantly differentially expressed genes derived from the DEGES approach for
differential expression (Results Section 3.3). Distribution of PWM scores over transcripts
(A). Proportion (B) and total number (C) of transcripts with SOX sites in differentially ex-
pressed transcripts, coloured by biotype, at differing minimum PWM score cut-offs.
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3.5 Significantly differentially expressed circRNAs show a bias for up-regulation

In order to investigate the dynamics of circRNAs during lytic reactivation of KSHV, to-

tal RNA was extracted from TREx-Rta-BCBL-1 cells prior to- and post- Dox-treatment.

These were then subject to RNase R-treatment followed by hybridisation on a circRNA

microarray chip comprising probes complementary to 13410 circRNA backsplice se-

quences.

Just like for the total RNA-Seq and miRNA-Seq, differentially expression was performed

in order to identify a set of candidate circRNAs. However, immediately prior to differ-

ential expression, circRNAs with a mean intensity across replicates of less than 5 were

removed, resulting in 12688 circRNAs. However initial analyses made it apparent that

one 0hr replicate was likely an outlier. This was determined via observation of a PCA bi-

plot and initial exploratory differential expression analyses with limma (Fig 3.6a). For the

latter, its inclusion prior to analysis resulted in no circRNAs identified as differentially ex-

pressed, while its exclusion resulted in the identification of 1344 circRNAs as differentially

expressed, including circHIPK3 which is known to be up-regulated during lytic replication

and acts as a "marker" circRNA (FDR<0.05) (3.6B & C). This latter experimental design

was taken forward. To provide a more robust set of circRNA, circRNAs were filtered to

retain those with a Log2AE > 8. Additionally, circRNas were filtered based on having

a Log2FC > 0.65 as this drastically reduced the number of circRNAs, while retaining

circHIPK3 (Log2FC > 0.66), resulting in 412 candidate circRNAs.

The vast majority of differentially expressed circRNAs were exonic (89.86%), with just

1.05% antisense, 3.99% intronic and 5.07% sense-overlapping (Fig 4A). Immediately

clear was a predominance for up-regulation of circRNA, with 276 up-regulated and 136

down-regulated (Fig 3.6D). This was particularly driven by the exonic circRNAs, as they in

particular were up-regulated (248 up-regulated, 108 down-regulated) (Fig 3.6d). Impor-

tantly, like for the miRNAs and unlike for RNA-Seq, such a bias was present just for the

differentially expressed circRNAs and wasn’t a general bias in the underlying distribution,

with all, unfiltered circRNAs having a mean log2FC of just 0.01.

There remains some ambiguity over whether detected circRNAs (particularly those iden-

tified via high-throughput methods) represent true biotypes produced from genes or are

by-products of linear RNA splicing. However in this experiement, the correlation be-

tween circRNA and linear RNA from the same gene was relatively modest (Pearson’s r

= 0.14), suggesting detected circRNAs were not a result of reads derived from the linear

RNA from the parental gene. Additionally gene over-representation analyses (ORA) for
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the parent genes of the circRNAs showed no significant enrichment for any gene ontol-

ogy (GO) terms or KEGG pathways (FDR≥0.1). This indicated that changes in circRNA

abundances are not associated with concerted changes in the abundance of the linear

output of their parental genes. However it is worth stating that for any one circRNA, this

cannot be confirmed without further biochemical analysis.

In summary this section has identified a set of candidate exonic circRNAs for ceRNA

network model construction and subsequent analysis.
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Figure 3.6: Comparative analysis of circRNA expression profiles. CircRNA expression
profiles were generated by RNase R-treating total RNA taken prior to (latency) and 20hrs
post Dox-mediated induction of reactivation in TREx-RTA-BCBL1 cells. These then hy-
bridised against an arraystar microarray with probes complementary to circRNA back-
splice sequences. Principal components analysis (PCA) was performed on the circRNA
expression data (A). Differential expression analyses were performed between 0 and
20hrs post induction of reactivation using Limma. MA (B) and volcano (C) plots for dif-
ferential expression analyses, where circRNAs are coloured according to whether they
were significantly differentially expressed (FDR < 0.05) (orange) or not (grey) (B & C).
Frequency of up- (red) and down- (blue) regulated circRNAs by circRNA biotype.
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3.6 Discussion

Overall, this chapter aimed to identify sets of differentially expressed circRNAs, miR-

NAs and linear RNAs to serve as a foundation for ceRNA network construction. This

revealed predominant up-regulation of specifically exonic circRNAs and a concordant

down-regulation of miRNAs. Despite inherent limitations, a set of differentially expressed

protein coding genes were identified.

Several miRNAs identified as differentially expressed have been relatively well-characterised

with functions relevant to the KSHV and the rest of the present study. These include miR-

30c-1-5p and miR-29b-1-5p which were previously identified in Harper et al., 2022 as

being sponged by circHIPK3. Additionally, both the miR-30 family members miR-30b

and miR-30c as well as miR-29b-1-5p have well-defined tumour suppressive roles and

so their down-regulation may contribute to the oncogenic effect of lytic replication [71].

Interestingly, miR-30c-1-5p has previously been observed to be down-regulated in KS

lesion tissue suggesting a functional oncogenic role in KS [274]. In contrast, members

of the pro-oncogenic family of miRNAs, miR-17-92 and miR-106b-25, miR-92a-1-5p and

miR-25-5p, respectively, were down-regulated [272].

Interpretation of differentially expressed linear RNAs was confounded by the impact of

SOX degradation of host genes as well as increased competition from largely up-regulated

viral gene expression. Nonetheless using DESeq2’s MOR method a set differentially

expressed genes were identified, however this involved removal of viral genes prior to

calculation of library size scaling factors. This could potentially be problematic as there

was quite extensive variability in RNA-Seq library sizes, with the smallest (20H_R1) and

largest (0H_R2) comprising 1958299 and 8413233 reads, respectively (Table 3.2). This

could be expected to result in increased variance of lowly expressed transcripts in libraries

with low sample depth, due to the integer nature of RNA-Seq count data. To limit this,

genes were filtered that had on average less than 3 counts per each sample. Moreover,

both 20hr replicates showed ∼4-fold less read depth than 20hrs which may be due to the

greater GC percentage of viral transcript, resulting in less efficient PCR amplification of

cDNAs originating from viral RNA (Table 3.2) [275, 276].

Differentially expressed circRNAs were also investigated. Robust filtration was performed

to select for the most high-confidence circRNAs, with a majority of these were exonic cir-

cRNAs. Notably however the reliability of these candidates is still relatively low, given the

un-usability of one of the 0hr replicates (Fig 3.6a). While the empirical Bayes (eBayes)

sharing of variance from the 20hr lytic samples facilitated differential expression, mea-
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surements of variance may not be accurate. However in support of the results having

some grounding in known biology, circHIPK3 (hsa_circ_0000284), the circRNA found by

Harper et al., 2022 to be up-regulated in latent vs lytic samples, was detected as up-

regulated from this data-set [71]. Moreover it is worth stating that, assuming the circRNA

samples follow similarly diverging trajectories as observed for the total RNA-Seq, the vari-

ance between 20hr replicates is likely greater than between 0hr replicates indicating that

circRNA p-values could be expected to be conservative, at least on-average (Fig 3.3).

Nonetheless this will require some consideration when with proceeding analyses.

A drawback of relying on circRNA microarray data used, as opposed to next-generation

or long-read sequencing approaches is that the length and exon structure of most cir-

cRNAs included is largely assumed. The Agilent arraystar microarray probes comprise

DNA probes that are complementary to backsplice sequences, derived from pairs of 5’

and downstream 3’ exon sequences, joined in a "reverse" orientation to the native ge-

nomic sequence [277]. While these were also filtered based on detection a series of

global circRNA studies from RNA-Seq data, the vast majority of these circRNAs even to

date remain unvalidated [203, 204, 271]. Importantly, such approaches assume that the

intervening exons are retained in the mature circRNAs and are not spliced out, however

this mechanism remains a poorly defined [202]. Accordingly, some reported circRNAs

lengths may be less than the length of circRNAs expressed in vivo. This obviously im-

pedes circRNA quantification as it results in ambiguity of the detection of circRNAs, but

also may impede downstream network construction as miRNA target binding is almost en-

tirely dependent on the sequence representation and thus length of circRNAs. The only

way to mitigate this would be to use a different technology, such as long-read sequencing

technologies, or short-read RNA-Seq approaches that facilitate inference of circular exon

structures from split-aligned reads [278]. Aside from ease, circRNA microarrays do have

some advantages relative to sequencing, as CircRNA-Seq suffers from poor reproducibil-

ity, the generation of artificial backsplice-like cDNA sequences via reverse transcription

and PCR errors and poor backsplice sequence coverage [277].

While interesting by themselves, parallel investigation of miRNA, circRNAs and linear

RNAs does not account for their influence to the more integrative nature of post-transcriptional

regulation, primarily their roles in ceRNA networks. Nonetheless this chapter facilitated

the processing of each dataset in preparation for this downstream, wholistic analysis. The

subsequent results chapter will proceed to integrative ceRNA network construction and

analysis.
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4 Construction and analysis of a competing endogenous RNA

network dysregulated between latent and lytic KSHV
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4.1 Introduction

Analysing genes in parallel and investigating transcript co-expression can provide key

insight into underlying biology. However such approaches can miss the wider high-level

interactivity of genes, which is a key facet for how they impart phenotypic effects. Such

complex connections can be modelled as networks, whose construction and analysis

can allow for the elucidation of the mechanisms that govern biological processes. In this

context, such analysis can help to elucidate an additional and poorly-studied layer of the

interaction between infected cells and KSHV.

In the language of networks, transcripts and genes are represented as "nodes", while

interactions between them represented as links between nodes, or "edges". Networks

can be constructed by a range of means, however ceRNA network models are generally

produced by defining interactions between miRNAs and targets (mRNAs and circRNAs in

this case). These interactions are either inferred by predictive algorithms or provided by

prior knowledge databases [187, 260, 279]. Many databases of pre-determined miRNA-

target interactions exist, while predictive algorithms tend to leverage known features of

miRNA-target binding and are generally based on identifying complementarity between

the major binding motifs of miRNAs, termed "seed" sequences and sequences of pu-

tatitve targets [187].

The methods in network analysis are extensive and can and have been applied to ubiq-

uitous domains, but in particular have garnered much interest when applied to systems

biology. Common methods for interrogating networks generally involve the calculation of

measures of connectivity of genes within the network, broadly termed "centrality mea-

sures". Such high-ranking genes can be viewed as highly interconnected and are termed

"hub" nodes. High connectivity means that they are considered to be highly important as

they have the potential to influence the activity of a many other genes.

Given the stability and large potential regulons of circRNAs, modulation of circRNA-

mediated ceRNA networks could be an efficient mechanism by which KSHV can impact a

broad range of cellular processes could promote or inhibit its replication. Indeed, the past

several years has seen the identification of multiple circRNA ceRNA candidates that play

direct or indirect roles in KSHV biology. These include host circRNAs such as circAR-

FGEF1 which sponges miR-125a-3p to promote vIRF1-mediated cell invasion and angio-

genesis [20, 23, 24, 71, 241, 244]. Moreover we have previously shown that circHIPK3

sponges miR-30c and miR-29b, with the prior interaction promoting the expression of

DLL4 during lytic replication and this activity of circHIPK3 is important to KSHV replica-
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tion [71]. However many of these studies have been relatively focused on the small-scale,

gene-by-gene studies that ignore the wider network context that circRNAs exist in.

To this end, this chapter will focus on the initial construction and robustness testing of

a ceRNA network from the data derived from the previous chapter. Enumeration and

investigation of genes targeted by shared miRNAs followed, with subsequent centrality

analyses to identify core influential hub genes. Finally miRNA- and circRNA-wise regu-

lons were analysed via gene set over-representation analyses (ORA). Cumulatively this

enabled the identification of certain circRNAs and miRNAs as key putatitve network ef-

fectors, possibly involved in regulating RNA metabolic processes and transcription.
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4.2 CircRNA-miRNA-mRNA/viral transcript competing endogenous- RNA

network model.

The ceRNA hypothesis states that ceRNA networks comprise ncRNAs (circRNAs, lncR-

NAs) that bind and negatively regulate miRNAs, which bind and negatively regulate mR-

NAs. This amounts to directional interactions between circRNA→miRNA and miRNA→mRNA

that are inhibitory and, in graph theory (the study of networks), consistute a directed graph

(Fig 4.1a). Specifically, its structure is comprised of sets of overlapping trees with circR-

NAs as source nodes, miRNAs as intermediary nodes and mRNA/viral genes as terminal

nodes and as there are only 3 primary node types (assuming protein coding/viral genes

behave the same) the network can be termed tripartite. This means that edges can only

exist that include miRNAs and none exist directly between circRNAs and protein cod-

ing/viral genes and none between nodes of the same type, meaing that the network is

acyclic. Therefore in full the network can be defined as a directed acyclic tripartite graph.

Given this structure, network construction proceeded via the following steps. To further

filter circRNAs to focus on the most likely miRNA sponge candidates, the set of 412 differ-

entially expressed circRNAs were further filtered to remove those < 200 and > 10000 nt,

alongside excluding circRNAs that weren’t exonic, leaving 310 circRNAs. This length fil-

tration step was performed in order to prioritise exonic circRNAs that are more likely to be

real and that fall within reasonable length ranges to be capable of sponging miRNA. Next

miRNA target predictions were performed between the 3’ UTRs of differentially expressed

host and viral genes as well as the reduced set of exonic circRNAs. The RNAhybrid and

miRanda target prediction algorithms were used and edges defined as the intersection

between predictions of these two algorithms [260, 280]. This resulted in a fully intercon-

nected network, with no extraneous disconnected sub-networks (components) (Fig 4.1a).

The network comprised 119 circRNAs, all 25 differentially expressed miRNAs, 403 pro-

tein coding genes and 25 viral genes (Table 4.1). In accordance with the findings of the

previous chapter, the majority of circRNAs (85), protein coding (324) and all viral genes

(25) were up-regulated while most miRNAs (20) were down-regulated. None of the net-

work circRNAs were those whose parent gene’s protein-coding output was differentially

expressed, indicating that they are specifically up-regulated.

To confirm the specificity of the differentially expressed miRNAs for circRNAs permutation

tests were employed, randomly selecting 310 circRNAs out of all those detected (also <

200 and > 10000 nt in size) and performing miRNA target prediction. Surprisingly no

permutations showed a greater number of sites than for the differentially expressed cir-

cRNAs and thus the respective p-values for circRNAs were at most p<0.0004. This was
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the same for when comparing miRanda and RNA hybrid target predictions individually as

well as when comparing the intersection of these approaches. This suggests that the net-

work circRNAs were specifically enriched in predicted binding binding sites for network

miRNAs, relative to all detected circRNAs. In addition network circRNAs showed a sig-

nificantly greater log2FC (median = 2.18) than for non-network circRNAs (median = 0.83)

(p<2.6e-16, W = 65730, one-sided Wilcoxon Rank Sum test). These observations show

that the network circRNAs were significantly enriched for network miRNAs and showed a

bias for greater up-regulation, relative to non-network circRNAs.

Degree is a measure of the connectivity and thus influence of a node in the network

and thus its calculation provides a relative measure of the importance of each gene

in the network. Given that miRNAs are the primary effectors in the network responsi-

ble for connecting source circRNA nodes and terminal protein coding/viral genes they

tended to have the greatest number connecting edges (degree). In particular, miR-30b-

3p, miR-3609, miR-29b-1-5p, miR-3869a-3p and miR-30c-1-3p were highly connected

with degrees over 125 (Fig 4.1c). Additionally circBAGE3 ranked the highest in terms

of degree, connecting to 10 miRNAs (miR-30b-3p, mirR-30c-1-5p, miR-3689a-3p, miR-

3609, miR-6374-5p miR-92a-1-5p, miR-148-5p, miR-301a-3p, miR-27a-5p and miR-26b-

3p) (Fig 4.1b). CircBAGE3, circLRCH3, circSH3PXD2A, circSNX5_2 and circDDX17_2

ranked highest out of all circRNAs in terms of degree (Fig 4.1b). Interestingly circHIPK3

ranked 11th by degree and was predicted to bind miR-29b-5p, miR-3968a and miR-5087

but not miR-30c-1.

Thus in summary network model construction was successfully accomplished with miRNA

target predictions. Network circRNAs were confirmed to be enriched for network miRNA

binding sites. The resultant network structure and node degree distributions suggested

the importance of several miRNAs (miR-30b-3p, miR-29b-1-5p, miR-3609, miR-30c-1-3p

and miR-3869a-3p) and circRNAs (circBAGE3, circLRCH3, circSH3PXD2A, circSNX5_2

and circDDX17_2).
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(a) Full ceRNA network

(b) CircRNA degree (c) miRNA degree (d) Viral degree

Figure 4.1: Full circRNA-miRNA-mRNA ceRNA network. Target prediction was per-
formed between all differentially expressed miRNAs above thresholds (p < 0.05,
|Log2FC| > 1, Log2AE > 0.5, as identified in Results Section 3.2 and all circRNAs de-
tected above thresholds (p<0.05, |LogFC| > 0.65, LogAE > 8, as identified in Results
Section 3.5 and 3’ UTRs of all detected host and viral transcripts (as identified in Methods
Section 2.3.4) from differentially expressed genes, as identified in Results Section 3.2, us-
ing RNAhyrbid and miRanda and edges retained as the intersection between these tools.
(a) The resultant network was visualised using the Kamada-Kawai algorithm, colouring
nodes based on whether they represent circRNAs, miRNAs, mRNAs or viral transcripts.
MiRNAs and circRNAs with degrees > 3 are labelled with their respective names and
nodes are scaled by log10(degree) + 1. Degrees for circRNAs (b), miRNAs (c) and viral
transcripts (d) in the network for nodes with degree of > 2.
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Biotype Total Up-reg Down-reg Mean Degree
All 572 439 133 7.24
circRNA 119 85 34 1.97
miRNA 25 5 20 73.12
Protein coding 403 324 79 4.53
Viral 25 25 0 2.88

Table 4.1: Frequencies of nodes in competing endogenous RNA network.
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4.3 Network miRNAs show variable frequencies of target genes, which

show a bias for up-regulation.

Investigating the distribution of target binding by each miRNA may provide insight into

the role and importance such miRNAs have in the network. Moreover investigation of the

log2FCs of miRNA target genes may provide evidence for the effect of ceRNA network

interactions on such miRNAs. Therefore, the number and type of targets of each miRNA

were enumerated and features of these targets were investigated.

The number of transcripts predicted by bind each miRNA were determined for each

miRNA for all transcripts, protein-coding genes, viral genes and circRNAs (Fig 4.2). As

identified previously, the down-regulated miR-30b-3p, miR-29b-1-5p, miR-3689a-3p, miR-

6734-5p and miR-30c-1-3p alongside the up-regulated miR-3609 ranked highly by total

degree. These 6 miRNAs also ranked highly in terms of total numbers of protein coding

genes that they were predicted to target (Fig 4.2B & C). Additionally, MiR-30b-3p and

miR-3689a-3p were particularly highly ranked for circRNA binding. Moreover miR-25-5p,

miR-30b-3p and and miR-30c-1-3p were particularly enriched for predicted viral targets

and interestingly, viral genes did tend to be depleted for up-regulated miRNA predicted

binding sites, relative to other biotypes and the network as a whole (Fig 4.2C). This could

indicate some form of selective pressure conferred to the virus to not present potential

binding sites for these miRNAs in the 3’ UTRs of its transcripts.

One key observation from the previous chapter was that the circRNAs and miRNAs and

miRNAs and protein coding/viral genes showed reciprocal log2FCs, which provided some

circumstantial evidence for ceRNA network activity having an appreciable effect in the

network. To further interrogate whether the network supports this, the log2FCs for protein

coding and viral genes were compared for genes in the network (Fig 4.3a) and not in the

network (Fig 4.3b). This indicated that a slightly greater proportion of these genes were

up-regulated in the network relative to non-network genes (Fig 4.3d & c). Importantly, the

log2FCs of protein-coding and viral genes in the network were significantly greater than

for genes not in the network (one-sided Wilcoxon Rank Sum test, p<0.01). This appears

to be largely due to a greater proportion of mRNAs wtih log2FCs between ∼1.5 and ∼5 in

the network relative to not (Fig 4.3a & b). This implies that network linear RNAs predicted

to be regulated by network miRNAs showed a bias for up-regulation relative to those

not predicted to be regulated by them. This provides further support for an association

between the fold-change of protein-coding genes and their targeting by miRNA.

Cumulatively this section has profiled the predicted miRNA binding sites in target cir-
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cRNA, protein coding and viral genes in the network and ranked miRNAs that have ex-

tensive predicted interactions. Moreover miRNA target genes show a statistically signif-

icant bias for up-regulation that is reciprocal to the bias for down-regulation of network

miRNAs.
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Figure 4.2: Enumeration of predicted miRNA targets. The number of predicted miRNA
target genes for all network genes (A) and each individual network biotype (B, C & D).
These enumerations are shown for only protein-coding genes (B), viral genes (C) and
circRNAs (D). Percentages of total and each biotype-wise targets were determined (x
axes) as well as the absolute number of genes (above bars). miRNAs are coloured
according to whether they were determined to be up-regulated (pink) or down-regulated
(blue).



123

(a) Genes in ceRNA network.

(b) Genes not in ceRNA network.

(c) Number of up- and down-regulated genes.

(d) Proportions of up- and down-regulated genes.

Figure 4.3: Distributions of up- and down-regulated genes. Distribution of log2FCs for
host protein-coding and viral genes, coloured accordingly. Distributions are for genes in
the ceRNA network in Fig 4.1 (a) and not in the ceRNA network (b). The number (c) and
proportion (c) of significantly (p<0.05) up- and down-regulated protein-coding and viral
genes in in the network and not in the network. Bars in (c & d) are coloured according to
the proportion up- and down-regulated genes.
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4.4 Centrality-based analyses rank top influential circRNAs and miRNAs

in the network.

While node degree is of merit in summarising the influence of nodes in networks it can be

relatively naive as it ignores global, higher-order structures of the networks. To mitigate

this, further centrality metrics were calculated for the nodes in the network using the

Influential R package (see Methods Section 2.3.8) [253]. Specifically "hub" scores were

determined (Fig 4.4a & b), alongside the 2-step geodesic paths (Fig 4.4c & d). These

metrics were counted for out-degree (Fig 4.4a & c), or the number of directed edges

emanating from nodes and in-degree (Fig 4.4b & d), or the number of directed edges

that a node is a target of. In a biological context, out-degree can be viewed as nodes

that are upstream regulators of networks that exert an effect on down-stream effectors,

with in-degree being viewed as the expected influence that downstream nodes "feel" from

upstream regulators.

Hubness specifically measures semi-local features of the networks and provides a mea-

sure of connectivity of genes, while 2-step geodesic paths enumerate the number of

paths that pass through any one node, and as such are a measure of the flow of informa-

tion through such nodes. MiR-3609, miR-30b-3p, miR-29b-1-5p, mir-30c-1-3p and miR-

3689a-3p ranked most highly in terms of out-hub score, underlying the extent by which

these miRNAs can potentially influence the expression of protein coding/viral genes.

Some of these miRNAs ranked additionally highly in terms of in-hub score, namely miR-

30b-3p, miR-3689a-3p and miR-29b-1-5p but also miR-92a-1-5p and the up-regulated

miR-181d-5p ranked highly (Fig 4.4b). This indicates that these miRNAs in particular are

key downstream effectors of upstream circRNAs. Ranking miRNAs by 2-step geodesic

in- and out-paths gave similar results (Fig 4.4c & d). The ranking of out-hub circRNAs

was identical to degree-based ranking however this must be the case as edges can only

emanate from them (Fig 4.1b & 4.4a). Ranking circRNAs by 2-step geodesic out-paths

is consistent with by hubness, except circHIPK3 ranked more highly (Fig 4.4a & c). In-

particular circBAGE3 which is within 2 steps of almost all (311) protein coding/viral genes

in the network, followed by circLRCH3, circSH3PXD2A, circSNX5_2 and circDDX17_2

(Fig 4.4c). This suggests that these circRNAs and miRNAs strongly influence the activity

of many downstream miRNAs and protein-coding genes, respectively.

Strikingly the majority of protein coding genes that ranked highly via in-hub and geodesic

in-path were up-regulated, indicating an association between increased targeting by mul-

tiple miRNAs and up-regulation of genes (Fig 4.4b & d). Indeed the degree of up-

regulated protein coding genes was significantly greater than down-regulated protein
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coding genes (one-sided Wilcoxon Rank Sum test, p<0.0026). Notable protein-coding

genes are further detailed in Table [TABLE] and include XKR4, a phospholipid scramblase

involved in phosphatidylserine exposure, HIPK2, an activator of p53 activity, a calcium

signalling component CASR, various potassium channel components KCNJ6, KCNN3

and KCNQ5, HUNK, a gene involved in autophagy and CDK6, the primary kinase known

to complex with vCyclin [101, 281, 282].

To further investigate the importance of nodes in the network, K-core decomposition was

performed (Fig 4.5). Briefly, this procedure aims to find the maximally connected sub-

network whereby a maximum number of nodes have a degree of at least K. At K=4 (Fig

4.5B) 12 (8 up-, 4 down) circRNAs were retained, namely those that ranked highly in the

centrality metrics (Fig 4.2a & b). These included the highest ranking circRNA circBAGE3,

alongside circHIPK3, circLRCH3 and circSMG1P1 (Table 4.2b). Additionally the previ-

ously mentioned protein-coding gnees, XKR4, CASR, CDK6, HIPK2, HUNK, KCNJ6,

KCNN3 and KCNQ5, among others, were retained in K=4. Viral genes were nearly all

depleted upon K-core composition with K≥2 indicating their low "coreness" to the network

(Table 4.2a).

All together, this section has indicated that a handful of circRNAs, particularly circBAGE3,

circLRCH3, circHIPK3, circLRCH3 and circSMG1P1, are important potential upstream

regulators of the ceRNA network. Additionally some miRNAs and in-particular miR-30b-

3p and miR-3689a-3p rank highly in terms of hub score and retention during K-core

decomposition, indicating that they are are key transmitters of circRNA-based regulation

of protein coding/viral genes in the network. Finally, a set of high-ranking protein coding

target genes were identified including those involved in potassium and calcium signalling,

gene expression and the cell cycle.
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(a) Hub out-degree

(b) Hub in-degree

(c) Geodesic out-degree

(d) Geodesic in-degree

Figure 4.4: Centrality measure of circRNAs, miRNAs and viral transcripts in predicted
ceRNA network. Hubness scores were calculated using the IVI package, as further de-
tailed in Methods Section 2.3.8 (a & b). 2-step geodesic paths were calculated as the
number of nodes that can be reached with 2 edges of the node in question (c & d). Hub-
ness and 2-step geodesic paths were calculated with respect to direction of edges, with
out-degree (a & c) being relative to the source node of a source-target directed edge
and in-degree (b & d) being relative to the target node. Transcripts/nodes are ranked by
increasing values of their respective centrality measure scores. Host genes are coloured
according to whether they were up- (red) or down-regulated (blue), while viral transcripts
are coloured according to their maximal expression timing, primary (0-8hrs), secondary
(8-24hrs) or tertiary (48-72hrs).
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Figure 4.5: K-core decomposition of predicted ceRNA network. In order to isolate the
most highly interconnected "core" of the network, K-core decomposition was performed
on the full ceRNA network in Fig 4.1, removing nodes with a total (ignoring direction)
degree of less than 1 (A), 2 (B), 3 (C) and 4 (D). As with Fig 4.1, nodes are coloured
according to whether they are circRNAs, miRNAs (up- and down-regulated), mRNAs and
viral transcripts.



128

K Total circRNA miRNA Proten coding Viral
Total Up Down Total Up Down Total Up Down Total Up Down Total

1 505 376 129 119 85 34 25 20 5 336 261 75 25
2 370 277 93 56 39 17 25 20 5 271 215 56 18
3 268 202 66 25 16 9 25 20 5 206 169 37 12
4 211 157 54 12 8 4 24 20 4 169 139 30 6

(a) Enumeration of nodes in K-core decomposed networks (see Fig 4.5).
ID Name Log2AE Log2FC FDR Length
hsa_circ_0000175 circELK4 9.76 0.98 0.017 4577
hsa_circ_0000284 circHIPK3 9.74 0.68 0.042 1099
hsa_circ_0002953 circBAGE3 8.81 1.06 0.016 9817
hsa_circ_0005620 circSH3PXD2A 9.00 0.94 0.029 4865
hsa_circ_0008351 circLRCH3 10.64 0.90 0.041 4727
hsa_circ_0009173 circSNX5_2 8.15 0.83 0.040 4393
hsa_circ_0024615 circARHGEF12 8.25 -0.82 0.034 4205
hsa_circ_0038539 circSMG1P1 8.05 1.62 0.0078 2395
hsa_circ_0056530 circMGAT5 9.10 -0.86 0.028 6470
hsa_circ_0063313 circDDX17_2 9.20 -0.81 0.036 3955
hsa_circ_0084789 circZFHX4 8.46 -0.66 0.047 3139
hsa_circ_0087119 circAK308561 13.46 0.73 0.036 3437

(b) Statistics associated with K=4 K core-decomposed network.

Table 4.2: Statistics associated with K=4 K-core network (a) and K=4 K-core network
circRNAs (b). Where K is the minimum number of edges network nodes must have to be
retained in K core decomposition, circRNA = circular RNA miRNA = microRNA, log2AE
= log2 average expression, log2FC = log2 fold-change and FDR = false discovery rate.
Note that K=1 is equivalent to the full network.
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4.5 Network targets are enriched for host transcription, nucleotide biosyn-

thetic processes and protein ubiquitinylation.

Gene ontology enrichment analyses are frequently used to interrogate which biological

processes subsets of genes are involved in. To this end, gene set over-representation

analyses (ORAs) were performed on the full and K-core decomposed networks, as well

as on miRNA predicted targets and the targets of miRNAs predicted to bind the same

circRNAs.

Immediately apparent from the full network enrichment analysis was that it was signifi-

cantly enriched (FDR<0.05) for many terms relating to biosynthetic processes, particu-

larly RNA and macromolecule biosynthesis (Fig 4.6a). Additionally processes involved

in and regulating and facilitating transcription and gene expression as well as catabolic

protein processes (including "protein ubiquitinylation") (Fig 4.6a). This indicates that the

network as a whole encompasses processes that increase RNA biosynthesis to facilitate

RNAPII-mediated transcription. Moreover K-core decomposed networks retained these

enrichments, indicating that the core of the network is enriched for these processes (Fig

S2a).

The network as a whole was also enriched for several viral-derived gene sets, including

early lytic, secondary (maximally expressed 8-24hrs post induction), tertiary (maximally

expressed 48-27hrs post induction) as well as viral genes that were not responsive to

RTA (ORF50) and encoding viral capsid proteins or those involved in replication (Fig

4.6b). This may indicate another role of the network in promoting these viral functions.

However K-core decomposed networks were consistently enriched for "Non Responsive",

"Early Lytic" and to a lesser extent "Replication" (Fig S2b). This indicates that these viral

processes are preferentially targeted too.

Enrichments for RNA biosynthetic and gene expression processes were present in the

targets of miR-29b-1-5p, while miR-30b-3p, miR-3609 and miR-590-5p were enriched

for the more general "cellular macromolecule metabolic processes" (Fig 4.7a). Many

circRNA regulons (genes that miRNAs predicted to bind circRNAs are predicted to bind)

were enriched for similar processes, particularly circDDX17_2, circLRCH3, circSH3PXD2A,

circSMG1P1 and circSNX5_2 (Fig 4.8). This suggests these circRNAs as being partic-

ularly involved in regulating these proceeses. The sole term "cellular macromolecular

metabolic process" was enriched for circAK308561, circARHGEF12, circELK4, circHIPK3

and circBAGE3 (Fig 4.8). Notably however only circHIPK3, circLRCH3, circSMG1P1 and

circSH3PXD2A were predicted to bind miR-29b-1-5p, indicating that the enriched terms
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were not solely due to the inclusion of miR-29b-1-5p in the network. Moreover, circ-

SNX5_2, circLRCH3 and circDDX17_2 were enriched for terms relating to Ub-mediated

protein catabolism indicating these circRNAs potentially regulated this aspect of network

genes as well (Fig 4.8).

Therefore this section indicates that the up-regulation of circRNAs during lytic reactiva-

tion (and possibly de novo infection) facilitates the up-regulation of host genes involved

in transcription, RNA biosynthetic processes and protein catabolism, alongside several

functions of viral lytic replication.
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(a) Total network enriched GO terms.

(b) Network enriched viral terms.

Figure 4.6: Significantly enriched gene ontology (GO) biological process (BP) and viral
gene sets in network genes. Over-representation analyses (ORA) were performed on all
network protein-coding and viral genes. Enrichment analyses are split by whether Gene
ontology GO-BP gene sets or custom viral gene sets were tested for enrichment in full
network. Top 50 host terms (a) by enrichment are shown that had FDR<0.01 and viral
terms (b) are shown for FDR<0.05, in one-sided Fisher’s exact tests. Dot sizes indicate
the number of genes in each gene set that are annotated for that gene set and coloured
by FDR-adjusted p-values.
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Figure 4.7: Significantly enriched gene ontology (GO) biological process (BP) terms
in miRNA regulons. ORAs were performed in a miRNA-wise regulon manner. Terms
are shown that had FDR<0.05 (one-sided Fisher’s exact tests). Dot sizes indicate the
number of genes in each gene set that are annotated for that gene set and coloured by
FDR-adjusted p-values. Plots are split according to respective miRNA or circRNAs.
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Figure 4.8: Significantly enriched gene ontology (GO) biological process (BP) terms in
circRNA regulons. ORAs were performed in a circRNA-wise regulon manner, which area
defined as all predicted targets of miRNAs predicted to bind respective circRNAs. Terms
are shown that had FDR<0.05 (one-sided Fisher’s exact tests). Dot sizes indicate the
number of genes in each gene set that are annotated for that gene set and coloured by
FDR-adjusted p-values. Plots are split according to respective miRNA or circRNAs.
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4.6 Discussion

Overall this chapter has facilitated the modelling and subsequent analysis of a ceRNA

network based on miRNA-target predictions, between mRNAs, miRNAs and circRNAs

differentially during KSHV reactivation to lytic replication (Fig 4.1). Investigation of the

distribution of miRNA targets suggested the down-regulated miR-3689a-3p, miR-30b-3p,

miR-30c-1-3p and miR-29b-1-5p and up-regulated miR-3609 as the most prolific medi-

ators of the network (Fig 4.2). Finally gene set enrichment analysis suggested that the

network was involved in ribonucleotide metabolism, regulation of gene expression and

protein ubiquitinylation. The significance of these findings as well as the limitations of

analysis are discussed in the remainder of this section.

Of the most highly-ranked miRNAs, miR-30c-1-5p and miR-29b-1-3p were found to be

sponged by circHIPK3 in the Harper et al., 2022, while circHIPK3 was present as a com-

ponent of this network [71]. CircHIPK3 is one of the most well-studied circRNAs and

has been shown to be up-regulated in a range of cancers, while miRNA sponging is one

suggested mechanism by which circHIPK3 has pro-oncogenic effects [202, 226, 283].

Notably although circHIPK3 was relatively highly ranked in terms of centrality measures

and was present in the K=4 K-core decomposed network, it was not among the most

high-ranking, particularly in terms of out-hub score (Fig 4.4a & Table 4.2). This highlights

circHIPK3 as just a single component of a broader ceRNA network and potentially not

the most influential regulator of the network. This underpins issues with approaching

ceRNA networks by interrogating individual circRNA/miRNA/target axes in isolation as it

may miss the broader regulatory context and complex dynamics of the network. Of note,

however, miR-30c-1-3p was not predicted to bind circHIPK3 in the present network, de-

spite the validation in Harper et al., 2022 [71]. CircHIPK3 was however predicted to bind

its co-family member miR-30b and miR-3689a-3p which have similar seed sequences,

alongside miR-29-1-5p and miR-5087. This underpins the relative low quality of miRNA

target prediction via sequence-based methods, which can have a false positive rate as

high as 20-40% [186]. While some studies utilise the inclusion of known interactions

to mitigate this, inclusion of these edges would have introduced study bias, invalidating

much of the comparative centrality analyses.

Gene ontological enrichment analysis suggested an involvement of RNA metabolism and

gene expression in the network, alongside protein ubiquitinylation implying that the net-

work and by extension circRNA up-regulation may be to promote these processes (Fig

4.6a & S2a). Together these functions may be of benefit to KSHV as they may pro-

vide substrates for and the activation of machinery that facilitate the transcription of viral
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genes, alongside modulating ubiquitinylation to alter protein function and abundance. In-

terestingly KSHV is already known to exploit the host Ub machinery extensively as well

as encoding its own Ub ligases, for example RTA, K3 and K5 [284, 285]. Additionally, the

targeting of predominantly early lytic and non RNA-responsive genes may indicate a role

in de-repressing these genes and driving downstream lytic replication (Fig 4.1) & Table

4.1).

An issue with the present study is that the total RNA-Seq, small RNA-Seq and circRNA

microarray datasets were derived from different KSHV lytic induction experiments. More-

over the time frames were not exactly the same, with 0 and 20hrs for the circRNA mi-

croarray and total RNA-Seq but 0 and 24hrs for small RNA-Seq. Given the known and

observed differential trajectories between KSHV lytic induction experiments, this could re-

sult in a-synchronicity between the changes in circRNAs, miRNAs and mRNAs (Fig 3.3).

Nonetheless any shifts may well be subtle particularly when averaged over the replicates.

Moreover the in-network vs out-of-network permutation tests and distributional compari-

son tests provide confidence for a biologically bona fide relationship between interacting

entities.

An issue related to the ambiguity in circRNA length determination is that longer circR-

NAs are more likely to contain predicted miRNA target sites, biasing longer circRNAs to

having greater network degree. Indeed, network circRNAs were significantly larger than

non-network circRNAs with mean lengths of 1305 and 534, respectively (W = 17126,

p<1e-13, two-sided Wilcoxon rank sum test). This may not be an issue as predicted

miRNA binding sites may still be functional, however when taken with the issues with of

assumed circRNA length, may lead to spurious associations. Notably, circHIPK3 was

uncharacteristically short (1099nt) for a network miRNA and comprised only one exon

[226]. One way to mitigate could be to consider a length-normalised metric of miRNA

binding sites in circRNAS (ie miRNA binding sites per 1000 nts).

This chapter has facilitated the modeling and analysis of a dysregulated ceRNA network

between KSHV undergoing latent and lytic replication cycles. Centrality and K-core anal-

yses were applied in order to rank nodes based on their relative influence in the network,

while gene over-representation analyses suggested the involvement of process involved

in gene expression and early lytic viral genes. Overall, while subsequent biochemical

analyses will likely need to be performed to confirm the findings of such modelling, they

may represent a novel mechanism by how KSHV promotes reactivation and subsequent

lytic replication. This could add an extra layer to the already complex interactions between

KSHV and infected host cells.
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5 Kaposi Sarcoma gene co-expression network analysis
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5.1 Chapter Introduction

Several recent studies have investigated global changes in gene expression between

Kaposi sarcoma (KS) lesion and paired control lesion samples [16, 67, 94]. We re-

capitulated the analysis of one of these studies, Lidenge et al., 2020, however this anal-

ysis (as well as the analysis of the similar studies Tso et al., and Ramaswami et al.,)

was relatively small in scope. Moreover their methodological approach has some partic-

ular limitations, given that the gene-wise differential expression analyses employed are

by nature binary comparisons of summarized gene expression values, thus resulting in a

substantial loss of information, particularly relationships between genes. In contrast, co-

expression analyses empirically measure the relationship between the abundance pro-

files of genes in transcriptomic data, usually by correlation, which can’t be detected by

parallel gene-wise differential comparisons. Moreover co-expression analyses can em-

pirically identify novel associations between genes that haven’t been identified in previous

research or annotated in ontological databases, for example between specific viral and

host genes. The main draw back is that co-expression analysis requires enough data-

points to reliably calculate a measure of similarity between data. Importantly however, no

publicly available dataset was large enough for this until the publication of the Lidenge et

al., data-set.

One of the most frequent co-expression analytical methods is co-expression network

analyses (CNA), which extends co-expression analyses to a transcriptome-wide scale

and subsequently applies network methods to the resultant data structures [266, 286,

287]. In such networks, nodes represent features (ie genes) while edges represent co-

expressions, usually with a some form of a cut-off or thresholding to limit network density.

Key to CNA is the "guilt-by-association" (GBA) principle, which is dependent on 2 key as-

sumptions. The first is that features that show high similarity in their abundance profiles

are likely involved in similar processes. This allows for genes to be grouped into biologi-

cally meaningful "modules" (also communities, clusters) of similarly co-expressed genes

involved in similar functions. The second is that features which show a high density of

similar profiles with other features likely have a high degree of influence on such neigh-

bouring features [266]. This allows for a mechanism for identifying and ranking influential

hub genes in co-expression networks. Moreover, by partitioning networks into modules,

the landscape of gene expression in biological samples can be interrogated in more-

detail, which can help to separate overlapping and potentially confounding gene-centric

processes, including deconvolving cell-type specific influences [288]. This is particularly

poignant for KS given the high cellular heterogeneity of KS lesions, both in terms of cel-
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lular constituents and replication cycle stage (latent or stages of lytic) of infected cells

[16, 67, 87, 89].

Weighted gene CNA (WGCNA) is the most frequently applied method of performing net-

work co-expression analysis and has been applied plentiful times to identify key influential

hub genes in many pathological conditions [266, 289–291]. Moreover it has been ex-

tensively applied to patient-derived biopsy samples to identify modules of co-expressed

genes with relevance to pathological conditions in question, or "disease modules" [267].

This includes in the context of viral infection, including EBV-associated gastric carcinoma

[292, 293]. Such disease modules are interrogated via measuring their associations with

phenotypic traits or to identify potential highly connected hub genes that may play a role

in the condition of interest.

A newer variant of co-expression network analysis is differential co-expression network

analysis which, identifies genes that show differential co-expressions between conditions

[269]. Such changes can be applied to identify activatory and inhibitory relationships,

among others, that are missed by differential and co-expression analyses [269, 294–297].

Importantly, applied to Lidenge et al., such analyses explicitly includes information about

genes that change associations between lesion and uninvolved tissue and as such may

facilitate the discrimination of important general regulators in KS and those specifically

associated with lesion development.

Therefore the goal of this chapter was to construct a co-expression network to model the

transcriptomes of KS lesion tissue biopsies in detail. This model was then interrogated

to identify modules of co-expressed genes which were then tested for enrichments of

various host and viral processes and associated with various sample-wise traits. WGCNA

hub genes were then identified and interrogated. Finally, differential correlation network

analysis using DGCA was performed on key modules in order to identify differentially

correlated hub genes that may play a key role in KS.
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5.2 Comparison of batch adjustment methods suggests ComBat as the

most effective batch-adjustment method

Batch effect adjustment can confound downstream analysis by preventing the lack of

the capacity to discrimination between true biological effects and artefactual differences.

Moreover adjusting for batches can improve downstream analyses, including gene co-

expression network construction [287, 298]. As the 23 samples were split between 4

batches, the influence of batch effects and their elimination via batch effect adjustment

methods were investigated.

A PCA applied to the un-adjusted data revealed some evidence of batching associated

with PC3 (Fig 5.1). Specifically, batch 1 and 2 grouped together, with some separation

from batch 3 and 4, which grouped together. While this variance due to batch was as-

sociated with a relatively low amount of total variance in the data-set (variance explained

by PC3 = 6.23%) and in fact much of this variance separates a single sample in batch 3

from the other samples, this still could lead to spurious relationships or mask or confound

biologically relevant co-expressions, necessitating batch adjustment.

One issue with the Lidenge et al., dataset is the presence of complete confounding of

endemic samples within batch 2 (Fig 2.1). This poses two issues, 1. that the influence of

endemic samples cannot be distinguished from the influence of batch and 2. that recent

studies have indicated that when trying to correct for such un-balanced experimental

designs, batch-adjustment procedures can artificially over-correct for group differences,

resulting in artificial changes in effect sizes between levels of the unbalanced group [299,

300]. For the first point, elimination of the influence of endemic samples is likely of benefit

so we reasoned that this was not a major point of concern. But for the second point,

this could skew the magnitude of co-expressions of genes that varied between epidemic

and endemic samples. To investigate this second issue, three batch adjustment methods

(ComBat, ComBat-Seq and Limma’s removeBatches()) were trialled with (HIV-aware) and

without (HIV-naive) the inclusion of endemic/epidemic sample labels as a factor during

batch adjustment [264, 301, 302]. PCA was similarly applied to these 6 different batch-

adjusted data-sets. This revealed that both adjustment formulations with Combat-Seq

resulted in the considerable increased separation of endemic and epidemic samples (and

batches), while Limma’s method showed considerable batching in the HIV aware but not

HIV-naive approach (Fig 5.1). However both approaches using Combat showed limited

emphasis of variance due to batch or HIV status and as such this adjustment method

was taken forward (Fig 5.1).
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Lidenge et al., 2020 showed that the main difference between endemic and epidemic

KS lesions transcriptomes was a greater magnitude of differential expression between

lesion and control tissue. Such analysis was repeated for un-adjusted and ComBat HIV-

naive and -aware data, which showed a negligible decrease in the effect sizes between

the differential transcriptomes of endemic vs epidemic lesions (linear regression β co-

efficients of 1.54, 1.51 and 1.51 for un-adjusted, HIV-naive and -aware approaches, re-

spectively) (Fig 5.2). Genes uniquely differentially expressed in endemic samples for the

HIV-naive and HIV-aware adjusted datasets showed a similar number of uniquely differen-

tially expressed genes (539, 486, respectively) to the number for the unadjusted dataset

(529). Finally HIV-naive and -aware comparisons showed high overlap with the unad-

justed comparison (JSI = 0.66, 0.66, respectively). This was despite the unfavourable

usage of Limma on over-dispersed, pseudocount and log2- transformed RNA-Seq data

(as explained in Section 2.3.4).

Therefore HIV aware ComBat-adjusted data were taken foward. It is worth noting that all

methods resulted in a set of 4 control samples with notably lower mean gene expression

of viral genes (Fig S4). These 4 samples are distinguished towards the top left of the PCA

plot, as largely separated from the other group of control samples (Fig 5.1). However

the lesion samples, which were of most interest, were taken forwards. Therefore batch

effect adjustment showed considerable success in removing variance due to batches

while maintaining biological signals comparable to un-adjusted data.
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Figure 5.1: Principal components analysis to assess the efficacy of batch adjustment
methods. PCA score plots on un-adjusted and batch-adjusted log2 TPM expression data.
3 batch adjustment methods were trialled: Limma’s removeBatchEffect(), ComBat and
ComBat-Seq, with the exclusion and inclusion (HIV-naive and aware, respectively) of
HIV-1 co-infection (epidemic/endemic KS) in the model parameters. Plots are labelled
according to the batch adjustment method and HIV-naive and aware labels. PC1-4 are
shown plotted in successive pairwise orders horizontally; with PC1 and PC2 (left), PC2
and PC3 (center) and PC3 and PC4 (right). Points represent samples, coloured by batch
and shaped according to lesion (circle) and non-lesion (triangle).
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(a) Comparison of log2 fold
change values, pre-batch ad-
justment

(b) Comparison of log2 fold
change values, post-HIV naive
batch adjustment

(c) Comparison of log2 fold
change values, post-HIV aware
batch adjustment

Figure 5.2: Comparison of endemic and epidemic lesion vs control biopsy tissue differ-
ential expression log2 fold-changes. Differential expression on log2-transformed, un- or
batch-adjusted expression data was performed using Limma between lesion and control
samples for epidemic (x axes) and endemic KS patient samples (y axes) (further detailed
in Section 2.3.4). This was performed using non batch-adjusted data (a), batch-adjusted
data without the inclusion of HIV co-infection as a factor in model parameters (b) and
batch-adjusted data with the inclusion of HIV co-infection as a factor (c). The red line
indicates a perfect 1:1 relationship between results (ie intersect of 0, gradient of 1) while
the blue line indicates the fit of an ordinary least squares regression line, with slope coef-
ficient for each plot show as β. Genes are coloured according to being host (orange) or
viral (purple).
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5.3 Initial construction of co-expression network

Co-expression network construction is dependent on calculating similarities in the vari-

ance of gene expression profiles of genes. This enables the calculation of a co-expression

measure, which is then thresholded to facilitate the determination of edges between

nodes (genes).

Lowly expressed genes are more likely to be representative of unwanted noise in ex-

pression data while lowly variant genes will show weak and thus likely uninteresting co-

expressions. Moreover lowly expressed genes tended to show a greater dependence

between their expression and variance (Fig 5.3). So prior to network construction, gene

expression data were filtered to remove the bottom 5% and 25% of genes by mean ex-

pression and variance, respectively, leaving 16534 (16441 protein-coding and 93 viral)

and 12401 (12308 protein-coding and 93 viral) genes, respectively. Such filtration re-

sulted in a near-flat expression mean-variance trend, with no correlation between mean

and the standard-deviation (Pearson’s r = 0.016) (Fig 5.3).

Correlation is the most common measure of co-expression used to perform WGCNA.

Spearman’s ρ was chosen to limit the influence of outliers in small data-sets (under

30 samples) used for co-expression network construction, which it has been previously

shown to be effective at doing [287]. Spearman’s ρ also provides a more reliable param-

eter estimate as a measure of similarity between pairs of genes that show a non-linear

relationship, as well as not relying gene expression data to be normally distributed.

Raw correlation values are not ideal measures of co-expression as they can result in

dense networks with many spurious edges [266, 287, 303]. WGCNA employs several key

steps to limit this and emphasise only strong measures of co-expressions [266]. First, the

"signed hybrid" transformation was applied to the correlation matrix by setting all negative

values to 0, as negative values in metrics of co-expression have been suggested to be

less reliable measures of true co-expression than positive correlations [266]. Soft thresh-

olding was then performed on the positive correlation values by raising them to the power

of a constant value β, which emphasises and minimises stronger and weaker correla-

tions, respectively. The optimal β was chosen via sequentially raising gene expression

values by sequential values of β (ranging from 1 to 25, iterating by 1 each time) and mea-

suring of the similarity of the the log node degree distribution to a scale-free distribution

as measured by an R2 value (Fig 5.4). The soft-thresholding β value was chosen as 6, as

the maximum R2 fit value (also the first to exceed R2 = 0.8) (Fig 5.4). Next, the weighted

topological overlap (wTO) transformation was applied to β-transformed Spearman’s ρ,
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which adjusts edge-weights based on the connectivity of shared neighbour genes [266].

These three transformations limit the influence of weak correlations which are more likely

spurious as well as reducing network density (see Fig 5.4 & Section 2.3.5). As such,

the resultant non-zero transformed correlation values were chosen as the final network

network edges and these values taken forward as edge-weights, to generate an edge-

weighted network.

In summary gene expression data were filtered in preparation for WGCNA network con-

struction. Spearman’s ρ was chosen as the initial measure of co-expression, the optimal

transformation parameter β (β=6) applied and wTO transformation subsequently applied

to define final edge weights. This network model could then be interrogated in in further

analytical steps.

Figure 5.3: Mean-variance trends for expression- and variance-filtered data. Hexplots
show the 2D distribution of rank of mean (x axis) and standard deviation (y axis) of
log2-gene expression data. Expression values represent RNA-Seq count data that have
been subject to TPM and log2 pseudocount-transformation followed by Combat batch-
adjustment (detailed further in Section 5.2). Expression data were then filtered to remove
the bottom 5% of and 25% of genes by mean expression and expression variance. Red
line shows mean trend.
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Figure 5.4: Selection and comparison of WGCNA soft-thresholding parameter. Networks
were constructed from lesion samples using Spearman’s ρ correlation as a co-expression
measure, and such pairwise gene-gene co-expression measures were then raised to
varying levels of β, from 1-25, increasing by 1 each time. The fit of the resulting network
connectivity (mean of node edgeweights) distributions were compared to a perfect, scale
free (power law) fit via calculation of R2. Left shows the distribution of R2 for the signed
network, with respect to increasing values of β, where the red line indicates the chosen
soft thresholding parameter β value of 6. Right shows the mean node connectivity of the
network when transforming edges by successive values of β.
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5.4 Module partitioning identifies modules associated with distinct sub-

sets of viral genes

One feature common to most networks is the tendency for nodes to group together in

modules (communities or clusters), whose constituents have functional or regulatory sim-

ilarities. This allows the transcriptome to be deconvolved into discrete sub-networks that

enable the isolated interrogation of such discrete co-expressed units. To this end, ini-

tial module partitioning was performed using WGCNA’s standard hierarchical clustering-

based method, outlined in Methods Section 2.3.7. This resulted in 22 modules of varying

sizes comprising 12385 genes in total, with 16 genes (SLC6A7, DDX3Y, PF4V1, C4BPA,

CELA1, C1QTNF2, DRC1, PRAC1, CXCL5, DEFA4, BNIP3, LEMD1, GPAT2, HLA-C,

SPINK8 and KIR3DL2) not being assigned modules and consequently discarded. De-

creasing the cutHeight parameter was found to result in grouping of the vast majority

(>10,000) genes into one module, which proved untenable for downstream analyses.

Moreover a deepSplit parameter of 3 was chosen as lower values were found to result in

an excess of genes being discarded to the unassigned group of genes, including many vi-

ral genes of interest and relevancy to KS. Similarly, setting pamRespectsDendro = TRUE

resulted in the discarding of the majority of viral genes and as such this was set to FALSE

to retain these genes for downstream analyses.

Initial module identification was followed by a second round of module merging. First

module eigengenes (MEs) were calculated as PC1 of a PCA performed on the module-

wise gene expression matrix. These MEs represent a summarised expression profile

of genes in each module, in each sample. A threshold percentage of 15% and merge

percentage of 35% was found to be be optimal parameters for this process, based on

empirical observations of clustering of viral gene correlations (Fig S6). This resulted in

14 modules (Fig 5.5a & b). Next, module membership (MM) scores for each viral gene

were calculated as their correlation with the ME of their "parental" module (Fig 5.5c, d &

e). This provides a measure of module-wise centrality for these genes.

The resultant 14 modules were of varying sizes and contained different combinations of

viral genes. The largest module was Mod 1 which comprised 3994 genes (3975 host, 19

viral) (Fig 5.5a). Constituent viral genes were all canonical lytic genes that showed high

MM and included the NLRP3 inflammasome homolog ORF63, ORF50 which encodes

RTA, the major activator of lytic replication and ORF67A, which is associated with the

disassembly of the nuclear lamina prior to virion egress (Fig 5.5d) [250, 304]. K2 (vIL-6),

was also present in this module (Fig 5.5c). Interestingly the genes in this module tended

to be early lytic or maximally expressed 8-24hrs post lytic induction (Secondary) (Fig
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5.5e). The second largest module was Mod 6 which contained 3545 genes (3994 host, 33

viral) and contained genes involved in immunomodulation, gene expression, replication,

capsid and the tegument, including vIRF-1, ORF17, ORF16 and ORF57 which showed

the highest MM for this module (Fig 5.5c). However several lytic showed low module

membership for Mod 6 and the overall size and relatively small variance explained by its

ME indicates it is relatively heterogeneous (Fig 5.5 & SS7). The third largest module was

Mod 13 which comprised 2705 genes (2678 host, 27 viral) including all the classical latent

and remaining relaxed latent genes, which all ranked among the most highly by MM (Fig

5.5b & c). Most constituent genes were involved in mitogenesis and the cell cycle as well

as lytic genes involved in immunomodulation, including K5, vIRF-2 and vIRF-3 (Fig 5.5d).

The remaining 9 viral genes were distributed between 3 modules, with 5 in Mod 3, 4 in

Mod 4 an 1 in Mod 7 (Fig 5.5).

Overall partitioning of the networks into co-expressed modules resulted in 14 modules,

of which the majority (∼81%) of genes were present in 3 modules, Mod 1, 6 and 13.

These modules contained the majority of viral genes, which partitioned in-line with their

functional and expression characteristics.
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(a) Total number of genes per module. (b) Number of KSHV genes per module.

(c) Coloured by viral gene type.

(d) Coloured by viral gene function.

(e) Coloured by maximal viral gene expression timing.

Figure 5.5: Distribution of genes across the network modules. The network was parti-
tioned into 14 modules as outlined in Methods Section 2.3.7. The total number of host
and viral genes are shown in (a) and (b), respectively. Viral gene module membership
(MM, where MM is the Spearman’s ρ correlation between the viral gene and the respec-
tive module as outlined in Methods Section 2.3.8) for each viral gene and the module
they are partitioned into (parental module) (c, d & e). Viral genes are split according to
their parental module. Genes are coloured according to viral gene classification (a), gene
function (b) and maximal expression timing (c) as outlined in Methods Section 2.1.6.
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5.5 Ontological Analyses on modules characterises host gene expression

associated with subsets of viral genes

A key facet of the GBA principle is the assertion that genes involved in similar processes

tend to be co-expressed [266]. Therefore modules can be assumed to comprise genes

that show relationships between their function, as well as expression. This can also re-

late to the transcriptomes of differing cell types present in heterogenous samples [288].

Therefore investigating the processes associated with such co-expressed genes can and

has been shown to produce biologically meaningful findings. To investigate such module-

wise functional enrichments, gene set over representation analyses (ORAs) were per-

formed on each module. Significant terms were then retained (FDR<0.001).

Modules showed varying enrichments of host processes as well as various patterns of

constituent viral genes. In-line with Mod 13 containing mostly viral mitogenic genes,

Mod 13 was enriched for mitogenic processes, relating to chromosome localisation and

cell cycle checkpoint signalling (Fig 5.5d & 5.6). As Mod 1 contained ORF50 which is

known to be a potent modulator of factors that regulate transcription, it was enriched for

processes relating to the initial activation of gene expression, including "histone modifi-

cation" (Fig 5.6). Further Mod 1 enriched terms represented those controlling further as-

pects of gene expression, including "posttranscriptional regulation of gene expression",

"regulation of translation" and "nuclear-transcribed mRNA catabolic process" (Fig 5.6).

Given ORF50’s ubiquitin ligase activity, it is interesting to note that processes relating to

ubiquitin-mediated proteasomal degradation were also enriched (Fig 5.6) [284]. Genes

in both Mod 1 and Mod 13 tended to be up-regulated in lesion relative to control tissue

and thus these processes can be assumed to be increased in KS (Fig 5.7b). Mod 6 also

contained many lytic genes, including the immediate early genes ORF45 and ORF57,

alongside many genes involved in replication and gene expression [68, 305]. From the

perspective of the host it was enriched for many immunological related processes, partic-

ularly canonically anti-viral immune responses such as Th1-type immune responses (Fig

5.6). Moreover humoral and complement immune processes and superoxide anion gen-

eration were enriched (Fig 5.6). Further processes included aspects of metabolism (or-

ganic hydroxy, alcoholic, phenol-containing, acid, retinol and arachidonic and fatty acids)

(Fig 5.6). Genes in this module showed a tendency to be down-regulated, thus the activ-

ity of its enriched processes can be assumed to be decreased in lesion tissue (Fig 5.7b).

Mod 5’s genes were enriched for various metabolic processes such as fatty acid and lipid

metabolism (Fig 5.6). Mod 8 was enriched for "mitochondrion organisation" (Fig 5.6).

Genes in this module showed a tendency for down-regulated and so these processes
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can be considered to also be down-regulated in lesion tissue (Fig 5.7b). Interestingly

down-regulation of lipid metabolism and mitochondrial dysfunction has previously been

observed in KS lesions, despite increased lipid metabolism generally being associated

with the Warburg effect seen in many cancers [16, 67].

Therefore host module genes were enriched for processes relevant to KSHV and KS.

Host gene process enrichments also reflected known functions of their constituent viral

genes. Specifically Mod 13 was most closely associated with mitogenic processes, Mod

1 was most associated with lytic processes associated with changes to multiple facets

of gene expression and Mod 6 was generally enriched with immune functions indicat-

ing that the viral genes present were more immunogenic. All together this shows that

co-expression-based transcriptomic partitioning results in modules that show some func-

tional associations between their constituent viral and host genes.



151

Figure 5.6: Gene ontology and custom gene set enrichments for WGCNA modules.
Ontological enrichments for GO biological process terms were calculated for all genes in
each module, using a one-sided hypergeometric test. All significant terms were retained
(p<0.001). The size and ordering of the dots represent the number of genes annotated
for that term in that module, while colour indicates the false discovery rate (FDR). Terms
are split by module, as annotated on the right hand side.
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(a) Log2 mean expression. (b) Log2 fold-change.

Figure 5.7: Distribution of module gene expression and log2 fold-changes. Genes were
partitioned into modules as in 2.3.7 & Section 5.4. Log2 mean expression (a) and
Log2FCs (b) distributions are presented, coloured by their respective modules. Log2
mean expression values were calculated from TPM-transformed, Log2-pseudocount-
transformed, batch-corrected gene expression data for 23 KS lesion biopsies (See Sec-
tion 2.1.2). Gene-wise log2 fold-changes (log2FCs) were calculated between lesion and
control biopsies as in Section 2.3.4.
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5.6 Correlation of module eigengenes identifies primary partitions of the

network associated with dysregulaton

Module eigengenes (MEs) are calculated as PC1 of a module-wise PCA performed on

lesion tissue. As successive PCs captured negligible proportions of variances in the

dataset, MEs can be viewed as a "de-noised" summarised expression profile of all genes

in the module. As such the relationship between module eigengenes provides global

information on the relationships between the expression of module genes and thus the

topology of co-expression networks.

It is generally not recommended to consider the sign of MEs when comparing them as

the sign of principal components are arbitrary. However when correlating sample-wise

MEs in a pairwise manner, the relationship between modules reflected the relationships

between their constituent viral genes expression profiles (Fig 5.8 & S6). This indicates

that MEs are representative of the relationships of their constituent viral genes and in-

dicates that these relationships are also present at the level of whole modules of host

genes, not just viral genes. This is likely due to the importance of viral gene expression

in driving KS [16, 67, 138]. Module eigengenes could be grouped into 3 clusters, X, Y

and Z, based on their relative patterns of pairwise correlations (Fig 5.8). Specifically they

all showed relatively strong positive intra-cluster correlations and predominantly negative

inter-cluster correlations. Cluster X contained Mod 6, the module containing the most

viral genes including ORF45 and ORF57 and was associated with immune processes,

alongside Mod 10 which was enriched for lipid metabolic processes (Fig 5.6 & 5.8). Clus-

ter Z contained the classical/relaxed latent gene module Mod 13, as well as Mod 1, Mod

4, Mod 7 and Mod 12. The modules in these two clusters generally exhibited a negative

relationship with each-other, particularly Mod 13 with Mod 6 and Mod 10 with Mod 1 and

Mod 10 (Fig 5.8). Cluster Y was somewhat intermediary and contained Mod 8, which

was depleted for mitochondrial function (Fig 5.6 & 5.8).

In re-producing the analysis of Lidenge et al.,, we showed that PC1 of a combined con-

trol and lesion PCA (PC1_paired) of separated samples by these two groupings and

showed PC1 was positively correlated with the expression of most viral genes (Fig S5).

Moreover, PC1 and PC2 of a lesion-only PCA (PC1/PC2_lesion) were near-identical to

PC1/PC2_paired (Spearman’s ρ = 0.98 and 0.98, respectively), indicating similar sep-

aration by and redundancy of these pairs of axes (Fig S9). Additionally, PC2_lesion

separated samples based on the relative expression of classical/relaxed latent and the

remaining lytic genes, which showed positive and negative correlations, respectively (Fig

S9). This relationship showed some similarity at the level of modules, primarily as most



154

viral gene-containing modules correlated positively with PC1_lesion, while Mod_1 and

Mod_6 correlated negatively with PC2_lesion and Mod_13 correlated positively (Fig 5.9).

This indicates that as well as the classical and relaxed latent genes, a subset of ORF50-

centric viral and also host genes are associated with the development of KS. Conversely,

Mod_6, which contained lytic genes, was itself negatively correlated with PC1_lesion in-

dicating that constituent viral genes associated host genes were adversely associated

with lesion development (Fig 5.9).

While the modules of cluster Y showed variable correlations with PC1_lesion, the three

modules that comprised it showed very strong positive correlations with PC2_lesion, as

did Mod_2 from cluster X, indicating their association with classical/relaxed latent expres-

sion (Fig 5.9).

Cumulatively this section has characterised the relationships of module expression pro-

files with all other modules as well as with the major axes of variance. This suggested a

strong relationship between Mod 1 and Mod 13 and the development of KS. Therefore the

relationship between viral genes is constituted at the level of the modules that they are

constituents of. However, it is important to note that while module gene expression re-

lated to PC2_lesion in a similar manner to the expression of their constituent viral genes,

the inclusion of the endemic samples may bias this observation, a point that is expanded

further in this chapters discussion section (Section 5.9).
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Figure 5.8: Module eigengene correlation matrix heatmap. Pairwise correlations were
performed between module eigengenes using Pearson’s r. Heatmap cells are coloured
by Pearson’s r. Diagonal values were set to NA and coloured black. Columns and rows
were correlated using agglomerative hierarchical clustering using euclidean distance as a
distance measure. 3 clusters were chosen and labelled as X (Mod 2, 3, 5, 6, 10 and 14),
Y (Mod 8, 9 and 11) and Z (Mod 1, 4, 7, 12 and 13). Left and top annotations correspond
to these clusters.



156

Figure 5.9: Correlations of module eigengenes with principal components. Module
eigengenes (ME) were computed as the first principal component (PC) of a principal
components analysis performed on the module-wise expression matrices. MEs were
then correlated via Spearmans ρ with PC1 and PC2 for the KS lesion-only PC analysis
(PCA) performed on the gene expression data (as in Section 5.9). Figure is split by cor-
relations with PC1 (top) and PC2 (bottom). Modules are shown along the x axis and split
according to the module clusters identified in Fig 5.8.
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5.7 Investigation of hub gene networks proposes key signalling axis in-

volved in KS

Another key inference of the GBA principle is that highly inter-connected genes (hub

genes) in co-expression networks indicate a regulatory relationship between these genes

and their neighbours. MM is one metric for assessing this, however MM alone does not

strictly consider the network structure and is essentially a module-wise global centrality

measure. Conversely, connectivity is a local centrality measure and is the sum of a gene’s

edge-weights (co-expressions) its neighbours in the network (equivalent to weighted node

degree) [266]. By filtering by these two metrics and applying a sufficient cut-off for both,

genes could be filtered for local and global importance and as such a set of robust hub

genes that may play key roles in KS could be identified.

Like MM, connectivity can be measured only for edges connecting to other genes in

a shared module (intramodular connectivity, iC) or for all genes in the network (global

connectivity, gC) [266]. Both iC and gC were calculated for all module and hub genes.

Notably, this resulted in rankings of viral genes by iC and gC that were very similar to their

rankings by MM (Fig 5.5c, d & e).

Hub genes were determined by retaining the intersection of host genes that ranked in the

top 10% by iC and parental MM, and further filtered to retain genes that were significantly

differentially expressed (FDR«0.001) in lesions vs control tissue, resulting in 341 genes.

As this biases to module-wise hub genes, an additional set of hub genes were defined as

the intersection between the top 5% of host and top 25% of viral genes by mean MM and

gC and that were differentially expressed between lesion and control tissue (FDR«0.001).

This set comprised 146 genes, with 43 being common with module hubs (with ORF73

being the sole joint modular and global viral hub gene). All together this resulted in a total

hub list of 444 hub genes (426 host, 18 viral), hereby termed "WGCNA hubs". The top

10 edges for each hub gene were then retained to generate a hub network. This resulted

in decomposition of the network into two components, one representing Mod 1 and 13

and the other Mod 6 (Fig 5.11). This indicates a high level of co-expression of Mod 1

and Mod 13 genes and as these were most strongly correlated with PC1 and thus lesion

development, this component was focused on (Fig 5.9). The top 25 hub genes by this

resultant Influential hub score (see Methods Section 2.3.8) for each sub-component are

labelled in Fig 5.11.

Gene set over-representation analyses were applied to the resultant set of hub genes.

This showed an enrichment of small GTPase signal transduction and associated pro-
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cesses, including signalling by Rho and Ras proteins (Fig 5.10). In particular this in-

cluded NRas but also Ras guanyl releasing proteins (RASGRF), RASGRF2, RASGRP3

and RASSF10 (Fig 5.11). Notably RASGRP3 and a key downstream transcription factor

of Ras-signal transduction via the Raf/MEK/ERK MAPK cascade, ETS1, ranked highly

by influential hub score in the hub network (Fig 5.11) [306]. The downstream enhancer

of ERK signalling that also activates ETS1, ribosomal protein S6 kinase (RPS6K) A3

(RPS6KA3), was also a very high ranking hub gene (Fig 5.11).

Many of the above processes and genes promote angiogenesis via downstream effec-

tors and thus it is not surprising to see that angiogenic processes were enriched in

the hub gene set (Fig 5.10). This is due to the presence of a set of pro-angiogenic

genes, notably the oncogene SRGAP1, β-catenin (CTNNB1) and CTNNIBP1 (a neg-

ative regulator of β-catenin) (Fig 5.11, [307]. Additionally TCF4, a transcription factor

that complexes with β-catenin signalling to promote angiogenesis was a high-ranking

hub gene (Fig 5.11) [308]. Further related hub genes related to angiogenesis included

MIB1, WWC2, PDZRN3, GNA12/13, AMOTL1, CDH5, EPHB1, JAK1, PTPRB, PTPRM,

SLC12A6, SMAD1, STARD13, TJP1, UBP1 and VASH1. Moreover QKI and The miRNA

processing ribonuclease DICER1, which are associated with angiogenesis, were high-

ranking hub genes (Fig 5.11).

Hub genes were further enriched for processes relating to regulation of mitotic chromatid

cohesion (Fig 5.10). This was due to the presence of RB1 (pRb), the pRb co-factor E2F3,

ATRX, as well as CTNNB1 and CTNNBIP1, SMC1A and SLF2 [167]. SMC proteins are

key regulators of DNA stability during mitosis and notably SMC1A, SMC2 and SMC6

were hub genes [309–312]. Moreover cytoskeleton-dependent kinesis and related terms

were enriched and relevant hub genes included ACTR2, ROCK1/2, STMN1, MYH10,

SEPTIN11, SON, BIRC6, KHLH9 and SVIL (Fig 5.10) [313]. Hub genes involved in reg-

ulating microtubules were also present, namely the high-ranking oncogene STMN1 but

also several centrosome-associated genes were hub genes, including CENPO, CEP170

and CEP295 (Fig 5.11).

To conclude, host hub genes included candidates known to be involved in KSHV’s life cy-

cle and the KS. These included the broad enrichment of processes such as small GTPase

signalling and downstream effects including angiogenesis, as well as mitosis-associated

processes with a particular prevalence of SMC proteins. Moreover there was evidence

for a central role of signalling via the ERK MAPK signalling pathway as evidenced by

the presence of several upstream agonists (NRas and associated proteins), downstream

transducers such as RPS6KA3 and a key downstream effector, ETS1.
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Figure 5.10: Enriched GO biological process ontological terms enriched in hub gene
sets. Gene set over-representation analyses were performed on the 465 hub genes
using a one-sided hypergeometric test to test for significant enrichment (p<0.01) of GO
biological process terms as well as all custom host and viral gene sets. Note unlike
module-wise ontological enrichments, terms have not been subject to simplification with
rrevigo. Terms are split according to their corresponding source. Note that no terms were
enriched for down-regulated hub genes.
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(a) Organism. (b) Parent module.

(c) Log2 fold-change. (d) Hub type.

Figure 5.11: Hub gene network for 1st sub component of co-expression network. Hub
genes were classified according to the criteria in Methods Section 2.3.8 and their top
10 correlated genes were extracted from the full network. This resulted in 2 major non-
connected components and the first component is shown in this figure. The remaining
genes were then plotted as a network, using the Kamada-Kawai layout algorithm. Gene
hub centrality was then calculated using the influential package (as in Section 2.3.8).
Non-hub neighbour genes are the smallest, grey coloured dots. Hub hub score was then
log10-transformed and gene node sizes are scaled by this resultant transformed cen-
trality measure. Additionally, the top 25 genes by hub centrality are labeled and their
corresponding nodes opaque, while all other hub genes were set to transparent. Nodes
are shaped according to whether they correspond to viral genes (square) or host genes
(circle). Nodes are further coloured according to organism (a), their parent module (b),
the log2 fold-change (log2FC) between lesion and control tissues (c) (described in Sec-
tion 2.3.4) and (d) whether hubs were defined as intra-modular or global hub genes (de-
scribed more in Section 2.3.8). Note that in (c), the log2FC of the viral genes were greater
than 4 however including their log2FC in the colour scale overwhelmed the signal from
the host genes.
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5.8 Differential correlation network analysis proposes novel differentially

correlated host hub genes associated with KS

Co-expression can provide information on the importance of genes to the overall tran-

scriptome of biological conditions, however it cannot distinguish between conditions. Dif-

ferential co-expression network analyses can however identify genes who’s changes

co-expressions are associated with variations in the levels of a condition of interest.

Given the paired lesion-control nature of the dataset, differential gene correlation analysis

(DGCA) was performed.

While Mod 13 was of interest considering it contained all the classical and most the re-

laxed latent genes, those most associated with oncogenesis, the relatively higher expres-

sion of these genes in endemic samples means that it’s importance may be somewhat

over-emphasised by the inclusion of these samples. However considering Mod 1 com-

prises viral genes with less well-known associations to KS development, including the

driver of lytic replication RTA, it was taken forward as the main "disease" module for fur-

ther analysis.

A differential correlation network was constructed for Mod 1 between lesion and control

tissue, filtering edges by (FDR<0.001). Genes in this network were then ranked accord-

ing to their hubness, retaining the top 25 genes, hereby termed "DGCA hub genes" (Fig

5.12). Differential edges could be grouped into different classes based on the transition

of the edge (Table 2.8). Classes for all Mod 1 differential hub genes almost exclusively

showed a shift from nothing to positive (0/+) or retainment of positive (+/+) (Fig 5.12a).

Moreover, the log2FCs for all neighbours of these hub genes tended to be up-regulated,

irregardless of edge class, indicating an activatory relationship between these hubs and

their neighbours (Fig 5.12c). Both of these observations are indicative of net activation

of these hub genes, in terms of their effect on their neighbours. Notable Mod 1 genes

included LRRK2, which is most well-studied for the role of gain-of-function mutations in

Parkinsons disease, but it also has roles in endosome trafficking, inflammation and in-

fection [314, 315]. Neighbour genes of LRRK2 were enriched for small GTPase activity,

Golgi vesicle transport, microtubule organising center (MTOC), cell cycle, chromosomes

organisation and, interestingly, viral transcription (Fig 5.12b). An additional DGCA hub

gene was SIMC1, which associates with SMC5/6 complexes to form known anti-viral ef-

fector complexes that, interestingly, have been suggested to be degraded by RTA (Fig

5.12a) [59, 316, 317]. Despite this, its neighbour genes were enriched for viral transcrip-

tion, alongside chromatin organisation, histone modification and demethylation indicating

a pro-gene expression role (Fig 5.12b). Neighbour genes were further enriched for mRNA
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transport and metabolic processes, cell cycle processes, DNA repair and chromatid co-

hesion (Fig 5.12b). An additional notable Mod 1 differential hub gene was PRKACB, a

subunit of the cAMP-activated Protein Kinase A (PKA) that regulates many aspects of cel-

lular metabolism and promote lytic replication. However its neighbours were not enriched

for any processes.

Altogether this section has identified Mod 1 hub genes that show generally activatory re-

lationships with their neighbouring genes. Moreover DGCA hub-wise neighbouring genes

were enriched for processes relevant to KSHV as well as KS and oncogenesis in gen-

eral. We believe that these genes are ideal candidates for further study and their possible

relevance to KS is detailed further in the discussion chapter.
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(a) Degree of DGCA hubs.

(b) DGCA hub neighbour gene enrichments. (c) DGCA neighbour gene log2FCs.

Figure 5.12: Differentially correlated hub genes. Differential gene correlation analysis
(DGCA) was performed (as in Section 2.3.10) on Mod 1 genes, between lesion and con-
trol samples. Significant differentially correlated edges were retained (FDR<0.05) and
hubness centrality measures computed as in (Section 2.3.8), retaining the top 25 genes
by hubness as "DGCA hub genes". In (a), the left-most plots show the number of differ-
entially correlated edges per hub are enumerated in, coloured according to DGCA edge
class, while right-most plots indicate the ranked centrality of each genes, coloured by
significant or non-significant up-regulation (dark red and light red, respectively), or signifi-
cant or non-significant down-regulation (dark blue and light blue). (b) shows the Z-scaled
relative expression of hub genes across samples, split by module eigengene (ME) clus-
ters (Section 5.6. Heatmap row annotations represent module colours. Neighbours of
DGCA hub genes were subject to gene set over-representation analyses on on their up-
regulated sets and these are presented in (c), coloured by adjusted p-value. Log2FCs for
DGCA hub neighbours, split and coloured by DGCA edge class, are shown in (d).



164

5.9 Chapter Discussion

In summary, the analysis in this chapter aimed to model the transcriptomes of KS le-

sion samples as a co-expression network and interrogate the resultant network model to

gain insights into key genes that may drive KS. This involved partitioning of the network

into modules, followed by ontological and expression analysis of partitioned modules.

Subsequent analysis of co-expressed (WGCNA) hub genes suggested possible key sig-

nalling hubs and associated process important to lesion development. Finally, extension

to differential co-expression network analyses, comparing lesion to paired control tissues,

revealed possible key genes involved in the development of otherwise normal to lesion

tissue. The subsequent section will aim to discuss these findings in context of the chapter

results and methods as a whole.

Batch adjustment was performed which appeared to be successful in removing the in-

fluence of batches and maintaining the effect of endemic samples, despite complete

confounding (Fig 5.1, 5.2 & 2.1). While this may still somewhat compromise the sig-

nal that delineates between endemic and epidemic samples, this was not of interest to

this study as this difference was essentially a nuisance parameter. Still, we cannot en-

tirely rule out the influence of endemic samples to multivariate analyses as, such as PCA

(both transcriptome-wise and module-wise) and module assignment, particularly as we

found Mod 13 to be significantly enriched for the uniquely differentially expressed en-

demic genes (p<0.05). However we did take steps to decrease their impact, including

choosing a ranked measure (Spearman’s ρ) of co-expression, which negates the greater

magnitude of differential expression in endemic samples as well as choosing to focus on

Mod 1 for DGCA analysis, the disease module least associated with endemic samples.

3 major modules contained viral genes, Mod 1, Mod 6 and Mod 13, however only Mod

1 and Mod 13 were positively associated with lesion development (Fig 5.5 & 5.9). Mod

6 on the other hand appeared refractory and its gene ontological enrichments were pre-

dominantly immune in nature, namely Th1 CD4 T cell responses, which may indicate an

association between these viral genes and an appropriate immune response, which could

limit lesion development (Fig 5.9 & 5.6). All Mod 6 constituent genes were lytic, which is

known to be more immunogenic. Conversely while Mod 1 contained many lytic genes,

it was strongly associated with lesion development (Fig 5.9). However these lytic genes

were predominantly early lytic and included the key lytic activator gene, ORF50, and was

associated with early lytic host functions, such as histone modifications and regulation of

gene expression (Fig 5.9 & 5.6). Interestingly this could be evidence for the importance

of an abortive lytic cycle in KS lesion development.
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WGCNA hub genes were shown to be enriched for processes known to be important

to the life cycle and pathology of KSHV as well as KS, such as ERK signalling and

angiogenesis. Importantly, hub genes tended to be upstream regulators of these pro-

cesses, including NRas and associated exchange proteins (RASGRF2/3 and RASSF10)

and RPS6KA3, and downstream effectors including ETS1, β-catenin and TCF4. ETS1

and β-catenin both have previous well-defined influences to KS and KSHV, with ETS1

being previously predicted to be activated via Ingenuity Pathway Analysis (IPA) in Tso et

al., [16, 318]. The reason these genes and not ERK pathway components themselves

were identified as hub genes likely relates to the transience of MAPK signalling, a greater

coupling between the gene expression of transcription factors and their regulons as well

as the importance of convergence of multiple signals via the upstream regulators [319].

Interestingly, the most high-ranking DGCA hub gene, LRRK2, has a MAPK kinase kinase

(MAPKKK) domain that is known to activate downstream ERK signalling and this may

implicate it in this signalling axes.

Additional notable processes significantly enriched in WGCNA hub genes were those

related to mitosis and chromatid dynamics. This was in-part due to the presence of

pRb and it’s co-factor E2F3 but also the presence of SMC ATPase proteins, primarily

SMC1A, SMC2 and SMC6, components of the SMC1/3 (cohesin), SMC2/4 (condensin)

and SMC5/6 complexes, respectively, as well as SLF2, a component of SMC5/6 com-

plexes. These complexes are critical to proper regulation, assembly and separation of

chromatids during mitosis, as well as effective DNA repair mechanisms, and thus their

dysregulation has obvious oncogenic potential [132, 310, 317]. Moreover, KSHV is known

to exploit at least SMC1/3 complexes to manipulate its genome to favour conformations

and modifications that promote latency, while SMC2 is known to be transcribed by a

TCF4/β-catenin complex to promote oncogenic angiogenesis [50, 312, 320]. Perhaps

most-interestingly however, SMC5/6 complexes have recently described broad anti-viral

activity by super-compacting viral genomes, while many viral proteins target it for degra-

dation [133, 317, 321–327]. Most interestingly however, SMC5/6 proteins have been

shown to targeted to at least polyomavirus and adeno-associated virus (AAV) dsDNA

genomes by SIMC1, one of the most high-ranking DGCA hub genes, to instigate their

repression (Fig 5.12a) [317]. Therefore why SIMC1 would show positive relationships

with lytic ORF50-centric Mod 1 genes and lesion development, alongside an enrichment

of viral transcription in its neighbours is unclear (Fig 5.12b). The significance of this and

the previous insights are discussed further in the proceeding Discussion chapter.
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6 Discussion

KSHV is an oncogenic herpesvirus that extensively interacts with host cells, dysregulat-

ing almost all levels of gene expression in order to modulate host and viral processes.

This includes at the transcriptional level (eg RTA transactivation etc), post-transcriptional

level (eg SOX-mediated destabilisation of host transcripts) and post-translational level (eg

RTA, K3 and K5 ubiquitinylation) [21, 60, 77]. One post-transcriptional layer of host-viral

interactions that is emerging as important to KSHV is the modulation of gene expression

by targeting circRNA-mediated ceRNA networks. Given that little is known about the dys-

regulation of circRNAs by KSHV, particularly during KSHV lytic replication, one main aim

of this study was to identify differentially expressed circRNAs, miRNAs and mRNAs in or-

der to model and analyse the importance of ceRNA network dysregulation during KSHV

reactivation.

Host-viral interactions have pathogenic implications and contribute to KSHV’s patholo-

gies, which tend to be strongly associated with the replication and gene expression of

the virus. For instance KS, a highly angiogenic and atypical malignancy that KSHV de-

rives its name from, is believed to be predominantly driven by increased viral replication

that enables the increased expression of viral oncogenes, which ultimately drive cellular

transformation. However most work into this has been performed in already-transformed

cell line cultures and as such doesn’t immediately translate or scale to complex KS le-

sion tissue. Moreover, the influence of host factors remains poorly understood and the

means to investigate them in an unbiased manner has been limited. This was until the

recent publication of global RNA-Seq profiling datasets of KS lesions [94, 328? ]. There-

fore, another aim of this study was to interrogate one of these datasets by co-expression

network modelling in order to identify key hub genes that may play a crucial role in the

development of KS.

6.1 Relevance of network ncRNAs to viral infection and viral onocgenesis

The competing endogenous RNA network constructed assumed a directed structure in

which circRNAs inhibit miRNAs, which in-turn inhibit mRNAs. Given that each miRNA

can target 10s-100s of mRNAs and each circRNA can target several miRNAs, under this

model circRNAs represent potent regulators of such ceRNA networks, with miRNAs being

the primary "effector" intermediates. Centrality analyses facilitated the ranking of these

circRNAs and miRNAs and the identification of candidate hub circRNAs and miRNAs.

In general, most circRNAs have been poorly characterised due to the recency of their dis-
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covery, their ambiguity relative to linear products from their parental genes and the relative

difficulties in studying them. Perhaps the most interesting component circRNA of the net-

work was circHIPK3, which is one of the most extensively studied circRNAs with known

pro-oncogenic roles (Fig 4.4a & c) [71, 202, 329]. Moreover it has previously been char-

acterised by the Whitehouse lab as being up-regulated during lytic reactivation, where

it sponged 2 network miRNAs (miR-30c-1-5p and miR-29b-1-5p) to promote lytic repli-

cation [71]. It’s detection as up-regulated in this study helps to confirm this occurrence.

Importantly, it has both pro-lytic and pro-oncogenic roles, meaning that it’s up-regulation

likely both promotes KSHV’s replication and induces an oncogenic phenotype indepen-

dent of KSHV, which, because KSHV replication drives most KS-associated cancers,

indicates it has strong transforming potential in KS-associated disease [71, 202]. How-

ever circHIPK3’s relatively low rankings in terms of centrality scores does indicate that,

while certainly influential, other circRNAs have the potential to be even moreso (Fig 4.4a

& c). These may have been may have been missed by previous studies, such as Harper

et al., 2022. One circRNA, circBAGE3, is potentially interesting as it was consistently

the most high-ranking circRNA by all centrality metrics (Fig 4.4a & c). However to the

best of our knowledge, this circRNA has not been previously studied. On the other hand,

multiple isoforms of circARHGEF12, another high-ranking circRNA, have previously been

shown to be differentially expressed between liver tissue from healthy patients and those

with chronic HBV infection [330]. In contrast however, it was down-regulated during lytic

replication (Fig 4.4, 4.5 & 4.1). One alternative isoform (hsa_circ_0024615) has been

observed to be down-regulated in gastric cancer and it’s role was attributed to predicted

sponging of miR-134 and miR-590, de-repressing SMAD4 and CTNNA1/CTNNA2 [331].

Neither of these miRNAs were differentially expressed, but the involvement of CTNNA

genes may indicate a role of this circRNA in angiogenesis, however neither CTNNA1 or

CTNNA2 were themselves differentially expressed. Nonetheless, its involvement in can-

cer and in-particular a chronic virally-driven cancer may indicate a role of this circRNA in

KSHV’s oncogenesis.

While the known prevalence of viral ceRNA interactions at present is limited, some no-

table parallels can be drawn between the findings of this study and previous work. Notably

miR-27a-5p was down-regulated in this study, a known anti-viral miRNA that inhibits at

least adeno associated virus (AAV), HCV, HVS, MCMV and Respiratory syncytial virus

(RSV) by targeting a range of pathways, including lipid metabolism, the cell cycle, im-

mune and ER signalling [196, 197]. Of most relevance to this study, it is known to be sup-

pressed by both HVS and MCMV-encoded miRNA-destabilising transcripts [196, 197].

Similarly, miR-17 92 cluster member miR-92a was down-regulated during KSHV reacti-
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vation and other members of this cluster (miR-17 and miR-20) have been shown to be

specifically targeted by the HCMV miRDE transcript [198]. Given that KSHV doesn’t en-

code equivalent transcripts, dysregulation of native cellular ceRNA networks by modulat-

ing the abundance of circRNAs that target such miRNAs may facilitate the equivalent sup-

pression of these miRNA by the virus. However these HVS, MCMV and HCMV-encoded

transcripts specifically induce degradation of their target miRNAs and, while instigating

miRNA sponge-like effects, aren’t strictly ceRNAs. Whether miRNA-circRNA binding in-

duces degradation of target miRNAs is still an area of active study.

6.1.1 The dysregulated ceRNA network is enriched for genes that promote viral

gene expression and DNA replication

The network protein coding genes were enriched for transcription, gene expression and

RNA biosynthetic processes (Fig 4.6a). Given that these were particularly enriched in

the up-regulated set of host genes, this would suggest that one function of the ceRNA

network is to promote such processes, potentially for the virus. The timing of the dif-

ferential expression (∼20hrs post induction of reactivation) is at the peak of early lytic

gene expression as viral DNA replication has just initiated. This could imply two things

depending on whether the changes represent an initiating cascade of gene expression

or signify the end of a wave of expression. In the prior case, increased RNA biosyn-

thesis and transcription may facilitate the expression of late viral genes which requires

distinct transcription complexes different for early lytic gene expression and are encoded

by early lytic genes, as well requiring viral DNA replication to have begun occurring [15].

In the second case, the ceRNA network could act early on in lytic replication to facili-

tate early lytic gene expression. However the limited differential expression of miRNAs

at as late as 16hrs (see Chapter 3.2) indicates that this option is less likely than the first.

Notably miR-29-1-5p’s targets in-particular were enriched for "RNA metabolic process",

"transcription, DNA-templated" and "RNA biosynthetic process" implying that the down-

regulation this miRNA was in-part responsible for the up-regulation of these processes

(Fig 4.8). In support of an effect of the ceRNA network on late lytic gene expression,

Harper et al., 2022 showed that miR-29b-1-5p over-expression specifically suppressed

expression of the late lytic genes ORF65 and KSHV DNA abundance at 72hrs post induc-

tion. Moreover, the network as a whole was enriched for tertiary (maximally expressed

48-72hrs post induction) and capsid proteins, however it was also enriched for early lytic,

secondary (maximally expressed 8-24hrs post induction) and viral genes involved in repli-

cation (Fig 4.6b).
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A notable protein-coding gene that ranked highly by centrality metrics was HIPK2, which

is involved in regulating gene expression. HIPK2 has previously been identified as a po-

tential target of KSHV’s miR-K12-4 via quick Cross-Linking, Ligation, and Sequencing of

Hybrids (qCLASH) [332, 333]. HIKP2 has roles in regulating transcription by phospho-

rylating transcription factors and components of the transcriptional machinery (Fig 4.6)

[281]. Moreover it can modulate chromatin states by interacting with PRC2 and various

histone acetylases/de-acetylases with repressive and pro-transcription roles [334]. Thus

de-repression of HIPK2 by the up-regulation and subsequent down-regulation of circR-

NAs and miRNAs during KSHV reactivation may promote KSHV lytic gene expression

and replication by promoting transcription of lytic genes. However HIPK2 promotes cell

cycle growth arrest and can induce apoptosis, largely by its phosphorylation of p53, pro-

moting the latter’s translocation to the nucleus to activate the expression of response

genes [281]. However, paradoxically, p53 activity is required for efficient gammaher-

pesvirus lytic replication, while at least EBV is known to promote HIPK2’s stabilisation to

promote lytic replication [56]. Thus de-repression of HIPK2 may serve to promote KSHV

lytic replication by promoting p53 activity.

Limited study into the dysregulation of metabolism during KSHV reactivation have been

performed. Lagunoff et al., have previously shown that glycolysis, glutaminolysis, and

fatty acid synthesis are up-regulated, which is proposed to overlap with KSHV’s dysregu-

lation of hypoxia signalling [335]. Both glutaminolysis and glycolysis can contribute to nu-

cleotide production [336]. However findings similar to the present study have been made

during lytic replication of other gammaherpesviruses. For example, a metabolomics

screen 24 hrs post lytic replication of the mouse gammaherpesvirus model MHV68 showed

that 9 of the top 12 most significantly increased metabolites were those produced during

nucleotide synthesis [337]. Moreover, cytidine metabolism in-particular has recently been

shown to be important for the maintenance of EBV infected transformed B cells [338]. In

addition, the alpha herpesvirus HSV1 dysregulates the TCA cycle to promote purine syn-

thesis via shunting metabolites through the pentose phosphate pathway [339]. While

these mechanisms are yet to be confirmed for KSHV, it does indicate that dysregulation

of nucleotide metabolism is a key factor for herpesvirus lytic replication. In general, such

modulation of cellular metabolism is believed to increase the abundance of nucleotides

and ribonucleotides for viral genomic replication and gene expression, respectively. Tar-

geting of circRNAs to dysregulate a ceRNA network that regulates it in order to facilitate

such metabolic changes is, to the best of our knowledge, a novel finding.

As well as modulation host metabolic pathways, KSHV encodes several enzymes that
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play a direct role in nucleotide metabolism. Interestingly, some of most high-ranking viral

genes targeted by this network have roles in DNA metabolism and replication including

thymidylate synthasee (ORF70), ribonucleoprotein reductase (ORF61) and uracil DNA

glycosylase (ORF46) (Fig 4.4b & d) [21]. Given that the timing of the dysregulated net-

work is roughly when viral DNA replication would begin and the network was enriched

for viral genes involved in replication, a complementary function of the ceRNA network

may be to promote viral lytic DNA replication. Otherwise given the interaction between

nucleotide and ribonucleotide metabolism, increased ribonucleotides may be funneled

into DNA replication to promote viral DNA replication, or vice versa. This indicates that

dysregulation of the ceRNA network may also facilitate de-repression of viral genes as

well as host genes involved in nucleotide metabolism.

6.2 A paradoxical involvement of SMC complexes in KS

Several SMC proteins were identified as WGCNA hub genes, indicating a central role in

KS lesions (Fig 5.11). SMC proteins are highly conserved factors found in all eukary-

otes and prokaryotes. They pair with other SMC proteins to form heterodimer ATPases

(SMC1/3, SMC2/4, SMC5/6), six of which comprise hexamer rings in-complex with other

proteins that act as adaptor or regulatory factors [310]. SMC1/3, SMC2/4 and SMC5/6

complexes are known as cohesin, condensin and SMC5/6 complexes, respectively [310].

In all organisms, they are essential for proper genome replication and chromosome seg-

regation during mitosis of both cancerous and non-cancerous cells. The presence of

members of each complex, SMC1A, SMC2 and SMC6, as well as SLF2, an SMC5/6

complex DNA adaptor protein, as WGCNA hub genes implicates these proteins as hav-

ing a considerable effect on gene expression within KS lesions.

KSHV is known to dysregulate cohesin and SMC5/6 complexes, indicating a link be-

tween KSHV’s activity and the perturbation of these genes in KS. Cohesin complexes

are exploited to regulate the chromatin structure of KSHV’s episome, to regulate the

latent-to-lytic switch [50, 320, 340, 341]. On the other hand, SMC5/6 complexes have

recently described roles in inhibiting viral replication and/or transcription, suppressing at

least KSHV, EBV, HBV, HPV, EBV, AAV, polyomavirus and HIV-1, an effect which is pro-

posed to be via inducing the compaction of target genomes [133, 317, 321–327]. More-

over at least KSHV, EBV, HBV, HIV and AAV encode proteins (RTA, BNRF1, HBX, VPR

and E4, respectively) that specifically inhibit SMC5/6 complexes, indicating that they are

important targets of viral dysregulation [133, 321, 323, 325, 342]. For KSHV RTA and

EBV BNRF1, degradation of SMC5/6 complexes specifically enable lytic replication, with
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KSHV RTA and EBV BNRF1 degrading them via ubiquitin-targeted proteasomal degra-

dation [133, 323]. Interestingly, the Mod 1 DGCA hub genes, SIMC1, is a paralog of the

SMC5/6 adaptor protein SLF1 that complexes with SMC5/6-SLF2, which has been shown

to facilitate targeting of SMC5/6 complexes to polyomavirus and AAV genomes, restrict-

ing their replication (Fig 5.12a) [316, 317]. Moreover, SLF2 but not SLF1 has previously

been shown to be essential for the localisation to and transcriptional silencing of SMC5/6

to non-integrated HIV-1 DNA [324]. This research has highlighted a new mechanism of

viral restriction by host cells as well as a novel interface between viruses and host cel-

lular genome replication and maintenance machinery. Importantly it indicates that such

mechanisms occur in KS lesion tissue and that the factors involved in them are central to

the process of lesion development.

Given the growing body of work indicating a viral restrictive role for SMC5/6-SIMC1 com-

plexes, it seems paradoxical that SIMC1 should be associated with lesion development

given the strong association between increased viral replication and this process (Fig

5.12). In fact, SIMC1’s DGCA network neighbours were predominantly up-regulated and

enriched for "viral transcription" (Fig 5.12c). Moreover, the presence of SIMC1 in Mod 1

is antithetical to previous work due to it’s observed inhibition of KSHV lytic replication and

RTA’s degradation of it’s protein product [323]. This all indicates a positive association

with SIMC1 expression, lesion development and viral gene expression.

One clue to resolve this may come from the detection of this association in a cancerous

lesion. It could be that SIMC1 targets SMC5/6 to KSHV episomes but the protein complex

is subsequently degraded by RTA, abrogating its anti-viral impact. If the cell continues to

transcribe and translate SIMC1, SMC5/6 and SLF2 mRNA, new complexes may be con-

tinually diverted from native DNA repair processes in a failed attempt to repress KSHV

gene expression and replication. This could be particularly impactful in the context of KS,

where massive up-regulation of viral replication is associated with lesion development.

Such diversion of SMC5/6 complexes may promote genomic instability, driving lesion de-

velopment. Indeed, SIMC1’s DGCA neighbours were enriched for processes related to

this, primarily "DNA repair", "response to ionizing radiation" and "sister chromatid cohe-

sion". Moreover, SMC5/6 has important roles in genome stability and its deletion has

been shown to result in increased nuclear bridges, micronuclei, mitotic catastrophes, all

associated with aberrant mitosis, DNA damage and cellular transformation [132, 309].

Such aberrations have previously been observed in KSHV-transformed cells and in KS

spindle cells [122, 132, 343]. Further support for this mechanism comes from the ob-

servation that SIMC1 has been shown to compete with SLF1 to complex with SMC5/6
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complexes, indicating a competitive nature between SMC5/6 complex targeting to native

host cellular and viral genomes [317]. Importantly, such an occurrence could explain why

SIMC1 is positively correlated with lytic gene expression at the mRNA level. In fact, Han

et al., observed a significant increase in SMC5 mRNA abundance upon lytic induction and

ectopic ORF50 expression, while SMC6 was increased at the mRNA level in lesion tissue

in the current study (log2FC=1.03) [323]. Similar mechanisms may apply to other onco-

genic viruses that are known to dysregulate SMC5/6, such as HBV, EBV and AAV and

may underpin some of their oncogenic potential. However a major issue with this model is

that it does assume that KSHV is incredibly efficient at de-repressing SMC5/6-mediated

silencing and so much so that increased SIMC1 mRNA abundance doesn’t increasingly

suppress viral replication, which could be expected to result in a negative correlation.

Moreover, SMC5/6 complex impairment is associated with p53 signalling and cell cycle

arrest, however KSHV is known to co-opt and dampen these responses, respectively, to

promote lytic replication [344].

Another explanation may be that SMC5/6 complexes promote some form of abortive lytic

replication as seen for EBV [133]. Specifically, Yiu et al., observed that deletion of the

SMC5/6 destabilising protein BNRF1 resulted in repression of replication compartment

formation, late lytic gene expression and infectious virion production. While this could

be expected to result in a negative correlation with classically late lytic genes, BNRF1

is itself a late lytic gene and Yiu et al., observed an up-regulation of some EBV’s late

lytic and many early lytic genes upon suppression of BNRF1 [133]. Moreover it may

explain why some viral genes were observed to correlate negatively with PC1_paired

and PC1_lesion (Fig 5.9 & S9). In this model, oncogenesis is likely driven by the facil-

itation of the expression of viral oncogenes during such abortive lytic gene expression

programs. Other mechanisms are possible too. For example, secreted factors produced

by cells undergoing lytic replication may induce SIMC1’s expression as a restriction factor

in neighbouring cells that either don’t contain the virus or that drive the virus into latency.

However this would presumably inhibit further viral infection thus at the tissue level, lead-

ing to reduced viral gene expression and thus a negative correlation between SIMC1 and

viral gene expression. Another possibility is that SIMC1 has alternative functions that

may be independent of SMC5/6 that are oncogenic in some regard. Finally, SIMC1 may

function to repress HIV-1 into latency, which may have pro-oncogenic effects.

Overall these models are all highly speculative, but the positive relationship between a

viral restriction factor, viral gene expression and preogression of a virally-caused disease

in nontheless highly interesting and could indicate a novel mechanism for how a viral
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restriction factor is perturbed to promote a viral-driven cancer.

6.3 A role for LRRK2 in KS

LRRK2 was identified as the most high-ranking DGCA Mod 1 hub gene Fig 5.12b. It

is a well-studied kinase predominantly known for it’s role in Parkinson’s Disease (PD);

primarily the G2019S gain-of-function mutation in its MAPK kinase kinase (MAPKKK)

domain that predisposes towards it [314, 315]. There are some interesting parallels be-

tween the occurrence of PD and KS. Primarily, G2019S is found in 20-40% of individuals

of the Ashkenazi Jewish demographic, a population that also shows a preponderance

for classic KS (further detailed in Table 6.1a) [315, 345, 346]. This could indicate a link

between the catalytic activity of LRRK2 and susceptibility to developing KS. In addition,

PD shows a 2-fold increased prevalence in men than women, something observed in KS,

while the G2019S mutation shows differential impacts on NFAT signalling between male

and female mice, a pathway that promotes KSHV’s lytic replication [347].

Further studies have provided additional pathogenic roles for LRRK2, notably in chronic

inflammation which contributes to PD as well as leprosy [315, 348]. In fact, like PD KS

shows some interesting similarities to leprosy which may further implicate LRRK2’s in-

volvement in KS (see Table 6.1b for relevant points). Moreover another chronic inflammatory-

mediated pathology, Crohns disease, is more prevalent in Ashkenazi Jews and is be-

lieved to be associated with LRRK2 [315]. Finally, LRRK2 is known to activate NF-kB

and the NLRC4 inflammasome, as well as being suggested to act as a PRR like NOD2

[315, 347, 349–353]. These observations specifically implicate LRRK2 as an important

factor in driving complex, chronic immune-driven disorders as well as at least one that is

largely driven by chronic infection of an intracellular parasite.

One thing to note however is that LRRK2’s neighbour genes were not enriched for directly

immune-related processes (Fig 5.12c). Instead enrichments included "positive regulation

of chromosome organisation", "regulation of cell cycle process" and "DNA repair" among

others, implying against a role of LRRK2 in immunomodulation in KS (Fig 5.12b). Instead,

these enrichments suggest a role of its MAPKKK activity in promoting these processes

via downstream promotion of MAPK activity. Indeed LRRK2 is known to interact with

the MAPK pathway components MKK3, 6, 7 and JIP4 as well as being implicated in ac-

tivating downstream ERK signalling to promote PD [360]. This may indicate it’s role in

driving the downstream ERK factors associated with KS, identified in Chapter 5.7, such

as such as ETS1. Additionally, it is also known to drive Wnt/β-catenin signalling and one

of its differentially correlated neighbours was TCF4, a WGCNA hub gene. Importantly,
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(a) KS and Parkinson’s disease

• The G2019S gain-of-function mutation is the most common causal variant in Parkinsons disease and is over-
represented in the Ashkenazi Jewish population. This population also shows increased susceptibility to KS as
well, namely non AIDS-associated classical KS [315, 345, 346].

• Chronic inflammation is a key contributor to neurodegeneration and LRR K2 contributes to this, activating NFkB,
the NLRC4 inflammasome and NFATC, all pathways considered important to the development of KS [348].

• PD patients exhibit raised serum inflammatory cytokines (IL-1B, IL-6, IL-8, TNFa, IFNy, MIP-1 and MCP-1)
common to KS [315].

(b) KS and Leprosy

• KS and leprosy show clinical similarities such as forming vascularised lesions that tend to occur on older men,
on the lower trunk, legs and feet and lesions initially retain sense that is lost with progression [354].

• Both leprosy and KS are driven by complex and innappropriate immune reactions to a replicating intracellular
parasite [355].

• Leprosy is associated with increased systemic inflammatory cytokine levels like KS (TNFα, IFNγ and
IL1β/6/8/10) [356].

• De-vascularisation of both KS and leprosy is associated with regression [357, 358].

• Like KS, leprosy been linked to the development of carcinomas in-part due to increased pathogenic load; a
feature similar to KS [355].

• Both KS and leprosy can be treated with thalidomide and its derivative pamolimide, which promote CD4+/CD8+
co-stimulation and via inducing the degradation of ikaros (IKZF1) and aiolos (IKZF3), which modulate IL-6,
VEGF and TNFα [359].

Table 6.1: Similarities between KS, Parkinson’s disease (a) and leprosy (b), with respect
to the involvement of LRRK2.

TCF4/β-catenin signalling is known to drive SMC2 expression, which may link LRRK2 to

SMC dynamics, which as discussed in the previous section, may contribute to lesion de-

velopment [312]. LRRK2 has also been shown to be phosphorylated by ATM in response

to DNA damage, which up-regulated p53 and p21 expression to inactivate MDM2 via

phosphorylation, surprisingly promoting cell cycle progression through the G1/S phase

checkpoint and cellular proliferation [312]. Interestingly, there have been some proposed

associations between PD and DNA damage, with LRRK2 and ATM implicated, while

LRRK2 gain-of-function mutations have additionally been linked to mtDNA damage and

dysfunction [361, 362]. Given that p53 activity is increased and required for lytic replica-

tion, this mechanism may underpin some of the cancer-like effects of KSHV lytic replica-

tion [177].

LRRK2 also regulates many aspects of vesicle transport and accordingly, the neighbours

of LRRK2 were also enriched for GTPase activity-related terms and "Golgi vesicle trans-

port" (Fig 5.12b) [363]. An aspect of this is its capacity to regulate the actin and mi-

crotubule cytoskeletions and the latter seems most important as "organisation of micro-

tubule organising center" was also enriched in its neighbours and it is known to interact



175

with PAKs, of which PAK2 and 6 were both WGNCA hub genes [363]. Indeed it contains

small GTPase activity and it is associated with various GAPs and GEFs as well as Rac1

and Rab5/7 [315, 348]. Interestingly it regulates autophagy and phagocytosis which,

unlike other herpesviruses (EBV, HCMV and HSV-1), increases upon induction of lytic

replication [364]. This may be because it provides catabolites via degradation of cellular

macromlecules, limits antigen presentation to the cell surface or lysosome-resident PRR

detection and prevents maturing virions targeting to lysosomes. Moreover LRRK2 activity

has been shown to inhibit late stage phagosome/autophagosome fusion with lysosomes

which may be of benefit to newly infecting viruses for for viral exit [348]. This may also

promote cancer development by inhibiting the process of autophagy which in-turn may

inhibit apoptotsis, thus contributing to the neoplastic nature of KSHV-infected cells [365].

LRRK2 has never been conclusively linked to KSHV or its pathogenesis, however a re-

cent machine-learning kinase inhibitor screen did predict LRRK2 as regulating KSHV

reactivation [366]. It is worth noting that the authors were unable to validate this pre-

diction via siRNA-targeting of LRRK2, but they suggested that this may be due to the

essentiality of LRRK2 to cellular survival resulting in poor knockdown efficiencies [366].

In the context of the present study’s findings, LRRK2 would appear to have some asso-

ciation with lytic replication given its presence in Mod 1 and, importantly, an association

with the pathogenesis of KSHV, specifically KS. One model could be that it’s MAPKKK

domain may promote lytic replication as well as having mitogenic and angiogenic effects,

which directly contribute to viral replication and initial lesion development, respectively,

ultimately driving lesion progression. This would provide a mechanistic link between the

overactive MAPKKK domain G2019S mutation, viral replication and lesion development.

Such a model is highly speculative however, given the complexity of lesion tissue and the

factors that may influence its development.

While it is difficult to ascertain which if any of these mechanistic roles of LRRK2 contribute

to KS, it is nonetheless highly interesting that so many show relevance to mechanisms

that are associated with KSHV’s pathogenesis. Moreover its high ranking by hubness

and presence in Mod 1 implicates it as a key factor associated with shift from non-lesion

to KS tissue, associated with lytic replication.

6.4 A discussion on the datasets used in this study, their limitations and

improvements to the overall study design

Some key problems with the datasets used for this study require considerations. For

Chapters 3 and 4, the main issues were two-fold: 1., a violation of a key distributional as-
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sumption of most RNA-Seq library normalisation with a confounding source (SOX cleav-

age of host transcripts and RNA composition bias by increased viral reads) and 2., a

lack of replication for the 0hr latent time point for circRNA microarray. We feel that the

first point is primarily a problem of analysis that we have largely mitigated and we re-

iterate that it is not an issue that we have encountered being explicitly accounted for in

any studies using differential expression applied to KSHV. The second has obvious con-

sequences as it provides poor estimates of circRNA expression means and variances

and thus greatly limits the confidence in the circRNA candidates presented. An obvious

solution would be to generate a further biological replicate pair of 0 and 20hr lytic in-

duction experiments. However given that the study of circRNA is still in relative infancy,

especially applied to KSHV, circRNA-Seq-based approach (NGS sequencing of RNase

R-treated RNA-Seq samples) would likely be more appropriate, as further quality-control

and analytical steps can be performed on circRNA-Seq data, alongside enabling the de-

tection of both novel viral and host circRNAs [278]. Additionally, a recent improvement

on traditional circRNA-Seq is CircRNA identification using A-tailing RNase R approach

and Pseudo-reference alignment (CARP), which would improve confidence in the de-

tected circRNAs [278]. This adds an "A-tailing" step to the standard circRNA enrichment

protocol, whereby RNase R-treated samples are subject to polyadenylation and polyA tail

depletion, from which circRNAs are quantified and their relative abundances compared to

untreated samples, in order to identify "RNase R-sensitive" reads that indicate false pos-

itive circRNAs, thus facilitating their elimination [278]. Such robust circRNA detection as

well as a pseudo-mapping approach employed also facilitates greater confidence in as-

signing circRNA identity and length, limiting the issue with circRNA ambiguity previously

discussed in Chapter 4.6. This would greatly improve the confidence in any analyses

performed, inferences applied and conclusions gained to them.

For Chapter 5, the issue with the data-set was due to confounding of all endemic patients

in one batch. We speculate that this was likely due to the practicalities of accumulating

a dataset for a relatively infrequent disease in a clinical setting. While we tailored our

analysis to minimise the influence of this, it confers ambiguity to the data, both in terms

of the difference between KS forms but also the presence/absence of HIV-1. An obvious

solution is to re-sequence the samples with a more balanced batch design. Alternatively,

different data-sets could be utilised and at least two, Rose et al., and Ramaswami et

al., could have been analysed with or in-parallel to the Lidenge et al., dataset [18, 94].

Both data-sets comprise only epidemic KS samples, while Rose et al., is the largest,

comprising 41 KS samples sequenced to a greater read depth but no matched controls,

whereas Ramaswami does comprise control samples but is split between epidermal (10)
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and gastrointestinal (12) KS samples, sequenced in unknown batches and largely un-

known experimental designs. However at the time of this study we were limited to using

the Lidenge et al., dataset because the Rose et al., samples in the GEO repository only

comprised viral-mapped reads and we were unable to acquire the full data from the study

authors, while the Ramaswami et al., dataset is yet to be made public at the date of

writing. We hope that these data and further data are made available quickly to enable

more-intergrative analyses or validation studies to be performed.

6.5 Conclusions and further perspectives

The first half of this thesis facilitated the investigation of dysregulated ceRNA networks

between the latent and lytic replication states of KSHV. While the unbiased approach fa-

cilitated a global perspective on circRNA/miRNA/mRNA ceRNA network dysregulation,

further work could specifically investigate individual circRNAs and their associated miR-

NAs and wider "effectome". Much of this has been performed for circHIPK3 and miR-30b,

miR-30c and miR-29b in Harper et al., 2022. However validation of the expression of the

other circRNAs, particularly more highly-ranking ones such as circARGHEF12 and cir-

cBAGE3 could provide further insight. Additionally, regulatory interactions between miR-

NAs and their predicted mRNA and circRNA interactions could be established via the use

of miRNA mimics and/or cross-linking or co-immunoprecipitation studies.

This study was entirely based off of binary comparisons between static time points from

samples that were not matched. As such is limited in its capacity to detect gradual or non-

monotomnic changes in gene expression over time which, given circRNA’s relatively slow

expression but prolonged stability, may be a critical factor. As such circRNA, miRNA and

mRNA expression could be measured over time to better characterise their expression

profiles and relate changes in their abundance to specific stages of lytic replication.

The second half of this thesis has focused on modelling and investigating co-expression

networks derived from KS lesion tissue. Subsequent investigation of the network model

via centrality analyses enabled the identification of sets of candidate hub genes with

proposed roles in KS (Fig ???5.11). Such hub genes were enriched for angiogenic pro-

cesses and those related to ERK signalling, chromatid dynamics and mitosis. However

such analysis was relatively localised to phenomenological relationships between iso-

lated genes. Instead more integrative differential pathway analysis or subnetwork enrich-

ment approaches could provide evidence for specific dysregulations of groups of interact-

ing of genes, for example those associated with Ras, β-catenin or ERK signalling. This

would help confirm not just the involvement but the differential activity of these processes
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in KS lesions, relative to un-transformed tissue.

A differential correlation network was constructed for Mod 1 and "DGCA" hub genes

identified, with LRRK2 and SIMC1 ranked particularly highly (Fig ???5.12). When con-

textualised with WGCNA hub gene enriched processes, ERK signalling and chromatid

dynamics and mitosis, this highlighted their involvement in KS as key determinants in

driving the development of lesions. However such work via solely bioinformatic means

cannot confirm the involvement of genes in processes, only propose and rank candi-

dates for further study. Therefore an obvious necessary follow-up would be to perform

biochemical validation of proposed candidate genes in cell lines or models of KS. Sim-

ple perturbation experiments in cell lines would indicate the importance of the proposed

novel factors. However given the complexity of the proposed models of SIMC1’s and

LRRK2’s contribution to KS development as well as the latter’s known importance to cell

viability, study of such influences would be challenging [366]. To study the the SMC5/6

"depletion" model in vitro, measures of DNA damage and genomic instability could be

assessed at increasing levels of exogenous RTA expression under a dose-dependent

promoter, while measuring SIMC1 at the protein- and transcript-level. This could be com-

pared to a cell-line whereby RTA’s capacity to induce SIMC1 degradation is abrogated.

Similarly, to preclude any auxiliary effect of RTA, RTA’s degradation of SIMC1 could be

emulated via somatic-line editing of the SIMC1 gene via CRIPSR or other means to

generate endogenous recombinant SIMC1 with a hyper-active ubiquitinylation (or other

degradory) signal present to target SIMC1 for proteasomal degradation. This Additionally,

as a continuation of the present study, Mutec could be applied to quantify mutational load

from the RNA-Seq data and used as a response variable in machine learning models to

determine which hub genes contribute most to DNA damage. This could be related to

protein-level measurements of SIMC1 activity and contrasted to the relationships at the

transcript-level.

The study of LRRK2 by knockdown and especially knockout would likely be difficult due

to confounding with decreased cell viability. A weak knockdown approach could be em-

ployed, normalising by viable cell count to attempt to limit such confounding. Alterna-

tively, to establish an interaction between KSHV gene products and LRRK2, unbiased

viral protein-LRRK2 proteomics could be performed using LRRK2 as bait in a pulldown

followed by mass spectrometry. Aside from biochemical studies, given the possible asso-

ciation between LRRK2’s G2019S mutation, KS and PD as well as the prevalence of the

latter two in the Azshkenazi Jewish population studies, it would be interesting to identify

a link between the co-occurence of KS and this mutation and/or PD, in this and similar
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genetic backgrounds.

Finally, although co-expression network analysis has been successfully applied to com-

plex tissues in the past, such studies are always limited by their cellular mileau. Many of

the proposed genes, such as LRRK2, are known to be particularly associated with im-

mune cells of which previous work indicates extensively infiltrate lesions. Therefore one

aspect of experimental follow-up studies could involve determining the importance (or

even presence) of these genes in various models of such cell types. Primarily, scRNA-

Seq performed on KS lesions would greatly increase understanding as to how the candi-

date genes proposed in this thesis relate to the development of KS.

On-the-whole, this study aimed to model the transcriptomes of KSHV-infected cells and

KS lesions as networks, followed by subsequent interrogation of such networks to pro-

pose novel factors that may contribute to the pathogenesis of KSHV and progression of

KS. Although such work is largely exploratory in nature, the sets of candidates identi-

fied provide a resource that can be used by researchers performing further work into the

pathogenesis of KSHV.
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7 Appendix
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7.1 Lytic competing endogenous circular RNA network
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7.1.1 Differential expression analyses performed with additional methods for scale

factor derivation

(a) CPM-derived scaling factors.

(b) EdgeR TMM-derived scaling factors.

Figure S1: Differential expression between latent and lytic infected cells usign different
normalisation methods. Differential expression using DESeq2 was performed between
0 (latency) and 24 hours post Dox-mediated induction of TREx-RTA-BCBL1 cells us-
ing CPM- (a) and edgeR’s TMM-derived scaling factors. Volcano plots showing -log10
adjusted p-value and log2FC are shown in leftmost plots while MA plots showing log2 av-
erage expression (log2AE) against log2FC. Genes/s are coloured according to whether
they were not significantly differentially expressed (FDR≥0.05) (grey) or were significantly
differentially expressed host (orange) or viral (purple) genes. Red lines in MA plots indi-
cate the median log2FC for all genes, regardless of significance.
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7.1.2 Gene ontology analysis on K-core decomposed network protein coding genes

(a) Host GO BP gene set enrichments.

(b) Viral gene set enrichments.

Figure S2: Significantly enriched gene ontology (GO) biological process (BP) (a) and
viral gene (b) sets in K-core decomposed network genes. Over-representation analyses
(ORA) were performed on all network protein-coding and viral genes for K-core decom-
posed networks (K=2,3,4). Enrichment results are split according to K. Results are filtered
by FDR<0.05 via one-sided Fisher’s exact tests. Dot sizes indicate the number of genes
in each gene set that are annotated for that gene set and coloured by FDR-adjusted p-
values.
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7.2 Kaposi sarcoma biopsy RNA-Seq co-expression network analysis
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7.2.1 KS biopsy sample expression distributions

(a) Limma (b) Limma (HIV-1)

(c) ComBat (d) ComBat (HIV-1)

(e) ComBat-Seq (f) ComBat-Seq (HIV-1)

(g) Un-Adjusted

Figure S3: Sample-wise expression distributions of various batch adjustment methods.
The log2 TPM expression of all genes in each sample are presented for various batch
adjustment schemas (a-f) as well as un-adjusted data (g). Individual subfigures show data
adjusted with Limma’s removeBatchEffect() (a & b), ComBat (c & d) and ComBat-Seq (e
& f). Left-most plots (a, c & e) show expression data without the inclusion of HIV-1 co-
infection (epidemic/endemic) labels as a covariate during batch adjustment, while right-
most plots (b, d & f) show expression data with the inclusion of this covariate during batch
adjustment. Samples are coloured according to the batch that they were sequenced in.
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(a) Limma (b) Limma (HIV-1)

(c) ComBat (d) ComBat (HIV-1)

(e) ComBat-Seq (f) ComBat-Seq (HIV-1)

(g) Un-Adjusted

Figure S4: Sample-wise expression distributions of various batch adjustment methods.
The log2 TPM expression of all genes in each sample are presented for various batch
adjustment schemas (a-f) as well as un-adjusted data (g). Individual subfigures show
data adjusted with Limma’s removeBatchEffect() (a & b), ComBat (c & d) and ComBat-
Seq (e & f). Left-most plots (a, c & e) show expression data without the inclusion of HIV-
1 co-infection (epidemic/endemic) labels as a covariate during batch adjustment, while
right-most plots (b, d & f) show expression data with the inclusion of this covariate during
batch adjustment. Samples are coloured according to whether they are from endemic or
epidemic lesion or control biopsies.
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7.2.2 PCA applied to paired KS lesion and control samples and corresponding

weighted euclidean distance between samples in PC1/PC2-space

(a) PCA: HIV-1 co-infection (b) PCA: Lesion Type

(c) wED: HIV-1 co-infection (d) wED:Lesion Type

Figure S5: Weighted euclidean distance between paired KS lesion and control biop-
sies. Principal Components (PC) score plots showing links between paired KS lesion
and control biopsies, coloured by (a) HIV-1 co-infection (epidemic/endemic) or (b) le-
sion morphology. Points indicate samples and lines indicate links between lesion and
control biopsies from the same patient. (c & d) Weighted euclidean distance (wED) be-
tween paired lesion and control samples, calculated as the euclidean distance between
respective eigenvalues of PC1 and PC2, weighting/scaling each PC-wise distance by the
proportion of variance explained by the respective PC. Bars in (c & d) are ordered by
increasing wED. Bars in (c) are coloured according to whether the patient had epidemic
or endemic KS and bars in (d) are coloured according to lesion morphology. Row labels
in (c & d) indicate patient IDs.
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7.2.3 Hierarchical clustering of pairwise correlation matrix of viral gene expres-

sion

(a) Co-expression clustering of all Pairwise Combinations of Detected KSHV Genes

(b) Co-expression clustering of All Detected KSHV Genes Relative to Canonical Latent Genes

Figure S6: Hierachical clustering on pairwise viral gene correlations. Batch-corrected,
log2 TPM-transformed viral gene expression profiles were correlated in a pairwise man-
ner using Spearman’s ρ correlation. Correlation matrices were clustered using agglom-
erative average linkage. (a) Pairwise gene-gene correlation heatmap for all detected viral
genes. 3 clusters were chosen. (b) Pairwise gene-gene correlation heatmap for all de-
tected genes and only the 7 latent genes (ORF71, ORF72, ORF73, K12A/B/C and viral
miRNAs). 5 clusters were chosen. Column-wise gene annotations include viral gene
functions, viral gene classifications, direct RTA responsiveness and maximal gene ex-
pression timings, as outlined in Section 2.1.6 and in the figure legend.
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7.2.4 Variance explained by PC1-4 of module-wise PCA

Figure S7: Percentage of variance explained by module eigengene and successive prin-
cipal components. A principal components analysis was performed on the module-wise
expression matrices, with the 1st principal component (PC1) taken as the module eigen-
gene. The percentage variance explained by each module eigengene and successive
PCs (PC2, 3 and 4) are shown, split by each panel.
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7.2.5 Viral gene-wise intramodular and global connectivities
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(a) Parental connectivity, by gene type. (b) Global connectivity, by gene type.

(c) Parental connectivity, by functon (d) Global connectivity, by function.

(e) Parental connectivity, by max expression
timing.

(f) Global connectivity, by max expression tim-
ing.

(g) Parental connectivity, by direct RTA respon-
siveness.

(h) Global connectivity, by direct RTA respon-
siveness.

Figure S8: Viral gene parental and global connectivity. The intramodular (a, c, e & g) and
global (b, d, f & h) connectivity (iC and gC, respectively) were calculated for each gene as
outlined in Section 2.3.8. Briefly, connectivity is the sum of a gene’s edgeweights, while
iC is the connectivity of a gene within the module that it was co-partitioned into, while gC
is the connectivity of a gene to the whole network [266]. Genes are ranked in order of
decreasing connectivity. Genes are coloured according to gene type (a & b), function (c
& d), maximal expression timing (e & f) and direct RTA responsiveness (g & h). Such
annotations are further detailed in Section 2.1.6.
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7.2.6 Biplots of KS lesion sample-only PCA, showing contribution vectors of viral

genes
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(a) Gene type. (b) Function.

(c) Maximal expression timing. (d) RTA Responsiveness.

Figure S9: Principal components score plots on lesion sample-only samples. A princi-
pal components analysis was performed on the 23 KS lesion sample-only, centered (but
unscaled) log2 TPM-transformed expression data. Only score plots for PC1 and PC2 are
presented. Additionally, factor biplots are presented showing the contribution vector of
individual viral genes to PC1 and PC2, colouring according to (a) gene type, (b) gene
function, (c) maximal expression timing and (d) direct RTA responsiveness (gene sets
outlined in Section 2.1.6). Viral gene contribution arrows are labelled with the viral gene
name if their contribution to PC1 or PC2 is greater than the mean contribution for PC1.
Samples in the upper two biplots (a & b) are coloured according to the viral gene expres-
sion programs, while samples in the lower two biplots (c & d) are coloured according to
lesion type. Percentages associated with axes represent the variance explained by each
respective PC.
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