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➢ A notable DL technique, the Physics-Informed Neural Network (PINN), 

integrates physics understanding into the modelling process. 

➢ This approach enables the model to incorporate physical principles into its 

inputs, enhancing its predictive capabilities despite limited data 

availability. 

➢ The structure of PINN layers varies based on the problem's nature. Within 

the hidden layers, hyperparameters such as weights and biases are adjusted 

during the training phase to minimise the loss function, which is generally 

defined by the Mean Squared Error (MSE) - a measure of the squared 

difference between outputs and target values [4].

Research Strategy

➢Urban flooding presents significant socio-economic challenges 

in cities, emphasising the need for effective flood forecasting 

[1]. 

➢Due to data scarcity and the necessity to account for real-time 

variable factors, Machine/Deep Learning (ML/DL) techniques 

are emerging as preferred solutions [2]. 

➢ These methods offer an advantage over slow, yet accurate, 

calibrated numerical models by handling limitations more 

efficiently [3]. 

Introduction

➢ This study aims to develop a PINN model to detect flood 

events at specific points in an urban drainage system during 

rainfall. 

➢ The model employs the Horton equation applied to the 

rainfall hyetograph (both time-dependent) to process real-time 

data. 

➢ This input allows the model to predict water level rises at 

certain points in the channel, identifying potential flooding. 

Aim and Objectives
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Loss Function: 

Minimize Mean Squared Error

= Min |h′-h|2 

*h = water level from historical data

σ = f(weight; bias)
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