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A B S T R A C T   

Due to their improved mechanical properties and adaptability, microplates with tailored variable thickness 
profiles are becoming essential parts of advanced micro- and nanoelectromechanical systems (MEMS and NEMS). 
This study conducts a thorough analytical analysis of the vibration properties of thermally loaded, multilayer 
functionally graded graphene platelet-reinforced composite (FG-GPLRC) microplates of linearly or parabolically 
varying thickness resting on viscoelastic medium under different boundary conditions. The Halpin–Tsai micro
mechanical model and the law of mixtures are employed to calculate the effective material characteristics for 
various reinforcement distributions in the microplate. These distributions encompass uniformly symmetric and 
asymmetric arrangements. The study utilized the first-order shear deformation theory (FSDT) in conjunction 
with the modified strain gradient theory (MSGT) and Hamilton’s principle to generate the dynamic governing 
equations for the structure, accounting for size-dependent effects. The resulting equations are afterwards solved 
using the utilization of the Galerkin technique. This enables the evaluation of the proposed solution’s correctness 
and precision. The impact of various factors on vibration behavior is investigated through numerical analysis. 
These factors encompass length scale parameters, temperature fluctuations, temperature distribution profiles, 
boundary conditions, the distribution pattern of the GPL, taper constants in both unidirectional and bidirectional 
scenarios, the weight fraction of the GPL.   

1. Introduction 

Structures and structural components that include thickness profiles 
customized in a spatial manner have attracted significant attention 
across diverse engineering disciplines owing to their improved me
chanical characteristics and ability to perform multiple functions [1]. By 
changing plate thickness in the in-plane directions, one can optimize 
stiffness and mass distribution to meet particular requirements in 
structural design challenges. This facilitates enhanced structural effi
ciency and significant weight reduction, which is particularly crucial for 

weight-sensitive applications such as those found in airplanes and 
spacecraft [2]. Moreover, the utilization of variable-thickness plates and 
shells offers advantageous customization of structural integrity, vibra
tional behavior, thermal conduction, heat dissipation, acoustic propa
gation, and other characteristics within micro- and nanoscale systems. 
Kumar et al. [3] analyzed the effects of porosity and an orthotropic 
foundation on free and forced vibrations in a plate of functionally 
graded material (FGM) of varying thickness lying on an orthotropic 
foundation. 

In recent years, much attention has been paid to microstructures and 
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microplates because of their new properties and numerous potentials 
uses across a wide range of industries. These microstructures are bene
ficial for advanced engineering applications because of their improved 
mechanical, thermal, and acoustic qualities, among other benefits [4,5]. 
In several disciplines, including electronics, MEMS, and biomedical 
engineering, microplates are essential for the development of 
high-performance devices [6,7]. The reliance on conventional contin
uum mechanics theories has been a prevailing practice in the prediction 
and understanding of the mechanical behavior of macroscale systems for 
several decades. However, the application of conventional concepts to 
structures at the micro and nanoscale presents several limitations and 
challenges. The primary reason for this is the significant influence of size 
effects and surface forces, which presents limitations and problems to 
their application. The constraints imposed by classical continuum me
chanics theories in accurately representing size-dependent events at 
micro- and nanoscales resulted in significant research efforts aimed at 
formulating non-classical theories. Eringen’s nonlocal theory (NT) was a 
seminal contribution that included long-range interatomic interactions 
in order to account for the scale effect [8,9]. This inspired various other 
non-classical formulations like the strain gradient theory (SGT) [10], 
modified strain gradient theory (MSGT) [11], modified couple stress 
theory (MCST) [12], and nonlocal strain gradient theory (NSGT) [13]. 
Each of these concepts has significantly contributed to our under
standing of mechanics on the micro- and nanoscale. The NT of Eringen 
encompasses a comprehensive framework for elasticity that includes the 
consideration of long-range interactions among atoms. In the context of 
the NT, it is important to note that the stress at a specific point is 
influenced by the strain at all points within the material [14–16]. The 
SGT is an elastic theory that incorporates the influence of strain gradi
ents, which are the spatial derivatives of strain [17]. Using dilatation, 
deviatoric, and rotational gradient effects independently of one another, 
the three length scale parameters in MSGT give a more accurate char
acterization of size effects [18]. The single length scale parameter in 
MCST incorporates the effects of microstructure and gradients in an 
average sense, providing improvements over classical continuum the
ories for small scale structures [19]. The concept of NSGT is a combi
nation of NT and SGT, which aims to describe the mechanical behavior 
of materials by considering the effects of both nonlocality and strain 
gradients [20]. A popular computational method used to examine the 
characteristics of micro- and nanostructures is molecular dynamics 
(MD). It involves modeling the interactions of individual atoms and 
molecules. While MD simulations provide valuable insights, their 
computational requirements are significant, rendering them impractical 
for large-scale systems [21]. However, non-classical theories offer a 
more efficient and computationally simpler method to analyze these 
structures, making them a great option for scientists and engineers. 
These non-classical theories have been extensively studied in recent 
years to examine the dynamic response of nano- and micro-plates with 
uniform and varying thickness profiles [22–27]. Phung-Van et al. [28] 
developed a scale-dependent NSGT isogeometric model to examine the 
behavior of metal foam nanoscale plates that have different porosity 
distributions. Hung et al. [29] used the extended higher-order shear 
deformation theory and MSGT to investigate the elastic instability and 
free vibration of magneto-electro-elastic microplates subjected to tem
perature fluctuations. The small-scale-dependent geometrically 
nonlinear flexural response of microplates with arbitrary forms and 
variable thickness composed of FG composites was investigated by Yang 
et al. [30]. A MCST has been developed, which integrates the von Kar
man large deflection assumption into a quasi-three-dimensional (qua
si-3D) plate framework. Hung et al. [31] employed MSGT in conjunction 
with higher-order shear deformation plate theory to investigate the 

vibration problem and buckling behavior of porous metal foam 
microplates. 

Functionally graded materials (FGMs) are a class of engineered 
materials that possess spatially varying characteristics according to a 
given gradient function. This enables the customization of mechanical, 
thermal, electrical, and other attributes in order to enhance overall 
performance. FGMs find extensive utility across several domains, 
including the aerospace, automotive, medicinal, and energy sectors 
[32–36]. The use of carbon nanotubes (CNTs) and composites to rein
force FGMs can further improve their performance. Functionally graded 
carbon nanotube-reinforced composites (FG-CNTRC) are composite 
materials that exhibit a gradient in their composition and are reinforced 
using CNTs [37]. The characteristics of FG-CNTRC may be customized to 
satisfy certain design specifications by spatially altering the distribution 
of CNT reinforcements. CNTs exhibit exceptional mechanical qualities 
and possess high electrical conductivity [38]. It is possible to create 
lightweight FG-CNTRC with improved strength, stiffness, fracture 
toughness, thermal conductivity, and electrical characteristics by evenly 
dispersing the CNTs [39]. Graphene, an allotrope of carbon with a 
two-dimensional structure, possesses remarkable mechanical, electrical, 
and thermal characteristics. The incorporation of graphene platelets 
(GPLs) into FGMs has been shown to significantly enhance their me
chanical properties, including strength, stiffness, fracture toughness, 
fatigue life, and thermal conductivity [40,41]. GPLR-FGMs exhibit 
exceptional customizable characteristics, remarkable strength-to-weight 
ratios, and notable resistance to corrosion. These attributes render them 
very auspicious materials for the implementation of innovative engi
neering applications in many industries, such as automotive [42], 
aerospace [43], and biomedical [44]. Nguyen and Lee [45] performed a 
comprehensive numerical investigation of the static and dynamic 
characteristics of smart FG microplates that are reinforced with GPLs 
and subjected to simultaneous mechanical and electrical stresses. The 
researchers employed a comprehensive numerical model that incorpo
rated refined plate theory (RPT), the MCST, and non-uniform rational 
B-spline (NURBS)-based isogeometric analysis (IGA) in order to examine 
the intricate behaviors shown by small-scale structures. Phung-Van et al. 
[46] introduced a highly effective and direct approach for examining the 
flexural and natural oscillation characteristics of multilayer FG-GPLRC 
nanoplates. Their methodology combines RPT with IGA, resulting in a 
thorough understanding of these intricate structures. Recently, Zhang 
et al. [47] studied the effects of combined aerodynamic and centrifugal 
pressures on the nonlinear dynamical characteristics of a composite 
spinning warping blade reinforced with FG-GPLs. The blade is essen
tially reduced to a rectangular, cross-sectioned spinning cantilever plate 
that is FG-GPLs -strengthened. The dynamic model takes into account 
four distinct GPL distribution patterns over the plate thickness. Based on 
the higher-order shear deformation theory and NSGT, Phung-Van et al. 
[48] numerically studied the effect of distributions of GPLs on the free 
vibration of FG-GPLRC nanoplates. 

After conducting a comprehensive review of the existing literature, it 
is evident that previous studies have primarily focused on investigating 
the dynamic behavior of FG-GPLRC rectangular plates with uniform 
thickness. Therefore, the novelty of this work lies in the development of 
an analytical model based on MSGTFSDT and its application to elucidate 
the vibration characteristics of FG-GPLRC variable thickness microplates 
coupled with a viscoelastic foundation and thermal loading, which has 
not been reported in literature before. The absence of comprehensive 
research in this area has provided major motivation for the current 
investigation, which seeks to fill this knowledge gap and enhance our 
understanding of the intricate relationship between temperature fluc
tuations and vibration characteristics in microstructures with varying 
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thickness. In order to compute the effective material properties, the 
micromechanical model developed by Halpin and Tsai as well as the law 
of mixtures are utilized. Uniformly distributed (UD), and three distinct 
forms of FG distribution (FG-A, FG-O, FG-X) are the four new ways that 
GPLs can be distributed. By utilizing Hamilton’s methodology, the 
governing equation is formulated using the FSDT and subsequently 
solved using the weighted residual (Galerkin) algorithm. The key nov
elties that this work presents are as: This is the first study combining 
MSGT with variable thickness modeling of multilayer composite 
microplates, enabling size-dependent vibration analysis. The synergistic 
modifications of graphene platelet reinforcements and thickness 
tailoring have not been reported for vibration behavior which is 
analyzed here. The proposed approach presents several advantages. 
Firstly, it excels in capturing size-dependent vibrational behavior by 
employing strain gradient modeling. Additionally, it offers enhanced 
design flexibility, enabling the fine-tuning of vibrational characteristics 
through the incorporation of graphene reinforcements. The method al
lows for a comprehensive parametric evaluation, facilitating tailored 
vibration control. The analysis extends to symmetric and antisymmetric 
graphene distributions across the thickness, contributing to a thorough 
understanding of the material’s behavior. However, certain limitations 
should be acknowledged. The exploration of parameters, including 
temperature gradients, taper forms, and various graphene types/shapes, 
is limited. The use of simplified interatomic potentials and interfacial 
behavior introduces constraints on the model’s accuracy. Furthermore, 
the absence of stability/buckling analysis under thermal and mechanical 
loading, as well as the lack of transient dynamic analysis or comparison 
with experimental results, highlights areas for improvement. Lastly, 
manufacturing constraints related to multilayer graded microplates 
remain unaddressed, posing practical challenges to the implementation 
of the proposed method. 

2. Mathematical formulation 

As seen in Fig. 1, the present study concerns a multilayer rectangular 

FG-GPLRC microplate modeled as a laminated structure consisting of NL 

discrete layers, each with identical thickness (hL(x, y) = h(x,y)
NL

, the overall 
thickness is h(x, y)) and with dimensions Lx and Ly, which is placed on a 
viscoelastic foundation. In the current work, perfect bonding between 
the graphene-reinforced composite layers has been assumed for 
modeling simplicity and maintainability of analytical solutions. The 
viscoelastic foundation is defined by a damping coefficient cd and 
Winkler stiffness kw. The FG-GPLR microplate thickness is considered to 
vary linearly (Fig. 1a) or parabolically (Fig. 1b) along one or two di
rections, resulting in a non-uniform thickness profile. This study exam
ines four distinct models of FG distribution to investigate the 
organization of the GPLs along the thickness direction (see Fig. 1c). The 
microplate is exposed to a thermal environment characterized by a 
temperature variation of ΔT. Different boundary conditions at the 
microplate’s edges are taken into account. The following are two- 
dimensional thickness variations of the FG-GPLRC microplate, as well 
as examples of linear and parabolic thickness changes [49]: 

h(x, y) = h0

(

1 +
αx
Lx

+
βy
Ly

)

, Bidirectional linear thickness variation,

h(x, y) = h0

(

1 +
αx2

L2
x
+

βy2

L2
y

)

, Bidirectional parabolic thickness variation,

(1) 

In every scenario, h0 represents the minimum thickness of the 
microplate. Furthermore, β and α present the taper parameters in y and x 
directions, respectively. 

2.1. The material properties of the variable-thickness FG-GPLR 
microplate 

The microplate is composed of a polymer matrix that is enhanced by 
the use of GPLs as filler material. The GPL reinforcements are graded in 
terms of both distribution and volume percentage along the thickness 

Fig. 1. A multilayer rectangular FG-GPLRC microplate of varying thickness resting on viscoelastic substrate as a function of temperature; (a) linearly varying 
thickness; (b) parabolically varying thickness; (c) four different FG models for the distribution of GPL reinforcements through the thickness. 
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axis. The laminated microplate structure has separate layers, each 
characterized by a distinct weight percentage of GPLs. The following 
formula is used to get the weight fraction of GPLs in the kth layer [50], as 
seen in Fig. 2: 

g(k)
GPL =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

g∗
GPL (UD)

4g∗
GPL

[
NL + 1

2
−

⃒
⃒
⃒
⃒k −

NL + 1
2

⃒
⃒
⃒
⃒

]
/
(2 + NL), (FG − O)

4g∗
GPL

[
1
2
−

⃒
⃒
⃒
⃒k −

NL + 1
2

⃒
⃒
⃒
⃒

]
/
(2 + NL), (FG − x)

2kg∗
GPL

/
(1 + NL), (FG − A)

(2)  

where k = 1, 2, …, NL. The term "g∗GPL" denotes the mean value of the 
volume fraction of GPLs over the cross-sectional area of the microplate. 

By changing the GPL gradation profile inside the laminated micro
structure, both the static and dynamic responses may be optimized. The 
uniform distribution (UD) ensures that the weight fraction of GPLs is 
evenly distributed throughout all layers. In the FG-X model, the pro
portion of the GPL is seen to be highest at the upper and lower surfaces, 
exhibiting a steady decrease towards the intermediate layers. This pro
vides superior strength and stiffness close to the borders. The FG-O 
pattern exhibits an inverse gradation, wherein the proportion of GPL 
is at its lowest on the surfaces and gradually increases towards the 
midplane in order to enhance the structural properties related to 
bending and shear. The FG-A pattern is designed to allocate the highest 
proportion of the GPL on the upper surface, gradually decreasing in a 
linear manner towards the lower surface. The attributes of each surface 
may be customized thanks to this asymmetric distribution. Using the 
weight fraction of GPLs (WGPL), the density of the GPLs (ρGPL), and the 

Fig. 2. Variation of the fundamental frequency of a linearly variable thickness FG-GPLRC microplate with number of layers for different GPL distributions and 
boundary conditions. 
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density of the polymer (ρM), one can simply calculate the volume frac
tion of GPLs (g∗GPL) as [51] 

V (k)
GPL =

WGPL

WGPL + (ρGPL/ρM)(1 − WGPL)
, (3) 

The FG-laminate microplate, in contrast to a homogeneous com
posite, exhibits layer-wise variation in characteristics due to its spatially 
variable reinforcing distribution. The graded laminate is made up of 
separate layers, and each one has a different elastic modulus. This is 
because the percentage of graphene platelets in each layer varies. The 
computation of the effective Young’s modulus (E(k)) of the microplate is 
performed using the Halpin–Tsai model in the following manner [51]: 

E(k) =
3
8

1 + ζLηLg(k)
GPL

1 − ηLg(k)
GPL

EM +
5
8

1 + ζwηwg(k)
GPL

1 − ηwg(k)
GPL

EM ,

ηL =

(
EGPL

EM

)

− 1
(

EGPL

EM

)

+ ζL

, ηw =

(
EGPL

EM

)

− 1
(

EGPL

EM

)

+ ζw

,

(4)  

in which EM and EGPL represent the Young’s modulus of the polymer 
matrix and Young’s modulus of GPLs, respectively. Furthermore, the 
Halpin–Tsai equations for composite elastic moduli incorporate further 
factors (ζL,ζw) that are contingent upon the geometry and properties of 
the GNP reinforcements: 

ζL = 2
aGPL

hGPL
, ζw = 2

bGPL

hGPL
. (5)  

where aGPL,bGPL and hGPL represent the average dimensions of GPLs, 
specifically referring to their length, width, and thickness, respectively. 
The thermal expansion coefficient, denoted as α(k), Poisson’s ratio, 
denoted as ϑ(k), and mass density, denoted as ρ(k), of the kth layer may be 
mathematically described using the rule of mixing. 

α(k) = αGPLV(k)
GPL + αM

(
1 − V(k)

GPL

)

ϑ(k) = ϑGPLV(k)
GPL + ϑM

(
1 − V (k)

GPL

)

ρ(k) = ρGPLV (k)
GPL + ρM

(
1 − V (k)

GPL

)
(6)  

where αGPL and αM refer to the thermal expansion of the GPLs and 
polymer matrix, respectively; ϑM and ϑGPL denote Poisson’s ratios of the 
GPLs and polymer matrix, respectively. 

2.2. MSGT 

The MSGT is a sophisticated theoretical framework that enhances the 
traditional strain gradient theory, offering a more comprehensive un
derstanding of material behavior at microscopic scales. Gradient tensors 
are of utmost importance in precisely characterizing the deformation 
and strain properties of materials, especially within micro- and nano
structural domains, in the context of the MSGT [11]. The strain energy 
(ΞV ) for a linear elastic continuum experiencing small deformations can 
be expressed in the following manner [11]: 

ΞV = 1
/

2
∫

Ω

(
σijεij + piγi + τ(1)ijk η(1)

ijk +ms
ijX

s
ij

)
dv, (7)  

where the dilatation gradient, deviatoric stretch gradient, strain, and 

symmetric rotation gradient tensors are characterized by γi, η(1)ijk , χs
ij and 

εij, respectively. In addition, it is conventional to express the classical 
stress tensor as σ, whereas the higher-order stresses are denoted by pi,

τ(1)ijk , and ms
ij as 

σij = λ(k)εf δij + 2μ(k)εij − α(k)ΔT,
pi = 2μ(k)l0

2γi,

τ(1)ijk = 2μ(k)l1
2μη(1)

ijf ,

ms
ij = 2μ(k)l2

2Xs
ij,

(8) 

The symbol ΔT is used to denote the change in temperature or the 
difference between the reference temperature T0 and the temperature at 
which the microplate was originally free from stress. The symbols μ(k) =

E(k)/2(1 + ϑ(k)) and λ(k) = E(k)ϑ(k)/[(1 + ϑ(k))(1 − 2ϑ(k)] are used to 
represent the shear and bulk moduli, respectively. The symbol "l0" de
notes a fundamental length scale inherent to a material, which is closely 
associated with dilatation gradients and has a significant impact on its 
stiffness properties. The variable denoted as l1 represents the charac
teristic length scale associated with deviatoric stretch gradients, which 
have an impact on both shear and extensional behavior. The symmetric 
rotation gradients linked to l2 cause couple stresses. The inclusion of 
these three length parameters enables the independent assessment of the 
influences of dilatation, deviatoric, and rotational gradient effects on the 
mechanics of the microplate [52]. 

εij =
1
2
(
ui,j + uj,i

)
, (9)  

γi = εmm,i, (10)  

η(1)
ijk = η(1)

ijk = ηs
ijk −

1
5

(
δijηs

mmk + δjkηs
mmi + δkiηs

mmj

)
; ηs

ijk =
1
3
(
εjk,i + εki,j + εij,k

)
,

(11)  

Xs
ij =

1
2
(
θi,j + θj,i

)
; θi =

1
2
(curl(u))i (12) 

The symbol " u " is used to represent the constituent parts of the 
displacement vector. In the context at hand, the symbol θ is applied to 
symbolize the infinitesimal rotation vector, whereas the symbol δ is 
utilized to designate the Kronecker delta. 

2.3. Constitutive relations 

The FSDT takes into account the effect of transverse shear flexibility 
by letting the normal direction stay linear, but not always perpendicular 
to the mid-surface after deformation. In the context of this study’s 
theoretical framework, the conceptualization and modeling of the 
displacement field for each microplate are undertaken. 

ux(x, y, z, t) = u0(x, y, t) − zψx(x, y, t),
uy(x, y, z, t) = v0(x, y, t) − zψy(x, y, t),

uz(x, y, z, t) = W0(x, y, t),
(13)  

in which the microplate’s middle plane rotates transversely around the y 
and x directions, which are shown by ψy and ψx, respectively. Further
more, the z, y and x displacements of a point located at the center of the 
microplate’s plane are denoted as W0,v0 and u0, respectively. Employing 
the fundamental concepts of linear elasticity allows for the estimation of 
stresses inside a microplate. The following are some of the presumptions 
upon which this method is based: 
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εxx =
∂u0

∂x
− z

∂ψx

∂x
,

εyy =
∂v0

∂y
− z

∂ψy

∂y
,

εxy =
1
2

[
∂u0f

∂y
+

∂v0

∂x
− z
(

∂ψx

∂y
+

∂ψy

∂x

)]

,

εxz =
1
2

(

− ψx +
∂W0

∂x

)

,

εyz =
1
2

(

− ψy +
∂W0

∂y

)

,

(14) 

The normal strain components are denoted as εxx,εyy, whereas the 
shear strain components are represented by εxy,εxz,εyz. The values of the 
non-zero components θ, Xs

ij, γi, and η(1)
ijf (i, j, f = x, y, z) for the microplate 

may be derived by substituting Eqs. (13) and (14) into Eqs. (9–12), 
which can be found in Appendix A. The equations regulating the dy
namic behavior of the FG-GPLR microplate, taking into account tem
perature and size dependence, are developed by applying Hamilton’s 
principle [53]. 

∫t

t0

(δΞT − δΞV + δΞW )dt = 0. (15) 

Within this particular framework, the variable ΞW represents the 
conceptualization of the virtual work carried out by viscoelastic medium 
in conjunction with a temperature gradient. In the context being dis
cussed, the variable ΞV represents the virtual strain energy, whereas ΞT 

is used to describe the virtual kinetic energy. The equation representing 
the change in kinetic energy may be expressed in the following manner: 

The variables V and A represent the volume and area of the cross- 
section, whereas the mass inertias are given in the following manner: 

[I0, I1, I2] =

∫h(x,y)/2

− h(x,y)/2

ρ(k)[1, z, z2]dz, (17) 

Eqs. (8) and (14) can be inserted into Eq. (7) to express the variance 
in strain energy as follows: 

δΞV =

∫

v

(
σxxδεxx + σyyδεyy + σxyδεxy + σyzδεyz + σxzδεxz + pxδγx

pyδγy + pzδγz + τ(1)xxxδη(1)
xxx + τ(1)yyyδη(1)

yyy + τ(1)zzz δη(1)
zzz + τ(1)xxyδη(1)

xxy + τ(1)xyxδη(1)
xyx

+τ(1)yxxδη(1)
yxx + τ(1)xxzδη(1)

xxz + τ(1)xzxδη(1)
xzx + τ(1)zxxδη(1)

zxx + τ(1)yxxδη(1)
yxx + τ(1)yxyδη(1)

yxy + τ(1)xyyδη(1)
xyy

+τ(1)yyzδη(1)
yyz + τ(1)yzyδη(1)

yzy + τ(1)zyyδη(1)
zyy + τ(1)zzxδη(1)

zzx + τ(1)zxzδη(1)
zxz + τ(1)xzzδη(1)

xzz + τ(1)zzyδη(1)
zzy

+τ(1)zyzδη(1)
zyz + τ(1)yzzδη(1)

yzz + τ(1)xyzδη(1)
xyz + τ(1)yxzδη(1)

yxz + τ(1)zxyδη(1)
zxy + τ(1)zyxδη(1)

zyx + ms
xxδXs

xx

+ms
yyδXs

yy + ms
zzδXs

zz + ms
xyδXs

xy + ms
xzδXs

xz + ms
yzδXs

yz

)
dv.

(18) 

The virtual work arising from the temperature environment and the 
viscoelastic medium may be characterized as follows [54]: 

δΞW =

∫

A

[(

kwW0 + cd
∂W0

∂t

)

δW0 + NT
x

∂W0

∂x
δ

∂W0

∂x
+ NT

y
∂W0

∂y
δ

∂W0

∂y

]

dA,

NT
x = NT

y = NT =

∫ h(x,y)/2

− h(x,y)/2

E(k)

1 − ϑ(k)α
(k)T(z)dz,

T(z) =
(

1
2
+

z
h(x, y)

)φ

ΔT + T0,

(19) 

The parameter φ enables the representation of various thermal load 
profiles applied to the microplate. A uniform distribution, characterized 

by a value of φ equal to zero, indicates a consistent and unvarying rate of 
temperature change. The thermal stresses at the plate surfaces are more 
accurately represented by a linear profile with a value of φ equal to 1. 
Complex temperature fluctuations are made possible by nonlinear dis
tributions (φ > 1), which capture nonlinear thermal effects on the 

δΞT =

∫

V
ρ(k)[u̇xδu̇x + u̇yδu̇y + u̇zδu̇z

]
dV =

∫∫

A

[

I0

(
∂u0

∂t
∂δu0

∂t
+

∂v0

∂t
∂δv0

∂t
+

∂W0

∂t
∂δW0

∂t

)

+I1

(
∂u0

∂t
∂δψx

∂t
+

∂v0

∂t
∂δψy

∂t
+

∂ψx

∂t
∂δu0

∂t
+

∂ψy

∂t
∂δv0

∂t

)

+ I2

(
∂ψx

∂t
∂δψx

∂t
+

∂ψy

∂t
∂δψy

∂t

)]

dA,

(16)   

Table 1 
Validation of the plate’s dimensionless fundamental natural frequency for various aspect ratios and taper parameters.  

B.C Taper parameter α Aspect ratio Ref. [58] Present 

SSSS 0.25 0.5 13.9359 13.9359 
1 22.3184 22.3184 
2 55.7438 55.7438 

0.5 0.5 15.6248 15.6248 
1 25.0742 25.0742 
2 62.4994 62.4993 

1 0.5 19.1764 19.1764 
1 30.9245 30.9245 
2 76.7057 76.7057 

CCSS 0.25 0.5 21.3439 21.3436 
1 32.7193 32.7190 
2 84.2476 84.2475 

0.5 0.5 24.2965 24.2964 
1 37.2871 37.2870 
2 95.2379 95.2377 

1 0.5 30.3541 30.3538 
1 46.7716 46.7715 
2 118.3476 118.3475  
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microplate response [54]. By substituting Eqs. (16), (18), and (19) into 
Eq. (15), and considering the coefficients δu0,δv0,δW0,δψx and δψy to be 
zero, the governing equations in the framework of the FSDT can be 
obtained as 

δu0 :
∂Nxx

∂x
+

∂Nxy

∂y
+

1
2

∂2Yxz

∂xy
+

1
2

∂2Yyz

∂y2 −
∂2Px

∂x2 −
∂2Py

∂x∂y
−

∂2Tτ
xxx

∂x2 − 2
∂2Tτ

xxy

∂x∂y
−

∂2Tτ
yyx

∂y2 =

I0
∂2u0

∂t2 +I1
∂2ψx

∂t2 ,

δv0 :
∂Nxy

∂x
+

∂Nyy

∂y
−

1
2

∂2Yyz

∂xy
−

1
2

∂2Yxz

∂x2 −
∂2Px

∂x∂y
−

∂2Py

∂y2 −
∂2Tτ

xxy

∂x2 − 2
∂2Tτ

yyx

∂x∂y
−

∂2Tτ
yyy

∂y2 =

I0
∂2v0

∂t2 +I1
∂2ψy

∂t2 ,

δW0 :
∂Qx

∂x
+

∂Qy

∂y
−

1
2

∂2Yxx

∂xy
+

1
2

∂2Yyy

∂xy
−

1
2

∂2Yxy

∂y2 −
∂2Tτ

zzz

∂x2 − 2
∂2Tτ

xyz

∂x∂y
−

∂2Tτ
yyz

∂y2 − kwW0−

cd
∂W0

∂t
+NT

(
∂2W0

∂x2 +
∂2W0

∂y2

)

= I0
∂2W0

∂t2 ,

δψx :
∂Mxx

∂x
+

∂Mxy

∂y
− Qx+

1
2

(

−
∂Yxy

∂x
−

∂Yyy

∂y
+

∂Yzz

∂y
−

∂2Hxz

∂x∂y
−

∂2Hyz

∂y2

)

+
∂2Mτ

xxx

∂x2 +

2
∂2Mτ

xxy

∂x∂y
+

∂2Mτ
yyx

∂y2 − 2
∂Tτ

xyz

∂y
− 2

∂Tτ
zzz

∂x
−

∂Pz

∂x
+

∂2Mp
x

∂x2 +
∂2Mp

y

∂x∂y
= I1

∂2u0

∂t2 +I2
∂2ψx

∂t2

δψy :
∂Myyf

∂y
+

∂Mxy

∂x
− Qy+

1
2

(
∂Yxx

∂x
−

∂Yzz

∂x
+

∂Yxy

∂y
+

∂2Hxz

∂x2 +
∂2Hyz

∂x∂y

)

+
∂2Mτ

xxy

∂x2 +

2
∂2Mτ

yyx

∂x∂y
+

∂2Mτ
yyy

∂y2 − 2
∂Tτ

xyz

∂x
− 2

∂Tτ
yyz

∂y
−

∂Pz

∂y
+

∂2Mp
x

∂x∂y
+

∂2Mp
y

∂y2 = I1
∂2v0

∂t2 +I2
∂2ψy

∂t2

(20)  

where 

In the given context, the symbol κs = 5/6 denotes the shear correc
tion term and is based on the concept of shear correction to account for 
the variance of transverse shear strains across the thickness direction 
[55]. By integrating the parabolic shear strain distribution and equating 
the strain energy to that from conventional plate theory, a value of 5/6 
enables modifying the constant transverse shear stiffness to better match 
solutions from elasticity theory. This is commonly used when dealing 
with rectangular cross-sections and has been validated in numerous 
studies for producing results that closely approximate three-dimensional 
elasticity solutions. The equilibrium equations for a microplate are 
derived and explained by inserting Eq. (21) into Eq. (20), taking into 
account Eqs. (8–12).  

〈
Nxx,Nyy,Nxy,Qx,Qy

〉
=

∫ h(x,y)/2

− h(x,y)/2
σxx, σyy, σxy, κsσxz, κsσyzdz,

〈
Mxx,Myy,Mxy

〉
=

∫ h(x,y)/2

− h(x,y)/2
σxx, σyy, σxyzdz,

〈
Yxx,Yyy, Yzz,Yxy, Yxz,Yyz

〉
=

∫ h(x,y)/2

− h(x,y)/2
ms

xx,m
s
yy,m

s
zz,ms

xy,ms
xz,m

s
yzdz,

〈
Hxz,Hyz

〉
=

∫ h(x,y)/2

− h(x,y)/2

〈
ms

xz,m
s
yz

〉
zdz,

〈
Px,Py,Pz

〉
=

∫ h(x,y)/2

− h(x,y)/2

〈
px, py, pz

〉
dz,

〈
Mp

x ,M
p
y

〉
=

∫ h(x,y)/2

− h(x,y)/2

〈
px, py

〉
zdz,

〈
Mτ

xxx,M
τ
yyy,M

τ
xxy,M

τ
yyx

〉
=

∫ h(x,y)/2

− h(x,y)/2

〈
τ(1)xxx, τ(1)yyy, τ(1)xxy, τ(1)yyx

〉
zdz,

〈
Tτ

xxx,T
τ
yyy,T

τ
zzz,T

τ
xxy,T

τ
xxz,T

τ
yyx, Tτ

yyz, Tτ
xyz

〉
=

∫ h(x,y)/2

− h(x,y)/2

〈
τ(1)xxx, τ(1)yyy, τ(1)zzz , τ(1)xxy, τ(1)xxz, τ(1)yyx, τ(1)yyz, τ(1)xyz

〉
dz

(21)   

Table 2 
Comparison of non-dimensional frequencies of a SSSS square microplate.  

Lx

h0  

Mode l
h0  

Present Ref. [59] 

5 1 0 0.2113 0.2113 
0.1 0.2263 0.2264 
0.2 0.2665 0.2666 
0.5 0.4563 0.4566 
1 0.8342 0.8344 

2 0 0.4622 0.4623 
0.1 0.4978 0.4978 
0.2 0.5904 0.5909 
0.5 1.0254 1.0255 
1 1.88561 1.8858 

10 1 0 0.0577 0.0577 
0.1 0.0616 0.0617 
0.2 0.072 0.0725 
0.5 0.1226 0.124 
1 0.2264 0.2268 

2 0 0.1375 0.1376 
0.1 0.1474 0.1475 
0.2 0.1734 0.1736 
0.5 0.2976 0.2977 
1 0.5446 0.5448  

Table 3 
Comparison of non-dimensional natural frequencies of an FG-GPLRC SSSS 
square plate for a variety of GPL distributions.  

m, n Study Pure epoxy UD FG-O FG-X FG-A 

1,1 Ref. [50] 0.0584 0.1216 0.102 0.1378 0.1118 
Ref. [60] 0.0584 0.1216 0.102 0.1378 0.1118 
Present 0.0584 0.1216 0.102 0.1378 0.1118 

2,1 Ref. [50] 0.1391 0.2895 0.2456 0.3249 0.2673 
Ref. [60] 0.1391 0.2895 0.2456 0.3249 0.2673 
Present 0.1391 0.2895 0.2456 0.3249 0.2673 

2,2 Ref. [50] 0.2132 0.4436 0.3796 0.4939 0.411 
Ref. [60] 0.2132 0.4436 0.3796 0.4939 0.411 
Present 0.2132 0.4436 0.3796 0.4939 0.411  
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δu0 : a11
∂2u0

∂x2 + (a12 + a55)
∂2v0

∂x∂y
− b11

∂2ψx

∂x2 − (b12 + b55)
∂2ψy

∂x∂y
− a55

[(

2l2
0 +

4
5
l2
1

)

∂4u0

∂x4 −
∂2u0

∂y2 +

(
8
15

l2
1 +

1
4

l2
2

)
∂4u0

∂y4 +

(

2l2
0 +

4
3
l2
1 +

1
4

l2
2

)
∂4u0

∂x2∂y2

]

− a55

(

2l2
0 +

4
15

l2
1 −

1
4
l2
2

)

(
∂4v0

∂x3∂y
+

∂4v0

∂x∂y3

)

+ b55

[(

2l2
0 +

4
5

l2
1

)
∂4ψx

∂x4 −
∂2ψx

∂y2 +

(
8
15

l2
1 +

1
4
l2
2

)
∂4ψx

∂y4 +

(

2l2
0 +

4
3
l2
1 +

1
4

l2
2

)
∂4ψx

∂x2∂y2

]

+b55

(

2l2
0 +

4
15

l2
1 −

1
4
l2
2

)( ∂4ψy

∂x3∂y
+

∂4ψy

∂x∂y3

)

= I0
∂2u0

∂t2 + I1
∂2ψx

∂t2 ,

δv0 : a11
∂2v0

∂y2 + (a12 + a55)
∂2u0

∂x∂y
− b11

∂2ψy

∂y2 − (b12 + b55)
∂2ψx

∂x∂y
+ b55

(

2l2
0 +

4
15

l2
1 −

1
4

l2
2

)

(
∂4ψx

∂x3∂y
+

∂4ψx

∂x∂y3

)

− a55

(

2l2
0 +

4
15

l2
1 −

1
4
l2
2

)(
∂4u0

∂x3∂y
+

∂4u0

∂x∂y3

)

+

a55

[
∂2v0

∂x2 −

(
8
15

l2
1 +

1
4

l2
2

)
∂4v0

∂x4 −

(

2l2
0 +

4
3

l2
1 +

1
4
l2
2

)
∂4v0

∂x2∂y2 −

(

2l2
0 +

4
5
l2
1

)
∂4v0

∂y4

]

+b55

[

−
∂2ψy

∂x2 +

(
8
15

l2
1 +

1
4
l2
2

) ∂4ψy

∂x4 +

(

2l2
0 +

4
3
l2
1 +

1
4
l2
2

) ∂4ψy

∂x2∂y2 +

(

2l2
0 +

4
5

l2
1

) ∂4ψy

∂y4

]

= I0
∂2v0

∂t2 + I1
∂2ψy

∂t2

δW0 : ksa55

(
∂2W0

∂x2 +
∂2W0

∂y2 −
∂ψx

∂x
−

∂ψy

∂y

)

− a55

(
8

15
l2
1 +

1
4
l2
2

)(
∂4W0

∂x4 + 2
∂4W0

∂x2∂y2 +
∂4W0

∂y4

)

+

a55

(
16
15

l2
1 −

1
4
l2
1

)[(
∂3ψx

∂x3 +
∂3ψx

∂x∂y2

)

+

( ∂3ψy

∂x2∂y
+

∂3ψy

∂y3

)]

− kwW0 − cd
∂W0

∂t
+ NT

(
∂2W0

∂x2 +
∂2W
∂y2

)

= I0

(
∂2W0

∂t2

)

,

δψx : ksa55

(
∂W0

∂x
− ψx

)

− b11
∂2u0

∂x2 − b55
∂2u0

∂y2 − (b12 + b55)
∂2v0

∂x∂y
+ b55

(

2l2
0 +

4
15

l2
1 −

1
4
l2
2

)

(
∂4v0

∂x3∂y
+

∂4v0

∂x∂y3

)

− a55

(
16
15

l2
1 −

1
4

l2
2

)(
∂3W0

∂x3 +
∂3W0

∂x∂y2

)

− d55

[(

2l2
0 +

4
5

l2
1

)
∂4ψx

∂x4 +

(

2l2
0 +

4
3
l2
1 +

1
4

l2
2

)
∂4ψx

∂x2∂y2 +

(
8
15

l2
1 +

1
4

l2
2

)
∂4ψx

∂y4

]

+b55

[(

2l2
0 +

4
5
l2
1

)
∂4u0

∂x4 +

(

2l2
0 +

4
3
l2
1 +

1
4

l2
2

)
∂4u0

∂x2∂y2 +

(
8
15

l2
1 +

1
4
l2
2

)
∂4u0

∂y4

]

+

[

a55

(

2l2
0 +

32
15

l2
1 +

1
4
l2
2

)

+ d11

]
∂2ψx

∂x2 +

[

d55 + a55

(
4
3

l2
1 + l2

2

)]
∂2ψx

∂y2 +

[

a55

(

2l2
0 +

4
5

l2
1 −

3
4
l2
2

)

+ d55 + d12

]

∂2ψy

∂x∂y
− d55

(

2l2
0 +

4
15

l2
1 −

1
4

l2
2

)( ∂4ψy

∂x3∂y
+

∂4ψy

∂x∂y3

)

= I1
∂2u0

∂t2 + I2
∂2ψx

∂t2

δψy : ksa55

(
∂W0

∂y
− ψy

)

− b11
∂2v0

∂y2 − b55
∂2v0

∂x2 − (b12 + b55)
∂2u0

∂x∂y
+ b55

(

2l2
0 +

4
15

l2
1 −

1
4
l2
2

)

(
∂4u0

∂x3∂y
+

∂4u0

∂x∂y3

)

− a55

(
16
15

l2
1 −

1
4

l2
2

)(
∂3W0

∂x2∂y
+

∂3W0

∂y3

)

− d55

[(
8
15

l2
1 +

1
4
l2
2

) ∂4ψy

∂x4 +

(

2l2
0 +

4
3
l2
1 +

1
4

l2
2

) ∂4ψy

∂x2∂y2 +

(

2l2
0 +

4
5

l2
1

) ∂4ψy

∂y4

]

+b55

[(
8
15

l2
1 +

1
4

l2
2

)
∂4v0

∂x4 +

(

2l2
0 +

4
3

l2
1 +

1
4
l2
2

)
∂4v0

∂x2∂y2 +

(

2l2
0 +

4
5
l2
1

)
∂4v0

∂y4

]

+

[

a55

(

2l2
0 +

32
15

l2
1 +

1
4
l2
2

)

+ d11

]

∂2ψy

∂y2 +

[

d55 + a55

(
4
3
l2
1 + l2

2

)] ∂2ψy

∂x2 +

[

a55

(

2l2
0 +

4
5
l2
1 −

3
4
l2
2

)

+ d55 + d12

]

∂2ψx

∂x∂y
− d55

(

2l2
0 +

4
15

l2
1 −

1
4
l2
2

)(
∂4ψx

∂x3∂y
+

∂4ψx

∂x∂y3

)

= I1
∂2v0

∂t2 + I2
∂2ψy

∂t2

(22)   
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where 

〈a11, b11, d11〉 =

∫h(x,y)/2

− h(x,y)/2

[
λ(k) + 2μ(k)]〈1, z, z2〉dz,

〈a12, b12, d12〉 =

∫h(x,y)/2

− h(x,y)/2

λ(k)
〈
1, z, z2〉dz,

〈a55, b55, d55〉 =

∫h(x,y)/2

− h(x,y)/2

μ(k)〈1, z, z2〉dz,

(23)  

3. The Galerkin procedure 

The obtained size-dependent governing equations are solved by 
taking into account five possible combinations of simply supported and 
clamped boundary conditions for the FG-GPLRC microplate edges. The 
mathematical expression for the edge-clamped and simple-supported 
boundary conditions of the FG-GPLRC microplate is: 

For a clamped (C) edge: 

u0 = v0 = W0 = ψx = ψy = 0, (24) 

For a simply supported (S) edge: 

v0 = W0 = ψy = Nxx = Mxx = 0, at x = 0,Lx,

u0 = W0 = ψx = Nyy = Myy = 0, at y = 0,Ly,
(25) 

These boundary conditions must be met in addition to the governing 
equations for the solution to be acceptable. The following approxima
tions are made to the microplate deflection in order to meet the simply 
supported boundary conditions [56]: 

〈u0,ψx〉
∑∞

m

∑∞

n

∂Xm(x)
∂x

Yn(y)
〈

μ⌣0,ψ⌣x

〉

eiωt,

〈
v0,ψy

〉∑∞

m

∑∞

n
ṼXm(x)

∂Yn(y)
∂y

〈

v⌣0,ψ
⌣

yeiωt
〉

,

W0 =
∑∞

m

∑∞

n
W̃Yn(y)Xm(x)eiωt,

(26)  

where the unknown modal coefficients are denoted by the variables u
⌣

0,

ψ⌣x, v
⌣

0,ψ
⌣

y,W
⌣

0. Moreover, the variables m and n are representative of the 
half-wave numbers on the x and y axes, respectively. Additionally, the 
symbol ω denotes the natural frequency of the structure. It is important 
to acknowledge that the modal functions Xm and Yn adhere to the 
boundary conditions and are stated in the following manner: 

SSSS 

Xm(x) = sin
(

mπx
Lx

)

,Yn(y) = sin
(

nπy
Ly

)

(27) 

SSCS 

Xm(x) = sin
(

mπx
Lx

)

,Yn(y) =
[

sin
(
(n + 0.25)πy

Ly

)

− sinh
(
(n + 0.25)πy

Ly

)]

−

[
sin((n + 0.25)π) + sinh((n + 0.25)π)
cos((n + 0.25)π) + cosh((n + 0.25)π)

][

cos
(
(n + 0.25)πy

Ly

)

− cosh
(
(n + 0.25)πy

Ly

)]

,

(28) 

SSCC 

Xm(x) = sin
(

mπx
Lx

)

,Yn(y) =
[

sin
(
(n + 0.5)πy

Ly

)

− sinh
(
(n + 0.5)πy

Ly

)]

−

[
sin((n + 0.5)π) − sinh((n + 0.5)π)

cos((n + 025)π) − cosh((n + 0.5)π)

][

cos
(
(n + 0.5)πy

Ly

)

− cosh
(
(n + 0.5)πy

Ly

)]

,

(29) 

CSCC 

CCCC 

Xm(x)=
[

sin
(
(n+0.5)πx

Lx

)

− sinh
(
(n+0.5)πx

Lx

)]

−

[
sin((n+0.5)π)− sinh((n+0.5)π)
cos((n+0.5)π)− cosh((n+0.5)π)

][

cos
(
(n+0.5)πx

Lx

)

− cosh
(
(n+0.5)πx

Lx

)]

Yn(y)=
[

sin
(
(n+0.5)πy

Ly

)

− sinh
(
(n+0.5)πy

Ly

)]

−

[
sin((n+0.5)π)− sinh((n+0.5)π)

cos((n+025)π)− cosh((n+0.5)π)

][

cos
(
(n+0.5)πy

Ly

)

− cosh
(
(n+0.5)πy

Ly

)]

(31) 

The Galerkin method will be employed in order to obtain a set of 
algebraic equations that represent the governing equations. The process 
involves replacing the presumed deflection expressions (Eq. (26)) within 
the partial differential equations that describe the motion (Eq. (22)). The 
orthogonality between the residual and the test function systems may be 
demonstrated as follows: 
∫∫

R(x, y)Xm(x)Yn(y)dxdy = 0, m, n = 1, 2, 3,… (32) 

The representation of equilibrium equations can be achieved through 
the utilization of a matrix, employing the formula provided in connec
tion (32). 
(
[M]5×5ω2 − [K]5×5

)
q = 0 (33)  

where [K]5 × 5 and [M]5 × 5 represent the stiffness and mass charac

teristics, respectively, and q = (u
⌣

0, ψ⌣x, v
⌣

0, ψ⌣y,W
⌣

0)
T. In order to calcu

late the natural frequencies, it is necessary to find a non-trivial solution 
to the characteristic Eq. (33). The aforementioned objective is accom
plished by equating the determinant of the coefficient matrix on the left- 

Xm(x) =
[

sin
(
(n + 0.25)πx

Lx

)

− sinh
(
(n + 0.25)πx

Lx

)]

−

[
sin((n + 0.25)π) + sinh((n + 0.25)π)
cos((n + 0.25)π) + cosh((n + 0.25)π)

][

cos
(
(n + 0.25)πx

Lx

)

− cosh
(
(n + 0.25)πx

Lx

)]

,

Yn(y) =
[

sin
(
(n + 0.5)πy

Ly

)

− sinh
(
(n + 0.5)πy

Ly

)]

−

[
sin((n + 0.5)π) − sinh((n + 0.5)π)

cos((n + 025)π) − cosh((n + 0.5)π)

][

cos
(
(n + 0.5)πy

Ly

)

− cosh
(
(n + 0.5)πy

Ly

)]

(30)   
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hand side of Eq. (33) to zero. 

4. Findings and discussion 

According to earlier research, a laminated microplate with PLRC that 
have at least 10 (NL = 10) distinct layers can be a good representation of 
an FG microplate continuum. As the quantity of laminae reinforced with 
the GPL rises, the gradual transition of material properties takes on a 
more continuous and smoother pattern, approaching the characteristics 
of an ideal FGM [57]. The dimensions of GPLs are as follows: aGPL =

2.5μm, bGPL = 1.5μm, and hGPL = 1.5nm. The epoxy polymer matrix and 
GPLs are thought to display temperature-dependent mechanical prop
erties, which are described as [57] 

The specific values of length scale parameters used in the analysis are 
chosen considering the typical ranges reported in the literature related 
to gradient elasticity theories. These length scales have so far been 
predominantly quantified through calibration procedures based on 
molecular dynamics simulations of structures at the micro/nanolevel 
under varied loading conditions. 

4.1. Validation of the model structure 

During model validation, the validity and trustworthiness of the 
suggested procedure are extensively tested. In the first validation, using 
the current model and not taking into account temperature, viscoelastic 
medium, and GPL effects, Table 1 shows the first natural frequency (ϖ =

Fig. 3. Influence of weight fraction on the vibrations of a linearly variable-thickness FG-GPLRC microplate.  

EM = (4854.5 − 6.1816T)MPa, ϑM = 0.34, ρM = 1200kg
/

m3 , αM = 60 × 10− 6(1/K),

EGPL = (1087.8 − 0.261T)GPa, ϑGPL = 0.186, ρGPL = 1062.5kg
/

m3, αGPL =

(13.92 − 0.0299T) × 10− 6(1/K),
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Fig. 4. Effects of length scale parameter and GPL distributions on natural frequency changes of a linearly variable thickness FG-GPLRC microplate for 
different theories. 
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ωLx
2 ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

ρh0/d11
√

) of an isotropic plate whose thickness changes linearly in 
one direction for two different boundary conditions. The data are ac
quired for various aspect ratios and taper parameters. The findings are 
compared to the results presented in Ref. [58], which employed classical 
laminated plate theory. The comparison demonstrates a strong concur
rence between the findings presented in this study and the analytical 
predictions outlined in Ref. [58]. 

In the subsequent validation process, the non-dimensional fre

quencies ϖ = ωh0
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
ρM/EM

√
of a square SSSS microplate with uniform 

thickness are determined for various mode numbers and dimensionless 
length scale parameters (l/h0,l = l0 = l1 = l2), while disregarding the 
influence of GPL, viscoelastic media, and thermal effects. The outcomes 
are compared with Ref. [59] in Table 2 in terms of the strain gradient 
parameter. The successful validation of the proposed methodology 
against the analytical data provided in Reference [59] demonstrates its 
efficacy and accuracy in forecasting the dimensionless natural 
frequency. 

The final validation of the present model involves obtaining the 
dimensionless natural frequencies ϖ = ωh0

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
ρM/EM

√
of an FG-GPLRC 

SSSS square plate with uniform thickness (Lx/h0 = 10) for a variety of 

Fig. 5. The effects of linearly and parabolically changing thickness models on the change of the FG-GPLRC microplate’s first natural frequency.  

Fig. 6. Effects of the temperature and different temperature profiles on the 
natural frequency of a SSSS FG-GPLRC microplate. 

Fig. 7. Effects of viscoelastic medium damping coefficient and Winkler stiffness 
on the natural frequency of a SSSS FG-GPLRC microplate. 
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GPL distributions. This is done without taking into account the presence 
of a viscoelastic medium, temperature effects, and MSGT. The obtained 
results are compared with the findings presented in Refs. [50,60], as 
shown in Table 3. The analysis suggests that the proposed methodology 
has remarkable effectiveness, surpassing the outcomes reported in the 
previously stated literature. It is noted that all distributions of the 
FG-GPLRC plate have a higher natural frequency than the pure epoxy 
plate. GPLs exhibit a significantly higher Young’s modulus, measuring 
over 1000 GPa, in comparison to epoxy materials, which typically 
possess a Young’s modulus of approximately 3 GPa. 

4.2. Parametric study 

Fig. 2 examines, for a variety of GPL distributions, how the number of 
layers and the boundary conditions affect the natural frequency of a 
linearly variable-thickness FG-GPLRC microplate when Lx = Ly =

20 μm, h0 = 1.76 μm, g∗GPL = 1 %, m = 1, n = 1, α = 0.2, β = 0.2, ΔT 
= 0, l0 = l1 = l2 = 0, kw = 0, cd = 0. Since the UD distribution has a 
homogenous design, as would be predicted, the fundamental fre
quencies remain constant despite the number of layers changing. In the 
case of FG-O and FG-A distributions, the first decline in natural fre
quency is observed as the number of GPL layers increases. However, 
after the number of layers reaches a range of 5–10, the natural frequency 
stabilizes and remains constant. In contrast, the FG-X distribution ex
hibits an initial increase in frequency as the number of layers increases, 
followed by a stabilization phase. The initial decrease in frequency for 
FG-O and FG-A arrangements is attributed to the additional interlayer 
shear flexibility introduced by higher layering, which lowers overall 
stiffness. In the FG-X design, the introduction of additional layers 
enriched with GPL in close proximity to the surfaces yields a notable 
enhancement in bending stiffness, resulting in an increase in frequency. 
The ensuing stabilization occurs when the dominance of shear flexibility 
counteracts any additional stiffness advantages gained from additional 
layers. The findings of the study also demonstrate that the FG-X distri
bution produces the highest natural frequency, while the FG-O distri
bution results in the lowest frequency. The increased bending stiffness of 
the FG-X design is a result of the greater reinforcing of the GPL at the 
surfaces. The FG-O distribution exhibits a tendency to concentrate re
inforcements internally, resulting in an improvement in shear stiffness. 
Furthermore, the natural frequency was lowest for SSSS conditions with 
the least restriction and highest for CCCC boundary conditions, which 
offer the maximum edge restraint. The following is the frequency 
ordering based on boundary conditions: CCCC > CSCC > SSCC > SSCS >
SSSS. 

Fig. 3 displays the influence of weight fraction on the vibrations of a 
linearly variable-thickness FG-GPLRC microplate under various bound
ary conditions for a variety of patterns (including a FG-O, UD, FG-X, and 
FG-A pattern) when Lx = Ly = 20μm, h0 = 1.76μm, NL = 10, m = 1, n = 1, 
α = 0.2, β = 0.2, ΔT = 0, l0 = l1 = l2 = 0, kw = 0, cd = 0. Results show that 
all FG-O, UD, FG-X, and FG-A arrangements have no discernible effect 
on the natural frequency when the weight percentage of GPLs is zero. As 
the weight fraction of the GPL increases, the distinctions in vibration 
characteristics across the distributions become increasingly evident. The 
natural frequency of the system experiences a substantial increase as the 
weight fraction of GPL reinforcements increases. The significant 
enhancement in bending stiffness can be attributable to the presence of 
graphene platelets. An increase in the weight fractions of higher GPLs 
leads to an elevation in the Young’s modulus and an enhancement of the 
second moment of area. Consequently, this results in a significant rise in 
stiffness and natural frequency. The FG-X distribution exhibits the 
maximum frequency, while the FG-O arrangement shows the lowest 

frequency. The FG-X configuration has more GPLs near the surfaces, 
improving bending response. The FG-O distribution concentrates re
inforcements internally, enhancing shear characteristics. 

The study presented in Fig. 4 examines the effect of various factors, 
namely the dimensionless length scale parameter (l/h, l = l0 = l1 = l2), 
GPL distributions, and different boundary conditions, on the changes in 
the natural frequency of a linearly variable-thickness FG-GPLRC 
microplate. The investigation encompasses three different theories: the 
CCT, where l0 = l1 = l2 = 0; the MCST, where l0 = l1 = 0, l2 ∕= 0; and the 
MSGT, where l0 = l1 = l2 ∕= 0. For this case, let’s assume that Lx = Ly =

20 μm, h0 = 1.76 μm, NL = 10, m = 1, n = 1, α = 0.2, β = 0.2, ΔT =

0, g∗GPL = 1 %, kw = 0, cd = 0. The results suggest that the frequency 
changes for the CCT stay consistent regardless of the values of the length 
scale parameter, as this parameter does not affect the CCT. The length 
scale parameter is utilized to quantify the influence of size effects that 
are observable at microscales. An augmentation in the magnitude of this 
parameter gives rise to a concomitant escalation in strain energy, 
resulting in heightened rigidity and natural frequency. As previously 
demonstrated, an increase in this particular parameter leads to height
ened rigidity and natural frequency as a consequence of an augmented 
strain energy density. Adding rotation gradients to the MSGT also makes 
it stiffer compared to just adding couple stresses to the MCST. 

The effects of linearly and parabolically changing thickness models 
on the change of the FG-GPLRC microplate’s first natural frequency are 
shown in Fig. 5 when Lx = Ly = 20 μm, h0 = 1.76 μm, NL = 10, m = 1,
n = 1, g∗GPL = 1 %, ΔT = 0, l0 = l1 = l2 = 0, kw = 0, cd = 0. This 
analysis is conducted under various boundary conditions and distribu
tions of GPL. An increase in the natural frequency is observed when the 
thickness profile parameters α and β are increased, regardless of whether 
the thickness fluctuations follow a linear or parabolic pattern. The 
observed phenomenon can be related to the general trend of increased 
stiffness as the thickness of the microplate increased in both the length 
and width dimensions, characterized by greater values of α and β. The 
presence of a parabolic thickness variation results in a more significant 
decrease in frequency as compared to a linear profile. The increased 
flexibility towards the edges is a result of the parabolic taper, which 
leads to accelerated thinning. For a given α and β, the linear thickness 
variation provides higher stiffness and natural frequency than the 
parabolic case, owing to its more gradual thickness reduction. At α = β =
0, both models approach a microplate of constant thickness, exhibiting 
the same frequency. As the values of the taper parameters grow larger, 
the natural frequencies will diverge more and more due to the differ
ences in flexural rigidity between the linear and parabolic situations. 

Fig. 6 shows how temperature and different temperature profiles 
change the natural frequency of an FG-GPLRC microplate with a linearly 
variable thickness under the SSSS boundary conditions when Lx = Ly =

20 μm, h0 = 1.76 μm, NL = 10, m = 1, n = 1, α = 0.2, β = 0.2, g∗GPL =

1 %, l0 = l1 = l2 = 0, kw = 0, cd = 0. The thermal distribution patterns 
considered in this study include the uniform (φ = 0), linear (φ = 1), and 
nonlinear (φ = 3) distributions. The findings indicate that, irrespective 
of the temperature profile, a rise in temperature change leads to a 
decrease in frequency. However, the frequency drop is most pronounced 
for a uniform temperature distribution compared to linear and nonlinear 
profiles. Furthermore, the nonlinear temperature profile induces the 
smallest frequency shift with temperature. As the temperature rises, the 
disparities in frequency response between the temperature profiles 
become increasingly pronounced. This phenomenon can be linked to the 
uniformity of temperature, which leads to consistent thermal expansion 
and a decrease in stiffness across the whole thickness of the microplate. 
In contrast, in the case of nonlinear profiles, regions characterized by 
lower temperatures exhibit a diminished degree of thermal softening, 
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hence mitigating the influence on the overall stiffness. It is also observed 
that the differences in frequency response between the GPL distribution 
models decrease with rising temperature. At higher temperatures, the 
large uniform thermal strains dominate over the reinforcing effects of 
GPL gradients. 

Lastly, Fig. 7 presents the effects of viscoelastic medium damping 
coefficient and Winkler stiffness for simply supported boundary condi
tions on the natural frequency of a FG-GPLRC microplate with linearly 
variable thickness when Lx = Ly = 20 μm, h0 = 1.76 μm, NL = 10, m =
1, n = 1, α = 0.2, β = 0.2, g∗GPL = 1 %, l0 = l1 = l2 = 0,ΔT = 0. The 
natural frequency is shown to increase as the Winkler stiffness kw is 
increased for a certain cd. The increased overall stiffness and frequency 
of the system are a result of the stronger elastic foundation providing 
greater resistance to plate deflection. On the other hand, when consid
ering a specific value of kw, augmenting the damping coefficient cd re
sults in a decrease in the natural frequency. Increased damping results in 
a reduction in vibration amplitude and dynamic responsiveness, leading 
to a decrease in frequency. 

5. Conclusions 

This study presented a comprehensive analytical investigation into 
the vibration characteristics of FG-GPLRC microplates with linearly and 
parabolically tailored thickness profiles resting on viscoelastic medium 
under thermal loading and various boundary conditions. The imple
mentation of the Halpin–Tsai model was employed in order to determine 
the effective material properties pertaining to various distributions of 
GPLs. Size effects were taken into consideration by the governing 
equations, which were based on MSGT and FSDT. An efficient Galerkin 
method solved the final governing equations. The results demonstrated 
the significant influences of the length scale parameter, temperature 
change, boundary conditions, GPL distribution pattern, thickness pro
file, GPL weight fraction, temperature distribution profiles, and visco
elastic medium on the natural frequencies of the FG-GPLRC microplates. 
The extensive dataset presented can be utilized to enhance the design 
optimization of variable-thickness FG-GPLRC microplates for applica
tions in MEMS. The study demonstrates the potential for extensive 
tuning of dynamics through careful tailoring of gradation profiles and 
arrangements. Key findings that emerged from this research include:  

• The thickness gradation profile had a pronounced influence on the 
vibration behavior. Parabolic thickness variations induced greater 
flexibility and lower frequency compared to linear variations. The 
vibration frequency increased with higher values of the thickness 
taper constants.  

• A rise in temperature change leads to a decrease in frequency. 
However, the frequency drop is most pronounced for a uniform 
temperature distribution compared to linear and nonlinear profiles. 
Furthermore, the nonlinear temperature profile induces the smallest 
frequency shift with temperature  

• The FG-X arrangement with more graphene near surfaces provided 
highest stiffness and frequency, while FG-O distribution with inter
nal gradation offered lowest frequency.  

• Increasing GPL weight fraction drastically improved frequency due 
to enhancement of bending rigidity. 
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Appendix A 

The non-zero components θ, Xs
ij, γi and η(1)ijf (i, j, f = x, y, z) for each FG microplate can be presented as: 
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θx = −
1
2
(
W0,y + ψy

)
,

θy = −
1
2
(
W0,x + ψx

)
,

θz =
1
2
(
v0,x − zψy,x − u0,y + zψx,y

)
,

Xs
xx =

1
2
(
W0,xy + ψy,x

)
,

Xs
yy = −

1
2
(
W0,xy + ψx,y

)
,

Xs
zz =

1
2
(
ψx,y − ψy,x

)
,

Xs
xy =

1
4
(
W0,yy + ψy,y − W0,xx − ψx,x

)
,

Xs
xz =

1
4
(
v0,xx − zψy,xx − u0,xy + zψx,xy

)
,

Xs
yz =

1
4
(
v0,xy − zψy,xy − u0,yy + zψx,yy

)
,

γx = u0,xx − zψx,xx + v0,xy − zψy,xy,

γy = v0,yy − zψy,yy + u0,xy − zψx,xy,

γz = −
(
ψx,x + ψy,y

)
,

η(1)
xxx =

1
5
(
2u0,xx − u0,yy − 2v0,xy − 2zψx,xx + zψx,yy + 2zψy,xy

)
,

η(1)
yyy =

1
5
(
2v0,yy − v0,xx − 2u0,xy − 2zψy,yy + zψy,xx + 2zψx,xy

)
,

η(1)
zzz =

2
5
(
ψx,x + ψy,y

)
−

1
5
(
W0,xx + W0,yy

)
,

η(1)
xxy = η(1)

xyx = η(1)
yxx =

1
15
(
4v0,xx + 8u0,xy − 3v0,yy

)
−

1
15

z
(
8ψx,xy + 4ψy,xx − 3ψy,yy

)
,

η(1)
xxz = η(1)

xzx = η(1)
zxx =

1
15
(
4W0,xx − W0,yy − 8ψx,x + 2ψy,y

)
,

η(1)
yyx = η(1)

yxy = η(1)
xyy =

1
15
(
4u0,yy − 3u0,xx + 8v0,xy

)
−

1
15

z
(
8ψy,xy + 4ψx,yy − 3ψx,xx

)
,

η(1)
yyz = η(1)

yzy = η(1)
zyy =

1
15
(
4W0,yy − W0,xx + 2ψx,x − 8ψy,y

)
,

η(1)
zzx = η(1)

zxz = η(1)
xzz = −

1
15
(
3u0,xx + 2v0,xy + u0,yy

)
+

1
15

z
(
3ψx,xx + 2ψy,xy + ψx,yy

)
,

η(1)
zzy = η(1)

zyz = η(1)
yzz = −

1
15
(
v0,xx + 3v0,yy + 2u0,xy

)
+

1
15

z
(
ψy,xx + 3ψy,yy + 2ψx,xy

)
,

η(1)
xyz = η(1)

yzx = η(1)
zxy = η(1)

xzy = η(1)
yxz = η(1)

zyx =
1
3
(
W0,xy − ψx,y − ψy,x

)
,

(A)  
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