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Abstract

RGB cameras make three measurements of the light entering the camera, whereas hyper-

spectral imaging devices, per pixel, record the spectrum of the light. Spectral images have

been shown to be more useful than RGB images in solving problems in many industrial

application areas, including remote sensing and medical imaging. Spectral Reconstruction

(SR) refers to a computational algorithm that recovers spectra from the RGB camera re-

sponses. This “make-the-RGBs-more-informative” process is most commonly implemented

by machine learning (ML) algorithms, given matching RGB and hyperspectral data for

training. Two mainstream ML approaches used in SR are regression and Deep Neural Net-

work (DNN). While the former often has simple closed-form formulations for a pixel-based

mapping, the latter approach is much more complicated: millions of parameters are used

to map large image patches, in the hope that the network could utilise the spatial context

in which each RGB is seen to further improve SR. It is generally accepted that regressions

have long since been superseded by DNN methods. Nevertheless, few studies have actually

been dedicated to comparing the two approaches.

There are three main goals of this thesis. First, we benchmark regression- and DNN-based

SR algorithms on the same hyperspectral image dataset. Here we pay close attention to the
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role that the spectral sensitivities of a camera play and also SR performance on unseen data.

Second, we seek to improve regression-based algorithms and, in effect, attempt to close their

gap in performance compared to DNN counterparts. Lastly, we investigate the practical

issues faced by all SR algorithms. We consider SR performance as exposure changes and

SR performance in a “closed-loop” imaging framework (i.e., do the spectra that an SR

algorithm recovers integrate to the same input RGBs?).

Our baseline benchmarking experiments indicate that the best DNN method only deliv-

ers a 12% accuracy improvement compared to the best-performing regression. Moreover,

a regression method trained for one camera might actually outperform a DNN trained on

another camera. Additionally, we find that the DNN’s worst-case performance (for unseen

and unexpected scenes) is no better than the simplest regression method. Concomitantly,

this encourages us to see if we could improve the average performance of regression meth-

ods.

We propose three new improvements for regression methods. First, we reformulate the

regressions so that they minimise a loss metric that is more similar to the one used to

rank and train the leading DNN methods. Secondly, we revisit the regularisation step of

the regression implementation. Regularisation is a technique for making the outputs of

regressions more stable for unseen input and is usually governed by a single regularisation

parameter. Here, we adopt as many regularisations as there are channels in a hyperspectral

image, and this results in significant performance improvement. Lastly, we propose a new

sparse regression framework. In sparse regression, we code RGBs in terms of the neigh-

bourhood in the RGB space (via a clustering argument). We argue that this clustering is

better performed in the spectral domain (where input RGBs are first regressed to some pri-

mary estimation of spectra). Combined, upgraded formulation and improved clustering, we

develop a regression-based method found to work as well as the top DNN methods.

As important as spectral accuracy is, trained SR algorithms need to work in practice, e.g.,

where objects and scenes can be viewed in varying exposure conditions. Unfortunately, we
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find that leading methods, such as non-linear regressions and DNNs, do not work well when

exposure changes. Consequently, we propose new training frameworks which ensure the

DNNs and regressions continue to work well under changing exposures.

Finally, we investigate the following problem: we find that both regression- and DNN-

based SR algorithms recover spectra that—when integrated with the camera’s spectral

sensitivities—do not induce the same RGBs as the input to the algorithm. This means

that the spectra that are recovered cannot (ever) be the correct spectra. Given this find-

ing, we seek ways of adding physical plausibility (spectra should integrate to predict the

input RGBs) to the SR algorithms. One of our proposed solutions is effectively a simple

post-processing step which, provably, always improves the RMS (i.e., root-mean-square)

performance of any SR algorithm.
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Chapter 1

Introduction

An RGB camera records the light radiances coming from the scene with 3 types of colour

sensors, which, effectively, records the weighted-sums of the spectral intensities in broadly

3 spectral regions—Red, Green and Blue [93]. This almost ubiquitous imaging practice

sacrifices a significant portion of spectral information for faster, light weight and more

affordable image captures. On the other hand, there are hyperspectral cameras that measure

the light radiances with high “spectral” resolution. With more detailed radiance’s spectral

shape recorded, hyperspectral cameras are more able to tell the light coming from different

objects apart—a.k.a. the concept of “spectral signature” [44]—and these devices are found

to be more useful (compared with RGB cameras) for many industrial applications including,

remote sensing [90; 97], medical imaging [26; 56], anomaly detection [54; 102], artwork

conservation [100; 39; 67], device characterisation [23] and food processing [21; 36]. However,

the high price tag of hyperspectral imaging technologies, as well as the trade-offs among

spatial, spectral and temporal resolutions limit their usefulness.

To bridge the gap between RGB capture (simple, high spatial resolution and cheap) and

hyperspectral imaging, there are various techniques that substitute physical per-pixel hype-

spectral capture with ingenious computational algorithms. Examples include hyperspectral

image super-resolution [27; 43] (which enhances the spatial resolution of low-resolution hy-

perspectral images), compressive sensing techniques [34; 104] (jointly record spectral and

spatial information in a 2-D plane and “decompress” using specialised algorithms), and

Spectral Reconstruction (SR). SR is the focus of this thesis.

1
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Figure 1.1: Illustration of colour image formation and spectral reconstruction (SR).

In SR, hyperspectral measurements are recovered from spectral images with lower number

of spectral channels, typically from RGB images. As shown in Figure 1.1, an RGB camera

only records three intensity values at each pixel (right side of the figure), whereas the

spectral signal (left side), or the hyperspectral measurement of the pixel, is a continuous

(or practically, finely sampled) function of wavelength.

Solving the SR-from-RGB problem has merit. First, in applications such as digital art

archiving [100] and device spectral characterisation [23], acquiring the spectral representa-

tion of objects is often immediately the goal. Then, in other applications, e.g., computer

vision, where we might want to use spectral images only as an intermediate representation

for further objectives, given RGB images, it may be better to solve the problems end-to-end.

Indeed, if hyperspectral images are estimated from the RGBs, the recovered spectra will

contain no more information than the RGBs (as opposed to Figure 1.1 where the spectra

were recorded). Still, with a controlled intermediate representation, it is likely that less

data and less complex learning model will suffice for the tasks [61]. Another advantage of

studying the SR problem is that, with a hyperspectral camera, the ground-truths for SR

learning are immediately labelled, i.e., the spectral ground-truths captured by a spectral

camera do not need further manual labelling.
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In most contemporary research, SR algorithms attempt to recover the raw radiance spectra

captured by a hyperspectral device within the visible range—in which the RGB camera

sensors are responsive. Of course, if there is a single prevailing light illuminating a scene,

and this illuminant’s spectrum is known, then the reflectance spectra can be derived from

the radiances by “dividing out” the known illuminant spectrum [93] and recovered using

an SR algorithm. Though many earlier SR researches are based on reflectance recovery,

following the recent trend, this thesis will focus on examining the RGB-to-radiance SR

recovery, and the term “spectrum” will almost always refer to the radiance spectrum in this

thesis.

Evidently, describing a pixel by its full spectral function—either radiance or reflectance—is

more informative than by its colour. Yet, this also means that solving SR, the RGB-to-

spectrum recovery, is an under-constrained and ill-posed problem [87]. In the prior art, SR

algorithms are mostly formulated either as a regression problem [42; 25; 62; 1] or in a Deep

Neural Network (DNN) framework [7; 8; 9]. Although other approaches exist, including

Bayesian inference [60; 14] and iterative methods [13; 107], they are less efficient, with more

complex implementation, and work no better than regression and poorer compared with

state-of-the-art DNN algorithms.

In regression-based SR, a one-to-one map from RGBs (or simple non-linear features de-

rived from the RGBs) to spectra is formulated using a linear transformation matrix, whose

least-squares optimum can be solved in closed form. This ensures very fast training and

inference. The variation of regressions used in SR literature includes the most primitive

linear regression [42], the non-linear polynomial regression [25], the clustering-based radial-

basis-function network [62] and A+ sparse coding method [1]. However, the one-to-one

nature of the map neglects the fact that multiple (in fact infinite) plausible spectra could

be the answer given an RGB input [60]. This phenomenon is so-called metamerism [29; 99].

In contrast, the recent DNN implementations are based on much stronger feature extrac-

tion and mapping architectures to provide much richer SR inferences. Additionally, DNN
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methods usually take large image patches as inputs, which provides the possibility for the

algorithm to learn high-level descriptions of the pixels that could potentially overcome the

metameric problem—i.e., if the same colour is viewed as part of two different objects, DNN

can potentially distinguish the two cases and map to different spectral estimates.

Nevertheless, we observe that it is unclear in the literature how large the gap between

regression-based methods and the leading DNN methods truly are. Indeed, most regression

methods are proposed over 10 years ago and benchmarked on small dataset of discrete

hyperspectral measurements, whereas the recent DNN methods are evaluated with the

much larger hyperspectral “image” datasets—e.g., ICVL [5], NUS [62] and CAVE [101]—

and only focus on comparing their methods with other DNN-based methods. Therefore, the

first main focus of this thesis is to re-evaluate the regression-based methods on the ICVL

hyperspectral image dataset, where a fair comparison with the leading DNN methods is

possible. Here, I put leading in italic because, admittedly, the trend of proposing new DNN

methods to solve SR does not stop even now as I am writing this thesis. Nevertheless, it

is undoubtedly that whichever DNN methods we are comparing (the DNN methods that

are the best at some point during the thesis development) are much more complicated than

any of the regression methods involved.

As we redo the evaluation of regressions and leading DNN methods on the same evaluation

protocol, we show that the current gap between the two approaches is around 12%. Further,

we show that the DNN performance on a given camera A can be worse than that deliv-

ered by regression using another camera B. In other words, it is possible to reach DNN’s

performance using a regression by switching the camera used in SR. Next, we develop a

worst-case imaging condition to evaluate SR, where the image content and the relative abun-

dance among spectra is removed. We show that in this generalisability testing, the leading

DNNs do not outperform even the most primitive linear regression [42]. These results lay

out an important empirical evidence that the difference between the old regression methods

and the currently leading DNN methods may not be as large as we may think.
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Encouraged by this outcome, we further investigate how we could improve the regression

methods used in SR research, so as to narrow down their performance gap with the leading

DNN methods. In the first attempt, we seek to reformulate regression so that it does

not minimise the usual least-squares loss function, but one that is more similar to the

percentage-error-type metric the DNNs are trained and benchmarked against [7; 8]. The

methods we develop from this change-the-metric insights can be used, in general, for any

regression scheme.

Our second contribution to regression theory is even more important and surprising. We

re-examine the sparse regression SR approach [5; 1]. In its simplest guise, sparse regression

first finds the neighbourhood in which an RGB resides. This is typically defined as the

overlapping surrounding areas of a small number of control-point RGBs. Correspondingly,

there are spectra associated with these RGBs. By solving how a given query RGB can be

written as a linear combination of nearby control-point RGBs, we apply the same linear

combination to the corresponding control-point spectra to estimate the spectrum. Then, our

insight is to estimate how the linear combination relationship can be estimated directly in

the spectral space instead of in the RGB space. We show that this new regression approach

outperforms the leading DNNs. More strikingly it—at least for current DNNs—questions

the premise that these networks are carrying out meaningful patch-based computations.

It is likely that current DNN models are unable to efficiently utilise the extra information

brought by patch-based inputs, and this further implies that the available training data

may not be enough to fully optimise their excessive model parameters (in our experiments,

we have already selected one of the largest hyperspectral image datasets [5]).

Apart from our effort on improving regressions, we also propose two new problem definitions:

exposure invariance and physical plausibility in SR. The problem of exposure invariance in

SR entails how in reality when a ground-truth spectrum is scaled by a constant factor (i.e.,

getting brighter or dimmer), the resulting raw RGB camera response will also be scaled by

the same factor, but a learned SR algorithm does not necessarily possess the same property.
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The practical implication of this problem is that, when an SR algorithm works well on

recovering spectra in the image region of a particular object, there is no promise that it will

deliver the same performance if the object gets brighter or dimmer. Indeed, we found that

all methods based on a non-linear mapping, including non-linear regressions and DNNs,

degrade drastically when we brighten or dim the testing images.

Regarding exposure invariance, we made two contributions. First, we propose a new

regression-based SR method which is a non-linear mapping function while possessing expo-

sure invariance. Our second contribution is developing SR training frameworks that enforce

exposure invariance on the SR algorithms. In the chromaticity mapping SR framework, we

separate the input RGBs into two multiplying terms: chromaticitiy and brightness. While

we recover a brightness-normalised spectrum from the chromaticity, the brightness term is

kept constant and reapplied to the recovery that delivers the final spectral estimate. This

approach ensures perfect exposure invariance, but the (potentially useful) brightness infor-

mation is not utilised in training. Alternatively, in data augmentation, we apply random

brightness scaling to the training data. This approach is shown to be preferred for DNN

methods (compared to chromaticity mapping), but less effective for the regressions.

Then, we propose and investigate the physical plausibility issue of modern SR. Given a

ground-truth spectrum, its corresponding RGB camera response can be calculated via nu-

merically integrate the spectrum with the spectral sensitivities of the camera [93]. However,

if we numerically integrate the algorithm-recovered spectrum with spectral sensitivities, we

often arrive at a different RGB from the one suggested by the ground-truth, which means

the recovered spectrum must not be the correct answer (i.e., the ground-truth). We now

ask the following question: “Can we further improve the spectral accuracy of the existing

SR methods via resolving this physical inconsistency?” We can confirm that the answer

to this question is yes. We developed a universal post-processing step which not only can

enforce physical plausibility to any algorithms, but also is mathematically proved to be able

to improve the accuracy of every recovered spectrum.

Chapter 1 Yi-Tun Lin 6



A Practical Study on Recovering Spectra from RGB Images

In summary, this thesis presents the following contributions to the field of spectral recon-

struction from RGB images:

• The regression-based SR methods are benchmarked against a leading DNN method,

not only under the newer protocol the DNNs adopt, but also in our own designed

extensive experiments including changing cameras and worst-case image set testing.

• We propose universal upgrades for the regression methods to optimise for a more

similar loss metric compared to those used to evaluate and rank the recent DNN

methods.

• An SR refining framework based on the dictionary-based sparse coding technique is

proposed, which, when used in conjunction to the best-performing regression, delivers

SR outperforming the leading DNN method.

• We point out a general problem that non-linear-mapping-based SR methods tend to

significantly degrade when the exposure of the testing scenes changes, and propose

several ways of enforcing performance invariance against exposure change when train-

ing an SR algorithm.

• We point out that most SR algorithms recover spectra that do not regenerate the

input RGBs when applying with the underlying camera sensors’ spectral sensitivities.

We develop remedies for this issue, with one of our methods shown to be a universal

improvement, in the sense that it is guaranteed to improve the spectral accuracy of

any SR method.
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Chapter 2

Literature Review

2.1 Imaging Technologies

2.1.1 Colour Imaging

Figure 2.1: Illustration of colour image formation framework.

Summarised in Figure 2.1, the concept of colour (i.e., the “RGB”) results from the interac-

tion among the light source, object surfaces and a set of three colour sensors, especially on

the spectral properties of these three factors. First, the light source emits electromagnetic

(light) signals with varying intensities at different wavelengths, namely the Spectral Power

Distribution (SPD), or simply the illumination spectrum. These signals are reflected from

the object surfaces in the scene according to a spectrally varying ratio function called the

surface reflectance. Importantly, it is well-known that surfaces made of the same material

have unique surface reflectance, therefore the reflectance information is sometimes referred

to as the “signature” of object surfaces [44]. Lastly, per pixel, an RGB camera captures
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the combined signals of illumination and object surfaces using three different sensors. In

effect, each of these three types of sensors “weighted sums” the incoming signals into a

single intensity output and with a different spectrally-varying sensitivity function, namely

the spectral sensitivity.

Let us denote the illumination spectrum as E(λ), the object surface’s reflectance at a pixel as

S(λ), and the kth-sensor’s spectral sensitivity function as Rk(λ). A simple colour formation

formula can be written as [93]:

∫
Ω
H(λ)Rk(λ)dλ = ck ; H(λ) = E(λ)S(λ) , (2.1)

where H(λ)—called the radiance—is the combined signal of E(λ) and S(λ), representing

the final signal that reaches the sensors. ck is the resulting kth-sensor response (k = 1, 2, 3

respectively refer to as the R, G and B responses). Ω refers to the visible range of wavelength

which roughly runs from 400 to 700 nanometers (nm). Since we human can only sense light

within this range, the camera sensors are usually designed accordingly. In contrast, we note

that both E(λ) and S(λ) (and therefore H(λ)) can have values outside this range, but those

parts of the spectra do not influence the resulting colour responses ck.

Though this colour imaging process mimics the colour vision of humans, it surely loses much

information of the light. Indeed, while the radiance signal H(λ) is a continuous function, in

colour imaging we only record 3 numbers per pixels. This loss of information translates to

the ambiguity of the 3-dimensional colour representation of light—there are infinite spectra

that can plausibly produce the same RGB [29]—which leads to limiting performance for

RGB cameras to be used in some computer vision and graphics applications.

To mitigate the limitation of RGB imaging, multispectral and hyperspectral cameras are

designed to capture more information from the radiance signals, H(λ).
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2.1.2 Multispectral Imaging

In multispectral imaging, the captured channels per pixel increase from 3 in RGB imaging

to around 5 to 10 channels. That is, we are using the same image formation formula as

Equation (2.1) but with 5 to 10 different sensors. Though the spectral ambiguity still exists

in this setup, multispectral imaging surely captures more spectral information than the

RGB imaging.

Many designs are proposed for multispectral imaging. Inspired by the typical “bayer pat-

tern” commonly used in RGB imaging [68] where a spatially repeating 2 × 2 pattern of

RGB filters are used to cover a monochromatic sensor array, giving a single 3-channel RGB

readings per 2×2 pixel neighbourhood, the design of Spectral Filter Array (SFA) [94] seeks

to increase the number of different filters used per repeating unit pattern. Of course, to

consider more than 4 spectral channels, the repeating pattern for SFA will need to be larger

than 2× 2. This means the spatial resolution of SFA can be much lower compared to what

we usually get for an RGB colour camera.

Another common method is using a colour filter wheel [15], where several different filters

are attached to a mechanical wheel which rotates at a controlled speed while each filter

in turn covers the pupil of a monochromatic camera. By stacking the images captured by

all the different filters, we get the multispectral measurement of the scene. However, this

“spectral scanning” setup limits its temporal resolution, and as such it is not suitable for

capturing objects that move.

Without giving up temporal and spatial resolutions, some works also propose to capture

more than 3 channels by aligning multiple RGB cameras with different RGB spectral sen-

sitivities to the exact same scene [63; 96]. Nonetheless, this setup requires exact image

registration which is not always easy to do. Plus, with a system that includes multiple RGB

cameras, we can expect this setup to be much bulkier than a regular RGB camera.
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Compressive sensing is yet another approach to high-speed and high-resolution multispec-

tral imaging. Including the use of coded aperture [10; 33; 34], faced reflectors [85], diffractive

grating [55], digital micro-mirror device [74], and more recently the random printed mask

[104], these approaches intertwine both the spectral and spatial information on the same

image plane, following certain patterns to be decoded by specialised algorithms (many

are based on machine learning). Nonetheless, failed decompression can alter the actual

measured spectral information and/or leave uncompressed patterns on the resulting im-

ages.

Summarising the various multispectral imaging techniques introduced, we see that while

being able to capture more of the spectral information than the RGB cameras, multispectral

cameras face various challenges in terms of image quality, temporal resolution, and/or device

bulkiness, when compared to our everyday RGB cameras.

2.1.3 Hyperspectral Imaging

In hyperspectral imaging, we are to measure the radiance signal, i.e., H(λ) in Equation

(2.1), at finely sampled wavelengths within the given range. Let us say we sample n

equal-distanced points within the visible range Ω = [λ1, λ2, · · · , λt, · · · , λn]. Then, the

hyperspectral measurement at a pixel can be written as an n-dimensional vector:

h = [h1, h2, · · · , ht, · · · , hn]T ; ht = H(λt) = E(λt)S(λt) . (2.2)

h is often regarded as the ground-truth measurement of H(λ) [7; 8].

In relation to RGB imaging, described in Equation (2.1), we can replace the continuous

H(λ) function with h—the measured radiance using a hyperspectral imaging device. Then,

we may also discretise the spectral sensitivity functions, i.e., Rk(λ); k = 1, 2, 3 in Equation
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(2.1), so that it matches the wavelength samplings for h:

R =


R1(λ1) R1(λ2) · · · R1(λt) · · · R1(λn)

R2(λ1) R2(λ2) · · · R2(λt) · · · R2(λn)

R3(λ1) R3(λ2) · · · R3(λt) · · · R3(λn)


T

. (2.3)

With those discretised representations, i.e., h and R, we can now approximate the integrals

used in Equation (2.1) using inner products:

RTh = c , (2.4)

where c = [c1, c2, c3]
T = [R,G,B]T is the 3-dimensional RGB colour vector [93]. In this the-

sis, we consider linearly independent columns for R, referring to the standard tri-chromatic

colour vision [16].

Equation (2.4) usefully describes how we can simulate the physically-accurate RGB re-

sponse of an RGB camera using the hyperspectral measurement and the camera’s spectral

sensitivities. Also, with Equation (2.4) we see the power of hyperspectral imaging in colour

applications. While the captured RGB colours differ from one camera to another, the hyper-

spectral measurement is device-independent, from which the colours of individual cameras

can be derived directly, bypassing the usually-inevitable ill-posed conversions between de-

vices [28].

In terms of the hyperspectral imaging techniques, for point measurement, spectral radiome-

ter [76] is used, where the radiance measurement is spatially averaged over its field of view.

To further capture radiance information with spatial content, a time-consuming scanning

process is almost always required, including spatial scanning methods: “push broom” and

“whisk broom” [48], and the spectral scanning methods using a Liquid Crystal Tunable

Filter [108] or a prism-mask system [17]. Of course, these techniques require even longer

time to capture one image compared to a multispectral device, which means it is almost
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impossible to use a hyperspectral device to capture moving objects. Furthermore, these

devices are more expensive than multispectral devices, and even more so if we compare

them with our everyday RGB cameras.

2.2 Spectral Reconstruction and Legacy Methods

The main topic of this thesis—Spectral Reconstruction (SR)—aims to find an algorithm

that can reconstruct hyperspectral information from the RGB images. In effect, assuming

we have a good enough SR-from-RGBs algorithm, we can capture hyperspectral information

with an RGB camera (much more easily accessible, much less costly, and of much better

spatial and temporal resolutions).

Let us denote an SR algorithm as a function Ψ(). We write:

Ψ(ci) ≈ hi ; ∀i , (2.5)

where hi is the ith ground-truth radiance spectrum measured by a hyperspectral device,

and ci is the RGB camera response of hi. Here, i indexes the individual data points included

in a considered dataset.

Assuming the hyperspectral device measures n values within the visible range, that is hi ∈

Rn, Ψ() is then an R3 to Rn mapping (n ≫ 3). Evidently, given an RGB, e.g., ci, there are

infinite possibilities in Rn that can be the answer. Yet, not all spectra in Rn can physically

appear in the real world. The objective of Ψ() is thus to find the best answer based on

some preset criteria.

Below, we will start with reviewing some of the earliest SR methods. These methods

seek physical clues to narrow down possible answers. Nevertheless, they can be inefficient

and less accurate compared to methods that directly minimise spectral accuracy (which is

the criterion most of the recent methods adopt). In addition, these early methods often

consider the illumination spectrum separately from the surface reflectance, where the former
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is sometimes considered a fixed and known factor, and as such these SR methods seek to

approximate the reflectance only:

Ψ(ci; e) ≈ si ; ∀i , (2.6)

where e and si are respectively the fixed illumination spectrum and surface reflectance of

the ith data point.

2.2.1 3-D Linear Model

The earliest methods in the field of SR focus on finding a 3-dimensional representation of re-

flectance, and as such the RGB-to-reflectance mapping becomes well-posed [58; 2]. Usually,

a linear model is used, where exactly 3 basis vectors are found such that all reflectances can

be represented as linear combinations of these bases with minimal errors. In particular, the

Principal Component Analysis (PCA), or equivalently the Singular Value Decomposition

(SVD), are widely used to find the basis vectors [69].

Denoting the three (optimally found) basis vectors as b1, b2 and b3, the reflectance spectrum,

denoted as si, can be approximated by:

si ≈
3∑

j=1

αj
ib

j = Bsαi ; ∀i , (2.7)

where αj
i is the coefficient of the jth basis bj in the linear combination that approximates si,

αi = [α1
i , α

2
i , α

3
i ]
T, and Bs = [b1, b2, b3].

Returning to the mathematical relation between hyperspectral and colour measurements

in Equation (2.4), and considering the assumed-fixed illumination term, e, separately from

the varying surface reflectance in the database, si, we can write:

ci = RThi = RTdiag(e)si . (2.8)
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Then, we replace the reflectance vector si by the linear model representation in Equation

(2.7):

ci ≈ [RTdiag(e)Bs]αi = Λαi , (2.9)

where Λ is a known 3× 3 non-singular matrix provided that all columns of R are linearly

independent (i.e., standard tri-chromatic vision), and all R, e and Bs are fixed. Λ is

sometimes referred to as the lighting matrix [60] that is, in essence, a matrix operator

combining the effects of illumination and sensor, which acts on the reflectances to derive

their corresponding colours.

Since Λ is a known and non-singular squared matrix, an equivalent relation between αi and

ci can be written as:

αi ≈ Λ−1ci ; ∀i . (2.10)

By combining Equation (2.7) and (2.10), we get:

si ≈ Bsαi ≈ BsΛ−1ci ; ∀i , (2.11)

which solves the RGB-to-reflectance mapping problem (Equation (2.6)).

Of course, the main problem of this approach is its 3-dimensional assumption for the re-

flectance. As suggested in later studies, such as [41; 72; 51; 59; 64], at least a 5- to

8-dimensional linear model is required to sufficiently describe the surface reflectances in

real-world datasets. Still, the idea of pursuing effective linear models to represent spectral

data remains important for later studies and also some of the new contents delivered in this

thesis.

2.2.2 Bayesian Inference

Brainard and Freeman [14] proposed a Bayesian inference model to solve SR. Usefully, their

formulation is applicable to any arbitrarym-dimensional linear model of reflectance (m ≤ n,

where n is the actual dimension of the reflectances), though in the original publication, m =
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3 is used. Additionally, they assume varying illumination spectrum, denoted as ei, which is

to be estimated from the RGB, ci, alongside the recovery of the surface reflectance si.

Here, for every radiance spectrum we wish to recover, we are to recover ei and si sepa-

rately. Using respective datasets, we can optimise separate m-dimensional linear models

that optimally represent both spectral components:


ei ≈ Beαe

i

si ≈ Bsαs
i

; ∀i , (2.12)

where Be and Bs are n×m matrices of bases, and αe
i and αs

i are m-vectors of coefficients.

Then, SR in this case wishes to recover αe
i and αs

i from their RGB observation ci which is

related to αe
i and αs

i by:

ci ≈ RTdiag(Beαe
i )B

sαs
i . (2.13)

This approximation is derived from Equation (2.9) where we substitute the fixed illumina-

tion spectrum e with the varying ei represented by Equation (2.12).

In a Bayesian sense, we are to formulate the posterior distribution of αe
i and αs

i , denoted

as p(αe
i ,α

s
i |ci), following the Bayes’ rule:

p(αe
i ,α

s
i |ci) =

p(ci|αe
i ,α

s
i )p(α

e
i ,α

s
i )

p(ci)
. (2.14)

Our target is then to find the maximal value in p(αe
i ,α

s
i |ci) that suggests the estimation of

αe
i and αs

i .

Let us further investigate each term on the right hand side of Equation (2.14). First, the

colour’s probability distribution, p(ci), is independent to the estimation targets: αe
i and αs

i ,

thus it is regarded as a constant. Next, the p(ci|αe
i ,α

s
i ) term entails how likely that ci is the

colour when αe
i and αs

i are respectively the illumination spectrum and surface reflectance

(or their linear model coefficients thereof). From Equation (2.13), we know that the colour

is decided when both the illumination and reflectance are given. Therefore, ignoring noise,
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p(ci|αe
i ,α

s
i ) = 1 when ci is the exact colour derived from αe

i and αs
i , and p(ci|αe

i ,α
s
i ) = 0

elsewhere. I.e., p(ci|αe
i ,α

s
i ) is known as a delta function. We note that Brainard and

Freeman [14] also consider the p(ci|αe
i ,α

s
i ) formulation in a noisy case. Interested readers

are pointed to the original paper for more information.

Finally, p(αe
i ,α

s
i ) is called the prior distribution of illumination and surface reflectance.

Assuming that the reflectances do not change under different illuminations, the joint prior

distribution of the two factors becomes the product of the two individual prior distribu-

tions:

p(αe
i ,α

s
i ) = p(αe

i )p(α
s
i ) . (2.15)

Respectively, p(αe
i ) and p(αs

i ) are modeled by truncated normal distributions:

p(αe
i ) =

 N (µe,Σe) all components in Beαe
i ≥ 0

0 otherwise
, (2.16)

and

p(αs
i ) =

 N (µs,Σs) all components in Bsαs
i ≥ 0

0 otherwise
. (2.17)

Here, N represents the normal distribution, µe and Σe are the mean and covariance matrix

of αe
i in the considered illumination dataset, and likewise for µs and Σs in the reflectance

dataset. The physical constraints—the conditions to prevent negative values for the de-

rived illumination and reflectance—are placed so that the final estimations are physically

realisable in the real world (i.e., physical spectral values cannot be negative). With the

derivations from Equation (2.14) to (2.17), we solve SR by finding the maximal point of the

posterior distribution.

A general advantage of Bayesian approach is that it not only returns the most probable

estimate, but also shows the probability for other feasible candidates to be the correct

estimate. However, the Bayesian’s inference process is known for being very slow to run,
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especially if we wish to consider this method beyond 3-dimensional linear models (i.e.,

m > 3).

2.2.3 Bayesian with Metamer Sets Constraint

While we anticipate to use a 5- to 8-dimensional representation of reflectances for SR,

Morovic and Finlayson [60] show that, with known camera’s sensor spectral sensitivities, we

can already fix 3 dimensions of the linear model given each input RGB, namely the metamer

sets constraint. Advantageously, this means that we have 3 dimensions less information to

estimate, which can lead to faster inference. Moreover, the uncertainty of SR is further

bounded by this new constraint.

Let us represent the n-dimensional surface reflectances using anm-dimensional linear model:

si ≈ Bsαi, ∀i, where Bs is n×m whose columns are individual basis vectors, and αi is an

m-component coefficient vector uniquely representing si. Then, the corresponding colour of

a reflectance under a fixed known illumination, denoted as ci, can be derived using Equation

(2.9), that is

ci = Λαi , (2.18)

only that here the dimension of the lighting matrix, Λ, is 3 × m (because here an m-

dimensional linear model is used instead of the 3-dimensional model used previously in

Section 2.2.1).

With respect to Λ, we can separate αi into two components, αf
i and αb

i , such that:

αi = αf
i +αb

i ; subject to

 Λαf
i = ci

Λαb
i = 0

; ∀i . (2.19)

Here, the αf
i component is called the fundamental metamer of αi, which is the only com-

ponent out of the two contributes to the colour image formation (i.e., when multiplying the
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Λ matrix we derive the colour vector ci). On the other hand, αb
i is called the metameric

black which, when multiplying Λ, returns a 3-dimensional zero vector 0 [29].

In a linear algebraic point of view, αf
i is αi projected onto the 3-dimensional vector space

spanned by the row vectors of Λ (i.e., the row space of Λ, or C(ΛT)), whereas αb
i lies in

the (m− 3)-dimensional null-space of C(ΛT). Combined, the two spaces form the Rm space

where αi lies in. Based on this insight, we derive the respective projection matrices [83]

which usefully derive αf
i and αb

i from αi: Pf = ΛT(ΛΛT)−1Λ , such that Pfαi = αf
i ,

Pb = I−Pf , such that Pbαi = αb
i .

(2.20)

In terms of spectral reconstruction, we are to recover αi given an input colour ci. Or,

equivalently, we can recover αf
i and αb

i separately from ci. First, let us focus on the αf
i

term. According to the top line of Equation (2.20), we write:

αf
i = Pfαi = ΛT(ΛΛT)−1[Λαi] . (2.21)

Given that Λαi = ci is a known physical relation between αi and ci (see Equation (2.18)),

we get:

αf
i = ΛT(ΛΛT)−1ci . (2.22)

Evidently, the αf
i component is unique to the given RGB value ci. That is, all reflectances

whose colour is ci have exactly the same fundamental metamer component which is αf
i . In

addition, Equation (2.22) derives αf
i from ci directly without the need for any additional

estimation.

This leaves the spectral reconstruction problem only to estimate the αb
i metameric black

component from ci. Unlike αf
i which is fixed upon given the input RGB ci, α

b
i can be any

vector lies in the (m − 3)-dimensional null-space of C(ΛT). We can write αb
i in another
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bases-coefficients representation:

αb
i = Bbβb

i
, (2.23)

where βb
i
is an (m− 3)-vector of coefficients, and Bb is an m× (m− 3) dimensional matrix

whose columns are the basis vectors of the null-space of C(ΛT). These basis vectors can

be derived from the projection matrix Pb in the bottom Equation (2.20) as the m − 3

linearly independent columns of Pb [83], which can be found using, e.g., the Gram–Schmidt

orthogonalisation procedure [22].

In effect, given an input RGB, ci, we are to find the most probable estimate out of all

reflectances whose fundamental metamer component is exactly αf
i while only differ with

each other in their metameric black component. In the parlance of Morovic and Finlayson

[60], these reflectances form a metamer set. Mathematically, we write:

M(ci;Λ) =

ß
αf

i +Bbβb
i

∣∣∣∣ βb
i
∈ Rm−3

™
, (2.24)

where M denotes the metamer set with respect to the input RGB ci and the fixed known

Λ matrix—the two factors needed to derive the αf
i component (Equation (2.22)).

Adopting a Bayesian inference process (Section 2.2.2), analogously, a Gaussian distribution

is used to model the prior distribution of αi. Then, on input a particular ci, we are to

calculate the corresponding M(ci;Λ) and intersect M with the prior distribution of αi

before solving the most probable estimation within this intersecting region.

Effectively, we are solving SR such that all recoveries lie in their respective metamer sets

derived from their corresponding RGBs. This ensures that the colours of all recovered

reflectances coincide the input RGBs. This idea will be a core insight we use to develop our

physically plausible SR solutions presented in Chapter 7.

Note that in the original work of Morovic and Finlayson [60], there are two other physical

constraints used, namely the physical realisability and naturalness constraints, which further
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bound the uncertainty of their SR solution. Interested readers are pointed to the original

paper for more details.

2.3 Regression

Unlike the methods presented in the previous section where explicit physical constraints

are used, in regression we focus on statistically minimising the errors between the ground-

truth and reconstructed spectra. In addition, regression can be used to estimate the full

n-dimensional spectrum directly and effectively, without the need for a lower-dimensional

linear model. Here, we consider radiance reconstruction using regression (as opposed to

reflectance reconstruction discussed in the legacy methods).

2.3.1 Formulations

In Linear Regression (LR), simply, an n×3 linear regression matrixM (n is the dimension of

the spectra) is used to predict all spectra in a dataset from their corresponding RGBs:

Mci ≈ hi ; ∀i , (2.25)

where i indexes individual data points, and ci and hi are respectively the RGB and the

ground-truth spectrum of the ith data point. Or, equivalently:

MC ≈ H , (2.26)

where all matching RGB and spectral data is arranged into the matching columns of C and

H, respectively. Given N as the number of data points of concern (training or testing), the

matrix dimensions of C and H are 3×N and n×N , respectively. In effect, the elements in

M are the only trainable parameters used for the RGB-to-spectrum mapping in LR.

To further improve the performance of LR, the Polynomial Regression (PR) method seeks

to introduce non-linearity to the mapping, by applying a fixed-order polynomial expansion,
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denoted as a function φ(), to all the RGBs before mapping them to spectra using a linear

transformation, i.e.:  Mφ(ci) ≈ hi ; ∀i ,

MCφ ≈ H ,
(2.27)

where the φ superscript of Cφ indicates that its columns are polynomial expansions of the

RGBs instead of the RGBs in the columns of C. Here, given ci = [R,G,B]T, the 2nd-,

3rd-, and 4th-order polynomial expansions are written as follows:

2nd-order: φ(ci) =

ï
R,G,B,R2, G2, B2, RG,GB,RB

òT
3rd-order: φ(ci) =

ï
R,G,B,R2, G2, B2, RG,GB,RB,

R3, G3, B3, RG2, GB2, RB2, GR2, BG2, BR2, RGB

òT
4th-order: φ(ci) =

ï
R,G,B,R2, G2, B2, RG,GB,RB,

R3, G3, B3, RG2, GB2, RB2, GR2, BG2, BR2, RGB,

R4, G4, B4, R3G,R3B,G3R,G3B,B3R,B3G,

R2G2, G2B2, R2B2, R2GB,G2RB,B2RG

òT
.

(2.28)

Of course, with PR, and especially with a higher-order polynomial expansion adopted as

φ(), more complex mapping function can be achieved. For example, if we use the 2nd-order

expansion for PR, the length of polynomial expansion, φ(ci), is 9, and subsequently the

dimension of the regression matrix M increases from n × 3 for LR to n × 9—that is, 3

times more mapping parameters are used in 2nd-order PR compared to LR. Nevertheless, a

more complex mapping does not always suggest better SR performance, mainly because it

increases the risk of overfitting, that is the trained mapping works well on training data but

fails to generalise to the unseen testing data [98]. The overfitting problem will be introduced

and discussed in more details in the next sections.
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2.3.2 Solving Least-Squares Regressions

Now let us consider how we solve for the regression matrix M in LR and PR. In essence,

we must define what we meant by the ≈ symbols in Equation (2.26) and (2.27). Most

commonly, we seek to minimise the “sum-of-squares” between the estimations and ground-

truths:

min
M

∣∣∣∣MC−H
∣∣∣∣2
2
. (2.29)

Here, || · ||22 calculates the sum of all components squared. Equivalently, || · ||22 is sometimes

written as || · ||2F denoting the Frobenius norm. Moreover, we drop the φ superscript of Cφ

used in Equation (2.27) for simplicity. That is, in the following derivations the columns of

C can mean the RGBs for LR, or the polynomial-expanded RGB features for PR.

Regressions solved in this manner are called the Least-Squares (LS) regression. Advanta-

geously, the solution of LS minimisation can be solved in closed form:

M = HC† = HCT[CCT]−1 , (2.30)

where † represents the Moore-Penrose inverse operation [66].

2.3.3 The Overfitting Problem and Regularised Least Squares

In Equation (2.29) and (2.30), the data included in the columns of C and H is called the

training data. In practice, we wish to train the regressions with a fixed set of training data,

while this trained mapping is to be used on some unseen query data. Nevertheless, the

regression matrix M obtained from Equation (2.30) only ensures the minimisation of errors

within the training data. For a set of unseen RGB and spectral data, denoted as C′ and

H′, it is a priori possible that while ||MC−H|| is small but ||MC′−H′|| is, comparatively,

very large. This problem is so-called “overfitting” [98; 87].

One of the biggest problems for an overfitted regression is that it might not work in the

presence of noise. As a thought experiment, we may set H′ = H (directly use the training
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spectra as testing data), but now we recover H from slightly perturbed training RGBs:

C′ = C + ϵ. Here, ϵ is a matrix of very small numbers, representing the noise occurs

in the RGB imaging process. It follows that an overfitted M can very possibly suggest

||M[C + ϵ] − H|| ≫ ||MC − H||. That is, it fails to plausibly recover the spectra in the

training set, H, even though they are exactly the ones used in training.

Another facet of this problem is that if we actually attempt to find the best regression matrix

for [C + ϵ] (the noisy RGB training data), we can end up having the optimal regression

matrix that is very different from the original one. That is, as we perturb our RGB data,

we can arrive at very different regressions.

To mitigate the overfitting problem, the tool of ridge regularisation (a.k.a. Tikhonov reg-

ularisation) [87] is often incorporated when training a regression. While solving the min-

imisation in Equation (2.29), we add another penalty term which bounds the magnitude of

the regression matrix M:

min
M

∣∣∣∣MC−H
∣∣∣∣2
2
+ γ

∣∣∣∣M∣∣∣∣2
2
, (2.31)

where the solution of M can still be written in closed form [42]:

M = HCT[CCT + γI]−1 . (2.32)

Here, the γ parameter—which is set by the user—controls how ||M||22 mitigates the min-

imisation of the sum-of-squares fitting error, and the I matrix is the identity matrix with

a dimension of 3× 3 for Linear Regression (LR) and p× p for Polynomial Regression (PR)

with p being the length of the polynomial expansion (φ(c) in Equation (2.27)).

When the solved M has a bounded norm, the regression has the stability property we

desire. That is, if we perturb C (i.e., the training RGB data) by a small amount we will

still get the same (or very similar) M, and this in turn implies that albeit the perturbation

in the input RGBs we will still get similar spectral estimations. We refer the readers to the
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work in [87] for a fuller discussion of how ridge regularisation is used and why it solves the

instability problem.

In practice, we choose the γ parameter empirically to best trade-off the need for a stable

solution and to lower the fitting spectral errors. Typically, a cross-validation parameter

selection methodology [31] is used, where a wide range of different γ’s are tried, and the

solved M’s depending on these γ values are used to recover spectra in an unseen set of

validation data, which are then evaluated using the desired evaluation metric. In our

experiment, a U-shaped curve like Figure 2.2(a) is usually obtained when plotting the

averaged validation error against γ, where the minimal point (the red dot in the plot)

indicates the selected parameter.

Figure 2.2: Illustrations of searching for the optimal regularisation parameter. The

averaged recovery error (vertical axis) is calculated over the validation data (a separate

data set that is not the training data). The red dot in each graph indicates the minimal

error and the suggested regularisation parameter. (a) Coarse search in a wide range of

γ. (b) Fine search around the red dot in graph (a).

Let us examine Figure 2.2(a) in more detail. On the left, we see a plateau under roughly

γ = 10−16. This is caused by the floating-point precision in our calculations (under this

level the selection of different γ’s will not make a difference in calculation). Then, we look

at the far right of the curve. As γ becomes too large, the need to solve for an M that

has a small (bounded) norm becomes imperative, which ultimately renders all numbers in

M closed to zero (and since the MRAE error metric used here is calculated relative to the
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ground-truth values, with predictions approaching 0 in all values, the error approaches 1,

i.e., 100% error; MRAE will be introduced later in Section 3.1.4).

Lastly, we see that the optimal point in Figure 2.2(a) falls in the valley in the middle. The

implication of this apparently broad and flat valley is that the changes in error here are

at a much smaller order of magnitude compared to the error levels in overfitting and over-

regularised cases. Indeed, as we conduct a finer search around the minimal point of Figure

2.2(a), we can further discern the minimal point among the gradually changing trends in

the valley, as shown in Figure 2.2(b).

Figure 2.3: Illustrations of other possible validation curves when searching for the

optimal regularisation parameter.

Some other possible shapes for the validation curves are shown in Figure 2.3. Figure 2.3(a)

shows an example when the problem of overfitting is less significant (a small γ does not incur

significantly large error). There are several possible occasions for this to happen, including

when the training data represents the validation data well, when the model is too simple

for the data, and so on [52]. Then, we see Figure 2.3(b). Here, some noisy results appear on

the overfitting side of the curve (i.e., when γ is small). This indicates that the considered

model (typically a more non-linear/heavier-parameterised model) is very unstable when it

is overfitted (a small change in γ value causes big differences in predicted values). While

we do not rule out the existence of other possible validation curve structures, we note that
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the general goal of regularisation via cross validation is to find the lowest point of the

validation-error-versus-γ curve.

Although the ridge regularisation approach introduced here (adding an ℓ2 penalty term) is

the most widely used approach (not only for SR but for learning problems in general), there

are other regularisation approaches used in the literature, including the LASSO [86] (where

the ℓ1 penalty term is used) and Elastic Net approach [106] (where both ℓ1 and ℓ2 penalty

terms are added). It is known that LASSO provides more robust regularisation compared

to the ℓ2 ridge regularisation, while the Elastic Net provides the possibility to swing more

towards LASSO or ridge regression depending on the relative dominance between the two

methods in each specific learning circumstances. For more information of these two methods,

interested readers are pointed to the works in [86] and [106], respectively.

2.4 Clustering-Based Methods

In regression, a global mapping matrix is used for all training and unseen query data (Section

2.3.1). With the amount of publicly available spectral data increases from discrete point

measurements to hyperspectral “images” (where the spectral measurement at each pixel

provides a data point), the methods I am going to introduce in this section use clustering

techniques to help the optimisation of the mapping becoming more localised in individual

RGB regions.

2.4.1 Radial-Basis-Function Network

In Radial-Basis-Function Network (RBFN) [62], the K-means algorithm [57] is used to

cluster all RGB training data into K clusters, and, accordingly, we record the K cluster

centres in an RGB dictionary Dc:

Dc = K-means(C) =
[
c1, c2, · · · , cj , · · · , cK

]
. (2.33)

Here, C represents the data matrix of the training-set RGBs.
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On input of a training or query RGB, denoted as ci, we write the radial-basis-function

feature vector as:

φ(ci) =

ï
1, ϕ(||ci − c1||), ϕ(||ci − c2||), · · · , ϕ(||ci − cj ||), · · · , ϕ(||ci − cK ||)

òT
, (2.34)

where the ℓ2 distance between ci and each centre recorded in Dc is calculated, and, taken

those distances individually as input, ϕ : R 7→ R is a fixed non-linear function. Examples

of the functions used as the ϕ function in the literature are presented in Chen et al. [20].

Commonly, a Gaussian radial-basis-function is used. Taking the jth centre cj as an example,

we write:

ϕ(||ci − cj ||) = exp

Å
− ||ci − cj ||2

2σ2

ã
. (2.35)

Here, a fixed Gaussian’s width factor σ = dmax√
2K

can be used, where dmax is the maximal

distance the input colour ci has among the K cluster centres [12].

Then, with the φ features calculated for all colours in the training data set, we solve a

single regression matrix M (with a dimension of n × (K + 1) where n is the length of the

spectral vectors) that maps these features to spectral estimates with minimal errors. I.e.,

we follow the same global regression optimisation process as Polynomial Regression (PR;

Equation (2.27)), while here we use the radial-basis-function feature defined in Equation

(2.34) instead of the polynomial expansion used in PR.

Effectively, RBFN defines a mapping structure equivalent to a single-layer neural network

(specifically using radial-basis-functions as activation functions for the neurons) [20], while

being able to solve for a least-squares minimum in closed form.

2.4.2 Sparse Coding

The basic assumption behind sparse coding approach is that all spectra can either be found

in or as linear combinations of fewer spectra. It is assumed that the designated continu-

ous data distribution can be effectively approximated by linear interpolations of a set of
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representative spectra found by algorithms such as K-SVD [3] (which is a generalisation of

K-means). More specifically, in K-SVD, representatives are found such that all data points

can be derived as linear combinations of the representatives with minimal errors. There is

also an adjustable integer factor called sparsity, denoted as ℓ, which further constrains that

only ℓ out of all representatives will be used in each linear combination.

Two main sparse coding approaches commonly benchmarked in the literature of SR are

Arad and Ben-Shahar [5] and Aeschbacher et al. [1], where the latter is equivalent to a local

linear regression approach. Usefully, with a regression formulation, several proposals of the

regression upgrades in this thesis are also applicable to Aeschbacher et al.’s method.

Arad and Ben-Shahar’s Method

In Arad and Ben-Shahar [5], we find K representative spectra using the K-SVD algorithm

[3]:

Dh = K-SVDℓ(H) =
[
h1,h2, · · · ,hj , · · · ,hK

]
, (2.36)

where ℓ is the sparsity adopted by K-SVD, and the H matrix represents the training-set

spectra. Then, following the RGB colour simulation process in Equation (2.4), we calculate

the RGB counterpart of Dh:

Dc = RTDh . (2.37)

Here, like in RBFN, K representative RGBs are recorded in Dc (though in sparse coding

usually a much larger K is selected), but unlike RBFN, these RGBs are not optimised from

the RGB data but derived from the spectral representatives.

For the problem of spectral reconstruction, Arad and Ben-Shahar used the assumption that

the neighbours in the RGB space are also neighbours in the spectral space (in the parlance

of Timofte et al. [88], this assumption is called “neighbour embedding”). Following this

assumption, given a query RGB ci, we find a linear combination vector wi such that

Dcwi ≈ ci . (2.38)
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This wi vector is effectively estimated by the Orthogonal Matching Pursuit (OMP) algo-

rithm [65]. Then, by applying this solved wi vector to the spectral dictionary Dh, we

achieve spectral reconstruction by

Dhwi ≈ hi , (2.39)

where hi is the ground-truth spectrum corresponding to the input ci.

Note that the components of wi are all positive and sum up to 1. And, the same sparsity

(i.e., ℓ) that was used by K-SVD to train Dh is expected to be used by OMP when deter-

mining wi. Given that usually ℓ ≪ K, most of the terms in wi will be zero (or very small).

In other words, the spectral reconstruction from a given RGB camera response would only

involve a small number of dictionary spectra.

Aeschbacher et al.’s “A+” Method

In Arad and Ben-Shahar’s method, the idea of neighbour embedding operates at the inter-

representative level. Indeed, the RGB representatives are the elements used by OMP to

derive the linear combinations that estimate spectra (Equation (2.38) and (2.39)). In

Aeschbacher et al. [1], a.k.a. the “A+” method, the idea of neighbour embedding is used

on even more local data—the data in the proximity of each RGB representative.

In training, apart from Dc, A+ also finds for each representative RGB in Dc the M closest

data points in the training data set. Let us take the jth RGB representative in Dc, i.e., cj ,

as an example:

Cj = ProxM (C, cj) = [cj1, c
j
2, · · · , c

j
i , · · · , c

j
M ] , (2.40)

where C is the training RGBs, and Cj is the targeted data matrix that records the data

points in C that are nearest to cj . For both data matrices the columns are individual RGB

data vectors. Here, additionally, the ProxM function calculates and ranks the Euclidean

distances of normalised vectors, i.e., both cj and the columns of C are normalised to unit-

length when calculating the distances, and the superscript M indicates that top M closest
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data points are found. But, in the resulting Cj matrix, the un-normalised ground-truth

vectors are recorded. We also record the ground-truth spectral counterparts of each column

of Cj in the corresponding column of a spectral data matrix Hj .

Then, the Cj and Hj local data matrices are used to replace the full Dc and Dh dictionaries

used for linear combination in Equation (2.38) and (2.39). I.e., here we seek:

Cjwi ≈ ci =⇒ Hjwi ≈ hi , (2.41)

where ci and hi are respectively the example query RGB and its ground-truth spectral

counterpart, subject to:

Prox1(Dc, ci) = cj . (2.42)

Here, the Prox1 function is similarly defined as in Equation (2.40), only that the searching

data set is now the RGB dictionary Dc, and only the closest one in Dc is found. Effectively,

this step defines the locality of the map: the neighbour embedding assumption for the jth

neighbourhood defined in Equation (2.41) is only adopted by the input RGBs in the same

jth neighbourhood (whose closest representative in Dc is cj).

In A+, the wi vector in Equation (2.41) is also solved in a different way compared to Arad

and Ben-Shahar’s method. Assuming the equivalence with the linear regression method

(Equation (2.25)), we seek a local linear regression matrix Mj that satisfies:

MjCj ≈ Hj , (2.43)

which, when solved in a least-squares sense (Equation (2.32)), suggests:

Mjci = Hj

ï
CjT[CjCjT + γI]−1ci

ò
≡ Hjwi ≈ hi . (2.44)

A key advantage of adopting the formulation in Equation (2.44) is that, evidently, all query

RGBs in the same neighbourhood use the same regression matrix to derive their spectral
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estimates. That is, we can calculate all the regression matrices—Mj for j = 1, 2, · · · ,K—in

training, leaving the inference step only to determine the neighbourhood labels of the query

RGBs (Equation (2.42)).

In terms of SR performance, it is shown that Aeschbacher et al.’s A+ method performs on

par with Galliani et al. [32]—an early implementation of the Deep Neural Network (DNN)

based SR (the general idea of DNN will be introduced in the next section).

2.5 Deep Neural Networks

By virtue of the fast-increasing amount of data and the development of parallel process-

ing technologies (i.e., the Graphics Processing Unit (GPU)), Neural Network approach has

yielded a great leap of performance from its predecessors in a wide range of machine learn-

ing applications. Inspired by the structure of human brains, Neural Network is a learning

approach based on the connections of neurons. These artificial neurons can be seen as some

basic data-processing units, which are composed of three elements: weights, bias and acti-

vation function, and let us denote these three elements as w, b and g(), respectively.

Each neuron takes an input vector a—may be the actual input data, or the collection of

outputs from the neurons in the previous layer in the structure—and map it to a scalar

output a′ following:

g(wTa+ b) = a′ . (2.45)

For each neuron, w and b are the trainable parameters. The activation function g() is

preset, with common choices such as ReLU (Rectified Linear Unit) and the sigmoid function

[79].

There are shallow networks proposed for SR where only one neural layer in addition to

the input and output layers (a.k.a. a hidden layer) is used. Examples include Sharma and

Wang [77] and Ribés and Schmit [70]. Also the RBFN method [62] introduced in Section

2.4.1 is sometimes considered to be a shallow network. Similarly to the regression-based
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methods we introduced in previous sections, shallow networks are designed to find a one-

to-one RGB-to-spectrum mapping. This limitation is overcome by the recent development

of Deep Neural Networks (DNN), where much more than one hidden layers—i.e., a larger

network “depth”—are used, which provide much better mapping abilities to solve even

more complex fitting problems, such as, significantly, taking a whole patch of RGB image

as input instead of the RGB at a pixel. Evidently, with RGB patches as inputs, the same

RGB viewed in different contexts can potentially be distinguished by patch-based DNNs.

This is a sensible approach to SR, since it addresses the metamerism phenomenon in real-

world imaging conditions [29; 99], i.e., ground-truth spectra coming from different object

surfaces can appear to have the same colour under a given lighting condition.

Compared to traditional machine learning methods (e.g., regression and sparse coding),

DNN is able to learn more sophisticated feature representation from the data together with

more complex mapping function in a distinct “end-to-end” manner. However, most of the

Neural Networks do not have a closed-form global minimum solution—a local minimum is

to be solved for using an iterative optimisation process. Also, the tuning for a functioning

network architecture and the heuristic training setup for a particular application is still

highly manual and laborious.

In SR, most of the DNN methods are based on the Convolutional Neural Network (CNN)

or the Generative Adversarial Network (GAN) architectures [7; 80; 4]. In particular, CNN

adopts the idea of replacing the weighting vector (w in Equation (2.45)) with a convolu-

tional operation in at least one layer of the network [37], and GAN consists of a generator

network and a discriminator network (both networks are competing for a zero-sum game)

[38], where typically a CNN is used as the discriminator and the generator runs a CNN in

a reversed process (i.e., a “Deconvolutional” Neural Network). These methods provide top

performances in recent benchmarks such as NTIRE 2018 and 2020 spectral reconstruction

challenges [7; 8]. In this thesis, one of the top-performing methods in the NTIRE 2018

challenge [7], the CNN-based HSCNN-R [80], will be included in our benchmarks and dis-
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Figure 2.4: The HSCNN-R architecture. “C” means convolution with 3×3 filters (64

or 256 filters per layer, as suggested in [80]), and “R” refers to ReLU activation.

cussions. In NTIRE 2018, HSCNN-R was ranked first in one evaluation protocol and second

in the other. The illustration of HSCNN-R is given in Figure 2.4.

The implementation of HSCNN-R is complicated, and so we point the readers to the original

work [80] for more details. Of our concern, we note that the network takes 50×50×3 (height

× width × spectral dimension) RGB image patches as input and maps them to the corre-

sponding 50× 50× 31 hyperspectral image patches (the ground-truth hyperspectral images

used for training have 31 spectral channels). Also, several variants were recommended for

HSCNN-R in [80]. Specifically for the NTIRE 2018 challenge [7], they further adopted an

ensemble method which means several different variants were trained whose outcomes were

then averaged to provide the final recovery output. While the depth and per-layer neuron

numbers of each variant vary, we calculated the number of their learnable parameters to be

around 107 per variant. Evidently, HSCNN-R is orders-of-magnitudes more complex than

the shallow-learned regressions, sparse coding and shallow networks (among which the A+

sparse coding method might have the highest number of parameters at around 105).

2.6 Summary

There is a huge body of literature dedicated to solving the RGB-to-hyperspectral image

recovery (i.e., Spectral Reconstruction; SR). We have legacy methods which use explicit

physical constraints to bound the recovery uncertainty, while recent proposals for SR are

based on machine learning algorithms whose main target is to minimise the spectral recovery

errors. Though the latter approach is generally believed to provide more accurate SR, these

methods do not necessarily comply with the apparent physical constraints adopted by the
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legacy methods, e.g., whether the recoveries are realisable in the real world, or, for each

recovery, whether we are actually searching for a solution among those could be the ground-

truth (i.e., if the recovery is physically plausible to be the ground-truth or not). As one

of the main objectives of this thesis, we are to reveal such physical compliance issues of

the machine-learning-based algorithms, discuss on their practical implications, and finally

develop ways to solve these issues.

We also see that machine learning methods of a wide range of complexities are used to

solve the SR problem. Indeed, we have the regression-based methods where all learnable

parameters are limited to a single linear transformation matrix, sparse-coding based meth-

ods incorporating an additional dictionary learning process (where the nearest neighbours

search in these methods can be time consuming), and finally the DNN methods where

thousands of learnable neurons are used, leading to orders of magnitudes more parameters

used compared to regression and sparse coding. With a large discrepancy in complexity

and the same single objective to minimise the overall spectral recovery error, we shall ex-

pect that the simpler regressions and sparse coding methods are no match for the leading

DNN methods, right? As we embark on re-evaluating the relative performance of these

machine learning methods on the same database, we are also going to propose regression

and sparse coding upgrades so as to challenge the assumed dominance of DNN-based SR in

the literature.
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Chapter 3

Evaluating Spectral Reconstruction

In this section, we wish to establish the evaluation setup we are going to use throughout

this thesis. To begin with, we conduct a baseline test which compares the considered SR

methods using existing evaluation protocols. The effects of different spectral error metrics

used and the adoption of a cross-validation procedure are explored.

Next we consider new parts to the evaluation methodology. First, we examine the role

of camera spectral sensitivities in SR. Do different spectral sensitivities lead to different

spectral recovery results? Also, we develop a methodology to consider the worst-case per-

formance of SR algorithms. Part of the power of existing techniques comes from that they

are trained on typical spectra found in typical images. Then, how do they fare when tested

on images that have spectral and spatial statistics not represented in the training sets?

3.1 Baseline

3.1.1 Hyperspectral Dataset

The ICVL hyperspectral database [5], consisting of 200 images of both indoor and outdoor

scenes, is used as the standard ground-truth database in this thesis. We use ICVL because it

provides enough data to train a complex algorithm such as a DNN—a fact that was shown

in the NTIRE 2018 SR challenge [7] where ICVL was used as the standard benchmark

dataset. Other commonly used datasets in earlier works, such as the CAVE [101] and

NUS [62] datasets, contain much fewer images while CAVE is further restricted to highly

controlled indoor scenes.
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Figure 3.1: Example scenes in the ICVL hyperspectral database [5]. The shown

colour images were rendered only for the displaying purpose.

In ICVL, most images have the spatial dimension of 1392 × 1300 while some scenes are

1392 × 1089. There are 31 spectral channels, representing the spectral measurement from

400 to 700 nanometers (nm) with 10-nm intervals. And, the data is stored in 12 bits, i.e.,

the pixel values range from 0 to 4095. Several example images included in the ICVL dataset

are shown in Figure 3.1.

3.1.2 RGB Image Simulation

For training and evaluation, we need matching ground-truth RGB and hyperspectral data.

In line with other research in this area, our experiments are based on ground-truth hyper-

spectral images where the RGB counterparts are generated by numerical integration (see

Equation (2.4) in Section 2.1.3). More particularly, we adopt the NITRE challenges’ “clean

track” methodology [7; 8; 9]. Additionally, in clean track, there is the constraint that the

RGB images are formed by numerically integrating hyperspectral data using the CIE 1964

colour matching functions [24].

3.1.3 Cross Validation

The evaluation cycle of a learning algorithm consists of three phases: training, validation

and testing. In training, we update the parameters of the model so that it fits the training

data well. While the trained model could face the overfitting problem (see, e.g., Section

2.3.3), we need to tune the model’s construct (normally the model’s ability to fit the training

data) to ensure its generalisibility to another set of data outside the training set, i.e., the

validation set. This validation process can be different depending on the SR approaches. For
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Figure 3.2: Our cross validation setup. Each coloured squared block represents equal

amount of randomly allocated data. The blue, green and orange patches represent the

data for training, validation and testing, respectively. “Exp.” is short for “Experi-

ment”.

regression-based models, we determine the regularisation parameter introduced in Section

2.3.3 (Equation (2.31) and (2.32)), and for a DNN, the performance on the validation set

tells us when to stop its iterative training process. Finally, the trained and validated model

is used on the testing data to deliver the final performance evaluation.

We adopt a 50%-25%-25% random data partition for training, validation and testing. Since

there are 200 images in the ICVL database, we randomly separate all images into 4 groups

of 50 scenes, and then use 2 groups for training, 1 group for validation, and 1 group for

testing. We call this the Single Validation (SV) setting. The potential problem of SV is that

the random partition might be unfair splits, i.e., the performance evaluation might change

if we switch around the purpose (training, validation, or testing) of each image group.

To address this issue, we create a Cross Validation (CV) setup shown in Figure 3.2. Here,

each squared block represents a group of 50 scenes, respectively labeled as A, B, C and D.

The colour of each block indicates their purpose, with blue blocks indicate training, green

for validation, and orange for testing. In this way we run 4 different SV experiments, and

we get recovery results for the 4 test sets which, when taken together, comprise exactly the

whole image set. We will calculate performance measures on the SR recoveries for the 4

test sets. We then average these measures to arrive at the recovery evaluation for the whole

image set.
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Clearly, a CV setup is more time consuming than an SV. This problem is more pronounced

for the DNN-based methods, for their much longer training time. In this thesis, where

possible, we use the better CV setup, while SV is still reported sometimes for quicker

evaluations.

3.1.4 Evaluation Metrics

The following 4 metrics are commonly used in the literature: Mean Relative Absolute Error

(MRAE), Root-Mean-Square Error (RMSE), Angular Error (AngE), and Peak Signal-to-

Noise Ratio (PSNR). Denoting Ψ(ci) as the recovered spectrum from the RGB ci, and hi

as the target ground-truth spectrum, these metrics are defined as follows:

• Mean Relative Absolute Error:

MRAE (%) = 100× 1

n

∣∣∣∣∣∣∣∣Ψ(ci)− hi

hi

∣∣∣∣∣∣∣∣
1

, (3.1)

where n is the number of spectral channels (in our case n = 31), the division is

element-wise and the ℓ1 norm is calculated. Essentially, this MRAE metric measures

the averaged percentage absolute deviation over all spectral channels. Note that this

metric becomes unstable when the ground-truth values of any spectral channels ap-

proach zero (which could be prevented if we calculate the error relative to the norm

of the ground-truth spectra instead), but we will continue to use this metric as it is

the standard for ranking and evaluating SR algorithms in the recent benchmark [7; 8; 9].

• Root-Mean-Square Error:

RMSE =

…
1

n
||Ψ(ci)− hi||22 . (3.2)
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Unlike MRAE, RMSE is scale dependent, that is the overall brightness levels of the

compared spectra and/or the data encoding bit-depth will reflect on the scale of RMSE.

• Angular Error:

AngE = cos−1

Å
Ψ(ci)

||Ψ(ci)||
· hi

||hi||

ã
, (3.3)

where the angle between the compared spectra is calculated. Another commonly used

metric equivalent to AngE is the Goodness-of-Fit Coefficient (GFC) [72], which is

the cosine of AngE (i.e., only calculating the inner product of normalised vectors).

Uniquely, AngE does not measure the difference in brightness scale between spectra:

only the shapes of the spectra are compared.

• Peak Signal-to-Noise Ratio:

PSNR (dB) = 10× log10

Å
v2max

1
n×N

∑
i∈I ||Ψ(ci)− hi||22

ã
, (3.4)

where vmax = 212− 1 = 4095 is the maximum possible value for 12-bit images, n is the

number of spectral channels, and N is the number of pixels in image I. As shown here,

PSNR is usually defined at the image level, as opposed to other three metrics where

errors are calculated per pixel.

3.1.5 Respective SR Model Settings

Table 3.1: Considered spectral reconstruction methods.

Abbreviation SR method Type
LR Linear Regression [42] Regression
PR Polynomial Regression [25] Regression
RBFN Radial-Basis-Function Network [62] Clustering + Regression
A+ A+ Sparse Coding [1] Clustering + Regression
HSCNN-R HSCNN-R Network [80] Deep Neural Network
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Figure 3.3: Single-validated (SV) regularised polynomial regression performances

with respect to the polynomial expansion orders.

The SR algorithms that are considered throughout this thesis are listed in Table 3.1. Since

most of these methods (all except the LR method) have several possible and/or suggested

variants, here, we are to specify the variants we will use in this thesis.

Polynomial Regression

As mentioned in Section 2.3.1, a higher-order polynomial regression provides a more complex

mapping function at the risk of overfitting. A primary test on the appropriate order to use

for the regularised (Section 2.3.3) polynomial regression is shown in Figure 3.3. Here, the

single-validated (SV) MRAE performance is plotted with respect to the polynomial order

used. Clearly, the lowest errors (best performances) occur when the polynomial order is

around 6 or 7. As a result, in this thesis we use the 6th-order regularised polynomial

regression.

Radial-Basis-Function Network

The original work [62] suggests using 45 to 50 centres for the radial basis functions (see

Section 2.4.1 for more details). Hence, in this thesis we use 45 centres for the RBFN

method.
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A+ Sparse Coding

The two main factors that decide the A+ model’s performance, as introduced in Section

2.4.2, are the number of representatives, K, and the number of nearest neighbours consid-

ered around each representative, M . Both factors are also relative to the amount data used

for training. In the original work [1], 3000 pixels per training image (that is 300,000 data

points in total for 100 training images) were randomly selected for the K-SVD training,

with K = 1024. Then, the nearest neighbours are found in a larger set of training data:

30000 pixels per training image (3,000,000 data points), with M = 8192. We will continue

to use these setups in our experiments.

Another two factors to consider are the sparsity setting (ℓ in Equation (2.36)) used when

running the K-SVD algorithm and the regularisation parameter used for all local linear

regressions. We retain the same sparsity setting used in [1], which is ℓ = 8. However, for

regularisation we optimise individual regularisation parameters for each local linear regres-

sion separately, following the regularisation approach introduced in Section 2.3.3.

HSCNN-R Network

According to [80], we can adjust the depth of HSCNN-R. We adopt one of the recommen-

dations which uses a 20-layer depth and 256 filters per convolutional layer. In training and

validation, the ending epoch (i.e., the number of rounds that the whole training set is used

to update the DNN’s model parameters) was set empirically at around 300 to 350.

3.1.6 Testing Results

We begin by reporting, in Table 3.2, the training times required for the various methods

along with the number of parameters inherent to each method. We calculate the train-

ing time as the average time used for each single-validation experiment (Section 3.1.3),

and the reconstruction time as the average time used to reconstruct each tested image.

We also present the number of parameters used in each algorithm, according to the algo-
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Table 3.2: The number of parameters count and the training and reconstruction time

measurements.

Model Number of Parameters
Training Time Reconstruction Time

(single validation) (per image)

LR 93 6.7 min 0.031 s
PR 2573 15.1 min 6.0 s
RBFN 1426 1.0 h 3.1 s
A+ 9.5× 104 26.9 min 13.7 s
HSCNN-R 1.1× 107 35.5 h (with GPU) 13.0 s (with GPU)

rithm variants specified in Section 3.1.5. Of course, any timings are related to the hardware

used in the experiments. Our hardware specification includes Intel® CoreTM i7-9700 CPU

and NVIDIA® GeForce® RTX 2080 SUPERTM GPU. Note that the GPU is only used

for the DNN-based HSCNN-R, for both training and reconstruction. All other regression

algorithms use solely the CPU.

It is evident that HSCNN-R is more complicated than the regressions as evidenced by

the relatively high numbers of parameters and the training and reconstruction timings.

Indeed, the HSCNN-R network—even with a GPU boost—still takes days to train, whereas

for regressions the training time is mostly lower than an hour (for the clustering-based

methods, A+ and RBFN, the main portion of the training time is used on training the

dictionaries).

Of course, while training can be carried out offline, the reconstruction of spectra is a real-

time task. Thus it is the reconstruction time that speaks most strongly to whether a

method is likely to be practically useful. Where, we see that HSCNN-R, while GPU is

deployed for its reconstruction, still spends more time to reconstruct an image than most of

the regression-based methods. Note that for all regressions except LR, the reconstruction

times already appear objectively long. This is because, unlike LR only involves a matrix

multiplication, other regressions require either non-linear transformations, e.g., in PR and

RBFN, or nearest neighbour search, i.e., in A+. Improving the execution speed of these

additional processing steps will be key to making these algorithms more practical.
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Table 3.3: Cross-validated mean per-image-mean errors of the SR methods. Best

results are in bold and underlined.

Mean Per-Image-Mean
Method MRAE (%) RMSE AngE (deg)

LR 6.24 33.26 3.79
A+ 3.87 23.97 2.39
RBFN 2.06 18.30 1.49
PR 1.95 17.05 1.46
HSCNN-R 1.73 16.33 1.34

Table 3.4: Cross-validated mean per-image-99-percentile errors of the SR methods.

Best results are in bold and underlined.

Mean Per-Image-99-Percentile
Method MRAE (%) RMSE AngE (deg)

LR 16.95 99.76 9.45
A+ 15.26 94.18 8.75
RBFN 7.89 81.88 4.97
PR 7.10 75.56 4.87
HSCNN-R 6.53 77.21 4.69

Table 3.5: Cross-validated mean PSNR errors of the SR methods. Best results are in

bold and underlined.

Method Mean PSNR (dB)

LR 41.35
A+ 43.52
RBFN 45.57
PR 46.09
HSCNN-R 46.30

Next, we present the SR performance of the methods. Because the hyperspectral “images”

are reconstructed, we are interested in the “per-image” statistics, including the average of

the mean and the average of the worst-case errors in individual images (except for the PSNR

metric which is already a per-image measurement). We show the mean per-image-mean and

99-percentile statistics in Table 3.3 and 3.4, respectively. The PSNR statistics are presented

separately in Table 3.5. Note that for MRAE, RMSE and AngE, the smaller the number, the

better the performance, while for PSNR, larger numbers mean better performance.
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In almost all cases, the performance data shown in these tables are in the order of increas-

ing performance. That is the DNN-based HSCNN-R is the best overall. The exception

is RMSE where the polynomial regression method performs better in the per-image 99

percentiles.

It is interesting to consider why the PR method might perform better in regard to the RMSE

performance criterion. We note that regressions like PR are optimised for a least-squares

criterion (Section 2.3.2), i.e., minimising squared RMSE. In contrast, HSCNN-R minimises

MRAE [80]. This result draws attention to the fact that the metric used in training is

important in algorithm performance. We will explore this issue in more detail in Chapter 4

where we show how we can elevate the performance of all regression methods by modifying

the regression error to match the MRAE used in training the DNNs.

3.2 Evaluation on Different Cameras

Figure 3.4: The RGB imaging outcome depends on the used camera model, and

so SR, as the reverse process, should also be dependent of the camera model (i.e.,

SR 1 ̸= SR 2).

Different camera manufacturers and/or models use different sets of colour sensors that have

different spectral sensitivity characteristics (Section 2.1.1). As illustrated in Figure 3.4, the
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raw RGB camera responses of the same object (under the same light) might be different from

one camera model to another. Here, we evaluate the extent to which the SR algorithms’

performance depends on the camera’s spectral sensitivities.

In the prior art, Arad and Ben-Shahar [6] demonstrated that there exists a significant

difference in recovery accuracy for clustering-based SR algorithms when different cameras

are used, and Kaya et al. [47] addressed this issue by developing a DNN-based method

where RGB images from different cameras can all be admitted as input. Recently, Fu et al.

[30] further proposed a CNN-based model that jointly selects the best camera sensitivities

and recovers spectra. While some aspects of the problem of switching cameras in SR have

been addressed in these works, we realised that there was not a comprehensive investigation

of the SR performance as a function of both camera and SR algorithm.

In this section, we aim to show empirically how switching cameras for SR can affect the SR

performance and the rankings of the algorithms.

3.2.1 Experiments

Table 3.6: Considered camera models for simulating the RGB images from the hyper-

spectral images. The number behind each “Cam” in aliases corresponds to the order

index in the original RIT database of camera sensitivities [45].

Alias Camera name
CMF CIE 1964 Color Matching Functions
Cam 0 Canon 1D MarkIII
Cam 9 Hasselblad H2
Cam 10 Nikon D3X
Cam 20 Nokia N900
Cam 21 Olympus E-PL2
Cam 22 Pentax K-5
Cam 24 Point Grey Grasshopper 50S5C
Cam 26 Phase One
Cam 27 Sony NEX-5N

The RIT camera sensitivity database [45] provides spectral sensitivity functions of 28 com-

mercially available RGB cameras. To maximise the variety of our camera selection, from

this database we select 9 cameras which are all from different brands. Additionally, we
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include the CIE 1964 colour matching functions [71] into consideration, not least because

they were used in the NTIRE challenges [7; 8; 9] and throughout this thesis. These 10

selected cameras and their aliases used in this section are listed in Table 3.6.

Based on these 10 sets of camera’s spectral sensitivity functions, we generate 10 different

RGB image sets from the 200 ICVL hyperspectral images [5] following the colour image

formation formula (Equation (2.4)). Then, for all the methods listed in Table 3.1, we

evaluate their SR performances while these 10 sets of RGB images are in turn used as the

input dataset. Also, the MRAE error metric and the single validation (SV) methodology

(Section 3.1.3) are adopted here.

3.2.2 Results

Table 3.7: The single-validated mean per-image-mean MRAE results for the switching

camera experiment.

Mean Per-Image-Mean MRAE (%)
Method CMF Cam 0 Cam 9 Cam 10 Cam 20 Cam 21 Cam 22 Cam 24 Cam 26 Cam 27

LR 6.39 6.31 6.13 6.23 6.09 6.16 6.21 5.96 6.52 6.29
A+ 3.81 4.01 3.84 3.98 3.64 3.92 3.89 4.50 3.95 3.75

RBFN 2.10 1.89 1.86 1.90 1.93 1.91 1.87 1.80 2.09 1.94
PR 1.98 1.86 1.80 1.86 1.80 1.83 1.84 1.75 1.98 1.88

HSCNN-R 1.76 1.67 1.65 1.71 1.72 1.69 1.69 1.63 1.77 1.69

Table 3.8: The single-validated mean per-image-99-percentile MRAE results for the

switching camera experiment.

Mean Per-Image-99-Percentile MRAE (%)
Method CMF Cam 0 Cam 9 Cam 10 Cam 20 Cam 21 Cam 22 Cam 24 Cam 26 Cam 27

LR 17.26 14.96 14.30 14.69 15.06 14.54 14.68 13.43 16.24 15.37
A+ 15.51 13.57 13.30 13.61 14.10 13.93 13.52 12.26 14.57 13.94

RBFN 8.77 7.75 7.49 7.57 7.65 7.92 7.29 7.39 8.71 7.48
PR 7.89 6.89 6.70 6.91 6.78 6.81 6.76 6.81 7.54 6.99

HSCNN-R 7.40 6.62 6.24 6.49 6.46 6.36 6.38 5.69 7.33 6.69

In Table 3.7 and Table 3.8, respectively, we present the mean and worst-case performances

of the methods. Additionally, for the mean results, we conduct a Paired Student’s t-Test [81]

between the best camera’s and worst camera’s results, which is shown in Table 3.9.

The Student’s t-Test examines statistically whether two sampled data distributions (here,

the distributions of errors) differ in their mean value with significance. And, the paired
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Table 3.9: Student t-test results between the mean performances (Table 3.7) of the

worst and best cameras used for each SR method.

Method Worst Cam Best Cam t-score p-value
LR Cam 26 Cam 24 4.33 < 10−4

A+ Cam 24 Cam 20 3.99 < 10−3

RBFN CMF Cam 24 4.78 < 10−5

PR Cam 26 Cam 24 5.47 < 10−6

HSCNN-R Cam 26 Cam 24 3.88 < 10−3

version of the test signifies that the two samples are dependent—in our case, the compared

test results are recovery errors of the same set of test scenes. Also, the one-sided hypothesis

is used, where only the significance of the best camera being better—not worse—is tested.

We present both the raw t-scores and the corresponding p-values in Table 3.9. As shown,

the performance of the best camera is always statistically better than the worst for all 5

algorithms tested (i.e., p < 0.05, or equivalently, at > 95% statistical significance).

For one scene in the ICVL dataset, we present the pixel-wise MRAE error maps representing

the performance of the worst and the best cameras for each SR method in Figure 3.5.

3.2.3 Discussion

The statistics in Table 3.7, 3.8 and 3.9 show several important results. First of all, let us

fix each SR method individually while comparing the performance when different cameras

are used (i.e., comparing the numbers in the tables horizontally). Clearly, for all methods,

both the mean and 99-percentile performances vary when different cameras are used. And,

the range of variation (between worst and best cases) for mean results is around 9% to 24%,

and for 99 percentiles it is in the order of 18% to 30%, depending on the algorithms.

In general, SR methods with lower mean errors have lower 99-percentile errors. However,

the respective camera rankings based on either mean or worst-case performances do not

always match, i.e., cameras that return better mean performance might perform worse in

the worst case. We can visually observe this discrepancy in Figure 3.5. Clearly, while the

best cameras lower the general level of errors, some parts of the scene appear to get worse,
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Figure 3.5: The worst camera vs. best camera comparison for each SR method on

one example scene, in terms of the MRAE error heat map.

e.g., the “tree” part in the top-left corner for A+, and the “sky” part in the top portion for

PR and RBFN.

In Table 3.9, we also observe that, in terms of mean performance, the best camera for one

method is not necessarily the best for other methods. For instance, the best camera for

LR, RBFN, PR and HSCNN-R—Cam 24—is in turn the worst camera for A+. This is

a curious result and indicates a potentially rather strong dependence between camera and

algorithm.

Next, let us consider the rankings of SR methods while fixing each camera used (i.e., com-

paring the numbers vertically). In terms of the mean performance, we see the rankings
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do not change when switching the cameras. This result provides an empirical basis that

we could choose from a range of real camera spectral sensitivities to benchmark the SR

methods with a consistent ranking.

Finally, let us view the results in the context of changing both the cameras and algorithms.

In SR—as in many areas of computer vision—it is evident that we need to be careful in

experiments and “compare like with like”. Suppose that a first team of researchers train

and test the PR method using Cam 24 (Point Grey Grasshopper 50S5C) while another

team trains and tests HSCNN-R using Cam 26 (Phase One). If we directly compare the

two performances, we might reach the conclusion that PR performs slightly better than

HSCNN-R in mean performance, and in terms of 99 percentiles the performance advantage

is significant. Yet, if we train and test the two methods on the same camera, then either

Cam 24 or Cam 26 will suggest that HSCNN-R is better.

Another aspect to look at this comparison is that, as we are pursuing the advance of

SR mapping function (in most case, make it more complex), it is possible that switching

the used RGB camera can reach better performance—in this case, we are talking about

switching the camera used for training PR from Cam 26 to Cam 24, which can reach better

performance than continuing using Cam 26 and switching to use the much more complex

HSCNN-R.

3.3 TheWorst-Case Radiance-Mondrian-World Assumption

In most of the recent works, and also so far in this thesis, SR methods are trained on

hyperspectral image database of real-world scenes. The testing images—the images that are

used to evaluate the SR methods—usually also come from the same database. Naturally, we

can expect those testing images to look broadly similar to the training images. For particular

applications where all scenes look alike, this experimental setup might be adequate. In this

section we are interested in the SR algorithms’ performance on unseen and unexpected

images.
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We are going to propose a worst-case image set that bounds how well any SR algorithm

can perform. Our goal is to design an inherently unseen and unexpected imaging condition

that is theoretically realisable in the real world but provides as few clues as possible for

learning. More specifically, we seek to ensure the image content is generated randomly, with

unpredictable spatial patterns and spectral radiances. Then, using this newly defined and

generated testing image set, we are to examine if more complex SR methods still perform

better than the simpler ones.

3.3.1 Mondrian-World Patterns

For the random spatial patterns, we take inspiration from the Mondrian-World (MW) pat-

terns [50] which are commonly used in colour research. A common definition of an MW

image is a patchwork of overlapping rectangles with randomly generated locations and sizes.

Figure 3.6 shows an example MW image.

Figure 3.6: An example Mondrian-World (MW) scene. Each colour indicates a unique

reflectance or radiance.

Clearly, MW images are not like everyday images. This is entirely the point. They are

meant to be very simple stimuli devoid of any cues that the vision system might exploit.
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There is no shape, no shading, no depth and no texture. And therefore, these images

are a particular challenge for any learning-based algorithms (including those for spectral

reconstruction) that attempt to exploit structures in images.

To automatically and randomly generate MW images, we take the liberty to formulate a

simulation process:

1. Start with a blank array of height H and width W , referred to as the canvas.

2. Decide a rectangle height by drawing a number from the normal distribution N
(
µ =

H
5 , σ = H

15

)
and a rectangle width drawn from N

(
µ = W

5 , σ = W
15

)
. Both numbers are

rounded up to integers.

3. Draw another 2 integers from uniform random distributions ranging [1, H] and [1, W],

respectively, as the coordinates of the top-left corner of this rectangle.

4. Insert this rectangle to the canvas, overlaying on whichever patches that have already

been on the canvas.

5. Repeat Step 2 to 4 until all pixels on the canvas are filled.

Following this process, at each random generation process, we decide the pattern of one

particular MW image. Then, the next step is to decide what exactly should be filled in each

of these patch regions.

Note that in this generation process we adopted a fixed probability distribution for the rect-

angle size. This was for generating patterns visually comparable to the Mondrian pattern

when it was first proposed [50]. Of course, if the SR algorithms are trained on those images,

the fixed probability distribution might be learned. Hence, for further research, one could

seek to also relax the restriction on the probability distribution.

We also want to point out that training/testing with MW patterns only affects the capability

of the patch-based methods, i.e., the DNNs. Indeed, for pixel-based algorithms, the scene

content is never used (so removing it does not harm pixel-based algorithms). In the next
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sections, we will propose the other half of our design for the worst-case imaging scenario

which will also impact the pixel-based algorithms.

3.3.2 The “Radiance” Mondrian World

In the literature of colour applications where the MW patterns are used, each patch region

is expected to be uniformly filled by one reflectance—which means, each area is made of

one material, or painted by the same paint, or printed by the same ink, etc. However,

most MW images are also assumed to be illuminated by a single light source. As we are

dedicated to finding a real-world worst-case scenario, we seek to further remove this prior

knowledge (that different patches are illuminated by the same light), in order to create a

condition that is even more challenging than MW.

Therefore, we propose the Radiance-Mondrian-World (RMW) imaging condition. In RMW,

each patch of the MW pattern is filled with a real-world radiance. In terms of a potentially

practical fabrication process, every patch area of the MW pattern is not just made of an

arbitrary material, but also illuminated by an arbitrary light source. As we propose this

new RMW condition, here, we are also the first to admit that such a patch-wise variation in

illumination does not readily occur. However, we could certainly make an RMW image in

the lab. Further, in the field of multi-illuminant color constancy, scenes with considerable

spatial variation in illuminating light (that are plausible scenes) are of interest. For example,

in the Figure 2 of Hao et al. [40] they consider scenes lit by 4 different spectra where,

per pixel, the illumination is a convex combination of these 4 light spectra. Given their

experimental setup it is easy to envisage scenes with even more light spectra thus taking

us toward the RMW—if Hao et al. [40] is proposing 4 lights as a plausible scenario for

multi-illuminant colour constancy, then clearly another research will propose 5, then 6, and

so on. However, honestly, the feasibility of our RMW assumption is not a huge concern for

us. Rather, we use it as a mean to theoretically bound a worst-case performance.
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Here, we use a simulation process to generate the RMW images. More specifically, given

a randomly generated Mondrian-World pattern, we are to fill each patch region with a

randomly selected radiance spectrum from a pool of eligible radiances. To link RMW to

the real world, for example, we might want to assign all spectra that appear in the ICVL

hyperspectral image database [5] to be the eligible radiance set. Nevertheless, there is a

bias of relative abundance of particular radiance spectra in regular scenes—e.g., the spectra

of the sky, the trees, the ground, and the like, those commonly appeared image contents.

Hence, we are also seeking to further exclude this bias when assigning the eligible radiance

set.

3.3.3 The Convex Set of Natural Radiances

Following Finlayson and Morovic [29], we restrict the eligible radiances to be in the convex

closure of all radiances found in the ICVL dataset. This convex closure idea is important

since it integrates an otherwise discrete set of image sample points. Moreover, a patchwork

of spectra of relative proportions (that sum up to one) appears like the same convex sum of

spectra when viewed from a far enough distance away (so that all the different surfaces map

to the same pixel). This sub-pixel integration concept is illustrated in Figure 3.7. On the left

of the figure we have an RMW image. As we zoom in to the marked pixel, we see that what

looks like a beige colour is actually composed of many different sub-pixel colours/radiances

as shown on the right (i.e., a smaller, sub-pixel-sized RMW image). Lastly, as a continuous

convex region we are able to randomly and uniformly sample the closure area to ensure no

one natural spectrum is more likely to be selected than another.

Building a convex set in high dimension can be difficult. Indeed, in our case, the dimension

of the spectra (i.e., the number of spectral channels in those ICVL hyperspectral images)

is 31, which is way too high for, e.g., the Qhull [11] implementation. As a result, we are

to find a lower-dimensional linear model using the PCA technique [69] to represent the

spectral data (the idea of linear model was introduced in Section 2.2.1). Here, we use an
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Figure 3.7: A radiance spectrum in the convex closure of natural radiances can be

viewed as a sub-pixel mixture of the natural radiances, which makes such a spectrum

also a realisable natural radiance spectrum.

8-dimensional linear model:

hi ≈ Bhαh
i ; ∀ i, (3.5)

whereBh is a 31×8 matrix of basis vectors, andαh
i is the unique 8-dimensional characteristic

vector that defines the best fit to hi, i.e., the ith radiance spectrum in the database. We

choose to use an 8-dimensional representation because, based on some prior works, most

real-world spectra can be described by a 5- to 8-dimensional linear model representation

[64; 41; 72; 51; 59].

With respect to this linear model representation, we convert all spectra in the ICVL dataset

to their 8-dimensional characteristic vectors. Then, we calculate the 8-dimensional convex

hull (i.e., the parameters of the surrounding surfaces of the convex set that define the convex

region) of these characteristic vectors. We denote this convex region as C.

Next, with the C region calculated, we wish to randomly and uniformly sample this region.

Our accept-reject sampling methodology is illustrated in Figure 3.8 (here, a 3-dimensional

analogy is presented). In the figure, the green region represents the 8-dimensional convex

set C. Then, on the outside of C we find its bounding box, denoted as B (red region), which

is the smallest cube that contains C. Mathematically, B is delimited by the min and max

value per dimension of C. With respect to B, it is very easy to sample data randomly and

uniformly—we simply need to randomly and uniformly select a number within the bound
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of B in each dimension. Then, for each point sampled within the bounding box we can

check whether this sample also falls inside C: if it is inside C we accept the sample (to be

converted back to spectral dimension by Equation (3.5) and used to fill the RMW patch),

otherwise we reject it and re-select another sample from B.

Figure 3.8: A 3-dimensional illustration of a convex set C, its bounding box B, and
the accept-reject sampling strategy.

Combining the MW spatial pattern generation strategy introduced in Section 3.3.1 and the

radiance selection methodology here (selecting new random radiances region-by-region in

the MW pattern), an RMW image can be simulated.

3.3.4 Experiments and Results

With the definition and generation of the RMW images, we conduct 2 experiments. In the

first experiment, all SR methods are trained and validated as normal using the original

ICVL data, but then we test them on 50 random RMW images we generated. Here, we use

the single validation process introduced in Section 3.1.3 while swapping the testing image

set with our RMW set. Also, the CIE 1964 colour matching functions [24] are used as the

camera’s spectral sensitivities to generate the ground-truth input RGB images. Hereafter we

refer this experiment to as the Original/RMW experiment. In effect, Original/RMW
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investigates how well the SR methods that are trained on the original hyperspectral images

can generalise to the RMW images.

In the second experiment, we retrain the SR methods on the additionally generated 150

RMW images (100 images for training and 50 images for validation), while testing on the

same RMW testing set used in the first experiment. This experiment is referred to as the

RMW/RMW experiment. In this case, we are studying these methods’ ability to actively

learn to recover RMW images.

The mean and standard deviation (Std) of the per-image-mean MRAE and AngE results

of the single-validated baseline testing (Section 3.1.6) in comparison to the two RMW

experiments are shown in Table 3.10.

Table 3.10: The mean (± standard deviation) per-image-mean MRAE and AngE

results of the baseline testing (single validation) and the two RMW experiments.

Mean (± Std) Per-Image-Mean MRAE (%)
Baseline (SV) Original/RMW RMW/RMW

LR 6.39 (±2.90) 13.88 (±1.31) 9.16 (±0.92)
A+ 3.81 (±1.99) 15.26 (±1.35) 9.41 (±0.90)
RBFN 2.09 (±1.11) 15.08 (±1.30) 9.52 (±1.21)
PR 1.98 (±1.11) 14.60 (±1.60) 8.55 (±0.88)
HSCNN-R 1.76 (±0.92) 12.96 (±1.50) 8.58 (±0.78)

Mean (± Std) Per-Image-Mean AngE (deg)
Baseline (SV) Original/RMW RMW/RMW

LR 3.85 (±1.72) 7.83 (±0.77) 5.81 (±0.57)
A+ 2.35 (±1.18) 8.30 (±0.79) 6.01 (±0.56)
RBFN 1.50 (±0.74) 8.21 (±0.64) 5.90 (±0.60)
PR 1.45 (±0.73) 9.01 (±0.93) 5.51 (±0.54)
HSCNN-R 1.36 (±0.64) 7.66 (±0.81) 5.76 (±0.53)

First, reviewing the baseline testing results, we see that algorithms with different model

complexities also provide different level of performances. Indeed, in terms of MRAE, the

DNN-based HSCNN-R method performs best overall, with an error of less than 1/3 the

MRAE compared to linear regression (LR). Nevertheless, the performance gap compared

to polynomial regression (PR) is much less. Similar trend is also observed in the AngE
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results, i.e., the DNN approach provides a modest uplift in performance compared to the

best regression algorithm.

Let us now look at the Original/RMW results. Here we train on real images but then

test on the unseen and unexpected RMW images. First, it is worth remarking that the

recovery error for all algorithms is much worse. Also noteworthy is that all algorithms

perform—more or less—equally well (actually, equally bad).

The results for the RMW/RMW experiment are when we retrain all the algorithms for

our RMW images. Here, unsurprisingly, we get better results than the Original/RMW

experiment, though the errors remain higher than the baseline. Curiously, however, the

performance gap between the simplest LR and the HSCNN-R network still remains small.

This means that even as we provide RMW scenes as training set for learning, the DNN still

does not possess clear advantage against the simplest LR. And, the best algorithm overall,

in terms of both MRAE and AngE, is now PR which is much less complicated than the

DNN.

Evidently, we demonstrate that the model complexity does not help recovering the unseen

and unexpected, randomly generated RMW images, both in terms of normal training and

RMW training. In other words, under the worst-case imaging condition defined by RMW,

we do not see the benefit of using the much more complex DNN method compared to the

simple and primitive linear regression.

3.4 Summary

To summarise, in this chapter we examined the relative performance of SR models with

different levels of complexities: regression, regression with clustering support, and Deep

Neural Network (DNN).

First, we present a baseline experiment which benchmarks the methods using the same

hyperspectral image database. It is shown that the DNN-based HSCNN-R method performs
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the best overall, but only by around 12% in terms of the MRAE metric compared to the

best-performing regression: Polynomial Regression (PR).

We also show the results in terms of different spectral metrics. It is demonstrated that in

most cases both settings do not change the methods’ rankings, with one exception that is

the mean per-image-99-percentile evaluation using the RMSE metric, where PR surpasses

HSCNN-R. We hypothesised that this rank-performance flip is because the PR method is

trained to minimise RMSE but the HSCNN-R minimises MRAE.

We also ran experiments to evaluate the relative performance of 10 cameras (with 10 differ-

ent spectral sensitivities). The good news is that the rankings of the algorithms were shown

not to depend on the camera used. However, care must be taken in SR experimentation.

It is possible, for example, that a regression-based SR algorithm can deliver better spec-

tral recovery than a DNN if the two methods use different cameras to capture their input

RGBs.

Finally, we investigated the SR algorithms’ performance under a worst-case real-world imag-

ing condition we defined, called the Radiance Mondrian World (RMW) assumption. In

RMW, the spatial patterns are random and unpredictable, and all natural radiances have

the same chance to appear in each image, i.e., no one radiance is more likely to appear than

another. With this assumed worst-case imaging condition, we show that all methods—

regardless of their differences in complexity—degrade to broadly the same level of perfor-

mance. We also found that even if we retrain all methods using an RMW training set,

more complex algorithms still do not hold any advantage against even the simplest Linear

Regression (LR) approach.
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Chapter 4

On the Optimisation of Regression-

Based Spectral Reconstruction

In Chapter 3, we saw that compared to the leading DNNmethod HSCNN-R, the polynomial-

regression-based spectral reconstruction performs slightly worse in a regular benchmark test,

and on par under the worst-case imaging condition.

In this chapter, we demonstrate that it is possible to alter—in the same systematic manner—

all regression-based formulations of SR so that their recovery performance is improved.

4.1 Introduction

Figure 4.1: The standard spectral reconstruction training (red arrows) and evalua-

tion scheme (blue arrows).

In Figure 4.1, we illustrate the standard experimental framework of SR. In training, the pa-

rameters of the SR model are tuned such that the losses—the differences between the

ground-truths and estimations measured by a given loss metric—are statistically minimised.

After the SR models are trained, we evaluate them based on a desired evaluation metric.
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Ideally, the two metrics should match (i.e., the same or similar in nature). Indeed, a model

that is optimised for one metric but evaluated by another will surely lead to sub-optimal re-

sults.

However, we noticed that in recent works [7; 8; 9], DNN-based models are most commonly

evaluated and ranked by the Mean Relative Absolute Error (MRAE; Equation (3.1)). Most

top DNN models are also designed to minimise MRAE directly [80; 53; 105; 7; 8]. But, all

regressions used in SR are still optimised using the conventional least-squares minimisation,

where the squared Root Mean Square Error (RMSE; Equation (3.2)) is the loss metric.

Based on this insight, we propose two new minimisation approaches for simple regressions—

the Relative Error Least Squares (RELS) and Relative Error Least Absolute Deviation

(RELAD). While the former minimises an error similar to MRAE and is solved in closed

form, the latter explicitly minimises the MRAE metric but has the disadvantage of requiring

an iterative minimisation.

As a second contribution, we also propose a new way of regularising the regression-based

spectral reconstruction. Most regressions are necessarily trained using a regularisation con-

straint [87], both to prevent overfitting [98] and to make the system equations more stable (a

system of equations is stable if small perturbations appear in the training data results in a

small perturbation in the solved-for model parameters). However, we observe that hitherto

in regression-based spectral reconstruction all spectral channels are regularised altogether—

e.g., in [42; 1; 62; 25]. That is the regularisation constraint is effectively applied at the

spectrum level. Yet, fundamentally, the MRAE metric measures the errors at individual

spectral channels independently and then averages them to give the overall spectral error

measure (see Equation (3.1)). We further show that in the conventional regression formula-

tion the values at each spectral channel are also mapped separately from others. Similarly,

we propose that the regularisation should also be carried out “per channel”, i.e., to ensure

optimised regularisation for each spectral channel independently. This new regularisation

Chapter 4 Yi-Tun Lin 63



A Practical Study on Recovering Spectra from RGB Images

Figure 4.2: Example hyperspectral image reconstruction error heat maps (in MRAE)

by the conventional Polynomial Regression, Polynomial Regression based on our new

RELS method, and the DNN-based HSCNN-R.

strategy can be regarded as a standalone improvement for the conventional least-squares,

but it is also adopted in both our RELS and RELAD formulations.

Combined, we find that training the simple regressions to minimise the same error as used

in testing and adopting a per-channel regularisation approach lead to a significant uptick

in performance. In particular, as shown in the example hyperspectral image reconstruction

results in Figure 4.2, our RELS-based Polynonial Regression can now deliver more similar

SR to the HSCNN-R approach.

4.2 Least-Squares Regression Revisited

As a recap to the regression methods (introduced in Section 2.3), generally, the goal of

regression is to minimise the error of the following approximation:

MC ≈ H , (4.1)

where the columns of H are ground-truth radiance spectra, and the columns of C are simple

features derived from the matching RGBs: in Linear Regression and A+, they are the

RGBs themselves, whereas in Polynomial Regression and Radial-Basis-Function Network,

their respective non-linear expansions are used on the RGBs to derive the features (see
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respectively Section 2.3.1 and 2.4.1 for more details). Matrix M is an n × p matrix with

n being the spectral dimension and p the fixed length of the feature vectors, containing all

learnable parameters of the regression mapping.

Conventionally, as introduced in Section 2.3.3, M is solved by least-squares minimisation

with a ridge regularisation setting:

min
M

∣∣∣∣MC−H
∣∣∣∣2
2
+ γ

∣∣∣∣M∣∣∣∣2
2
. (4.2)

Here, the first term in the loss function represents the least-squares minimisation, i.e., the

minimisation of the sum of squared errors, and the second term bounds the ℓ2 norm of the

matrix M. The competition in minimisation between the two terms is controlled by a single

regularisation parameter γ.

4.3 Per-Channel Regularisation

The regularisation method used in the standard case (Equation (4.2)) takes place at the

spectrum level with all spectral channels being regularised together. Here, we will argue—

and develop the requisite mathematics—that the regularisation should be done per spec-

tral channel.

To begin with, let us review again the goal of regression which is Equation (4.1). Here,

without altering the goal, we can split the regression matrix M and the ground-truth

spectral data H by rows:

MC =



mT
1

mT
2

...

mT
c

...

mT
n


C ≈



ηT
1

ηT
2
...

ηT
c
...

ηT
n


= H . (4.3)
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Here, remember that the columns of H are individual radiance spectra, thus the values

in, e.g., the cth row of H, ηT
c
, are the cth-channel spectral intensities of all spectra in

the database, and the length of ηT
c
is N (i.e., the number of data points).

With this equivalent representation of the regression’s mapping function, we see that regression-

based SR is in actuality a collection of n independent per-channel regressions:

mT
c C ≈ ηT

c
; for c = 1, 2, · · · , n . (4.4)

Again, we emphasise that Equation (4.3) and (4.4) are both equivalent to the original formu-

lation in Equation (4.1), only that they explicitly show that, by default, there is no “inter-

channel” dependence exploited in regression. In other words, for all regression-based SR in

the literature, it has been always the case that each row of M is only used for recovering the

corresponding row of H while irrelevant to the recoveries for other spectral channels.

Curiously, as we solve forM using the standard minimisation in Equation (4.2), the strength

of the penalty term, γ||M||22, is controlled by a single parameter γ. This means that all

rows of M—that is, the n separately-functioning mT
c —are regularised using the same γ

parameter, despite the fact that each of them works independently of others. Essentially,

by regularising M as a whole, we are “asserting” such an interdependence among chan-

nels.

From a mathematical viewpoint (regarding how the regression is formulated), we shall be

able to select the best empirical γ parameter for each spectral channel separately. Following

Equation (4.4), we reformulate the regularised least-squares minimisation (Equation (4.2))

in a per-channel fashion:

min
mT

c

∣∣∣∣mT
c C− ηT

c

∣∣∣∣2
2
+ γc

∣∣∣∣mT
c

∣∣∣∣2
2
; for c = 1, 2, · · · , n . (4.5)

Here, the per-channel regularisation parameter γc is used specifically for regularising the

regression of the cth spectral channel.
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Similarly to the conventional least-squares whose closed-form solution exists (Equation

(2.32)), Equation (4.5) can also be written in closed form [87]:

mT
c = ηT

c
CT

[
CCT + γcI

]−1
. (4.6)

4.3.1 Remark

To provide some intuition on why we think allowing the regularisation at different spectral

channels to be different is important, we point out that it is a priori possible that the

value distributions in different channels have different level of non-linear relationship with

the input RGBs, and, e.g., if using a fixed high-order polynomial regression, the optimal

amount of regularisation for fitting the different level of non-linearity in each channel will

be different. Plus, the amount of noise in data can be wavelength dependent, which also

calls for wavelength-dependent regularisation.

Although our per-channel approach matches the assumption made by the regression’s for-

mulation (that there is no inter-spectral-channel dependence), we shall admit the possibility

that there might be better ways to formulate the regression which factors in “reasonable

interdependence” between channels. For example, we may consider to impose a “smooth-

ness” constraint used in the literature [91] on the recovered spectra, though we note that

this assumption would be more important for the reflectance recovery since reflectances

are usually intrinsically smooth, instead of the radiance spectra we are considering (real

radiance spectra can be far from smooth because the illumination spectrum is part of the

radiance, especially for indoor illuminations).

4.4 Minimising Relative Errors in Regression

So far, both the conventional and per-channel least-squares (LS) target to minimise a sum-

of-squares loss in training. In this section we will argue that there is another type of error
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metric, namely the “relative errors”, which should be better metrics to use for training and

evaluating the SR algorithms.

4.4.1 RMSE versus MRAE Error Measures

Let us review the RMSE and MRAE metrics introduced in Section 3.1.4:

RMSE(ĥ,h) =

…
1

n

∣∣∣∣ĥ− h
∣∣∣∣2
2
, (4.7)

MRAE(ĥ,h) =
1

n

∣∣∣∣∣∣∣∣ ĥ− h

h

∣∣∣∣∣∣∣∣
1

, (4.8)

where ĥ = Ψ(c) is a simplified nomenclature for the SR estimation (Ψ denotes an SR

algorithm), h is the ground-truth spectrum, n is the number of spectral channels (i.e., the

vector length of h and ĥ), and the division in MRAE is component-wise. The division used

in MRAE makes it a relative error, which refers to the type of errors measuring differences

with respect to the ground-truth values.

Of course, the physical radiance spectrum (i.e., hyperspectral measurement) h may have

greater or lesser magnitudes depending on the imaging conditions. In reality, such exposure

condition changes happen when the user changes the exposure time and/or aperture setting

of the camera, the brightness of the prevailing illumination of the scene changes, and/or

the same object is viewed in different parts of the image and subject to a changed level of

highlight or shading. Under these circumstances, the measured spectrum is changed from

h to kh, where k is a constant scaling indicating the level of exposure change.

Correspondingly, an SR algorithm might suggest the same recovered spectrum scaled by

the same constant, i.e., kĥ. In this case, the algorithm predicts the same level of fitness

of h while correctly predicts the exposure scaling k. We note that, depending on the SR

algorithms, this condition might not be met. However, this is definitely a preferred property

of an SR algorithm, which will be discussed as a separate issue in Chapter 6.

Chapter 4 Yi-Tun Lin 68



A Practical Study on Recovering Spectra from RGB Images

Now, let us revert back to the RMSE and MRAE metrics. Given the same ground-truth and

recovered spectrum before and after scaled by k, we get RMSE(kĥ, kh) = kRMSE(ĥ,h).

In the case of k > 1 (when both ground-truth and recovery get brighter), it seems the

RMSE metric is “punishing” the algorithm for recovering the correct level of brightness.

Arguably, the MRAE makes more sense as a performance metric, since for the same two

cases it returns the same error: MRAE(kĥ, kh) = MRAE(ĥ,h).

This biased nature of RMSE evaluation can as well influence the training process of regres-

sions. Indeed, we can expect that the standard least-squares minimisation can overestimate

the sum-of-squares loss (i.e., squared RMSE) of the bright spectra and consequently place

more importance on minimising their errors compared to the dim ones. Therefore, just as

important as switching the use of RMSE to MRAE (or similar relative errors) in evaluation,

it is of our interest to reformulate the regression to minimise a relative error loss function

for unbiased SR training.

4.4.2 Relative Error Least Squares Regression

MRAE is an ℓ1 error, whose minimisation can rarely be found in closed form. Therefore,

our first attempt to relative-error-minimising regression is to make the regression minimise

an ℓ2 variant of relative error which leads to a closed-form minimisation.

We return back to the goal of regression (Equation (4.1)). Here, we can remodel the

approximation—instead of least-squares—as the following minimisation:

min
M

∣∣∣∣∣∣∣∣MC−H

H

∣∣∣∣∣∣∣∣2
2

= min
ĥ1,ĥ2,··· ,ĥN

N∑
i=1

∣∣∣∣∣∣∣∣ ĥi − hi

hi

∣∣∣∣∣∣∣∣2
2

, ĥi = Mφ(ci) , (4.9)

where all the divisions are component-wise. Here, the square of an ℓ2 relative error (referred

to as the “relative-RMSE” in some works [5; 1]) is minimised. N is the number of spectra

in the training set. φ() is the feature expansion adopted by a particular regression. We call

this new minimisation approach the Relative Error Least Squares (RELS).
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Because in Equation (4.9) the divisions are component-wise, equivalently, we can rewrite

the RELS minimisation in a per-channel fashion:

min
η̂T
1
,η̂T

2
,··· ,η̂T

n

n∑
c=1

∣∣∣∣∣∣∣∣ η̂T
c
− ηT

c

ηT
c

∣∣∣∣∣∣∣∣2
2

, η̂T
c
= mT

c C . (4.10)

Further, we can remove the summation symbol by regarding the minimisation in each

channel separately (again, because of the lack of inter-channel independence), and get

min
mT

c

∣∣∣∣∣∣∣∣mT
c C

ηT
c

− 1T
∣∣∣∣∣∣∣∣2
2

for c = 1, 2, · · · , n , (4.11)

where 1T is an N -component row vector of ones.

To further simplify the nomenclature, let us define:

Xc =
C

ηT
c

= C


1/ηc,1 0 · · · 0

0 1/ηc,2 · · · 0

...
...

. . .
...

0 0 · · · 1/ηc,N

 , (4.12)

where ηT
c
= [ηc,1, ηc,2, · · · , ηc,N ]. Using this nomenclature, Equation (4.11) is again rewritten

into

min
mT

c

∣∣∣∣mT
c Xc − 1T

∣∣∣∣2
2

for c = 1, 2, · · · , n . (4.13)

Clearly, Equation (4.13) shows that RELS is in effect another per-channel least-squares

problem (Equation (4.5)), but here we regress Xc to fit the row vector 1T.

Of course, we need to regularise this minimisation by solving the following equation in-

stead:

min
mT

c

∣∣∣∣mT
c Xc − 1T

∣∣∣∣2
2
+ γc

∣∣∣∣mT
c

∣∣∣∣2
2

for c = 1, 2, · · · , n , (4.14)
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whose solution is written as [89; 87]

mT
c = 1TXT

c

[
XcX

T
c + γcI

]−1
. (4.15)

This is the closed-form solution of RELS regression.

4.4.3 Relative Error Least Absolute Deviation Regression

Finally, let us consider to minimise MRAE directly. Analogous to Equation (4.9), we now

wish to solve the ℓ1 minimisation:

min
M

∣∣∣∣∣∣∣∣MC−H

H

∣∣∣∣∣∣∣∣
1

= min
ĥ1,ĥ2,··· ,ĥN

N∑
i=1

∣∣∣∣∣∣∣∣ ĥi − hi

hi

∣∣∣∣∣∣∣∣
1

, ĥi = Mφ(ci) . (4.16)

Following the same derivation as Equation (4.9)–(4.14), we reach

min
mT

c

∣∣∣∣mT
c Xc − 1T

∣∣∣∣
1
+ γc

∣∣∣∣mT
c

∣∣∣∣
1

for c = 1, 2, · · · , n . (4.17)

Notice that, here, not only do we minimise an ℓ1 loss (MRAE), but also using an ℓ1 regular-

isation penalty term. This refers to the LASSO regularisation [86] (see Section 2.3.3).

In the literature, regressions solved via an ℓ1 minimisation is called the Least Absolute

Deviation (LAD) [95; 19]. As here the MRAE we are minimising is a relative error, we call

this new approach the Relative Error Least Absolute Deviation (RELAD).

Unlike RELS, RELAD does not have a closed-form solution. Linear programming [95; 92] is

commonly used to find the globally optimal solution for small amount of data. However, its

requirement for computational resources can drastically increase for large amount of data

(e.g., in our application). Alternatively, the Iterative Reweighted Least Squares (IRLS) [19]

algorithm is more appropriate and is thus used here. The IRLS process approaches RELAD

minimisation by repeatedly solving Weighted Least Squares (WLS) [18] while updating the
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Algorithm 1 Solving RELAD regression (Equation (4.17)) by IRLS algorithm.

1: W(0) = W̃(0) = I ▷ Initialization of weights; I is the N ×N identity matrix

2: δ(0) = inf ▷ N -vector; Placeholder to record the per-sample absolute losses

3: t = 0

4: repeat

5: t = t+ 1

6: mT
c = 1TW(t−1)XT

c

[
XcW

(t−1)XT
c + γcW̃

(t−1)
]−1

▷ Closed-form WLS solution

7: δ(t) =
[
abs(mT

c Xc − 1T)
]T

▷ Updated absolute losses

8: σ̂ =
median

(
δ(t)

)
0.6745

▷ An estimated standard deviation of the losses

9: W(t) = diag

Å
σ̂

max(δ(t), ϵ1)

ã
10: W̃(t) = diag

Å
1

max(abs(mc), ϵ1)

ã
11: until

∣∣mean
(
δ(t)

)
−mean

(
δ(t−1)

)∣∣ < ϵ2 or t ≥ T

12: return mT
c

weights on every iteration depending on the losses and mapping functions obtained in the

previous iteration, until the solution converges.

The detailed algorithm we used is given in Algorithm 1. The abs() (taking absolute values)

and divisions are component-wise to the vectors. max(v, ϵ) clips the lowest value in v at

ϵ. The median() and mean() functions respectively calculate the median and mean of the

vector components.

In Step 1 to 3, we initialise the parameters we are to update in every iteration, including

the weights used in WLS, the per-sample absolute losses, and the iteration number. We put

a superscript (t) to indicate the iteration in which the parameters are derived. Then, we

iteratively solve mT
c using closed-form WLS (Step 6), with the weights updated according

to Step 9 and 10. Here, σ̂ is the standard deviation of the losses estimated from their

Median Absolute Deviation (MAD), which is an estimation of scale commonly used in
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robust statistics [73; 19]. ϵ1 is a small number (we set ϵ1 = 10−6) which stabilises the

algorithm by preventing divisions of too small numbers. Finally, the stopping criteria are

defined in Step 11: when the change of mean losses (here, i.e., the channel-wise relative

error in the training set) in two consecutive iterations is less than ϵ2 = 0.00005 or when the

iteration t reaches T = 20. We set this particular ϵ2 tolerance because the MRAE results

presented in this thesis and in recent literature are rounded to 4 decimal places, whereas

the setting of T is where we observed convergence for most of our experiments.

4.5 Experiments and Results

Table 4.1: List of minimisation approaches.

Approach Per-Channel Regularisation Loss Metric

LS ✗ squared RMSE
Per-Channel LS (LSpc) ✓ squared RMSE
RELS ✓ squared relative-RMSE
RELAD ✓ MRAE

In this chapter we proposed 3 new optimisation approaches to regression-based SR, including

the conventional least squares with per-channel regularisation (LSpc), RELS and RELAD.

Table 4.1 shows the comparison of the conventional least squares (LS) approach and our

new methods. Here, we present results for the regression methods—Linear Regression

(LR), Polynomial Regression (PR), Radial-Basis-Function Network (RBFN) and A+ Sparse

Coding (A+)—optimised via the 4 minimisation approaches in Table 4.1.

The experiments are conducted using the cross validation (CV) methodology (Section 3.1.3).

The camera spectral sensitivities used to simulate the ground-truth RGB images are the

CIE 1964 colour matching functions (CMF; Section 3.2) [24]. The baseline HSCNN-R

performance will also be provided here to ease comparison.
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Table 4.2: The cross-validated mean per-image-mean and per-image-99-percentile

(Pt.) MRAE for regressions trained via LS, LSpc, RELS and RELAD minimisation

approaches. The best approach for each regression method is shown in bold and un-

derlined. The baseline result of HSCNN-R (the reference DNN model) is given in the

last row.

Mean Per-Image-Mean MRAE (%) Mean Per-Image-99-Pt. MRAE (%)
LS LSpc RELS RELAD LS LSpc RELS RELAD

LR 6.24 6.05 5.63 5.36 16.95 17.79 14.09 16.56
A+ 3.87 3.75 3.60 3.49 15.26 14.28 13.50 14.02
RBFN 2.06 2.03 1.98 2.03 7.89 7.93 7.40 7.99
PR 1.95 1.93 1.88 1.92 7.10 7.09 7.04 7.34
HSCNN-R 1.73 6.53

Table 4.3: The paired two-sample Student’s t-test scores of the mean per-image-mean

MRAE results. For each regression model, the best minimisation approach (the one

has the lowest number in Table 4.2) is tested against each of the other approaches.

Student’s t-Test Score of Mean Per-Image-Mean MRAE
Best Approach Best vs. LS Best vs. LSpc Best vs. RELS Best vs. RELAD

LR RELAD 9.46 9.54 4.18 N/A
A+ RELAD 6.93 7.19 7.69 N/A
RBFN RELS 4.42 3.01 N/A 5.33
PR RELS 4.59 4.18 N/A 4.33

4.5.1 Mean and Worst-Case Performance

In Table 4.2, we present the mean (mean per-image-mean) and worst-case (mean per-image-

99-percentile) MRAE statistics.

Let us first look at the numbers in the first row, which are results of variations of LR.

The mean results (left table) show that LR trained using all of our three new approaches

outperform the conventional LS, among which the RELAD method performs the best—

returning 14% lower MRAE compared to LS. On the right side of Table 4.2 (headlined

“Mean Per-Image-99-Pt. MRAE”), we see that RELS-based LR provides 17% lower worst-

case MRAE compared to using the standard LS.

Similarly to our analysis for LR, observing all other regression models, we found that the

best minimisation criterion in terms of mean MRAE is either RELS or RELAD depending

on the model, while for all regressions RELS delivers the best worst-case performance.
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To further examine the robustness of our best minimisation approach (RELS or RELAD),

we conduct the paired Student’s t-test [81] (used in Section 3.2) between the best approach

and others. The t-scores are presented in Table 4.3. Here, unlike in Section 3.2, we adopt a

cross-validation (CV) setup where all 200 images are used as testing images, which means

the t-test here are calculated based on the 200 observed results (as opposed to 50 for the

single-validation setup used in Section 3.2).

For example, let us look at the top-left number of Table 4.3, where 9.46 is the t-test score

when comparing the best approach for LR (i.e., RELAD, which delivers the lowest mean

per-image-mean MRAE for LR) versus the conventional LS minimisation. In the same row,

we also see the t-test scores comparing the best approach with LSpc and RELS, respectively,

but not RELAD (because RELAD is the best approach itself).

Considering we have 200 observed values (200− 1 = 199 degrees of freedom) and the one-

sided hypothesis, a 5% level of significance corresponds to a t-score of 1.65 [49]. Evidently,

we see that the t-scores of all our tests are greater than the 1.65 threshold. In a prac-

tical sense, this result suggests that for each regression model, using the corresponding

best minimisation criterion can consistently deliver the best per-image-mean MRAEs of all

approaches.

Still, it is somewhat counterintuitive that RELAD performs worse than RELS in some

cases. Indeed, as RELAD directly minimises MRAE, we might expect that RELAD would

always provide the lowest mean MRAE. This outcome likely originates from the imprecision

problem of IRLS specifically when solving the ℓ1 Least Absolute Deviation problems [75;

35; 19]. Another possible cause which might result in suboptimal optimisation is that the

IRLS algorithm might, in some cases, fail to converge after 20 iterations (remember that

we set the stopping iteration T = 20 in Step 11 of Algorithm 1). We stopped iterating after

20 iterations to keep limit the computational complexity of the problem.

In contrast, it is not entirely surprising that RELS has better worst-case performance than

RELAD. Indeed, it is well known that ℓ1 minimisations tend to be less sensitive to outliers
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compared to their ℓ2 counterparts [95; 19]. In other words, in RELAD, these 99-percentile

pixels might be treated as outliers during training—i.e., minimisation of these pixels are

less important—and thus perform worse in testing.

Finally, it is shown that our best performing regression model—the RELS-based PR—is

only 8.7% worse than HSCNN-R in terms of mean MRAE. We remind the reader that

HSCNN-R is one of the top models in the NTIRE 2018 challenge [7] in which all finalists

are based on DNNs. Given that most of the reported challenge entries were much more

than 10% worse than HSCNN-R under the MRAE evaluation, we can expect that some of

our further optimised regression models can be on par with—or even better than—many

DNN models in the challenge.

This result contradicts the assumption taken by many DNN approaches that mapping large

image patches is necessary for achieving top performances—as all tested regressions in our

experiment are pixel-based. Furthermore, regarding how much fewer model parameters

the regressions use in comparison to the DNNs (e.g., the PR regression model has 2573

parameters, whereas HSCNN-R has approximately 107 parameters), it is surprising to see

that regression methods can achieve comparable performance to the DNNs (let alone being

better than some). As DNNs have millions of parameters, it is likely that the training data

is insufficient to robustly optimise these parameters (the ICVL database [5] used in our

study and in NTIRE 2018 challenge [7] is already one of the largest available hyperspectral

image databases so far).

4.5.2 Computational Time

Again, let us examine the computational time of our new approaches (Table 4.4). We

calculate the training time as the average time used for each of the 4 experiments in our

cross validation, and the reconstruction time as the average time used to reconstruct each

tested image.
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Table 4.4: The training and reconstruction time measurements for the LS, LSpc,

RELS and RELAD variants of the regression-based SR algorithms. The HSCNN-R

time consumptions are also supplied in the bottom row as a reference. The same

hardware specification is used as in Section 3.1.6.

Training Time Reconstruction Time
(Per Cross-Validation Trial) (Per Image)

LS LSpc RELS RELAD LS LSpc RELS RELAD
LR 6.7 min 6.1 min 6.2 min 36.0 h 0.031 s 0.032 s 0.032 s 0.033 s
A+ 26.9 min 52.8 min 54.6 min 46.2 h 13.7 s 13.7 s 13.7 s 13.7 s

RBFN 1.0 h 1.0 h 1.2 h 36.8 h 3.1 s 3.1 s 3.1 s 3.1 s
PR 15.1 min 15.4 min 42.2 min 44.6 h 6.0 s 5.9 s 5.9 s 6.0 s

HSCNN-R 35.5 h (with GPU) 13.0 s (with GPU)

First, we look at the training time (the left side of Table 4.4). We see that regardless

of the regression model, the closed-form LS, LSpc and RELS approaches show absolute

dominance over the iteratively solved RELAD approach and HSCNN-R for shorter training

time. Then, although it appears that the RELAD minimisation in general takes longer than

training HSCNN-R, we remark that HSCNN-R is GPU-accelerated (which is highly based

on parallel programming), yet our implementation of RELAD does not use any apparent

parallel programming technique.

As for the reconstruction time results (the right side of Table 4.4), we see that all tested

regression methods require much less time to reconstruct a spectral image compared to

HSCNN-R. Additionally, we notice that the reconstruction time for regression models does

not depend on the adopted minimisation approach. This result makes sense because, af-

ter all, no matter how we optimised the regression matrix, the reconstruction procedure

is the same. Consequently, in the case that longer “offline” training time is permitted,

the RELAD-optimised regression can still support fast reconstruction just like LS, LSpc,

and RELS.

4.5.3 Brightness Dependence

Let us further investigate the performance discrepancy within an image. In Figure 4.3, we

show for each regression approach the MRAE recovery error map of a given example scene.
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Figure 4.3: The MRAE error heat maps for the considered regression models opti-

mised for LS, LSpc, RELS, and RELAD criteria.

We see that RELS and RELAD tend to improve the spectral recoveries for the foreground

objects particularly, e.g., trees and grass in the LR results, leaves in the A+ results, bonsai

pot in the RBFN results, and the green peppers in the PR results. Yet, it seems that in the

background and/or highlight regions (e.g., sandy grounds and the blue sky), LS and LSpc

in turn outperform RELS and RELAD. We observe that generally in scenes included in the

ICVL database the foregrounds are dimmer than the backgrounds, therefore we presume

the reason that LS and LSpc tend to recover spectra of the background and highlights more

accurately (yet perform much worse in the foreground) is due to the brightness bias of

least-squares minimisation (see Section 4.4.1).
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(a) LR (b) A+

(c) RBFN (d) PR

Figure 4.4: The mean MRAE performance for pixels belonging to 4 different percentile

groups (based on their brightness) in each image. For display purposes, in plot (a,b)

the Mean MRAE (the vertical axes) is shown between the interval of [0.03, 0.10], while

in plot (c,d) it is shown between [0.015, 0.027].

In Figure 4.4, we illustrate how the mean MRAE performance of each regression ap-

proach is related to the pixels’ brightness—i.e., the ℓ2 norm of the ground-truth spectrum.

For each image we separated all pixels into 4 different brightness groups: 0–25 percentile

(the dimmest group), 25–50 percentile, 50–75 percentile, and 75–100 percentile (the bright-

est group). Then, for pixels belonging to the same brightness group (from all testing-set

images) we calculated their mean MRAE, which is presented in the plots.

Clearly, we observe that while LS and LSpc generally provide lower MRAE for the brightest

group in an image (75–100%), RELS and RELAD demonstrate great advantages over LS

and LSpc in the two dimmest groups (0–25% and 25–50%), which eventually leads to better

overall performance.
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4.6 Summary

Regression-based spectral reconstruction has simple formulations and usually closed-form

solutions, while the current state-of-the-art spectral recovery is delivered by the much more

sophisticated Deep Neural Network (DNN) solutions. Most recent benchmarks adopt the

Mean Relative Absolute Error (MRAE) as the standard metric for evaluation and ranking.

Following this trend, recent DNN models are also designed to directly minimise this metric.

Comparatively, all regressions are still trained based on the least-squares minimisation which

does not suggest a minimised MRAE result. The problem is further compounded by the

sub-optimal regularisation setting where all independently-estimated spectral channels are

regularised by the same single penalty parameter.

In this chapter, we developed new regression approaches that minimise relative errors and

are regularised per spectral channel, including the closed-form Relative-Error Least Squares

(RELS) and the Relative-Error Least Absolute Deviation (RELAD) approach (which di-

rectly minimises MRAE and was solved by an iterative method). Our results showed that

the new minimisation approaches significantly improve the conventional regressions espe-

cially in the darker regions of the images. Consequently, our best improved regression model

narrows the performance gap with the leading DNNs to only 8.7% under the MRAE eval-

uation.
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Chapter 5

Advancing Sparse-Coding-Based

Spectral Reconstruction

In Chapter 4, we developed the RELS-based Polynomial Regression (PR), and henceforth

we will abbreviate this method to “PR-RELS”. There we show that PR-RELS effectively

narrows the gap between PR and the leading DNN, HSCNN-R, from the original 12% to

8.7%.

In this chapter, we are going to explore the clustering-based SR approach, especially evolving

from the A+ sparse coding method [1]. In A+, the RGB space is divided into neighbour-

hoods, and the RGBs in different neighbourhoods are regressed separately. Here, we are

to propose modifications on how the local neighbourhoods are defined, which will lead to

significant improvements on its upper-bound performance. Then, we propose an approx-

imated model, named “A++”, which effectively approaches the upper bound, delivering

the state-of-the-art performance. As A++ is a pixel-based algorithm, and as its perfor-

mance is in the same ballpark as a leading DNN approach, our result, effectively, calls into

question the widely held belief that patch-based algorithms outperform their pixel-based

counterparts.
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5.1 A+ Sparse Coding Revisited

In A+ [1], the K-SVD algorithm [3] is used to find a set of K representative spectra out of

N training spectra:

Dh = K-SVD(H) = [h1,h2, · · · ,hj , · · · ,hK ] , (5.1)

where the columns of H are individual training spectra. This dictionary is optimised (by

K-SVD) such that all training spectra in H can be represented as linear combinations of

the representatives in Dh with minimal errors.

An important assumption called “neighbour embedding” is adopted which entails that the

neighbours in the spectral space are also neighbours in the RGB space (and vice versa)

[1; 88]. Based on this assumption, A+ projects the dictionary of representative spectra,

Dh, to the RGB space following the colour image formulation formula (Equation (2.37)),

deriving a K-member dictionary of RGBs, Dc. Then, fixed-sized clusters are defined in the

RGB space using Dc instead of Dh, by finding the M closest RGBs among the training data

points around each member of Dc. Let us use the jth member of Dc, cj , as an example. A

bespoke linear regression SR mapping is trained using the M training RGBs closest to cj

and their corresponding ground-truth spectra. This mapping is used, in inference, only by

query RGBs that are also nearby cj (i.e., whose closest Dc member is cj).

5.2 The Oracle A+

Clearly, in A+, the neighbourhoods (clusters) are defined in the RGB space, even though

the cluster centres—the representatives—are optimised in the spectral space and later pro-

jected to RGB. With the neighbour embedding assumption, clustering in the RGB space

is equivalent to clustering in the spectral space. Indeed, if the RGB neighbours were also

neighbours in the spectral space, an RGB cluster could also define a neighbourhood in the

spectral space. However, this assumption is not always true. Based on the metamerism
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effect, two very different spectra can appear the same in colour [29; 99], which means they

are RGB neighbours but may not be spectral neighbours.

Now, let us actually consider clustering data in the spectral space (without assuming clus-

tering in RGB space equals clustering in spectral space). In an extreme case where each

spectral data point forms its own cluster, if we could always select the correct clusters, we

would always reach the correct answers (we get zero errors). Next, we reduce the number

of clusters through the K-SVD representation training (Equation (5.1)) and then model

the RGB-to-spectrum mapping at each spectral neighbourhood as a linear regression SR

(i.e., the same A+ processes but operated in the spectral space instead of the RGB space).

Of course, as long as we do not reduce the number of clusters by too much, it is still safe

to say the predictions by local linear regressions should not be too far off the correct ones

(because locally all spectra are already very similar).

The main problem of this setup is that we do not have means to always select the correct

clusters for all query data, because the ground-truth spectra are unknown in practice. But,

we can still study the upper-bound performance of this setup by assuming this knowledge

to be known. We call this the “oracle solution” of A+ (or Oracle A+ in short). The

point of formulating such an oracle solution is to firstly study the full potential of the A+

configuration, as we could later seek to approach this upper-bound performance.

A comparison of the training and reconstruction schemes of the original and the oracle A+ is

given in Figure 5.1. As we can see, in the oracle solution (right of Figure 5.1), in each local

linear regression training, the spectra are actual neighbours (as opposed to the original

A+ where the RGBs are—but spectra might not be—neighbours). Correspondingly, in

reconstruction, we find the closest dictionary member to the ground-truth spectrum which

determines which local linear regression to use for a given input RGB. And, again, in Oracle

A+ we assume the knowledge of the spectral output, which is not available in practice.
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Figure 5.1: The training and reconstruction schemes of the original A+ (left) and

our proposed oracle setup for A+ (right). “Rep.” is short for the “representatives”

included in the dictionary.

5.2.1 Oracle A+ versus DNN

Following the 4-fold cross validation setting introduced in Section 3.1.3, we compare the

performance of the original A+, Oracle A+ and the DNN-based HSCNN-R. Note that

we consider the conventional least-squares method (not the RELS or RELAD methods we

developed in Chapter 4) for the local linear regression training in A+ and Oracle A+.

We also keep the same hyperparameters of A+ used in Oracle A+, including the number

of clusters K = 1024 and the number of nearest neighbours in each fixed-sized cluster

M = 8192.

In Table 5.1, we show the mean per-image-mean and per-image-99-percentile MRAE results.

Visualised error maps for one example testing image are also shown in Figure 5.2.

Evidently, we show that the upper-bound performance of A+ (i.e., the performance of

Oracle A+) is much better than HSCNN-R in terms of the mean performance. Oracle A+

also have much better per-image 99 percentile results compared to the original A+, though

slightly falls short compared to HSCNN-R.
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Table 5.1: Comparing the mean hyperspectral image reconstruction accuracy deliv-

ered by A+, Oracle A+, and HSCNN-R, in terms of per-image-mean and per-image-

99-percentile (Pt.) MRAE. Best results are shown in bold and underlined.

Method
Mean Per-Image-Mean Mean Per-Image-99-Pt.

MRAE (%) MRAE (%)

A+ 3.81 15.52
HSCNN-R 1.73 6.53
Oracle A+ 1.49 7.54

Figure 5.2: Reconstruction error maps of an example scene in MRAE.

We note that the Oracle A+ here represents the upper-bound of A+ when the specific

hyperparameters, i.e., K and M , are adopted. It is possible that the oracle performance

can be further advanced if these two parameters are tuned.

5.3 A++ Spectral Reconstruction

To make the Oracle A+ idea feasible in practice, we are to estimate the spectral neigh-

bourhood labels from the RGBs. We can, of course, use another SR method that provides

primary estimates of the spectra from the RGBs and use this estimated information to

determine their spectral neighbourhoods. Then, we apply the local linear regression SR
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maps attached to these spectral neighbourhoods to the RGBs to deliver the final spectral

recovery.

This procedure might seems convoluted. Indeed, as we use the primary SR method we

would have reconstructed the spectra already. Yet, the proposed sparse coding procedure

is still worth doing because, as presented in Section 5.2.1, the Oracle A+ defines an upper-

bound performance much better than the leading DNN method and certainly even better

than all the regression-based methods. This means whichever primary SR algorithm we

use, we can potentially improve its original performance using the additional sparse coding

steps (by “approaching” the upper bound defined by the Oracle A+).

To further refine the overall performance of the framework, we also run the K-SVD al-

gorithm on the primary spectral estimates instead of the ground-truth spectra. That is

we define spectral neighbourhoods among the primary estimates while the corresponding

ground-truths might not be actual neighbours (but, of course, the local linear regressions

are still aiming at predicting the ground-truth spectra, not the primary estimates which

are only used to estimate the neighbourhood labels). This allows the algorithm to, poten-

tially, correct the estimate when the primary SR algorithm may occasionally give wrong

predictions of the actual, ground-truths’, spectral neighbourhoods.

Finally, our method—called the “A++”—is summarised in Table 5.2. We will dedicate the

rest of this section to providing the specifics of our A++ implementation.

5.3.1 Primary SR Algorithm

The choice for our primary SR algorithm is not a priori fixed. For example, we may simply

use the state-of-the-art DNN as the primary SR. Nevertheless, regarding that the Oracle

A+ itself does not involve any implementation of the complex DNN architecture, we wish

to take this chance to see if we could formulate an SR method that is completely without

DNN implementation yet performs better than the DNNs. Hence, here, we choose the

PR-RELS method (i.e., Polynomial Regression with RELS minimisation; Section 4.4.2) to
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Table 5.2: A summary of the training and testing (reconstruction) process of A++.

Training steps Testing (reconstruction) steps

1. Obtain primary SR estimates of all train-
ing RGBs

1. Obtain the primary SR estimate of each
testing RGB

2. Run K-SVD on the primary estimates,
returning K representative primary esti-
mates

2. Find the closest representative (out of the
K representatives) of each primary esti-
mate

3. Around each representative, find M
RGBs in the training set whose primary
estimates are the closest

3. Get the trained local linear SR map as-
sociated with this closest representative

4. Train a linear SR map associated with
this representative using the found M
RGBs and their ground-truth spectra

4. Apply this map to the testing RGB to
reconstruct its spectrum

be the primary SR algorithm. We note that PR-RELS is currently the best regression-

based method considering the methods in the literature and in the previous chapter of this

thesis.

As a recap, in PR-RELS, we find a global linear transformation matrix, M, which maps

the polynomial-expanded RGBs to spectral estimates that approximate the ground-truth

spectra (Section 2.3.1):

MCφ = “H ≈ H , (5.2)

where the matching columns of Cφ, “H and H are respectively the polynomial expansions

of the training RGBs, the PR-RELS primary estimates, and the ground-truth training

spectra. Considering the 6th-order polynomial expansion (as we have always considered for

polynomial regressions), M is an n × 83 matrix, where n is the dimension of the spectral

vector, and n = 31 for the ICVL hyperspectral database [5] we use in this thesis.

The RELS minimisation solves M by minimising:

M = min
M

∣∣∣∣∣∣∣∣MCφ −H

H

∣∣∣∣∣∣∣∣2
2

, (5.3)
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where the division is component-wise to the matrices. For the closed-form solution of

Equation (5.3) and its regularisation setting, readers are referred to Section 4.4.2. Here

we assume PR-RELS has been pre-trained with the same set of training data prior to our

sparse coding process.

5.3.2 Clustering the Primary Estimates

In our new clustering setup, we find an alternative dictionary of K representatives among“H, i.e., the PR-RELS primary estimates from the training RGBs:

Dĥ = K-SVD(“H) = [ĥ
1
, ĥ

2
, · · · , ĥ

j
, · · · , ĥ

K]
. (5.4)

Here, the superscript j indexes the representatives.

Like in the original A+ where fixed-sized local clusters are defined as the M training RGBs

closest to each RGB representative (Section 2.4.2; Equation (2.40)), here, we find the M

RGBs whose PR-RELS primary estimates are closest to each primary estimate representa-

tive in our new Dĥ dictionary. We write:“Hj = ProxM (“H, ĥ
j
) = [ĥ

j

1, ĥ
j

2, · · · , ĥ
j

i , · · · , ĥ
j

M ] , (5.5)

where the ProxM function selects M columns in “H that are closest to the jth representative

ĥ
j
in terms of Euclidean distances of normalised vectors (i.e., both ĥ

j
and columns of“H are normalised when calculating distances), and the columns of “Hj , i.e., ĥ

j

i for i =

1, 2, 3, · · · ,M , are the found M neighbours of ĥ
j
.

5.3.3 Local Linear Regressions

With respect to “Hj , column by column, we can trace back to the RGBs these primary

spectral estimates are recovered from. Then, we can also find the corresponding ground-

truth spectra of these RGBs. Respectively, we will use Cj ′ and Hj ′ to denote the sets
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of RGBs and ground-truth spectra in the jth primary spectral estimate neighbourhood.

The columns of Cj ′, Hj ′ and “Hj are matching RGBs, ground-truth spectra, and PR-RELS

primary spectral estimates of the training data. Clearly, here, the locality of data is defined

by “Hj , and Cj ′ and Hj ′ are merely the column-by-column correspondences of “Hj .

We use ′ in Cj ′ and Hj ′ to distinguish them from the Cj and Hj used in the original

A+ formulation in Section 2.4.2; Equation (2.40). In the original A+, Cj contains actual

RGB neighbours, whereas in A++, the RGBs in the columns of Cj ′ are not necessarily

neighbours. In other words, different sets of data are included in Cj ′ and Hj ′ compared to

Cj and Hj .

Then, the local linear regressions operate identically to the original A+ (see Equation

(2.44)):

Mj ′ci = Hj ′Cj ′T[Cj ′Cj ′T + γI]−1ci ≈ hi , (5.6)

where ci is a query RGB in the testing step whose primary estimate’s closest representative

in Dĥ is ĥ
j
, Mj ′ is the local linear regression matrix attached to ĥ

j
that can be determined

in closed form with Hj ′ and Cj ′ in the training stage, and hi is the ground-truth testing

spectrum we are to estimate from ci. The γI term (I is the 3×3 identity matrix) originates

from the ridge regularisation process, which is detailed in Section 2.3.3.

5.4 Experiments

In this section, we will compare our new A++ method with HSCNN-R, and also PR-RELS

and A+, the two methods A++ is built upon.

Like the studies in previous chapters, we use the ICVL hyperspectral image dataset [5] as

ground-truth spectral database, and the CIE 1964 colour matching functions ([24]; Section

3.2) are used as the camera spectral sensitivity functions for ground-truth RGB image

formation.
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Table 5.3: The single-validated mean per-image-mean-MRAE performance in relation

to the number of clusters (K) and the size of each cluster (M) used in our A++ method.

The best result for each factor (while fixing the other factor) is shown in bold font and

underlined.

K 1024 2048 4096 8192 10240
M (fixed) ——————8192——————

MRAE (%) 1.88 1.82 1.78 1.76 1.78

K (fixed) ——————8192——————
M 512 1024 2048 4096 8192

MRAE (%) 1.70 1.69 1.70 1.72 1.76

5.4.1 Tuning the A++ Architecture

According to Section 5.3.2, there are 2 major hyperparameters in A++ that dictate the

clustering outcome, which are K, the number of clusters, and M , the number of training

data included in each cluster. In the original A+ model [1], and also our test on Oracle A+

(Section 5.2.1), (K,M) = (1024, 8192), and yet this might not be the best setting for A++.

So, we are to re-determine both factors.

We started with fixing M = 8192 and search for the best K setting (top table of Table 5.3).

We used the single validation evaluation setup (Section 3.1.3) and calculated the mean per-

image-mean MRAE results, finding out that K = 8192 returns the lowest testing error.

Then, we fixed K = 8192 and searched for the best setting for M . As shown in the lower

table of Table 5.3, we see M = 1024 delivers the best performance.

Hence, we will use (K,M) = (8192, 1024) for our A++ implementation. All other hyper-

parameters are kept the same as the original A+ detailed in Section 3.1.5.

5.4.2 Results

Like in previous chapters, we present the mean per-image-mean and per-image-99-percentile

MRAE performance of all considered models in Table 5.4. This evaluation follows the 4-fold
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Table 5.4: The cross-validated mean per-image-mean and per-image-99-percentile

hyperspectral image reconstruction accuracy in terms of MRAE, comparing the pixel-

based A+, PR-RELS, A++ (Proposed), and the DNN-based HSCNN-R. Best results

are shown in bold and underlined.

Approach Method
Mean Per-Image-Mean Mean Per-Image-99-Pt.

MRAE (%) MRAE (%)

Pixel-based
A+ 3.81 15.51
PR-RELS 1.88 7.04
A++ (Proposed) 1.69 7.78

DNN HSCNN-R 1.73 6.53

Table 5.5: The reference number of model parameters, training time and testing

(reconstruction) time of A+, PR-RELS, A++ (Proposed), and HSCNN-R.

Method
Number of Training Testing time
Parameters time (per image)

A+ 9.5×104 26.9 min 13.7 s
PR-RELS 2.6×103 42.2 min 5.9 s
A++ (Proposed) 7.6×105 3.4 h 1.1 min

HSCNN-R 1.7×107 35.5 h (with GPU) 13.0 s (with GPU)

cross validation process as detailed in Section 3.1.3. The A+, PR-RELS and the proposed

A++ methods are pixel-based methods (i.e., the RGB-to-spectrum mapping operates at

the pixel level), whereas HSCNN-R regresses 50 × 50 RGB image patches as a whole. A

comparison of these methods’ number of parameters used and time consumption for training

and testing are given in Table 5.5.

Let us first look at the mean results. With A++, we reach even better mean performance

than HSCNN-R which scores top in the NTIRE 2018 challenge [7]. Significantly, since A++

is pixel-based, this result teaches us that the patch-based mapping adopted by HSCNN-R

may not bring in much useful information on average.

However, we do see HSCNN-R provides better worst-case performance (shown as the 99 per-

centiles) than the pixel-based methods. This indicates the possibility that DNNs might ac-

tually use the patch-based information to bound the performance of worst-case pixels. Still,

the improvement is arguably small compared to PR-RELS (which is pixel-based).
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Looking at the model complexity and time consumption evaluation (Table 5.5), we see that

A++ is composed of more parameters than A+ and PR-RELS, but still being around 1 to 2

orders of magnitude less complex than the DNN methods. Nonetheless, in terms of testing

time, our current implementation of A++ takes much longer than other compared algo-

rithms. We note that our A++ implementation does not involve any code optimisation, e.g.,

parallel programming, and therefore a better time performance should be possible.

5.5 Discussion

In this chapter, we challenged ourselves to surpass the leading DNN-based SR using only a

pixel-based mapping model. We developed a new sparse coding architecture, called “A++”,

where an RGB is mapped to spectrum, firstly by a polynomial regression SR, and secondly

by a linear SR map depending on the location of its first estimation in the spectral space.

We show that this A++ method—despite being much simpler than the leading DNNs—

provides leading SR performance.

Although as per our research interest (to see whether patch information is needed for top-

performing SR) we design A++ to be a pixel-based method, a pixel-based mapping funda-

mentally cannot distinguish materials of the same RGB (since the same RGB will always

map to the same spectral estimate). This limitation goes against the premise that hyper-

spectral imaging can distinguish materials that are not distinguishable by an RGB camera.

Hence, for applications where this ability is crucial, A++ and all other pixel-based methods

may not be competent. But, they still serve as a baseline to see if the patch-based DNNs

indeed perform better in this regard.

Even though we are presenting a pixel-based algorithm, what we want to show here is that

top DNNs do not perform better than the best pixel-based methods, and this calls into

doubt the extent to which these algorithms can map the same RGB to different spectra

depending on context. This does not mean we do not recognise the DNNs’ premise—that
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materials and/or objects are identified deep in the network—is good. Unfortunately that

premise is not delivered upon in the architectures that are currently used.
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Chapter 6

Exposure Invariant Spectral

Reconstruction

In the two previous chapters, we dedicated ourselves to advancing the performance of pixel-

based SR methods. Here, we wish to investigate a general problem of “exposure invariance”

in spectral reconstruction.

6.1 Introduction

Figure 6.1: Sources of exposure change.

The spectral signal arriving at the camera sensor scales with exposure. As illustrated

in Figure 6.1, the change of exposure can be caused by various factors, including when

the user changes the camera’s exposure time and/or aperture size settings, the prevailing

illumination’s brightness changes, and also the same object viewed in different parts of an

image (so they are exposed to the illumination differently).
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Let us denote k > 0 as a constant exposure scaling factor. In the event of exposure change,

a radiance spectrum h becomes kh. According to the hyperspectral-to-raw-RGB image

formation (Section 2.1.3; Equation (2.4)), we see that the RGB generated from kh will also

be scaled by k:

RTh = c ⇐⇒ RT(kh) = kc . (6.1)

Here, h is the original (before scaling) ground-truth radiance spectrum, and c is the original

resulting RGB. The columns of R are the underlying camera’s three discretised sensor

spectral sensitivity functions (e.g., the CIE colour matching functions).

According to Equation (6.1), if h and c form a ground-truth pair, kh and kc can also

be viewed as a ground-truth pair. Indeed, kh and kc might just be h and c viewed in a

different exposure condition.

Now, in a hyperspectral image database (on which the SR algorithms are trained), there

might already exist the same ground-truth h and c pairs scaled by many different k’s. Nev-

ertheless, this variation is often bounded—as usual the (hyperspectral) images are captured

while avoiding scenes prevailed by under- and/or over-exposed pixels. Of course, it is im-

portant to preserve the visibility of the majority of the image content, so that the amount of

useful information in an image can be maximised. And yet, in practice, problematic images

do exist.

Another exposure-related problem is that we train the SR algorithms on example images.

For example, an “apple” object may only appear once in one of the training images under

a certain exposure condition, while in general an apple might appear brighter or darker,

which will not be covered by the training dataset.

In regard to this issue, we wish to re-examine the existing SR algorithms on their capability

to work on the original testing images scaled by different k factors, i.e., whether they are

“exposure invariant”. As shown in Figure 6.2, we found that the simple linear regression

method [42] is able to return matching performance when the testing RGB image is at
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Figure 6.2: Spectral reconstruction under varying exposure by linear regression and

HSCNN-R. The spectral errors are calculated in MRAE.

50% brightness. In contrast, we see that the DNN-based HSCNN-R method significantly

degraded when recovering the darker testing image.

Encouraged by this result, we further investigate the reason why some SR algorithms can

preserve exposure invariance while others cannot. Based on this knowledge, we propose a

new non-linear regression for SR by translating a technique used to solve colour correction

in an exposure invariant way [28]. This technique is called Root-Polynomial Regression

(RPR).

Additionally, since we found that most of the non-linear regressions and DNNs are not

exposure invariant, we propose two approaches to imposing exposure invariance upon them.

The first approach, called “chromaticity mapping”, considers to separate the chromaticities

of a pixel from its brightness scale, while only involve chromaticities in SR mapping. The

second approach is “data augmentation”, which is commonly adopted in learning algorithms

to increase the model’s generalisability. In data augmentation, we scale each training input

(image patches or pixels) by a different randomly-selected k factor in training.

These two approaches are shown to be effective in terms of enforcing exposure invariance

to an SR method. However, the overall performance of the models degrades from their

original performance, likely due to the increase of data variation for the data augmentation

approach, and the decrease of input information in the case of chromaticity mapping.
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6.2 Observing the Existing SR Methods

Abstractly, the spectral reconstruction problem requires us to find a mapping function,

denoted as Ψ(), that maps the camera responses ci to their corresponding spectra hi:

Ψ(ci) ≈ hi ; ∀i . (6.2)

We say a method is exposure invariant if and only if:

Ψ(kci) = kΨ(ci) ≈ khi ; ∀k > 0 , ∀i . (6.3)

Let us consider the three SR approaches we have been evaluating in the past chapters:

regression, A+ sparse coding, and Deep Neural Network (DNN).

6.2.1 Exposure Invariant Methods

First, in Linear Regression (LR), we have Ψ(ci) = Mci ≈ hi (Section 2.3.1; Equation

(2.25)), which is clearly exposure invariant, i.e., Ψ(kci) = kΨ(ci).

Then, in the original A+ sparse coding [1], locally in each neighbourhood the exposure-

invariant linear regression mapping is used (Section 2.4.2; Equation (2.44)). That is,

whether or not A+ is exposure invariant depends solely on whether scaling an input RGB

will lead us to the same closest RGB dictionary member (Dc in Equation (2.37)) that de-

fines its locality. Indeed, recall that we use the Prox1 function (Equation (2.42)) which first

normalises both the input query RGB ci and the RGB dictionary members in Dc before

finding the closest RGB dictionary member. This normalisation ensures that the outcome

of this process will not be influenced by exposure scaling. Hence, overall, A+ is an exposure

invariant SR method.
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6.2.2 Exposure Non-Invariant Methods

Regressions with a non-linear mapping function, including Polynomial Regression (PR)

and Radial-Basis-Function Network (RBFN), follows Ψ(ci) = Mφ(ci) ≈ hi. Clearly, what

determines the exposure invariance of both methods is whether φ() preserves scale invari-

ance.

For PR, polynomial expansion is used (Section 2.3.1; Equation (2.27)). Let us take the

2nd-order PR as an example (with ci = [R,G,B]T), we get:

φ(ci) = [R,G,B,R2, B2, G2, RG,GB,BR]T

=⇒ φ(kci) = [kR, kG, kB, k2R2, k2G2, k2B2, k2RG, k2GB, k2BR]T .
(6.4)

Evidently, for PR, φ(kci) ̸= kφ(ci), and thus Ψ(kci) ̸= kΨ(ci).

As for RBFN, each value in φ(ci) is a function of ci’s ℓ2 distance from a different preset RGB

cluster centres (collectively these cluster centres are from the K-means clustering results;

see Section 2.4.1). Here, unlike A+, the distances are calculated without normalising the

input RGBs and the cluster centres. If we consider the jth centre in Equation (2.34),

cj , it is clear that ||kci − cj || ≠ ||ci − cj ||. Therefore, collectively in RBFN we also get

φ(kci) ̸= kφ(ci), and then Ψ(kci) ̸= kΨ(ci).

Finally, the DNN solutions to spectral reconstruction, similar to the non-linear regressions,

are also not exposure invariant. Recall the structure of a single neuron (Section 2.5; Equa-

tion (2.45)):

g(wTa+ b) = a′ , (6.5)

where a, a′, w and b are the inputs, output, weights and bias, and g() is the activation

function. The offset term, b, alone indicates the neuron will not scale with exposure, i.e., if

the input is ka the output will not be ka′. Even when b = 0, the use of common non-linear

activation functions leads to that the neuron output does not scale with the magnitude of

the input. Note that the ReLU function [79] is, in fact, scale-invariant when b = 0, but its
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power of including non-linearity to the network highly depends on the non-zero bias terms.

Given this view at the level of a single neuron, we can expect that DNNs—of whatever

architectures—can hardly be exposure invariant by construction.

6.2.3 Comments on RELS, RELAD and A++

In Chapter 4, we proposed the RELS and RELAD formulations for the regressions. These

two formulations alter the minimisation loss metric in training, but does not actually change

how the regression mapping works: similarly to the conventional regression methods, a linear

transformation matrix is used to map the input RGB ci (or φ(ci) for non-linear regressions)

to its spectral estimate, but only the parameters in the linear matrix are optimised differ-

ently. Hence, whether or not a regression method is exposure invariant does not depend on

whether we switch to use RELS or RELAD in training.

The A++ introduced in Chapter 5, as it stands, incorporates PR-RELS as its primary

SR algorithm (see Section 5.3.1). As PR is not exposure invariant, a scaled input RGB

might potentially be mapped to different cluster and subject to using different local linear

regression in inference. Therefore, A++ is not exposure invariant if PR-RELS is used as the

primary SR algorithm. (We note that if an exposure invariant SR is used as the primary

SR algorithm of A++, it will become exposure invariant.)

6.3 Root-Polynomial Regression

From the analysis above, we see that non-linear mapping is usually the cause which makes

an SR method not exposure invariant. Nevertheless, regarding the performances, non-linear

methods are almost always better than linear mapping methods (e.g., LR and A+)—see in

the baseline testing (Section 3.1.6; Table 3.3). To further improve the performance of linear

regression while retaining its exposure-invariant property, we introduce a new non-linear

fitting model for spectral reconstruction: Root-Polynomial Regression (RPR).
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The proposed method is an extension from the work of Finlayson et al. [28] on root-

polynomial regression for colour correction. While the colour correction problem considers

the mapping from the camera-dependent RGB responses to the standard CIEXYZ colour

space (or the display’s RGB space), the spectral reconstruction problem seeks to estimate

radiance spectra from the camera RGB.

Similarly to Polynomial Regression (PR), in RPR we expand each input RGB vector

ci = [R,G,B]T to a non-linear polynomial series, only here the higher-order terms are

compensated by the “root” operation of the same order. For example, the 2nd-, 3rd- and

4th-order root-polynomial expansions of ci are written as:

2nd-order φ(ci) =

ï
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√
RG,

√
GB,

√
RB
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(6.6)

It is clear that φ(kci) = kφ(ci) always holds for root-polynomial expansion. Then, anal-

ogous to all other regression-based models, the ground-truth spectrum hi is estimated via

a learnable linear transform: Ψ(ci) = Mφ(ci) ≈ hi. According to Chapter 4, this M ma-

trix can be learned by minimising the conventional or per-channel least-squares criterion,

or using the RELS or RELAD minimisation approach. Combined, we see that for RPR,

Ψ(kci) = Mφ(kci) = kMφ(ci) = kΨ(ci), ∀i. That is RPR is exposure invariant.
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6.4 Chromaticity Mapping

In RPR, we formulate a non-linear mapping function that is by-construction invariant to the

exposure change occurring in RGB captures. Here, we reformulate SR such that spectra are

recovered from the chromaticity, which is a brightness-invariant feature of the RGBs.

6.4.1 Formulation

Every input RGB can be separated into a brightness scale times chromaticity:

ci = ||ci||1 ·
Å

ci
||ci||1

ã
; ∀i , (6.7)

where ||ci||1 = |R| + |G| + |B| is equivalent to the component-sum of ci, and
ci

||ci||1
defines

the chromaticity of ci.

With this separation, we apply the original SR algorithm Ψ() (which might be exposure

non-invariant) only to the chromaticity component to estimate spectrum hi:

||ci||1 ·Ψ
Å

ci
||ci||1

ã
≈ hi ; ∀i . (6.8)

We call this SR approach chromaticity mapping.

Clearly, the outcome of Equation (6.8) is exposure invariant. Let us try inputting the same

input ci scaled by k:

||kci||1 ·Ψ
Å

kci
||kci||1

ã
= k||ci||1 ·Ψ

Å
ci

||ci||1

ã
≈ khi ; ∀i , (6.9)

which satisfies the condition of exposure invariance set out in Equation (6.3), irrespective

of which Ψ() function is in use.

We note that our chromaticity mapping approach has similar effect as Stiebel and Merhof

[82], but arguably simpler in how we define the invariant brightness scale at each pixel (in
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our case we take the ℓ1 norm of the input RGB, while Stiebel and Merhof use the vector

projection of the input RGB onto the RGB of the recovered spectrum).

6.4.2 Training and Reconstruction

Figure 6.3: The training scheme of the SR algorithm under chromaticity mapping.

Following the formulation in Equation (6.8), we divide the ||ci||1 factor on both sides of the

equation and derive the following training formulation for Ψ():

Ψ

Å
ci

||ci||1

ã
≈ hi

||ci||1
. (6.10)

Extending to the image level, at each pixel we can calculate its ||ci||1 and
ci

||ci||1
values.

We call the ||ci||1 components of all pixels the exposure map of the image. On the other

hand, the chromaticity components of all image pixels, i.e.,
ci

||ci||1
, form the chromaticity

image. With this image-level view, Equation (6.10) means to train the SR algorithm to

map the chromaticity image to the ground-truth hyperspectral image pixel-wise divided

by the exposure map, as illustrated in Figure 6.3. In inference, the algorithm-recovered

Chapter 6 Yi-Tun Lin 102



A Practical Study on Recovering Spectra from RGB Images

normalised radiance image is going to (pixel-wise) multiply the exposure map to deliver the

final estimate of the hyperspectral image.

This image-level description of the process is mainly to ease the understanding of applying

chromaticity mapping in the context of DNN—where the algorithm maps image patches

instead of pixel-RGBs. As we see in Figure 6.3, the chromaticity image loses the “intensity

textures” of the original image, which could be a potential cue for the DNNs to recover

spectra.

To retain this intensity cue in the training process and meanwhile ensuring the exposure

invariance of the algorithms, we consider the data augmentation approach, introduced in

the next section.

6.5 Data Augmentation

Figure 6.4: The training scheme of the SR algorithm under data augmentation.

Data augmentation refers to creating new training data by sensibly perturb the original

data. As shown in Equation 6.3, applying any exposure scaling to the image formation

process results in scaling up or down the RGB camera sensor response with the same factor.

Therefore, we can add this intensity variation ourselves to the training images by scaling
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each pair of matching radiance spectra and RGB camera responses by a factor (either to

dim or to brighten the data), as illustrated in Figure 6.4.

This way of adding a new dimension of variation effectively forces the machine learning

model to fit, in addition to the original data, also all these new derived cases along this

brightness dimension. However, it is not possible to cover all possible brightness variations.

On one hand, intensity variation is continuous, while practically we can only select a finite

number of different intensity scaling factors for augmentation. On the other hand, we do

not know the actual bounds within which the object colours in a scene can vary. In practice,

we can only decide on a range of intensity perturbation and a probability density function

for randomly selecting scaling factors within this range.

As for a sensible choice for the probability density function, we point out a fact that the

sequence of exposure adjustments in most of the cameras—both for the exposure time

(shutter speed) and for aperture size—follow a geometric progression. More precisely, the

available aperture sizes normally follow sequential scaling changes by
√
2, and the exposure

time is adjusted by a factor of 2 between adjacent modes. This observation leads us to

setting the probability density function as a uniform distribution on a log scale:

logβ k ∼ Uniform(−1, 1) , (6.11)

where k is the randomly chosen scaling factor for data augmentation, and β decides the

range of variation of k to be [ 1β , β].

In Figure 6.5, we compare the proposed distribution (β = 10; right panel of Figure 6.5) with

the straightforward uniform distribution between [0, 10] (left panel). From both distribu-

tions we drew 5000 random numbers and show the histogram with 100 bins on the log scale

(linear to the geometric progression of the exposure modes). Evidently, the straightforward

uniform distribution generates exponentially more bright scaling factors than the dim ones,

Chapter 6 Yi-Tun Lin 104



A Practical Study on Recovering Spectra from RGB Images

Figure 6.5: The comparison between drawing the scaling factor k from the straight-

forward uniform probability distribution (left) and from our proposed distribution

(right).

while our proposed distribution suggests equal chances for bright and dim factors to be

selected.

6.5.1 Training Setups for Regression and DNN

Most regression models we have discussed so far are optimised in closed form, except for

our proposed RELAD optimisation approach (Chapter 4). In terms of closed-form opti-

misation, the minimisation is immediately decided given the training data. Hence, for the

regressions’ data augmentation we simply apply a random scaling factor on each pixel of

the training images. These random factors are selected following the random distribution in

Equation (6.11) with a fixed β factor which determines the range of the augmented bright-

ness variation. We will present a test for using several different β’s on the regressions’ data

augmentation in the experimental section (next section) of this chapter.

In contrast, DNN is optimised iteratively, i.e., the same training data passes through the

DNN model multiple times while optimises the same set of model parameters. We can make

use of this iterative process and apply different random scaling factors even for the same

input data during different training iterations. In other words, we draw different random

scaling factors from Equation (6.11) for different input training image patches and the same
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patches at different training iterations. Likewise, we will test for the data augmentation

efficacy on the DNN with different β values used in the random distribution.

6.6 Experiments

Figure 6.6: The flow chart of our exposure invariance testing scheme for SR.

Here, to test the exposure invariance of the trained SR methods (either trained originally,

using chromaticity mapping, or data augmentation), we design a new evaluation scheme as

shown in Figure 6.6. In effect, we multiply all testing RGB images by a factor of k, which

leads to the target ground-truth hyperspectral images also scaled by k. We test k = 0.5 and

k = 2, i.e., half or double the exposure of the original testing images. For comparison, We

also present the result of k = 1, that is using the original testing images for testing.

Note that we manipulate the image’s brightness scaling in floating point numbers, thus

when scaling with k < 1 we will not lose the information in the dark image region due to

digitisation, and we do not cap the overexposure level when k > 1 is considered. This is

because the training and testing RGB images are simulated from the hyperspectral images,

and there is no indication where the dynamic range of the underlying RGB camera actu-

ally is—the derived RGB values are at a relative intensity scale without any digitisation

encoding.

The results we are going to present in this section are 4-fold cross-validated results following

the CV procedure in Section 3.1.3.
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Table 6.1: Cross-validated mean per-image-mean and per-image-99-percentile (Pt.)

MRAE performance under testing exposure scaling k = 1, 0.5 and 2. Best results are

shown in bold and underlined.

Mean Mean
Per-Image-Mean Per-Image-99-Pt.

MRAE (%) MRAE (%)
Method k = 1 k = 0.5 k = 2 k = 1 k = 0.5 k = 2

Exposure
Invariant

LR (LS) 6.24 6.24 6.24 16.95 16.95 16.95
LR (RELS) 5.63 5.63 5.63 14.09 14.09 14.09
LR (RELAD) 5.36 5.36 5.36 16.56 16.56 16.56
A+ (LS) 3.81 3.81 3.81 15.52 15.52 15.52
A+ (RELS) 3.60 3.60 3.60 13.50 13.50 13.50
A+ (RELAD) 3.49 3.49 3.49 14.02 14.02 14.02

Exposure
Invariant
(Proposed)

RPR (LS) 4.69 4.69 4.69 16.97 16.97 16.97
RPR (LSpc) 4.31 4.31 4.31 14.98 14.98 14.98
RPR (RELS) 4.18 4.18 4.18 12.94 12.94 12.94
RPR (RELAD) 4.71 4.71 4.71 14.32 14.32 14.32

Exposure
Non-
Invariant

RBFN (LS) 2.06 18.58 8.74 7.89 41.94 24.14
RBFN (RELS) 1.98 15.76 10.01 7.40 28.62 31.42
PR (LS) 1.95 9.60 13.04 7.10 16.64 120.69
PR (RELS) 1.88 10.97 21.60 7.04 18.74 248.48
HSCNN-R 1.73 16.41 6.39 6.53 35.07 14.15
A++ 1.69 8.05 6.87 7.78 17.31 21.81

6.6.1 Existing Methods and RPR

Let us first test the exposure invariance of the regressions, A+ sparse coding, and DNN

methods we have considered or proposed in previous chapters (e.g., regressions with RELS

and/or RELAD minimisation and A++). Also the proposed RPR regression method

optimised with the LS, LSpc, RELS and RELAD approaches are tested and compared

here.

In Table 6.1 we see the mean and the worst-case performances under varying exposure

conditions: k = 1, 0.5 and 2. Interestingly, as we throw exposure change into the mix, we

end up with two types of methods. First are the exposure-invariant methods, including LR,

A+ and our proposed RPR methods. These methods maintain the exact performance as

we adjust the images to be darker or brighter. The other type is exposure non-invariant
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methods, including RBFN, PR, HSCNN-R, and A++. Those methods perform particularly

better when tested on the original testing image set (i.e., k = 1), while significantly degrades

under exposure change.

Now let us look at the DNN-based HSCNN-R as an example. For the original testing

image HSCNN-R works well, with the second-lowest mean and the lowest worst-case errors.

However, as we darken the image by 50% (i.e., k = 0.5), HSCNN-R performs far worse

than the much simpler linear regression (LR) and A+ sparse coding method—its MRAE

is more than double the figure for LR. With respect to a doubling of exposure (k = 2), we

see that HSCNN-R does not perform as badly as under the half exposure, though it could

only perform on par with LR in mean and with A+ in the worst-case scenario.

Next, in terms of mean performance, our exposure-invariant RPR method (in general for dif-

ferent minimisation approaches used) performs slightly worse than the sparse-coding-based

A+, while its RELS variant provides top worst-case performance (per-image 99 percentile

errors) overall at half and double testing exposure conditions.

6.6.2 Effectiveness of Chromaticity Mapping

Using chromaticity mapping makes those SR algorithms which were exposure non-invariant

now exposure invariant. Hence, in Table 6.2 we simply show the exposure-invariant mean

and worst-case results (the same performances are shared by all testing exposures, i.e.,

k = 1, 0.5 and 2). To ease the comparison, we also include the methods that are by-

construction exposure invariant (verified in Table 6.1) in the first tier of Table 6.2 (we shrink

the list of by-construction exposure invariant methods to only include the optimisation

methods that suggest the best mean and/or 99-percentile performance for each regression

algorithm).

Clearly, our chromaticity mapping method pushes forward the frontier of how an exposure-

invariant SR can perform. Indeed, originally, the best mean exposure-invariant performance

was delivered by A+ (RELAD) with 3.49% per-image-mean MRAE, and the best exposure-
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Table 6.2: Exposure-invariant mean per-image-mean and per-image-99-percentile (pt)

MRAE performance under testing exposure scaling k = 1, 0.5 and 2, by construction

or using the chromaticity mapping technique. Best results are shown in bold and

underlined.

Exposure-Invariant Exposure-Invariant
Mean Per-Image-Mean Mean Per-Image-99-Pt.

Method MRAE (%) MRAE (%)

By-
Construction
Exposure
Invariant

LR (RELS) 5.63 14.09
LR (RELAD) 5.36 16.56
RPR (RELS) 4.18 12.94
A+ (RELS) 3.60 13.50
A+ (RELAD) 3.49 14.02

Using
Chromaticity
Mapping
(Proposed)

RBFN (LS) 3.88 13.97
RBFN (RELS) 3.76 13.06
PR (LS) 4.20 13.14
PR (RELS) 4.06 12.64
HSCNN-R 3.16 13.43
A++ 3.58 13.43

invariant per-image-99-percentile MRAE was reached by RPR (RELS) at 12.94%. With

chromaticity mapping, the best-performing exposure invariant SR is now 3.16% for mean

MRAE performance delivered by HSCNN-R, and 12.64% for 99-percentile performance by

PR with RELS minimisation.

We also notice that the chromaticity mapping method trades off the exposure non-invariant

methods’ original testing performance for exposure invariance. Indeed, we see in Table 6.1

that the mean MRAE delivered by the exposure non-invariant methods under the original

testing exposure (i.e., k = 1) ranges from 1.69% to 2.06%, while now with chromaticity

mapping, their performances degrade to the range between 3.16% and 4.20%. We believe it

is more important to make sure an SR algorithm is exposure invariant as opposed to besting

the performance at a fixed exposure while failing to work when the exposure changes.

6.6.3 Effectiveness of Data Augmentation

Unlike chromaticity mapping, data augmentation does not ensure exposure invariance will

always hold. Indeed, its range of effectiveness is limited by the range of the augmentation
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(controled by the β factor in Equation (6.11)), and whether the algorithms are able to

learn how to completely remove the effect of exposure change is not promised, i.e., it is

still possible that the algorithms’ exposure non-invariance is only mitigated instead of being

totally solved.

Following the evaluation workflow in Figure 6.6, we test the RBFN (LS), PR (LS) and

HSCNN-R methods while adopted different β values in data augmentation. For RBFN and

PR, we tried β = 2.5, 5, 7.5 and 10, whereas for HSCNN-R, we only tested β = 5 and 10.

Note that β ≥ 2 is required, such that the augmented range [ 1β , β] (see Equation (6.11))

covers the testing exposures k = 0.5 and k = 2.

The mean per-image-mean MRAE and per-image-99-percentile results are given in Table

6.3. The mean results are also visualised in Figure 6.7, where we also plot three horizontal

dotted lines respectively represent the exposure-invariant performances of LR, RPR and

A+. The “No Augmentation” header in Table 6.3 and “No Aug.” in Figure 6.7 refers to

the performance of the methods without data augmentation (quoted from Table 6.1). All

regression methods shown here are optimised using the conventional LS minimisation.

First, we see that for all three tested methods, data augmentation indeed stabilises their

cross-exposure-condition performance, in comparison to the significant degradation in the

original case (where no data augmentation was adopted).

As expected, with data augmentation we do not get the exact performance match across

testing exposures like using chromaticity mapping—especially if we see the regression-based

RBFN and PR, their performance under half exposure (k = 0.5) appears to be worse than

under the original (k = 1) and double exposure (k = 2). As for HSCNN-R, though it also

does not suggest exact performance match under different exposure conditions, it is much

more stable compared to the regressions. Indeed, the error differences between different

tested exposures are much smaller.
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Table 6.3: The dependency of mean per-image-mean and per-image-99-percentile

MRAE spectral accuracy on the β factor (Equation (6.11)) used for data augmentation.

All SR methods are tested under original (k = 1), half (k = 0.5) and double exposure

settings (k = 2).

Mean Per-Image-Mean MRAE (%)
No Augmentation β = 2.5 β = 5

Method k = 1 k = 0.5 k = 2 k = 1 k = 0.5 k = 2 k = 1 k = 0.5 k = 2

RBFN (LS) 2.06 18.58 8.74 4.20 5.67 4.33 6.19 6.02 5.30
PR (LS) 1.95 9.60 13.04 3.50 5.01 3.57 4.72 5.40 3.80
HSCNN-R 1.73 16.41 6.39 - - - 2.91 2.92 2.81

β = 7.5 β = 10
Method k = 1 k = 0.5 k = 2 k = 1 k = 0.5 k = 2

RBFN (LS) 6.82 7.05 6.40 7.37 7.75 6.98
PR (LS) 5.25 5.72 4.45 5.74 6.03 5.13
HSCNN-R - - - 2.97 2.97 2.96

Mean Per-Image-99-Percentile MRAE (%)
No Augmentation β = 2.5 β = 5

Method k = 1 k = 0.5 k = 2 k = 1 k = 0.5 k = 2 k = 1 k = 0.5 k = 2

RBFN (LS) 7.89 41.94 24.14 11.50 13.25 12.20 16.35 16.32 15.38
PR (LS) 7.10 16.64 120.69 10.79 12.36 11.59 12.96 13.80 12.05
HSCNN-R 6.53 35.07 14.15 - - - 10.49 10.53 10.04

β = 7.5 β = 10
Method k = 1 k = 0.5 k = 2 k = 1 k = 0.5 k = 2

RBFN (LS) 18.16 18.30 18.10 19.97 19.91 20.25
PR (LS) 13.82 14.60 12.68 14.68 15.39 13.41
HSCNN-R - - - 11.05 11.05 11.06

We see that for all RBFN, PR and HSCNN-R, the overall mean and 99-percentile per-

formances degrade to higher error levels compared to when they are trained without data

augmentation and tested under the original exposure condition. This trend is similar to

what we have observed in the chromaticity mapping results. Nevertheless, in the case of ap-

plying data augmentation on RBFN and PR, the overall error levels rise as a larger β is used

in data augmentation. In contrast, the β dependence is much smaller for HSCNN-R. This

means the increase of the range of exposure variation in training data poses as a challenge to

the regression methods, while less so in the case of using a DNN. We also see the degraded

performance levels of RBFN and PR are already worse than the by-construction exposure

invariant methods such as A+, RPR, or even LR, while the data-augmented HSCNN-R still

holds some advantage against those methods.
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Figure 6.7: Visualising the performance and generalisability (in Mean MRAE) with

respect to different β factors chosen.

As the results suggest, data augmentation is more suitable for the DNN-based HSCNN-R

compared to the regression-based RBFN and PR. We can also compare the results of using

data augmentation and chromaticitiy mapping on HSCNN-R. Clearly, if data augmenta-

tion’s limited effective range of exposure condition generalisability is not of concern, the

data-augmented HSCNN-R performs better than HSCNN-R with chromaticity mapping in

both mean and 99-percentile MRAE results, delivering the best exposure invariant SR per-

formance overall (compared to all by-construction exposure invariant methods and methods

using chromaticity mapping).

6.7 Summary

In this chapter we reveal the problem of exposure invariance in SR, which refers to an

SR algorithm’s capability of working when the exposure condition in testing changes. We

found that linear-mapping-based methods such as Linear Regression (LR) and A+ sparse

coding are exposure invariant, while all non-linear-mapping-based methods—including all
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better performing SR algorithms in previous benchmarks such as RBFN, PR, HSCNN-R

and A++—are shown to be exposure non-invariant, with drastic performance degrada-

tion.

Given this finding, we first proposed a standalone new SR method, the Root-Polynomial

Regression (RPR) method, which is by-construction exposure invariant while using a non-

linear mapping function. With the boost from the advanced RELS minimisation for regres-

sions we proposed in Chapter 4, RPR is shown to provide leading worst-case performance

(mean per-image-99-percentile MRAE) compared to all by-construction exposure invariant

methods.

Then, we propose two general modification frameworks—chromaticity mapping and data

augmentation—an SR algorithm can adopt to ensure or improve its exposure invariance.

In chromaticity mapping, we remove the pixel brightness variation before training an SR

algorithm, while later re-applying the pixel brightness back to the recovered brightness-

normalised spectra. This approach ensures perfect exposure invariance. However, we note

that the pixel brightness information excluded in training might provide useful information

for recovering spectra.

Alternatively, we formulated a data augmentation framework, where we apply random ex-

posure scaling factors to the training data so that the SR algorithms can learn the exposure

variation presented in testing, save that the range of its generalisability is limited by the

range of random exposure scaling factors applied. We see that for the regression-based

RBFN and PR methods, the problem of their exposure non-invariance can only be partially

solved via data augmentation—while mitigated, there still exists notable performance vari-

ation across different testing exposure conditions. In contrast, the DNN-based HSCNN-R

can learn via data augmentation to balance its performance across different testing expo-

sures. And, the data-augmented HSCNN-R was found to be the best exposure invariant

SR method we have benchmarked here.
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Physically Plausible Spectral

Reconstruction

This chapter begins with an observation of the SR problem. Specifically, we found that

for all regression and DNN methods we considered in this thesis, as we reintegrated the

recovered spectra with the camera spectral sensitivities, we arrived at RGBs that were

different from the input RGBs from which the spectra were recovered. We call this the

physical plausibility problem of SR. The methods developed in this chapter resolve this

problem (and apply to any and all SR approaches).

7.1 Introduction

Clearly, spectra and RGBs are physically related: abstractly, an RGB camera weighted-

sums the spectral signals coming from the scene following the spectrally-varying sensitivity

(weighting) functions of three different colour sensors, resulting in the 3-value RGB camera

responses. This relation is also known as the colour image formation formula, as introduced

in Section 2.1.1; Equation (2.1), or Equation (2.4) as its discrete version. Yet, this physical

fact is generally not employed by the best SR algorithms. It is shown in Arad et al. [8]

that even top DNN approaches recover spectral estimates that do not physically reproduce

the same input RGBs.

Apart from the theoretical inconsistency, physically implausible spectral reconstructions

imply that these algorithms alter the original colours when converting them to the spectral
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Figure 7.1: The colour errors introduced by polynomial regression SR [25] (left) and

HSCNN-R [80] (right). The colour errors are measured in CIE ∆E 2000 (∆E00) [78].

form. Surely, this can be a serious problem in some practical applications where colour

fidelity is of concern, e.g., art archiving and conservation [67]. In Figure 7.1, we give an

example of the colour errors introduced by polynomial regression SR [25] and one of the

leading deep-learning models, HSCNN-R [80]. We can clearly see that HSCNN-R—despite

claiming the state-of-the-art spectral accuracy [7]—performs much worse in colour than the

regression-based polynomial regression model. However, the very existence of the non-zero

colour errors indicates that both methods are physically implausible.

Equally, aside from improved colour fidelity, if we can make SR physically plausible then

we should be able to recover spectra with greater accuracy than has been achieved hitherto.

Indeed, there are already studies that use the physics of image formation to improve SR.

Based on a 3-D linear model (Section 2.2.1), Agahian et al. [2] proposed to characterise

each 3-D reflectance dynamically while putting more weights on the reflectances of close-by

colours. Zhao et al. [103] developed a matrix-R approach to colorimetrically post-facto

correct the linear regression-based SR. Morovic and Finlayson [60] used metamer sets [29]

as the physical constraints of Bayesian inference (which leads to a physically plausible

method). Bianco [13] proposed an iterative algorithm which includes colour difference in

the optimisation function. However, the performance of these methods—developed over 10

years ago—is unlikely to be competitive with today’s leading methods.

We see that the physical prior is also incorporated in some of the top methods in the

NTIRE 2020 Spectral Recovery Challenge [8]: the first-place winner Li et al. [53] included
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colour difference in their learning cost function, and Joslyn Fubara et al. [46] designed an

unsupervised learning approach based on the physics prior. However, even these last two

methods still recover spectra of wrong colours [8].

In this chapter we develop a generic reformulation of the SR problem and show that in so

doing we can, in a universally applicable way, make all SR algorithms physically plausible.

We propose two approaches. First, in the training data preparation stage. Given the ground-

truth spectra, we separate them into two spectral components—fundamental metamer and

metameric black. The former is unique for (and can be directly derived from) a given RGB,

that is all spectra with the same RGB colour will have the same and unique fundamental

metamer. In contrast, the non-unique metameric black is the component that distinguishes

those same-coloured spectra. Given this insight we propose to train the SR algorithms

to recover only the metameric black component of the spectra, while the fundamental

metamers are derived directly from the RGBs and kept out of the learning process. As

such, the physical plausibility is ensured for the trained algorithms, and we show that this

method also does not deteriorate the performance of the original algorithms.

The second method we propose is a post-facto process resembling the matrix-R approach

proposed by Zhao et al. [103]. In this approach we do not retrain the SR algorithms.

Instead, we simply replace the (wrong) fundamental metamers of all reconstructed spectra

by the correct ones derived from the input RGBs. Importantly, we will also formulate a

mathematical proof which suggests that this post-facto step will only improve or retain the

RMSE spectral errors for any existing SR methods.

7.2 Enforcing Physical Plausibility in Training

Conceptually, we wish to formulate the representation of a “plausible set” which is the set

of spectra which, when captured by an RGB camera (Equation (2.4)), derive a given RGB.

Then, in the context of SR, we say an SR algorithm is physically plausible if, given any

input RGB, the algorithm always recover spectrum within its plausible set.
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Figure 7.2: Physically implausible (left) and physically plausible spectral reconstruc-

tion (right).

Unfortunately, most of the current algorithms are physically implausible. We contrasts SR

algorithms of these two different qualities in Figure 7.2. On the left we show implausible

spectral reconstruction, where an image RGB is mapped to a spectrum outside the plausible

set. In this scenario, when the recovered spectrum is integrated with the camera sensors,

the resulting RGB is different from the one we started with. On the right of Figure 7.2,

we show physically plausible spectral reconstruction. Here the recovered spectrum is inside

the plausible set and so integrates to the same RGB that we started with.

Mathematically, the colour image formation (Equation (2.4)) entails that given an n × 3

camera spectral sensitivity matrix R, all RGBs, ci, are derived from their hyperspectral

measurements, hi, by:

RThi = ci ; ∀i . (7.1)

A spectral reconstruction algorithm is said to be physically plausible if and only if for

all RGBs, the recovered spectra, Ψ(ci), when taking an inner product with R, derive ci

exactly:

RTΨ(ci) = RThi = ci ; ∀i . (7.2)
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7.2.1 The Plausible Set

Based on Equation (7.2), the plausible set of a given RGB, ci, is defined as:

P(ci;R) =

ß
ĥi

∣∣∣∣ RTĥi = ci

™
; ĥi = Ψ(ci) . (7.3)

Here, ĥi ∈ P(ci;R) represents all spectra that integrate into ci, and Ψ(ci) = ĥi ∈ P(ci;R)

represents a physically plausible spectral recovery. Here, P(ci;R) defines a “candidate set”

of ci for physically plausible SR. Of course, this candidate (plausible) set also includes the

actual ground-truth hi (without the ̂ symbol).

Clearly, this plausible set concept resembles the Metamer Sets [60] introduced in Section

2.2.3. As a recap, the metamer set M(ci;Λ) defines a set of reflectances that have the same

colour ci under the fixed illumination and camera condition defined by the lighting matrix

Λ (see Equation (2.9)). The only differences between the two sets are that, first, in plausible

sets we do not consider fixed illumination—the spatially and scene-wise varying illumination

spectra are considered as part of the to-be-recovered spectral radiance information—and

secondly, with radiance instead of reflectance considered, the colours are derived by applying

RT (to the radiances) instead of Λ (which operates on reflectances).

With this analogy in place, we can derive a Metamer-Sets-like representation of Equation

(7.3) following the process detailed in Section 2.2.3: from Equation Equation (2.19) to

(2.23), while using ĥi and RT to replace the reflectance’s basis coefficient vector αi and the

lighting matrix Λ.

Starting with splitting ĥi into two components with respect to R:

ĥi = Pf ĥi +Pbĥi , (7.4)
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where  Pf = R(RTR)−1RT

Pb = I−Pf
. (7.5)

In the parlance of linear algebra, Pf is a projection matrix that projects ĥi onto the 3-

dimensional subspace spanned by the 3 columns of R, i.e., C(R), and Pb is the projection

matrix that projects ĥi onto the (n − 3)-dimensional “nullspace” of C(R). Together these

two spaces span the whole n-dimensional spectral space.

Then, we refer the former term of Equation (7.4) to as the fundamental metamer of ĥi,

denoted as ĥ
f

i , and the latter to as its metameric black, denoted as ĥ
b

i . By expanding these

two components in Equation (7.4) using Equation (7.5), we get:

 ĥ
f

i = Pf ĥi = R(RTR)−1[RTĥi]

ĥ
b

i = Pbĥi = Bbβ̂
b

i

, (7.6)

where the columns of Bb are the n− 3 null space bases derived from Pb as its n− 3 linearly

independent columns (Pb is rank n − 3) [83], and β̂
b

i
is a coefficient vector with length

n − 3. We use the Gram–Schmidt orthogonalisation procedure [22] to derive Bb from Pb,

which, additionally, ensures that the columns of Bb form a set of “orthogonal bases” of the

n − 3 spectral subspace (i.e., BbTBb = I where I is the (n − 3) × (n − 3) identity matrix)

[83; 22].

Note that the columns of R and Bb combine to form a basis of the n-dimensional spectral

space, where  ĥ
f

i ∈ C(R)

ĥ
b

i ∈ C(Bb)
; ∀i . (7.7)

And,

RTBb = 0 , (7.8)
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where 0 is an 3 × (n − 3) matrix of zeros, signifying that all columns of R are orthogonal

to all columns of Bb. These are important properties of C(R) and C(Bb) that will be used

later in Section 7.3.

Returning to the definition of plausible set in Equation (7.3), the constraint, RTĥi = ci

directly applies to the fundamental metamer ĥ
f

i in Equation (7.6), deriving:

ĥ
f

i = R(RTR)−1ci = hf
i , (7.9)

which is a fixed vector given ci. Since in P(ci,R) ci is fixed, and the ground-truth hi is also

a member of this set, we know that all ĥi in this set have the same fundamental metamer

component as the one the ground-truth hi has, i.e., h
f
i .

On the other hand, the colour formation constraint does not influence the metameric

black component, leaving β̂
b

i
to be n − 3 “free variables” that define the variation of ĥi

in P(ci;R).

Combined, we arrive at our final representation of the plausible set:

P(ci;R) =

ß
hf
i +Bbβ̂

b

i

∣∣∣∣ β̂b

i
∈ Rn−3

™
(7.10)

(hf
i is fixed and defined as in Equation (7.9)).

In effect, if we constrain an SR algorithm to only predict the β̂
b

i
information from the input

ci (treating both hf
i and Bb as known factors without needing for an estimation), we can

enforce a physically plausible SR. That is we wish to map from the input ci to β̂
b

i
.

7.2.2 Deriving the Ground Truths

Again, P(ci;R) defines a set of candidates for physically plausible spectral recovery from

input ci, with the actual ground-truth being a particular one of them. Let us denote βb
i

as the n − 3 coefficient vector that uniquely represents the ground-truth hi (out of all
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possible β̂
b

i
within P(ci;R)). Then, we can calculate the βb

i
from hi. First, according to

the plausible set format, we write hi as:

hi = hf
i +Bbβb

i
. (7.11)

Next, we multiply BbT in the front of both sides of Equation (7.11):

BbThi = BbThf
i + [BbTBb]βb

i
. (7.12)

As hf
i lies in the column space of R which is orthogonal to the subspace spanned by the

columns of Bb (i.e., the nullspace of the column space of R), we get BbThf
i = 0 where 0 is

an (n − 3)-vector of zeros. Then, since the columns of Bb are orthogonal bases, we know

that BbTBb = I. We arrive at:

βb
i
= BbThi , (7.13)

which effectively derives the ground-truth βb
i
(i.e., the factor to be recovered in our physically

plausible SR) from the ground-truth hyperspectral measurement hi.

7.2.3 Recovering Spectra within the Plausible Sets

Conventionally, spectral reconstruction algorithms such as regressions and DNNs are for-

mulated to pursue the minimisation of recovery error between Ψ(ci) and hi, where Ψ() is

an SR algorithm, ci is an input RGB, and hi is the ground-truth spectrum. Let us split

the ground-truth hi into the fundamental metamer and metameric black components we

introduced in Section 7.2.1. We get:

Ψ(ci) ≈ hf
i + hb

i , (7.14)

where, a priori, the approximation errors can occur on both hf
i and hb

i . Specifically, any er-

ror introduced on hf
i makes it not exactly hf

i , and consequently makes the spectral recovery

outside of P(ci;R), representing a physically implausible spectral recovery.
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Therefore, the key to physically plausible SR is to ensure that all recovered spectra have

exactly the same fundamental metamer component as the ground-truth ones. Since all

the ground-truth fundamental metamers can be calculated from the input RGBs and the

spectral sensitivity matrix (Equation (7.9)), we can direct the SR algorithm only to focus

on estimating βb
i
(Equation (7.13)) which uniquely singles out the ground-truth within the

plausible set.

We formulate:

Ψ′(ci) = hf
i +BbΨ(ci) ; Ψ(ci) ≈ βb

i
; ∀i , (7.15)

where Ψ() is the original SR algorithm repurposed to approximate the vector βb
i
, and Ψ′()

is the resulting physically plausible SR.

To sum up, a visualisation of our physically plausible method in comparison to the con-

ventional physically implausible approach is given in Figure 7.3. In the standard approach

(top flowchart) the training/estimation scheme directly maps the RGBs to spectra. Here,

hi may not integrate to ci (the RGB from which it was recovered). In the physically plau-

sible approach (bottom flowchart), the reconstruction is split into two streams. In the first

stream the fundamental metamer—which is the only part that contributes to the RGB

formation—is calculated directly from the input RGB. Then, the second stream seeks to

find the best estimate for the metameric black. By construction the recovered spectrum

(the sum of the fundamental metamer and the metameric black) must integrate to the same

RGB.

7.2.4 Output Layer of the DNNs

Unlike hyperspectral measurements where all measured numbers must be positive, the

ground-truth βb
i
vectors can include negative numbers. For regression, the output space

does not limit the range of the ground-truth values. That is, the same regression model

that was used to recover hyperspectral measurements before, can now be used to recover

the βb
i
information directly (without any additional adaption). For HSCNN-R, however,
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Figure 7.3: The standard SR scheme (top) versus our physically plausible SR scheme

(bottom).

the output layer is constricted to return positive values. Hence, we need to offset the

ground-truth βb
i
values in training so as to prevent the negative values for the DNNs to

train properly.

Empirically, assume that the maximum value in the original hyperspectral images is vmax

(e.g., in our case, ICVL hyperspectral images are 12-bit, so vmax = 4095), we found that the

values in βb
i
are typically bounded by [−vmax, vmax]. Without altering the original setup

for the output layer of the DNNs, we set the algorithms to recover 1
2(β

b
i
+ vmax), instead,

and then correct the offset back from the predicted values in the inference phase. Here, the

1
2 factor is to keep the values of the offset βb

i
in the same range as the original ground-truth

hi.

Further, if we also wish to adopt a intensity-scaling data augmentation technique for the

DNN (as detailed in Section 6.5), the range of augmentation will proportionally widen the

range of βb
i
. For example, if we consider β = 10 in Equation (6.11) for data augmenta-
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tion, the range of βb
i
will become [−10vmax, 10vmax] and so we will need to set the offset

accordingly—making the algorithm to recover 1
20(β

b
i
+ 10vmax) in training and correcting

it back in inference.

7.3 Post-Facto Physical Plausibility Correction

Perforce, with the approach we proposed in Section 7.2, we still need to retrain the SR

algorithms to ensure their physical plausibility. In this section, we explore the possibility

to post-process the outputs from any pre-trained SR algorithms to make them physically

plausible. Advantageously, this means that even for a “black-box” SR algorithm (where

source code is not available), we are able to adopt this approach to ensure its physical

plausibility.

7.3.1 Formulation

Given Ψ(ci), an SR-recovered spectrum from the input RGB ci, again, let us separate it

into:

Ψ(ci) = ĥ
f

i + ĥ
b

i , (7.16)

where ĥ
f

i and ĥ
b

i are respectively the fundamental metamer and the metameric black com-

ponents of Ψ(ci).

We know that for an SR algorithm to be physically plausible, ĥ
f

i has to coincide with hf
i

which is the fundamental metamer of the ground-truth, and hf
i can be calculated directly

given the input ci and the RGB camera’s spectral sensitivities R via Equation (7.9). There-

fore, as a post-processing step, we can feasibly replace ĥ
f
, i.e., the original fundamental

metamer of Ψ(ci), by hf , which is the correct one calculated from ci via Equation (7.9).

This process is regardless of whether the original ĥ
f
is already correct (the same as hf ) or
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not. Mathematically, the process can be formulated as such:

Ψ′(ci) = Ψ(ci)− ĥ
f

i + hf
i

= hf
i + ĥ

b

i ; ∀i .
(7.17)

That is, we need simply to subtract the fundamental metamer from the SR-produced re-

covery, and then add the correct one back.

7.3.2 A Universal Improvement of RMSE Accuracy

Here, importantly, we are going to mathematically prove that, in Equation (7.17), Ψ′(ci) will

always recover spectra with the same or better accuracy as those delivered by Ψ(ci).

Theorem: Correcting the fundamental metamer of a spectral recovery will only improve or

retain its RMSE accuracy.

Proof: Let us write ∆1 = ||Ψ(ci) − hi||22, which is the squared RMSE error of the original

SR (ignoring 1/n, the channel-averaging coefficient), and ∆2 = ||Ψ′(ci)−hi||22, the squared

RMSE of our new SR setup. We wish to prove that

∆2 ≤ ∆1 . (7.18)

Using the nomenclatures of the respective fundamental metamer and metameric black splits

for Ψ(ci) and Ψ′(ci) demonstrated in Equation (7.16) and (7.17), we can further derive ∆2

and ∆1. We have:

∆2 = ||(hf
i + ĥ

b

i)− (hf
i + hb

i)||22 = ||ĥ
b

i − hb
i ||22 . (7.19)
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and

∆1 = ||(ĥ
f

i + ĥ
b

i)− (hf
i + hb

i)||22

= ||(ĥ
f

i − hf
i ) + (ĥ

b

i − hb
i)||22

= ||ĥ
f

i − hf
i ||

2
2 + ||ĥ

b

i − hb
i ||22 + 2 · [ĥ

f

i − hf
i ]

T[ĥ
b

i − hb
i ] .

(7.20)

Clearly, 
[ĥ

f

i − hf
i ] ∈ C(R)

[ĥ
b

i − hb
i ] ∈ C(Bb)

, (7.21)

where C() indicates the column space of a matrix. As C(R) and C(Bb) are orthogonal spaces

(Equation (7.8)), we get:

[ĥ
f

i − hf
i ]

T[ĥ
b

i − hb
i ] = 0 . (7.22)

Substituting into Equation (7.20):

∆1 = ||ĥ
f

i − hf
i ||

2
2 + ||ĥ

b

i − hb
i ||22 . (7.23)

Clearly, jointly considering Equation (7.19) and (7.23), it is immediate that:

∆2 = ||ĥ
b

i − hb
i ||22 ≤ ||ĥ

f

i − hf
i ||

2
2 + ||ĥ

b

i − hb
i ||22 = ∆1 ; ∀i . (7.24)

(End of proof ).

Equation (7.24) encapsulates succinctly that the spectrum recovered via our proposed post-

processing step is always as close or closer to the ground truth (compared to the original

spectrum returned by any SR algorithm). Of course, we note that as our proof is tailored to

RMSE, we can expect that this “universal” proof do not necessarily work for other metrics

of concern, e.g., MRAE.
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7.4 Experimental Results

In this section, we are going to show the results of several experiments comparing the algo-

rithms under the Original training (where the algorithms are trained as the normal RGB-

to-spectrum mappings), Physically Plausible Training (P.P.T.; Section 7.2), and Post-Facto

Correction (P.F.C.; Section 7.3).

We consider the LS-based (see Section 4.2) regression methods, DNN-based HSCNN-R, and

our new state-of-the-art sparse coding method A++. Again, for all experiments, the 4-fold

cross-validation protocol as detailed in Section 3.1.3 is adopted, and the CIE 1964 colour

matching functions [24] are used as the camera spectral sensitivity functions.

7.4.1 Colour Fidelity (Physical Plausibility) Test

First, we conduct a physical plausibility test as illustrated in Figure 7.4. While the ground-

truth RGBs can be generated from the hyperspectral data (red curve follows red arrow), we

test the colour fidelity of the SR-recovered spectra (blue dotted curve in the left panel) when

reintegrated with the same set of spectral sensitivities (following the top blue arrow).

Figure 7.4: Our physical plausibility (colour fidelity) test for SR.

We use the CIE 2000 colour difference formula (∆E00) [78] to measure the difference between

the ground-truth and reconstructed colours at individual pixels. The implementation of

∆E00 is rather complex: we refer the readers to [78] for details. Practically, a ∆E00 equalling
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Table 7.1: Mean per-image mean and 99.9-percentile CIE ∆E 2000 colour errors

introudced by the hyperspectral image reconstruction algorithms trained under the

original, Physically Plausible Training (P.P.T.) and Post-Facto Correction (P.F.C.)

setups.

∆E00

Original P.P.T. P.F.C.
Mean 99.9 pt. Mean 99.9 pt. Mean 99.9 pt.

LR (LS) 0.05 0.79 0.00 0.00 0.00 0.00
RPR (LS) 0.14 1.48 0.00 0.00 0.00 0.00
A+ (LS) 0.06 2.47 0.00 0.00 0.00 0.00
RBFN (LS) 0.32 9.24 0.00 0.00 0.00 0.00
PR (LS) 0.01 0.18 0.00 0.00 0.00 0.00
HSCNN-R 0.10 2.06 0.00 0.00 0.00 0.00
A++ 0.42 11.57 0.00 0.00 0.00 0.00

1 between two colour stimuli correlates with a colour difference that is just noticeable to a

human observer.

Note that the ∆E00 is defined upon the CIELAB [71] colour coordinates—one of the stan-

dard (device independent) colour spaces [84]. Since the CIE 1964 colour matching func-

tions were used to create the ground-truth RGBs, these RGBs are in effect the CIEXYZ

tristimulus values. Then, from the CIEXYZ colours, there exists direct transformation to

CIELAB given a ground-truth white point colour (i.e., the illumination colour) [84]. In our

experiments, we obtained this white point information by hand-crafting the “brightest near-

achromatic spectrum” from each ground-truth hyperspectral image and then integrating this

white-surface radiance spectrum with the CIE 1964 XYZ colour matching functions.

In Table 7.1, we present the mean per-image mean and 99.9-percentile ∆E00 results. It is

clear that all of the considered algorithms under their respective original training setups

(under the “Original” headline in Table 7.1) introduce colour errors, with the extent varies

depending on the algorithms. While the mean per-image-mean colour differences are shown

to be all less than 1 (the just noticeable difference), we see that many of these algorithms

suggest ∆E00’s much larger than 1 at worst-case pixels (i.e., the per-image 99.9 percentile).

However, again, we know that the very existence of colour errors indicates that all of
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these algorithms are not physically plausible, regardless of the magnitudes of the colour

errors.

Then, we show that both our physically plausible training (P.P.T.) and post-facto correc-

tion (P.F.C.) approaches are able to ensure all algorithms to recover spectra of the exact

same colours as the ground-truths—thus the 0 colour error under all circumstances. In

other words, using either P.P.T. or P.F.C., we are promised that the algorithms will not

change the original input colours as they are used to recover spectra.

7.4.2 Spectral Accuracy

Of course, with the colour fidelity ensured, we also would like to see how incorporating

P.P.T. and P.F.C. influences the spectral accuracy delivered by the algorithms. Like in

previous chapters, we will present the spectral accuracy results in terms of mean per-image

mean and 99-percentile MRAE errors, in Table 7.2. Additionally, the RMSE statistics are

given in Table 7.3. We present the RMSE results because the P.F.C. approach, as proved

in Section 7.3.2, is able to improve the RMSE error (but not MRAE) for each and every

reconstructed spectrum. Remember that while MRAE can be understood as a percentage

error, RMSE is calculated at an absolute scale where, here, the maximum pixel value at

each spectral channel is 4095 (for 12-bit hyperspectral images).

First, let us look at the MRAE results (Table 7.2). We see that adopting P.P.T. or P.F.C.

does not change much of the original performance of the tested algorithms. This means

we can, in effect, recover spectra of perfect colour fidelity using P.P.T. and P.F.C. without

deteriorating the spectral accuracy. With P.F.C., it is shown that we further advance

the state-of-the-art MRAE performance. Indeed, the A++ algorithm with P.F.C. delivers

slightly better per-image-mean results compared to the original A++, and HSCNN-R, which

delivers the best per-image-99-percentile results, is also slightly but generally improved using

P.F.C..
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Table 7.2: Mean per-image mean and 99-percentile MRAE errors introudced by the

hyperspectral image reconstruction algorithms trained under the original, Physically

Plausible Training (P.P.T.) and Post-Facto Correction (P.F.C.) setups.

MRAE (%)

Method
Original P.P.T. P.F.C.

Mean 99 pt. Mean 99 pt. Mean 99 pt.

LR (LS) 6.24 16.95 6.23 17.07 6.25 16.98
RPR (LS) 4.69 16.97 4.60 15.57 4.64 15.40
A+ (LS) 3.81 15.52 3.83 14.93 3.86 15.25
RBFN (LS) 2.06 7.89 1.96 7.48 1.98 7.47
PR (LS) 1.95 7.10 1.94 7.09 1.95 7.11
HSCNN-R 1.73 6.53 1.76 6.65 1.72 6.49
A++ 1.69 7.78 1.71 7.77 1.68 7.62

Next, the RMSE results (Table 7.3). Let us firstly compare the performance of the algo-

rithms under original training and P.F.C. setup. We see the mean per-image-mean RMSE

performances are always better when P.F.C. is adopted, for all the algorithms considered.

This is in accordance with the proof we provided in Section 7.3.2.

As for the 99-percentile performance, in most cases P.F.C. does also improve the perfor-

mance, however we see for the PR (LS) algorithm, the performance is very slightly degraded.

We note that this outcome is not in contradiction with our proof in Section 7.3.2, since dif-

ferent pixels can correspond to the 99 percentile of an image before and after P.F.C. is

adopted, while the proof only ensures the improvement at the exact same pixel.

Then, let us now also consider the RMSE performance delivered by P.P.T.. Evidently,

unlike P.F.C., P.P.T. does not ensure the definite improvement of RMSE (as we can see

the mean per-image-mean RMSE does not always improve from the original training when

using P.P.T.). Still, usefully, we see that P.P.T. can occasionally provide even better RMSE

performance than P.F.C., e.g., the mean performance of LR, RPR, A+ and RBFN (also on

average, considering all methods, P.P.T. performs slightly better than P.F.C.).
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Table 7.3: Mean per-image mean and 99-percentile RMSE errors introudced by the

hyperspectral image reconstruction algorithms trained under the original, Physically

Plausible Training (P.P.T.) and Post-Facto Correction (P.F.C.) setups.

RMSE

Method
Original P.P.T. P.F.C.

Mean 99 pt. Mean 99 pt. Mean 99 pt.

LR (LS) 33.26 99.76 33.23 99.75 33.25 99.72
RPR (LS) 27.80 94.64 27.49 95.96 27.54 94.13
A+ (LS) 23.97 94.18 24.36 97.03 23.86 93.77
RBFN (LS) 18.30 81.88 17.50 77.41 17.56 77.47
PR (LS) 17.05 75.56 17.06 75.59 17.04 75.57
HSCNN-R 16.33 77.21 16.34 77.38 16.26 77.07
A++ 15.43 86.18 15.54 86.89 15.31 84.04

7.5 Summary

Regression- and DNN-based algorithms usually only concern about minimising spectral ac-

curacy error, but the underlying physical relationship between spectra and colours is not

preserved. This type of physically implausible mapping causes the issue of poor colour

fidelity (i.e., the input RGB colours are different from the ones corresponding to the re-

covered spectra). For some algorithms, e.g., RBFN and A++, the colour shift can be very

significant at the per-image 99.9-percentile (worst-case) pixels.

In this chapter we show that, with respect to a given input RGB, all spectral candidates

for a physically plausible SR can be represented by a fixed fundamental metamer defined

by a linear combination of camera spectral sensitivities, and a metameric black which does

not contribute to the colour formation.

Relative to this insight, our first physically plausible spectral recovery approach sets out

to reconstruct only the metameric black’s basis coefficients from the RGBs, while the fun-

damental metamers are derived (from the input RGBs) directly. In our second approach,

we do not retrain the algorithms but only replace the fundamental metamers of the recov-

ered spectra by the derived (correct) ones. While both methods are effective for ensuring
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perfect colour fidelity of the tested SR algorithms, the latter method—the Post-Facto Cor-

rection approach—is proved to improve the RMSE spectral accuracy of every recovered

spectrum.
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Conclusion

In this thesis, we studied the relative performance of regression- and DNN-based spectral

reconstruction (SR) algorithms. While the former is much simpler than the latter, we found

that the best performing regression—before any advances made in this thesis—was merely

12% worse than the leading DNN method.

With a pioneer study on using different cameras for SR, we learned that some cameras

are able to support much better SR compared to other cameras. Significantly, we showed

that a better performing camera for a much simpler algorithm (e.g., polynomial regression)

can sometimes surpass the performance of the more complex algorithm (e.g., the DNN)

implemented on a worse camera model.

We also proposed a real-world worst-case imaging condition for SR called Radiance Mon-

drian World (RMW). Under RMW, the images are constructed such that there is no mean-

ingful image content and also no one radiance spectrum has higher chance to appear than

another. We tested SR algorithms of different levels of complexity and discovered that they

all degrade (from their original performance) to around the same level of performance when

tested on the RMW images. Moreover, even when we retrained the algorithms on an RMW

training set, we saw no benefit of using a complex DNN method rather than the simple

linear regression algorithm.

Further, we attempted to advance the regression-based SR methods. We realised that

regression methods used in SR almost always solve for the closed-form least-squares min-

imisation, where the squared Root-Mean-Square Error (RMSE) is minimised, whereas the
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top DNN methods are more commonly evaluated and ranked using the Mean Relative Ab-

solute Error (MRAE). We also found that conventional regressions regularise the mappings

in all spectral channels together, but in regression the values in each spectral channel are

estimated from the RGBs independently of the other channels. By reformulating regressions

such that they minimise metrics more similar to MRAE and regularise per spectral channel,

we made regressions more competitive against the leading DNNs under the MRAE evalua-

tion, now with only a 9% performance gap between the reformulated polynomial regression

and the leading DNN.

Our second attempt of advancing regressions incorporated the sparse coding strategy. While

most of the sparse coding methods localise SR mappings in the RGB neighbourhoods, we

found that doing so in the spectral space can deliver much better performance. First,

given an input query RGB, we used our reformulated polynomial regression SR to esti-

mate the spectral neighbourhood its corresponding ground-truth spectrum might locate in.

Then, for each neighbourhood, a linear regression SR map was used. This setup not only

advances the original polynomial regression’s performance, but even reaches the state-of-

the-art performance—surpassing the leading DNN method.

This thesis also contributes to identifying practical issues of training-based SR algorithms

in general. First, the exposure invariance problem. We showed that leading SR algorithms

are usually exposure non-invariant, i.e., algorithms that can only work under fixed exposure

condition while degrades as the testing scenes get dimmer or brighter. Given this finding,

we proposed an exposure invariant “root-polynomial regression” SR method which has

superior performance at the worst-case pixels of the images among other exposure invariant

alternatives.

We further proposed two approaches that can effectively enforce exposure invariance upon

existing SR algorithms. The chromaticity mapping approach separates the input colours

into two multiplying terms: chromaticity and brightness, and operates SR algorithm only

on the chromaticity term. Then, in the data augmentation approach, we randomly perturb
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the brightness of the data the algorithms are trained on. We showed that regression-based

methods work better with chromaticity mapping, whereas the leading DNN incorporated

with data augmentation provides the best exposure invariant performance overall.

Our last contribution is studying the physical plausibility of SR algorithms, i.e., whether

the algorithms-recovered spectra preserve the known physical relation between ground-truth

spectra and input RGBs. As we found neither regressions nor leading DNNs are physically

plausible, we proposed two general approaches to enforce this property. Both approaches

are based on the idea that each spectrum can be separated into two additive terms, the

fundamental metamer and the metameric black. The former term is a linear combination

of the RGB camera’s three spectral sensitivity functions and is fixed given the input RGB,

whereas the latter term is not bounded by the input RGB.

In the first approach, the Physically Plausible Training (P.P.T.), we retrained the SR al-

gorithms to recover only the metameric blacks from the input RGBs, and later adding the

correctly calculated fundamental metamers to the estimated metameric blacks to derive the

final spectral recovery. Then, in the second approach we do not retrain the algorithms. In-

stead, we follow a Post-Facto Correction (P.F.C.) process by replacing the potentially-wrong

fundamental metameras of the recovered spectra with the calculated ones.

Apart from their effectiveness in preserving the physical plausibility of the SR algorithms, it

was proved mathematically that the P.F.C. approach will always improve the RMSE spectral

accuracy of the original algorithms. While we do not have the same proof for P.P.T., it was

shown that P.P.T. can occasionally deliver better SR accuracy than P.F.C..

8.1 Future Work

Several interesting research ideas can be extended from this thesis:

• In our test, the best camera model for different SR algorithms can be different. Then,

if we allow the camera sensitivity functions to be free variables, we might be able to
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customise a camera model for a particular SR algorithm. This is eminently achievable

for DNNs where both camera sensitivity functions and SR can be optimised together

in a single framework.

• The Radiance Mondrian World (RMW) defines a worst-case imaging condition for

SR, under which the DNNs perform on par with linear regression (i.e., we do not get

better RMW performance by increasing the model complexity). It will be interesting

to investigate if any SR algorithm can improve the SR performance on RMW images.

• In the first step of A++, we predict the ground-truth spectrum’s whereabouts in

the spectral neighbourhoods using another SR algorithm, PR-RELS. As A++ now

performs better than PR-RELS, we could in turn use A++ to predict the ground-truth

spectral neighbourhoods instead of PR-RELS (and, if the resulting method is further

improved, we could then use this new method instead of A++ to predict the spectral

neighbourhoods). However, we could expect the training and inference complexity

will significantly increase at every new iteration.

• In the prior art, almost all DNN-based SR methods use image patches as input. With

the development of A++, we show that a pixel-based mapping is all we need to

reach the current state-of-the-art SR performance. Still, DNN is a powerful learning

algorithm. Even without mapping image patches, we should be able to construct a

“pixel-based DNN” which could potentially outperform A++.

• DNN-like (patch-based) SR mapping still has merit: it is possible to distinguish dif-

ferent spectra of the same input colour using the colours of the surrounding pixels.

In some applications where this ability is necessary, given a regression algorithm, we

could also consider to regress a small image patch. E.g., if a 3× 3 patch is considered,

we could stack all 9 RGBs into a longer input vector for linear regression. To study

the effectiveness of this setup, we will also need a more targeted image database where

same-coloured spectra are of greater abundance and importance (e.g., real and fake

objects, real human face vs. a poster, etc.).
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• Both chromaticity mapping and data augmentation—our attempts of enforcing ex-

posure invariance to the originally exposure non-invariant SR algorithms—make the

algorithms perform worse than how they perform under fixed exposure. It could be

because in chromaticity mapping we remove the brightness variation from the input

data (which could potentially be useful to distinguish spectra), and in data augmen-

tation the algorithms have larger data variation to learn. It is possible that we now

need to increase the model complexity, e.g., higher polynomial order for polynomial

regression or deeper network architecture for the DNNs, to tackle the more difficult

learning problems they have become.

• Our Post-Facto Correction (P.F.C.) for physically plausible SR is proved to universally

improve spectral accuracy in terms of RMSE. However, we have argued that RMSE is

less suitable for evaluating SR compared to the relative errors such as MRAE. A next

challenge could be to develop a P.F.C. approach which provably improve the MRAE

accuracy.

• In this thesis we looked at spectral reconstruction from the 3-sensor RGB images.

We could evaluate SR methods developed with more than 3 sensors, and test the

hypothesis that the marginal benefit of patch-based processing will diminish as the

number of sensors increase.
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Glossary

chromaticitiy colour divided by brightness.

CIE 2000 colour difference a modern colour difference formula aiming to match its unit

with the just noticeable colour difference of a standard human observer.

CIELAB a standard colour coordinate system where the Euclidean distance calculated

between coordinates is commonly accepted as a perceptually uniform colour difference

measure (but much less uniform than CIE 2000 colour difference formula).

CIEXYZ a standard colour coordinate system where CIE colour matching functions are

the underlying spectral sensitivities.

colour matching functions a set of three spectral functions that are a linear transform

away from the spectral sensitivities of the three types of human cone cells.

data augmentation a technique to improve a learning model’s generalisability by per-

turbing the training data.

exposure invariance the property of a spectral reconstruction algorithm where an input

scaled by a scalar exposure factor returns an output scaled by the same factor.

fundamental metamer the component of a spectrum that lies in the spectral subspace

spanned by the camera spectral sensitivities.

hyperspectral camera a camera that records high-resolution spectra at every pixel of an

image.

illuminant light source.
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metamer a member of the same-coloured spectra under a given viewing condition.

metameric black the component of a spectrum perpendicular to the spectral subspace

spanned by the camera spectral sensitivities.

metamerism the phenomenon where different spectra having the same colour under one

viewing condition can become different in colour under other viewing conditions.

multispectral camera a camera that records multiple spectral channels at each pixel of

an image.

oracle solution a theoretical method that assumes perfect decisions in the process.

physical plausibility the property of a spectral reconstruction algorithm where the re-

covered spectra can reproduce the input RGBs via the underlying physical process.

radiance the combined spectral signal of light source spectrum and surface reflectance.

reflectance a wavelength-dependent ratio function referring to the reflected light intensity

divided by the incident light intensity at each wavelength; it is an intrinsic property

of an object surface.

regularisation adjusting the bias of the fitting function to overcome the overfitting prob-

lem of a learning model.

relative error the deviation measured as a percentage with respect to the ground-truth

values.

spectral reconstruction a process that recovers hyperspectral measurements from RGB

or multispectral measurements.

spectral sensitivity the wavelength-dependent sensor response function.

spectral signature the concept that light signals coming from different sources and/or

reflected from different materials can be distinguished by their spectral features.
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viewing condition the lighting and/or camera sensor under which a spectral signal is

viewed.
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