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ABSTRACT 

This thesis studies changes and differences in safety preferences as revealed by the 

housing market through the capitalisation of wildfire risk into property prices. To 

explain changes or differences in property prices, we implement the hedonic price 

method using high-quality geographic information system data on utility-bearing 

attributes specific to the property and its location. For this purpose, we focus on 

Western Australia during 2010-2019, a region of high wildfire risk with recent policy 

changes. CHAPTER 1 studies the near-miss effect of wildfires, i.e., the impact of a 

wildfire disaster on the area free from damage but subject to information effects. These 

information effects may alter households’ risk perception depending on their 

experience during the event. The wildfire disaster that we analyse is the Waroona Fire 

of 2016. To identify the near-miss effect, we rely on the use of difference-in-differences 

and a multidimensional near-miss area defined by proximity to the burn scar and 

receiving warnings during the fire event. Our findings suggest that the proximity 

treatment effect is positive due to a risk reduction effect from burnt fuel that dominates 

over any disamenity impacts. On the other hand, the warning treatment effect is 

negative, suggesting an increase in risk perception due to vulnerability feelings. 

CHAPTER 2 studies the introduction of wildfire risk maps in 2015, known in Western 

Australia as ‘bushfire prone area’ maps. These maps were received with surprise by 

residents and areas mapped as ‘risky’ faced more stringent planning and building 

regulations. Taking advantage of the sharp boundaries that divide designated from 

non-designated areas, we use a regression discontinuity design to investigate the price 

differential for designated properties. We find that properties within bushfire prone 

areas are sold at a lower price, and results suggest that this discount is moreover driven 

by a pure information shock that increases risk perceptions, rather than by any 
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predetermined risk perceptions or the more stringent planning and building 

regulations that apply to new builds. CHAPTER 3 studies preferences for prescribed 

fires by accounting for its exposure in terms of number of fires and area burnt. 

Prescribed fires are used by land managers to reduce the likelihood of uncontrollable 

wildfires, but generate disamenity impacts, such as smoke haze and road closures. 

These fires also face strong opposition from conservationists. Using property fixed 

effects and controlling for wildfire exposure, we find a positive preference for 

prescribed fires, and stronger results for more recent fires, which we attribute to the 

depreciating nature of risk reducing interventions over time and/or to availability 

heuristics due to recent fires being easier to retrieve. Our results are also stronger when 

we use the number of fires, than when we use area burnt, suggesting households pay 

more attention to the frequency component of risk, rather than consequence. 

Additionally, properties with no wildfire exposure are sold at a price significantly 

higher, suggesting perhaps that households’ demand for prescribed fires is higher in 

the absence of the risk reduction effect of wildfires. Our findings also suggest that the 

use of property fixed effects is important for an appropriate incorporation of time-

constant attributes. 

Overall, our findings suggest that risk perception updates are capitalised into the 

housing market, particularly in areas that are wildfire prone, as that of Western 

Australia; meaning that policy makers do have the potential to alter people’s beliefs 

about risk. Amid an increasing risk of wildfires across the globe, much more research 

is needed on identifying misperceptions on risk, tools for correction, and households’ 

preferences for forest management practices.
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INTRODUCTION 

More than 12,000 years ago, we were hunter-gatherers and nomadic. With the 

agricultural revolution, settlements arose, and so did a life-changing question that 

chases us until today: Where to live? Where is it safe and convenient? Amongst the 

many safety threats we face, natural disasters stand out, and wildfires1 play a leading 

role. When I started this research, four years ago, the 2019/20 Black Summer bushfires 

in Australia burnt almost 6 million ha of forest (M.Boer, et al., 2020) and shook up the 

world with the loss of more than one billion animals (Australian Academy of Science, 

2020), 35 fatalities, and more than 2,000 houses destroyed (BBC, 2020; Coates, 

2020). Just weeks ago, the 2023 Maui wildfires in Hawaii also shook up the world after 

the touristic town of Lahaina was crumbled to ash and ruins, leaving hundreds of 

people missing and dead (ABC News, 2023), and flooding the internet with dramatic 

footage of tourists and residents struggling to escape. And as I began to write these 

final words, 12 wildfires burn in British Columbia, Canada; the Tiger Island Fire in 

Louisiana, US continues to spread and is deemed one of the largest in the state’s 

history; and Greece is experiencing the largest wildfire ever recorded in the European 

Union. Today, just one week before my submission date, Australia is back on the 

headlines, amid fears that this 2023/24 bushfire season will be deadly due to hot and 

dry conditions that are only expected to worsen with the coming El Niño in summer. It 

is also perceived that Australia is unprepared to face this challenge, due, in particular, 

to an unsuccessful fuel treatment strategy that has left dense bushlands untouched and 

allowed grass to grow rapidly (Turnbull, 2023). 

 
1 Throughout the thesis, we refer to wildfires as unplanned vegetation fires that burns over grass, forest, 
or scrub (AIDR, 2023); which, in Australian terminology, is ‘bushfires’. 
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Despite all, the wildland urban interface (WUI) - desirable for its natural amenities, 

but fraught with wildfire hazard, and already home to half of the world’s population - 

is becoming increasingly populated (Schug, et al., 2023). At the same time, with climate 

and land-use change, wildfires are expected to become more frequent and intense 

(UNEP, 2022), leaving populations in the WUI more exposed to wildfire risk (Schug, 

et al., 2023) and increasing the potential damages to the economy, environment and 

societies (UNEP, 2022). This is a problem especially relevant for public land managers, 

who can provide three broad activities: pre-fire risk mitigation (e.g., educating the 

community, working with the community to create defensible spaces, updating zoning 

requirements, and undertaking fuel treatment), fire suppression, and post-fire 

rehabilitation (Simon, et al., 2022). 

This thesis touches mainly on policies dedicated to pre-fire risk mitigation and 

management. According to Simon, et al. (2022), such policies can motivate private risk 

mitigation actions, such as avoiding risky behaviour. People may, for instance, choose 

to live in less risky areas. Why then is the WUI becoming increasingly populated? Are 

we only living in such areas because we are miscalculating wildfire risk? What can the 

housing market tell us about our safety preferences?  

In this thesis, we explore changes and differences in safety preferences, as revealed 

through the housing market. More specifically – based on Rosen (1974)’s hedonic price 

method (HPM) that explains property price as a function of utility-bearing attributes 

specific to the property and its location - we check for the capitalisation of wildfire risk 

into property prices. The identification of changes in safety preferences or differences 

in safety preferences across households is the main objective itself. This is a worthy 

objective because there is a concern that signals on wildfire risk are disregarded instead 
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of serving as wake-up calls. There are at least three critical circumstances in which we 

can test households’ susceptibility to update their risk perception. First, through the 

occurrence of a disaster; second, through the provision of risk maps; and third, through 

land management practices designed to limit risk. For each of these circumstances, we 

can expect property prices to either increase or decrease depending on how the events 

are interpreted. We present a chapter for each and discuss potential policy implications 

that are of interest for the reduction of wildfire’s socioeconomic costs. 

For all chapters, we use the state of Western Australia (WA) as a case study, owing to 

its large biodiversity value (WABSI, 2023), high wildfire risk, and the use of prescribed 

burning on private and public land. In particular, forests and woodlands in WA extend 

to 18 million ha of land (DBCA, 2023), and the south-west forests in particular are 

important for wildlife habitat and for the provision of ecosystem services, such as water 

supply for the population in WA, native timber industries, and recreation and tourism 

activities (DBCA, 2023). Wildfires have been part of the landscape in WA for millions 

of years and influenced the evolution of plants and animals but represent a real threat 

for the health of these forests (DBCA, 2023)2. The entity in charge of managing wildfire 

threats is the Department of Biodiversity, Conservations, and Attractions (DBCA). 

The most obvious way in which the DBCA mitigates wildfire risk is through prescribed 

burning, i.e., applying fire to a predetermined area to reduce risk of uncontrollable 

wildfires, with the target of maintaining 45 percent of fuel at less than six years since 

 
2 Forests in WA are also threatened by weeds, pests, diseases, land-use disturbances such as land 
clearing or timber harvesting, and significantly decreasing levels of rainfall, streamflow, and 
groundwater since the mid-1970s, attributes to climate change (DBCA, 2023). 
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last burnt (DBCA, 2019)3. However, the state of WA has been experiencing a decreasing 

trend in prescribed fires, while it has been experiencing an increasing trend in wildfires 

– see Figure 0.1 below. Since 2010, where our study period begins, the Waroona Fire 

of 2016 has been the most devastating, resembling only to the 1961 Dwellingup Fires, 

being both caused by lightning strikes and hot winds (Government of Western 

Australia, 2016). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Source: own elaboration, based on the DBCA Fire History (DBCA-060). 
Note: wildfires in this figure are those of size greater than 100 ha. 

WA has also the fastest growing population in Australia (Steffen, et al., 2015) and 

hotspots of WUI around south-west forests, which implies that an increasing number 

 
3 Once a wildfire occurs, however, WA responds with fire suppression and recovery activities. In 
particular, the main way in which WA responds to wildfires is through the employment of fire 
management personnel and through keeping infrastructure and equipment in strategic locations across 
the state. Fire towers, spotter aircrafts, and remote sensing technology are crucial parts of their early 
detection strategy in order to respond to bushfires in a timely manner. Regarding recovery activities, the 
DBCA undertakes activities in departmental managed land (DBCA, 2019) This can include restoration 
of infrastructure (e.g., buildings, septic tanks), clean-ups, disposing of dead animals, etc; and may 
involve other state and local authorities.  

Figure 0.1: Wildfire and prescribed fire history in 
Western Australia 
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of people are at risk of wildfires (Schug, tbd). We also study WA because of the vast 

amount of high-quality geographic information system (GIS) data on forested land and 

fire burn scars that is publicly available, along with other utility-bearing attributes of 

interest. Consequently, we are surprised by how WA has up to now been overlooked in 

the academic literature regarding market-revealed safety preferences for wildfire risk. 

For all chapters, our study period begins in 2010 and ends in 2019. The next 

paragraphs will briefly explain what we do in each chapter. 

In CHAPTER 1, we ask: does the near-miss experience generate changes in safety 

preferences, as reflected by changes in property prices? To answer this question, we 

study the capitalisation of information effects on wildfire risk updates provoked by a 

wildfire disaster: the Waroona Fire of 2016, which burnt 69 thousand ha of land, of 

which 3 thousand were timber forests, leaving 2 fatalities and 181 dwellings destroyed; 

most of which belonged to the town on Yarloop, which had to be almost entirely 

reconstructed after the fire. To filter information updates, we study the area that 

experienced the fire as a near-miss event and exclude the area that experienced it as a 

direct-hit. We are the first to define the near-miss area by experience, which is 

multidimensional, and explained by proximity to the burn scar and belonging to areas 

that received warnings during the fire event. Not all households near the burn scar 

received warnings. We use difference-in-differences (DD) as an identification strategy 

to separate out the consequences of mere proximity from the consequences of receiving 

a warning, making assumptions on the degree of proximity that identifies properties 

“near” the direct-hit area. Importantly, and perhaps counterintuitively, we propose 

that wildfire events can have an ambiguous effect on property prices, i.e., prices might 
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increase or decrease after the wildfire. This proposition is however supported by 

behavioural literature on near-miss events. 

In CHAPTER 2, we also focus on the capitalisation of information updates on wildfire 

risk but provoked by the introduction of wildfire risk maps, which intend to clearly 

inform the public whether or not they live within an area designated as bushfire prone. 

In particular, we study the introduction, in late 2015, of a dichotomous wildfire risk 

map that is user friendly and publicly available online, i.e., the Bushfire Prone Areas 

(BPA) map, which displays areas subject to or likely to be subject to wildfire risk - as 

determined by distance to bushfire prone vegetation. The dichotomous mapping 

design generates a clear boundary that divides treated and non-treated observations, 

allowing us to implement a sharp spatial regression discontinuity design (RDD) and 

estimate a local average treatment effect (LATE) that is as good as in a randomised 

experiment. Since observations in BPAs may be affected by predetermined risk 

perceptions from the presence of ‘risky’ vegetation and more stringent planning and 

building regulation, we undertake further tests to investigate the mechanisms driving 

our results, and conclude that our estimated LATE, i.e., the BPA effect, is indeed driven 

by pure information updates and not by these other potential impacts. Our research 

question in CHAPTER 2 is therefore as follows: what is the impact of the introduction 

of wildfire risk maps on safety preferences as reflected by property prices? Is there a 

price differential that reflects differences in safety preferences across the boundaries 

of wildfire risk maps? 

In CHAPTER 3, we ask: is prescribed burning positively valued by households, as 

reflected by property prices? To answer this question, we study the capitalisation of 

changes in exposure to prescribed fires - i.e., fires that arise from the practice of 
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prescribed burning, a forest management practice designed to limit the risk of 

uncontrollable wildfires, but also controversial due to amenity concerns (e.g., 

biodiversity loss) and concerns of prescribed fire escapes. Based on scientific evidence 

on fuel age and wildfire risk, and on our previous findings, we define ‘exposure’ as 

occurring within the first 6 years prior to sale date and within 5 km from property’s 

location. Importantly, we control for the exposure to wildfires too, which also generate 

risk reduction and disamenity effects, but in contrast to prescribed fires, are 

unintended. We anticipate that a positive value could only reflect strong safety 

preferences. 

We believe our findings are relevant to policy makers insofar as they are interested in 

whether and how people incorporate information related to wildfire risk into their 

safety preferences. We do this with a backward looking and market revealed 

preferences approach, i.e., the HPM. We do not, however, study preferences for 

changes in the level of nonmarket goods not-yet experienced, as can be done with a 

stated preferences approach. 

According to Simon, et al. (2022), estimates from both stated and revealed preference 

approaches might improve the information available and may be used by wildland fire 

managers when deciding on the strategies to follow in regard to pre-fire risk mitigation, 

fire suppression, and post-fire landscape rehabilitation. In particular, the authors 

suggest that managers may use a value of information (VOI) approach to inform their 

strategy. The VOI is defined as the “expected gains from making more optimal 

decisions, as a result of acquiring additional information in the presence of 

uncertainty” and is expressed as the difference between the valuations of fire 

management outcomes with and without the improved information (Simon, et al., 
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2022). It is not the aim of this thesis to contribute to VOI approaches lead by public 

fire managers. Nor are we making any claims on the value of the information this thesis 

generates. Nevertheless, our estimates may be of interest to wildland fire managers if 

the decision-making process requires empirical evidence on if and how information 

suggestive of wildfire risk generates changes and differences in safety preferences, as 

revealed by housing choices on where to live. 

Please note that my supervisors, Professor David J. Maddison and Assistant Professor 

Allan Beltran, contributed to the conceptualization and editing of CHAPTER 1 and 

CHAPTER 2 of this thesis. The literature review, data analysis, interpretation and 

discussion of results, and writing of the aforementioned chapters is my own work. 
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ABSTRACT 

 

Using the hedonic price method, we identify the near-miss effect of the Waroona Fire 

in Western Australia in 2016. Our strategy for identification relies on the use of 

difference-in-differences. The dataset includes more than 51,000 property 

transactions from the Peel and Southwest regions in WA for the period of 2010 to 2019. 

Compared to existing hedonic analyses of the impact of wildfires, uniquely we 

distinguish between near-miss areas that received warnings and areas that were merely 

close to the burn scar. Our findings suggest that the proximity treatment effect is 

positive, whereas the warning treatment effect is negative. We argue that the proximity 

treatment effect is an impure near-miss effect that entangles a positive risk reduction 

effect from burnt fuel and a disamenity impact from, for instance, the burnt landscape.  

 

Keywords: near-miss, wildfires, Australia, hedonic, difference-in-differences 

JEL codes: Q23, Q51, Q54 
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1.1 INTRODUCTION 

Forests’ presence in our planet is both large and vital. They occupy approximately 30% 

of the land surface area and provide multiple ecosystem services, which can be 

marketed or not, such as cultural amenities, food, water, timber, biodiversity 

conservation, and climate and flood regulation (Prăvălie, 2018). 

Australia is home to 134 million hectares (ha) of forest4, storing nearly 22 thousand 

million tonnes of carbon (ABARES, 2019). Nearly 16 percent of these forests are 

located within Western Australia (WA) (ABARES, 2019), a region with a unique 

biodiversity due to its endemism, i.e., to the fact that some species of flora and fauna 

are not found anywhere else (WABSI, 2023). Amongst the endemic species that live 

there more than 10 thousand years ago, are the Albany pitcher plant, honey possum, 

sunset frog, western swamp tortoise, and assassin spiders (Conservation and Parks 

Commission, 2022). Not only is WA’s biodiversity unique, but also large. For instance, 

the number of flowering species in WA’s Fitzgerald River National Park surpasses that 

for the entire United Kingdom (WABSI, 2023). In fact, WA is the only region in 

Australia recognised as a Global Biodiversity Hotspot5 (WABSI, 2023).  

Forests in WA contribute to the economy beyond their biodiversity values. For 

instance, the Department for Biodiversity, Conservation, and Attractions (DBCA) 

actively promotes recreational activities by providing specific locations to walk, hike, 

bike, camp, picnic, fish, or canoe (DBCA, 2023). In addition, at the national level, the 

 
4 The Australian Bureau of Agricultural and Resource Economics and Sciences (ABARES) defines forests 
as tree-dominated areas with tree heights exceeding 2 metres and canopy cover of at least 20%.  
5 These are regions that, despite having lost 70 percent or more of their original habitat, contain at least 
1500 vascular plant species (WABSI, 2023). 



24 
 

industries of forestry and forest-product manufacturing contribute to 0.5 percent of 

the Australian GDP and employ around 76,200 people altogether6 (ABARES, 2019). 

Wildfires put both market and non-market goods and services in danger. In Australia, 

this is a persistent problem that only seems to be worsening. During the period of 1901-

2011, 260 wildfires were recorded and a record of 2060 houses lost on one single day; 

the 16th of February 1983, baptized as ‘Ash Wednesday’ (Blanchi, et al., 2014).  

Recently, the situation is not necessarily better. The 2019/20 bushfire season had an 

unprecedented combination of weather conditions, fire intensity, fire behaviour and 

impact on wildlife and the environment (Australian Academy of Science, 2020) and 

has been perceived as ‘different’ and ‘terrifying’ (Bowers & Mason, 2020). In fact, 5.8 

million ha of ‘mainly temperate broadleaf forest’ were burnt7 (M.Boer, et al., 2020), 35 

lives were lost8 and approximately 2000 houses were destroyed (The Guardian, 2019; 

BBC, 2020; Coates, 2020). Moreover, nationwide, one billion animals were killed and 

113 animal species were left in danger of extinction, either due to their death or the 

destruction of their habitat (including native species such as the Koala, the smoky 

mouse, the Kangaroo Island dunnart, and the Northern corroboree frog) (BBC, 2020). 

This event was greatly featured in the media, flaming a political debate around the 

country’s climate change policy. Only between 15th of November 2019 and 17th of 

February 2020, more than 130 news articles relating to ‘bushfires’ were published in 

‘The Guardian’ and ‘BBC’ news altogether. Social media platforms shared a similar 

reaction, with more than 210,000 posts under the hashtag ‘prayforaustralia’ on 

 
6 Statistics correspond to reported values for the year of 2017-18. 
7 This is unprecedented because 21% of the Australian temperate broadleaf and mixed forest biome has 
been burned only during the latest bushfire season; a figure larger than for any other continent in the 
last 20 years (M.Boer, et al., 2020). 
8 Amounting to 54% of the bushfire related deaths recorded since 2010 (Coates, 2020) . 
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Instagram9. Many of the articles and posts harshly criticised the former Australian 

Prime Minister Scott Morrison and his sceptic approach to climate change10; 

demanding stringent actions to reduce greenhouse gas (GHG) emissions and protect 

lives and wildlife11. This is not surprising considering that Australia’s GHG emissions 

continued to increase since 2015 (Climate Transparency, 2019) whilst hotter and 

drier12 seasons (Bureau of Meteorology, 2019) become a new normal13. 

This study informs this debate, albeit in a minor way, by contributing to a better 

understanding of Australian households’ decision-making in relation to wildfires. 

More specifically, we investigate the change in property prices following a wildfire 

disaster. The case study we employ is a single, large-scale event that presaged the 

2019/20 bushfire season: the Waroona Fire of January 2016 in Western Australia 

(WA). Because we are interested in information effects that may alter risk perception, 

we focus on the near-miss properties, i.e., properties whose households experienced 

the event as a near-miss. For this purpose, we use the hedonic price method (HPM). 

We determine whether these near-miss effects are positive or negative.  

Surprisingly, this study appears the first to examine explicitly the near-miss effect of 

wildfires in Australia. Apart from the unique geographical domain of its application, 

our study also makes several other contributions to what is otherwise a United States 

 
9 As of 26th of February 2020. 
10 Scott Morrison is widely perceived as a climate change sceptic since denying links between GHG 
emissions and ‘bushfire’ risk (The Guardian, 2019). 
11 Australia is ranked as the G20’s third country furthest off-track from their agreed emission targets and 
its current government is criticized for its lack of intentions to determine new renewable energy targets 
and implement further policies for emission reduction on the transport and industry sectors (Climate 
Transparency, 2019). 
12 i.e., seasons with higher-than-average temperature and lower-than-average rainfall precipitation. 
13 In fact, between the period of 1980-2019, Australia has been consistently reporting annual mean 
temperature anomalies above average. Alarmingly, the year of 2019 was the warmest, on average, ever 
recorded in Australia, with a record high of 41.9 degrees Celsius on the 18th of December (Bureau of 
Meteorology, n.d.). 
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(US) based literature. First, unlike most analyses, we adopt a difference-in-differences 

(DD) identification strategy, allowing us to attribute observed changes in the price of 

near-miss properties to the Waroona Fire. Second, we use geographic information 

systems (GIS) software, combined with satellite data, to measure the distance between 

individual properties and the burn scar left by the Waroona Fire. Third and most 

important, we incorporate into the analysis spatially distinct warnings issued by the 

Department of Fire and Emergency Services (DFES) during the actual event. This 

information comes from the official enquiry that followed the Waroona Fire. This 

innovation distinguishes our research from a literature that often associates ‘near-

miss’ with physical proximity. Our study by contrast, acknowledges the 

multidimensional nature of the near-miss effect and the possibility of different near-

miss experiences arising out of the same event. Here, the Waroona Fire offers a perfect 

example. Not all households living in proximity to the fire were targeted by the 

warnings, and of those who were, some were unaware of these warnings because the 

communication strategy was not uniform. Because of the scale of the Waroona Fire, 

not all households in proximity to the resulting burn scar had the same near-miss 

experience. Some households received warnings because they were in the path of the 

approaching flames. Other households received no warnings because they were 

upwind of the wildfire and had a ready means of escape.  

We find a positive and significant near-miss effect from proximity to the burn scar. 

This result differs from the negative near-miss effect of proximity to wildfires mostly 

found in the US literature. Our explanation is that the price of property in proximity to 

the burn scar increased because of a reduction in the risk of future wildfires that 

dominates any disamenity impact. By contrast, properties in locations subject to 
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warnings suffer a price discount. We believe that these warnings triggered a sense of 

vulnerability.  

The remainder of this chapter is as follows. The next section describes previous 

literature on cognitive biases in the face of risk, behaviour in the face of near-miss 

events, and studies using the HPM to estimate the near-miss effect of natural disasters 

on property markets. Section 1.3 explains the methodology employed to estimate the 

near-miss effect of wildfires on property prices. Section 1.4 describes the Waroona Fire 

of 2016. Section 1.5 describes our data sources and section 1.6 presents econometric 

estimates of the near-miss effect. We subject these results to a battery of tests in section 

1.7, where we also endeavour to interpret our findings. The final section concludes with 

some ideas for future research. 

1.2 LITERATURE REVIEW 

To estimate and interpret the near-miss effect of wildfires we build on a large group of 

literature focused on risk perception, near-miss experiences, and relevant hedonic 

applications. The search for this literature involved specific keywords, e.g., “near miss 

OR near-miss OR nearmiss AND hedonic”, and the use of FindIt@Bham, the 

University of Birmingham’s search engine, which includes the Econlit database. To 

ensure the inclusion of high-quality literature and relevant studies, we conducted 

additional searches restricted to 3 - 4* ranked journals14 and journals specialized in 

environmental, natural resource, and regional economics, or risk and uncertainty, 

regardless of their ranking. Each search is identified by a letter and a number. For 

example, all searches related to the near-miss phenomenon of natural disasters are 

 
14 Star ranking is that of the 2018 Academic Journal Guide developed by the Chartered Association of 
Business Schools (CABS). 
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identified by the letter G and six searches, namely ‘G1’, …, ‘G6’, were conducted for this 

purpose. Additionally, we searched the Bushfire & Natural Hazards Cooperative 

Research Centre (BNHCRC)’s ‘Value Tool for Natural Hazards’ database for studies 

that value environmental attributes in Australia15. As a result, more than 300 relevant 

references were sourced from ‘FindIt@Bham’ search engine (see Table 1.2.1 below). 

However, 78 and 21 additional relevant literature were sourced from selected 

references and from news articles, respectively – giving a total of 406 relevant sources 

of information. The literature reviewed in this section and cited throughout this 

chapter corresponds to the final selection following a read of the abstracts.  

Table 1.2.1: Literature review search  
 

Search topic Total entries Selected entries 
A Hedonic pricing in Australia 1151 42 
B Hedonic pricing methodology 345 50 
C Climate change and wildfires 99 64 
D Forest fires in Australia 115 89 

F Economic analysis of wildfires 113 22 
G Near-miss and natural hazards 160 32 
H Forest ecosystems 10 1 

I Availability heuristics 222 31 

 TOTAL 2215 331 

Critical to the understanding of the near-miss effect, is the literature on cognitive 

biases and the behavioural literature on near-miss events. 

According to Kahneman (2011), people employ two thinking systems when forming 

conclusions: ‘fast’ and ‘slow’. Fast thinking relies heavily on intuition and emotions, 

whilst slow thinking relies on logic (Bray, et al., 2015). 

 
15 The Value Tool for Natural Hazards intends to facilitate policy making on natural hazard management 
and its database contains research centred around health, environmental and social value estimations 
(BNHCRC, n.d.). 
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The slow-thinking system requires reasoning and effort to reach conclusions. For 

example, Bayesian reasoning relies on questioning our prior beliefs to recalculate 

likelihoods (Kahneman, 2011). The fast-thinking system provides fast answers through 

the use of inferential rules known as ‘heuristics’ (Slovic, et al., 1982; Shleifer, 2012), 

which, in turn, give rise to systematic errors in the assessments of probabilities, known 

as ‘cognitive biases’ (Tversky & Kahneman, 1974). 

There is evidence that suggests high consequence and low probability events increase 

perceived risk due to their “attention-focusing effect”, e.g., Hansen, et al. (2006) 

(Kousky, 2010, p. 398). This type of events demand the use of heuristics to assess risk. 

One of such heuristics is ‘availability heuristics’, which is present when people judge 

the probability of an event by the “ease with which instances or occurrences can be 

brought to mind” (Tversky & Kahneman, 1974, p. 1127). Availability bias is therefore 

present when people mistakenly judge an event as either more or less likely than it is, 

simply because they rely on the easiness by which the event ‘comes to mind’16. 

Instances which are more familiar, salient, or recent, are easier to retrieve, but not 

necessarily more likely to occur. Availability heuristics may be at least partially 

explained by ‘affect’ heuristics, i.e., a mental shortcut where risk is predominantly 

perceived as feelings (Slovic, et al., 2004). Risks of high emotional charge are 

overestimated, and vice versa (Lichtenstein, et al., 1978). 

Risk perceptions may be amplified, or attenuated, through social processes. For 

instance, through news media. Kasperson, et al. (1988) name this process “the social 

amplification of risk”. The authors suggest that the risk event initiates signals on those 

 
16 The event may ‘come to mind’ by either retrieval, construction, or association (Tversky & Kahneman, 
1974). Given that we study near-miss events, retrieval is most relevant for this study. 
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who directly experience the event or those who simply received information regarding 

the event. Then, these signals are decoded by transmitter and receiver in such a way 

that some are intensified whilst others are attenuated, and some are discarded whilst 

others are preserved for interpretation. Using survey data, Brenkert-Smith, et al. 

(2013) study the social amplification of wildfire risk in Colorado, US, and find evidence 

of the social amplification of risk for perceptions of probability, but not of consequence. 

Their findings suggest that information sources and social interaction can alter 

perceived frequency of wildfires, but not perceived consequence. Additionally, the 

authors find that the role of mass media in shaping risk perceptions is quite limited, 

compared to social informal interactions, such as fire-related chats with neighbours, 

attending fire-related events, or noticing the density of vegetation of neighbouring 

properties. 

Households may fall into what Kates (1962) denominates ‘the prison of experience’ 

dilemma. Without repeated experience, Kates (1962) suggests, some floodplain 

managers are discouraged to seek further alternatives because the experience is “not 

so bad after all”, whilst some other managers are encouraged to believe that nature has 

delivered what it “had in store for them” and, therefore, the experience will not repeat 

for some time (p. 140)17. 

For instance, near-miss events may be interpreted differently depending on the 

household’s experience. Tinsley, et al. (2012) classify near-misses into two categories: 

vulnerable and resilient. Vulnerable near-misses display information that highlights 

vulnerability in face of a natural disaster, encouraging its interpretation as a disaster 

 
17 This is particularly important for our research, as wildfires burn fuel, and therefore, reduce the 
likelihood of future wildfires, i.e., wildfires generate risk reduction effects in the affected area. 



31 
 

that ‘almost happened’; whereas resilient near-misses do not display information on 

the potential harm that could have been inflicted, encouraging the near-miss to be 

interpreted as a disaster that ‘did not occur’. For example, households that live in 

hurricane-prone areas but who never had any property damage, nor their neighbours, 

possess resilient near-miss information; whereas households whose neighbours 

experienced a tree fell on their car that could have caused serious injuries if anyone 

where inside, possess vulnerable near-miss information. 

According to Tinsley, et al. (2012), households with vulnerable near-miss information 

are more likely to mitigate risk than households with resilient near-miss information. 

However, the authors suggest that, because households escape harm, near-misses are 

more likely to be interpreted as resilient experiences. Moreover, the authors build on 

Kahneman & Miller (1986)’s norm theory to suggest that near-misses, resilient or not, 

favour lower risk perception than direct-hits do, and therefore, hinder mitigation 

behaviour. 

Similarly to Tinsley, et al. (2012), Dillon, et al. (2014) suggest risk perception is lower 

for individuals with resilient near-miss information, preventing them from assuming 

mitigation behaviour in face of future hazardous situations. According to Dillon, et al. 

(2014), households with resilient near-miss information are more likely to suffer from 

outcome bias, i.e., when confronted with a near-miss experience that highlights 

resiliency, the household focus on the successful outcome and ignores the process that 

paved the way to it (Baron & Hershey, 1988). The authors also suggest that outcome 

and availability bias work together, i.e., the relevant instance that comes to mind is the 

outcome of the past event. A similar conclusion to that of Dillon & Tinsley (2008), who 
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propose near-misses – resilient or not - are judged as if they were successes because of 

their favourable outcome, despite chance being the sole element preventing damage. 

Outcome bias may, however, be counteracted. Dillon & Tinsley (2016) find that risk 

communication that highlights vulnerability may counteract the optimistic feelings in 

those who possess resilient near-miss information by the means of altering perceived 

probabilities upwards. 

We now continue the literature review with studies using the HPM to identify changes 

in property prices associated with wildfire events. Perhaps most relevant to our 

research because it involves Australia is Athukorala et al. (2016) who conduct a before-

and-after analysis of the impact of wildfires (and floods) on property values in 

Rockhampton, Queensland. Although the authors do not explicitly investigate the 

near-miss effect, they nevertheless compare (i) a suburb directly affected by the so-

called Black Saturday bushfires, (ii) a suburb directly affected by a December 2010 

through January 2011 flood event and (iii) an adjacent suburb, “largely unaffected” by 

either event. Athukorala et al. (2016) find that the largely unaffected suburb 

experienced an increase in house prices of 7.98% for the year 2011, significant at the 

20 percent level. However, a significant weakness in this study lies in the identification 

strategy, specifically the inability to separate the general downturn in house prices 

caused by the contemporaneous sub-prime lending crisis, the inability to disentangle 

forested areas from the source and final boundaries of the fire, the use of partially 

affected suburbs as control group, and the lack of an impact evaluation approach – as 

that of DD.  

Turning now to the US literature on wildfires, Loomis (2004) states that households 

living in forested areas consider both wildfire risk and amenity values. He argues that 
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the perceived net benefits must decline after a near-miss wildfire event, via an 

increased perception of the risk. To test this, he studies the impact of a major wildfire 

on the housing market of a near-miss area. The wildfire event is the 1996 Buffalo Creek 

fire in Colorado, which 2 months later was hit by a severe flash flood that closed the 

main highway and destroyed the town’s water treatment system. The near-miss area is 

the town of Pine, 2 miles away from the fire. To capture the impact of the fire on 

property prices, the empirical specification includes a ‘post-fire’ dummy, which takes 

the value of unity if the sale took place after the fire18. On average, properties sold after 

the Buffalo Creek fire were subject to a 15-16% price discount. Critically, the author 

uses a continuous date variable to explain the underlying trend in house prices. 

Mueller and Loomis (2008) estimate the impact of repeated wildfire events on the 

housing markets of Riverside and Orange counties in Los Angeles. In particular, they 

consider the impact of two small wildfire events – Fires A19 and B20, which took place 

in 1991 and 1995 respectively, and burned 379 and 331 ha respectively21. 2,250 

properties, all of which were within 1.75 miles of the fire areas, were sold either (i) 

before either fire, (ii) after one fire or (iii) or after both fires. Forest fire dummies 

capturing the near-miss impact of the wildfires suggest properties sold with a price 

discount of 19.7% after 1 fire event and a further 12.9% after both fire events.  

 
18 It should be noted that the author considers the 60-day time period usually applied in real-estate 
transactions in the study area, i.e., the ‘post-fire’ dummy takes the value of unity for all sales taking place 
60 days after the ‘Buffalo Creek’ fire or later. During the 60-day period, loan approval, appraisal and 
inspection usually takes place. 
19 These include the Sylmar and Polk fires, which took place only three days and a few miles apart from 
each other. 
20 This includes the Towseley fire.  
21 The authors also consider a third fire in their sampling: Fire C which took place in 1997 and burnt 977 
acres (395 ha). However, because only 34 properties were sold after Fire C, they decide to disregard the 
impact of the third fire. Fire C constitutes the Placerita and Sierra fires, which took place 40 days and a 
few miles apart from each other. 
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The wildfire events are studied by Mueller et al. (2009) using the same 2,250 

observations. This time however, the model specifies the environmental attributes of 

the property in detail. The authors include distance to the nearest edge of US 

Department of Agriculture Forest, as well as number of days elapsed since (both) first 

and second fire events. The authors analyse progressive 0.5-mile cut-offs (up to 1.5 

miles). The results vary greatly depending on the cut-off, with the third 0.5-mile cut-

off yielding the largest near-miss effect. The model does not control for time trends in 

house prices.  

Aiming to test for a differential near-miss effect across the housing price distribution22, 

Mueller and Loomis (2014) estimate a hedonic price function using quantile 

regression. Using the same data (and empirical specification) as Mueller and Loomis 

(2008), they find a strong differential impact across the housing price distribution. The 

negative price impact is strongest for properties in the upper price quartile. 

Hansen and Naughton (2013) study the impact on property prices of repeated wildfire 

events (and spruce bark beetle [SBB] outbreaks)23 observed during 1990-2010 in the 

Kenai Peninsula, Alaska. Thirty-three large (>3.3 ha) and 1,160 small (<3.3 ha) wildfire 

events are considered. They consider 0-0.1, 0.1-0.5 and 0.5-1km rings. Unusually, the 

dependent variable is assessed market value rather than sale price. Uniquely, their 

findings suggest large wildfire events increase assessed property values for all distance 

rings. The authors provide various explanations for these findings e.g., enhanced 

environmental amenities, such as improved views of the ocean and mountains, and 

 
22 Note that the authors do not refer to a near-miss effect, the wording is ours. 
23 SBB outbreaks include a) one massive outbreak beginning in 1989 and fading in early 2000’s; and b) 
isolated outbreaks since (a) faded. According to data from Kenai Peninsula Borough cited by the authors, 
the white spruce species on the western side of the peninsula endured an average of 66 wildfire events 
per year since 1990, amounting to 60,000 ha of which the 2007 Caribou Hills fire stands out for 
destroying 88 homes and cabins plus 109 outbuildings. 
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improved hiking trails – which may overcome any disamenities from burnt areas. 

Another possible explanation is a decrease in the risk of future wildfires.  

Kiel and Matheson (2018) study the impact of the September 2010 Fourmile Canyon 

fire in Colorado, US, on the sale price of houses in Boulder County by implementing 

the HPM using a DD approach. The authors use a dataset consisting of 9,360 

properties covering the period of January 2009 to April 2012. Additionally, they 

control for the level of risk according to the area in which the house is located, as rated 

by the Boulder County website, which is accessible to homebuyers. The authors find a 

price discount of 21.7% for houses located in the very high-risk area after the fire, 

compared to those located in the low-risk area. To account for changed amenity levels, 

the authors implement a second set of regressions where they include a dummy 

variable to identify houses within 0.8 km of the fire perimeter. Results suggest that the 

impact is driven by changes in risk rather than changes in forest amenity levels.  

McCoy and Walsh (2018) study the housing price impact of wildfires occurring in the 

Colorado Front Range in 2000-2012. In order to implement their DD identification 

strategy, the authors define three different treatment and control groups. The first 

treatment is based on proximity, where properties in the treatment group lie within 

2km of the burn scar. The second treatment includes properties with a view of the burn 

scar according to the outcome of a GIS viewshed analysis. The third treatment is 

according to the Wildfire Threat Index, which takes the values of 1 to 5. The results for 

the proximity analysis suggest an immediate price discount of 12.6% for the properties 

sold after the fire. For the view of the burn scar treatment, the authors detect a 6.4% 

price discount in year 1, and this impact persists (and indeed increases) for years 2 and 

3 after the fire. Finally, the analysis on the Wildfire Threat Index suggests a discount 
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of 9.4% for properties in high-risk areas compared to those in the lowest risk category. 

However, the impact is short-lived and insignificant only 2 years after the fire.  

In sum, the empirical literature of wildfire near-miss events is based mainly in the US 

and, apart from the somewhat unusual paper of Hansen and Naughton (2013), 

suggests the near-miss effect from proximity to the burn scar is negative. This negative 

near-miss effect may result from two forces: reduced amenity values and a heightened 

perception of wildfire risks.  

Only recently has the empirical near-miss literature for wildfires adopted a quasi-

experimental approach to identification in an effort to ensure that the near-miss 

impacts on property prices are causally attributable to the wildfire event. Only a 

minority of papers accurately measure the distance from the property to the burn scar 

and some combine wildfire events with other impacts such as those arising from floods 

or insect infestations. None deals with a wildfire event of the scale of the Waroona Fire. 

Critically for our purposes, there is a clear omission of the information effect that arises 

from receiving warnings during the fire event, such as those issued by the DFES during 

the Waroona Fire. This omission is present for the conceptualization of the near-miss 

effect and for its estimation. 

On the other hand, the HPM literature on the near-miss effect of other natural hazards 

is much more developed. Several studies adopt an impact evaluation approach through 

the identification of treated (near-miss) and non-treated (non near-miss) properties in 

the study area, e.g., Hallstrom & Smith (2005), Carbone, et al. (2006), Atreya & 

Ferreira (2015), Hennighausen & Suter (2020), and Beltran, et al. (2020) for floods 

and hurricanes, and Naoi, et al. (2009) for earthquakes. 
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Evidence on the near-miss effect of floods and hurricanes is mixed. Some studies find 

negative, whereas other find positive or zero, near-miss effects. For instance, 

Hallstrom & Smith (2005) and Carbone, et al. (2006) find a negative near-miss effect. 

The authors study the impact of the 1992 hurricane Andrew on property prices in two 

counties: Lee, which nearly missed the hurricane, and Dade, directly hit; both in 

Florida, US. As estimation strategy, both studies use DD and repeat-sales observations. 

Hallstrom & Smith (2005) find a negative near-miss effect of 19% for the Lee county, 

whereas Carbone, et al. (2006) find a negative near-miss effect of 23-26%. 

Atreya & Ferreira (2015) and Hennighausen & Suter (2020) study large flood events 

and find no significant evidence of a near-miss effect. Atreya & Ferreira (2015) study a 

major flood event provoked by the tropical storm Alberto in 1994 in the city of Albany, 

located in the county of Dougherty in Georgia, US. The authors use inundation and 

floodplain maps and GIS parcel data to clearly distinguish properties subject to 

inundation effects from those subject to information effects only, and implement a DD. 

Their findings suggest only the inundation effect, and not the information effect, is 

capitalized into property prices, and that inundated properties mapped within 

floodplains are most affected. In particular, inundated properties within floodplains 

experienced a price discount of 48%, whilst those outside floodplains experienced a 

price discount of 36%. 

Similarly, Hennighausen & Suter (2020) use inundation and floodplain maps to study 

the 2013 Colorado floods in Boulder County, Colorado, US. The authors implement a 

triple DD to explore whether floodplain maps generate information effects, and 

whether inundation makes a difference. Their findings suggest both floodplain maps 

and flooding extents are important for the identification of changes in property price. 
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Prior to the flood, properties within the floodplain were sold at a 6.5% discount, 

compared to those outside24. However, after the flood, properties within the floodplain 

experienced no significant price change. When discerning between inundated and non-

inundated properties, the authors find a 21% price discount for inundated properties 

within the floodplain, but no impact for inundated properties outside. On the other 

hand, non-inundated properties within the floodplain, i.e., near-miss properties, 

experienced a price increase, but with no statistically significant marginal effects. The 

absence of a significant near-miss effect might be explained by the availability 

heuristics which might operate with direct experience only (Atreya & Ferreira, 2015; 

Hennighausen & Suter, 2020), or by Bayesian learning if flooding extents represent 

true differences in risk (Hennighausen & Suter, 2020). 

Beltran, et al. (2020), on the other hand, do not study a particular event, but study all 

inland and coastal floods recorded in England between 1995 and 2014. With the use of 

high-resolution GIS data, the authors identify near-miss properties as those adjacent 

to postcodes with any degree of flooding experience. Using DD, the authors find 

evidence of low persistence near-miss effects, negatively signed for inland floods (-

4.0%) whilst positively signed for coastal floods (+4.4%). Beltran, et al. (2020) suggest 

that coastal households may be interpreting the event as a ‘resilient’ near-miss. 

Naoi, et al. (2009) use nation-wide data to estimate the near-miss effect of massive 

earthquake events in Japan between 2004-2007. Using earthquake risk measures 

provided by the government and DD, the authors find that, after a massive earthquake, 

a 0.2% increase in the annual probability of an earthquake leads to a price decrease of 

 
24 Importantly, in the Boulder County, properties within the floodplain are required to obtain insurance 
against floods, which may explain this price discount.  
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13% and 16% of property values and rental prices, respectively, for near-miss 

properties. 

Finally, to be certain of the originality of our study, we review HPM applications that 

focus on WA or any of the other three states in Australia, i.e., Queensland (QND), New 

South Wales (NSW), and Victoria (VIC). These studies amount to a total of 13 – see 

Table 1.2.2 below for a list of these studies by location and the attributes valued. 

Table 1.2.2: HPM applications for Australia 

# Location Journal Article Attribute(s) for valuation 

1 WA, Perth Tapsuwan, et al. (2009) urban wetland 

2 WA, Perth Zhang, et al. (2014) rainwater tanks  

3 WA, Perth Ma, et al. (2015) 
residential solar photovoltaic 
systems 

4 WA, Perth Pandit, et al. (2013) urban tree canopy cover 

5 QND, Mount Isa city Neelawala, et al. (2013) mining and smelting activities 

6 QND, Brisbane Warren, et al. (2017) historic districts 

7 QND, Brisbane Plant, et al. (2017) footpath tree canopy cover 

8 QND, Brisbane Rajapaksa, et al. (2018) cell phone towers 

9 QND, Brisbane Athukorala, et al. (2019) wildfire risk 

10 QND, Rockhampton Athukorala, et al. (2016) wildfire risk and flood risk 

11 NSW Tapsuwan, et al. (2015) 
Barmah–Millewa forest and in 
stream riverflows 

12 
VIC, North Central 
Victoria 

Polyakov, et al. (2015) native vegetation 

13 VIC Tapsuwan, et al. (2015) 
Barmah–Millewa forest and in 
stream riverflows 

 

Athukorala et al. (2016) and Athukorala et al. (2019) are the only two HPM applications 

on wildfire risk, both for the state of QND. We have already described the study of 

Athukorala et al. (2016) amongst other near-miss studies. In Athukorala et al. (2019), 
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the focus is not on wildfire events, but rather on areas mapped as bushfire prone, i.e., 

BPAs, by the state of QND. All properties sampled are within 850 m of BPAs. The 

authors find that distance to BPA is negatively valued. Athukorala et al. (2019) 

attribute this finding to the high amenity value of BPAs, which include forested areas, 

meaning that households are willing to pay (WTP) a premium to live near green spaces 

despite the implicit wildfire risk. However, the authors do not follow a quasi-

experimental approach and findings here contradict our results in CHAPTER 2, 

where we find that properties within BPAs are sold at a price discount compared to 

those in non-BPAs. 

Other studies on Australia also suggest that green space is positively valued. Pandit, et 

al (2013) study the impact of tree canopy cover on residential property prices in Perth, 

WA, and find that tree canopy cover is positively valued, but only if located in adjacent 

public space. If located within 20 m of the property, tree canopy cover is negatively 

valued. The authors suggest that management and opportunity costs for trees on 

private property exceed benefits, whereas urban tree planting public programs do not. 

Similarly, Plant, et al. (2017) find that footpath tree canopy cover is positively valued 

within 100 metres of the property and that, therefore, 2031 target levels would provide 

benefits that justify the costs of taxes. Polyakov, et al. (2015) find evidence that suggests 

that current levels of native vegetation could be increased to maximize private benefits. 

Interestingly, Pandit, et al (2013), Plant, et al. (2017) and Polyakov, et al. (2015) do not 

discuss the relationship between green spaces and wildfire risk, as do Athukorala et al. 

(2019). 
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Besides green spaces, HPM applications on Australia suggest households positively 

value water ecosystems, such as urban wetlands (Tapsuwan, et al., 2009) and the 

Barmah–Millewa forest and in stream river flows (Tapsuwan, et al., 2015). 

We do not review the remaining studies listed in Table 1.2.2 because they are not 

relevant for our study. 

1.3 METHODOLOGY 

1.3.1 THE HEDONIC PRICE METHOD 

To estimate property prices, we rely on the hedonic price function (HPF). The HPF was 

first characterized by Rosen (1974) based on Kevin Lancaster (1966)’s new approach 

to consumer theory in which goods are conceptualized as bundles of attributes that, 

when consumed, give rise to utility.  

The HPF emerges from the hedonic price model (HPM). This is a model of product 

differentiation: it recognizes the heterogenous nature of goods in terms of their 

embedded ‘utility-bearing’ attributes – simply ‘attributes’ from this point forward. 

Moreover, It provides a method for matching buyers and sellers of implicit markets, 

allowing to estimate implicit market prices of the attributes embedded on goods, for 

which no explicit market exists (Greenstone, 2017), i.e., there is an implicit market for 

attributes of heterogeneous goods, for which consumers pay implicit prices. Since 

consumers are heterogeneous, these exhibit heterogeneity in the willingness to pay 

(WTP) for different levels of a particular attribute under a constant level of utility 

(Rosen, 1974; Greenstone, 2017). Importantly, estimating the WTP for the implicit 

attributes, allows to assess welfare implications from marginal changes in the levels of 

attributes traded in implicit markets and conveyed through housing choices 
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(Kuminoff, et al., 2010). Given that virtually all goods are heterogeneous in attributes, 

the HPM revolutionized the way we think about several fields of economics - such as 

labour, public, urban, and environmental economics, where jobs, cities, and houses are 

all goods of multiple attributes (Greenstone, 2017)25.  

They key assumption underpinning the HPM so that estimated implicit prices reflect 

households’ true preferences for the attributes of interest is that the housing market is 

in equilibrium, i.e., homebuyers and sellers’ maximizing behaviour leads to market 

clearing conditions. The equilibrium is such that, at the location chosen by 

homebuyers, amounts of attributes supplied by sellers must equal amounts demanded 

by consumers, and no buyer or seller can improve their position (Rosen, 1974, p. 35)26. 

For this assumption to hold, four other conditions must be met. First, that homebuyers 

and sellers have perfect information on price 𝑃 and attributes 𝒁 = (𝑧1, 𝑧2, … , 𝑧𝑛) of the 

housing market, i.e., the objective assessment of the spatial landscape of the market is 

shared by both homebuyers and sellers (Kuminoff, et al., 2013, p. 1013). Second, that 

 
25 Some examples in environmental economics include estimates for valuation of air quality (Smith & 
Ju-Chin Huang, 1995; Chay & Greenstone, 2005; Kim, et al., 2003; Brookshire, et al., 1982), avoidance 
of hazardous waste sites (McCluskey & Rausser, 2003), avoidance of noise pollution (Pope, 2008), and 
water pollution (Leggett & Bockstael, 2000). 

26 Market equilibrium for a given attribute 𝑧𝑗 results from the tangencies of bid and offer functions of 

homebuyers and sellers, respectively – where bid functions reveal homebuyers’ maximum WTP for 
different levels of attribute 𝑧𝑗 at a given level of utility, and offer functions reveal sellers’ reservation 

price for different levels of attribute 𝑧𝑗 at a given level of profit (Rosen, 1974, pp. 39, 42) (Greenstone, 

2017, pp. 1892 - 1894). The interaction – or “kiss” - between homebuyers’ bid and offer functions 
generates the hedonic price schedule (HPS), a locus between house prices and a given attribute 𝑧𝑗 – the 

envelope (Greenstone, 2017, p. 1892) (Rosen, 1974, pp. 40, 44). At each point in the HPS, there is a 
homebuyer whose marginal WTP equals a seller’s marginal cost of production, and both values equal 
the marginal price of attribute 𝑧𝑗. Importantly, the HPS reveals the price that allocates homebuyers 

across locations and levels of attribute of interest 𝑧𝑗. Welfare gains or losses can be inferred for marginal 

changes along the locus. There is a trade-off between quality level of attributes of interest and housing 
price, e.g., households living in areas of poor air quality are compensated with lower housing prices 
(Greenstone, 2017, p. 1894). Therefore, under market equilibrium conditions, the estimated implicit 
prices of attributes of interest can be interpreted as a welfare measure. 
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if a household is out of equilibrium, they can move to a more preferred location with 

no transaction costs, i.e., there is free mobility (Bayer, et al., 2009). Third, that both 

homebuyers and sellers belong to a single market, i.e., no market segmentation 

(Palmquist, 2005). Finally, it is assumed that the level of attributes varies continuously 

across time and space, i.e., levels do not vary discretely, and households consume 

attributes in continuous quantities (Kuminoff, et al., 2013). This implies differentiable 

utility and cost functions27.  

The use of the HPM is, however, of limited validity. There are occasions in which 

estimates may be biased. For instance, attenuation bias is a threat when information is 

not perfect (Pope, 2008) and when there is no free mobility (Bayer, et al., 2009). These 

are real threats, as there is empirical evidence on information asymmetries between 

buyers and sellers, e.g., Schulze, et al (1986), and empirical evidence on high financial 

and emotional moving costs that prevent free mobility, e.g. Bayer, et al (2009). 

Additionally, estimates may be biased if the market is segmented (Michaels & Smith, 

1990); particularly if segments of the market do not overlap for different consumers 

(Palmquist, 2005). Other issues to consider when applying the HPM are omitted 

variable bias and multicollinearity. 

Omitted variable bias is a major concern for accurate estimation of implicit price of 

attribute of interest 𝑧𝑗. The issue arises when attribute 𝑧𝑘 has a significant impact on 

house price 𝑃 but is omitted on the HPF specification and is therefore included on the 

 
27 This assumption is implicit in the utility and profit maximization problems for the homebuyer and 
seller, respectively (Kuminoff, et al., 2013) . For instance, solving for the first order condition (FOC) of 
the utility maximization problem gives a level of attribute of interest 𝑧𝑗 such that its marginal implicit 

price equals marginal WTP for an additional unit of 𝑧𝑗, which in turn implies that utility functions are 

differentiable. If at least one attribute is discrete, solving for the FOC will not yield equilibrium behaviour 
and there will be no “specific link” marginal price and marginal WTP (Kuminoff, et al., 2013, pp. 1022-
1023). 
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error term. Previous research suggests that, if the threat of omitted variable bias is 

high, linear Box-Cox, or even simpler functional forms, such as linear or log-linear are 

preferred for the HPF (Cropper, et al., 1988; Palmquist, 2005). 

Spatial correlation can also be an issue in the estimation of implicit marginal prices, 

especially in the presence of omitted variable bias, because these share similar values 

across neighbouring properties, i.e., there is a pattern of spatial correlation between 

prices, neighbourhood attributes and amenities (Kuminoff, et al., 2010). 

Multicollinearity arises, for instance, when variations in levels of attribute 𝑧𝑘 are 

correlated with variations in levels of attribute of interest 𝑧𝑗 (Kuminoff, et al., 2010), 

and both attributes are present in the HPF, e.g., air pollution is correlated with 

unobservable local characteristics related to economic activity (Bayer, et al., 2009), 

which may give rise to perverse positive signs between air pollution and house prices 

(Smith & Ju-Chin Huang, 1995; Chay & Greenstone, 2005). Additionally, distance 

effects – usually used to account for perceived risk - may suffer from multicollinearity, 

e.g., odour disamenities from two different sources of pollution included separately in 

the model would give rise to multicollinearity (Cameron, 2006). 

The hedonic price method extended for wildfire risk 

In this section, we present an extended version of the HPM where changes in wildfire 

risk perceptions are explained by information updates, giving rise to changes in 

housing preferences and property prices. For this extended model, and because 

homebuyers choose a level of self-insurance when deciding where to live (Brookshire, 

et al., 1985), we follow the EU framework for the consumers’ utility maximisation 

problem, as is usual when studying the incentives for insurance take-up (Ehrlich & 
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Becker, 1972, p. 623). The characterization of our model is inspired by and heavily 

reliant on that of Carbone, et al. (2006) for hurricane risk.  

As already noted above, each property embodies a unique bundle of attributes 𝒁. Given 

that 𝒁 is specific to a property with a unique location, attributes are experienced within 

the spatial context of the property. 

The attribute of interest in this extended model is real wildfire risk π, which is part of 

𝒁. However, π is unknown, i.e., true probability of wildfire, free from misinformation 

or measurement error28 is unknown. Instead, the household is subject to a set of 

information 𝑖 regarding wildfire risk, which may include estimates of π, denoted here 

as �̃�. The household is also exposed to risk moderating characteristics 𝑟, specific to the 

property, that impact wildfire risk29. Therefore, the subjective assessment on wildfire 

probability 𝑝 depends on both 𝑖 and 𝑟 – see equation (A) below. Notice that although 

𝑝, �̃� and 𝜋 are conceptually different, any of these might be equal by chance. 

 𝑝 = 𝑝(𝑖, 𝑟) A 

The price of each property is a function of its embedded attributes (𝒁), wildfire risk 

moderating characteristics (𝑟), and the corresponding perceived probability of wildfire 

(𝑝) – see equation (B) below. In other words, the price of any property depends upon 

 
28 Misinformation and/or measurement errors may arise if, for instance, data collected is not accurate 
(e.g., data accuracy on fire extent, intensity, fuel age, etc., may vary across time depending on available 
data collection techniques). Also, risk assessments may vary depending on the methodology employed. 
Moreover, climate change is a new unknown on the determinants of wildfire risk. Furthermore, in 
Australia, variability on the impact of ‘El Niño’ phenomenon on fire weather is challenging the diagnosis 
of divergence between anthropogenic and “natural forcing” signals (Jones, et al., 2020). This might 
explain why formal attributions to climate change for the unprecedented scale of 2019/20 bushfire 
season were not made (Smith, et al., 2020). 
29 Such as the flammability of a property’s construction materials, elevation, distance to nearest fire 
station or ‘safe area’ (e.g., ocean), etc. 
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the quantities of attributes that it embodies (Palmquist, 2005, p. 559), which are never 

identical to any other property because each occupies a unique piece of land that offers 

marginal differences from its neighbours. Given (A), the HPF is specified as in 

equation (C): 

𝐻𝑃𝐹: 𝑃 = 𝑃(𝒁, 𝑟, 𝑝) B 

 

𝐻𝑃𝐹: 𝑃 = 𝑃(𝒁, 𝑟, 𝑝(𝑖, 𝑟)) C 

Under the EU framework, utility functions - which depend on attribute levels 𝒁, risk-

moderating characteristics 𝑟, and consumption of all other goods 𝐶 - are state-

dependent on fire state 𝐹 or non-fire state 𝑁𝐹. In other words, experienced utility level 

is 𝑈𝐹 when a wildfire occurs and 𝑈𝑁𝐹 in absence of wildfire occurrence, with 

probabilities 𝑝 and (1 − 𝑝), respectively – see equation (D) below.  

 𝐸𝑈 = 𝑝(𝑖, 𝑟) × 𝑈𝐹[𝒁, 𝑟, 𝐶] + (1 − 𝑝(𝑖, 𝑟)) × 𝑈𝑁𝐹[𝒁, 𝑟, 𝐶] D 

The household maximizes EU by choosing property ℎ∗, subject to prevailing prices 𝑃ℎ, 

where ℎ = 1, … , 𝐻, and 𝐻 is the total number of properties available for purchase and 

belonging to the same temporal and geographical market. The maximization problem 

is subject to a state-dependent budget constraint 𝑀, where 𝐿(𝑟) is magnitude of loss as 

a function of risk-moderating characteristics 𝑟, equal to zero in absence of wildfire 

occurrence and ϵ [0, 𝑆̅] in presence of wildfire occurrence; 𝑆̅ being the cost of rebuilding 

entire property – see equation (E) below30.  

 
30 Note that 𝐿(𝑟) can take the value of zero even in presence of wildfire occurrence. This is the case for 
near-miss properties. 
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𝑀 =  {

𝑃(𝒁, 𝑟, 𝑝(𝑖, 𝑟)) + 𝐶 + 𝐿(𝑟) 
 𝑃(𝒁, 𝑟, 𝑝(𝑖, 𝑟)) + 𝐶 

𝑖𝑓 𝐹

𝑖𝑓 𝑁𝐹
 

E 

Prior to the wildfire event, households subject to π greater than zero, are unaware of 

wildfire outcomes, i.e., unaware of the magnitude of loss 𝐿(𝑟). This changes once a 

wildfire occurs. During and after the wildfire, authorities and households receive an 

exogenous change in set of information 𝑖. With 𝑖, authorities are empowered to update 

their objective assessments of wildfire risk �̃� and households are empowered to update 

their subjective assessments on probability of wildfire 𝑝. A change in 𝑖 would cause a 

change in 𝑝 equal or different to zero if households choose to maintain or update their 

beliefs on wildfire risk, respectively. Moreover, a change in 𝑝 equal or different to zero 

would cause a change in property price 𝑃 equal or different to zero, respectively - see 

equations (F), (G), and (H): 

 
∆𝑝 {

= 0, 𝑖𝑓∆𝑖 = 0
≠ 0, 𝑖𝑓∆𝑖 ≠ 0

  
F 

 

 
𝜕𝑝/𝜕𝑖 {

= 0 𝑖𝑓 ∆𝑝 = 0
≠ 0 𝑖𝑓 ∆𝑝 ≠ 0

  
G 

 

 
𝜕𝑃/𝜕𝑖 {

= 0 𝑖𝑓 𝜕𝑝/𝜕𝑖 = 0
≠ 0 𝑖𝑓 𝜕𝑝/𝜕𝑖 ≠ 0

  
H 

Due to the updates of the information set and subjective probability of wildfire 𝜕𝑝/𝜕𝑖, 

the household maximizes EU subject to a budget constraint 𝑀 dependent on state F. 



48 
 

Solving for 𝜕𝑃/𝜕𝑖, we get the impact of an exogenous change in set of information 𝑖 

provoked by the occurrence of a wildfire: 

 

(
𝜕𝑃

𝜕𝑖
) =  (

𝜕𝑝

𝜕𝑖
) × [

𝑈𝐹 − 𝑈𝑁𝐹

𝑝(𝑖, 𝑟) ×  (
𝜕𝑈𝐹

𝜕𝐶
) + (1 − 𝑝(𝑖, 𝑟)) × (

𝜕𝑈𝑁𝐹

𝜕𝐶
)

] 

I 

In (I), the change in subjective probability of wildfires due to an information update 

(
𝜕𝑝

𝜕𝑖
) is multiplied by the change in experienced utility from a state transition (𝑈𝐹 −

𝑈𝑁𝐹) as a proportion of the change in EU given a change in consumption. Simply put, 

wildfire events update the set of information on wildfire risk, bringing about changes 

in property prices explained by changes in wildfire risk perceptions and scaled by the 

magnitude to which experienced utility resembles EU when transitioning from a non-

fire to a fire state. 

Following Tinsley, et al (2012)’s suggestion that near-misses can be interpreted either 

as vulnerable or resilient events, we propose that the set of information 𝑖 can have an 

ambiguous effect on 𝑝 and hence on property prices, i.e., the wildfire event may 

generate either an increase or decrease in the sale price of near-miss properties. 

1.3.2 DIFFERENCE-IN-DIFFERENCES AS IDENTIFICATION STRATEGY 

Besides the HPM, we use a quasi-experimental approach to identify the near-miss 

effect of a (single) wildfire event. In particular, we use DD, an impact evaluation 

approach, useful for comparing changes in outcomes for an intervened and an un-

intervened population, i.e., for treatment and control groups. 

DD implementation involves two instances: i) the first difference, i.e., before-and-after 

comparison for treatment group, and ii) the second difference, i.e., before-and-after 
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comparison for control group (Gertler, et al., 2016). In economics, the first difference 

or before-and-after comparison is known as the ‘differences’ approach (Meyer, 1995). 

Because we compare the treatment group with itself, it controls for time constant 

factors only (Gertler, et al., 2016). This is unlikely to produce valid inferences because 

it relies on the identifying assumption that, in the absence of the intervention, time-

variant factors would be zero (Meyer, 1995). The DD approach, proposes, precisely, to 

introduce the second difference, which controls for time variant factors different to the 

intervention (Gertler, et al., 2016). 

The DD approach is, however, not free from validity threats. Treatment and control 

groups are not assigned randomly; rather, these are assigned according to the 

researcher’s criteria, which may lead to selection bias. Therefore, the DD approach 

necessitates a key identification strategy: the ‘equal trends’ assumption, which implies 

that, in absence of treatment, outcomes of treatment and control groups would have 

moved in tandem (Gertler, et al., 2016). 

For our study, this is the assumption that, in absence of the wildfire event, sale price of 

near-miss and non-near-miss properties would have moved in tandem. If this 

assumption is not met, the estimated treatment response would be biased and lack 

internal validity (Meyer, 1995)31, i.e., the estimated near-miss effect cannot be trusted 

to be net of all other confounding factors. 

 
31 Where internal validity means that “one can validly draw the inference that within the context of the 
study the differences in the dependent variables were caused by the differences the relevant explanatory” 
(Meyer, 1995, p. 152). 
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1.3.3 EMPIRICAL ESTIMATION OF THE NEAR-MISS EFFECT 

Having described the HPM and the DD approach, we proceed to present our estimation 

strategy for the near-miss effect. 

There are two dimensions distinguishing the structure of a quasi-experiment: the 

group assignment for each property (whether it is inside the near-miss area) and the 

timing of the potential outcome (whether it sells before or after the fire event). 

Parmeter and Pope (2012) provide an overview of the use of quasi-experimental 

methods. Our basic empirical model is as follows: 

 𝑙𝑛 𝑃ℎ𝑡 =  𝛼 +  ∑ 𝛽𝑗𝑍ℎ𝑗

𝑗=1

+ 𝛾𝐹𝑖𝑟𝑒ℎ𝑡 + 𝜃𝑃𝑟𝑜𝑥𝑖𝑚𝑖𝑡𝑦ℎ

+  𝜑(𝐹𝑖𝑟𝑒ℎ𝑡 × 𝑃𝑟𝑜𝑥𝑖𝑚𝑖𝑡𝑦ℎ) + ϕ𝑠 +  𝜎𝑡 + 𝜇ℎ𝑡 

(1.1) 

Equation (1.1) explains the natural logarithm of the price P of property ℎ at time 𝑡 as 

a function of time-invariant control variables, 𝑍, indexed as j. In addition, we include 

a dummy-variable 𝐹𝑖𝑟𝑒 taking the value unity after the wildfire and whose coefficient, 

𝛾, captures the before-and-after difference in property prices, for all properties ℎ sold 

after the wildfire. A further dummy-variable 𝑃𝑟𝑜𝑥𝑖𝑚𝑖𝑡𝑦 takes the value unity for 

properties located in proximity to the burn scar. The coefficient 𝜃 captures the 

difference in property prices between proximate and non-proximate properties prior 

to the wildfire. Finally, we include an interaction term, 𝐹𝑖𝑟𝑒ℎ𝑡 × 𝑃𝑟𝑜𝑥𝑖𝑚𝑖𝑡𝑦ℎ, to 

measure the difference in before-and-after property prices between the treatment and 

control groups, or, in other words, the near-miss effect of the wildfire. Parameter 𝜑 

measures this near-miss effect. The empirical model also includes suburb 𝑠 and year 

fixed effects (FE). These are represented by ϕ𝑠 and 𝜎𝑡, respectively. Finally, we include 
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an error term 𝜇ℎ𝑡. Kuminoff et al. (2010) recommend the use of a “combination of 

spatial fixed effects, quasi-experimental identification strategies, and temporal 

controls for housing market adjustment” (p. 145).  

Equation (1.2) below extends this model by including the dummy variable 𝑊𝑎𝑟𝑛𝑖𝑛𝑔 

that takes the value of unity for properties located in areas that received a warning 

during the wildfire. This variable is also interacted with the dummy variable, 𝐹𝑖𝑟𝑒, 

where the coefficient 𝜑2 on the interaction term represents the treatment effect 

associated with the warning (whilst simultaneously controlling for the effect of 

proximity): 

 ln 𝑃ℎ𝑡 =  𝛼 +  ∑ 𝛽𝑗𝑍ℎ𝑗

𝑗=1

+ 𝛾𝐹𝑖𝑟𝑒ℎ𝑡 + 𝜃1𝑃𝑟𝑜𝑥𝑖𝑚𝑖𝑡𝑦ℎ + 𝜃2𝑊𝑎𝑟𝑛𝑖𝑛𝑔ℎ

+ 𝜑1(𝐹𝑖𝑟𝑒ℎ𝑡 × 𝑃𝑟𝑜𝑥𝑖𝑚𝑖𝑡𝑦ℎ)  + 𝜑2(𝐹𝑖𝑟𝑒ℎ𝑡 × 𝑊𝑎𝑟𝑛𝑖𝑛𝑔ℎ) + ϕ𝑠

+  𝜎𝑡 + 𝜇ℎ𝑡 

(1.2) 

In what follows, we present the centrepiece of our study, i.e., the Waroona Fire of 2016, 

and then we move on investigate different definitions of proximity as well as different 

gradations of warning. 

1.4 THE WAROONA FIRE OF 2016 

Two wildfires, officially known as Perth Hills (PH) 68 and PH 69, occurred during the 

2015/16 bushfire season. Caused by a lightning strike at the Lane Pool Reserve, south 

of the Dwellingup State Forest, these originated after dark on the 5th of January 2016. 

The Bush Fire Brigade promptly dealt with fire PH 69. PH 68 however, went on to 

become what is commonly referred to as the Waroona Fire. When this fire crossed the 

Murray River, it became uncontrollable. The results were devastating for the 
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communities of Waroona, Yarloop, Preston Beach and surrounding areas: 69,165 ha 

were burnt resulting in 181 dwellings were destroyed, and 3,300 ha of forest 

plantations were lost. The town of Yarloop was the most severely affected with 166 

dwellings destroyed and two fatalities32 (Government of Western Australia, 2016).  

One much discussed aspect of the Waroona Fire is that, prior to its occurrence, the 

Department of Parks and Wildlife (DPAW) had failed to meet its hazard reduction 

burning (HRB) targets almost every year during the previous 12 years. In fact, due to 

the forest protection movement, HRB has consistently declined since the 1990s and, 

perhaps as a consequence, wildfires have become more frequent since the 2000s 

(Government of Western Australia, 2016). Several other factors also contributed to the 

spread of the Waroona Fire: the difficulty in accessing the fire area due to steep and 

rocky terrain, the very dry fuel, the sheer intensity of the fire and the presence of 

bauxite mining and rehabilitated forest areas that constrained fire control strategies 

(Government of Western Australia, 2016).  

The neighbouring town of Yarloop was particularly vulnerable to the wildfire due to 

the number of timber properties resulting in multiple ignitions in a short period of time 

(Government of Western Australia, 2016). Yarloop’s destruction can also be traced to 

poor fuel management (e.g., trees overhanging roads, long grass in some areas and 

forests unburned for up to 37 years), and strong evening downslope winds that spread 

burning embers (Government of Western Australia, 2016). 

Such evening downslope winds are known as ‘katabatic’ winds, and these played an 

important role in the spread of the fire. According to Peace et al. (2017), during the first 

 
32 No other town experienced fatalities (Government of Western Australia, 2016). 
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two days of the fire the wind was blowing from east to west burning through heavy 

fuels, and from a terrain of 500 m height, where the fire ignited, to a terrain of 0 m 

height (the coastline). Moreover, the authors indicate that during the morning of the 

7th of January of 2016, the winds were blowing in a south-southwesterly direction – see 

Figure 1.1 below. The path of the spread of the fire played a significant role in 

determining near-miss areas: households located to the east of the fire ignition point 

were at no significant risk because the fire spread entirely to the west. Indeed, no town 

to the east of the fire ignition point received warnings during the first two days of the 

fire (Government of Western Australia 2016). 

Figure 1.1: Reconstruction of the spread of the Waroona Fire 

Source: Peace, et al. (2017) 

 

1.5 DATA 

To study the Waroona Fire, we use GIS open access data provided by the Department 

of Biodiversity, Conservation, and Attractions (DBCA). In particular, we use the DBCA 

Fire History (DBCA-060) dataset published in shapefile format in the dataWA 
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website33. The shapefile contains information on the burnt area for all fires recorded 

in WA since 1922 and distinguishes different types of fires (wildfires, prescribed burns, 

plantation fires, and mining rehabilitation fires). Since our interest lies in the Waroona 

Fire, we filtered records of wildfires from 2016 with fire number 68 to identify the edge 

of the burn scar.  

Australian Property Monitors (APM) provided property market data, of which we keep 

residential properties only. Apart from the sale price and date, these data also include 

a range of property characteristics, which we include in the regression. The dataset also 

includes properties’ latitudes and longitudes, and these are used to obtain the 

Euclidean distance between each property and several neighbourhood, environmental 

and risk-moderating characteristics. For neighbourhood and environmental 

characteristics, we include distance to the nearest public beach and forested area, as 

well as to bus and rail public stops, schools, central Perth and urban land. Public 

beaches in WA were first identified by their name from the Surf Life Saving Western 

Australia website (https://www.mybeach.com.au/my-beach/). Then, we looked for 

latitude and longitude of each beach using Google Earth Pro. For risk moderating 

attributes we include distance to DFES stations with the capability to respond during 

a wildfire emergency and distance to the nearest sandy coastline to account for 

emergency evacuation sites. 

Proximity treatment and control groups are defined according to the Euclidean 

distance between each property and the nearest edge of the final boundary of the 

Waroona Fire burn scar. Given that the literature does not suggest a clear cut-off 

 
33 This is an online data catalogue provided by the Government of Western Australia in 
https://catalogue.data.wa.gov.au. 
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distance to define an area as being in close proximity to the fire area, we are flexible 

when defining the proximity treatment. More precisely, we use 4 definitions of 

proximity: a Euclidean distance of 0-2, 0-5, 0-10, and 0-20 km from the boundary of 

the burn scar. Thus, the dummy variable 𝑃𝑟𝑜𝑥𝑖𝑚𝑖𝑡𝑦 takes the value of unity if the 

Euclidean distance between the property and the nearest edge of the burn scar is within 

2, 5, 10, or 20 km. We estimate equations (1) and (2) under each of these four 

definitions to gain insights on the appropriate cut-off for a proximity effect. Because 

we are interested in the information effect and not in the direct-hit effect, we exclude 

all observations within the burn scar (at a 0 km distance). 

We are also flexible in our definition of warnings and investigate warnings of different 

gradations: emergency warning alerts, recommended evacuation alerts, and directed 

evacuation alerts issued during the first two days of the Waroona Fire. Spatial data on 

these warnings are taken from the Report of the Special Inquiry on the January 2016 

Waroona Fire (Government of Western Australia, 2016, pp. 159-192). Using this 

report, we identify towns expressly mentioned in emergency warning alerts. We also 

use the report to identify those areas enclosed by roads mentioned in the emergency 

warnings alerts. Then, we used a road network dataset provided by Geofabrik to 

identify those properties enclosed by the aforementioned roads. Towns that were 

issued evacuation alerts, either recommended or directed, are also identified from this 

report. Recommended evacuation alerts are issued by the Controlling Agency (DFES 

or DPAW) when the risk is not perceived as imminent and advice the community to 

evacuate but does not require to do so. If the risk is perceived as imminent and life-

threatening, a directed evacuation alert is issued (Government of Western Australia, 

2016, p. 185). To precisely identify the properties within the towns of interest, we use 
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the latitudes and longitudes of properties provided by APM and a shapefile with the 

town boundaries provided by the Government of Western Australia (i.e., the Localities 

(LGATE-234) dataset obtained from dataWA). Because we are interested in the near-

miss effect as an information effect, our main results consider emergency warning 

alerts only. Nevertheless, we estimate equation (2) using evacuation alerts as the 

highest gradation of warning and present these as additional results. 

Figure 1.2 provides a visual representation of treatment and control groups for our 

main results. For the proximity treatment of 0-2 km, all properties within the 0-2 km 

distance band are treated properties and the rest are observations in the control 

group34. The same logic applies for the 0-5, 0-10 and 0-20 km distance bands. For the 

warning treatment, we present two models: A and B. Model A includes as treated 

properties those that fall within the boundaries of towns expressly mentioned in the 

emergency warning alerts. For Model B, we expand the treatment group by also 

including those properties in areas partially or totally enclosed by roads named in 

warnings. Table 1.5.1 below shows two examples of emergency warning alerts. 

Examples #1 and #2 would apply for Model B, whereas only example #2 would apply 

for Model A. 

Table 1.5.1: Examples of emergency warning alerts 

# Date and time of issue Issued for 
1 06 January 2016, 22:25 “…people bounded by Willowdale Road, Johnston 

Road, Somers Road, Coronation Road and Nanga 
Brook Road including Waroona townsite in the Shire 
of Waroona.” 

2 07 January 2016, 19:35 “… people in the Harvey townsite and surrounding 
areas in the Shire of Harvey. This includes the towns 
of Wagerup, Yarloop and Cookernup.” 

Source: own elaboration. Based on Government of Western Australia (2016) 

 
34 Given that the map is a close-up of the fire area, not all observations in the control group can be 
visualized. 
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Figure 1.2: Map of treated properties 

 

The final dataset includes 51,055 observations, all of which are properties sold within 

203 suburbs of the Peel and Southwest regions of WA during 2010-2019. Table 1.5.2 

below shows the number of observations sold before and after the Waroona Fire for 

the treatment and control groups, and for the proximity and warning treatments, 

respectively. 
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Table 1.5.2: Number of observations for treatment and control groups 

 Before After 
 Treatment Control Treatment Control 

Treatment 1: Proximity (km)     

0 - 2 371 32,411 191 18,082 
0 - 5 454 32,328 229 18,044 

0 - 10 716 32,066 393 17,880 

0 - 20 1,170 31,612 655 17,618 

Treatment 2: Emergency warning alerts     

Model A 629 32,153 312 17,961 

Model B 666 32,116 333 17,940 

 

Our estimation equations include suburb fixed effects and year fixed effects. Suburb 

fixed effects enable us to control for differences in climate, crime incidence, local 

government management, and mean income levels, as well as for differences in the 

implicit prices of property characteristics caused by market segmentation. Annual time 

dummies control for autonomous trends in property prices35. For detailed information 

on data sources and summary statistics, see Appendix C: Data. 

1.6 RESULTS 

Our main results for estimated treatment effects are shown in Table 1.6.1 below. 

Model 1 includes only proximity to identify near-miss properties. However, whilst 

proximity has, as noted, been widely used to identify near-miss properties, in this 

instance there is no statistically significant price change for properties in any distance 

band. Nevertheless, when we include warnings as an additional treatment this result 

changes. More specifically, when warnings are included, we find a positive near-miss 

effect from proximity, significant at the five percent level, irrespective of how the 

 
35 Suburb fixed effects are dummies that take the value of unity if the property is located within the 
suburb, as indicated by APM property market data. Year fixed effects are time dummies that take the 
value of unity if the property was sold during the calendar year, also indicated by APM property market 
data. 
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warning treatment group is defined, at least for the 0-2 and 0-5 km distance bands. On 

the other hand, we find a near-miss effect from the warning treatment that is both 

negative and significant at the 10 percent level if, and only if, the warnings mentioned 

named locations (Model 2A) rather than enclosed areas (Model 2B). 

Table 1.6.1: Main Results 

 (1) (2) (3) (4) 
 0-2 km 0-5 km 0-10 km 0-20 km 
VARIABLES lnPrice lnPrice lnPrice lnPrice 
Model 1 
Fire x Proximity (�̂�) 0.0365 0.0284 -0.00633 0.00158 
 (0.0260) (0.0237) (0.0184) (0.0144) 
Model 2A 
Fire x Proximity (�̂�1) 0.0941** 0.0804** -0.0354 0.00219 
 (0.0409) (0.0391) (0.0448) (0.0201) 
Fire x Warning (�̂�2) -0.0579* -0.0559* 0.0342 -0.00282 
 (0.0319) (0.0335) (0.0491) (0.0283) 
Model 2B 
Fire x Proximity (�̂�1) 0.0824** 0.0815** -0.0619 0.000860 
 (0.0393) (0.0405) (0.0555) (0.0208) 
Fire x Warning (�̂�2) -0.0464 -0.0544 0.0622 -0.000057 
 (0.0297) (0.0336) (0.0588) (0.0284) 
For all Models: 
Observations 51,055 51,055 51,055 51,055 
Suburb FE Yes Yes Yes Yes 
Year FE Yes Yes Yes Yes 
Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. 
R2 is 0.614. 

It is interesting that, when we model the near-miss effect as a multi-dimensional effect 

that depends on proximity to the burn scar and emergency warning alerts, we get near-

miss effects that move in opposite directions. On one hand, properties located 0-2 and 

0-5 km from the burn scar experienced, on average, a price mark-up of 9.41% and 

8.04%, respectively, after the Waroona Fire, compared to properties located beyond 0-

2 and 0-5 km from the burn scar, respectively. On the other hand, properties in 

locations expressly mentioned in the emergency warning alerts, experienced a price 

discount of 5.79% and 5.59% (depending on the definition of the proximity distance 
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band) after the Waroona Fire, compared to properties in locations not expressly named 

in the emergency warning alerts.  

Nevertheless, the warning treatment effect fades away when the warning group 

dummy takes the value of unity for all properties in locations that were either expressly 

named in the warnings or enclosed by mentioned roads. In spite of this, the estimated 

proximity treatment effect remains positive and statistically significant at the five 

percent level, suggesting a price mark-up of 8.24% and 8.15% respectively, for 

properties located within 0-2 and 0-5 km from the burn scar.  

Models 1, 2A and 2B include a full set of control variables, as well as suburb and year 

FE. Although they are not the focus of attention, the coefficients for control variables 

generally display the expected sign and are statistically significant. For example, we 

find that properties with more bathrooms and bedrooms, and a swimming pool all 

command a significantly higher price. Interestingly, the value of a property increases 

with distance to a forested area. We think this might be due to the heightened risk of 

fire outweighing any amenity benefit. Similarly, properties closer to any type of DFES 

fire station (with the capability to respond during a fire emergency) are more 

expensive. The complete regression outputs for our main results can be found in 

Appendix A: Main Results. 

1.7 DISCUSSION 

The DD identification technique assumes that, in absence of treatment, the outcomes 

of treatment and control groups would have moved in tandem (Gertler, et al., 2016). 

For our purposes this means that, in absence of the fire event, the sale price of near-

miss and non near-miss properties would have moved in tandem. However, if the trend 

in sale prices for the control group were to differ from that of the treatment group, the 
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implementation of the DD approach would yield a biased estimate of the treatment 

response. The possible violation of the so-called ‘parallel trends’ assumption therefore 

represents the main threat to the validity of our results. 

Because the counterfactual is unobservable, it is not possible to directly test the parallel 

trends assumption. However, its plausibility is customarily gauged by comparing 

outcomes for the treatment and control groups in the pre-treatment period, i.e., 

comparing property prices across the near-miss and non near-miss groups prior to the 

Waroona Fire. 

Fortunately, our data does not call into question the parallel trends assumption for the 

log of sale price. Figure 1.3, Figure 1.4, and Figure 1.5, display the log of sale price, 

2010-2019, for our treatment and control groups. The treatment group is proximity to 

the burn scar of 0-2 and 0-5 km for Figure 1.3 and Figure 1.4, whereas the treatment 

group is being in a location expressly named in emergency warning alerts for Figure 

1.5. In all cases, the price trends appear parallel before the Waroona Fire (and as 

expected there is a clear change in trends from 2016 onwards). 

Figure 1.3: parallel trends check, 2 km proximity treatment 
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Figure 1.4: parallel trends check, 5 km proximity treatment 

 

Figure 1.5: parallel trends check, emergency warning 

 

As a further check on the credibility of our main findings, we undertake a placebo test 

involving the date of the wildfire. This test involves substituting the dummy variable 

𝐹𝑖𝑟𝑒 with a dummy variable 𝑃𝑙𝑎𝑐𝑒𝑏𝑜, which takes the value of unity for properties sold 

on or after 1st of January of 2014 (as opposed to the actual date of the wildfire: 6th of 

January 2016). The estimates of the treatment effects are all statistically insignificant, 

even at the 10 percent level, exactly as they should be (see Table 1.7.1 below). 
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 Table 1.7.1: Placebo test 

 (1) (2) (3) (4) 
 0-2 km 0-5 km 0-10 km 0-20 km 
VARIABLES lnPrice lnPrice lnPrice lnPrice 
Equation 1.1 
Placebo x Proximity 0.0259 0.0227 -0.00128 -0.00561 
 (0.0251) (0.0226) (0.0180) (0.0141) 
Equation 1.2, Model A 
Placebo x Proximity 0.0560 0.0548 -0.0282 -0.0156 
 (0.0386) (0.0371) (0.0481) (0.0202) 
Placebo x Warning -0.0304 -0.0343 0.0308 0.0183 
 (0.0298) (0.0318) (0.0518) (0.0278) 
Equation 1.2, Model B 
Placebo x Proximity 0.0494 0.0552 -0.0605 -0.0184 
 (0.0375) (0.0388) (0.0634) (0.0209) 
Placebo x Warning -0.0237 -0.0331 0.0642 0.0222 
 (0.0281) (0.0322) (0.0660) (0.0279) 
Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 

Next, we present additional results where we consider different gradations of warning. 

We examine two models: Models 2C and 2D. Model 2C examines the warning 

treatment effect triggered by directed evacuation alerts. As shown in Table 1.7.2 

below, both the warning and proximity treatment effects are statistically insignificant. 

Model 2D, on the other hand, expands the warning treatment group such that it also 

includes properties within towns that received recommended evacuation alerts, i.e., 

the warning treatment effect is that triggered by both directed and recommended 

evacuation alerts. For this model, the warning and proximity treatment effects hold the 

expected signs and are both statistically significant at the 5 percent level. In particular, 

we find that properties within 0-2 and 0-5 km from the burn scar experience a price 

mark-up of 5.2 and 5.7 percent, respectively, after the Waroona Fire. After accounting 

for a 0-2 and 0-5 km proximity effect, we find that properties that received evacuation 

alerts of any sort experienced a price discount of 6.0 and 6.5 percent, respectively. 

Nevertheless, when we account for 0-10 and 0-20 km proximity effects, the proximity 
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treatment effect is no longer significant, and the corresponding warning treatment 

effects remain at the expected magnitude but at a lower significance. 

Table 1.7.2: Additional Results 

 (1) (2) (3) (4) 
 0-2 km 0-5 km 0-10 km 0-20 km 
VARIABLES lnPrice lnPrice lnPrice lnPrice 
Model 2C 
Fire x Warning (�̂�2) -0.0121 0.00122 0.0452 0.0347 
 (0.0573) (0.0554) (0.0522) (0.0505) 
Fire x Proximity (�̂�1) 0.0468 0.0335 -0.0110 -0.000341 
 (0.0310) (0.0272) (0.0199) (0.0150) 
Model 2D 
Fire x Warning (�̂�2) -0.0604** -0.0646** -0.0663* -0.0596* 
 (0.0283) (0.0291) (0.0365) (0.0316) 
Fire x Proximity (�̂�1) 0.0566** 0.0516** 0.0242 0.0180 
 (0.0273) (0.0255) (0.0249) (0.0168) 
For both models: 
Observations 51,055 51,055 51,055 51,055 
Suburb FE Yes Yes Yes Yes 
Year FE Yes Yes Yes Yes 
Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 

 

In relation to these results, we believe that Model 2C is not statistically significant 

because the treatment group is too small. Only the towns of Preston Breach and 

Yarloop received directed evacuation alerts, amounting to only 145 observations in the 

treatment group (81 before the Waroona Fire and 64 after). On the other hand, the 

towns of Preston Beach, Yarloop, and Harvey received evacuation alerts of any sort 

(recommended and directed), amounting to 509 observations (327 before the Waroona 

Fire and 182 after). Additionally, given that the towns of Preston Beach, Yarloop, and 

Harvey also received emergency warning alerts, we interpret the higher significance of 

the warning treatment effect in Model D as the stronger capacity of evacuations to 

trigger vulnerability feelings. Indeed, evacuation alerts explicitly call for action, whilst 

emergency warning alerts do so implicitly. 
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We also investigated a model that contained all different types of warning together at 

the same time (results not shown). The findings from this model continue to display a 

negative effect from recommended evacuation that is depending on the distance band 

statistically significant at the one percent level.  

The key message contained in this study is that including spatial information on 

warnings makes a significant difference when it comes to identifying the near-miss 

effect of wildfire events. More specifically, we argue that the near-miss effect should be 

broken down into two components: a proximity treatment effect and a warning 

treatment effect. Otherwise, given that they overlap, the negative effect from the 

warning treatment obscures the positive effect from the proximity treatment.  

In the case of an event as large as the Waroona Fire, the near-miss experience is 

heterogeneous across the areas surrounding the burn scar, i.e., only some locations 

within 0-2 or 0-5 km from the burn scar received warnings (e.g., because they were in 

the path of the approaching fire, moving from the ignition point from the east to the 

west-southwest). Essentially, we refine the estimation of the near-miss effect by 

recognizing that near-miss areas are not limited to areas in proximity to the burn scar 

but also include areas where households received some type of warning that increased 

the saliency of the event. Our approach therefore investigates the near-miss effect 

differentiated by distinct near-miss experiences. On one hand, we argue that the 

proximity treatment effect reflects an ‘impure’ near-miss effect that arises from a 

change in amenity levels combined with a change in risk perception. On the other hand, 

we argue that – after controlling for proximity to the burn scar - the warning treatment 

effect reflects a ‘pure’ near-miss effect that arises from a change in risk perception. 
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We interpret our main findings as follows. We believe that the pure near-miss effect 

associated with warnings triggers longer-term feelings of vulnerability, manifesting in 

a property price discount. The price markup associated with the proximity to the burn 

scar is, however, the result of an impure information effect: a positive effect from a 

reduction in future risk and a negative disamenity effect. Bluntly, the fire event 

consumes fuel that reduces the probability of a future fire. Plausibly, the burnt 

landscape and associated loss of biodiversity results in a disamenity impact. 

Nevertheless, our results suggest that the risk-reduction effect dominates over any 

disamenity impact. Hansen and Naughton (2013) have suggested that a wildfire might 

even improve the view or increase the scope for recreational activities. Whilst this 

would reinforce the risk-reduction effect we regard the possibility as somewhat far-

fetched. In addition, it is possible that buyers and sellers perceived the Waroona Fire 

as a resilient near-miss event, precisely because the property escaped harm, and even 

more so if no warnings were issued for the town it belongs to. Regardless of what 

exactly causes property prices to increase with proximity to the burn scar of the 

Waroona Fire, we will, in CHAPTER 3, confirm this result, i.e., that property prices 

are generally higher when in close proximity to a burn scar, and that this is most likely 

explained by a risk reduction effect. 

Moreover, we believe that the different estimation results for the warning treatment 

effect between Model 2A and 2B is explained by the clarity of the communications. In 

particular, we believe that emergency warning alerts that expressly mentioned the 

towns at risk are clearer than those that refer to areas enclosed by roads. And this is 

supported by the Report of the Special Inquiry on the January 2016 Waroona Fire 

(Government of Western Australia, 2016, p. 186). This finding aligns with Dillon & 
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Tinsley (2016)’s study, which proposes that risk communication that highlights 

vulnerability may alter perceived probabilities of risk upwards. 

It is interesting to note that when we exclude warnings, with the exception of Hansen 

and Naughton (2013), our findings still differ to those contained in literature on near-

miss wildfire events. The literature suggests a statistically significant negative near-

miss effect from proximity to the burn scar whereas we find no effect significant even 

at the 10 percent level. However, with the exception of Loomis (2004), the literature 

deals with repeated and (in contrast to Waroona) small, fire events.  

It appears that DFES decisions made during the wildfire had a significant impact on 

the wealth of households. More specifically, after controlling for proximity treatments 

of 0-2 and 0-5 km from the burn scar, the warning treatment cost households 23,685 

and 22,867 Australian dollars (AUD), respectively – see Table 1.7.3 below. 

Table 1.7.3: Average treatment effects for Model 2A 

Treatment Group Mean price (AUD) 
Treatment 
effect (%) 

Treatment effect 
(AUD) 

0-2 km 420,132 9.41 + 39,534 

0-5 km 415,370 8.04 + 33,396 

Towns expressly mentioned in the 
emergency warning alerts 

409,069 [-5.79, -5.59] [-23,685, -22,867] 

1.8 CONCLUSION 

Current hedonic analyses of the near-miss phenomenon for wildfire events exhibit 

certain shortcomings. In some, there is no explicit identification strategy and no 

measure of the distance to the burn scar. More importantly, the literature fails to 

address the multidimensional nature of the near-miss effect. Our study recognises that 

not all properties in proximity to the burn scar have the same near-miss experience: 
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some receive explicit warnings. This is certainly the case for warnings issued by the 

DFES during the Waroona Fire.  

We contribute to the literature by combining these two types of information: 

information on proximity to the burn scar and on locations that received warnings. We 

find that including both sorts of information makes a significant difference when 

estimating the near-miss effect. We argue that the warning treatment effect arises from 

an increased risk perception triggered by vulnerability feelings. We argue that the 

proximity treatment effect entangles two opposing impacts: a positive impact from a 

diminished future risk and a negative disamenity impact. Since the proximity 

treatment effect is positive, our results suggest that the former dominates over the 

latter. The need to disentangle the different components of the proximity treatment 

effect remains a challenge. Clearly, it will be interesting to discover what impact HRB 

has on property prices.  

Climate change and population growth in fire-prone areas present an urgent challenge. 

Policymakers need to understand better whether wildfires serve as a wake-up call 

highlighting households’ vulnerability or simply reinforce feelings of resiliency among 

households in near-miss areas. Our findings suggest that warnings reinforce feelings 

of vulnerability. Because of the impact on property prices, authorities should however 

be careful not to issue blanket warnings. Furthermore, we find that warnings update 

risk perception most effectively when clearly communicated. 
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1.9 APPENDIX 

APPENDIX A: MAIN RESULTS 

Table 1.9.1: Estimations Results for Model 1 

 (1) (2) (3) (4) 
 0-2 km 0-5 km 0-10 km 0-20 km 
VARIABLES lnPrice lnPrice lnPrice lnPrice 
     
Fire -0.0667* -0.0672* -0.0663 -0.0665* 
 (0.0403) (0.0403) (0.0403) (0.0403) 
Proximity -0.0163 -0.0132 -0.00522 -0.00140 
 (0.0160) (0.0145) (0.0115) (0.00966) 
Fire#Proximity 0.0365 0.0284 -0.00633 0.00158 
 (0.0260) (0.0237) (0.0184) (0.0144) 
AreaSize 8.45e-07*** 8.45e-07*** 8.45e-07*** 8.45e-07*** 
 (6.13e-08) (6.13e-08) (6.13e-08) (6.13e-08) 
Baths 0.155*** 0.155*** 0.155*** 0.155*** 
 (0.00311) (0.00311) (0.00311) (0.00311) 
Bedrooms 0.0656*** 0.0656*** 0.0657*** 0.0657*** 
 (0.00217) (0.00217) (0.00217) (0.00217) 
HasStudy 0.0921*** 0.0921*** 0.0921*** 0.0921*** 
 (0.00314) (0.00314) (0.00314) (0.00314) 
HasSeparateDining 0.000248 0.000281 0.000250 0.000256 
 (0.00568) (0.00568) (0.00568) (0.00568) 
HasFamilyRoom 0.0465*** 0.0465*** 0.0465*** 0.0465*** 
 (0.00321) (0.00321) (0.00321) (0.00321) 
HasSunroom -0.00165 -0.00165 -0.00180 -0.00171 
 (0.0115) (0.0115) (0.0115) (0.0115) 
HasRumpusRoom 0.00888* 0.00888* 0.00884* 0.00885* 
 (0.00455) (0.00455) (0.00455) (0.00455) 
HasFireplace 0.0151*** 0.0151*** 0.0151*** 0.0151*** 
 (0.00498) (0.00498) (0.00498) (0.00498) 
HasWalkInWardrobe 0.00719* 0.00718* 0.00715* 0.00716* 
 (0.00426) (0.00426) (0.00426) (0.00426) 
HasCourtyard -0.00507 -0.00508 -0.00504 -0.00505 
 (0.00600) (0.00600) (0.00600) (0.00600) 
HasInternalLaundry 0.0279*** 0.0279*** 0.0278*** 0.0279*** 
 (0.00738) (0.00738) (0.00738) (0.00738) 
HasHeating 0.00984** 0.00985** 0.00982** 0.00984** 
 (0.00496) (0.00496) (0.00496) (0.00496) 
HasAirConditioning -0.00674** -0.00675** -0.00677** -0.00677** 
 (0.00289) (0.00289) (0.00289) (0.00289) 
HasBalcony 0.153*** 0.153*** 0.153*** 0.153*** 
 (0.00520) (0.00520) (0.00520) (0.00520) 
HasBarbeque 0.0187*** 0.0188*** 0.0187*** 0.0187*** 
 (0.00598) (0.00598) (0.00598) (0.00598) 
HasPolishedTimberFloor 0.0347*** 0.0347*** 0.0348*** 0.0347*** 
 (0.00627) (0.00627) (0.00627) (0.00627) 
HasEnsuite 0.0176*** 0.0176*** 0.0177*** 0.0177*** 
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Table 1.9.1: Estimations Results for Model 1 

 (1) (2) (3) (4) 
 0-2 km 0-5 km 0-10 km 0-20 km 
VARIABLES lnPrice lnPrice lnPrice lnPrice 
 (0.00363) (0.00363) (0.00363) (0.00363) 
HasSpa 0.0541*** 0.0541*** 0.0541*** 0.0541*** 
 (0.00566) (0.00566) (0.00566) (0.00566) 
HasGarage 0.0945*** 0.0945*** 0.0945*** 0.0945*** 
 (0.00292) (0.00292) (0.00292) (0.00292) 
HasLockUpGarage -0.0238*** -0.0238*** -0.0238*** -0.0238*** 
 (0.00565) (0.00565) (0.00565) (0.00565) 
HasPool 0.108*** 0.108*** 0.108*** 0.108*** 
 (0.00456) (0.00456) (0.00456) (0.00456) 
HasTennisCourt 0.0725** 0.0725** 0.0726** 0.0725** 
 (0.0339) (0.0339) (0.0339) (0.0339) 
HasAlarm 0.0879*** 0.0879*** 0.0879*** 0.0879*** 
 (0.00626) (0.00626) (0.00626) (0.00626) 
Apartment House 0.468*** 0.468*** 0.468*** 0.468*** 
 (0.0155) (0.0155) (0.0155) (0.0155) 
Cottage -0.259*** -0.259*** -0.259*** -0.259*** 
 (0.0658) (0.0658) (0.0658) (0.0658) 
Duplex -0.0954*** -0.0954*** -0.0953*** -0.0953*** 
 (0.00839) (0.00839) (0.00839) (0.00839) 
Flat -0.332*** -0.332*** -0.332*** -0.332*** 
 (0.0293) (0.0293) (0.0293) (0.0293) 
Patio House -0.160** -0.160** -0.160** -0.160** 
 (0.0750) (0.0750) (0.0750) (0.0750) 
Quadruplex 0.0187 0.0187 0.0188 0.0189 
 (0.129) (0.129) (0.129) (0.129) 
Semi -0.0128 -0.0127 -0.0128 -0.0128 
 (0.102) (0.102) (0.102) (0.102) 
Terrace 0.0130 0.0130 0.0128 0.0130 
 (0.0834) (0.0834) (0.0834) (0.0834) 
Townhouse -0.0747*** -0.0746*** -0.0747*** -0.0746*** 
 (0.00702) (0.00702) (0.00702) (0.00702) 
Triplex 0.370*** 0.370*** 0.370*** 0.370*** 
 (0.110) (0.110) (0.110) (0.110) 
Unit -0.130*** -0.130*** -0.130*** -0.130*** 
 (0.00633) (0.00633) (0.00633) (0.00633) 
Villa -0.369*** -0.369*** -0.370*** -0.369*** 
 (0.0443) (0.0443) (0.0443) (0.0443) 
Villa House -0.176*** -0.176*** -0.177*** -0.177*** 
 (0.0138) (0.0138) (0.0138) (0.0138) 
nd_bus_standard -1.09e-07 -1.09e-07 -1.01e-07 -1.07e-07 
 (1.65e-07) (1.65e-07) (1.65e-07) (1.66e-07) 
nd_bus_cat -4.27e-07 -4.11e-07 -2.58e-07 -4.29e-07 
 (1.72e-06) (1.72e-06) (1.73e-06) (1.74e-06) 
nd_rail -1.17e-07 -1.21e-07 -1.64e-07 -1.10e-07 
 (4.19e-07) (4.21e-07) (4.25e-07) (4.26e-07) 
nd_cas 2.01e-07 2.14e-07 3.43e-07 2.35e-07 
 (6.13e-07) (6.16e-07) (6.15e-07) (6.74e-07) 
nd_perth 5.03e-07 4.92e-07 3.79e-07 5.00e-07 
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Table 1.9.1: Estimations Results for Model 1 

 (1) (2) (3) (4) 
 0-2 km 0-5 km 0-10 km 0-20 km 
VARIABLES lnPrice lnPrice lnPrice lnPrice 
 (1.35e-06) (1.36e-06) (1.37e-06) (1.37e-06) 
urban -0.00745** -0.00747** -0.00746** -0.00734** 
 (0.00346) (0.00346) (0.00346) (0.00346) 
nd_forest 5.99e-06* 6.01e-06* 6.05e-06* 6.00e-06* 
 (3.09e-06) (3.09e-06) (3.09e-06) (3.09e-06) 
nd_wetland 2.46e-07 2.45e-07 2.43e-07 2.38e-07 
 (1.93e-07) (1.93e-07) (1.91e-07) (1.92e-07) 
nd_beach 1.82e-08 1.71e-08 1.66e-08 -2.94e-09 
 (3.06e-07) (3.04e-07) (2.98e-07) (3.01e-07) 
nd_sandycoastline -8.64e-08 -8.61e-08 -9.18e-08 -6.46e-08 
 (3.22e-07) (3.21e-07) (3.15e-07) (3.16e-07) 
nd_fstation -1.55e-06 -1.55e-06 -1.62e-06* -1.52e-06 
 (9.65e-07) (9.66e-07) (9.67e-07) (9.63e-07) 
2011 -0.0439*** -0.0439*** -0.0439*** -0.0439*** 
 (0.00628) (0.00628) (0.00628) (0.00628) 
2012 -0.0538*** -0.0538*** -0.0538*** -0.0538*** 
 (0.00595) (0.00595) (0.00595) (0.00595) 
2013 -0.0643*** -0.0643*** -0.0643*** -0.0643*** 
 (0.00571) (0.00572) (0.00571) (0.00572) 
2014 -0.0506*** -0.0506*** -0.0506*** -0.0506*** 
 (0.00577) (0.00577) (0.00577) (0.00577) 
2015 -0.0874*** -0.0874*** -0.0874*** -0.0874*** 
 (0.00593) (0.00593) (0.00593) (0.00593) 
2016 -0.0713* -0.0708* -0.0712* -0.0712* 
 (0.0404) (0.0404) (0.0404) (0.0404) 
2017 -0.114*** -0.113*** -0.114*** -0.114*** 
 (0.0408) (0.0408) (0.0408) (0.0408) 
2018 -0.147*** -0.146*** -0.146*** -0.146*** 
 (0.0408) (0.0408) (0.0408) (0.0408) 
2019 -0.142*** -0.142*** -0.142*** -0.142*** 
 (0.0408) (0.0408) (0.0408) (0.0408) 
Constant 12.63*** 12.63*** 12.63*** 12.63*** 
 (0.0266) (0.0266) (0.0266) (0.0266) 
     
Observations 51,055 51,055 51,055 51,055 
R-squared 0.614 0.614 0.614 0.614 
Suburb FE Yes Yes Yes Yes 
Year FE Yes Yes Yes Yes 

Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 

Table 1.9.2: Estimation Results for Model 2A 

 (1) (2) (3) (4) 
 0-2 km 0-5 km 0-10 km 0-20 km 
VARIABLES lnPrice lnPrice lnPrice lnPrice 
     
Fire -0.0662 -0.0670* -0.0660 -0.0664* 



72 
 

Table 1.9.2: Estimation Results for Model 2A 

 (1) (2) (3) (4) 
 0-2 km 0-5 km 0-10 km 0-20 km 
VARIABLES lnPrice lnPrice lnPrice lnPrice 
 (0.0403) (0.0403) (0.0403) (0.0403) 
Warning 0.00403 0.00313 -0.0239 -0.0144 
 (0.0183) (0.0195) (0.0336) (0.0179) 
Fire#Warning -0.0579* -0.0559* 0.0342 -0.00282 
 (0.0319) (0.0335) (0.0491) (0.0283) 
Proximity -0.0201 -0.0160 0.0159 0.00727 
 (0.0242) (0.0233) (0.0320) (0.0142) 
Fire#Proximity 0.0941** 0.0804** -0.0354 0.00219 
 (0.0409) (0.0391) (0.0448) (0.0201) 
AreaSize 8.45e-07*** 8.45e-07*** 8.44e-07*** 8.45e-07*** 
 (6.13e-08) (6.13e-08) (6.13e-08) (6.13e-08) 
Baths 0.155*** 0.155*** 0.155*** 0.155*** 
 (0.00311) (0.00311) (0.00311) (0.00311) 
Bedrooms 0.0656*** 0.0656*** 0.0657*** 0.0657*** 
 (0.00217) (0.00217) (0.00217) (0.00217) 
HasStudy 0.0921*** 0.0921*** 0.0921*** 0.0921*** 
 (0.00314) (0.00314) (0.00314) (0.00314) 
HasSeparateDining 0.000232 0.000314 0.000213 0.000254 
 (0.00568) (0.00568) (0.00569) (0.00568) 
HasFamilyRoom 0.0465*** 0.0465*** 0.0465*** 0.0465*** 
 (0.00321) (0.00321) (0.00321) (0.00321) 
HasSunroom -0.00180 -0.00178 -0.00173 -0.00177 
 (0.0115) (0.0115) (0.0115) (0.0115) 
HasRumpusRoom 0.00884* 0.00888* 0.00882* 0.00884* 
 (0.00455) (0.00455) (0.00456) (0.00456) 
HasFireplace 0.0151*** 0.0151*** 0.0151*** 0.0151*** 
 (0.00498) (0.00498) (0.00498) (0.00498) 
HasWalkInWardrobe 0.00718* 0.00715* 0.00717* 0.00717* 
 (0.00426) (0.00426) (0.00426) (0.00426) 
HasCourtyard -0.00500 -0.00501 -0.00505 -0.00504 
 (0.00600) (0.00600) (0.00600) (0.00600) 
HasInternalLaundry 0.0279*** 0.0279*** 0.0278*** 0.0278*** 
 (0.00738) (0.00738) (0.00738) (0.00738) 
HasHeating 0.00983** 0.00988** 0.00981** 0.00985** 
 (0.00496) (0.00496) (0.00496) (0.00496) 
HasAirConditioning -0.00671** -0.00673** -0.00676** -0.00676** 
 (0.00289) (0.00289) (0.00289) (0.00289) 
HasBalcony 0.153*** 0.153*** 0.153*** 0.153*** 
 (0.00520) (0.00520) (0.00520) (0.00520) 
HasBarbeque 0.0187*** 0.0188*** 0.0187*** 0.0187*** 
 (0.00598) (0.00598) (0.00598) (0.00598) 
HasPolishedTimberFloor 0.0348*** 0.0348*** 0.0348*** 0.0347*** 
 (0.00627) (0.00627) (0.00627) (0.00627) 
HasEnsuite 0.0176*** 0.0177*** 0.0176*** 0.0177*** 
 (0.00363) (0.00363) (0.00363) (0.00363) 
HasSpa 0.0542*** 0.0542*** 0.0541*** 0.0541*** 
 (0.00566) (0.00566) (0.00566) (0.00566) 
HasGarage 0.0945*** 0.0945*** 0.0945*** 0.0945*** 
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Table 1.9.2: Estimation Results for Model 2A 

 (1) (2) (3) (4) 
 0-2 km 0-5 km 0-10 km 0-20 km 
VARIABLES lnPrice lnPrice lnPrice lnPrice 
 (0.00292) (0.00292) (0.00292) (0.00292) 
HasLockUpGarage -0.0239*** -0.0239*** -0.0238*** -0.0238*** 
 (0.00565) (0.00565) (0.00565) (0.00565) 
HasPool 0.108*** 0.108*** 0.108*** 0.108*** 
 (0.00456) (0.00456) (0.00456) (0.00456) 
HasTennisCourt 0.0729** 0.0729** 0.0726** 0.0725** 
 (0.0339) (0.0339) (0.0339) (0.0339) 
HasAlarm 0.0879*** 0.0879*** 0.0879*** 0.0879*** 
 (0.00626) (0.00626) (0.00626) (0.00626) 
Apartment House 0.468*** 0.468*** 0.468*** 0.468*** 
 (0.0155) (0.0155) (0.0155) (0.0155) 
Cottage -0.260*** -0.260*** -0.259*** -0.259*** 
 (0.0658) (0.0658) (0.0658) (0.0658) 
Duplex -0.0953*** -0.0953*** -0.0953*** -0.0954*** 
 (0.00839) (0.00839) (0.00839) (0.00839) 
Flat -0.332*** -0.332*** -0.331*** -0.331*** 
 (0.0293) (0.0293) (0.0293) (0.0293) 
Patio House -0.160** -0.160** -0.160** -0.160** 
 (0.0750) (0.0750) (0.0750) (0.0750) 
Quadruplex 0.0188 0.0189 0.0188 0.0189 
 (0.129) (0.129) (0.129) (0.129) 
Semi -0.0127 -0.0126 -0.0127 -0.0127 
 (0.102) (0.102) (0.102) (0.102) 
Terrace 0.0129 0.0129 0.0128 0.0128 
 (0.0834) (0.0834) (0.0834) (0.0834) 
Townhouse -0.0748*** -0.0747*** -0.0747*** -0.0747*** 
 (0.00702) (0.00702) (0.00703) (0.00703) 
Triplex 0.370*** 0.370*** 0.370*** 0.370*** 
 (0.110) (0.110) (0.110) (0.110) 
Unit -0.131*** -0.130*** -0.130*** -0.130*** 
 (0.00633) (0.00633) (0.00633) (0.00633) 
Villa -0.370*** -0.370*** -0.370*** -0.369*** 
 (0.0443) (0.0443) (0.0443) (0.0443) 
Villa House -0.177*** -0.177*** -0.177*** -0.176*** 
 (0.0138) (0.0138) (0.0138) (0.0138) 
nd_bus_standard -8.60e-08 -8.92e-08 -9.92e-08 -1.12e-07 
 (1.67e-07) (1.66e-07) (1.65e-07) (1.66e-07) 
nd_bus_cat -1.81e-07 -2.19e-07 -2.57e-07 -4.05e-07 
 (1.74e-06) (1.73e-06) (1.73e-06) (1.74e-06) 
nd_rail -1.71e-07 -1.62e-07 -1.62e-07 -1.28e-07 
 (4.24e-07) (4.23e-07) (4.25e-07) (4.26e-07) 
nd_cas 1.84e-07 1.77e-07 2.87e-07 4.58e-08 
 (6.13e-07) (6.18e-07) (6.26e-07) (6.99e-07) 
nd_perth 3.13e-07 3.42e-07 3.77e-07 4.91e-07 
 (1.37e-06) (1.37e-06) (1.37e-06) (1.37e-06) 
urban -0.00732** -0.00730** -0.00738** -0.00762** 
 (0.00346) (0.00347) (0.00346) (0.00347) 
nd_forest 6.23e-06** 6.18e-06** 6.10e-06** 6.19e-06** 



74 
 

Table 1.9.2: Estimation Results for Model 2A 

 (1) (2) (3) (4) 
 0-2 km 0-5 km 0-10 km 0-20 km 
VARIABLES lnPrice lnPrice lnPrice lnPrice 
 (3.09e-06) (3.09e-06) (3.09e-06) (3.09e-06) 
nd_wetland 2.20e-07 2.23e-07 2.40e-07 2.58e-07 
 (1.95e-07) (1.94e-07) (1.91e-07) (1.93e-07) 
nd_beach -3.40e-08 -2.63e-08 1.14e-08 6.73e-08 
 (3.10e-07) (3.08e-07) (2.98e-07) (3.08e-07) 
nd_sandycoastline -4.26e-08 -4.87e-08 -8.62e-08 -1.46e-07 
 (3.25e-07) (3.23e-07) (3.15e-07) (3.25e-07) 
nd_fstation -1.61e-06* -1.61e-06* -1.62e-06* -1.62e-06* 
 (9.68e-07) (9.68e-07) (9.68e-07) (9.68e-07) 
2011 -0.0439*** -0.0439*** -0.0439*** -0.0439*** 
 (0.00628) (0.00628) (0.00628) (0.00628) 
2012 -0.0538*** -0.0538*** -0.0538*** -0.0538*** 
 (0.00595) (0.00595) (0.00595) (0.00595) 
2013 -0.0643*** -0.0643*** -0.0643*** -0.0643*** 
 (0.00571) (0.00572) (0.00572) (0.00572) 
2014 -0.0506*** -0.0506*** -0.0506*** -0.0506*** 
 (0.00577) (0.00577) (0.00577) (0.00577) 
2015 -0.0873*** -0.0874*** -0.0874*** -0.0873*** 
 (0.00593) (0.00593) (0.00593) (0.00593) 
2016 -0.0715* -0.0707* -0.0715* -0.0712* 
 (0.0404) (0.0404) (0.0404) (0.0404) 
2017 -0.114*** -0.113*** -0.114*** -0.114*** 
 (0.0408) (0.0408) (0.0408) (0.0408) 
2018 -0.147*** -0.146*** -0.147*** -0.146*** 
 (0.0408) (0.0408) (0.0408) (0.0408) 
2019 -0.142*** -0.141*** -0.142*** -0.142*** 
 (0.0408) (0.0408) (0.0408) (0.0408) 
Constant 12.63*** 12.63*** 12.63*** 12.63*** 
 (0.0266) (0.0266) (0.0266) (0.0266) 
     
Observations 51,055 51,055 51,055 51,055 
R-squared 0.614 0.614 0.614 0.614 
Suburb FE Yes Yes Yes Yes 
Year FE Yes Yes Yes Yes 

Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 

Table 1.9.3: Estimations Results for Model 2B 

 (1) (2) (3) (4) 
 0-2 km 0-5 km 0-10 km 0-20 km 
VARIABLES lnPrice lnPrice lnPrice lnPrice 
     
Fire -0.0661 -0.0669* -0.0664* -0.0667* 
 (0.0403) (0.0403) (0.0403) (0.0403) 
Warning 0.00435 0.00516 -0.0349 -0.0138 
 (0.0174) (0.0197) (0.0425) (0.0178) 
Fire#Warning -0.0464 -0.0544 0.0622 -5.74e-05 
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Table 1.9.3: Estimations Results for Model 2B 

 (1) (2) (3) (4) 
 0-2 km 0-5 km 0-10 km 0-20 km 
VARIABLES lnPrice lnPrice lnPrice lnPrice 
 (0.0297) (0.0336) (0.0588) (0.0284) 
Proximity -0.0209 -0.0185 0.0273 0.00701 
 (0.0233) (0.0240) (0.0411) (0.0145) 
Fire#Proximity 0.0824** 0.0815** -0.0619 0.000860 
 (0.0393) (0.0405) (0.0555) (0.0208) 
AreaSize 8.45e-07*** 8.45e-07*** 8.44e-07*** 8.45e-07*** 
 (6.13e-08) (6.13e-08) (6.13e-08) (6.13e-08) 
Baths 0.155*** 0.155*** 0.155*** 0.155*** 
 (0.00311) (0.00311) (0.00311) (0.00311) 
Bedrooms 0.0656*** 0.0656*** 0.0657*** 0.0657*** 
 (0.00217) (0.00217) (0.00217) (0.00217) 
HasStudy 0.0921*** 0.0921*** 0.0921*** 0.0921*** 
 (0.00314) (0.00314) (0.00314) (0.00314) 
HasSeparateDining 0.000217 0.000296 0.000224 0.000262 
 (0.00568) (0.00568) (0.00569) (0.00568) 
HasFamilyRoom 0.0465*** 0.0465*** 0.0465*** 0.0465*** 
 (0.00321) (0.00321) (0.00321) (0.00321) 
HasSunroom -0.00172 -0.00171 -0.00176 -0.00175 
 (0.0115) (0.0115) (0.0115) (0.0115) 
HasRumpusRoom 0.00885* 0.00888* 0.00881* 0.00884* 
 (0.00455) (0.00455) (0.00456) (0.00456) 
HasFireplace 0.0152*** 0.0151*** 0.0150*** 0.0151*** 
 (0.00498) (0.00498) (0.00498) (0.00498) 
HasWalkInWardrobe 0.00718* 0.00715* 0.00719* 0.00717* 
 (0.00426) (0.00426) (0.00426) (0.00426) 
HasCourtyard -0.00503 -0.00504 -0.00504 -0.00505 
 (0.00600) (0.00600) (0.00600) (0.00600) 
HasInternalLaundry 0.0279*** 0.0279*** 0.0278*** 0.0278*** 
 (0.00738) (0.00738) (0.00738) (0.00738) 
HasHeating 0.00981** 0.00985** 0.00983** 0.00984** 
 (0.00496) (0.00496) (0.00496) (0.00496) 
HasAirConditioning -0.00671** -0.00673** -0.00676** -0.00676** 
 (0.00289) (0.00289) (0.00289) (0.00289) 
HasBalcony 0.153*** 0.153*** 0.153*** 0.153*** 
 (0.00520) (0.00520) (0.00520) (0.00520) 
HasBarbeque 0.0187*** 0.0187*** 0.0188*** 0.0187*** 
 (0.00598) (0.00598) (0.00598) (0.00598) 
HasPolishedTimberFloor 0.0348*** 0.0348*** 0.0347*** 0.0347*** 
 (0.00627) (0.00627) (0.00627) (0.00627) 
HasEnsuite 0.0176*** 0.0176*** 0.0176*** 0.0177*** 
 (0.00363) (0.00363) (0.00363) (0.00363) 
HasSpa 0.0542*** 0.0542*** 0.0541*** 0.0541*** 
 (0.00566) (0.00566) (0.00566) (0.00566) 
HasGarage 0.0945*** 0.0945*** 0.0945*** 0.0945*** 
 (0.00292) (0.00292) (0.00292) (0.00292) 
HasLockUpGarage -0.0239*** -0.0239*** -0.0238*** -0.0238*** 
 (0.00565) (0.00565) (0.00565) (0.00565) 
HasPool 0.108*** 0.108*** 0.108*** 0.108*** 
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Table 1.9.3: Estimations Results for Model 2B 

 (1) (2) (3) (4) 
 0-2 km 0-5 km 0-10 km 0-20 km 
VARIABLES lnPrice lnPrice lnPrice lnPrice 
 (0.00456) (0.00456) (0.00456) (0.00456) 
HasTennisCourt 0.0728** 0.0729** 0.0726** 0.0725** 
 (0.0339) (0.0339) (0.0339) (0.0339) 
HasAlarm 0.0879*** 0.0879*** 0.0878*** 0.0879*** 
 (0.00626) (0.00626) (0.00626) (0.00626) 
Apartment House 0.468*** 0.468*** 0.468*** 0.468*** 
 (0.0155) (0.0155) (0.0155) (0.0155) 
Cottage -0.260*** -0.260*** -0.259*** -0.259*** 
 (0.0658) (0.0658) (0.0658) (0.0658) 
Duplex -0.0953*** -0.0953*** -0.0953*** -0.0954*** 
 (0.00839) (0.00839) (0.00839) (0.00839) 
Flat -0.332*** -0.332*** -0.331*** -0.331*** 
 (0.0293) (0.0293) (0.0293) (0.0293) 
Patio House -0.160** -0.160** -0.160** -0.160** 
 (0.0750) (0.0750) (0.0750) (0.0750) 
Quadruplex 0.0188 0.0189 0.0188 0.0189 
 (0.129) (0.129) (0.129) (0.129) 
Semi -0.0127 -0.0127 -0.0128 -0.0128 
 (0.102) (0.102) (0.102) (0.102) 
Terrace 0.0129 0.0129 0.0128 0.0128 
 (0.0834) (0.0834) (0.0834) (0.0834) 
Townhouse -0.0748*** -0.0747*** -0.0746*** -0.0747*** 
 (0.00703) (0.00702) (0.00703) (0.00703) 
Triplex 0.370*** 0.370*** 0.370*** 0.370*** 
 (0.110) (0.110) (0.110) (0.110) 
Unit -0.131*** -0.130*** -0.130*** -0.130*** 
 (0.00633) (0.00633) (0.00633) (0.00633) 
Villa -0.370*** -0.370*** -0.370*** -0.370*** 
 (0.0443) (0.0443) (0.0443) (0.0443) 
Villa House -0.177*** -0.177*** -0.176*** -0.176*** 
 (0.0138) (0.0138) (0.0138) (0.0138) 
nd_bus_standard -9.43e-08 -9.41e-08 -1.01e-07 -1.13e-07 
 (1.67e-07) (1.66e-07) (1.65e-07) (1.66e-07) 
nd_bus_cat -2.31e-07 -2.36e-07 -2.60e-07 -4.00e-07 
 (1.74e-06) (1.73e-06) (1.73e-06) (1.74e-06) 
nd_rail -1.65e-07 -1.63e-07 -1.63e-07 -1.31e-07 
 (4.24e-07) (4.24e-07) (4.25e-07) (4.27e-07) 
nd_cas 2.44e-07 2.35e-07 3.29e-07 1.11e-07 
 (6.14e-07) (6.16e-07) (6.16e-07) (6.88e-07) 
nd_perth 3.55e-07 3.59e-07 3.80e-07 4.90e-07 
 (1.37e-06) (1.37e-06) (1.37e-06) (1.37e-06) 
urban -0.00743** -0.00740** -0.00743** -0.00768** 
 (0.00346) (0.00347) (0.00346) (0.00348) 
nd_forest 6.14e-06** 6.12e-06** 6.07e-06** 6.14e-06** 
 (3.09e-06) (3.09e-06) (3.09e-06) (3.09e-06) 
nd_wetland 2.31e-07 2.29e-07 2.42e-07 2.59e-07 
 (1.94e-07) (1.94e-07) (1.91e-07) (1.93e-07) 
nd_beach -1.10e-08 -1.32e-08 1.47e-08 6.81e-08 
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Table 1.9.3: Estimations Results for Model 2B 

 (1) (2) (3) (4) 
 0-2 km 0-5 km 0-10 km 0-20 km 
VARIABLES lnPrice lnPrice lnPrice lnPrice 
 (3.08e-07) (3.07e-07) (2.99e-07) (3.10e-07) 
nd_sandycoastline -6.42e-08 -6.15e-08 -8.92e-08 -1.46e-07 
 (3.24e-07) (3.23e-07) (3.15e-07) (3.27e-07) 
nd_fstation -1.61e-06* -1.61e-06* -1.62e-06* -1.62e-06* 
 (9.69e-07) (9.69e-07) (9.69e-07) (9.69e-07) 
2011 -0.0439*** -0.0439*** -0.0439*** -0.0439*** 
 (0.00628) (0.00628) (0.00628) (0.00628) 
2012 -0.0538*** -0.0538*** -0.0538*** -0.0538*** 
 (0.00595) (0.00595) (0.00595) (0.00595) 
2013 -0.0643*** -0.0643*** -0.0643*** -0.0643*** 
 (0.00572) (0.00572) (0.00572) (0.00572) 
2014 -0.0506*** -0.0506*** -0.0506*** -0.0506*** 
 (0.00577) (0.00577) (0.00577) (0.00577) 
2015 -0.0873*** -0.0874*** -0.0874*** -0.0874*** 
 (0.00593) (0.00593) (0.00593) (0.00593) 
2016 -0.0716* -0.0708* -0.0711* -0.0710* 
 (0.0404) (0.0404) (0.0404) (0.0404) 
2017 -0.114*** -0.113*** -0.114*** -0.113*** 
 (0.0408) (0.0408) (0.0408) (0.0408) 
2018 -0.147*** -0.146*** -0.146*** -0.146*** 
 (0.0408) (0.0408) (0.0408) (0.0408) 
2019 -0.142*** -0.142*** -0.142*** -0.142*** 
 (0.0408) (0.0408) (0.0408) (0.0408) 
Constant 12.63*** 12.63*** 12.63*** 12.63*** 
 (0.0266) (0.0266) (0.0266) (0.0266) 
     
Observations 51,055 51,055 51,055 51,055 
R-squared 0.614 0.614 0.614 0.614 
Suburb FE Yes Yes Yes Yes 
Year FE Yes Yes Yes Yes 

Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 

APPENDIX B: ADDITIONAL RESULTS 

Table 1.9.4: Estimations Results for Model 2C 

 (1) (2) (3) (4) 
 0-2 km 0-5 km 0-10 km 0-20 km 
VARIABLES lnPrice lnPrice lnPrice lnPrice 
     
Fire -0.0667* -0.0669* -0.0661 -0.0664* 
 (0.0403) (0.0403) (0.0403) (0.0403) 
evacuation_directed -0.0729* -0.0731* -0.0807** -0.0789** 
 (0.0401) (0.0391) (0.0380) (0.0371) 
Fire#evacuation_directed -0.0121 0.00122 0.0452 0.0347 
 (0.0573) (0.0554) (0.0522) (0.0505) 
Proximity -0.00528 -0.00484 0.000956 -6.89e-05 
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Table 1.9.4: Estimations Results for Model 2C 

 (1) (2) (3) (4) 
 0-2 km 0-5 km 0-10 km 0-20 km 
VARIABLES lnPrice lnPrice lnPrice lnPrice 
 (0.0175) (0.0155) (0.0120) (0.00978) 
Fire#Proximity 0.0468 0.0335 -0.0110 -0.000341 
 (0.0310) (0.0272) (0.0199) (0.0150) 
AreaSize 8.44e-07*** 8.44e-07*** 8.44e-07*** 8.45e-07*** 
 (6.13e-08) (6.13e-08) (6.13e-08) (6.13e-08) 
Baths 0.155*** 0.155*** 0.155*** 0.155*** 
 (0.00311) (0.00311) (0.00311) (0.00311) 
Bedrooms 0.0657*** 0.0657*** 0.0657*** 0.0657*** 
 (0.00217) (0.00217) (0.00217) (0.00217) 
HasStudy 0.0921*** 0.0921*** 0.0921*** 0.0921*** 
 (0.00314) (0.00314) (0.00314) (0.00314) 
HasSeparateDining 0.000253 0.000275 0.000199 0.000218 
 (0.00568) (0.00568) (0.00568) (0.00568) 
HasFamilyRoom 0.0465*** 0.0465*** 0.0465*** 0.0465*** 
 (0.00321) (0.00321) (0.00321) (0.00321) 
HasSunroom -0.00170 -0.00171 -0.00183 -0.00178 
 (0.0115) (0.0115) (0.0115) (0.0115) 
HasRumpusRoom 0.00896** 0.00897** 0.00890* 0.00891* 
 (0.00455) (0.00455) (0.00455) (0.00455) 
HasFireplace 0.0151*** 0.0151*** 0.0151*** 0.0151*** 
 (0.00498) (0.00498) (0.00498) (0.00498) 
HasWalkInWardrobe 0.00722* 0.00719* 0.00716* 0.00717* 
 (0.00426) (0.00426) (0.00426) (0.00426) 
HasCourtyard -0.00508 -0.00508 -0.00507 -0.00508 
 (0.00600) (0.00600) (0.00600) (0.00600) 
HasInternalLaundry 0.0277*** 0.0277*** 0.0277*** 0.0277*** 
 (0.00738) (0.00738) (0.00738) (0.00738) 
HasHeating 0.00987** 0.00989** 0.00986** 0.00987** 
 (0.00496) (0.00496) (0.00496) (0.00496) 
HasAirConditioning -0.00671** -0.00673** -0.00677** -0.00676** 
 (0.00289) (0.00289) (0.00289) (0.00289) 
HasBalcony 0.153*** 0.153*** 0.153*** 0.153*** 
 (0.00520) (0.00520) (0.00520) (0.00520) 
HasBarbeque 0.0187*** 0.0187*** 0.0187*** 0.0187*** 
 (0.00598) (0.00598) (0.00598) (0.00598) 
HasPolishedTimberFloor 0.0346*** 0.0346*** 0.0347*** 0.0346*** 
 (0.00627) (0.00627) (0.00627) (0.00627) 
HasEnsuite 0.0176*** 0.0176*** 0.0177*** 0.0177*** 
 (0.00363) (0.00363) (0.00363) (0.00363) 
HasSpa 0.0541*** 0.0541*** 0.0541*** 0.0541*** 
 (0.00566) (0.00566) (0.00566) (0.00566) 
HasGarage 0.0945*** 0.0945*** 0.0945*** 0.0945*** 
 (0.00292) (0.00292) (0.00292) (0.00292) 
HasLockUpGarage -0.0237*** -0.0237*** -0.0237*** -0.0237*** 
 (0.00565) (0.00565) (0.00565) (0.00565) 
HasPool 0.108*** 0.108*** 0.108*** 0.108*** 
 (0.00456) (0.00456) (0.00456) (0.00456) 
HasTennisCourt 0.0728** 0.0728** 0.0727** 0.0727** 
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Table 1.9.4: Estimations Results for Model 2C 

 (1) (2) (3) (4) 
 0-2 km 0-5 km 0-10 km 0-20 km 
VARIABLES lnPrice lnPrice lnPrice lnPrice 
 (0.0339) (0.0339) (0.0339) (0.0339) 
HasAlarm 0.0878*** 0.0878*** 0.0878*** 0.0878*** 
 (0.00626) (0.00626) (0.00626) (0.00626) 
Apartment House 0.468*** 0.468*** 0.468*** 0.468*** 
 (0.0155) (0.0155) (0.0155) (0.0155) 
Cottage -0.260*** -0.260*** -0.260*** -0.260*** 
 (0.0658) (0.0658) (0.0658) (0.0658) 
Duplex -0.0955*** -0.0955*** -0.0954*** -0.0954*** 
 (0.00839) (0.00839) (0.00839) (0.00839) 
Flat -0.332*** -0.332*** -0.332*** -0.332*** 
 (0.0293) (0.0293) (0.0293) (0.0293) 
Patio House -0.160** -0.160** -0.160** -0.160** 
 (0.0750) (0.0750) (0.0750) (0.0750) 
Quadruplex 0.0188 0.0189 0.0189 0.0189 
 (0.129) (0.129) (0.129) (0.129) 
Semi -0.0134 -0.0134 -0.0135 -0.0135 
 (0.102) (0.102) (0.102) (0.102) 
Terrace 0.0131 0.0131 0.0128 0.0129 
 (0.0834) (0.0834) (0.0834) (0.0834) 
Townhouse -0.0746*** -0.0746*** -0.0747*** -0.0746*** 
 (0.00702) (0.00702) (0.00702) (0.00702) 
Triplex 0.370*** 0.370*** 0.370*** 0.370*** 
 (0.110) (0.110) (0.110) (0.110) 
Unit -0.130*** -0.130*** -0.130*** -0.130*** 
 (0.00633) (0.00633) (0.00633) (0.00633) 
Villa -0.370*** -0.370*** -0.370*** -0.370*** 
 (0.0443) (0.0443) (0.0443) (0.0443) 
Villa House -0.177*** -0.177*** -0.176*** -0.176*** 
 (0.0138) (0.0138) (0.0138) (0.0138) 
nd_bus_standard -1.39e-07 -1.40e-07 -1.35e-07 -1.39e-07 
 (1.66e-07) (1.66e-07) (1.66e-07) (1.67e-07) 
nd_bus_cat -5.05e-07 -5.08e-07 -3.67e-07 -4.36e-07 
 (1.72e-06) (1.72e-06) (1.73e-06) (1.74e-06) 
nd_rail -9.99e-08 -1.04e-07 -1.51e-07 -1.30e-07 
 (4.19e-07) (4.21e-07) (4.25e-07) (4.26e-07) 
nd_cas 1.03e-06 1.01e-06 1.06e-06 1.03e-06 
 (7.06e-07) (7.07e-07) (7.11e-07) (7.70e-07) 
nd_perth 5.61e-07 5.66e-07 4.68e-07 5.18e-07 
 (1.35e-06) (1.36e-06) (1.37e-06) (1.37e-06) 
urban -0.00704** -0.00709** -0.00723** -0.00719** 
 (0.00347) (0.00347) (0.00346) (0.00346) 
nd_forest 5.91e-06* 5.87e-06* 5.91e-06* 5.88e-06* 
 (3.09e-06) (3.09e-06) (3.09e-06) (3.09e-06) 
nd_wetland 2.73e-07 2.77e-07 2.84e-07 2.84e-07 
 (1.93e-07) (1.93e-07) (1.92e-07) (1.93e-07) 
nd_beach 1.08e-07 1.20e-07 1.37e-07 1.35e-07 
 (3.08e-07) (3.07e-07) (3.04e-07) (3.07e-07) 
nd_sandycoastline -1.86e-07 -1.97e-07 -2.19e-07 -2.15e-07 
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Table 1.9.4: Estimations Results for Model 2C 

 (1) (2) (3) (4) 
 0-2 km 0-5 km 0-10 km 0-20 km 
VARIABLES lnPrice lnPrice lnPrice lnPrice 
 (3.25e-07) (3.24e-07) (3.21e-07) (3.23e-07) 
nd_fstation -1.60e-06* -1.62e-06* -1.70e-06* -1.67e-06* 
 (9.66e-07) (9.66e-07) (9.68e-07) (9.65e-07) 
2011 -0.0439*** -0.0438*** -0.0438*** -0.0438*** 
 (0.00628) (0.00628) (0.00628) (0.00628) 
2012 -0.0538*** -0.0538*** -0.0538*** -0.0538*** 
 (0.00595) (0.00595) (0.00595) (0.00595) 
2013 -0.0643*** -0.0643*** -0.0642*** -0.0642*** 
 (0.00571) (0.00571) (0.00572) (0.00572) 
2014 -0.0505*** -0.0505*** -0.0504*** -0.0504*** 
 (0.00577) (0.00577) (0.00577) (0.00577) 
2015 -0.0873*** -0.0873*** -0.0873*** -0.0873*** 
 (0.00593) (0.00593) (0.00593) (0.00593) 
2016 -0.0713* -0.0711* -0.0713* -0.0713* 
 (0.0404) (0.0404) (0.0404) (0.0404) 
2017 -0.114*** -0.114*** -0.114*** -0.114*** 
 (0.0408) (0.0408) (0.0408) (0.0408) 
2018 -0.146*** -0.146*** -0.146*** -0.146*** 
 (0.0408) (0.0408) (0.0408) (0.0408) 
2019 -0.142*** -0.142*** -0.142*** -0.142*** 
 (0.0408) (0.0408) (0.0408) (0.0408) 

Constant 12.63*** 12.63*** 12.63*** 12.63*** 
 (0.0266) (0.0266) (0.0266) (0.0266) 
     
Observations 51,055 51,055 51,055 51,055 
R-squared 0.614 0.614 0.614 0.614 
Suburb FE Yes Yes Yes Yes 
Year FE Yes Yes Yes Yes 

Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 

Table 1.9.5: Estimation Results for Model 2D 

 (1) (2) (3) (4) 
 0-2 km 0-5 km 0-10 km 0-20 km 
VARIABLES lnPrice lnPrice lnPrice lnPrice 
     
Fire -0.0663 -0.0669* -0.0665* -0.0666* 
 (0.0403) (0.0403) (0.0403) (0.0403) 
evacuation_all -0.00433 -0.00327 -0.00458 -0.00687 
 (0.0170) (0.0174) (0.0221) (0.0190) 
Fire#evacuation_all -0.0604** -0.0646** -0.0663* -0.0596* 
 (0.0283) (0.0291) (0.0365) (0.0316) 
Proximity -0.0168 -0.0137 -0.00364 -0.000273 
 (0.0163) (0.0151) (0.0152) (0.0110) 
Fire#Proximity 0.0566** 0.0516** 0.0242 0.0180 
 (0.0273) (0.0255) (0.0249) (0.0168) 
AreaSize 8.44e-07*** 8.44e-07*** 8.44e-07*** 8.44e-07*** 
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Table 1.9.5: Estimation Results for Model 2D 

 (1) (2) (3) (4) 
 0-2 km 0-5 km 0-10 km 0-20 km 
VARIABLES lnPrice lnPrice lnPrice lnPrice 
 (6.13e-08) (6.13e-08) (6.13e-08) (6.13e-08) 
Baths 0.155*** 0.155*** 0.155*** 0.155*** 
 (0.00311) (0.00311) (0.00311) (0.00311) 
Bedrooms 0.0657*** 0.0657*** 0.0657*** 0.0657*** 
 (0.00217) (0.00217) (0.00217) (0.00217) 
HasStudy 0.0921*** 0.0921*** 0.0921*** 0.0922*** 
 (0.00314) (0.00314) (0.00314) (0.00314) 
HasSeparateDining 0.000268 0.000323 0.000298 0.000303 
 (0.00568) (0.00568) (0.00568) (0.00568) 
HasFamilyRoom 0.0465*** 0.0465*** 0.0465*** 0.0465*** 
 (0.00321) (0.00321) (0.00321) (0.00321) 
HasSunroom -0.00187 -0.00186 -0.00190 -0.00189 
 (0.0115) (0.0115) (0.0115) (0.0115) 
HasRumpusRoom 0.00887* 0.00889* 0.00885* 0.00886* 
 (0.00455) (0.00455) (0.00455) (0.00455) 
HasFireplace 0.0151*** 0.0151*** 0.0151*** 0.0151*** 
 (0.00498) (0.00498) (0.00498) (0.00498) 
HasWalkInWardrobe 0.00719* 0.00717* 0.00716* 0.00715* 
 (0.00426) (0.00426) (0.00426) (0.00426) 
HasCourtyard -0.00499 -0.00500 -0.00499 -0.00499 
 (0.00600) (0.00600) (0.00600) (0.00600) 
HasInternalLaundry 0.0278*** 0.0278*** 0.0278*** 0.0278*** 
 (0.00738) (0.00738) (0.00738) (0.00738) 
HasHeating 0.00981** 0.00984** 0.00983** 0.00984** 
 (0.00495) (0.00495) (0.00496) (0.00496) 
HasAirConditioning -0.00667** -0.00668** -0.00670** -0.00670** 
 (0.00289) (0.00289) (0.00289) (0.00289) 
HasBalcony 0.153*** 0.153*** 0.153*** 0.153*** 
 (0.00520) (0.00520) (0.00520) (0.00520) 
HasBarbeque 0.0187*** 0.0187*** 0.0187*** 0.0186*** 
 (0.00598) (0.00598) (0.00598) (0.00598) 
HasPolishedTimberFloor 0.0348*** 0.0348*** 0.0348*** 0.0347*** 
 (0.00627) (0.00627) (0.00627) (0.00627) 
HasEnsuite 0.0176*** 0.0176*** 0.0177*** 0.0177*** 
 (0.00363) (0.00363) (0.00363) (0.00363) 
HasSpa 0.0542*** 0.0542*** 0.0542*** 0.0542*** 
 (0.00566) (0.00566) (0.00566) (0.00566) 
HasGarage 0.0945*** 0.0945*** 0.0945*** 0.0945*** 
 (0.00292) (0.00292) (0.00292) (0.00292) 
HasLockUpGarage -0.0238*** -0.0238*** -0.0238*** -0.0238*** 
 (0.00565) (0.00565) (0.00565) (0.00565) 
HasPool 0.108*** 0.108*** 0.108*** 0.108*** 
 (0.00456) (0.00456) (0.00456) (0.00456) 
HasTennisCourt 0.0733** 0.0733** 0.0732** 0.0732** 
 (0.0339) (0.0339) (0.0339) (0.0339) 
HasAlarm 0.0879*** 0.0879*** 0.0879*** 0.0878*** 
 (0.00626) (0.00626) (0.00626) (0.00626) 
Apartment House 0.468*** 0.468*** 0.468*** 0.468*** 
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Table 1.9.5: Estimation Results for Model 2D 

 (1) (2) (3) (4) 
 0-2 km 0-5 km 0-10 km 0-20 km 
VARIABLES lnPrice lnPrice lnPrice lnPrice 
 (0.0155) (0.0155) (0.0155) (0.0155) 
Cottage -0.260*** -0.260*** -0.259*** -0.259*** 
 (0.0658) (0.0658) (0.0658) (0.0658) 
Duplex -0.0953*** -0.0953*** -0.0953*** -0.0953*** 
 (0.00839) (0.00839) (0.00839) (0.00839) 
Flat -0.332*** -0.332*** -0.331*** -0.331*** 
 (0.0293) (0.0293) (0.0293) (0.0293) 
Patio House -0.160** -0.160** -0.160** -0.160** 
 (0.0750) (0.0750) (0.0750) (0.0750) 
Quadruplex 0.0188 0.0189 0.0189 0.0190 
 (0.129) (0.129) (0.129) (0.129) 
Semi -0.0127 -0.0127 -0.0128 -0.0127 
 (0.102) (0.102) (0.102) (0.102) 
Terrace 0.0129 0.0129 0.0129 0.0129 
 (0.0834) (0.0834) (0.0834) (0.0834) 
Townhouse -0.0747*** -0.0746*** -0.0746*** -0.0746*** 
 (0.00702) (0.00702) (0.00702) (0.00702) 
Triplex 0.370*** 0.370*** 0.370*** 0.370*** 
 (0.110) (0.110) (0.110) (0.110) 
Unit -0.130*** -0.130*** -0.130*** -0.130*** 
 (0.00633) (0.00633) (0.00633) (0.00633) 
Villa -0.370*** -0.370*** -0.370*** -0.370*** 
 (0.0443) (0.0443) (0.0443) (0.0443) 
Villa House -0.177*** -0.177*** -0.177*** -0.177*** 
 (0.0138) (0.0138) (0.0138) (0.0138) 
nd_bus_standard -8.18e-08 -8.20e-08 -8.69e-08 -9.60e-08 
 (1.66e-07) (1.66e-07) (1.66e-07) (1.66e-07) 
nd_bus_cat -6.36e-08 -8.24e-08 -1.48e-07 -2.48e-07 
 (1.73e-06) (1.73e-06) (1.73e-06) (1.75e-06) 
nd_rail -1.96e-07 -1.89e-07 -1.71e-07 -1.47e-07 
 (4.22e-07) (4.23e-07) (4.25e-07) (4.26e-07) 
nd_cas 4.80e-07 4.68e-07 4.88e-07 3.38e-07 
 (6.27e-07) (6.28e-07) (6.20e-07) (6.75e-07) 
nd_perth 2.20e-07 2.32e-07 2.81e-07 3.57e-07 
 (1.36e-06) (1.36e-06) (1.37e-06) (1.38e-06) 
urban -0.00707** -0.00704** -0.00698** -0.00714** 
 (0.00347) (0.00347) (0.00348) (0.00346) 
nd_forest 6.32e-06** 6.32e-06** 6.30e-06** 6.36e-06** 
 (3.09e-06) (3.09e-06) (3.09e-06) (3.09e-06) 
nd_wetland 2.13e-07 2.11e-07 2.14e-07 2.28e-07 
 (1.94e-07) (1.94e-07) (1.93e-07) (1.92e-07) 
nd_beach -3.65e-08 -4.12e-08 -3.19e-08 6.71e-09 
 (3.08e-07) (3.06e-07) (3.02e-07) (3.01e-07) 
nd_sandycoastline -4.82e-08 -4.26e-08 -5.10e-08 -9.24e-08 
 (3.23e-07) (3.22e-07) (3.17e-07) (3.16e-07) 
nd_fstation -1.67e-06* -1.66e-06* -1.64e-06* -1.64e-06* 
 (9.68e-07) (9.68e-07) (9.67e-07) (9.64e-07) 
2011 -0.0439*** -0.0439*** -0.0439*** -0.0439*** 
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Table 1.9.5: Estimation Results for Model 2D 

 (1) (2) (3) (4) 
 0-2 km 0-5 km 0-10 km 0-20 km 
VARIABLES lnPrice lnPrice lnPrice lnPrice 
 (0.00628) (0.00628) (0.00628) (0.00628) 
2012 -0.0538*** -0.0538*** -0.0538*** -0.0538*** 
 (0.00595) (0.00595) (0.00595) (0.00595) 
2013 -0.0643*** -0.0643*** -0.0643*** -0.0643*** 
 (0.00571) (0.00571) (0.00571) (0.00571) 
2014 -0.0506*** -0.0506*** -0.0506*** -0.0506*** 
 (0.00577) (0.00577) (0.00577) (0.00577) 
2015 -0.0874*** -0.0874*** -0.0874*** -0.0874*** 
 (0.00593) (0.00593) (0.00593) (0.00593) 
2016 -0.0714* -0.0708* -0.0711* -0.0712* 
 (0.0404) (0.0404) (0.0404) (0.0404) 
2017 -0.114*** -0.113*** -0.113*** -0.114*** 
 (0.0408) (0.0408) (0.0408) (0.0408) 
2018 -0.146*** -0.146*** -0.146*** -0.146*** 
 (0.0408) (0.0408) (0.0408) (0.0408) 
2019 -0.142*** -0.141*** -0.142*** -0.142*** 
 (0.0408) (0.0408) (0.0408) (0.0408) 
Constant 12.63*** 12.63*** 12.63*** 12.63*** 
 (0.0266) (0.0266) (0.0266) (0.0266) 
     
Observations 51,055 51,055 51,055 51,055 
R-squared 0.614 0.614 0.614 0.614 
Suburb FE Yes Yes Yes Yes 
Year FE Yes Yes Yes Yes 

Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 

APPENDIX C: DATA 

Table 1.9.6: Data sources 

Variable Source Name of dataset/file Format 
sale price 
(AUD) 

APM - Excel 

structural attributes 

area (m2) APM - Excel 

bathrooms  APM - Excel 

bedrooms  APM - Excel 

'Has' 
attributes 

APM - Excel 

location of environmental attributes 
public 
beach 

Google Earth Pro - Website 

forest 

Australian Bureau of 
Agricultural and Resource 
Economics and Sciences 
(ABARES) 

Forests of Australia (2018) 
Raster (ESRI 
grid) 
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Table 1.9.6: Data sources 

Variable Source Name of dataset/file Format 
Waroona 
burn scar 

Department of Biodiversity, 
Conservation and Attractions 

DBCA Fire History (DBCA-060) shapefile 

location of neighbourhood attributes 

bus stop Public Transport Authority 
Public Transport Authority Stops 
(PTA-001) 

shapefile 

rail stop Public Transport Authority 
Public Transport Authority Stops 
(PTA-001) 

shapefile 

current 
active 
school 

Department of Education 

Current Active Schools Semester 1 
2013 - Public (DET-004) 
Current Active Schools Semester 1 
2014 - Public (DET-006)  
Current Active Schools Semester 1 
2015 - Public (DET-008)  
Current Active Schools Semester 1 
2016 - Public (DET-012)  
Current Active Schools Semester 1 
2017 - Public (DET-014)  
Current Active Schools Semester 1 
2018 - Public (DET-016)  
Current Active Schools Semester 1 
2019 - Public (DET-017) 

shapefile 

Perth 
townsite 

Landgate Townsites (LGATE-248) shapefile 

urban land  Landgate Townsites (LGATE-248) shapefile 

location of risk-moderating attributes 
sandy 
coastline 

GeoScience Australia 
Geomorphology Smartline ESRI 
File Geodatabase 

Geodatabase 

urban land Landgate Townsites (LGATE-248) shapefile 

fire station 
Department of Fire and 
Emergency Services 

DFES Stations (DFES-023) shapefile 

spatial information on emergency warning alerts 
ewalert, 
ewalert2 

Government of Western 
Australia 

Report of the Special Inquiry into 
the January 2016 Waroona Fire 

PDF text 

- Landgate Localities (LGATE-234) shapefile 

- Geofabrik australia-latest-osm 
Open Street 
Map (OSM) 

 

Table 1.9.7: Summary statistics 

Variable Unit Obs Mean Std. dev. Min Max 

dependent variable 

sale price AUD 51,055 424,625 230,049 40,000 6,050,000 

environmental attributesa 

forest metres 51,055 514 465 0 3,241 

wetland metres 51,055 11,510 12,492 0 75,570 

beach metres 51,055 12,321 18,432 68 122,454 

neighbourhood attributesa 

bus metres 51,055 6,933 18,806 10 143,717 
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Table 1.9.7: Summary statistics 

Variable Unit Obs Mean Std. dev. Min Max 

rail metres 51,055 65,080 60,377 99 291,100 

cas metres 51,055 1,349 2,255 0 36,965 

perth metres 51,055 121,276 63,966 21,536 345,033 

risk moderating attributesa 

sandycoastline metres 51,055 10,191 15,770 23 99,198 

fstation metres 51,055 2,441 1,537 16 24,158 

forest metres 51,055 514 465 0 3,241 

proximity to burn scar 

burn scar metres 51,055 49,250 31,533 14 230,883 
a euclidean distance to nearest attribute in metres 

 

Table 1.9.8: Property type frequency 

Property type Frequency Percent 

Apartment House 429 0.84 

Cottage 25 0.05 

Duplex 1,304 2.55 

Flat 103 0.20 

House 43,849 85.89 

Patio House 15 0.03 

Quadruplex 5 0.01 

Semi 8 0.02 

Terrace 12 0.02 

Townhouse 1,978 3.87 

Triplex 7 0.01 

Unit 2,798 5.48 

Villa 44 0.09 

Villa House 478 0.94 

Total 51,055 100 
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ABSTRACT 

We investigate the impact of wildfire risk-exposure information shocks on preferences 

for safety with evidence from the housing market. More precisely, we study the 

introduction of wildfire risk maps, colloquially known as bushfire prone area maps, in 

Western Australia in 2015. Using an extensive dataset on property market transactions 

and high-resolution geographic information system data, we set a regression 

discontinuity design to investigate the price differential for properties located across 

the hazard discontinuity introduced by the maps. The results indicate that properties 

within bushfire prone areas are sold at a price 4.2% lower than those outside. Our 

analysis suggest that this discount is driven by a pure information shock that increases 

preference for safety, and not by pre-determined risk perception or the 

implementation of more stringent building regulations for risk-exposed properties. 

 

Keywords: wildfires, risk, information shock, housing market, regression 

discontinuity 

JEL codes: Q51, Q54, D80, R20 



 
 

2.1 INTRODUCTION 

Wildfires put lives and livelihoods at risk, with potential impacts on health, 

infrastructure, and ecosystem services (UNEP, 2022). As climate, land-use, and land 

management practices change, so does wildfire risk. For instance, some areas around 

the world will experience higher frequency in wildfires, including unexpected areas, 

and it is predicted that by the end of this century, the likelihood of catastrophic 

wildfires will be 1.31 to 1.57 times higher (UNEP, 2022). For this reason, it is crucial 

that we understand the socioeconomic costs – or benefits – of being directly or 

indirectly affected by wildfire events, landscape management practices, or related 

policies and regulations. There is a growing and urgent need to work on understanding 

how communities and policy makers respond to wildfires and how this response 

translates into society’s wellbeing.  

A considerable number of hedonic studies investigate the effect of nearby wildfires on 

property prices. Surprisingly however, there is almost a complete absence of studies 

looking at the capitalisation of geographic regulations related to wildfire risk. In this 

study we use property prices for the period 2010-2019 to investigate the effect of a 

particular wildfire risk management policy: the introduction of wildfire risk maps in 

Western Australia (WA) in 2015 - known as bushfire prone area (BPA) maps. We argue 

that the introduction of these maps, and the subsequent editions, provide an 

information update for households, and that the impact on property prices reveals the 

change in households’ beliefs concerning wildfire safety. Assessing the impact of these 

information updates (and associated regulatory changes) following the introduction of 

these maps is highly relevant given that wildfires are expected to occur more frequently 

due to climate change and generate high damage and suppression costs. 
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The designation of BPAs creates a geographic discontinuity that divides owners of 

properties within the boundary of a BPA from those outside. Those within the 

boundary are essentially confronted by the following. First, an information shock. It is 

documented in local news that the introduction of BPAs generated a surprise among 

Western Australians as they found out that around 90 percent of WA is bushfire prone. 

Second, more stringent planning and building regulations, which created expectations 

of higher building costs. Third, the expectation of higher insurance premiums within 

BPAs. These first three practical aspects of the BPA designation are documented in de 

Ceglie (2015). Lastly, for buyers and sellers, it came with the expectation that real estate 

agents should and will inform parties of the BPA designation status of the property on 

sale (Department of Commerce, 2016). 

We exploit the geographic discontinuity created by the map by using a sharp regression 

discontinuity design (RDD) to estimate the impact of BPA maps on property prices. 

Our literature review reveals that we are, surprisingly, not only among the first to study 

wildfire risk maps in Australia, but also the first to study the introduction of wildfire 

risk maps under an RDD setting anywhere. We also attempt to disentangle pre-

determined risk perception – i.e., wildfire risk perceptions formed prior to the 

introduction of BPA maps – from risk updates, in an RDD setting.  

To identify the treatment effect, we implement a local polynomial point estimation 

technique that uses only those observations in the neighbourhood of the BPA boundary 

where the risk of wildfire is essentially, the same. This neighbourhood is defined by a 

mean squared error (MSE) optimal bandwidth, given a polynomial of order 1 and 

kernel weights defined by a triangular kernel function that assigns higher weights to 

observations nearest to the boundary. Critically, we implement the local polynomial 
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point estimation in two different periods: first, for the pre-mapping period of 1st 

January 2010 to 7th December 2015 where the RD treatment effect reflects the impact 

of prior differences in risk perceptions on property prices and second, for the mapping 

period of 8th December 2015 to 31st December 2019 where the RD treatment effect 

includes the ‘BPA effect’, i.e., the impact of BPA maps and associated regulations on 

property prices. For the first period, we encounter no significant RD treatment effect 

suggesting that our results are not driven by pre-determined risk perceptions. 

However, once the maps are introduced, properties within the BPA are sold at a 

significant discount. These results are robust to different bandwidth choices, 

suggesting that the chosen bandwidth is not driving the results, and our results reveal 

no evidence of the manipulation of treatment assignment in the proximity of the BPA 

boundary. 

Our findings strongly suggest that individuals are paying a premium for reduced 

exposure to wildfire risk, further suggesting that the implicit value of safety is higher 

when the set of information on wildfire risk expands, i.e., when risk maps are 

introduced. By conducting the RD analysis for the pre-treatment period, we confirm 

that preferences for safety did not significantly differ between BPAs and non-BPAs 

before the introduction of risk maps, enabling us to fully attribute our results to the 

introduction of BPA maps. This information is sensitive for policy makers for several 

reasons. First, it suggests that the BPA mapping policy is effective in shifting housing 

preferences away from risky areas, and it therefore has the potential to reduce 

management, suppression, and recovery costs from wildfire events. Second, it suggests 

that, as climate change increases the likelihood and intensity of wildfires, the housing 

market in non-BPAs might become more expensive over time, increasing the risk 
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exposure of lower-income households and exacerbating social inequality. Lastly, given 

that BPA designation directly depends on the presence of bushfire prone vegetation 

(BPV), it suggests that revegetation programs, such as those implemented by Main 

Roads Australia (mainroads, n.d.), have a direct cost on people’s wealth and wellbeing 

that policy makers must account for.  

The remainder of the paper is organised as follows: Section 2.2 reviews the existing 

literature of RDD studies looking at the impact of geographical discontinuities on 

property prices, Section 2.3 outlines the theory of the RDD methodology and 

formalizes the design of our study, Section 2.4 presents a brief overview of the data and 

summary statistics, and Section 2.5 presents the results followed by a discussion, 

validation tests and conclusions in Sections 2.6, 2.7 and 2.8 respectively.   

2.2 LITERATURE REVIEW 

Previous hedonic studies on the issue of wildfire risk usually focus on identifying the 

information shock from the occurrence of previous fires (e.g., Loomis, 2004; Mueller 

& Loomis, 2008; Mueller et al., 2009; Hansen & Naughton, 2013; Kiel & Matheson, 

2018; McCoy & Walsh, 2018). 

However, there is almost a complete absence of studies investigating the effect of 

zoning policies related to wildfire risk management (such as BPA maps) despite the 

existence of a considerable number of hedonic studies analysing the impact of maps 

related to other spatially delineated risks such as flooding (e.g., Shr & Zipp, 2019; 

Atreya & Czajkowski, 2019; Daniel et al., 2009) and earthquakes (e.g., Brookshire et 

al., 1985; Nakagawa et al., 2007; Hidano et al., 2015). 
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Given the scarce evidence on the effect of wildfire risk maps on property prices, our 

literature review focuses on previous hedonic applications using RDD models to 

estimate the effect of spatially delineated policies. This literature can be divided into 

three groups: i) studies focusing on the effect of regulations constricted to a 

geographical boundary; ii) studies looking at geographical discontinuities in the 

provision of environmental quality/amenities; and iii) an emerging branch of research 

that is closest to our paper and focuses on analysing the impact of natural disaster risk 

zoning on property prices. 

The group of studies analysing regulations constricted to a geographical boundary 

usually refer to the introduction of policies that result in more stringent regulations for 

properties located within the area of influence of the policy. These studies compare the 

prices of properties around the policy boundary that determines the regression 

discontinuity line. Grout et al. (2011) is, to the best of our knowledge, the first study to 

implement a RDD for the impact of land-use regulations of any kind. The analysis 

focuses on the effect of the designation of the Urban Growth Boundary (UGB) in 

Portland, Oregon, United States (US) in 2008. Parcels of land within the UGB are 

zoned for intensive purposes (e.g., high-density residential housing, commercial or 

industrial uses) whilst parcels of land outside the UGB are zoned for non-intensive 

purposes (e.g., agriculture, forestry, and exceptionally, for low-density residential 

developments). 

Other studies on the impact of geographically delimited regulations include Koster et 

al. (2012) on the impact of more stringent and binding housing restrictions to protect 

pre-World War II heritage buildings in Rotterdam, Netherlands; Turner, et al. (2014) 

on the impact of level of land use regulation in US on land price and welfare 
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(decomposed in the effects on the own-lot, nearby land, and supply of developable 

land); Koster et al. (2021) on the impact of regulatory restrictions applied to the market 

of short-term rental online platforms in Los Angeles, US; Cooper & Namit (2021) on 

the impact of a viewshafts regulations in the central business district of Auckland, New 

Zealand; and Ferreira et al. (2021) on the impact of the 2016 reform on maximum 

permitted construction on city blocks of Sao Paulo, Brazil. In all cases, the running 

variable for the RDD is given by the distance from the location of the property to the 

policy boundary, and the outcome variable is usually given by a measure of value for 

properties/parcels located around the policy boundary. Except for Ferreira et al. 

(2021), all of these studies suggest that stringent regulations have a negative impact on 

house prices/rents (land values for Turner, et al. (2014)). The study by Ferreira et al. 

(2021) is slightly different, as they analyse the effect of relaxing restrictions on 

maximum permitted construction units on the number of multi-family construction 

buildings. The authors find that developers filed more multi-family construction 

permits in city-blocks with higher allowable densities, leading to an increase in housing 

stock and a decrease in property prices. 

A second strand of the RDD literature focuses on the impact of environmental quality 

or environmental amenities on property prices. This group of studies include a paper 

by Greenstone & Gallagher (2008) on consumers’ valuation of the 'Superfund' program 

for hazardous waste sites clean-ups in the US, and studies by Chay & Greenstone 

(2005), Huang & Lanz (2018), and Liu et al. (2021) on the impact of air quality 

discontinuities on house prices. The running variable for these studies is given by a 

threshold value on a variable that identifies properties subject to a discontinuous 

change in environmental quality: points on the Hazardous Ranking System (HRS) for 
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the case of hazardous waste clean-ups, and total suspended particulates (TSPs) 

concentration or distance to the Huai River in China for the studies on air quality.  

Greenstone & Gallagher (2008) compare residential property prices, among other 

variables, for the period 1980 – 2000 for two types of areas: those surrounding the 400 

hazardous waste sites selected for the ‘Superfund’ program (based on HRS score) and 

those surrounding the 290 hazardous waste sites that narrowly missed program 

selection. The authors run a hedonic regression analysis on median property values 

taken from census data from the year 2000. The results from the RDD analysis suggest 

a price increase for properties located close to eligible sites. However, the authors 

conclude that residents’ willingness to pay (WTP) to avoid hazardous waste sites is low 

and the programme’s costs are likely to exceed its benefits.  

Regarding the studies on air quality discontinuities, Chay & Greenstone (2005) study 

the Clean Air Act Amendments (CAAA) of 1970 in the US. Under the CAAA, counties 

that exceed federal ceilings on air pollution concentrations (based on TSPs) are 

designated as ‘nonattainment’ by the Environmental Protection Agency and face strict 

regulations. The authors conclude that the CAAA is associated with declines in air 

pollution and increasing housing prices for nonattainment counties. On the other 

hand, Huang & Lanz (2018), and Liu et al. (2021) study the impact of air quality 

discontinuities in China arising from the Huai River policy on house prices. This policy 

subsidised heavily coal dependent winter heating in the area north of the Huai River, 

thereby contributing to air pollution in northern China. Huang & Lanz (2018) use a 

fuzzy RDD model to show that the policy successfully explains air pollution differences 

near the Huai River boundary and find a negative and statistically significant 

relationship between property prices and PM10 concentration. Liu et al. (2021) use city-
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level panel data for the period 2006-2015 including residential house prices and PM10 

concentrations for 30 Chinese cities located within 7° latitude of the Huai River. The 

results suggest that, at the threshold, PM10 increases by 41 μg/m3 and house prices 

decrease by 42%. 

Finally, this study contributes to an emerging branch of literature using RDD to analyse 

the impact of natural disaster risk zoning on property prices. To the best of our 

knowledge, the paper by Hidano et al. (2015) on earthquake risk is the first one in this 

category. The authors study the causal impact of information on seismic hazard risk on 

property sale prices for the 23 wards of Tokyo’s residential market between 2008 and 

2012. For this purpose, the authors implement a RDD where the causal impact is 

triggered by the information on geographical boundaries for high-risk zones. In other 

words, the authors aim to identify the market’s reaction to the information on 

geographical boundaries that enclose high-risk zones. The authors report results on 

average risk-reduction effects conditional on age; as the property’s age increases, so do 

the benefits of reducing the risk score, meaning that households attach a higher value 

to buildings that comply with the newest building regulations and therefore more 

capable of resisting earthquake damage. The (unconditional) average risk reduction 

effect is positive and statistically significant. Overall, results indicate that prices are 

higher in low-risk zones. Given that insurance fee is uniform across safe and risky 

zones, the price difference is interpreted as the value of self-insurance.  

Tangentially related to our research is Donovan et al. (2007)’s study on wildfire risk 

ratings in wildland urban interface (WUI) areas in Colorado Springs, US. Interestingly, 

the areas studied were free from wildfires since 1950, despite the fact that the areas 

received no fuel treatment to reduce wildfire risk. Due to the absence of fuel treatment, 
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the authors follow the assumption that amenity values are constant throughout the 

study period. Using 9,903 properties sold between 1998-2004 and the HPM, the 

authors evaluate the change in property prices after the wildfire risk ratings were 

communicated through the Colorado Springs Fire Department website in the year 

2000. Parcels were wildfire risk-rated as low, moderate, high, very high, or extreme. 

The authors find that before risk ratings were communicated, forest amenities were 

valued higher than wildfire risk. In other words, for the pre-treatment period, property 

prices were larger for properties who would later on have higher risk ratings. After risk 

ratings were communicated, this positive relationship is no longer significant. This 

suggests an increased risk awareness. However, the effect is short-lived. Additionally, 

the authors note that the increased risk awareness may have been caused not by 

wildfire risk ratings per se, but by the Hayman fire in 2002, which destroyed 132 homes 

just 20 miles (approx. 32 km) away from the study area. This fire could have 

encouraged residents to use the website provided. 

The study closest to our research – because they study BPAs under a methodology 

similar to ours - is that of Mo Koo & Liang (2022) on the impact of wildfire risk and 

salience on the price of properties in the state of Victoria, Australia for the period 2014-

2018. First, the authors estimate a hedonic price function (HPF) to test for the impact 

of bushfire risk specific to the property location by comparing outcomes on sale prices 

for properties located within bushfire prone areas (BPAs) to those outside BPAs. To 

control for risk level heterogeneity, the authors restrict the sample to properties within 

300-metre buffer zones inside and outside the boundary. Results for this first analysis 

suggest properties located within BPAs are more highly valued than those located 

outside BPAs, with a price mark-up of 1.61-1.89%. Nonetheless, house prices within 
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BPAs are found to be susceptible to bushfire events: following the bushfire season of 

2015/16, prices of houses within a BPA decreased by about 0.9-1.7% which is persistent 

even after two years. 

It is important to highlight that Mo Koo and Liang (2022) do not follow conventional 

procedures for an RDD. Instead, the authors simply restrict the sample to those 

observations within 300-metres from the BPA boundary. This bandwidth is not 

necessarily the MSE-optimal choice, but a discretionary one that intends to reduce risk 

heterogeneity between properties within and outside BPAs. Furthermore, their 

difference-in-differences (DD) analysis is defined by the 2015/16 bushfire season and 

not by the introduction of BPA maps, therefore, Mo Koo & Liang (2022) do not look at 

the effect from the introduction of BPA maps per se, but rather at the risk saliency 

effect of the 2015/16 bushfire season on two groups: properties within and outside 

BPAs36.  

Athukorala et al. (2019) also study BPAs in Australia, but for the state of Queensland 

(QND). The authors use a sample of 1028 properties distributed across four suburbs in 

the city of Brisbane: The Gap, Brookfield, Upper Kedron, and Chapel Hill. All 

properties sampled were sold between 1991-2011 and are located within 850 m of 

BPAs. The authors use the HPM to test for households’ valuation of wildfire risk. Their 

findings suggest that prices of properties closest to the BPA are higher than those of 

properties further away. This is true within and across the four suburbs. The price 

discount associated with farness to BPAs is of 0.018, 0.052, 0.081, and 0.033 percent 

 
36 In contrast, we do look at the introduction of BPA maps (i.e., our research objective is different) and 
follow optimal procedures for the selection of the bandwidth. The latter is of high importance: a 
discretionary bandwidth, as that of Mo Koo & Liang (2022) is likely to generate estimates that suffer 
from either a high bias or variance, compromising the veracity of the results; whereas the optimal 
procedures that we follow guarantee an optimal bias-variance trade-off (see Methodology section below 
for more details). 
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for the suburbs of The Gap, Brookfield, Upper Kendron, and Chapel Hill, respectively. 

When regressing for the entire sample and introducing year dummies, the price 

discount is of 0.011%. Their findings suggest, that living closer to areas at risk of 

wildfires is positively valued, but the premium paid is very small. Athukorala et al. 

(2019) attribute this finding to the high amenity value of BPAs, which include forest 

reserves, bushlands, and a mixture of public and private green spaces. Nevertheless, 

the authors use a small sample size, raising doubts on selection bias. In addition, the 

authors do not use a clear identification strategy, but simply limit the sample to those 

properties within 850 m of BPAs, which – if we understand correctly – means that the 

sample is a mix of properties within and outside BPA boundaries, and, in any case, 

there is no distinction of properties within and outside BPAs in their identification 

strategy.  

The literature review suggests that geographical discontinuities in regulations, 

environmental quality, and risk reduction effects create discontinuities in prices. 

Generally, areas affected by more stringent regulations, lower environmental quality, 

or higher exposure to risk have lower property prices than those on the other side of 

the geographical boundary – as long as individuals are aware of the geographical 

discontinuity of the good or regulation in question. One exception to this conclusion is 

Mo Koo & Liang (2022)’s paper on wildfire risk, as the authors find that property prices 

within BPAs are higher than outside BPAs, but the focus of the paper is the price update 

in BPA areas following a major fire. Another exception is Athukorala et al. (2019)’s 

paper which finds a negative link between property prices and distance to BPAs, but 

the authors do not distinguish between properties within and outside BPAs. Our study 
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is, to the best of our knowledge, the first to analyse the information shock from the 

release of BPA maps on property prices.  

2.3 METHODOLOGY 

Given that we are working in a non-experimental setting where treatment and control 

groups can be clearly identified by the BPA boundary, and given that, in the 

neighbourhood of the boundary, observations are essentially equal in aspects different 

to the BPA designation, we are using a spatial RDD37. 

Treatment assignment is defined by the values of a ‘running’ variable 𝑋, i.e., a 

continuous variable that determines treatment depending on whether or not its value 

exceeds a cutoff point 𝑐. In the context of our study, 𝑋 is a score based on 𝑑, the 

Euclidean distance between the property and the nearest edge of a designated BPA 

boundary line. We assume there are 𝑛 properties, indexed by 𝑖 = 1, 2, … , 𝑛 and each 

receives a score 𝑋𝑖. Property 𝑖 is treated, i.e., belongs to a designated BPA, if and only 

if 𝑋𝑖 ≥ 𝑐, where 𝑐 = 0. If property 𝑖 is located at the boundary or within the boundary, 

𝑋𝑖 equals +𝑑, and outside the boundary 𝑋𝑖 equals −𝑑: 

𝑋𝑖 = {
−𝑑 𝑖𝑓 𝑋𝑖 < 𝑐
+𝑑 𝑖𝑓 𝑋𝑖 ≥ 𝑐

  

In an RD setting, a consistent average treatment effect (ATE) estimate may be obtained 

by focusing on observations around the cutoff point 𝑐, as long as unobservable factors 

are continuously related to the running variable 𝑋. In other words, the treatment 

 
37 This is very beneficial, as it produces estimates as good as those from a randomised experiment. 
Following a different approach, would require the use of control variables and further assumptions. A 
DD approach, for instance, would have yield a weaker identification strategy, as it would have required 
us to make assumptions for the identification of treatment and control groups, i.e., to arbitrarily define 
which properties are near enough to the boundary, potentially leading to selection bias, and to assume 
that, in absence of the BPA designation, property prices of treatment and control observations would 
move in tandem. 
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around the cutoff point may be as good as in a randomised experiment. This is true 

when economic agents do not precisely control assignment, and, therefore, the 

distribution of observed baseline covariates is continuous at the threshold (Lee & 

Lemieux, 2010). In the context of our study, we must ensure that households do not 

have the ability to precisely manipulate the assignment variable 𝑋, i.e., households 

cannot self-select or self-decline treatment by manipulating the distance between their 

property and BPV. We can test this by looking at the distribution of observed baseline 

characteristics, such as property size, number of bedrooms, number of bathrooms, etc., 

and corroborating that these have the same distribution and do not change 

discontinuously near the cutoff point 𝑐 (Lee & Lemieux, 2010). But most importantly, 

we can critically think of the possibility of individuals manipulating the treatment 

assignment, i.e., can individuals actually interfere in the BPA designation process? If 

households are unable to precisely control 𝑋 around the cutoff point, then the density 

of 𝑋 is continuous, as in a randomised experiment. 

Another factor that affects the estimation of the treatment effect is the level of 

compliance. When intention to treat is fully determined by the threshold rule but 

treatment is not, it is said that the RD setting is one of imperfect compliance - more 

commonly referred to and coined as fuzzy RDD by Trochim (1984). If, however, both 

intention to treat and treatment are fully determined by the threshold rule, the RD 

setting is not fuzzy, but sharp. In a sharp RD setting, the probability of treatment jumps 

from 0 to 1 when 𝑋 crosses the cutoff point 𝑐. In other words, the probability of 

belonging to a designated BPA is equal to 0 when 𝑋 < 0 and equal to 1 when 𝑋 > 0. 

Given that BPA maps show a sharp boundary line, the RD setting of our study is not 

fuzzy, but sharp.  
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The following equations formalize the sharp RD setting of our study, based on Cattaneo 

et al. (2019). The outcome for each property, sale price 𝑌𝑖, is conditional on receiving 

treatment. Therefore, each property has two potential outcomes, 𝑌𝑖(0) under control 

conditions and 𝑌𝑖(1) under treatment conditions, but only one observed outcome. If 

property 𝑖 belongs to the treatment group, 𝑌𝑖(1) is observed and 𝑌𝑖(0) is the 

counterfactual unobserved outcome – and the opposite is true if otherwise: 

𝑌𝑖 = {
𝑌𝑖(0) 𝑖𝑓 𝑋𝑖 < 𝑐

𝑌𝑖(1) 𝑖𝑓 𝑋𝑖 ≥ 𝑐
  

An observation with score 𝑋𝑖 = 𝑐 would be very similar to an observation with score 

𝑋𝑖 = 𝑐 −  휀, for a small and positive 휀. The difference would lie in the treatment status. 

The local ATE on the treated in a sharp RD setting, 𝜏𝑆𝑅𝐷, is the difference in conditional 

regression functions at 𝑐, and captures the average change in sale price for properties 

at the boundary of the BPA if these were to change from a control to treated status: 

𝜏𝑆𝑅𝐷 ≡ 𝔼[𝑌𝑖(1) − 𝑌𝑖(0)|𝑋𝑖 = 𝑐] 

This comparison between properties at opposite sides of the BPA boundary but with 

very similar scores rest on the assumption that the conditional regression functions are 

continuous at the cutoff point. 

2.4 DATA 

This paper looks at the introduction of maps identifying bush fire prone areas (BPAs) 

in WA, first released the 8th of December 2015. These are defined as “areas that have 

been identified as being subject, or likely to be subject, to bushfire attack” (DFES, 2021, 
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p. 2)38, where bush fire is any unplanned vegetation fire, including grass, scrub or forest 

fire (AFAC, 2012, p. 5). The designation of BPAs is carried out by the Fire and 

Emergency Services (FES) Commissioner. All areas with a vegetation type classified as 

bushfire prone that is equal to or larger than one ha is directly identified as BPV39. 

Then, a buffer of 100 metres is applied to designated BPVs. The BPA is the conjunction 

of the BPV area and the 100-metre buffer. Overlapping buffers are merged to form a 

single BPA (DFES, 2021).  

Furthermore, all new planning proposals in BPAs must be accompanied by i) a bushfire 

hazard level (BHL) assessment, ii) a bushfire attack level (BAL) contour map, if the lot 

layout is known, iii) the identification of potential bushfire hazards, and iv) 

demonstration that the planning proposal can meet with bushfire protection criteria in 

later stages (WAPC, 2015). Additionally, building work in designated BPAs must 

comply with the bush fire construction requirements of the Building Code of Australia 

(BCA), which apply with a four-month delay (Building and Energy, 2021); i.e., building 

work in BPAs designated on the 8th of December of 2015 must comply with bushfire 

construction requirements if the building permit was submitted on or after the 8th of 

April of 2016 (Building Commission, 2015). 

The BPA boundaries described above are obtained from BPA maps. Generally, BPA 

maps are released yearly on the 1st of June, before the start of the next Australian fiscal 

year (DFES, n.d.). However, the first edition of these maps was released on the 8th of 

 
38 The authors cite “Standards Australia 2019, Australian Standard Construction of buildings in bushfire 
prone areas AS 3959:2018, Fourth Edition incorporating Amendment No. 1, Standards Australia, 
Sydney, Australia p. 8” as source of this definition. This document is not publicly available. 
39 However, smaller areas may be identified as BPV depending on proximity to another BPV. For 
instance, BPVs may be as small as 0.25 ha as long as the proximity to a designated BPV is at most 100 
metres. BPVs may also be smaller than 0.25 ha if located 20 metres or less from a designated BPV. Strips 
of vegetation that are at least 20 metres wide and at most 20 metres away from a designated BPV are 
also considered BPV, regardless of the strip length. 
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December of 2015, followed by subsequent editions, and, occasionally, updates and 

additional designations or removals. Table 2.9.1 in the Appendix lists the datasets 

identifying BPAs in WA, according to the designation and release dates, along with the 

type of release. Figure 2.1 shows the first edition of the BPA map released by the 

Government of Western Australia on the 8th of December of 2015, along with the 

residential properties sold between 2010-2019. 

Figure 2.1: BPA map first edition and residential properties 

 
Source: Own elaboration. Based on Government of Western Australia data and Australian Property 
Monitors data 

To study the effect of the introduction of BPA maps, we use property market data for 

residential properties provided by Australian Property Monitors (APM). This dataset 

includes sale price, sale date, and a range of property characteristics, of which we only 

take the latitudes and longitudes. We also use several geographic information system 

(GIS) datasets provided by the Government of Western Australia. These are datasets 

Legend

Properties

BPAs 08-Dec-2015
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on BPA boundaries, and neighbourhood and environmental attributes for the 

covariate-adjusted analysis. Using BPA boundaries, we construct the running variable 

‘score’ by calculating the Euclidean distance between each property and the nearest 

boundary, and then we assign units to treatment and control groups by forcing the 

variable to take to a positive or negative value depending on whether these are inside 

or outside the BPA. The score variable takes a positive value if the property is inside 

the BPA at the moment of sale – therefore belonging to the treatment group – and a 

negative value if otherwise. For neighbourhood and environmental characteristics, we 

include distance to the nearest public beach, forested area and wetland, as well as to 

bus and rail public stops, schools, central Perth and urban land. 

For the purposes of this study, we divide our data sample into two main groups: 

properties sold before the introduction of BPA maps (the pre-treatment period) and 

properties sold on or after the introduction of BPA maps (the treatment period). The 

pre-treatment period goes from the 1st of January 2010 to the 07th of December 2015, 

and the treatment period goes from the 8th of December 2015 to the 31st of December 

2019. Additionally, we distinguish between two subgroups for each period: properties 

located within BPAs (the treatment group) and properties located outside BPAs (the 

control group). Patently, there is no real treatment group for the pre-treatment period. 

However, we create a placebo treatment group for the pre-treatment period for the 

purpose of undertaking validity tests of our RDD. Table 2.4.1 below presents 

summary statistics for treatment and control groups on both periods. Our sample has 

a total of 89,895 observations, of which 57,434 belong to the pre-treatment period and 

32,101 belong to the treatment period. Approximately 26 and 31 percent of 
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observations belong to the treatment group for the pre and post treatment periods, 

respectively, while the remainder belong to the control group.  

The running variable (score) takes negative values for the control group and positive 

values for the treatment group, and Table 2.4.1 shows that properties can be as close 

as less than 1 metre away from the BPA boundary and as far as 17 kilometres away from 

the boundary. The maximum score in the treatment group for the treatment period is 

2.7 times higher than the maximum score in the control group, suggesting that some 

BPAs in WA are extensive. Further details on other neighbourhood and environmental 

attributes are presented in Table 2.4.1 below.
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Table 2.4.1: Summary statistics for treatment and control groups and pre and post introduction of BPA maps 

Pre-treatment period 

 outside BPA boundaries (control group) 
within BPA boundaries (treatment 

group) 

Variable Obs Mean 
Std. 
dev. 

Min Max Obs Mean Std. dev. Min Max 

log of sale price (AUD) 41,591 12.82 0.46 10.71 15.47 15,843 12.95 0.50 10.60 15.33 

score (metres)  41,591 -457.90 721.80 -6,339.57 -0.003 15,843 305.08 1,101.32 0.0004 16,660.34 

distance to nearest (km):           

bus station 41,591 21.19 75.42 0.01 734.72 15,843 27.80 54.98 0.01 733.34 

bus station in CAT 41,591 317.32 399.82 24.37 2,208.39 15,843 280.17 332.24 18.41 2,202.75 

train station 41,591 283.22 411.13 0.10 2,203.74 15,843 244.38 340.40 0.82 2,198.13 

public school 41,591 1.00 1.50 0.00 36.04 15,843 2.33 5.79 0.00 311.03 

Perth townsite 41,591 327.41 401.54 26.51 2,219.00 15,843 288.80 333.75 21.54 2,213.31 

fire station 41,591 2.20 1.51 0.02 90.00 15,843 2.13 2.44 0.02 90.25 

forested area 41,591 1.05 2.99 0.00 69.84 15,843 1.05 5.01 0.00 69.90 

wetland 41,591 24.82 28.14 0.00 191.46 15,843 20.19 23.96 0.00 577.39 

public beach 41,591 93.42 176.55 0.07 791.92 15,843 74.78 147.66 0.07 791.93 

sandy coastline 41,591 47.93 99.61 0.02 598.97 15,843 41.52 83.09 0.05 554.00 

urban land dummy 41,591 0.79 0.41 0.00 1.00 15,843 0.66 0.47 0.00 1.00 

Treatment period 
 outside BPA boundaries (control group) within BPA boundaries (treatment group) 

Variable Obs Mean Std. dev. Min Max Obs Mean Std. dev. Min Max 

log of sale price (AUD) 22,298 12.75 0.42 11.00 15.36 9,803 12.95 0.47 11.25 15.62 

score (metres)  22,298 -447.01 673.62 - 6,339.57 -0.020 9,803 522.94 1,670.12 0.03 17,326.68 

distance to nearest (km):           

bus station 22,298 17.65 68.90 0.01 734.23 9,803 26.05 54.70 0.01 733.62 

bus station in CAT 22,298 337.80 421.09 24.30 2,204.35 9,803 283.95 352.38 18.68 2,204.37 

train station 22,298 303.21 433.05 0.18 2,199.73 9,803 247.87 359.83 0.17 2,199.74 
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public school 22,298 1.04 1.49 0.00 28.42 9,803 2.57 4.28 0.03 41.31 

Perth townsite 22,298 348.40 423.36 23.58 2,214.92 9,803 292.96 354.33 21.66 2,214.95 

fire station 22,298 2.28 1.45 0.02 16.86 9,803 2.16 1.65 0.04 20.15 

forested area 22,298 1.22 3.42 0.00 69.79 9,803 0.99 4.34 0.00 69.65 

wetland 22,298 24.22 28.45 0.02 188.70 9,803 16.83 19.56 0.00 191.15 

public beach 22,298 99.48 191.54 0.09 791.79 9,803 62.92 142.26 0.11 791.96 

sandy coastline 22,298 38.44 88.10 0.05 554.35 9,803 26.00 52.90 0.05 357.29 

urban land dummy  22,298 0.78 0.42 0.00 1.00 9,803 0.63 0.48 0.00 1.00 
a For the pre-treatment period, we assign BPA boundaries as of the 8th of December 2015 (first edition of BPA maps) to observations sold prior to this date. 

Source: Own elaboration. Based on Data WA (Government of Western Australia data catalogue) and property market data obtained from APM. 
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2.5 RESULTS 

To address our research question, we use the local polynomial approach for point 

estimation. We use a polynomial of first order (𝑝 = 1) for two reasons. First, because 

this choice is recommended by Cattaneo et al. (2019) because of the simplicity, 

precision, and stability of the local linear RD estimator. Second, because most of our 

observations are at small distance from the cutoff point40, meaning that the unknown 

regression function is mostly determined by the values of observations in the 

neighbourhood of the threshold, and therefore, a higher order polynomial would do 

little in approximating the entire function more precisely. We chose a triangular kernel 

function along with the MSE optimal bandwidth selection method because this 

conjunction leads to an RD point estimate with optimal properties.  

Table 2.5.1 below shows the estimated RD treatment effects. Results are obtained 

using observations of properties sold on or after the date of release of the first edition 

of BPA maps, i.e., on or after the 8th of December 2015. BPA boundaries used are those 

that correspond to the most recent edition available at the moment of sale, e.g., 

treatment status for a property sold on the 21st of May 2016 is defined by BPA 

boundaries of the second edition (see Table 2.9.1 in the Appendix).  

Our main results are those in column (1), under no covariate adjustment. No covariate 

adjustment is preferred for two reasons. First, including covariates may lead to an 

unreliable estimated RD treatment effect if covariates are imbalanced at the cutoff, or 

if treatment period values differ systematically from predetermined values. Second, 

covariate adjusted estimators can provide efficiency gains with shorter confidence 

intervals, but do not improve the identification strategy. Column (1) shows that, on 

 
40Unlike most spatial discontinuities, the BPA polygons are numerous and of very different sizes and 
irregular shapes. For these reasons, many properties will be in close proximity to a BPA boundary. 



109 
 

average, properties located in designated BPAs experienced a price discount of 4.22%, 

statistically significant at the 1 percent level with both conventional and robust p-

values. In columns (2) – (5) we adjust for pre-determined covariates that are 

independent of treatment status. In these columns, we always control for year FE, 

which are equal to all units regardless of treatment assignment status. Year FE control 

for year specific events that might have an impact on property sale prices, such as 

government elections. Column (3) controls for neighbourhood attributes, these are the 

Euclidean distances to the nearest bus stop, train stop, fire station, edge of the Perth 

townsite, and a dummy equal to unity if the property is on urban land. Column (4) 

controls for environmental attributes, including Euclidean distances to the nearest 

edge of a forested area, wetland, and sandy coastline, and to the nearest public beach, 

and column (5) includes controls for both neighbourhood and environmental 

attributes41. The conclusion remains the same in all columns: for the treatment period, 

properties under BPA designation experienced a price discount that ranges between 

3.4–4.2% percent and this is significant at the 1 percent level under robust inference 

methods, and significant at least at the five percent level under conventional inference 

methods. 

Bandwidth choice is highly influential on results due to the bias-variance trade-off. In 

Table 2.5.1 below, we see that the bandwidth is small even under an MSE-optimal 

bandwidth selection method, suggesting that we have many observations at a close 

 
41 FE that account for spatial boundaries such as postcodes or suburbs and structural attributes are 
excluded because these may not be independent from treatment status. For instance, spatial boundaries 
might be (not causally) correlated to treatment status, e.g., postcodes or suburbs with a large proportion 
of BPV are more likely to be entirely, or in a large proportion, enclosed by BPA boundaries. Including 
spatial boundaries would violate the continuity assumption and invalidate the treatment effect 
estimation. Structural attributes might also not be independent of treatment status, as these might be 
influenced by bushfire construction requirements that apply within BPAs. 
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distance from the BPA boundary, which lowers the misspecification error without 

compromising the optimal bias-variance trade-off. 

Table 2.5.1: RD Point Estimates 

 (1) (2) (3) (4) (5) 

RD estimate -0.0422*** -0.0415*** -0.0338** -0.0398*** -0.0353*** 
 (0.0142) (0.0142) (0.0134) (0.0136) (0.0132) 
      
P>|z| Conventional 0.003 0.003 0.012 0.004 0.008 
P>|z| Robust 0.001 0.001 0.005 0.002 0.003 
Cutoff (c) 0 0 0 0 0 
Covariates:      

Structural No No No No No 
Neighbourhood No No Yes No Yes 
Environmental No No No Yes Yes 
Year FE No Yes Yes Yes Yes 
Spatial FE No No No No No 

Effective obs. left 7,223 7,234 7,088 7,156 7,108 
Effective obs. right 6,668 6,669 6,639 6,652 6,642 
Bandwidth (h) 117.1 117.4 114.1 115.4 114.6 
Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 

 

The discontinuity of the outcome variable at the cutoff point can be visualized with an 

RD plot. Figure 2.2 below provides a visual representation of our main findings in 

column (1) described above. The RD plot is constructed using the triangular kernel 

function along with the MSE optimal bandwidth of 117.1m, and a polynomial fit of 

order 1, as in the point estimation above. The number of bins is selected using the 

mimicking variance (MV) method to capture the variability of the data. Moreover, bins 

are quantile-spaced (QS) because these capture information on the density of the 

score, which is high around the cutoff point but increasingly lower toward the 

extremes42. We notice that the log of sale price is discontinuous at the BPA boundary 

line, with a downward jump for properties within the BPA, visually confirming our 

findings. Additionally, we see that, for properties within the BPA, sale price increases 

 
42 Evenly-spaced (ES) bins are discarded because the variance is high when observations are not 
uniformly distributed along the entire support of the score, as is our case. 
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with score. This is actually a confirmation of the high amenity value of vegetation. 

Given that the BPA encloses the area within 100 metres of a BPV, we can expect 

amenity values to be higher for properties further away from the boundary. In other 

words, as we approach and pass the BPA boundary, the sale price increases due to the 

high amenity value of vegetation, particularly for the first hundred metres within the 

boundary. 

Figure 2.2: Regression discontinuity plot under QSMV bin selection 
method 

 

2.6 DISCUSSION 

Results from the previous section show that properties inside the BPA are sold at a 

discount43. In this section we explore the mechanism driving our results. We 

hypothesise three potential explanations for our results: i) it could be that the price 

differential was pre-determined by risk perception even before the introduction of 

BPA maps; if the discount is only observed during the treatment period, then ii) it 

might be that it is driven by stringent building regulations associated with BPA status; 

 
43 We note that it is possible that the impact of this lower property price on the wealth of the seller may 
be at least partially compensated by a lower tax paid for the sale transaction. Nonetheless, lower tax 
revenues imply fewer resources, including resources for public wildfire management. 
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or iii) it could be a pure information shock from the introduction of BPA maps that 

cause an update in risk perception. It is, of course, also possible that the discount is 

driven by a combination of all these three factors.  

We implement the RD design for the pre-treatment period to identify if the RD 

treatment effect we get is a result of the capitalization of predetermined perceived 

wildfire risk instead of an effect from the introduction of BPA maps and consecutive 

designations. Table 2.6.1 below presents two panels, Panel A for the pre-treatment 

period analysis, and Panel B for the treatment period. Results on Panel A are obtained 

using observations of units sold before the date of release of the first edition of BPA 

maps, i.e., before the 8th of December 2015. Results on Panel B, on the other hand, 

are the same as those presented in Table 2.5.1 above. For Panel A, we use the BPA 

boundaries of the first edition. Column (A1) is the pre-treatment counterpart of 

column (B1) as both have the same specification and the only difference is the period 

of analysis. The same is true for columns (A2) and (B2). For the pre-treatment period, 

we get a negative but statistically insignificant effect, in contrast to the treatment 

period where the results are statistically significant. If we adjust for pre-determined 

covariates that are independent of treatment status, i.e., year FE, the conclusion 

remains the same: no significant impact is found for the pre-treatment period (see 

column A2). Overall, and regardless of covariate adjustment, results show that the BPA 

treatment effect is negative and statistically significant for the treatment period, but 

insignificant for the pre-treatment period – despite the larger sample of observations 

used in the estimation. We are therefore reassured that the discontinuity in the log of 

sale price is driven by the introduction of BPA maps and not by predetermined 

perceived wildfire risk. Moreover, we see that the bandwidth is similar for both pre 
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and post treatment periods. This suggests that pre and post treatment estimates are 

comparable.  

Table 2.6.1: RD point estimates for pre-treatment and treatment 
periods 

 
Panel A 

Pre-treatment period 
Panel B 

Treatment period 
 (A1) (A2) (B1) (B2) 

RD estimate -0.0152 -0.0152 -0.0422*** -0.0415*** 
 (0.0107) (0.0107) (0.0142) (0.0142) 
     
P>|z| Conventional 0.156 0.156 0.003 0.003 
P>|z| Robust 0.110 0.110 0.001 0.001 
Cutoff (c) 0 0 0 0 
Covariates: No Year FE No Year FE 
Effective obs. left 16,030 16,031 7,223 7,234 
Effective obs. right 12,206 12,206 6,668 6,669 
Bandwidth (h) 152.1 152.1 117.1 117.4 
Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 

We now investigate if the BPA effect is driven by additional regulatory costs borne by 

households of existing buildings, i.e., driven by the cost of compliance with bushfire 

construction requirements as outlined in the BCA. We call this the ‘regulation effect’ 

and to estimate it we compare the RD point estimates obtained using two samples. The 

first sample contains observations of repeat-sales properties that were re-sold after the 

introduction of BPA maps on the 8th of December of 2015. We can safely assume that 

any property in this sample is not new, because it has been sold before the introduction 

of BPA maps. However, it might have undergone building work and we are not able to 

filter this. The second sample contains observations of unique-sales properties that 

were sold after the more stringent building regulations are in place, on the 8th of April 

of 2016. We can make the assumption that at least some of these properties were 

affected by the more stringent planning and building regulations. Results in Table 

2.6.2 show that the RD estimate is statistically significant for both samples (see Panels 

A and B) regardless of covariate adjustment choice (see columns 1 and 2 in both 

Panels). Furthermore, we can see that confidence intervals of RD estimates intersect 
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(see ‘C.I. Robust’ for A1 and B1, and for A2 and B2), suggesting that RD estimates from 

both samples are not statistically different from each other, i.e., that the regulation 

effect is not statistically significant. Hence, we suspect that the BPA effect is not driven 

by the regulation effect, but rather from a pure information shock. 

Table 2.6.2: RD point estimates for the 'regulation effect' 

 
Sample 
 

Panel A 
Repeat-sales properties re-sold after 

BPA map introduction 

Panel B 
Unique-sales properties sold 

after building regulations  
 (A1) (A2) (B1) (B2) 

RD estimate -0.04222** -0.04101* -0.03122*** -0.03102*** 
 (0.02488) (0.02488) (0.01258) (0.01257) 
     
P>|z| 
Conventional 

0.090 0.099 0.013 0.014 

P>|z| Robust 0.048 0.053 0.006 0.006 

C.I. Robust 
[-0.1034, 
-0.0005] 

[-0.1022, 
+0.0007] 

[-0.0598, 
-0.0100] 

[-0.0596, 
-0.0100] 

Cutoff (c) 0 0 0 0 
Covariates No Year FE No Year FE 
Effective obs. 
left 

2,207 2,210 8,291 8,294 

Effective obs. 
right 

1,408 1,408 5,482 5,482 

Bandwidth (h) 193.0 193.6 261.2 261.6 
Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 

The results presented in this section suggest that the treatment discount we observe 

for properties located inside the BPA is not driven by pre-determined risk perception, 

nor it is the result of more stringent planning and building regulations associated with 

BPA designation. We therefore conclude that our results are most likely driven by an 

information update related to the BPA designation of the properties. We argue that the 

introduction of BPA maps served as an information shock on wildfire risk for three 

reasons. First, the maps are open access and specially designed for people to search 

their address and learn if their home is within a BPA or not. Second, BPA designation 

sharply divides areas prone to bushfires from those otherwise. Third, prior to these 

maps, Western Australians lacked an official and community-oriented source of 
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information on land’s wildfire risk. Our results provide insights into society’s WTP to 

avoid wildfire risk. 

2.7 VALIDATION TESTS 

The validity of the RD design can be corroborated with qualitative information 

(Cattaneo, et al., 2019). For example, we may be worried about precise manipulation 

of treatment if households are aware of the cutoff rule, and it would be beneficial to 

know if households can appeal the designation of BPAs, and if so, how often they do. 

However, households may be able to manipulate assignment informally, or there 

might be no qualitative information available at all. In this section, we test the validity 

of the RDD using empirical evidence and implementing different validation tests 

proposed by authors such as Cattaneo et al. (2019). 

Our first validation test examines the number of observations in the local 

neighbourhood of the cutoff to rule out precise manipulation of treatment assignment, 

i.e., if there is a large difference between the number of observations just below and 

just above the cutoff value, we cannot rule out that households precisely manipulate 

treatment assignment either by moving from BPAs to non-BPAs or by influencing the 

BPA designation decision. Panels A and B in Figure 2.3 below show the histograms 

for the pre and post-treatment periods, respectively, using the same MSE-optimal 

bandwidth as in our main results, i.e., 152.13 meters for the pre-treatment period, and 

117.1 metres for the treatment period. Moreover, we present two types of histograms: 

row (1) presents density histograms with normal and triangular kernel density 

estimates, and row (2) presents frequency histograms with normal density estimates. 

We can see that the number of observations decreases continuously when the score is 

approximately above 60 for both the pre and post treatment periods. This indicates 

there is some level of sorting within BPAs even before these were designated. However, 
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the number of observations or density of the score look fairly similar for the cutoff 

value. 

Using a local polynomial density estimation under a polynomial fit of order 2 (default 

option) and imposing the MSE-optimal bandwidth of our main results, we find no 

evidence of precise manipulation of treatment assignment or sorting around the cutoff 

for any period. Table 2.7.1 below presents the local polynomial density estimations 

of the running variable (score) for the pre-treatment period (Panel A) and the 

treatment period (Panel B) using the MSE-optimal bandwidth from our main results, 

which we input manually, and a polynomial fit of order 2, for the pre and post-

treatment periods, respectively. Under this specification, we do not reject the null 

hypothesis H0 of continuity of the density functions for control and treatment units at 

the cutoff (no precise manipulation of the density at the cutoff), i.e., we do not find 

Figure 2.3: Validation test - Histogram of the score around the cut-off 

Panel A: Pre-treatment period Panel B: Treatment period 
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evidence of a discontinuity of the score around the cutoff value. Figure 2.4 in the 

appendix shows the manipulation testing plots for results in Panel A and B of Table 

2.7.1 below. Here, we see that the confidence intervals for the local polynomial density 

estimations for the treatment and control groups overlap, which explains why we do 

not reject the null hypothesis of continuity of the score around the cutoff.  

Table 2.7.1: Validation test - Manipulation test using local polynomial 
density estimation 

 
Panel A 

Pre-treatment period 
Panel B 

Treatment period 

Bandwidth selection method Manual Manual 

Bandwidth (h) left 152.13 117.1 

Bandwidth (h) right 152.13 117.1 

Polynomial order (p) 2 2 

T-statistic -1.4698 -1.5688 

P>|T| 0.142 0.117 

Reject H0 No No 

Cutoff (c) 0 0 

Observations:   

effective (left) 16,030 7,223 

effective (right) 12,206 6,668 

 

Our second validation test is known as the ‘donut-hole approach’. For this test we 

exclude observations near the cutoff point to check for sensitivity to observations near 

the cutoff. If manipulation has occurred, it has very likely occurred for units near the 

cutoff point. If manipulation has not occurred, it is likely that excluding observations 

very near the cutoff point does not change the estimated treatment effect. We 

implement the donut-hole approach by excluding observations within 1, 5, 10, and 20 

metres on either side of the boundary (see Table 2.7.2 below). The RD treatment 

effect of our main results continues to be robust when the donut-hole is 1, 5 or 10 

metres wide, i.e., we get a negative RD estimate close to 4% and statistically significant 

at least at the five percent level. However, as we exclude a larger number of 

observations near the cutoff and as the MSE-optimal bandwidth becomes larger, the 
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RD estimate becomes unreliable, i.e., changes sign and/or becomes statistically 

insignificant. This is expected because a local polynomial point estimation requires of 

observations near the boundary. A donut-hole of 20 metres or more removes a 

significant number of observations from our dataset (e.g., removes 10 percent for a 

donut-hole of 20 metres and these removed observations represent 22 percent of the 

observations within a bandwidth of 116 metres). In other words, a donut-hole of 20 

metres and beyond significantly distorts the relevance of the sample selected for the 

analysis. Overall, this validation test supports the assumption of no precise 

manipulation of treatment assignment, suggesting that the density of the score is 

continuous and our results are as good as in a randomised experiment. 

Table 2.7.2: Validation test, donut-hole approach 

 (1) (2) (3) (4) 
Donut hole: |score| ≤ 1m 5m 10m 20m 

RD estimate -0.0416*** -0.0501*** -0.0406** -0.0086 

 (0.0146) (0.0165) (0.0183) (0.0226) 

95% C.I Robust [-0.078; -0.018] [-0.091; -0.023] [-0.086; -0.011] [-0.065; 0.027] 

P>|z| Conventional 0.005 0.003 0.027 0.702 

P>|z| Robust 0.002 0.001 0.011 0.423 

Cutoff (c) 0 0 0 0 

Covariates No No No No 

Effective obs. left 7,086 6,494 6,058 5,736 

Effective obs. right 6,549 6,166 5,799 5,122 

Bandwidth (h) 115.4 108.8 107.5 116 

Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 

Our final validation test consists of using a different bandwidth to check for the 

sensitivity to bandwidth choice. Since results would be unreliable with a bandwidth 

far from the MSE-optimal choice, we try with a bandwidth 10, 20 and 50 percent 

higher than the MSE-optimal bandwidth of our main results (ℎ𝑀𝑆𝐸 = 117.1), i.e., we 

implement the RDD by manually selecting bandwidths of 128.8, 140.5, and 175.7 

metres. Our results remain robust under these bandwidth choices, i.e., the RD 

estimate continues to be negative, close to 4%, and highly statistically significant – see 
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columns (1) to (3) in Table 2.7.3 below. On the other hand, if the bandwidth choice 

is 5 times larger than the MSE-optimal (117.1 x 5 = 585.5), the disparity between the 

effective number of observations to the left and right of the cutoff point is high and the 

RD estimate changes sign. Therefore, results on column (4) are unreliable. The results 

from this test suggest that the robustness of our RD estimate is not threatened by 

observations immediately further (approx. 60 m) of the neighbourhood endpoint.  

Table 2.7.3: Validation test - Sensitivity to bandwidth choice 

 (1) (2) (3) (4) 
Bandwidth (h): 128.8 140.5 175.7 585.5 
RD estimate -0.0419*** -0.0420*** -0.0413*** 0.0174** 
 (0.0137) (0.0133) (0.0122) (0.00811) 
     
P>|z| Conventional 0.002 0.002 0.001 0.032 
P>|z| Robust 0.025 0.025 0.013 0.000 
Cutoff (c) 0 0 0 0 
Covariates No No No No 
Effective obs. left 7,795 8,318 9,738 17,368 
Effective obs. right 6,801 6,940 7,277 8,666 
Standard errors in parentheses*** p<0.01, ** p<0.05, * p<0.1 

Overall, the outcomes of the validation tests detailed above suggest that our RD design 

is valid, i.e., no statistical evidence of precise manipulation of treatment assignment 

and robustness of the RD estimate to bandwidth choice. Furthermore, the level of 

transparency in the BPA designation is high because BPA maps are public and open 

access, making it difficult to manipulate treatment assignment. Additionally, 

correspondence with the DFES confirms that appeals to designations are rare and 

updates to the map generally capture changes in vegetation cover due to clearing and 

development. Thus, there is no anecdotal or statistical evidence of precise 

manipulation of treatment assignment, supporting the validity of our RD design and 

estimates. 
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2.8 CONCLUSIONS 

In this paper, we study the implicit value of safety, revealed by an information shock 

in the housing market: the introduction of wildfire risk maps. These maps create a 

sharp geographic discontinuity that divides properties into two groups. The first group 

contains properties within BPAs, our treatment group. The second, contains 

properties outside BPAs, our control group. Aided by an RDD set-up, our treatment 

and control groups are formed from observations of the first and second groups, 

respectively, at a neighbouring distance from the boundary line. This permits us to 

estimate a local average treatment effect (LATE) that is as good as in a randomised 

experiment. Our findings suggest that preferences for safety are heightened when BPA 

maps are released into the market: properties within BPAs are sold at a price discount 

of 4.2% compared to those within non-BPAs. Moreover, our findings indicate that the 

price differential is not triggered by pre-determined risk perceptions nor by stringent 

regulations. Therefore, we find that the release of wildfire risk maps triggers an 

information shock that translates into an increase for safety preferences.  

Our findings suggest that society might initially adapt to climate change by assigning 

a higher value to safety, a good that is predicted to become scarcer as the likelihood 

and intensity of uncontrollable wildfires increase. On one hand, the publication of user 

friendly and open access wildfire risk maps, such as those of WA, has the potential to 

reduce management, suppression, and recovery costs by increasing wildfire risk 

awareness and discouraging housing in the riskiest areas. On the other hand, it 

potentially increases risk exposure of lower income households, exacerbating social 

inequality around wildfire risk that is already documented, e.g., Masri et al. (2021), 

Holloway & Rubin (2022), Burke et al. (2022) and Anderson et al. (2023). Policy 

makers need to be aware of this change in preferences in order to put forward adequate 
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adaptation measures that protect society’s wellbeing, wealth, and promotes social 

justice. In other words, the introduction of BPA maps tries to address market failure 

from lack of information, but can have unintended consequences with distributional 

concerns by affecting the locational choices of low income households across the BPA 

boundary.  

However, our findings suggest that the introduction of BPA maps might have positive 

impacts on welfare. First, because the information shock may well be closing an 

information gap regarding wildfire risk. This is particularly true if we believe that 

households in wildfire prone areas are currently underestimating wildfire risk44. 

Second, because the regulation shock for the compliance with bushfire requirements 

for planning and building activities may reduce wildfire risk; effectively translating 

into positive externalities for neighbouring properties and reducing the expected costs 

of fire suppression for the state45.  

 
44 We believe substantiating such a claim would require the use of survey data from WA, where the focus 
of questionnaires is on contrasting subjective risk perception against some objective measure of wildfire 
risk. 
45 Taking the Waroona Fire of 2016 as an example, the town of Yarloop was almost entirely destroyed 
because the fire spread from one building to another through ember attack, facilitated by the strong 
presence of timber in properties (Government of Western Australia, 2016) – see section 1.4 in 
CHAPTER 1 above for more details on the Waroona Fire. The larger the number of dwellings affected, 
the higher we can expect fire suppression costs to be. 



122 
 

2.9 APPENDIX 

Table 2.9.1: BPA designations 

No. Dataset 
Date of 

designation 
Date of release Release type 

1 
Bush Fire Prone Areas 
2015 (OBRM-002) 

08-12-2015 08-12-2015 First edition 

2 
Bush Fire Prone Areas 
2016 (OBRM-004) 

21-05-2016 01-06-2016 Second edition 

3 
Bush Fire Prone Areas 
2017 (OBRM-008) 

01-06-2017 01-06-2017 Third edition 

4 
Bush Fire Prone Areas 
designated on 12-07-
2017 (OBRM-010) 

12-07-2017 12-07-2017 
Additional 
designation 

5 
Bush Fire Prone Areas 
2018 (OBRM-011) 

01-06-2018 01-06-2018 Fourth Edition 

6 
Bush Fire Prone Areas 
2019 (OBRM-013) 

01-06-2019 01-06-2019 Fifth Edition 

7 
Bush Fire Prone Areas 
2019 No2 (OBRM-015) 

31-07-2019 31-07-2019 
Update to Fifth 

Edition 

8 
Bush Fire Prone Areas 
2019 No3 (OBRM-017) 

28-09-2019 28-09-2019 
Update to Fifth 

Edition 
Source: Own elaboration. Based on Data WA, the Government of Western Australia data catalogue. 
Note: All datasets, except for dataset #4, identify BPAs for the whole of WA as designated on the date 
of release. Dataset #4, on the other hand, rectifies for anomalies on the third edition, and therefore 
only identifies additional areas. For a complete identification of BPAs between the 12th of July of 
2017 and the 1st of June of 2018, datasets #3 and #4 must be used in conjunction. 

 

Figure 2.4: Manipulation testing plots 
 

Table 2.7.1, Panel A 

 

Table 2.7.1, Panel B 
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ABSTRACT 

In this paper, we use the hedonic price method to identify preferences for prescribed 

fires in Western Australia, a region with a strong history in the use of this forest 

management practice, amid a polarized view on its moral and scientific value. Using 

property fixed effects to account for unobservable time-constant attributes, and 

controlling for wildfires, we find a positive preference for prescribed fires. Moreover, 

we find stronger results for more recent fires, presumably due to the decreasing nature 

of risk reduction effects over time. Our findings also suggest that households’ risk 

perceptions are more susceptible to frequency of fires, rather than consequence – 

given that our results are stronger when we use number of fires as exposure indicator 

instead of area burnt. Capitalisation of prescribed fires is moreover much higher for 

properties with no wildfire experience. Additionally, our findings suggest that time-

constant unobservable attributes significantly explain safety preferences for 

prescribed burning, making the use of property fixed effects essential. 
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3.1 INTRODUCTION 

In February 2022, the United Nations environment programme (UNEP) published a 

report dedicated to wildfire risk urging governments to revisit their management 

approach to wildfires. The report highlights the fact that wildfires are becoming more 

intense and frequent, with devastating consequences to communities, ecosystems, and 

biodiversity; and that climate and land-use change are contributing to this situation. 

The UNEP report recommends that governments spend more on risk reduction, rather 

than on fire suppression, given that risk reduction is more cost-effective in the long 

term (UNEP, 2022). 

In Western Australia (WA), prescribed burning, i.e., the action of planning a fire and 

applying it to a predetermined area (DBCA, 2023), has been used extensively as a state 

fire management tool since the 1960s (McCaw, et al., 2003) – although it was a 

practice undertaken by indigenous Australians long before colonisation of the 

southwest in 1828 (Abbott, 2003). Nevertheless, the proportion of forests in the 

southwest of WA treated by prescribed fires has been declining since the 1970s at the 

same time as the proportion burnt by wildfires has been increasing since late 1980s. 

Large wildfires, i.e., greater than 20 thousand hectares (ha), are no longer rare since 

1997, and prescribed burning targets have been rarely achieved since 2000 (Burrows 

& McCaw, 2013). Indeed, the practice has been limited by changes in climate that make 

it more risky (Keelty, 2012), discontent of communities and industries from smoke 

emissions (Reisen, et al., 2011), and by a more populated wildland urban interface 

(WUI) and land-use change (e.g., fragmented forests due to bauxite mining and timber 

harvesting industries), which generate burning constraints (Burrows & McCaw, 2013). 

Public concerns around biodiversity loss are also at the heart of the discontent with 
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prescribed burning and generate strong polarisation. News articles in the media 

clearly expose the public’s concerns. 

For instance, in February 2023, David Wake, a resident from the City of Wanneroo 

made a plea to end prescribed burning in urban bushlands and replace it with weed 

management and community surveillance. His concerns were about wildlife not being 

able to retreat or recolonise burnt areas, given that these habitats are surrounded by 

urban developments. (Tan, 2023). A similar concern was raised in 2021, in Perup, an 

area home to the numbat, a small marsupial classified as endangered since 2014. 

Conservationists accused the Department for Biodiversity, Conservation, and 

Attractions (DBCA) of destroying its habitat. Following this accusation, the DBCA 

made clear that the fire strategy enabled numbats to access refuge areas and that 

healthy numbats were seen after the fire (Bennett & Edwards, 2021). 

Some scientists are also taking an active part of this opposition due to biodiversity 

concerns. For example, in October 2022, a group of natural scientists from the state 

organised a volunteering activity for taking samples and photographs of plants and 

insects in a tingle forest in the south coast of WA before a prescribed burn to be 

implemented as part of the 2022/23 burning programme. They were concerned about 

the potential loss of native biodiversity. These efforts were made despite the DBCA 

clearly stating their intention to conduct a detailed flora and fauna survey of the 

treatment area before ignition (Bennett, 2022), exhibiting a strong distrust for the 

authority. 

Furthermore, an independent group of scientists formed The Leeuwin Group (TLG) 

with the purpose of providing scientific advice on environmental matters (TLG, 2023). 

Joanna Young, a member of TLG, expressed concerns that prescribed fires threaten 
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the composition of vegetation types when undertaken in forests, as is the case in the 

Walpole Wilderness area. She believes human assets and political are “put above the 

survival of a unique landscape” and criticizes the DBCA for setting more prescribed 

fires in the wild instead of around towns (Pepper, 2021). 

Another member of the TLG, Stepehen Hopper, accused the DBCA of not mapping 

peat swamps accurately and urges the authority to implement smaller scale fires to 

protect biodiversity values. His declarations come after a prescribed fire in 2022 in 

North Walpole escaped and doubled its size to 25 thousand ha and threatened peat 

marshes and granite outcrops (Le May, 2022). Truth be told, in 2019, a prescribed fire 

destroyed a 5-thousand-year-old peat swamp, likely along abundant endemic flora and 

fauna species (Pepper, 2021). On both occasions, the DBCA defended the prescribed 

burning practice, indicating that benefits of preventing tragedies outweigh the costs 

and risks (Le May, 2022), and that they do consider these special ecosystems in their 

strategy (Pepper, 2021). 

Others oppose to prescribed burning due to the smoke haze produced by the fire. For 

example, prescribed fires around Perth in April 2022 were met with public health 

experts raising alarms concerning the negative impacts of smoke haze, such as 

breathing difficulties, headaches, and high blood pressure. Indeed, listeners to ABC 

Radio Perth shared that they experienced some of these symptoms, and that smoke 

haze made it impossible to enjoy favourable weather (Bell & Wynne, 2022). Smoke 

haze from prescribed burns may also pose important visibility problems, such as those 

occurring in Perth in May 2022, reducing visibility on roads (Steger, 2022). 

Some others distrust the effectiveness of prescribed burning in reducing the risk of 

wildfires. Indeed, some even go as far as claiming that prescribed burning increases 
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the risk of wildfires. Associate Professor Phil Zylstra from Curtin University, Perth, co-

published a controversial paper claiming that prescribed burning makes forests more 

prone to fire, in comparison with older vegetation areas. Research findings suggest 

that long unburnt forests in WA are three times less likely to catch fire than in recently 

prescribed burnt areas, even when fuel in recently prescribed burnt areas is less than 

6 years old and even under the worst climatic conditions. Zylstra et al. (2022) suggest 

that areas recently burnt by prescribed fires face dense forest regrowth soon after, 

whereas long unburnt areas had self-thinned after a fire due to competition of 

resources among regrowth. Therefore, Zylstra suggests that prescribed burning should 

only be practiced near assets and homes, whereas fires in remote areas should be 

suppressed46. This is a proposition that the DBCA does not support, as the paper’s 

findings contradicts peer-reviewed research and operational evidence from over 60 

years that confirms that reducing combustible fuel through low intensity prescribed 

burning leads to lower risk of fire (de Kruijff, 2022). 

Today, the future of prescribed burning in WA is uncertain. Just earlier this year, in 

June 2023, Australian Broadcasting Corporation (ABC) News reported that a group of 

conservationists had written a report and presented it to the Government of WA, in an 

attempt to get an independent review of the state’s prescribed burning practices 

(Shine, 2023). However, the call was rejected by a WA parliamentary committee; a 

decision most welcomed by those who support the continuation of the practice as it is. 

For instance, John Clarke, the Chair of Bushfire Front (BFF), an organisation of 

‘practical bushfire specialists’ that advocate for ‘better’ fire management (BFF, n.d.), 

 
46 Findings from Florec et al. (2020) would somewhat agree with Zylstra’s proposition. Florec et al. 
(2020) undertake a long-term cost-benefit analysis of implementing prescribed burns in the southwest 
of WA for two hypothetical scenarios: the first is one where only landscape is treated, and the second is 
one where only the WUI is treated. They find that treatments on the WUI are more effective in reducing 
damage. However, treatments on the WUI are also much more expensive and not cost-efficient. 
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described the decision as a “triumph of science, common sense and logic over what I 

would refer to as unfounded ideologies” (Bold & Bennett, 2023). 

Debates on prescribed burning are not only occurring in WA. At the national level, the 

revival of debates about prescribed burning in Australia has been linked to the 

2019/20 Black Summer bushfires (BBC News, 2020), which were perceived as 

“different” and “terrifying” (Bowers & Mason, 2020). Opinions on this matter have 

been voiced at a high level, with a former member of parliament of the National Party 

of Australia and a former Prime Minister, Barnaby Joyce and Scott Morrison, 

respectively, showing strong support for prescribed burning and urging an increase in 

the frequency of its application. On the other hand, the Australian Greens, a political 

party in Australia, has been accused of opposing to prescribed burning, despite 

declaring they support the practice under expert guidance (BBC News, 2020). 

Amid the divergent opinions of scientists, field practitioners, and the general public, 

the preferences of households directly affected by prescribed fires have not been 

sufficiently studied. This is the purpose of this study. In particular, we study changes 

in property prices associated with past exposure to prescribed fires. Importantly, we 

control for wildfire exposure. 

Using the hedonic price method (HPM) and high-quality geographic information 

system (GIS) data, we find evidence of a positive preference for prescribed fires, 

especially for households with recent exposure. This finding suggests that households 

are well aware of the risk reduction effects from prescribed burning – which dominate 

over any disamenity impact - and that households take into account the decreasing 

nature of these effects over time as vegetation grows back. We also find suggestive 

evidence of strong substitution of risk reduction effects between prescribed and 

wildfires. 
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The next section presents an overview of the economic literature on prescribed 

burning, followed by a glimpse into the prescribed burning strategy in WA. Section 3.4 

presents our methodology. Section 3.5 presents a description of our data. Section 3.6 

presents our results. Section 3.7 presents a discussion where we explore the impact of 

wildfire disasters and alternative methodologies. Finally, we present our conclusions. 

3.2 LITERATURE REVIEW 

The literature review search was focused on economic literature on preferences for 

prescribed burning. The review was conducted through three main sources: the 

American Economic Association (AEA) database EconLit, the University of 

Birmingham’s library catalogue search engine FindIt@Bham, and the Bushfire & 

Natural Hazard Cooperative Research Centre (BNHCRC) website using keywords and, 

when available, Boolean phrases. Additionally, we did a Google search for news articles 

on prescribed burning in WA. When relevant, we incorporated journal articles cited in 

the search results obtained. Table 3.2.1 below describes the terms, filters and number 

of results for each search source, along with the last date in which the search was 

conducted. After reviewing abstracts, relevant results were selected. 

Table 3.2.1 Literature review search description 

Search source Search terms Additional filters 
Number 

of 
results 

Date of 
search 

EconLit 

"prescribed burning" 
OR "hazard reduction 

burning" OR 
"controlled burning" 
OR "prescribed burn" 
OR "hazard reduction 
burn" OR "controlled 
burn" OR "prescribed 

fire" OR "fuel 
treatment" 

Apply related 
words; Apply 

equivalent 
subjects 

68 21/06/2023 
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EconLit 

("prescribed burning" 
OR "prescribed fire" 

OR "prescribed burn" 
OR "hazard reduction 
burning" OR "hazard 
reduction burn" OR 

"fuel treatment") 
AND ("hedonic price" 
OR "hedonic pricing" 
OR "housing market") 

Apply related 
words; Apply 

equivalent 
subjects 

0 21/06/2023 

FindIt@Bham 

Any field contains 
"prescribed burning" 
OR "hazard reduction 

burning" OR 
"controlled burning" 
OR “prescribed burn" 
OR "hazard reduction 
burn" OR "controlled 
burn" OR "prescribed 

fire" OR "fuel 
treatment" AND Any 

field contains 
"hedonic price" OR 

"hedonic pricing" OR 
"housing market" 

Search for 
"Everywhere", 
Search Scope 
"Everything", 
Material Type 

"All Items", 
Language "Any 

Language" 

2 21/06/2023 

BNHCRC “prescribed burning” Not applicable 4 21/06/2023 

Google 
prescribed burning 
Western Australia 

News 16 21/06/2023 

Several studies look merely at the impacts of wildfires on property prices (e.g., 

Athukorala et al. (2016) for Australia, and Loomis (2004), Mueller et al. (2009), 

McCoy and Walsh (2018), etc., for the United States of America (US)). There appears 

to be an important gap, however, on the impacts of wildfire management on property 

prices. Indeed, whilst our literature review search reveals that, although there is ample 

research done over the period of late 1990s-2010 on preferences for fuel treatment, 

none of these examine the impact of fuel treatments on property prices. To the best of 

our knowledge, it is only the study by Hjerpe et al. (2016) that quantifies this impact, 

albeit indirectly. The authors study household preferences for forest density, an 

environmental attribute that is associated with wildfire risk. The following paragraphs 

describe this literature, starting with Hjerpe et al. (2016), and following with a review 
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of studies using contingent valuation (CV), a stated preference technique, for the 

valuation of fuel treatments, which are presented on surveys as means to protect 

homes or as a means to enhance forest amenities. 

Hjerpe et al. (2016) examine preferences for forest density in the housing market in 

the WUI using sale prices and attributes for houses sold during the period of 2011 – 

2014 from four counties in the western area of the United States of America (US): 

Coconino in Arizona, Deschutes in Oregon, El Dorado in California, and Missoula in 

Montana. All houses, along with WUI areas, lakes, reservoirs, rivers, and fire stations 

are geolocated and authors were able to identify houses within the WUI and the 

distances to environmental attributes and fire stations. Forest density was calculated 

by identifying tree presence at a resolution of one m2, for radii of 100 and 500 metres 

around each house parcel’s centroid. The total number of observations in the sample 

is just above 400. The authors implement the HPM using spatial error and lag models 

to account for spatial dependence across error terms and sale prices, respectively. The 

results suggest a preference for low forest density in the immediate surroundings of 

houses in the WUI, with an opposing preference when considering less immediate 

surroundings. Moving from low to high forest density for the 100-metre radius 

entailed a price discount of approximately seven percent, whilst moving from a low to 

a high forest density for the 500-metre radius entailed a price mark-up of 

approximately nine percent. The most important suggestion, however, is that the 

housing market may be capitalising wildfire risk, which is implicit in forest density, 

along with amenity values and benefits for cooling effects. Moreover, the authors note 

that the preference for high forest density at the 500-metre buffer level - under a 

context of high wildfire risk in the area and a rapid expansion of the WUI house 

development – indicate market failure that could arise from two sources. First, from 



133 
 

incomplete information, and consequently, low awareness of wildfire risk. And 

second, from publicly funded fire management services, which effectively serve as 

government subsidies, and generate free-rider effects on households choosing to live 

in fire-prone areas but not fully assuming the costs. 

Turning away from market revealed preferences, a large group of studies rely on 

contingent valuation for valuing fuel treatment services. A first subgroup studies 

households’ valuations for fuel treatment itself, whilst a second subgroup looks more 

closely at the biodiversity and recreational gains from fire prevention programs. From 

the first subgroup, Nahuelhual-Munoz, et al. (2004) and Loomis et al. (2005)’s studies 

look at preferences for fuel treatments across different states of the US; whereas 

Loomis, et al. (2004), Gonzalez-Caban et al. (2007), and Loomis et al. (2009) consider 

differential preferences across diverse communities or ethnic groups, also in the US. 

By contrast, Loureiro et al. (2004) and Kaval et al. (2007) focus on a single state.  

Nahuelhual-Munoz, et al. (2004) describe prescribed burning as a public program that 

generates a public good and a public bad. The public good is the reduction in the risk 

of catastrophic wildfires, and it is non-rejectable. The public bad is smoke emissions. 

Therefore, prescribed burning programs might generate positive and negative 

willingness to pay (WTP), depending on the individual’s valuation of the public good 

and bad. The authors estimate the WTP of households in California and Montana, US 

using survey data from July 2001 – May 2002 and present a set of models with 

different levels of ability to accommodate heterogeneous preferences: binary logit, 

simple spike, and parametric extended spike models47. The survey design involved first 

 
47 The latter are models which - in contrast to simple spike models - allow to address heterogeneous 
preferences by allowing different portions of the population to value the program of interest positively, 
negatively, or indifferently (value equal to zero). Responses from households who value the program 
negatively or indifferently are therefore not regarded as “protest”, but instead accounted as authentic 
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providing a booklet with information on the benefits of prescribed burning (acres 

burnt reduced by 25 % and lower house loss), followed by a screening question on 

whether they would take the program at no cost; if they answered “yes”, then they were 

presented with bids for costs ranging from 15 to 480 United States dollars (USD), and 

if they answered “no”, respondents were presented with bids for payments to accept 

compensation from the state (benefits) ranging from 10 to 470 USD. 

The results show that WTP estimates from the binary logit model are much higher 

than the most flexible version of the parametric extended spike model (560 vs. 104 

USD). This is explained by the fact that the binary logit does not account for negative 

or indifferent values in responses, i.e., all valuations of the prescribed burning 

program equal to zero or with negative values are disregarded and considered as 

“protest” responses. The parametric extended spike models, on the other hand, do 

account for zero and negative valuations as authentic values. Indeed, WTP estimates 

for positive and negative responses using the most flexible extended spike model are 

331 and -226 USD, resulting in a net WTP of 104 USD – which provides a better picture 

of the welfare gains and losses than the binary logit does. Nahuelhual-Munoz, et al. 

(2004)’s study therefore concludes that binary logit models overestimate WTP, and 

that prescribed burning programs may generate large welfare losses that should be 

accounted for even if the proportion of respondents with negative WTP estimations is 

low - as those of California and Montana (less than 1/5 of respondents). Their 

conclusions are supported by Loureiro, et al. (2004), who compare the binary logit 

model with the double-bounded logit model and the Turnbull estimator using survey 

 
zero or negative values. The authors use two parametric extended spike models, where the second one 
is more flexible than the first in regard to the shape of the response distribution at both sides of the 
spike, i.e., the point at which there is a clear division between respondents with positive and negative 
WTP, which is when price of the public program equals zero. To identify respondents out-of-market, 
the survey involved an initial filter question: “Would you take the program at no cost?”. If respondents 
answer “No”, then these are respondents out-of-market. 
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data on prescribed burning preferences in Florida 1999-2000, and find that the binary 

logit model overestimates mean WTP, whereas the double-bounded logit model and 

Turnbull estimator do not, and work well around negative preferences. 

Loomis et al. (2005) also study preferences for fuel treatment programs using survey 

data from US states. However, as opposed to Nahuelhual-Munoz, et al. (2004) - who 

combine survey respondents from California and Montana based on the 

acknowledgement that both are fire-prone states - Loomis et al. (2005) get individual 

estimates of WTP for California, Florida, and Montana on the basis that each state has 

different demographic, ecological and wildfire risk profiles. Moreover, Loomis et al. 

(2005) not only study prescribed burning, but also mechanical fuel reduction 

programs. As in Nahuelhual-Munoz, et al. (2004), survey respondents were presented 

with a booklet outlining the benefits of fuel treatment. Then, they would be presented 

with a dichotomous choice referendum type question, where they had to vote in favour 

or against the expansion of the fuel treatment program, followed up with a WTP 

question for a range of bid amounts. Using a binary logit model, the authors find no 

statistically significant difference across states in response rates for the in-depth 

interviews. Similarly, no difference was found in the protest and non-protest response 

patterns48 across the three states, i.e., respondents’ reasons for refusal to pay are 

similar across the three states. Mean WTP for both prescribed burning and mechanical 

fuel reduction programs were generally not statistically different from each other 

across the three states. These were 417, 305, and 382 USD for prescribed burning, and 

403, 230, and 208 for mechanical fuel reduction, for California, Florida, and Montana, 

 
48 Protest responses are those that portray opposition to the government or to paying taxes, or responses 
that express certainty in that the program would not work. Non-protest responses refer to refusals to 
pay because of the program not being worth the money, or because they cannot afford it. The authors 
note that non-protest responses may arise from respondents’ assessments that the disutility of smoke 
outweighs the benefits of wildfire reductions. 
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respectively. Overall, Loomis et al. (2005)’s findings suggest the mean WTP estimates 

across these three states may be transferrable to other states in US, i.e., have external 

validity, and eliminate the need to conduct CV surveys in other states. This would 

mean that fuel treatment programs, as that of prescribed burning, and wildfire risk 

may be perceived similarly across fire-prone states.  

However, at a more micro level, this last statement may not always hold. Studies 

looking at differences in preferences for fuel treatment programs across different 

communities and ethnic groups in the US find mixed results. Loomis, et al. (2004) find 

no statistically significant difference in mean WTP for prescribed burning in California 

across African Americans and White households (399 and 505 USD, respectively). 

Nevertheless, the authors do find that demographic differences play an important role. 

For instance, response rates were statistically different across Hispanics, African 

Americans, and White households, but these differences disappear once accounting 

for demographic differences (age, gender, education, income, and home value). 

Similarly, African American’s mean WTP is halved when White households’ 

demographics are used on African Americans’ coefficients. Therefore, the findings 

suggest that it is not ethnicity or language which generates large differences in WTP, 

but rather demographics.  

Gonzalez-Caban et al. (2007) arrive at similar conclusions when analysing WTP for 

prescribed burning and mechanical fuel treatment programs elicited by Native 

Americans and the general population in Montana: no statistically significant 

difference in median WTP for both fuel treatment programs, but statistically 

significant differences in response rates, with lower response rates for Native 

Americans. 
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On the other hand, when looking at WTP increments for larger reductions in area 

burnt by wildfires, there do seem to be differences across ethnic groups. For example, 

Loomis, et al. (2009) find that WTP increments for these larger reductions are three 

to four times higher for Hispanics than for White households in California, Florida, 

and Montana (0.83 vs. 0.26 USD for the prescribed burning program and 1.27 vs. 0.27 

USD for the mechanical fuel reduction program, per household, per year, for a 100-

acre reduction in area burnt). The authors suggest that higher increments in WTP of 

Hispanic households may be explained by an expectation of there being a low 

likelihood of paying the full amount of the corresponding tax increase to support the 

expansion of the fuel treatment programs, given their lower income status in 

comparison to White households. 

The issue of wildfire risk perception is approached by Kaval, et al. (2007). The authors 

look at prescribed burning preferences in the WUI of Colorado, 2001, using a sample 

of respondents, almost entirely Caucasians, which is representative of the state’s 

population. Respondents were surveyed on perceived fire danger and frequency, and 

WTP for prescribed burning. Results suggest that households are not only well aware 

of wildfire danger and frequency in their areas, but that they also respond to changes 

in these, i.e., mean WTP increased from 800 USD by 284 USD when households felt 

their home was at an increased danger from wildfires and increased by 8 USD when 

households perceived an increase in the frequency of wildfires in the vicinity of their 

home. Not only were households knowledgeable of wildfire risk to their property, but 

discussions with respondents revealed that backfiring, i.e., undertaking private 

prescribed burning on the surrounding of their properties, used to be practiced until 

it was made illegal by authorities. At the time of the study, a defensible space of 30 

metres was allowed, and while there was evidence of the effectiveness in protecting 
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homes, it was not mandatory. Overall, the authors suggest that households are well 

aware of wildfire risk in their areas, which explains a large mean WTP for prescribed 

burning49.  

Preferences for wildfire risk management are, however, inextricably entangled with 

amenity values, e.g., prescribed fires generate disamenities, such as smoke haze and 

burnt landscapes. The second subgroup of CV studies is devoted to the valuation of 

forest amenities, particularly in relation to biodiversity and recreation values. Loomis 

& Gonzalez-Caban (1994; 1997; 1998) study preferences on fuel treatment programs 

that would be executed on the northern spotted owl’s critical habitat. Loomis & 

Gonzalez-Caban (1994) study preferences in Oregon in regard to fuel treatments 

within state, whilst Loomis & Gonzalez-Caban (1997; 1998) study preferences in 

California and New England in regard to fuel treatments in California and Oregon. 

These three studies look at use and non-use values from forest amenities, and more 

specifically at the preservation of old-growth forest ecosystems, home to the northern 

spotted owl, and at threat of catastrophic wildfires. Loomis & Gonzalez-Caban (1994) 

use the voter-referendum format to get the total economic value of old-growth forest 

amenities; i.e., the sum of recreation, option, existence and bequest values. On the first 

set of questions of the survey, authors asked Oregon households to rank the relative 

importance of recreation, timber provision, and plant and wildlife habitat provision 

services of old-growth forests. Then, respondents were presented with the fire 

prevention program, which consists of a better response to any fires, earlier fire 

 
49 The authors find that almost 90 percent of respondents supported prescribed burning as wildfire 
management policy. Moreover, Kaval, et al. (2007) point out that, when surveys of Colorado residents 
were conducted by the United States Forest Service (USFS), findings suggested that the proportion of 
respondents who support fire suppression at all costs rather than prescribed burning practices was 
three-fold that of their study. Such a discrepancy can be explained by the scope of respondents: the 
USFS surveyed Colorado residents in general, whilst the survey by Kaval, et al. (2007) studied residents 
of the WUI only. 
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detection systems, and better fire protection. Respondents were told that the yearly 

area burnt would be halved, from 11 to 5.5 square miles, if the fire prevention program 

were implemented. Then, respondents would answer “yes” or “no” to questions on 

whether they would vote in favour or against of implementing the program at several 

cost options. Findings suggest that the average household in Oregon would be WTP 77 

USD for the fire prevention program. Individuals who use the forest for recreational 

purposes were more likely to pay for the program. The larger the perception of harm 

to plant and wildlife biodiversity caused by wildfires, the larger the WTP. We must 

note, however, that the fire protection aspect of the program does not directly mention 

fuel treatment practices. To be clear, respondents were told a better fire prevention 

outcome would include fire safety education, enforcement of fire regulations, a greater 

number of fire patrols, and, importantly, the maintenance of existing firebreaks 

surrounding old growth forests50.  

On the other hand, Loomis & Gonzalez-Caban (1997; 1998)’s studies do look 

specifically at the valuation of prescribed burning programs to reduce fire intensity in 

the old growth forests in question. Both of these studies present respondents with a 

fire prevention program that includes fire hazard reduction – in addition to providing 

a better response to any fires, earlier fire detection systems, and better fire protection, 

as in Loomis & Gonzalez-Caban (1994). The fire hazard reduction aspect of the 

program consists of mechanical removal of brush and small deadwood on forest floor 

plus a prescribed fire program every 10 years. Their findings suggest large support for 

prescribed burning and mechanical fuel reduction programs, with benefits greatly 

exceeding the costs necessary to implement the program. Knowledge of the existence 

 
50 Although the authors do not state that firebreaks are maintained for prescribed burning purposes, we 
know that firebreaks are used for defining the perimeters of prescribed fires. 
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of the old growth forests and a belief in their importance in maintaining environmental 

quality were found to significantly boost WTP (Loomis & Gonzalez-Caban, 1997). 

Also looking at the benefits of prescribed fires is the study of Loomis et al. (2002), but 

focused on a particular recreational value: deer harvest and hunting in the San 

Bernardino National Forest of southern California. This study attempts to evaluate the 

ecological impacts of prescribed burning over time, in a context where the San Jacinto 

Ranger District planned to increase prescribed fires by 50 to 100 percent to increase 

deer population. The authors note that prescribed burning and deer harvest are 

positively correlated and employ an open-ended question for hunters to elicit their 

maximum WTP for an additional trip under current and improved conditions. Their 

findings suggest a total of 2,674 USD marginal benefits from an increase in 1000 acres 

of prescribed burning, under the assumption of no reduction in wildfire. When 

assuming a reduction in wildfires, the marginal benefits stem to 3,218 USD.  

The review of the existing literature suggests that households living in wildfire prone 

areas are aware of wildfire risk: low forest density in the immediate vicinity of property 

is a valuable attribute (Hjerpe, et al., 2016), and WUI residents exhibit stronger 

support for prescribed burning than the general public (Kaval, et al., 2007). Moreover, 

there is evidence of positive WTP for fuel treatment programs, even after accounting 

for any compensation that would need to be paid for those who are not WTP anything 

for or oppose these programs, likely due to the smoke emissions generated by 

prescribed burning (Nahuelhual-Munoz, et al., 2004; Loureiro, et al., 2004; Loomis, 

et al., 2005). Statistically significant differences in WTP across ethnic groups seem to 

be mainly driven by demographic characteristics (Loomis, et al., 2004; Gonzalez-

Caban, et al., 2007; Loomis, et al., 2009) and therefore, valuation of reductions in 

catastrophic wildfire risk through fuel treatments appear to be universally aligned 
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across states and ethnic groups – with some exceptions noted. Overall, fuel treatment 

programs seem to receive strong support (Loomis, et al., 2004; Loomis, et al., 2009) 

and are economically viable (Gonzalez-Caban, et al., 2007; Kaval, et al., 2007). Forest 

amenities are also valued for households living in wildfire prone regions, and they are 

WTP for fire prevention programs that reduce the extent of important ecosystem areas 

that is burnt (Loomis & Gonzalez-Caban, 1994; 1997; 1998), or that enhance 

recreational benefits, as that of deer hunting (Loomis, et al., 2002). 

Importantly, however, the findings from this literature review are applicable to the US 

only. A wildfire prone country, such as Australia, also deserves to be studied. We also 

notice that the CV method dominates; in our review, only one study – Hjerpe et al. 

(2016) – uses market revealed preferences. We recognise that surveys are convenient 

when trying to understand the reasons behind the resulting WTP estimates. However, 

we believe such findings should be complemented with revealed preference studies, 

such as the HPM, because there may be a difference between individuals’ desire on 

how to act and individuals’ actions. The latter would be captured by market responses, 

such as choosing where to live. At last, we also notice that studies on the economic 

valuation of fuel treatments have stagnated over the last decade: the most recent study 

we find is that of Hjerpe, et al. (2016). This is worrying considering that wildfire danger 

and frequency are increasing worldwide (UNEP, 2022). 

3.3 PRESCRIBED BURNING IN WESTERN AUSTRALIA 

The primary purpose of prescribed burning in WA is protecting lives and property by 

reducing the build-up of flammable fuel loads, and, therefore, reducing the risk of 

catastrophic wildfires. Another purpose for which prescribed burning is carried out in 

WA is the maintenance of biodiversity (DBCA, 2023). Ironically, many who oppose 

prescribed burning would argue that prescribed burning is harmful to biodiversity. 
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Other purposes are the rehabilitation of vegetation following an event of disturbance 

(such as timber harvesting and mining) and to research on fire-environment 

interactions (DBCA, 2023).  

The burning is ‘prescribed’ because it is commended and needs to meet certain 

conditions. For instance, for regions with distinct seasons, prescribed burning takes 

place in spring (September to November) and autumn (March to May) when 

vegetation is high in volume and moisture levels, and weather conditions are cooler 

and stabler. In northern regions, where seasons are either wet or dry, prescribed 

burning takes place during the wet season and up to the early dry season (January to 

June), when winds are easier to predict, vegetation has not yet fully dried, fires tend 

to be low in intensity, small in extensity, patchy, and likely to extinguish at night-time. 

Additionally, on the day of the planned prescribed fire, environmental conditions must 

be assessed to prevent a fire escape; and for that reason, the decision to ignite is made 

on the same day (DBCA, 2023). 

Nevertheless, the decision to ignite a prescribed fire on public land is always preceded 

by a planning process that involves many stakeholders, including primarily, the 

Department of Parks & Wildlife Service (DPAW) at the Department for Biodiversity, 

Conservation, and Attractions (DBCA), which must also respond to wildfires and 

conduct research on fire behaviour and impacts (DBCA, 2023). Whenever appropriate, 

the DPAW works in conjunction with the Department of Fire and Emergency Services 

(DFES) and local governments to undertake prescribed burning (DBCA, 2023). The 

planning process starts with the development of a Burn Program prepared by DPAW 

for each region. The Burn Program consists of an indicative annual burn plan, and, for 

regions in the south-west of WA, a three-year indicative burn plan also51. The program 

 
51 Likely because of the higher forest presence and population in the area. 
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must then be approved and published on the DPAW’s website. For each burn identified 

by the program, a plan is formulated. This plan consists of identifying all the 

preliminary work required before the prescribed fire takes place, such as identifying 

fuel loads and conditions, fauna and rare flora species, suitable weather conditions for 

ignition, and establishing burn objectives and success criteria for posterior 

assessment. The next step is the ignition, which must be approved on the day of the 

burn (DPAW, n.d.). Besides weather conditions, other criteria are factored in when 

deciding whether or not to approve the ignition, including a consideration of past fires 

over the landscape (DBCA, 2023), from which we interpret that the DBCA accounts 

for any wildfires occurring in the interim, i.e., that happened since the burn plan was 

formulated. Depending on weather conditions, ignition may be manual, aerial, or a 

mixture of both. Once ignition has occurred, the DFES publishes the Warnings & 

Incidents map on the Emergency WA website (DFES, 2023) to inform the general 

public of active smoke alerts and prescribed fires. Finally, the burn is assessed; for 

example, if the prescribed fire is to be implemented as an even mosaic of burn patches 

of up to 500 hectares, success may be assessed through satellite imagery. 

Prescribed fires are more than just the outcome of a planning process; each prescribed 

fire on public land is part of the fire management strategy of WA, which is focused on 

community and biodiversity protection. Three important points are acknowledged in 

the fire management strategy of WA. First, that communities expect land managers to 

protect infrastructure under threat of wildfires at the same time as climate change is 

augmenting wildfire risk and residential developments closer to bushland are 

increasing in number. Second, that communities also exert pressure on land managers 

to protect natural values at the same time as there is an increasing number of people 

using green areas (forests, parks, and reserves). Third, that communities are 
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expanding, and their experiences and expectations regarding fire management are 

increasingly divergent. In essence, the fire management strategy of WA consists of 

managing wildfire risk through fuel loads. Small areas may be subject to mechanical 

fuel reduction – i.e., the action of reducing available fuel through manual or machine 

methods (NPS, 2023) - and weed control, but most of the land managed by the 

department is treated via prescribed burning, which is less costly. The prescribed 

burning strategy is supported by peer-reviewed research and consists of the creation 

of a mosaic of fuel ages and structures, “most effective when at least 45 percent of the 

fuel across the forest landscape is maintained at less than six years since last burnt”. 

For this approach to be successful, a target of 200 thousand hectares of land in south-

west forests needs to be reached on an annual basis (DBCA, 2019) 

As noted, major concerns amongst the community are the impact of prescribed 

burning on biodiversity values and infrastructure. Given this concern, prescribed fires 

on native forests are implemented on mosaic patches and over spring when fuel and 

soil is most moist. Such combination generates prescribed fires of low intensity and 

with unburnt pockets that provide refuge and travel corridors for wildlife to safely 

escape whilst preserving important biodiversity and habitat values (Meinema, 2023). 

Regarding infrastructure protection, the DBCA states that prescribed burning is a 

‘very’ effective tool for managing wildfires because it reduces fuel loads, which are 

directly linked to fire behaviour. If fire behaviour is such that flames are over three 

metres high or travelling at a speed over 200 metres per hour, suppression efforts are 

unlikely to be successful. However, if the fire runs into areas recently burnt, 

suppression efforts are likely to succeed because fuel loads are low. For instance, the 

Perth Hills Bushfire of 2011 was limited in destruction precisely because prescribed 
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burning had been undertaken in strategic locations only four years before (DBCA, 

2023). 

The DBCA fire management strategy and corresponding efforts to protect 

communities and biodiversity via prescribed burning are agreeable for some. For 

instance, Burrows & McCaw (2013) claim that prescribed burning is an effective tool 

for managing the risk of wildfires on communities and on vegetation, soil, and 

ecosystem services. Boer, et al. (2009) study fire history on a eucalypt forested area in 

WA over a period of 52 years and find that prescribed burning reduced the incidence 

and extent of unplanned fires for up to six years since last burn; findings which are in 

line with the six-year mark identified by field practitioners. Moreover, wildfire 

disasters can also trigger a revaluation of prescribed burning. The Special Inquiry into 

the 2016 Waroona Fire reports that, for a range of reasons, the annual burning targets 

in land management zones (LMZs) A, B, and C had not been met almost every year 

over the last 12 years prior to the fire52, and that prescribed fires remain to be the “best 

practice to reduce the severity of fire over broad forest landscapes” (Government of 

Western Australia, 2016, p. 91). 

3.4 METHODOLOGY 

We implement the hedonic price model (HPM), first characterised by Rosen (1974) as 

a model of product differentiation where goods possess utility-bearing attributes, for 

which no explicit market exists, and yet, buyers and sellers make an implicit trade of 

these. Jobs, cities, and properties are examples of heterogeneous goods that possess 

multiple attributes that, when consumed, give rise to certain level of utility 

 
52 The DBCA prescribed burning target is allocated across three zones managed by the DPAW, labelled 
as LMZs A, B, and C; each defined within a specified distance from the edge of the populated area, in 
the form of concentric buffers, LMZ A being the closest to the populated area, followed by LMZ B and 
then by LMZ C (dataWA, 2021). 
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(Greenstone, 2017). The higher the utility level derived from an attribute, the higher 

the hedonic price. In the context of our study, property price (𝑃) for property ℎ sold at 

time 𝑡 is expressed as a function of perceived wildfire risk (𝑟), amenity levels (𝑎), and 

a vector of time-invariant features (𝑍); where 𝑟, 𝑎, and 𝑍 are the utility-bearing 

attributes: 

𝑃ℎ𝑡 =  𝑓 (𝑟ℎ𝑡,  𝑎ℎ𝑡, 𝑍ℎ) (3.1) 

Equation (3.1) is the hedonic price function (HPF). The relationship between 𝑟 and 

utility levels is negative, whereas the relationship between 𝑎 and utility levels is 

positive, i.e., 
𝜕𝑃ℎ𝑡

𝜕𝑟ℎ𝑡
< 0 and 

𝜕𝑃ℎ𝑡

𝜕𝑎ℎ𝑡
> 0. 

Note that, as opposed to 𝑍, 𝑟 and 𝑎 vary over time. This is because both 𝑟 and 𝑎 are a 

function of property ℎ’s exposure to past prescribed and wildfires (𝑝𝑓ℎ and 𝑤𝑓ℎ, 

respectively), i.e., past 𝑝𝑓ℎ and 𝑤𝑓ℎ alter risk perceptions and amenity levels. We will 

go on to use two indicators of exposure: area burnt and number of fires around the 

property. We do this because risk perception is altered by judgements on consequence 

and probability of occurrence. Area burnt because it is an indication of consequence, 

and number of fires an indication of probability of occurrence, both of which may be 

picked up by households. Nonetheless, consequence and probability judgements are 

not independent from each other, e.g., a very small fire may be completely ignored by 

households and hence not accounted for frequency judgements. Moreover, in our 

model, we account for the incremental exposure to fires53. In other words, we include 

fires recorded between time 𝑙 = 𝑡 − 𝑛 and time 𝑚 = 𝑙 + 1, where 𝑛 = 1, 2, … , 𝑁 and is 

expressed in calendar years, i.e., we include fires occurring between years 0 and 1, 1 

 
53 The decision to account for incremental impacts of fire on property price follows that incremental 
impacts would allow to observe how the effect of past fires diminishes over time. 
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and 2, …, and so on prior to the sale date. Equations (3.2) and (3.3) below show 𝑟 and 

𝑎 as a function of both 𝑝𝑓 and 𝑤𝑓 between time 𝑙 and time 𝑚, and equations (3.4) and 

(3.5) develop the time notations in (3.2) and (3.3) for all values of n.  

𝑟ℎ𝑡 =  𝑓 (𝑝𝑓ℎ𝑙
𝑚, 𝑤𝑓ℎ𝑙

𝑚) 𝑓𝑜𝑟 𝑛 = 1, 2, … , 𝑁 (3.2) 

 

 𝑎ℎ𝑡 =  𝑓 (𝑝𝑓ℎ𝑙
𝑚, 𝑤𝑓ℎ𝑙

𝑚) 𝑓𝑜𝑟 𝑛 = 1, 2, … , 𝑁 (3.3) 

 

𝑟ℎ𝑡 =  𝑓 ( 𝑝𝑓ℎ𝑡−1
𝑡−0, 𝑝𝑓ℎ𝑡−2

𝑡−1, … , 𝑝𝑓ℎ𝑡−𝑁
𝑡−𝑁−1, 𝑤𝑓ℎ𝑡−1

𝑡−0, 𝑤𝑓ℎ𝑡−2
𝑡−1, … , 𝑤𝑓ℎ𝑡−𝑁

𝑡−𝑁−1 ) (3.4) 

 

 𝑎ℎ𝑡 =  𝑓 ( 𝑝𝑓ℎ𝑡−1
𝑡−0, 𝑝𝑓ℎ𝑡−2

𝑡−1, … , 𝑝𝑓ℎ𝑡−𝑁
𝑡−𝑁−1, 𝑤𝑓ℎ𝑡−1

𝑡−0, 𝑤𝑓ℎ𝑡−2
𝑡−1, … , 𝑤𝑓ℎ𝑡−𝑁

𝑡−𝑁−1 ) (3.5) 

Given that prescribed fires reduce fuel load, and a reduction in fuel load is equivalent 

to a reduction in wildfire risk, we expect the derivative of 𝑟 with respect to 𝑝𝑓𝑙
𝑚 to be 

negative, i.e., 
𝜕𝑟ℎ𝑡

𝜕𝑝𝑓ℎ𝑙
𝑚 < 0. Moreover, given that fuel accumulation increases since last 

burn, we expect |
𝜕𝑟ℎ𝑡

𝜕𝑝𝑓ℎ𝑙
𝑚| to be greater for more recent exposure, i.e., |

𝜕𝑟ℎ𝑡

𝜕𝑝𝑓ℎ𝑡−1
𝑡−0| >

 |
𝜕𝑟ℎ𝑡

𝜕𝑝𝑓ℎ𝑡−2
𝑡−1| > ⋯ >  |

𝜕𝑟ℎ𝑡

𝜕𝑝𝑓ℎ𝑡−𝑁
𝑡−𝑁−1|. Prescribed fires, however, come at a cost in the shape of 

smoke, road closures, and burnt landscapes and wildlife habitats. Therefore, we expect 

the derivative of 𝑎 with respect to 𝑝𝑓𝑙
𝑚 to be negative54, i.e., 

𝜕𝑎ℎ𝑡

𝜕𝑝𝑓ℎ𝑙
𝑚 < 0. Because these 

amenity disruptions are transitory, we expect |
𝜕𝑎ℎ𝑡

𝜕𝑝𝑓ℎ𝑙
𝑚| to be greater for more recent 

exposure.  

 
54 We are aware that prescribed fires may also increase amenity levels, as those related to recreational 
values, e.g., deer harvesting, as studied by Loomis, et al. (2002). However, news articles on Western 
Australian’s experience with prescribed fires reviewed in the second section of this paper prevents us 
from expecting that recreational benefits would dominate over the disamenities. 
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Wildfire impacts are trickier to hypothesize. On one hand, wildfires may increase 𝑟 

because of availability heuristic, i.e., events that are easier to retrieve are judged as 

more frequent or probable (Tversky & Kahneman, 1974)55, and we can think of 

wildfires as events easy to retrieve because of the media coverage received and the 

distress on those who experienced the wildfire firsthand, either as a near-miss or a 

direct-hit. On the other hand, wildfires may reduce 𝑟 if households are knowledgeable 

of the risk reduction effect that results from the reduction in fuel load, or if they feel 

more resilient after the event56. Both counteracting effects should be greater for more 

recent exposure, i.e., availability bias and fuel load reduction should both be higher for 

𝑤𝑓 over time periods closer to sale date. We do not know which effect dominates, and 

therefore make no hypothesis on the sign of 
𝜕𝑟ℎ𝑡

𝜕𝑤𝑓ℎ𝑙
𝑚. Furthermore, and the same as 

prescribed fires, wildfires reduce amenity levels. Due to its unplanned nature, wildfires 

are more likely to generate long-term impacts, such as the loss or harm of vegetation 

and wildlife. Therefore, we expect the derivative of 𝑎 with respect to 𝑤𝑓𝑙
𝑚 to be negative 

and larger than the derivative of 𝑎 with respect to 𝑝𝑓𝑙
𝑚, i.e., 

𝜕𝑎ℎ𝑡

𝜕𝑤𝑓ℎ𝑙
𝑚 < 0 and |

𝜕𝑎ℎ𝑡

𝜕𝑤𝑓ℎ𝑙
𝑚| >

|
𝜕𝑎ℎ𝑡

𝜕𝑝𝑓ℎ𝑙
𝑚|. 

 
55 The impacts of 𝑝𝑓 and 𝑤𝑓 on 𝑟 and 𝑎 may be influenced by availability bias. Availability bias occurs 
when an event is easier to retrieve and therefore judged as more frequent or probable (Tversky & 
Kahneman, 1974).  
56 Impacts of 𝑤𝑓 on 𝑟 may be influenced by the way households interpret near-miss events. According 
to Tinsley et al. (2012), vulnerability feelings may arise if a near-miss is interpreted as a disaster that 
“almost happened”. Nonetheless, the opposite may hold true: if a near-miss is interpreted as a disaster 
that “did not happen”, then resiliency feelings may arise. If resiliency feelings arise, we may expect a 
decrease in risk perception. On the other hand, if vulnerability feelings arise, we may expect an increase 
in risk perception. Households who were not directly hit by the wildfire experience the event as a near-
miss, and we think it’s sensible to assume this is the case for most households of properties in our 
sample. 
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We make four important assumptions for our model. First, we assume a semi-

logarithmic functional form for the HPF57. Second, we assume that both 𝑟 and 𝑎 have 

linear functional forms. This assumption is made for analytical convenience. Third, 

that any 𝑝𝑓 and 𝑤𝑓 that occurred more than six years before sale date have no impact 

on 𝑟 or 𝑎, and therefore no impact on 𝑃. This third assumption is based on the 

following: i) Boer et al. (2009)’s findings that prescribed burning reduces wildfire risk 

for up to six years, and ii) the DBCA’s target to maintain fuel age at a maximum of six 

years since last burnt, based on both peer-reviewed and field evidence. Fourth, that 𝑝𝑓 

and 𝑤𝑓 more than 5 km away from the property’s location have no impact on 𝑟 or 𝑎, 

and therefore no impact on 𝑃. This fourth assumption is supported by our previous 

findings that only properties within a 5 km distance from burn scars experience a price 

mark-up (see CHAPTER 1 in this thesis). The confluence of the third and fourth 

assumption leads us to define fire ‘exposure’ as inclusive only of fires with a burn scar 

within a 5-km radius from the property, having that fire occurred within any of the 

first six years prior to sale date, e.g., 𝑝𝑓ℎ𝑡−2
𝑡−1 refers to exposure to prescribed fire burn 

scars that occurred on the 2nd year prior to sale date and within a 5-km radius from the 

property. From this point forward, we refer to ‘exposure’ in such terms. Additionally, 

we acknowledge that we cannot disentangle 𝑟 from 𝑎. We can only distinguish between 

lagged values of 𝑝𝑓 and 𝑤𝑓. 

Hence, 𝑃 is expressed as a function of lagged values of 𝑝𝑓 and 𝑤𝑓, along with 𝑍, which 

is accounted via property fixed effects (FE), i.e., 𝛷ℎ . Property FE allows us to account 

for observed and unobserved time invariant characteristics. Notice that it is no longer 

possible to sign the coefficients because 𝑟 and 𝑎 are entangled on 𝑝𝑓 and 𝑤𝑓. More 

 
57 This is usual practice. It is also recommended due to its simplicity and better performance under 
potential omitted variable bias (Cropper, et al., 1988; Palmquist, 2005). 
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specifically, the sign of the coefficients on the lagged values will depend upon which of 

the several potential effects described above dominates58. We also include fiscal year 

(𝑦) and season (s) FE to account for economic and political events and weather 

characteristics that may impact the housing market. Our final model for property ℎ 

sold at time 𝑡 is therefore that in equation (3.6) below, where 𝛼 is a constant and 𝜇 is 

an error term: 

ln 𝑃ℎ𝑡 =  𝛼 + ∑ 𝛽𝑛𝑝𝑓ℎ𝑙
𝑚

6

𝑛=1

+ ∑ 𝜃𝑛𝑤𝑓ℎ𝑙
𝑚

6

𝑛=1

+ 𝛷ℎ +  𝜎𝑦 + 𝛿𝑠 + 𝜇ℎ𝑡  (3.6) 

As noted above, there is a difference in the way prescribed fires and wildfires alter risk 

perception and amenity values. We believe this difference emerges from the nature of 

their occurrence: prescribed fires are planned whilst wildfires are not. Therefore, the 

attitude toward prescribed fires may be different across households with and without 

past wildfire exposure, for example, and vice versa. In addition to attitude, wildfire 

risk depends on fuel age, which is affected by exposure to past fires. In other words, 

prescribed fires and wildfires are substitutes for risk reduction effects. Therefore, 

experience with past wildfires may affect preferences for prescribed fires, and vice 

versa.  

Prescribed and wildfires are therefore interpreted differently depending on 

households’ prior experience, where experience is defined as exposure over the entire 

six-year period prior to sale date59. To deal with this experiential difference, we use 

our basic specification from equation (3.6) but look at five subsamples of interest. The 

 
58 For example, if prescribed fires are successful in reducing risk perception and households value this 
risk reduction effect more than any disamenity impact, we should see an increase in price, i.e., 𝛽𝑛 should 
be positive. Otherwise, 𝛽𝑛 should be negative. 
59 In other words, the cumulative exposure between the sale date and six years before sale date. Hence, 
if we say, for example, that a property has no wildfire experience, it means that the property has had no 
exposure to wildfires throughout the whole six-year period prior to sale date. Conversely, a property 
with wildfire experience is one with exposure to at least one wildfire over the entire six-year period prior 
to sale date. 
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first subsample has no restriction, so it really is the entire sample (all observations). 

The second and third subsamples are restricted to observations with and without 

previous wildfire experience, respectively. At last, the fourth and fifth subsamples are 

restricted to observations with and without previous prescribed fire experience, 

respectively. Each subsample has its own estimation equation (five in total). Table 

3.4.1 below indicates the subsample for all of our estimation equations. 

 

Full definitions for the variables included in our model are described in Table 3.4.2 

below. From this point forward, we refer to 𝑝𝑓ℎ𝑙
𝑚 and 𝑤𝑓ℎ𝑙

𝑚 as our treatment variables. 

 

Table 3.4.1: Equations 

Equation Subsample 

(I) All observations 

(II) Observations with wildfire experience 

(III) Observations without wildfire experience 

(IV) Observations with prescribed fire experience 

(V) Observations without prescribed fire experience 

Table 3.4.2: Definition of variables 

Variable Units Definition Example 

𝒍𝒏 𝑷𝒉𝒕 
nominal 

monetary 
log of market sale price - 

𝒑𝒇𝒉𝒍
𝒎

 
• area burnt 

• number of 
fires 

exposure to prescribed fire between 
time 𝒍 and time 𝒎 

For 𝒏 = 𝟏: 
𝒍 = 𝒕 − 𝟏 

𝒎 = 𝒕 − 𝟎 

𝒑𝒇𝒉𝒍
𝒎

=  𝒑𝒇𝒉𝒕−𝟏
𝒕−𝟎 

𝒘𝒇𝒉𝒍
𝒎

 
• area burnt 

• number of 
fires 

exposure to wildfire 
between time 𝒍 and time 𝒎 

For 𝒏 = 𝟔: 
𝒍 = 𝒕 − 𝟔 

𝒎 = 𝒕 − 𝟓 

𝒑𝒇𝒉𝒍
𝒎

=  𝒑𝒇𝒉𝒕−𝟔
𝒕−𝟓
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3.5 DATA 

The central piece of our data is the property market dataset for residential properties 

provided by Australian Property Monitors (APM) for sales between 2010 and 2019. 

This dataset includes sale price in Australian dollars (AUD), sale date, and a range of 

structural attributes such as area, number of bedrooms, bathrooms, and parking 

spaces, amongst many others. Critically for our purposes, we created a property ID to 

identify repeat sales of the same property. For neighbourhood and environmental 

attributes, we use several GIS datasets provided by the Government of Western 

Australia, and with the aid of the properties’ latitudes and longitudes provided by 

APM, we implement a spatial analysis in ArcMap – a GIS application to display, 

explore, modify and analyse spatial datasets - to get the Euclidean distance between 

the property and nearest public beach, forested area, and wetland, public bus and train 

stops, school, and the edge of central Perth. We also identify whether or not the 

property is within urban land and an LMZ. Latitudes and longitudes of properties are 

also used to identify fire exposure. 

To obtain the fire records of interest, we use the DBCA Fire History dataset published 

by the DBCA60. This dataset is classified as “official” under the Government of Western 

Australia’s information classification policy. It contains records of fire events 

occurring since 1922, although some historical records are missing due to 

unobtainable historic map sheets. The geographic extent of the dataset covers the 

entire state of WA since 2006. Earlier records correspond to fire events captured on 

 
60 We downloaded the DBCA Fire History dataset from the Government of Western Australia’s data 
catalogue (Data WA) website (Government of Western Australia, 2023) on the 9th of November of 2022, 
and according to the properties of the shapefiles downloaded, the records were last updated the 25th of 
July of 2022. At that point in time, a total of 50,177 fire events were recorded between 2004 and 2019. 
Of these, more than 40 percent are recorded as wildfires and 8 percent are recorded as prescribed fires, 
whilst more than 29 percent are recorded as of unknown type. 
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land managed by the DBCA and, where available, land not managed by the DBCA. 

Generally, the dataset is updated biannually, around January and July. 

The fire events recorded are of five types: wild, prescribed, mining rehabilitation, 

plantation, or unknown fires. We keep only wild and prescribed fire records. Each 

record is represented by a GIS vector-based polygon. For each record, a date is 

provided, along with a cause, purpose, and total area in hectares, amongst other 

descriptive data. For prescribed burns ignited multiple times, the date of first ignition 

is recorded. On the other hand, for wildfires, the date corresponds to that when the 

fire was first recorded in official government system records and may not align with 

date of first ignition nor completion. 

The cause attribute corresponds to the cause of wildfires, e.g., deliberate, escapes from 

prescribed burns, accidental, lighting, etc. For fire records different to wildfires, a “no 

cause, event was a prescribed burn” value is imputed. The purpose attribute 

corresponds to the purpose of fires different to wildfires, i.e., strategic protection, 

biodiversity management, vegetation management, etc. For wildfires, a “no cause, 

event was a bushfire” value is recorded for this attribute. The following paragraph 

describes the processes followed in ArcMap and QGIS to create two datasets indicating 

the fire polygon areas in square metres (m2) within 5 km of each residence from our 

property market dataset, one for wildfires and one for prescribed burns. 

Since we are interested in the impact of wildfires and prescribed burns events 

occurring six years prior to sale date of the property, we make a careful selection of fire 

records in ArcMap. First, given that our property market data ranges from 2010 to 

2019, we select fire records from 2004 enabling us to work with all observations in our 

dataset. To create the wildfire dataset, we select all fire events recorded as wildfires, 
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with a cause attribute different to “no cause, event was a prescribed burn”, and with 

purpose attribute equal to “no cause, event was a bushfire” to avoid selecting 

prescribed burns or other types of fires mistakenly recorded as wildfires. On the other 

hand, to create the prescribed burn dataset, we select all fire events recorded as 

prescribed burns, with cause attribute equal to “no cause, event was a prescribed 

burn”, and with purpose attribute different to “no cause, event was a bushfire”. We 

also exclude all records with cause and purpose attributes equal to “Unknown (historic 

data)”. Then, we proceed to create 5-km buffer zones surrounding the residential 

properties of our property market data and to create an intersection of these buffer 

zones for each of our fire datasets in order to identify all fires entirely or partially 

within the buffer zones. To do so, the “Buffer” and “Intersect” tools from the 

“Proximity” and “Overlay” tool sets were used. Finally, for each fire dataset, we use the 

“Calculate Geometry” tool in QGIS to create a new attribute field with the area in m2 

of the fire polygons that fall within the 5-km buffer zone. 

To get our final dataset, we merge the prescribed fire and wildfire datasets to the 

property market dataset with structural, neighbourhood, and environmental 

attributes. The dataset has a total of 89,419 observations (sales) for 78,088 unique 

properties, of which 10,571 properties were sold more than once between 2010 and 

2019, respectively. 

A total of 2,258 wildfires and 1,202 prescribed fires generate exposure to fire to at least 

one observation of our sample of properties. As shown in Table 3.5.1 below, the large 

majority of our sample (70%) has been exposed to fire, i.e., to prescribed fires, 

wildfires, or both. Additionally, we see that wildfire exposure is clearly larger than 

prescribed fire exposure, suggesting that households are most familiar with wildfires 

than with prescribed fires - 77.3% of our sample has no exposure to prescribed fires. 
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Table 3.5.1: Exposure to fire 

𝑝𝑓ℎ𝑡−6
𝑡−0 > 0 𝑤𝑓ℎ𝑡−6

𝑡−0 > 0 Obs. % 

No No 26,633 29.8 

Yes Yes 18,407 20.6 

No Yes 42,439 47.5 

Yes No 1,940 2.2 

  89,419 100 

Indeed, wildfire exposure in terms of number of fires for the average property in WA 

is more than four times larger than prescribed fire exposure. Interestingly, however, 

area burnt by prescribed fires is 1.5 times larger than area burnt by wildfires – see 

Table 3.5.2 below61. 

We reach similar conclusions for the average treated property in WA, i.e., exposure to 

wildfires is also greater than exposure to prescribed fires, when looking at number of 

fires as exposure indicator, but the opposite is true when looking at area burnt– see 

Table 3.5.3 below.

 
61 The average property has been exposed to 0.66 prescribed fires with 906,559 m2 of area burnt and 
2.94 wildfires with 600,834 m2 of area burnt. 
2.94/0.66 =4.45 and 906559/600834 = 1.51 
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Table 3.5.2: Summary statistics for all observations 

   Panel A 
number of fires 

Panel B 
area burnt (m2) 

 Variable Obs. Mean Std. Dev Min Max Mean Std. Dev Min Max 

P
re

sc
ri

b
ed

 f
ir

es
 

𝑝𝑓ℎ𝑡−1
𝑡−0 89,419 0.13 0.47 0 6  158,074   995,326  0 26,300,000  

𝑝𝑓ℎ𝑡−2
𝑡−1 89,419 0.12 0.46 0 7  160,279   1,001,058  0 22,800,000  

𝑝𝑓ℎ𝑡−3
𝑡−2 89,419 0.11 0.43 0 6  149,371   1,003,330  0 22,900,000  

𝑝𝑓ℎ𝑡−4
𝑡−3 89,419 0.10 0.43 0 11  146,983   1,025,993  0 28,000,000  

𝑝𝑓ℎ𝑡−5
𝑡−4 89,419 0.10 0.45 0 23  144,733   1,000,883  0 25,900,000  

𝑝𝑓ℎ𝑡−6
𝑡−5 89,419 0.10 0.44 0 13  147,119   989,239  0 26,900,000  

𝒑𝒇𝒉𝒕−𝟔
𝒕−𝟎 89,419 0.66 1.86 0 28  906,559   3,674,209  0 54,600,000  

W
il

d
fi

re
s 

𝑤𝑓ℎ𝑡−1
𝑡−0 89,419 0.62 1.27 0 15 118,294 1,237,537 0 57,300,000 

𝑤𝑓ℎ𝑡−2
𝑡−1 89,419 0.51 1.16 0 15 106,489 1,188,905 0 56,900,000 

𝑤𝑓ℎ𝑡−3
𝑡−2 89,419 0.50 1.14 0 13 105,427 1,203,292 0 55,300,000 

𝑤𝑓ℎ𝑡−4
𝑡−3 89,419 0.47 1.10 0 14 104,130 1,183,044 0 49,600,000 

𝑤𝑓ℎ𝑡−5
𝑡−4 89,419 0.43 1.02 0 14 88,294 1,008,304 0 37,200,000 

𝑤𝑓ℎ𝑡−6
𝑡−5 89,419 0.40 0.96 0 13 78,200 846,055 0 41,100,000 

𝒘𝒇𝒉𝒕−𝟔
𝒕−𝟎 89,419 2.94 4.59 0 54 600,834 3,658,841 0 83,800,000 
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Table 3.5.3: Summary statistics for treated observations 

   Panel A 
number of fires 

Panel B 
area burnt (m2) 

 Variable Obs Mean Std. Dev Min Max Mean Std. Dev Min Max 

P
re

sc
ri

b
ed

 f
ir

es
 

𝑝𝑓ℎ𝑡−1
𝑡−0 8,328 1.401 0.788 1 6 1,697,265 2,832,922 3.66 26,300,000 

𝑝𝑓ℎ𝑡−2
𝑡−1 7,916 1.405 0.793 1 7 1,810,508 2,886,707 0.87 22,800,000 

𝑝𝑓ℎ𝑡−3
𝑡−2 6,898 1.390 0.798 1 6 1,936,299 3,096,888 0.01 22,900,000 

𝑝𝑓ℎ𝑡−4
𝑡−3 6,373 1.421 0.867 1 11 2,062,306 3,289,580 4.52 28,000,000 

𝑝𝑓ℎ𝑡−5
𝑡−4 6,109 1.442 0.991 1 23 2,118,499 3,237,787 0.06 25,900,000 

𝑝𝑓ℎ𝑡−6
𝑡−5 5,940 1.459 0.978 1 13 2,214,683 3,186,533 0.32 26,900,000 

𝒑𝒇𝒉𝒕−𝟔
𝒕−𝟎 20,347 2.895 2.961 1 28 3,984,056 6,860,640 3.79 54,600,000 

W
il

d
fi

re
s 

𝑤𝑓ℎ𝑡−1
𝑡−0 29,246 1.899 1.591 1 15 361,683 2,143,500 0.24 57,300,000 

𝑤𝑓ℎ𝑡−2
𝑡−1 24,694 1.861 1.536 1 15 385,606 2,238,504 0.17 56,900,000 

𝑤𝑓ℎ𝑡−3
𝑡−2 24,502 1.821 1.523 1 13 384,751 2,275,252 0.17 55,300,000 

𝑤𝑓ℎ𝑡−4
𝑡−3 24,100 1.759 1.485 1 14 386,355 2,254,787 0.30 49,600,000 

𝑤𝑓ℎ𝑡−5
𝑡−4 22,904 1.673 1.402 1 14 344,707 1,970,005 1.30 37,200,000 

𝑤𝑓ℎ𝑡−6
𝑡−5 22,150 1.615 1.315 1 13 315,691 1,677,745 0.05 41,100,000 

𝒘𝒇𝒉𝒕−𝟔
𝒕−𝟎 60,846 4.317 4.998 1 54 882,983 4,407,336 0.00a 83,800,000 

a There are two observations whose 5-km buffer intersects with wildfire burn scars, and for which the area of the wildfire burn scars within the buffer zone is 
smaller than 0.005 m2 and therefore recorded as 0.00 m2. 
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3.6 RESULTS 

In this section we present a set of regression results for our two different indicators of 

exposure. Panel A presents the results for number of fires as the exposure indicator 

and Panel B presents the results for area burnt in m2. For simplicity, we interpret 

coefficients for area burnt in terms of km2. All equations include property, fiscal year, 

and season FE. Reported standard errors are robust and adjusted for clusters in 

Property IDs. We adjust standard errors for clusters in Property IDs because treatment 

(exposure to fire) is heterogeneous at the property level, i.e., it is properties, and not 

observations, which are exposed to fire over time62.Additionally, we present all three 

measures of R2: within, between, and overall. Since we are using FE to account for 

time-invariant characteristics of each unit, the within measure is the most relevant 

because we are interested in the goodness of fit of our model for explaining variation 

of property prices across time, within each property unit63.  

Table 3.6.1 below presents our main results. Here we include the entire sample of 

observations. Findings suggest that the higher the degree of exposure to prescribed 

fires over the recent years, the higher the property’s sale price. This is especially true 

for exposure over the first two years prior to sale date. Although this positive 

relationship between degree of fire exposure and property price is captured by both 

exposure indicators, we see that the number of fires has a higher impact on sale price. 

For the average property in WA, a marginal increase in the number of fires is 

associated with a property price increase of 1.2 and 2.6 percent for prescribed fires 

occurring over the first and second year, respectively. Similarly, a marginal increase in 

 
62 Recent evidence suggests that cluster adjustments are only effective when there is variation in 
treatment within clusters (Abadie, et al., 2023). 
63 The R2 between would instead provide an indication of goodness of fit for explaining differences in 
property prices between units. The R2 overall, on the other hand, would give a weighted average. 
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km2 of area burnt increases property price by 0.7 for prescribed fires occurring over 

any of the first two years prior to sale date. These results are significant at the 5 percent 

level or lower. 

Table 3.6.1: Main results 
 
 

Panel A 
number of fires 

Panel B 
area burnt (m2) 

Equation I I 
Sample all observations all observations 
VARIABLES ln 𝑃ℎ𝑡 ln 𝑃ℎ𝑡 

   
𝑝𝑓𝑡−1

𝑡−0 0.012** 6.99e-09*** 
 (0.005) (2.68e-09) 
𝑝𝑓𝑡−2

𝑡−1 0.026*** 6.68e-09*** 
 (0.005) (2.14e-09) 
𝑝𝑓𝑡−3

𝑡−2 0.008 1.93e-09 
 (0.005) (2.36e-09) 
𝑝𝑓𝑡−4

𝑡−3 0.007 7.74e-10 
 (0.006) (2.87e-09) 
𝑝𝑓𝑡−5

𝑡−4 -0.003 -2.52e-09 
 (0.006) (2.11e-09) 
𝑝𝑓𝑡−6

𝑡−5 0.003 -2.38e-09 

 (0.005) (2.17e-09) 

𝑤𝑓𝑡−1
𝑡−0 0.011*** 8.55e-10 

 (0.002) (1.33e-09) 
𝑤𝑓𝑡−2

𝑡−1 0.019*** 3.25e-09 
 (0.002) (2.60e-09) 
𝑤𝑓𝑡−3

𝑡−2 0.011*** 1.49e-09 
 (0.002) (1.81e-09) 
𝑤𝑓𝑡−4

𝑡−3 0.010*** -5.87e-09*** 
 (0.002) (2.26e-09) 
𝑤𝑓𝑡−5

𝑡−4 0.010*** -8.70e-09*** 
 (0.002) (2.45e-09) 
𝑤𝑓𝑡−6

𝑡−5 0.005** -4.52e-09* 

 (0.002) (2.55e-09) 
𝛼 12.870*** 12.900*** 
 (0.010) (0.009) 
   
Observations 89,419 89,419 
Property IDs 78,088 78,088 
R2 within 0.083 0.072 
R2 between 0.002 0.002 
R2 overall 0.003 0.003 
Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 
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Monetary impacts are also larger when we use the number of prescribed fires as 

exposure indicator, rather than area burnt. In particular, the average property in WA, 

having been exposed to 0.13 and 0.12 prescribed fires over the first and second year 

prior to sale date, experiences a price increase of 657 and 1371 AUD, respectively. 

These figures are smaller when we use area burnt as exposure indicator: 467 AUD for 

the first year, and 452 AUD for the second year – see Table 3.6.2 below. We believe 

that the larger impacts for number of fires reveals that households are generally more 

susceptible to the frequency component of risk, rather than consequence64. This also 

explains the larger R2 we get when using number of fires, instead of area burnt, as 

exposure indicator. 

Table 3.6.2: Main results - Average impacts 

variable 
exposure 
indicator 

mean 
exposure 

estimated 
coefficienta 

average impact 
(%)b AUDc 

𝑝𝑓𝑡−1
𝑡−0 number of fires 0.130 0.012 0.156 657.336 

𝑝𝑓𝑡−2
𝑡−1 number of fires 0.124 0.026 0.325 1371.458 

𝑝𝑓𝑡−1
𝑡−0 area burnt 158,074.000 0.00000000699 0.110 466.821 

𝑝𝑓𝑡−2
𝑡−1 area burnt 160,278.900 0.00000000668 0.107 452.341 

𝑤𝑓𝑡−1
𝑡−0 number of fires 0.621 0.011 0.709 2997 

𝑤𝑓𝑡−2
𝑡−1 number of fires 0.514 0.019 0.963 4069 

𝑤𝑓𝑡−3
𝑡−2 number of fires 0.499 0.011 0.549 2318 

𝑤𝑓𝑡−4
𝑡−3 number of fires 0.474 0.010 0.452 1910 

𝑤𝑓𝑡−5
𝑡−4 number of fires 0.429 0.010 0.444 1875 

𝑤𝑓𝑡−6
𝑡−5 number of fires 0.400 0.005 0.217 918 

𝑤𝑓𝑡−4
𝑡−3 area burnt 104,129.500 -0.00000000587 -0.061 -258 

𝑤𝑓𝑡−5
𝑡−4 area burnt 88,294.080 -0.00000000870 -0.077 -325 

 
64 The consequence component might have a larger impact for wildfire disasters, where area burnt is 
large and the event is featured in the media. However, for other wildfires, area burnt may be deemed 
relatively unimportant. We think it is important to note, however, that with climate change we can 
expect an increase in the frequency of wildfire disasters, making the frequency and consequence 
components of risk harder to disentangle. 
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Table 3.6.2: Main results - Average impacts 

variable 
exposure 
indicator 

mean 
exposure 

estimated 
coefficienta 

average impact 
(%)b AUDc 

𝑤𝑓𝑡−6
𝑡−5 area burnt 78,199.860 -0.00000000452 -0.035 -149 

a estimated coefficients are those in Table 3.6.1. 
b average impact (%) is calculated as: (mean exposure) x (estimated coefficient) x 100 
c average impact (AUD) is calculated as (average impact (%))/100*(mean price), where mean sale 
price is 422,486.8 AUD. 

Importantly, prescribed fires occurring more than two years prior to sale date have no 

significant impact on sale price. We believe this is because of the decreasing nature of 

risk reduction effects over time, i.e., given that fuel age of vegetation increases with 

time since last burn, risk reduction effects are at its peak when the prescribed fire is 

completed, and then begin to decrease. Another possibility is that, due to availability 

heuristics, recent prescribed fires are easier to retrieve, and so have a higher impact. 

We nevertheless notice that, when using number of fires as exposure indicator, 

prescribed fires over the second year have a higher impact on property price than those 

occurring over the first year65. This defies our explanation that more recent prescribed 

fires have higher impacts because of their risk reduction effects. Yet, we believe this is 

because disamenity impacts – such as smoke haze, road closures, or the view of burnt 

vegetation – are also higher for the first year. Hence, although risk reduction effects 

dominate over disamenity impacts for the first two years, it may be that it dominates 

to a lesser extent over the first year, i.e., (
𝜕𝑟ℎ𝑡

𝜕𝑝𝑓ℎ𝑡−2
𝑡−1 −  

𝜕𝑎ℎ𝑡

𝜕𝑝𝑓ℎ𝑡−2
𝑡−1) > (

𝜕𝑟ℎ𝑡

𝜕𝑝𝑓ℎ𝑡−1
𝑡−0 −  

𝜕𝑎ℎ𝑡

𝜕𝑝𝑓ℎ𝑡−1
𝑡−0) . 

Property prices are also higher for properties with a higher degree of wildfire exposure, 

but only when using number of fires as exposure indicator. For the average property 

in WA, one additional wildfire is associated with a property price increase between 

 
65 The 95 percent confidence interval for these two coefficients do not overlap, meaning that they are 
statistically different from each other. 
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0.5-1.9 percent for wildfires occurring over the first six year prior to sale date, with 

monetary impacts ranging between 918-4069 AUD – see Panel A in Table 3.6.1 and 

Table 3.6.2. These coefficients are also significant at the 5 percent level or lower. 

We notice that, in contrast with prescribed fires, the positive relationship between 

number of wildfires and property price is long-lasting, i.e., wildfires as old as six years 

prior to sale date continue to be associated with higher property price at the moment 

of sale. This might be due to the unplanned nature of wildfires. In particular, it could 

be that, given the unplanned nature of wildfires, wildfire exposure is subject to higher 

uncertainty of outcomes, compared to prescribed fires66. We believe it is plausible that 

unplanned and risky events are easier to retrieve, i.e., are more available in one’s mind, 

even if the event is not so recent. 

As with prescribed fires, most recent wildfires also exhibit larger coefficients than 

those further away in time, with the exception of those occurring over the second year 

prior to sale date. Here too we believe this is due to the decreasing nature of risk 

reduction effects, availability heuristics, and the dynamic between risk reduction 

effects and disamenity impacts over time. 

Conversely, we find no statistically significant impact for the exposure to an additional 

m2 of area burnt by recent wildfires, i.e., those occurring over the first three years prior 

to sale date67. For the following three years, the impact is negative and statistically 

significant, with average price discounts of 258, 325, and 149 AUD for wildfires 

 
66 Prescribed fires, being planned, are generally certain, i.e., the household generally knows the fire will 
not reach its home. This is false only with prescribed fire escapes, which in our dataset are classified as 
wildfires. Wildfires, on the other hand, are unplanned and therefore the risk of property damage is 
higher. 
67 We think this owes to the smaller R2 of the model for area burnt as indicator of exposure. 
Nevertheless, one possible explanation for positive but statistically insignificant coefficients is that risk 
reduction effects, although strong soon after wildfires, are opaqued by vulnerability feelings – as 
findings in CHAPTER 1 suggest. This would of course only be a reasonable explanation for large 
wildfires, which is why these findings arise only when we use area burnt as indicator of exposure. 
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occurring over the fourth, fifth, and sixth year prior to sale date, respectively. We 

immediately notice there is an apparent contradiction here. On one side, we find an 

increase in sale price for additional exposure in terms of the number of wildfires. On 

the other side, we find a decrease in sale price for additional exposure to area burnt by 

wildfires. Again, this might be explained by the unplanned nature of wildfires, i.e., as 

the area burnt by wildfires increases, so does the likelihood of the fire reaching homes 

and generating damage. It would therefore make sense that households show, as 

Table 3.6.1 suggests, a positive preference for a higher number of wildfires, but of 

smaller size. 

Now we turn to the analyses based on prior experience. The results are shown in Table 

3.6.3 below. Equation III in Panel A refers to properties with no prior wildfire 

experience. An outstanding finding here is that in the absence of wildfire experience, 

preferences for a higher number of prescribed fires is positive, large, and highly 

statistically significant. For properties with no wildfire experience, marginal increase 

in the number of prescribed fires is associated with a price increase as large as 30.7 

percent for the first year prior to sale date. As expected, coefficients are larger for most 

recent fires, and we again hypothesize that this is due to the decreasing nature of risk 

reduction effects over time and/or availability heuristics. Coefficients are statistically 

significant at the five percent level or lower, and the R2 is relatively high. Monetary 

impacts of prescribed fire exposure in the absence of wildfires range between 799-2761 

AUD – see Table 3.6.4 below. We believe that this large and positive preference for 

prescribed fires in absence of wildfire exposure is explained by the high value that 

households assign to risk reduction effects. Hence, it could be that households with no 

wildfire experience heavily rely on prescribed fires for risk reduction effects and 

therefore especially welcome these. Another possible explanation is that households 



164 
 

interpret the absence of wildfires as a successful outcome of prescribed fires, and 

therefore value these to a greater extent than if the outcome were unsuccessful. 

Interestingly, the opposite is also true: in the absence of prescribed fire experience 

(equation V in Panel A, Table 3.6.3), preferences for a higher number of wildfires is 

positive and highly statistically significant. However, coefficients are smaller, e.g., in 

the absence of prescribed fires, one additional wildfire in the first year prior to sale 

date is associated with a price increase of 3.4 percent. Here too coefficients are larger 

for most recent fires, and we again hypothesize the same reasons previously outlined. 

All coefficients are statistically significant at the one percent level. We could think that, 

in the absence of prescribed fires, wildfires should be greatly valued because of 

households’ higher reliance on wildfires for risk reduction effects. Nevertheless, we 

believe that the smaller coefficients are explained by the unplanned nature of wildfires, 

which give rise to a higher risk of property damage and higher disamenity impacts - 

e.g., smoke haze, burnt vegetation, and information on the loss of wildlife and 

biodiversity -, compared to prescribed fires which are planned strategically to 

minimise these impacts. 

When we restrict our sample to observations with wildfire fire experience, we get 

mixed results and generally statistically insignificant, with very low R2. The same is 

true when we restrict our sample to observations with prescribed fire experience - see 

equations II and IV in Panel A of Table 3.6.3 below. These results might be explained 

by the fact that - in contrast to equations III and V - the substitution in risk reduction 

effects between prescribed and wildfires is not clearly identifiable because experience 

with these two types of fires is also not clearly identifiable. For example, for equation 

II we know that all observations have experience with wildfires, but we do not 

distinguish between observations with and without prescribed fire experience. The 



165 
 

same logic applies for equation IV. Additionally, we have lost an important number of 

observations by making such restrictions. The main insight we get here is that, because 

risk reduction effects seem to be the most important predictor of property price in our 

model, any sample restriction should not diminish the ability of our model to account 

for the aforementioned substitution effect68. 

In Panel B of Table 3.6.3, results are also generally mixed, statistically insignificant, 

and with low R2. Therefore, we continue to confirm that households assign a higher 

weight to the frequency component of risk than to consequence. A notable exception 

is that of equation III, where the R2 is 0.33. Results here suggest a positive preference 

for large prescribed fires in recent years, and a negative preference for large prescribed 

fires for older years (although coefficients are only statistically significant for the first 

and fifth years). This could simply mean that large prescribed fires exhibit larger 

disamenity impacts than small prescribed fires; a negative impact that is compensated 

with strong risk reduction effects when the fire is recent, but not when the fire is old. 

Overall, the experience analysis provides three important insights. First, it strengthens 

our main findings from Table 3.6.1, suggesting that the risk reduction effect from 

fires is in fact the main predictor of household’s preferences for both prescribed and 

wildfires. Second, that prescribed and wildfires are substitutes in terms of risk 

reduction effects, and that this substitution relationship is better identified when we 

restrict our sample to only one type of fire. Third, that prescribed and wildfires are not 

perfect substitutes due to the unplanned nature of wildfires that make them more risky 

 
68 For example, for equation II, all observations have wildfire experience, and some of these have 
prescribed fire experience, while others do not. With equation III, we found that there is a high 
preference for prescribed fires when there is no wildfire experience. Yet, in equation II we are dismissing 
this relationship by ignoring all observations without wildfire experience. Therefore, coefficients on 𝑝𝑓𝑙

𝑚 
are unable to capture the strong substitution effect. This is not the case for equations III because, by 
restricting the sample to observations with no wildfire experience, the sample is restricted to 
observations where the substitution effect should be stronger (and it is). The same is true for equation 
V. 
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and the planned nature of prescribed fires which are strategically planned to minimise 

risks. Prescribed fires are therefore substitutes of higher value. 
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Table 3.6.3: Experience analysis results 

 Panel A Panel B 

 number of fires area burnt (m2) 

Sample 
wildfire experience prescribed fire experience wildfire experience prescribed fire experience 

yes no yes no yes no yes no 

Equation II III IV V II III IV V 

VARIABLES ln 𝑃ℎ𝑡 ln 𝑃ℎ𝑡 ln 𝑃ℎ𝑡 ln 𝑃ℎ𝑡 ln 𝑃ℎ𝑡 ln 𝑃ℎ𝑡 ln 𝑃ℎ𝑡 ln 𝑃ℎ𝑡 

         

𝑝𝑓𝑡−1
𝑡−0 0.006 0.307*** 0.012*  4.60e-09* 5.87e-08** 6.49e-09**  

 (0.005) (0.045) (0.006)  (2.69e-09) (2.32e-08) (2.69e-09)  

𝑝𝑓𝑡−2
𝑡−1 0.012** 0.283*** 0.019***  5.97e-09*** 3.17e-09 5.87e-09***  

 (0.005) (0.049) (0.005)  (2.08e-09) (3.43e-08) (2.12e-09)  

𝑝𝑓𝑡−3
𝑡−2 -0.000 0.242*** 0.005  2.77e-09 5.93e-08 3.73e-09  

 (0.005) (0.040) (0.006)  (2.37e-09) (6.35e-08) (2.33e-09)  

𝑝𝑓𝑡−4
𝑡−3 0.004 0.186*** 0.009  1.60e-09 1.49e-08 2.28e-09  

 (0.006) (0.054) (0.006)  (2.78e-09) (4.31e-08) (2.79e-09)  

𝑝𝑓𝑡−5
𝑡−4 -0.006 0.174*** -0.003  -2.03e-09 -5.69e-08** -1.33e-09  

 (0.005) (0.066) (0.005)  (2.05e-09) (2.55e-08) (2.09e-09)  

𝑝𝑓𝑡−6
𝑡−5 0.001 0.223** 0.007  -2.35e-09 -2.62e-08 -7.39e-10  

 (0.005) (0.101) (0.006)  (2.03e-09) (4.96e-08) (2.15e-09)  

𝑤𝑓𝑡−1
𝑡−0 -0.002  -0.002 0.034*** -7.72e-10  -5.83e-09** 3.69e-09** 

 (0.002)  (0.003) (0.003) (1.36e-09)  (2.29e-09) (1.67e-09) 

𝑤𝑓𝑡−2
𝑡−1 0.004*  0.002 0.038*** 1.26e-09  -4.73e-09** 3.76e-09 

 (0.002)  (0.003) (0.003) (2.66e-09)  (2.30e-09) (4.53e-09) 

𝑤𝑓𝑡−3
𝑡−2 -0.003  -0.004* 0.032*** -4.94e-10  -5.00e-09 -3.95e-09 

 (0.002)  (0.002) (0.003) (1.72e-09)  (3.50e-09) (5.08e-09) 

𝑤𝑓𝑡−4
𝑡−3 -0.002  -0.000 0.023*** -3.56e-09**  -2.45e-09 -1.28e-08*** 

 (0.002)  (0.003) (0.004) (1.57e-09)  (2.56e-09) (4.25e-09) 

𝑤𝑓𝑡−5
𝑡−4 0.005**  0.002 0.022*** -9.07e-09***  -1.35e-08*** -7.73e-09*** 

 (0.002)  (0.003) (0.004) (2.92e-09)  (3.48e-09) (2.81e-09) 

𝑤𝑓𝑡−6
𝑡−5 0.004*  -0.002 0.014*** -3.47e-09  -5.82e-09 -5.79e-09* 
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Table 3.6.3: Experience analysis results 

 Panel A Panel B 

 number of fires area burnt (m2) 

Sample 
wildfire experience prescribed fire experience wildfire experience prescribed fire experience 

yes no yes no yes no yes no 

Equation II III IV V II III IV V 

VARIABLES ln 𝑃ℎ𝑡 ln 𝑃ℎ𝑡 ln 𝑃ℎ𝑡 ln 𝑃ℎ𝑡 ln 𝑃ℎ𝑡 ln 𝑃ℎ𝑡 ln 𝑃ℎ𝑡 ln 𝑃ℎ𝑡 

         

 (0.002)  (0.004) (0.004) (2.55e-09)  (3.63e-09) (3.37e-09) 

𝛼 12.900*** 12.870*** 12.916*** 12.842*** 12.910*** 12.890*** 12.920*** 12.890*** 

 (0.009) (0.024) (0.023) (0.011) (0.008) (0.024) (0.019) (0.011) 

         

Observations 60,846 28,573 20,347 69,072 60,844 28,575 20,347 69,072 

Property IDs 53,750 26,148 18,392 60,894 53,748 26,150 18,392 60,894 

R2 within 0.057 0.348 0.065 0.115 0.058 0.333 0.078 0.097 

R2 between 0.001 0.023 0.006 0.019 0.001 0.018 0.001 0.005 

R2 overall 0.001 0.030 0.004 0.021 0.002 0.025 0.001 0.006 

Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 
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Table 3.6.4: Experience analysis results - Average impacts 

equation variable 
exposure 
indicator 

mean  
exposure 

estimated  
coefficienta 

average impact 

%b AUDc 

III 𝑝𝑓𝑡−1
𝑡−0 number of fires 0.021 0.307 0.651 2655 

III 𝑝𝑓𝑡−2
𝑡−1 number of fires 0.024 0.283 0.676 2761 

III 𝑝𝑓𝑡−3
𝑡−2 number of fires 0.022 0.242 0.526 2146 

III 𝑝𝑓𝑡−4
𝑡−3 number of fires 0.020 0.186 0.373 1522 

III 𝑝𝑓𝑡−5
𝑡−4 number of fires 0.016 0.174 0.282 1151 

III 𝑝𝑓𝑡−6
𝑡−5 number of fires 0.009 0.223 0.196 799 

III 𝑝𝑓𝑡−1
𝑡−0 area burnt 15871.380 0.0000000587 0.093 380 

IV 𝑤𝑓𝑡−1
𝑡−0 area burnt 694688.100 -0.00000000583 -0.405 -1780 

IV 𝑤𝑓𝑡−2
𝑡−1 area burnt 704377.900 -0.00000000473 -0.333 -1464 

V 𝑤𝑓𝑡−1
𝑡−0 number of fires 0.416 0.034 1.413 5900 

V 𝑤𝑓𝑡−2
𝑡−1 number of fires 0.335 0.038 1.274 5320 

V 𝑤𝑓𝑡−3
𝑡−2 number of fires 0.323 0.032 1.033 4312 

V 𝑤𝑓𝑡−4
𝑡−3 number of fires 0.306 0.023 0.703 2937 

V 𝑤𝑓𝑡−5
𝑡−4 number of fires 0.289 0.022 0.637 2659 

V 𝑤𝑓𝑡−6
𝑡−5 number of fires 0.276 0.014 0.386 1611 

V 𝑤𝑓𝑡−1
𝑡−0 area burnt 57404.380 0.00000000369 0.021 88 

a estimated coefficients are those in Table 3.6.3. 
b average impact (%) is calculated as: (mean exposure) x (estimated coefficient) x 100 
c average impact (AUD) is calculated as (average impact (%))/100*(mean price), where 
mean sale price is 422,486.8 AUD. 

3.7 DISCUSSION 

In the previous section we used a HPM with property FE and found that prescribed 

fires are in general valued positively by households, with risk reduction effects 

dominating over disamenity impacts, and to a greater extent for those without wildfire 

experience. In this section, we challenge these findings by exploring the impact of 

extreme events and of different modelling choices. For the impact of extreme events, 

we check for changes in the capitalisation of prescribed and wildfires after a major 

wildfire disaster. Then we investigate if our results remain robust when we employ the 

‘standard’ HPM without property FE, and a ‘hybrid’ model with property FE and time-

varying property attributes, to see how important time constant attributes are in the 

identification of our HPF. 



170 
 

Regarding the exploration of the impact of wildfire disasters, we do this because we 

believe wildfire disasters may provide households with an opportunity to update their 

beliefs and cause them to assess prescribed and wildfires differently thereafter. This is 

because low probability events, such as disasters, are more salient than milder events 

and are therefore easier to retrieve due to availability heuristics69. Indeed, extreme 

events can change subjective probabilities of occurrence and magnitude (Kousky, 

2010). For this purpose, we use the Waroona Fire of 2016 (simply ‘Waroona Fire’ from 

this point forward) as a case study70. 

The Waroona fire sparked over night with a lightning strike south of the Dwellingup 

State Forest on the 5th of January of 2016, but was first detected the next morning. It 

burnt more than 69 thousand ha, leaving two fatalities, 181 dwelling destroyed, and 

more than three thousand ha of forest plantations were lost (Government of Western 

Australia, 2016). Importantly, we choose to study the Waroona Fire because it is the 

wildfire disaster with most dwellings destroyed over our study period, and because of 

the media attention generated by this event – see Table 3.7.1 below for a short 

description of wildfires in WA that were afterwards the subject of a special inquiry. 

As suggested earlier, large wildfires, as that of Waroona, are likely accompanied by 

higher risk of property damage and high disamenity impacts. Increased risk 

perceptions may be subjectively amplified by media coverage – as would suggest 

Kasperson et al. (1988)’s social amplification of risk theory, i.e., the process through 

which public response may be amplified by, for example, the media as a social 

 
69 As discussed in the Methodology section, availability heuristics may increase risk perception of 
wildfires but may also have the opposite effect if households are knowledgeable of the risk reduction 
effects (as our findings in the previous section suggest they are). 
70 The Special Inquiry into the 2016 Waroona Fire reports that, for a range of reasons, the annual 
burning targets were not met almost every year over the last 12 years prior to the fire, and that 
prescribed fires remain to be the “best practice to reduce the severity of fire over broad forest 
landscapes” (Government of Western Australia, 2016, p. 91). Hence, we think it is possible that, after 
the fire, households may have a higher demand for prescribed burning. 
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institution. Therefore, it is sensible to expect a change in preference for wildfires, 

especially for those with higher area burnt. It is also sensible to expect a higher demand 

for prescribed fires in an effort to prevent uncontrollable wildfires. 

Our results - see Table 3.7.2 below– suggest two things. First, and most importantly, 

that splitting the sample before-and-after the Waroona Fire worsens the goodness of 

fit of our model , given that the R2 is lower than in Table 3.6.1 above. 

Second, that after the Waroona Fire, households exhibit a negative preference for both 

the number of wildfires and the area burnt by these. Moreover, coefficients on area 

burnt by wildfires are statistically more significant than for number of fires, and also 

larger than those in Table 3.6.1. This suggests that, after the Waroona Fire, 

households give importance to both frequency and consequence components of risk 

and that disamenity impacts dominate over risk reduction effects. Every additional fire 

is associated with a price decrease of 1.1-1.8 percent between the first five years prior 

to sale date. And every additional km2 of area burnt by wildfires is associated with a 

price decrease of 2.1-5.6 percent between the first six years prior to sale date. However, 

we find it strange that the negative impact of area burnt by wildfires does not follow a 

declining trend over time, and we notice that the coefficients on the number of 

wildfires are sometimes of low statistical significance. 

It is also disconcerting that preference for prescribed fires is not always, nor generally, 

positive and statistically significant, especially after the Waroona Fire, when one 

would expect higher demand for prescribed fires. 
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Table 3.7.1: Bushfire Inquiries of WA 

Inquiry 
number 

Inquiry Title Fire datea 
Dwellings 
destroyeda 

Dwellings 
damageda 

Fatalitiesa 
Area burnt 

(ha)a 

INQ200 
A Shared Responsibility: The Report of the Perth 

Hills Bushfire February 2011 Review 
Jan 2011 71 39 0 n.a. 

INQ201 
Major Incident Review: Lake Clifton, Red Hill and 

Roleystone Fires June 2011 
Jan 2011 81 119 0 > 3,015 

INQ203 Post Incident Analysis for Blackwood Fire 11 (WA) Nov 2011 0 “several” 0 50,000 

INQ223 
Appreciating the Risk: Report of the Special Inquiry 

into the November 2011 Margaret River Bushfire 
(WA) 

Nov 2011 0 32 n.a. 3,400 

INQ226 Post Incident Analysis Blackwood Fire 8 (WA) Nov 2011 0 45 3 2,000 
INQ225 Major Incidence Review Black Cat Creek Fire (WA) Oct 2012 1 n.a. 1 > 1,300 

INQ265 
Parkerville Stoneville Mt Helena Bushfire Review 

(WA) 
Jan 2014 57 6 0 386 

INQ277 
Major Incident Review of the Lower Hotham and 

O'Sullivan fires DFES (WA) 
Jan 2015 2 4 0 150,373 

INQ290 
Major Incident Review of the Esperance District 

Fires DFES (WA) 
Nov 2015 16 2 4 310,000 

INQ291 Waroona Fire Special Inquiry (WA) Jan 2016 181 n.a. 2 69,165 
a As described in the inquiry report. 
Source: BNHCRC (2023). 
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Table 3.7.2: Before and after Waroona Fire of 2016 

 Panel A Panel B 
 number of fires area burnt (m2) 
Equation I I I I 
Sample Before After Before After 
VARIABLES ln 𝑃ℎ𝑡 ln 𝑃ℎ𝑡 ln 𝑃ℎ𝑡 ln 𝑃ℎ𝑡 

     
𝑝𝑓𝑡−1

𝑡−0 0.018* -0.030* 9.08e-09** 1.36e-08 

 (0.011) (0.017) (3.96e-09) (8.55e-09) 
𝑝𝑓𝑡−2

𝑡−1 0.012 0.009 3.98e-09 6.37e-09 

 (0.009) (0.015) (3.37e-09) (7.21e-09) 
𝑝𝑓𝑡−3

𝑡−2 0.008 -0.022 2.57e-09 -1.44e-08 

 (0.010) (0.018) (2.70e-09) (1.36e-08) 
𝑝𝑓𝑡−4

𝑡−3 0.010 -0.014 8.94e-09** 1.75e-08 
 (0.008) (0.014) (3.49e-09) (1.36e-08) 

𝑝𝑓𝑡−5
𝑡−4 -0.001 -0.009 2.50e-10 5.29e-09 

 (0.008) (0.017) (3.16e-09) (6.67e-09) 

𝑝𝑓𝑡−6
𝑡−5 0.023*** -0.015 5.21e-09* -4.06e-09 

 (0.007) (0.018) (3.02e-09) (6.47e-09) 

𝑤𝑓𝑡−1
𝑡−0 0.005* -0.012** 3.15e-09 -4.52e-08*** 

 (0.003) (0.005) (2.39e-09) (8.34e-09) 
𝑤𝑓𝑡−2

𝑡−1 0.010** -0.011* -5.72e-09 -2.21e-08*** 

 (0.004) (0.006) (3.91e-09) (7.32e-09) 
𝑤𝑓𝑡−3

𝑡−2 -0.002 -0.018*** 9.39e-10 -5.58e-08*** 

 (0.004) (0.006) (2.44e-09) (8.86e-09) 
𝑤𝑓𝑡−4

𝑡−3 -0.001 -0.014* -8.17e-10 -2.16e-08*** 

 (0.004) (0.008) (2.21e-09) (6.21e-09) 
𝑤𝑓𝑡−5

𝑡−4 -0.001 -0.012* -1.10e-09 -2.73e-08*** 

 (0.004) (0.006) (3.36e-09) (5.54e-09) 

𝑤𝑓𝑡−6
𝑡−5 -0.003 -0.007 7.90e-10 -2.14e-08*** 

 (0.004) (0.007) (2.72e-09) (7.25e-09) 
     

𝛼 12.840*** 12.800*** 12.850*** 12.780*** 
 (0.012) (0.021) (0.010) (0.018) 

     
Observations 57,907 31,512 57,907 31,512 
Property IDs 53,773 30,732 53,773 30,732 
R2 within 0.0436 0.0320 0.0412 0.0438 
R2 between 0.0004 0.0042 0.0007 0.0010 
R2 overall 0.0002 0.0041 0.0004 0.0010 
Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 

Now we examine our choice to include property FE. When using property FE, we 

assume that all property characteristics other than fire history remain unchanged 

throughout our study period, e.g., a property sold in 2010 and 2015 is assumed to have 

the same attributes. This might of course, be false, leading us to omitted variable bias. 

Another potential problem of using property FE is that we rely on a subsample of 
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properties, specifically those that have more than one sale. In our dataset, 21902 

observations correspond to sales of properties sold more than once, and the number 

of unique properties sold more than once is 10571 (of which 9845, 692, and 34 unique 

properties were sold two, three, and four times, respectively). This raises the question 

on whether this sample of 10571 properties is representative of the population. 

To deal with the issue of time-varying property attributes, we experiment with a 

‘hybrid’ HPM, i.e., one where we include property FE and all time-varying property 

attributes, as that suggested by Case & Quigley (1991) and Shiller (1993). Most of these 

time-varying attributes correspond to the property’s structural characteristics, such as 

area size, and whether or not the property has a study room, garage, number of parking 

spaces, etc. This suggests that some properties in our dataset were extended or 

redesigned between sales. Additionally, given the introduction of bushfire prone area 

(BPA)71 maps in late 2015, a subset of our sample experiences a change in BPA 

designation, i.e., some of the properties sold before and after the introduction of BPA 

maps are located in newly designated BPAs72. The first two columns in Table 3.7.3 

below present our results for this hybrid model. Unsurprisingly, the R2 within are now 

much larger than in Table 3.6.1, i.e., 0.15 versus 0.08 for the model using number of 

fires as exposure indicator, and 0.14 versus 0.07 for the model using area burnt. When 

we use number of fires as exposure indicator, our findings are similar as in Table 

3.6.1: i) recent prescribed fires are positively valued by households, and ii) wildfires 

are also positively valued and have long-lasting impacts. However, we do note that, for 

some time periods, coefficients for prescribed fires change sign and lose significance. 

 
71 A BPA is an area defined as being “subject to or likely to be subject to bushfire attack” (DFES, p. 2). 
72 BPA maps are updated yearly, and the first designation took place on the 8th of December 2015. All 
properties sold before and after this first designation date experience a change in our BPA dummy 
variable. Subsequent designations present little change, so only a few observations experience a change 
in our BPA dummy. 
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To deal with the issue of sample representativeness, we experiment with the standard 

HPM, where all observed time-constant and time-varying attributes, but property FE 

are excluded. Amongst other observable attributes, we include those that are indicative 

of wildfire risk, such as distance to the forest, and whether the property is within a 

designated bushfire prone area (BPA) or an LMZ. We also include attributes that may 

attenuate wildfire risk, such as distance to nearest fire station and to a sandy coastline 

or public beach (as last resort means of evacuation) – see Table 3.9.1 in the 

Appendix for the full list of attributes included. Despite including a long list of 

observable attributes, results for the standard HPM contradict our main findings – see 

Table 3.7.3 below. In particular, when looking at the results using number of fires as 

exposure indicator, we see that preference for prescribed fires is negative for most time 

periods, and preference for recent wildfires is positive but negative for older wildfires. 

When using area burnt as exposure indicator, preference for prescribed fires is also 

negative, but all coefficients for wildfires are statistically insignificant. We find it hard 

to make sense of these results, as it is not sensible that residents value prescribed fires 

negatively whilst valuing wildfires positively. This not only contradicts our main 

findings, but also findings of previous studies. Hence, we believe that – despite the 

substantially higher R2 in the standard HPM – this is a confirmation that properties 

in our sample have unobservable attributes that influence the preference for 

prescribed fires. For instance, flammability of the property and of properties 

immediately nearby is unobservable. For example, during the Waroona Fire, several 

houses burnt were made of timber, and this contributed to the spread of the fire by 

ember attack across houses (Government of Western Australia, 2016). We also do not 

have information on the slope of the terrain to determine how accessible this is for 

firefighters or how easily a fire can spread. Nor do we have information on wildfire 
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insurance premiums. Property FE would control for these unobservable attributes, as 

long as these do not vary across our study period. 

Table 3.7.3: Alternative models 
 Hybrid HPM Standard HPM 

 Panel A 
number of fires 

Panel B 
area burnt (m2) 

Panel A 
number of fires 

Panel B 
area burnt (m2) 

Equation I I I I 

VARIABLES ln 𝑃ℎ𝑡 ln 𝑃ℎ𝑡 ln 𝑃ℎ𝑡 ln 𝑃ℎ𝑡 

     

𝑝𝑓𝑡−1
𝑡−0 0.00791 4.12e-09 -0.00706** -9.84e-09*** 

 (0.00534) (2.61e-09) (0.00317) (1.34e-09) 

𝑝𝑓𝑡−2
𝑡−1 0.0176*** 3.68e-09* 0.00807** -1.87e-09 

 (0.00465) (2.11e-09) (0.00336) (1.36e-09) 

𝑝𝑓𝑡−3
𝑡−2 0.0151*** 3.05e-09 -0.00383 -5.32e-09*** 

 (0.00501) (2.32e-09) (0.00353) (1.34e-09) 

𝑝𝑓𝑡−4
𝑡−3 0.00736 -1.41e-09 -0.00834** -3.84e-09*** 

 (0.00495) (2.59e-09) (0.00353) (1.32e-09) 

𝑝𝑓𝑡−5
𝑡−4 -0.00548 -1.63e-09 -0.0219*** -6.01e-09*** 

 (0.00502) (2.10e-09) (0.00350) (1.42e-09) 

𝑝𝑓𝑡−6
𝑡−5 -0.00207 -3.48e-09 -0.0236*** -6.20e-09*** 

 (0.00537) (2.56e-09) (0.00357) (1.32e-09) 

𝑤𝑓𝑡−1
𝑡−0 0.0106*** 1.13e-09 0.00829*** -6.39e-10 

 (0.00178) (1.28e-09) (0.00116) (1.20e-09) 

𝑤𝑓𝑡−2
𝑡−1 0.0138*** 4.13e-09* 0.00835*** 1.70e-09 

 (0.00192) (2.43e-09) (0.00131) (1.22e-09) 

𝑤𝑓𝑡−3
𝑡−2 0.0103*** 2.16e-09 0.000199 3.73e-10 

 (0.00180) (3.15e-09) (0.00130) (1.47e-09) 

𝑤𝑓𝑡−4
𝑡−3 0.00948*** -1.83e-09 0.00133 1.96e-09 

 (0.00206) (2.07e-09) (0.00137) (1.47e-09) 

𝑤𝑓𝑡−5
𝑡−4 0.00590*** -1.12e-08*** -0.00639*** -5.56e-10 

 (0.00209) (3.39e-09) (0.00137) (1.65e-09) 

𝑤𝑓𝑡−6
𝑡−5 0.00176 -7.29e-09* -0.0157*** -1.17e-09 

 (0.00249) (3.84e-09) (0.00144) (1.74e-09) 

𝛼 12.63*** 12.66*** 12.160*** 12.150*** 

 (0.0531) (0.0531) (0.0233) (0.0233) 

     Observations 65,848 65,848 65,848 65,848 

Property IDs 58,874 58,874   

     R2 within 0.1521 0.1414   

R2 between 0.0694 0.1195   

R2 overall 0.0741 0.1250 0.472 0.471 

     Property FE Yes Yes No No 

Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. 
Note: we lose observations due to missing values on structural attributes (area size, number of parking 
spaces (‘Parking’), and number of bathrooms (‘Baths’)). 
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Our findings of a positive preference using property FE and the hybrid models align 

with previous findings in the literature that suggest lower forest density is preferred in 

the immediate vicinity of the property (Hjerpe, et al., 2016) and that there is a positive 

WTP for fuel treatment programs, e.g., Loomis et al. (2004), Loomis et al. (2009), 

Gonzalez-Caban et al. (2007) and Kaval et al. (2007).  

3.8 CONCLUSIONS 

In this paper, we study households’ preferences for wildfire safety by modelling 

property price as a function of risk and amenity values, which are in turn, explained 

by exposure to prescribed and wildfires prior to sale date. We further propose that 

both prescribed and wildfires can be incorporated into risk and amenity value 

judgements by accounting for their frequency or consequence. Hence, we present two 

versions of our model. The first version looks at frequency, accounted for by number 

of fires; and the second version looks at consequence, accounted for by area burnt. By 

limiting exposure to a 5 km radius from the property’s latitude and longitude, we 

expect to account for local preferences only. Additionally, limiting exposure to the first 

six years prior to sale date, we align with field and academic evidence on the 

effectiveness of prescribed fires over time. 

Contrary to the opposition of some residents and natural scientists to prescribed 

burning featured in the media, we find that exposure to prescribed fires is a desirable 

attribute for households in WA, especially the most recent ones. Importantly, this is 

after controlling for exposure to wildfires. The positive preference suggests that the 

transient disamenity impacts from smoke, haze, road closures, and concerns around 

fire escapes, and the longer-term concerns about wildlife and biodiversity are 

overridden by the risk reduction effects, as perceived by households. The fact that 

households have a positive preference for recent prescribed fires in particular is 
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consistent with the decreasing nature of risk reduction effects over time, i.e., as fuel 

age increases, so does wildfire risk; and also consistent with availability heuristics, as 

more recent events are easier to retrieve than older ones.  

Furthermore, our experience analysis reveals that properties without wildfire 

exposure are associated with a large and statistically significant price mark-up when 

exposed to prescribed fires. This is an important finding, as it strongly suggests that, 

in a region prone to wildfires, as that of WA, prescribed and wildfires are substitutes 

in terms of risk reduction effects, i.e., in the absence of wildfires, households heavily 

rely on prescribed fires for risk reduction effects. As can be expected, prescribed fires 

are better valued than wildfires, which entail higher risk to property damage and 

higher disamenity impacts. 

Importantly, we find that households pay more attention to the frequency component 

of risk, rather than consequence, as our results are generally stronger when we use the 

number of fires as exposure indicator rather than area burnt, i.e., when using number 

of fires as exposure indicator, coefficients are generally more statistically significant 

and estimated monetary impacts are generally larger. This finding aligns with that of 

Brenkert-Smith, et al. (2013)’s survey analysis on the social amplification of wildfire 

risk in Colorado, US, where the authors find evidence that information sources and 

social interaction can alter perceived frequency of wildfires, but not perceived 

consequence. 

Additionally, our findings seem to suggest that the use of property FE is essential to 

account for unobservable time-constant attributes that have an effect on safety 

preferences, such as property’s flammability and terrain slope, and property-level data 

on insurance premiums. 
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Our work could be expanded by studying the heterogeneity in safety preferences across 

households. For instance, given the strong historic link between indigenous 

Australians and prescribed burning, it would be interesting to explore whether or not 

ethnicity plays a role in acceptance or rejection of prescribed burning. We also think it 

would be worthy to investigate the heterogeneity in safety preferences within the 5 km 

radius, i.e., to replicate our model using several distance intervals (e.g., 0.5, 1, 2, and 5 

km), to identify the spatial dynamics between risk perception and disamenity impacts, 

e.g., to see if risk reduction effects continue to dominate over disamenity impacts even 

when very close to the burn scar. Additionally, given that fire size has an impact on 

risk and amenity levels, we believe our research could benefit from classifying fires 

according to size, e.g., from very small to very large. This would let us examine 

heterogeneous preferences for the scale of prescribed and wildfires. 
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3.9 APPENDIX 

Table 3.9.1: Alternative models 
 Without property FE and all attributes   With property FE and all time-varying attributes 
 Panel A 

number of fires 
Panel B 

area burnt (m2) 
Panel A 

number of fires 
Panel B 

area burnt (m2) 
Equation I I I I 
VARIABLES ln 𝑃ℎ𝑡 ln 𝑃ℎ𝑡 ln 𝑃ℎ𝑡 ln 𝑃ℎ𝑡 
     
spring -0.00472 -0.00458   
 (0.00356) (0.00356)   
autumn -0.00509 -0.00516   
 (0.00351) (0.00352)   
winter -0.0144*** -0.0144***   
 (0.00357) (0.00357)   

𝑝𝑓𝑡−1
𝑡−0 -0.00706** -9.84e-09*** 0.00791 4.12e-09 

 (0.00317) (1.34e-09) (0.00534) (2.61e-09) 
𝑝𝑓𝑡−2

𝑡−1 0.00807** -1.87e-09 0.0176*** 3.68e-09* 
 (0.00336) (1.36e-09) (0.00465) (2.11e-09) 
𝑝𝑓𝑡−3

𝑡−2 -0.00383 -5.32e-09*** 0.0151*** 3.05e-09 
 (0.00353) (1.34e-09) (0.00501) (2.32e-09) 
𝑝𝑓𝑡−4

𝑡−3 -0.00834** -3.84e-09*** 0.00736 -1.41e-09 
 (0.00353) (1.32e-09) (0.00495) (2.59e-09) 
𝑝𝑓𝑡−5

𝑡−4 -0.0219*** -6.01e-09*** -0.00548 -1.63e-09 

 (0.00350) (1.42e-09) (0.00502) (2.10e-09) 
𝑝𝑓𝑡−6

𝑡−5 -0.0236*** -6.20e-09*** -0.00207 -3.48e-09 

 (0.00357) (1.32e-09) (0.00537) (2.56e-09) 

𝑤𝑓𝑡−1
𝑡−0 0.00829*** -6.39e-10 0.0106*** 1.13e-09 

 (0.00116) (1.20e-09) (0.00178) (1.28e-09) 
𝑤𝑓𝑡−2

𝑡−1 0.00835*** 1.70e-09 0.0138*** 4.13e-09* 
 (0.00131) (1.22e-09) (0.00192) (2.43e-09) 
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Table 3.9.1: Alternative models 
 Without property FE and all attributes   With property FE and all time-varying attributes 
 Panel A 

number of fires 
Panel B 

area burnt (m2) 
Panel A 

number of fires 
Panel B 

area burnt (m2) 
Equation I I I I 
VARIABLES ln 𝑃ℎ𝑡 ln 𝑃ℎ𝑡 ln 𝑃ℎ𝑡 ln 𝑃ℎ𝑡 
𝑤𝑓𝑡−3

𝑡−2 0.000199 3.73e-10 0.0103*** 2.16e-09 
 (0.00130) (1.47e-09) (0.00180) (3.15e-09) 
𝑤𝑓𝑡−4

𝑡−3 0.00133 1.96e-09 0.00948*** -1.83e-09 
 (0.00137) (1.47e-09) (0.00206) (2.07e-09) 
𝑤𝑓𝑡−5

𝑡−4 -0.00639*** -5.56e-10 0.00590*** -1.12e-08*** 
 (0.00137) (1.65e-09) (0.00209) (3.39e-09) 
𝑤𝑓𝑡−6

𝑡−5 -0.0157*** -1.17e-09 0.00176 -7.29e-09* 

 (0.00144) (1.74e-09) (0.00249) (3.84e-09) 
Area (m2) 2.97e-07 2.96e-07 4.07e-06* 2.54e-06 
 (2.13e-07) (2.12e-07) (2.15e-06) (2.09e-06) 
Bedrooms 0.0587*** 0.0583*** 0.0420*** 0.0428*** 
 (0.00623) (0.00620) (0.0143) (0.0144) 
Baths 0.197*** 0.197*** 0.0526*** 0.0536*** 
 (0.00915) (0.00914) (0.0173) (0.0174) 
Parking 0.0196*** 0.0193*** 0.00791*** 0.00835*** 
 (0.00125) (0.00125) (0.00233) (0.00231) 
HasStudy 0.103*** 0.104*** 0.0226*** 0.0197** 
 (0.00320) (0.00320) (0.00815) (0.00815) 
HasSeparateDining -0.0181*** -0.0189*** -0.00731 -0.00691 
 (0.00475) (0.00476) (0.00855) (0.00861) 
HasFamilyRoom 0.0319*** 0.0320*** -0.00871 -0.0163 
 (0.00528) (0.00528) (0.0195) (0.0192) 
HasSunroom 0.0274** 0.0274** -0.00282 -0.00423 
 (0.0110) (0.0109) (0.0167) (0.0161) 
HasRumpusRoom 0.0127*** 0.0121*** -0.00730 -0.00765 
 (0.00380) (0.00381) (0.00675) (0.00671) 
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Table 3.9.1: Alternative models 
 Without property FE and all attributes   With property FE and all time-varying attributes 
 Panel A 

number of fires 
Panel B 

area burnt (m2) 
Panel A 

number of fires 
Panel B 

area burnt (m2) 
Equation I I I I 
VARIABLES ln 𝑃ℎ𝑡 ln 𝑃ℎ𝑡 ln 𝑃ℎ𝑡 ln 𝑃ℎ𝑡 
HasFireplace 0.0383*** 0.0389*** 0.0165** 0.0161** 
 (0.00461) (0.00461) (0.00644) (0.00638) 
HasWalkInWardrobe 0.00237 0.00305 0.0142** 0.0146** 
 (0.00343) (0.00344) (0.00586) (0.00592) 
HasCourtyard -0.00186 -0.00115 0.00517 0.00616 
 (0.00546) (0.00547) (0.0112) (0.0112) 
HasInternalLaundry 0.00541 0.00647 0.0229** 0.0268*** 
 (0.00595) (0.00594) (0.00931) (0.00916) 
HasHeating 0.000148 0.000601 0.00162 0.000554 
 (0.00392) (0.00392) (0.00571) (0.00570) 
HasAirConditioning -0.0192*** -0.0186*** 0.0250*** 0.0270*** 
 (0.00269) (0.00269) (0.00525) (0.00527) 
HasBalcony 0.234*** 0.234*** 0.0288*** 0.0265** 
 (0.00546) (0.00545) (0.0111) (0.0111) 
HasBarbeque 0.0376*** 0.0368*** 0.0110 0.0127 
 (0.00550) (0.00550) (0.00984) (0.00985) 
HasPolishedTimberFloor 0.0636*** 0.0627*** 0.0163* 0.0150* 
 (0.00569) (0.00569) (0.00862) (0.00848) 
HasEnsuite 0.0285*** 0.0283*** 0.00426 0.00389 
 (0.00383) (0.00384) (0.00567) (0.00568) 
HasSpa 0.0755*** 0.0756*** -0.0147* -0.0175** 
 (0.00502) (0.00503) (0.00803) (0.00801) 
HasGarage 0.0825*** 0.0819*** 0.0361*** 0.0373*** 
 (0.00316) (0.00316) (0.0118) (0.0119) 
HasLockUpGarage -0.0232*** -0.0238*** -0.0221*** -0.0219*** 
 (0.00443) (0.00443) (0.00794) (0.00795) 
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Table 3.9.1: Alternative models 
 Without property FE and all attributes   With property FE and all time-varying attributes 
 Panel A 

number of fires 
Panel B 

area burnt (m2) 
Panel A 

number of fires 
Panel B 

area burnt (m2) 
Equation I I I I 
VARIABLES ln 𝑃ℎ𝑡 ln 𝑃ℎ𝑡 ln 𝑃ℎ𝑡 ln 𝑃ℎ𝑡 
HasPool 0.124*** 0.125*** -0.00856 -0.00942 
 (0.00465) (0.00465) (0.0171) (0.0172) 
HasTennisCourt 0.0648 0.0615 -0.0107 -0.0126 
 (0.0484) (0.0485) (0.0457) (0.0463) 
HasAlarm 0.0805*** 0.0799*** 0.0178*** 0.0195*** 
 (0.00523) (0.00523) (0.00680) (0.00681) 
distance to forest 5.64e-06*** 5.62e-06***   
 (8.19e-07) (8.38e-07)   
distance to sandy coastline -4.71e-07*** -4.63e-07***   
 (2.62e-08) (2.62e-08)   
distance to wetland -1.43e-06*** -1.41e-06***   
 (7.96e-08) (7.92e-08)   
distance to beach 1.81e-07*** 1.72e-07***   
 (1.94e-08) (1.94e-08)   
BPA 0.132*** 0.134*** 0.0506*** 0.0589*** 
 (0.00472) (0.00472) (0.00962) (0.00968) 
LMZ-A 0.156*** 0.159***   
 (0.00543) (0.00537)   
LMZ-B 0.280*** 0.285***   
 (0.0196) (0.0195)   
LMZ-C 0.212*** 0.301***   
 (0.0508) (0.0539)   
distance to fire station 8.33e-06*** 8.16e-06***   
 (1.33e-06) (1.33e-06)   
distance to bus stop -7.47e-07*** -7.47e-07***   
 (2.97e-08) (3.78e-08)   
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Table 3.9.1: Alternative models 
 Without property FE and all attributes   With property FE and all time-varying attributes 
 Panel A 

number of fires 
Panel B 

area burnt (m2) 
Panel A 

number of fires 
Panel B 

area burnt (m2) 
Equation I I I I 
VARIABLES ln 𝑃ℎ𝑡 ln 𝑃ℎ𝑡 ln 𝑃ℎ𝑡 ln 𝑃ℎ𝑡 
distance to train stop 2.47e-07* 2.12e-07*   
 (1.29e-07) (1.29e-07)   
distance to Perth 8.29e-08 1.24e-07   
 (1.29e-07) (1.29e-07)   
urban -0.0921*** -0.0921***   
 (0.00333) (0.00332)   
𝛼 12.160*** 12.150*** 12.63*** 12.66*** 
 (0.0233) (0.0233) (0.0531) (0.0531) 
     
Observations 65,848 65,848 65,848 65,848 
R2 0.472 0.471 0.0741 0.1250 
     
Property FE No No Yes Yes 
Fiscal year FE Yes Yes Yes Yes 
Season FE Yes Yes Yes Yes 
Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 
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CONCLUSIONS 

Wildfires can have devastating consequences on ecosystems, biodiversity conservation 

and people’s welfare and wellbeing. With climate and land-use change, wildfires are 

becoming more frequent and intense, and communities are increasingly coexisting 

with wildfire risk (UNEP, 2022). It is in this context that we wonder if people update 

their safety preferences and change behaviour in response to the risk of wildfires. We 

look into this by identifying changes in the sale price of residential properties, as an 

indicator of people’s decisions on where to live, presumably one of the most important 

decisions one can ever make. Specifically, we use the HPM and focus our study on WA, 

a region of high biodiversity importance and frequently affected by wildfires but also 

frequently overlooked in the study of market revealed safety preferences, as opposed 

to wildfire-prone regions in the USA. To implement the HPM, we combine vector-

based GIS data for structural, neighbourhood, and environmental attributes of 

properties sold between 2010 and 2019, along with their sale prices. 

In CHAPTER 1, we implement a DD approach to study the impact of a wildfire 

disaster, the Waroona Fire of 2016, on near-miss households, which are defined by two 

different treatments: distance to the burn scar and receiving warnings during the fire. 

Not all households near the burn scar received warnings, making the near-miss 

experience different across households. We find that properties within 5 km from the 

burn scar experienced a price mark-up of approximately 8%, suggesting that the near-

miss effect is driven by a risk reduction effect that dominates over disamenity impacts. 

On the other hand, those that received emergency warning alerts during the fire event 

experienced a price discount of approximately 6%, suggesting that warnings are 
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effective in triggering vulnerability feelings. Our results confirm that the near-miss 

effect is multidimensional and not reduced to a proximity effect. 

In CHAPTER 2, we investigate whether households update their safety preferences 

when introduced and exposed to BPA maps, i.e., maps that identify areas subject to, or 

likely to be subject to, wildfire risk, and also subject to more stringent development 

planning and building regulations affecting new builds. Given that these maps define 

a clear cut-off point that divides treated and control areas, we implement a sharp RDD 

where the score is defined by the distance between the property and the BPA boundary. 

After several robustness checks, we find that properties within BPAs experience a price 

discount of approximately 4%, suggesting that the mapping policy is effective in 

shifting housing preferences away from risky areas, and that this shift is prompted by 

an increased risk perception rather than by pre-determined risk perception or the more 

stringent planning and building regulations. This suggests, on one hand, that wildfire 

risk mapping could alleviate spending on management, suppression and recovery by 

discouraging housing in risky areas; and on the other hand, that risky areas may attract 

low-income households, increasing socioeconomic inequalities.  

Motivated by our findings on the first and second chapters, which suggest risk 

reduction benefits from past wildfires and a clear preference for living in non-BPAs, in 

CHAPTER 3, we further explore safety preferences by looking at the capitalisation of 

prescribed burning - a forest management practice that reduces the risk of 

uncontrollable fires - into property prices. After controlling for wildfire exposure, we 

find that properties with exposure to prescribed fires are positively associated with 

higher property prices. This is especially true for properties with recent exposure to 

prescribed fires (1.2 and 2.6% higher for fires over the first and second years prior to 
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sale date), and even more so for properties with no wildfire experience (between 17.4 

– 30.7% higher over the first six years prior to sale date), suggesting that households 

are aware of the risk reduction effects and their decreasing nature over time, and that 

risk reduction effects, dominate over any disamenity impacts, despite the strong 

opposition due to health and biodiversity concerns. Additionally, we find stronger 

results when using the number of fires - instead of area burnt - as exposure indicator, 

suggesting that households are more perceptive of frequency - instead of consequence 

– when making risk judgements. 

Our findings across this thesis suggest that, in areas that coexist with wildfires, such as 

WA, safety preferences are strong and capitalised into the housing market, giving 

policy makers potential to alter people’s beliefs through emergency, land zoning, and 

forest management services (e.g., issuing emergency warnings, risk mapping and 

associated regulations, and prescribed burning, respectively). Emergency, land zoning, 

and forest management services are then, policy tools that, through changes in 

property prices, can have a significant impact on wealth. 

For instance, in CHAPTER 1, we see that emergency warnings generate a 

distributional impact where properties in areas that received warnings decrease in 

price, especially those in areas where warnings were easiest to understand, suggesting 

that policy makers should be careful not to issue blanket warnings and that making an 

effort in clear risk communication is well worthwhile. We also see that properties in 

proximity to the burn scar experienced a price increase, suggesting that near-miss 

households value the reduction in future wildfire risk despite the disamenities 

associated with a burnt landscape. This already suggests that policy makers should pay 
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attention to prescribed burning, as this is an alternative that entails lower risk and 

disamenities. 

In CHAPTER 2, findings suggest that the provision of spatially delineated 

information on wildfire risk alters safety preferences, i.e., housing preferences shift 

away from riskiest areas, which may be particularly beneficial to society if households 

are indeed underestimating wildfire risk. More stringent planning and building 

regulations in riskiest areas could also generate positive externalities through lowering 

wildfire risk and the costs of a wildfire to both one's neighbours and the state. Policy 

makers can therefore use risk mapping to discourage housing in areas most prone to 

wildfires. However, they should also be careful in their vegetation management, e.g., 

careful in deciding which vegetation types to prioritise in urban areas, as BPA maps are 

defined by the presence of BPV. Moreover, policy makers should also be mindful that 

BPA maps might unintentionally encourage lower income households to live in BPAs 

due to the lower price compared to properties in non-BPAs in the neighbourhood of 

the boundary. 

Finally, CHAPTER 3 clearly confirms that prescribed burning is a policy tool 

positively valued by affected households, and that the risk reduction effect generated 

by burn scars from prescribed fires is preferable to that from wildfires. The extent to 

which prescribed burning costs should be borne by beneficiaries remains an area of 

debate, and so does the right to choose to live in high wildfire risk areas.  

Nevertheless, the study of wildfires is broad in that there are many empirical aspects 

to account for, and we have faced some limitations. Throughout the thesis, the chief 

limitation is the inability to disentangle wildfire risk from forest and green amenities, 

being that wildfire risk and amenities are both greater closest to forest and green areas. 
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We deal with this by taking advantage of the opposite effects that risk and amenity have 

on experienced utility and property prices, i.e., ceteris paribus, the higher the amenity 

level, the higher the utility and price; the higher is wildfire risk, the lower is utility and 

price. Hence, we assume that both risk and amenity attributes are factored in the price 

function, and that the sign of our estimated coefficient determines which attribute 

dominates over the other. We were also limited by having no information on property 

age, which is an important structural attribute; and no information on insurance 

premiums, which can certainly alter safety preferences. Additionally, we could have 

benefitted from a visit to WA and in particular Waroona, as it would have enabled us 

to meet fire managers, local authorities, and residents. This would have helped us get 

additional insights on safety preferences and forest management challenges through 

interviews or participation in meetings, along with research collaboration 

opportunities. However, the COVID-19 pandemic prevented any visit to WA, and when 

constraints were lifted, time was already very scarce. 

For CHAPTER 1 on the near-miss effect, the chief limitation is defining the treatment 

group, i.e., there is no clear identification of near-miss observations. We define near-

miss observations as those which had a near-miss experience, but the identification 

requires a multidimensional approach that starts, but does not end, with the 

identification of the proximity area, i.e., the area near the direct-hit. 

The first task is to define the extension of the proximity area from the edge of the fire 

burn scar, and there is no golden rule for this. We deal with it by proposing four 

distance bands (2, 5, 10 and 20 km) and implementing a DD approach. 

The next task is to account for the fact that the near-miss experience, and therefore the 

near-miss area, is defined by much more than proximity, e.g., changes in wildfire risk, 
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amenity levels, and pollution levels from smoke and ash, and being exposed to 

emergency warnings and a high frequency of local news; all of which can affect different 

subgroups of households. If we focus on risk reduction effects and the loss of forest and 

green amenities, proximity to the direct-hit area is key and identifiable with vector-

based GIS data (although a view-shed analysis - for which we lack 3D data - could 

increase accuracy). Yet, every other near-miss dimension is harder to identify. For 

instance, to identify observations affected by emergency warnings, we read through the 

special inquiry, which reviews warnings issued on the first two days of the fire event 

only. A multidimensional approach accounts for the heterogeneity of the near-miss 

experience across households in favour of a better identification strategy. Nevertheless, 

it can lead to a small number of treated observations across some dimensions, some of 

which could be collinear. In addition, we would have benefitted from spatial data on 

the dispersion of smoke and ash, and on the frequency of related local news at the Shire 

level, for instance. 

For CHAPTER 2, one limitation is the inability to distinguish properties that were 

affected by the more stringent regulations from those that were not – as more stringent 

planning and building regulations affect properties that undergo building work, as well 

as new builds. We deal with this by assuming that repeat sales resold after the BPA 

map introduction are not affected by the change in regulation, whereas unique sales 

might be; and then we confirm that confidence intervals of coefficients on the impact 

of the BPA for these two groups overlap, suggesting that the drop in property prices 

within BPAs is not regulation driven. Needless to say, this is a weak fix, as the repeat-

sale group might be affected by extensive building work and the unique-sale group may 

contain a large proportion of old and unaltered properties. Another limitation is that 
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we do not have information on insurance premiums, and it could be that the price 

discount for properties within BPAs reflects a lower demand due to an expectation of 

higher insurance premiums, as suggested in de Ceglie (2015)73. 

For CHAPTER 3, the main limitation is that we cannot claim for causal impacts, as 

we could not carry out a causal-impact evaluation approach because it was not 

appropriate for our purpose, i.e., there is no particular event or program of interest 

that would generate a change in property price, but only a degree of exposure to wild 

and prescribed fires that would generate a difference in property price between 

observations. A particular challenge was that we relied heavily on conversations with 

experts to fully understand the terminology and recording procedure of the fire history 

dataset - which we initially found confusing and contradictory in some instances - to 

be then able to compile our own dataset. We would have also benefitted from having 

access to spatial data on fuel age, i.e., years since last burn, and forest density across 

our study period, as it more accurately represents wildfire risk and forest and green 

amenities.  

If not limited by time constraints, we would have liked to extend our research as 

follows. First, by incorporating changes in air and water pollution from smoke and ash 

as a near-miss dimension of the Waroona Fire. Although a transient impact, we predict 

it could affect the housing market while the recovery process takes place. Second, by 

undertaking an impact event study for news sentiment analysis on the Waroona Fire, 

 
73 We have not found evidence of higher insurance premiums after the introduction of BPA maps and 
within our study period. However, it is likely that cost of home insurance is considered by households 
when deciding where to live. For instance, recent news articles suggest that households should consider 
the potentially higher cost of rebuilding in BPAs when deciding the insured amount (Bristow, 2023). On 
the other hand, it is also suggested that insurance premiums in BPAs are now so expensive that many 
households simply decide not to get insured at all (Libatique (2023)), implying that insurance premiums 
in BPAs have become irrelevant.  



192 
 

differentiating between international, national, and local media, to better understand 

how risk perceptions are amplified in society. Third, by complementing our research 

with a stated preference approach. One reason for this is to get WTP estimates on risk 

reduction effects and forest and green amenities, as we cannot disentangle risk 

reduction and disamenity impacts with our current approach, and it would be 

interesting to confirm that households expressly state higher valuations for risk 

reduction effects than for amenity values. Another reason for this is to check if stated 

and market revealed preferences are aligned, and further study the reasons for 

misalignments, if any, i.e., are people’s preferences not being capitalised into the 

housing market? If so, why? Stated preferences can also serve as robustness checks for 

our results if we believe the identification strategy is not as strong as we would like, as 

is the case for CHAPTER 3 on the capitalisation of prescribed burning into property 

prices. Fourth, by incorporating data on ethnicity in order to understand cultural 

differences in the preferences for prescribed burning, particularly between indigenous 

and non-indigenous Australians, given that the former have a long history on 

prescribed burning practice. 

Amid a warming climate and land-use change, devastating news on wildfires will only 

become more frequent, including in unexpected areas (e.g., the Arctic). For this reason, 

we believe much more research is needed on identifying misperceptions on risk, tools 

for correction, and households’ preferences for forest management practices - as 

prescribed burning -, along with an analysis on the sustainability of the practice as 

climate conditions for its implementation worsen. 
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