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Abstract

Most computer vision applications, such as automatic image cropping and attention target
estimation, aim to perform or solve a task as humans would. While recent works using Neural
Networks showed promising results in numerous research areas, complex and subjective
tasks are still challenging to solve by only deriving information from images and videos.
Therefore to enhance the ability of the machine to localise a part of an image or to interpret
complex social interactions between multiple people in the scene like humans would, explicit
or implicit user input could be integrated into the algorithm. This thesis investigates the
usefulness of explicit verbal and implicit non-verbal human social clues and their combi-
nation in frameworks designed for attention-based computer vision tasks. The proposed
computational methods in this thesis aim to better understand the user’s intention through
different input modalities. Specifically, this work used natural language and its combination
with eye-tracking user inputs for description-based image cropping and visual attention for
joint attention target estimation.

This work studied how a natural language expression of the users could be directly used
to automatically localise the described part of an image and output an aesthetically pleasing
image crop. The proposed solution re-purposed existing deep learning models into a single
optimisation framework to solve this complex, highly subjective problem. In addition to the
explicit language expressions and a semi-direct social clue, the eye movements of the users
were integrated into a novel multi-modal framework. Finally, motivated by the usefulness of
the user’s semi-direct attention input, a deep neural network was developed for estimating
attention targets in images to detect and follow the joint attention target of the subjects within
the scene.

The presented approaches have achieved state-of-the-art performances in quantitative
and qualitative measures on different benchmark datasets in their respective research areas.
Furthermore, the conducted studies confirmed that the users favoured the output of the
proposed solutions. These findings prove that integrating explicit or implicit user input and
their combination into computational methods can produce more human-like outputs.

Keywords: multi-modal framework, computer vision applications, description-based
image cropping, eye-tracking, joint attention target estimation
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Chapter 1

Introduction

Figure 1.1: Illustration of the real-world applications associated with this thesis. Example
visualisation of the tasks of the description-based image part localisation and joint attention
target estimation of multiple subjects from a third-person view.

1.1 Introduction

Human-centred artificial intelligence (AI) is an expanding field of computer science that
leverages the insights of data-driven predictions while placing human users at the centre
of the model design [1, 2]. The term AI encompasses the development of computational
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models that mimic human abilities and perform tasks that require human intelligence [3].
This research area focuses on complex, meaningful interactions and mutual understanding
between humans and computers. It aims to advance the understanding of neural networks
and machine learning that form the adaptive mechanisms of AI through mathematical and
technological advancement [4].

An emerging interdisciplinary scientific field of AI is computer vision which aims to
deduce useful information from digital images, videos, and other visual inputs [5]. It attempts
to gain a high-level understanding of various visual inputs to automate tasks people can
perform using their visual system. The recent advancement of biologically inspired deep
learning models played a crucial role in the rapid development of this research field [6, 7]
through its capability to extract high-level features from the input data. In recent years, new
network designs with different learning strategies have been introduced to generate models
that can perform similarly to humans or even better in different computer vision applications
[8].

Although deep learning methods achieved outstanding results in various use cases, they
have several limitations when analysing complex, high-dimensional, and noise-contaminated
data sets [7]. In addition, in the case of complex and highly subjective tasks with more than
one possible solution, where even humans would not fully agree on a solution, the models
often fail to achieve the desired output. This is not surprising as many deep learning models
are trained using the supervised learning paradigm through human annotations [9]. The
complex nature of human intuition is hard to describe and learn, so the annotations used for
training limit the model’s output quality. Besides, humans rely on more than just their visual
system during daily-life decision-making [10, 11]. To achieve human-like performance,
relying solemnly on image or video data to perform a complex task might not be sufficient.
Therefore, receiving additional input or using other modalities, such as human input, is
potentially useful.

In human-centred computer vision, some of the most studied and utilised human inputs
and behaviours are natural language expressions, facial expressions, eye movements, hand
gestures, and body gestures [12–15]. Based on the source of the input information, user
inputs can be categorised as implicit or explicit. We refer to user input as explicit or direct
when there is no intermediary, meaning the user input is intended to be transferred to another
person or machine. Typically generating this type of input requires effort from the user.
For example, the user could generate explicit language expressions to describe a part of an
image or something in their surroundings, and they could use hand gestures coupled with the
speech to express their intention. Assistive technologies often use explicit inputs where the
users can control the machine using direct user input. For example, voice-controlled smart
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home technology allows people to control different devices, such as hubs like Amazon Echo,
which perform various actions directly or through connected devices following the user’s
voice commands. While this technology is primarily designed to bring comfort and improve
productivity to its user, other voice-controlled hands-free assistant devices can improve the
life quality of people with disabilities [16, 17]. The related research fields benefiting from
explicit user inputs which enable these technologies include speech recognition, body and
pose estimation and action recognition. Instead of direct input, implicit user input could be
collected without the user’s knowledge and producing this type of input should not take any
extra effort from the user. A use case example for this is tracking applications aiming to
identify the person’s interest, where the user is observed through, e.g. a CCTV camera while
performing everyday activities such as shopping [18]. Monitoring the shopping behaviour
of the subject includes tracking their path and their interactions with products, including
grasping and gazing. Based on this information, the proposed algorithms, such as [18–21],
attempt to understand the customer’s interest, intention and appreciation towards a given
product. The desired outcome of such models is to assess the probability of the product
being bought by a given customer and, if applicable, detect their reasons for not choosing the
product. These algorithms require implicit user input to perform motion detection, attention
target estimation and customer behaviour analysis.

One of our primary communication sources is speech. Using explicit language expres-
sions to convey our thoughts to the people around us is the easiest and fastest way. Language
expressions can be categorised into four sentence pattern categories: statements, questions,
commands, and exclamations. The aforementioned smart home devices and products using
speech rely on commands. These expressions are often pre-defined (e.g. Amazon Echo’s
wake word ‘Alexa’) and typically short sentences. These explicit voice commands require
extra attention from the user to use the expression the device can understand. In our everyday
life, it is more common to use statements in social interactions. For example, when answering
the question “What do you like about this painting?" humans typically use full sentences to
describe their interest, like “I like the reflection of the sun’s rays on the water’s surface."
instead of “The reflection." or when describing where they placed something, they would say
“I left the car key on the counter in the hall next to the vase." instead of “The hall.". These
more complex statements are harder to understand and utilise by machines but require less
effort from the users.

Besides natural language expressions, humans tend to rely heavily on their vision. Visual
attention is a fundamental explicit social clue, and it provides us with much information
regarding the observed person’s social, affective and cognitive states. Beyond the usefulness
of understanding the subject’s momentary state, eye tracking and attention target estimation
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aimed to investigate further the user’s personality, general interest and health condition. This
non-verbal signal has been researched for decades through different intrusive (e.g. head-
mounted eye-tracking devices), and non-intrusive systems (e.g. monitor-mounted tracking
devices and CCTV cameras) due to its usefulness [22].

Eye-tracking systems allow specialists to record and monitor the movement and the
position of the subject’s eyes during an event or stimuli. The stimuli can originate from a
display (e.g. advertisement) or in the wild (e.g. objects or people in the user’s surroundings)
[23]. The most widely used oculography method to track the eyes’ location, motion and
gaze direction is video oculography, in which systems obtain information from image data
processed with computer vision techniques [24]. Two main research areas of video-based
eye tracking are eye localisation and eye gaze direction estimation - approaches of the first
category attempt to detect the eye in the image. The latter is focused on estimating the gaze
direction from the detected eye region.

With the recent improvement of eye-tracking systems, head and monitor-mounted eye-
tracker devices have become cheaper and improved in terms of resolution and recording
frequency, enabling high-precision eye-movement tracking and analysis in the field of
human-computer interaction [25]. Furthermore, eye-tracker devices are particularly useful
and frequently used due to their accessibility and portability in the field of psychology
[26], clinical research [27], and academic marketing and consumer research [28]. These
human-focused research topics aim to analyse eye movements w.r.t.the provided stimuli and
draw a conclusion regarding the subject’s health or personal interest based on it. However,
the mountable trackers restrict the user’s head movements as they are designed to record the
subject’s gaze points within the display. The wearable devices are obtrusive and require the
subject to wear them, which depending on the research field (such as subjects with Autism
Spectrum Disorder or Schizophrenia), is not always possible [29]. Furthermore, these devices
need to be more adequate to gather large-scale true-to-life gaze data, e.g.in contexts such as
3D object manipulation or in-person social interactions [30].

Therefore, researchers developed unobtrusive appearance-based gaze estimation tech-
niques to tackle the drawbacks of eye-tracker devices. Despite the lower accuracy of these
methods, it allows us to observe and study human behaviour surreptitiously, without the
subject’s knowledge [31]. The challenges of this field include head pose variations, subject
differences, illumination conditions, etc. However, the advancements in deep learning and
computer vision techniques improved the reliability of appearance-based methods. They en-
abled us to observe multi-user, unconstrained environments instead of single-user-constrained
ones [14]. This research field aims to map the image data directly on the image content;
therefore, it does not require camera calibration or geometry data. Due to its successes, many
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research areas formed based on the foundations of this research field, including single and
joint attention target estimation, which aims to estimate the subject’s gaze target from a
third-person view. Attention target estimation techniques are widely used in social awareness
tracking and neurophysiology studies [32].

This thesis investigates the previously introduced social clues, natural language expres-
sions, and gaze, which humans rely on during everyday life. To demonstrate the usefulness
of this work, in Figure 1.1, we show a simple overview example of the applications and use
cases where the contributions of this work are to be considered. In the figure, the subjects
observe the TV screen while discussing parts of the visual stimuli. During this conversation,
they use natural language expressions to describe the part of the image to direct the other
person’s attention to something relevant. This everyday life scenario, description-based im-
age part localisation, is investigated in Chapters 2 and 3. Furthermore, from the third-person
point of view, the subjects attempt to understand better what is happening in the video they
are watching. Here, we show a typical example where multiple actors are gazing at the
same target during a scene in the movie. This action, the joint attention target estimation of
multiple people, is investigated in Chapter 4.

1.2 Aim and Objectives

1.2.1 Aim

This thesis investigates the usefulness of integrating implicit and explicit social clues and
their combination into frameworks to solve different computer vision tasks.

1.2.2 Objectives

The objectives of this thesis are:

• To propose a solution to the user description-based automatic image cropping problem
where the algorithm explicitly considers the user’s natural language input and produces
a high-quality output crop that best represents the described part of the image.

• To investigate the usefulness of the semi-explicit eye movement input of the user
collected during the image description as part of the description-based image cropping
optimisation framework.

• To use implicit social clues such as gaze direction to estimate the joint attention target
of the subjects within the scene from a third-person view.
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1.3 Thesis Statement
Integrating verbal and non-verbal social clues, such as natural language description, gaze
and their combination, in a multimodal framework can improve the algorithm’s performance
in computer vision applications such as automatic description-based image cropping or joint
attention target estimation of subjects within the 3D scene from a third person view.

1.4 Thesis overview
My research is organised into three main chapters, and their overview is as follows:

1. Caption and Aesthetic-Guided Image Cropping
In Chapter 2, I introduce a novel description and aesthetics-guided image cropping
optimisation framework using existing pre-trained networks. This method is the first
one to integrate explicit natural user description into an image cropping framework
to automatically produce an aesthetically pleasing output which well preserves the
user’s intention. The proposed solution is extensively evaluated using a novel dataset
through quantitative evaluation and multiple user studies. The dataset and the algorithm
presented in this chapter were published in the paper by Horanyi et al. [33].

2. Gaze Initialised, Description and Aesthetic-Based Image Cropping In Chapter 3, I
present a new multimodal framework which leverages information from the user’s eye
movements during caption generation. By using an eye-tracking device, the collected
eye movements of the user can be used to improve further the localisation accuracy of
the previously introduced solution for the description-based image cropping task. The
eye-tracking data and the novel image-cropping framework were accepted to The 2023
ACM Symposium of Eye Tracking Research & Applications (ETRA) [34].

3. Where Are They Looking in the 3D Space? In Chapter 4, I present the findings on
depth-guided joint attention target estimation on images. In this chapter, I worked with
implicit social clues, such as gaze direction and head and body pose, to estimate the
attention target of the subjects within the 3D scene from a third-person view. Experi-
ments show that the method achieves state-of-the-art results on multiple benchmark
datasets for both joint and single attention target estimation tasks. The proposed joint
attention target estimation framework by Horanyi et al. [35] was accepted to The 5th
International Workshop on Gaze Estimation and Prediction in the Wild (GAZE 2023)
at CVPR 2023 and won the Best Paper Award.

The publications mentioned above [33–35] are based on the work presented in this thesis.
The figures from the submitted and published papers have been used in this thesis.



Chapter 2

Repurposing Existing Deep Networks for
Caption and Aesthetic-Guided Image
Cropping

Two people sitting on 
a bench on the grassland

A happy man wearing 
a white shirt is standing 

on the green grass

Figure 2.1: Illustration of different output image crops of the proposed method. Our
proposed framework reliably crops visually pleasing images by following the natural descrip-
tions of users, and this can produce distinct crops on the same image based on different users’
descriptions.

2.1 Introduction

With the advent of social networks, it is now common that images are provided with captions
and tags – for example, via Instagram or Twitter – where captions are highly tied in with the
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user’s intentions regarding these images. Therefore, an automated process for enhancing
images, for example, providing artistic crops or making thumbnail images that respect
user intentions, would be useful for these social networking services (SNS). Besides SNS

applications, more connected in with computer vision applications such as semi-automated
image dataset generation [36], tracking target object initialisation [37], and story-based
automatic image transition generation [38] can also benefit from text-based image cropping.

In this Chapter, as illustrated in Figure 2.1, we focus on a novel image cropping task,
which aims to crop an image automatically based on user intent – expressed through a
natural text-based description – and the aesthetics of the cropping outcome. Because of the
usefulness of an automated image cropping system, various methods have been suggested.
However, existing image cropping methods [39–42] are typically designed to be purely
automatic, leaving the user out of the loop. For example, [41] automatic cropping is based
on maximising the saliency inside the cropping region. Attention-based methods like this
try to preserve the most salient part of the image during cropping. One major downside of
them is that the user cannot influence their behaviour. Recent works [43–46] have focused
on making this process even easier by automatically cropping a photo based on aesthetics.
Although fully automated, aesthetics-based methods leave no room for the user to intervene.
Furthermore, the work based on aesthetics provides no guarantee that the images’ initial
content and intent are preserved.

Efforts have also been taken toward methods that take user intention as input. Description-
based object detection [47] and localisation [48] have recently been proposed for this purpose.
However, these description-based methods do not consider how natural images are created,
and their behaviours are far from how humans would crop. Most distinctively, these methods
provide very tight cropping around an object, which is different from how people crop images
and is often not visually pleasing.

As in many other areas of computer vision, towards this goal, one could apply an end-
to-end deep learning framework to find crops that fit the descriptions given an image [47].
However, training such a network in a typical supervised deep learning setup would require
an immense amount of labelled data, with captions for multiple sub-regions of the images
and their respective ground-truth crops, which may be subjective depending on the creator of
the dataset. This is challenging as there is no guarantee that one crop is better than the other
as long as the contents inside the cropped regions are identical. Therefore, in this Chapter,
we take an alternative approach that exploits existing networks trained for related tasks –
image captioning and aesthetics estimation – and repurpose them to automatically crop the
images, thereby avoiding the hardships of training a separate network.
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Our contributions are four-fold:

• We propose a new deep network repurposing framework to optimise crop parameters
directly using a bilinear sampler [49], a pre-trained image captioning network [50],
and a pre-trained aesthetic estimation network [46].

• We optimise to find the crop region that best fits the provided caption in terms of the
image captioning network losses and maximises the aesthetics network scores.

• We generate a new dataset with multiple ground truth bounding box annotations for
each caption.

• With the approaches above, we could outperform state-of-the-art methods and produce
more visually pleasing image crops reflecting user intention well.

The outcome of the optimisation should be a crop of a photo whose content would fit the
caption provided by the user and be aesthetically pleasing. To achieve these objectives, we
optimise the parameters of the bilinear sampler, such that the cropped image minimises the
losses related to image captioning and aesthetics. Utilising the two networks requires special
attention. More specifically, since we are repurposing the two pre-trained networks for a
different purpose, we keep them intact to minimise the change inflicted upon them. However,
as we are not using the two networks with their original purpose - learning to generate image
captions or compare two images to find the one that looks better, we propose a new loss
term that we minimise instead of their original ones: learning to generate image captions
and measuring how good the image looks. For the image captioning network, we propose to
ignore the order of the words as we want the contents to be accurate. We aim to ensure that
the correct objects are present and not concerned with the referring expressions where the
order matters. For the aesthetic network, we directly maximise the aesthetic score.

Since this optimisation process is, in its basic form, highly unstable due to the nature of
the image gradients, we further propose a new optimisation strategy based on scale annealing
and multiple restarts. Instead of directly optimising for the position and the scale of the
crop, we optimise only for the position and anneal the scale throughout the optimisation.
We use a multiple restart technique, starting from a random location for each scale and
using the average of the optimisation outcomes. Finally, we take advantage of the fact that
image captions should not differ drastically as the image is blurred and use a multi-scale
representation of the image for the captioning network.

2.2 Related Works

In the following two subsections, we will discuss the most relevant related works: image
cropping and image captioning.
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2.2.1 Image Cropping

The increasing amount of digital data produced daily by different mobile devices requires
automatised processing and editing techniques to identify their meaningful and important
parts. Since manual editing of images is time-consuming even for professionals, image
editing methods have been extensively studied, yielding various solutions. Most approaches
focus on image cropping, which removes unwanted or distracting elements of the original
image while preserving the content and enhancing the visual quality based on aesthetic value
or human attention focus.

Image cropping methods can be applied to a wide range of applications. Park et al. [51]
proposed a photo re-arrangement application based on a learning-based photo composition
model. Photo re-arrangement is a set of post-processing techniques for improving photo
appearance through cropping or re-targeting. More recent papers used image cropping in
new applications. Shan et al. [43] developed an automatic photo cropping system that
determines the optimal cropping area for better aesthetics. This hybrid deep learning-based
framework learned internal image representations using a convolutional auto-encoder and
manually extracted features for automatic cropping of distracting people in photographs.
The image cropping research can be categorised into attention-based, aesthetics-based, and
description-based approaches.

Attention-based methods

This class of methods exploits visual saliency models or salient object detectors to find
the most visually important regions in the original image [52, 53]. Most attention-based
cropping methods rank candidates based on their attention score [54, 55]. Thus, these
methods can identify the image’s most important and attractive regions. Recent methods
choose the important area based on certain attention scores [56–59]. One of the most recent
methods [41] similarly to [39, 60–62] focuses on those image regions that attract the human
gaze at first sight.

Aesthetics-based methods

Methods based on aesthetics crop images by relying on the attractiveness of the cropped
image with the help of a quality classifier [39, 63, 64]. These methods aim to extract the
optimal rectangular sub-region of a given image to produce an image with a high aesthetic
score [42, 45]. Recently, Li et al. [44] formulated the automatic image cropping problem as
a sequential decision-making process and proposed a weekly supervised approach which only
uses aesthetic information as supervision. This method was the first to use reinforcement
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learning for automatic image cropping and overcame the disadvantages of the sliding window
method. The existing aesthetics-based cropping methods can be further categorised into
supervised [65, 66] or weekly supervised [40, 46, 55, 67] methods. In particular, the weekly
supervised methods, which do not include bounding box supervision, have been researched
actively as producing cropping box annotations for the training is expensive [68].

Description-based methods

These methods aim to localise a region described by a given referring expression. Most of
these methods treat comprehension as bounding box localisation, similar to our cropping
task. A recent method by Rohrbach et al. [48] uses joint embedding to find the object
directly by selecting the best region based on an input expression. Yu et al. [47] proposed a
modular network for referring expression comprehension. Unlike the previous works, this
method does not treat expressions as a single unit but decomposes them into three-phrase
embeddings. This module-based approach enabled it to outperform previous state-of-the-art
methods in comprehension tasks, both bounding-box-level and pixel-level. However, the
performance of this method is limited in our application because it was originally designed
for object detection purposes. Similarly to our application, MAttNet [47] and Align2Ground
[69] can locate the image region described by a general referring expression. Their downfall
is that these methods rely strictly on input expressions and do not consider aesthetics. In
addition, MAttNet heavily relies on the specific decomposition of the expression into subject
appearance, location, and relationship to other objects, which may not exist in natural
descriptions of images.

2.2.2 Image Captioning

Image caption generation aims to compress a large amount of salient visual information of
images into descriptive language, meeting the grammar rules. Following the successes of
deep neural networks in machine translation, neural networks became the main tools for
solving image caption problems [70]. Following methods [71–74] had considerable interest
in LSTM-based [75] image captioning, which depends on the pre-specified visual attribute
quality. Xu et al. [50] introduced attention-based image caption generators, where the
framework learns latent alignments from scratch and does not explicitly use object detectors.
The most recent LSTM-based method [76] generates high-quality guidance by considering
object detection-dependent attention instead of searching at the whole noisy image. In this
work, we utilise [50].
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Figure 2.2: Overall framework of the proposed method: CAGIC. The framework takes
an image as input, which goes through multi-scale bilinear sampling to produce a cropped
image. Note that the parameters for this sampling do not come from a network as in other
existing works but are the parameters we will directly optimise for later. We then use this
cropped region as input to both the image captioning and aesthetic networks.

2.3 Methodology

We currently have deep networks designed to do many traditional computer vision tasks,
and they perform, in many cases, even better than the traditional ones. Using pre-trained
networks as backbones for performing a certain task is also quite common. Here, we propose
an alternative and use these existing networks as building blocks. We are proposing to go
beyond the paradigm that deep networks should give a solution in a single shot and instead
perform inference through optimisation, as was a common strategy before deep learning.

We first describe the overall architecture, including our multi-scale sampling strategy,
and then explain how we perform inference by optimising the framework instead of training
networks to obtain the desired crop region. We further detail how we can stabilise this
optimisation process through scale annealing and multiple restarts.

2.3.1 Framework

Figure 2.2 shows the overall framework of the proposed Caption and Aesthetic-Guided Image
Cropping (CAGIC) method. Our framework comprises three major components:

1. Bilinear sampler that operates on a multi-scale

2. Image captioning network

3. Aesthetic network
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The image captioning network automatically generates a natural language expression
describing the given image’s content. There is a large body of work on this problem [77].
Among those for the image captioning network, we use the method from [50], with the
models pre-trained with the MS-COCO [78] dataset. Visual aesthetic preference can be
described as either a single score or a distribution of scores. We follow the definition in [46],
where professional photographs provide the aesthetic score. For the aesthetic network, we
use [46] with the pre-trained models1. Note that we take special care that none of the images
used in training any of the pre-trained models is included in our evaluation later. Even though
these two networks were trained on entirely different datasets, we found that the pre-trained
models were good enough for our purpose.

Multi-scale bilinear sampling

As we are directly optimising for the crop region’s location and scale, the bilinear sampling’s
gradients must be robust. To ensure this, we propose to use a multi-scale strategy inspired
by the observation that even when an image becomes blurry, its content does not change.
Therefore, if we denote the bilinear sampling process as Sample(I,θ), where I is the image
and θ is the crop parameters composed of the centre coordinates of the crop x and y, and its
scale s, and Resize(·) is the resizing operation, for the cropped image Icrop (θ s) we can write

Icrop (θ s) =
1
|S|∑s∈S

Sample(Resize(I,s) ,θ) , (2.1)

where S ∈
{1

4 ,
1
3 ,

1
2 ,1
}

is the set of scales, and |S| is the cardinality of this set, which is four.
We also omit I on the left-hand side for brevity. Here, we set the sampling process always
to consider the source image coordinates to be between −1 and 1, thus removing the need
to adjust the sampling parameters per image. After each resizing operation, we also apply
Gaussian image blurring filters.

2.3.2 Inference

With the framework, we infer the parameters of the crop θ by optimising the network w.r.t.the
image captioning networks loss and the aesthetic network output. However, as we are not
using the two networks with their original purpose—learning to generate image captions
or compare two images to find the one that looks better—, here, we formally introduce our
optimisation objective.

1https://github.com/yiling-chen/view-finding-network

https://github.com/yiling-chen/view-finding-network
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If we denote the two objectives as Lcaption for the image captioning part and Laesthetic

for the aesthetic part, for a given pair of image I and caption y, our objective is therefore to
find θ̂ such that

θ̂ = argmin
θ

Ltotal (I,y,θ) , (2.2)
where

Ltotal (I,y,θ) = Lcaption (I,y,θ)+λLaesthetic (I,θ) , (2.3)

and λ is the hyper-parameter that balances the two loss terms. In all our experiments, we
empirically set λ = 0.01 (see Figure 2.12). The two losses we choose to optimise are closely
related to the networks’ original formulation but modified to our needs.

Image Caption Loss Lcaption (I,y,θ)

When training a network to output an appropriate caption, the order of the words is important.
However, this is not necessarily so in our task, as we only want the described objects to be
present. We need not regenerate the sentence that the user inputs. In our earlier experiments,
we found that when the order of the words was considered, depending on the user, the network
focused too much on the order of the words, not on the contents, and the performance could
have been better. Thus, for the image caption loss, we ignore the order of the words coming
out of the captioning network.

Specifically, if we denote the ground truth one-hot encoded vector representation for the
t-th word of the user caption as yt , the captioning network as f (·), and cross-entropy as H,
we write

Lcaption (I,y,θ) = H

(
1
Tu

Tu

∑
t=1

yt ,
1
Tc

Tc

∑
t=1

f (Icrop (θ))t

)
, (2.4)

where Tu and Tc represent the number of words in the user caption and the captioning network
f generating caption, respectively. Note that we average the word vectors, effectively
removing the order information.

Image Aesthetic Loss: Laesthetic (I,y)

For the aesthetic term, we aim to maximise the aesthetic score output from the network. If
we denote the aesthetic network as g(·), we therefore write

Laesthetic (I,θ) =−g(Icrop (θ)) . (2.5)

where, as above, Icrop is from Eq. (2.1) and y is the user caption. This loss helps our crops to
be realistic crops close to how humans would crop images as the aesthetic network learned
any photographic rules implicitly encoded in professional photographs [46].
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2.3.3 Stabilising the optimisation

We design a new cost function considering the two networks’ outputs together, searching
among various bilinear samples. In Figure 2.3 we visualised the total loss space for different
cropping parameters. During the optimisation process, the cropping parameter shrinks by
2% in every iteration (See more details in Scale Annealing). The percentages in this figure
correspond to the cropping sizes w.r.t.the original image size. Choosing the correct scale
is important to ensure that the crop will include all the relevant parts of the image based on
the user’s description. However, the image cropping parameter space is too large and non-
convex, as shown in Figure 2.3, so unstable convergence is inevitable. Our initial attempts of
indirectly optimising Eq. (2.2) were not very successful, even with the help of the scale-space
bilinear sampling in Eq. (2.1). We, therefore, propose two additional methods that stabilise
the optimisation process, leading to better final results. We explain these methods below and
summarise the entire optimisation algorithm in Alg. 1. Finally, in Figure 2.4 we show an
example of how the cropping changes over the iterations to fit a given caption. We visualise
the ground truth region as green and the cropping region of the current iteration as red. As
we can see, the cropping results gradually converge near the ground truth over iterations.

Scale Annealing

One hardship when directly optimising for the crop parameters is that pixels outside the crop
region have no means to affect the optimisation process once determined to be outside of the
crop region. This leads to instability when also optimising for scale, as, for example, when
the crop accidentally shrinks, it will be difficult for the system to recover from it. Therefore,
we exclude the scale parameter from optimisation and anneal the scale to become smaller

Algorithm 1 Optimization with multiple restart.
Require: I : input image, y : user caption

1: function OPTIMIZE(I, y)
2: for i = 1 to S do ▷ For each scale level
3: for k = 1 to K do ▷ Optimize K times
4: x0 ∼N

(
xi,σ

)
▷ Restart initialization

5: y0 ∼N
(
yi,σ

)
6: x̂i

k, ŷ
i
k← Eq. (2.7) ▷ Find optimum point

7: end for
8: xi+1← 1

K ∑
K
k=1 x̂i

k ▷ Gather result
9: yi+1← 1

K ∑
K
k=1 ŷi

k
10: end for
11: end function
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Figure 2.3: Visualisation of the total loss space for different image cropping parameters..
From the top left to the bottom right, we show the cropping scales 10-90% of the original
image size.

throughout the optimisation process. Specifically, we set the scale to be si, where i is the
optimisation iteration. We empirically set s = 0.98. In other words, the scale is reduced by
2% at each iteration. During optimisation, we track which crop parameter gave the lowest
loss and return that crop region as our final result.

Optimising with Multiple Restarts

To further stabilise the optimisation process and escape local optima, we employ a multiple
restart technique [79] as shown in Figure 2.5. Based on the research of [80], for each
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i = 0 i = 5 i = 11 i = 17 i = 29 i = 47

i = 53 i = 59 i = 65 i = 71 i = 83 i = 161

Figure 2.4: Output image crop change over time. Example of our method iteratively
updating crop to fit caption: “A plastic box of many metal forks".

optimisation iteration, we apply random noise ∆x ∼ U (0,1) and ∆y ∼ U (0,1), where
U (0,1) is the uniform distribution, to the outcome of the previous iteration. After adding
the noise, we further clip them to prevent the cropped region from going out of the image
border. We then run our optimisation to find the optimal crop for this given scale, repeat the
process K times and average their results to obtain our final solution for this scale (in our
experiments, we use the K = 10).

If we denote the crop centre estimates at iteration i as xi and yi, we write

(
xi+1,yi+1)= 1

K

K

∑
k=1

(
x̂i

k, ŷ
i
k
)
, (2.6)

where
(x̂i

k, ŷ
i
k) = argmin

x,y|x0∼U (0,1),y0∼U (0,1)
Ltotal

(
I,y,

(
x,y,si)) , (2.7)

and x0 and y0 are the starting points of optimisation for x and y respectively, and xi and
yi are the final converged locations for this scale level. To find the θ̂ , we apply limited-
memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) [81], as we are searching for the
optimal location and not simply seeking to perform gradient descent for each scale. The
L-BFGS approach is one of the most popular quasi-Newton methods that construct positive
definite Hessian approximations. It is a local search algorithm for convex optimisation
problems with a single optimum. Thus, the L-BFGS is suitable for our method, as we apply
scale annealing and prefer local optimisations. Although the multiple restart strategy does
not theoretically guarantee that the average location is lower in terms of the final objective, it
ensures that we always optimise towards the general improving direction.



40 Caption and Aesthetic-Guided Image Cropping

Iter 1 avg ϴ

Iter 2 avg ϴ

Iter 3 avg ϴ

Figure 2.5: Visualisation of the multiple restart strategy and scale annealing. For each
iteration, we employ the multiple restart strategy which starts random location and takes
the average of the optimisation outcomes. In the next iteration, the scale is annealed as
scheduled.

2.4 Experiments

We implement our method in TensorFlow [82]. All experiments are run on an Intel i7- CPU
@ 3.40GHZ, 16 GB RAM, and two NVIDIA TITAN Xp GPU.

2.4.1 Dataset

We created a novel dataset as the task we aim to solve, namely natural language description-
based image cropping, differs from what existing datasets offer. Before we discuss our
dataset in detail, we first give an overview of existing datasets and their drawbacks.

A widely used dataset for natural images with captions is the MS-COCO dataset [78],
which contains 123k images with predefined splits for training, validation, and testing. Each
image is annotated with five captions by Amazon Mechanical Turkers. However, most
captions describe the whole image and are unsuitable for caption-guided cropping. Therefore,
based on MS-COCO, the ref-COCO [83] dataset was proposed, where parts of images are
described with annotated bounding boxes. However, this dataset is heavily skewed towards
the tight detection of certain objects and is unsuitable for creating natural crops. They are
aimed more at text-guided object detection.
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Dataset Caption

MS-COCO A puppy dog sitting in an 

office with a computer in it

refCOCO Chair to the left

Proposed A computer and a lamp on 

the top of the desk

Figure 2.6: Caption comparison of different datasets. We show the captions from the MS-
COCO, ref-COCO, and our new dataset corresponding to ImgId=38353 of the MS-COCO
train2014 set.

In Figure 2.6, we show example captions on the same image from different datasets to
demonstrate that captions from ref-COCO [83] and MS-COCO [78] are inadequate for our
tasks. As one can see, the caption from MS-COCO describes the entire image, while the
captions from ref-COCO are very short and only related to a single object. However, in our
dataset, we ask the users to provide captions describing a specific image region, resulting in a
natural description. The caption also often describes the surroundings, providing information
on what people think as context.

Visual Genome dataset

The Visual Genome dataset [84] is the closest to what we need for our task. This dataset
was designed to connect language and vision through natural language expressions. This
large dataset consists of 108k images from the YFCC100M [85] and MS-COCO datasets.
Different from the original captions of the MS-COCO dataset, the Visual Genome provides

Figure 2.7: Example captions and corresponding annotations of the Visual Genome
dataset.
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about 50 descriptions of different image regions. The annotations for this dataset are also
geared towards more traditional localisation and description tasks. However, two problems
in this dataset make it not feasible to evaluate natural crops:

1. Annotations are tight bounding boxes focused on objects – that do not represent how
people typically take photos.

2. Identical captions can denote multiple regions – for example, “red sky” could corre-
spond to any bounding box within the sky – demonstrating that annotations are only
part of the possible ground truth and not overlapping with any of these does not mean
that a crop is wrong.

As shown in Figure 2.7, the captions and annotations would not look like natural crops
if they were to be cut out – they are either too tight and sometimes not even capturing the
entire object, as shown by the examples. Also, notice that the captions are very short, almost
as if they are descriptions of a single object. There is also an issue of non-specific regions, as
in the case of Figure 2.7 right, where the descriptions all talk about the sky and the cloud. In
addition, none of the crops would be recognisable to a human being on what they are about.
Repetitive captions that refer to different image parts are problematic for caption-based
localisation tasks as they can result in misleading outputs.

Figure 2.8 presents the subjective nature of the bounding box annotations. While the
annotations vary largely, when a user is requested to draw a bounding box around the
described image region, the main object of the caption is fully included. In contrast, in Figure
2.7 left, we show an example annotation from the Visual Genome dataset with the caption
"Girl is holding cupcake", where the corresponding ground truth bounding box does not
include the entire cupcake or the girl itself. If we show this image’s ground truth output
crop, it would not be possible to reconstruct the original caption; therefore, we argue that
this annotation needs to be revised and corrected. In the middle of Figure 2.7, the caption
is "Giraffe’s eye is black". The corresponding bounding box is so tight that by seeing only
the content of that image part, a user would not be able to identify what is shown on the
image. In the last example, we show one of the many images with multiple identical captions
with different bounding box positions. For example, for Image id 2342467 (See in Figure2.7
right), we visualised 7 of the 16 different image parts assigned to the "White clouds in red
sky" caption.

A novel dataset

Therefore, we create a novel dataset based on MS-COCO, similar to the ref-COCO and
Visual Genome datasets. Similarly to the ref-COCO, we used a subset of the MS-COCO
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Figure 2.8: Analysis of the ground truth bounding box annotations. (Top) Illustration of
the diversity of the bounding box annotations for different images. (Bottom) Box plots of the
distribution of ground truth overlap for different MS-COCO images.

dataset. We select 100 images randomly from the MS-COCO test set to avoid the images
being ever seen by any of our pre-trained networks and create our captions for each image.
The documentation of the dataset is available in Section A.2.

Ground-truth captions. In our new dataset, we are interested in evaluating the ability to
generate crops related to a given caption automatically. To remove the subjective nature of
our ground truth annotations as much as possible, we carefully select regions of the image
that are unique and distinctive for a human annotator to create a “natural” crop out of. We
then manually generate descriptive expressions, focusing on the selected distinctive parts
of the image. The annotators were asked to produce an image description freely. We did
not instruct them to generate referring expressions, they were asked to describe the image
part with their own words. During the caption generation, we confirmed that the captions
described only one part of the image. Our captions are roughly ten words long on average to
ensure that they are specific and clear.
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Image User Caption A2-RL[44] VPN [68] Anchor
[86]

GradCAM
+A2-RL

GradCAM
+Anchor

GradCAM
+VPN

GradCAM
[87]

MAttNet
[47]

CAGIC

A japanese style
painting of

woman is on the
wall

Hands holding a
white cupcake

A cup of bright
orange juice is on

table

A black dog is
wearing a tie
beside a pole

A blue bowl of
white cream and
red berries with a
metal spoon in it

A bottle of juice
is in the freezer

Figure 2.9: Qualitative comparison with the baseline methods. The cropped images
obtained by the proposed method and the eight baseline methods. The user-defined ground
truth bounding box annotations are shown on the original images in red. The proposed
method well crops the images as the user described.

Ground-truth crops. One of the tricky parts in creating a dataset for caption-based image
cropping is the definition of ground truth. The concept of "which image region fits the
description well" is subjective and can wildly differ from person to person. Therefore, we
asked seven participants to generate ground truth crops based on our captions individually.
We further asked the participants to consider the aesthetics of these crops. We use these
ground truth annotations to perform quantitative comparisons. As an evaluation metric, we
use the Intersection over Union (IoU), a standard metric for evaluating bounding box-based
tasks [46, 88].

Even with care, it is inevitable that the cropping task is subjective and dependent on
the annotator. Note that some of the caption and crop annotators were non native English
speakers and were from different countries. This is important to note as their country of origin
could influence how they generate captions and what they find visually pleasing. However,
despite the subjective nature the collected ground truth annotations for each caption are
useful to understand better the flexible and non-unique nature of image cropping [86]. As
we employ a multiple ground truth strategy to alleviate annotator bias, we investigated how
much in agreement the annotations are. We show an example of the ground-truth annotations
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in Figure 2.8 (top), as well as the agreement between annotators in Figure 2.8 (bottom). Note
that even when disagreeing on the exact crop, they are all overlapping – the main content is
shared.

2.4.2 Baseline methods

Due to the novel nature of our problem formulation, only a limited number of baselines exist.
We compare our method against the following eight different methods:

1. GradCAM [87] a naive untrained baseline where we apply GradCAM with the
captioning network to extract regions in the image corresponding to the user caption.
GradCAM is an algorithm that can be used to visualise the class activation maps of a
Convolutional Neural Network, highlighting where the network is "looking". We then
threshold the activation map with a threshold of 0.2 of the maximum value, which we
empirically set.

2. A2-RL [44] We also compare with a solely aesthetic-based method to demonstrate
that these crops do not necessarily correspond to the users’ intentions.

3. GradCAM+A2-RL We combine the two baselines by executing them sequentially.
4. VPN [68] VPN, similar to the A2-RL method, is an aesthetic-based method which was

trained on a large-scale Comparative Photo Composition dataset.
5. GradCAM+VPN [68] We combined a state-of-the-art view proposing method with

GradCAM. VPN generates a set of crops, and we selected the one closest to the
GradCAM bounding box.

6. Anchor [86] We compared the performance of our algorithm with the grid anchor-
based, data-driven image cropping method. This end-to-end trained model can not
alter its output according to a given description of the ROI.

7. GradCAM+Anchor [68] We combined a state-of-the-art automatic image cropping
method with GradCAM.

8. MAttNet [47] We compared our results with the state-of-the-art referring expression
comprehension network. MAttNet was trained on the ref-COCO dataset [89] to localise
the image region described by a natural language expression.

2.4.3 Performance comparison on the proposed dataset

Qualitative results.

We compare the proposed image caption and aesthetics-based image cropping approach with
the baseline methods. Here we present the result of these methods in different cases. We
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(a) Original image (b) A ceiling lamp on the top of the room (c) Some dolls and a red blanket are on
the bed

(d) Original image (e) A blue bowl of white cream and red
berries with a metal spoon in it

(f) A glass of red jam with a green spoon

Figure 2.10: Different captions can lead to entirely different crops even on a single
image.

first show qualitative highlights in Figure 2.9. As shown, our approach provides crops of the
highest quality. For further qualitative highlights, see Section A.1.

The proposed method can generate much more accurate results than other compared
methods. In some cases, the methods may try to exclude irrelevant objects according to the
caption, which results in a very small crop region. In this case, although the contents are
correct, it becomes difficult for a user to understand the output without the original context
which contradicts with our aim to preserve the user’s intention. This maybe an issue for
potential applications which intend to use the output crop as input.

In Figure 2.10, we present the result of our automatic cropping method using the same
image w.r.t. different image captions. The results show that our method can deliver entirely
different results on the same image when different captions are provided. Notice how our
results correspond well to the provided captions and are good-looking, demonstrating that
our method works in a well-balanced manner between the two loss functions. In particular,
as shown in sub-figures 2.10 (b) and (f), our method well crops regions when the description
is about parts of the image that are small or are located near the edge. The cropping is well
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directed by the provided caption, even when the caption describes an extreme region of the
image or a relatively small object from the middle.

Quantitative results – IoU.

To evaluate the performance of the baselines and our method, we computed the bounding
box overlap ratio as the area of intersection between two boxes, divided by the area of the
union of the two for each ground truth set and calculated the average IoU values for every
method. We report the average IoU between produced crops and all seven of the ground-truth
annotations in Table 2.1. As shown, our method provides the highest IoU value among the
compared methods. Note that we have higher numbers than even those which were trained
specifically for referencing from captions. This is mainly due to the fact that existing methods
perform tight crops. However, when a human is asked to perform the same task, they tend to
include context.

Furthermore, the obtained results of the baseline methods show similar characteristics
on our dataset to the previously reported results in [86]. Namely, we observed that A2-RL
28%, VPN 61% and GradCAM+VPN 24% of the images returned the original image as
it failed to crop the image. We show that when the aesthetics-based cropping methods
(A2-RL, VPN and Anchor) were combined with GradCAM, their performance improved.
The major disadvantage of the second-best method, MAttNet is that it tends to generate
close-up views of objects. Meanwhile, our approach preserves as many useful parts of the
image as possible to ensure that the output reflects the contextual information given by the
caption. Furthermore, we show that every method produced image crops with higher IoU

measures than the original image.

User study – is the crop really what we want?

Another measure for evaluating the quality of the crops is to measure how well we can
preserve the contextual information. As the task is to crop the images using the user’s
description of the region of interest, we were interested in how similar is the input caption
to the output crop’s description. We asked four users who were not exposed previously to
the original images or the input captions to re-annotate the crop outcomes of the top three
methods from the IoU evaluation: GradCAM, MAttNet and the proposed algorithm. We then
evaluate how similar these new descriptions are to the target descriptions of our dataset. Note
that the input captions have a one-to-one relationship with the generated output descriptions.
We report results in terms of metrics used for natural language processing2 in Table 2.2. Our

2https://github.com/Maluuba/nlg-eval

https://github.com/Maluuba/nlg-eval


48 Caption and Aesthetic-Guided Image Cropping

Table 2.1: Quantitative comparison of the different methods using IoU measure on the
output bounding boxes.

Method Mean ± Std.

Original 0.287 ± 0.028
A2-RL[44] 0.298 ± 0.024
VPN[68] 0.315 ± 0.023
Anchor [86] 0.333 ± 0.024
GradCAM+A2-RL 0.347 ± 0.011
GradCAM+Anchor 0.355 ± 0.020
GradCAM+VPN 0.356 ± 0.013
GradCAM[87] 0.360 ± 0.202
MAttNet[47] 0.385 ± 0.261

CAGIC 0.416 ± 0.013

Table 2.2: Quantitative comparison of the cross-crop similarity with the two best-
performing baseline methods. Comparison of user intention presence. We ask users to
caption cropped images and compare with natural language metrics how similar they are
with the original desired caption.

Method Bleu-1 Bleu-2 Bleu-3 Bleu-4 METEOR ROUGE_L CIDEr

GradCAM[87] 0.273 0.141 0.087 0.053 0.118 0.279 0.697
MAttNet[47] 0.172 0.094 0.060 0.036 0.113 0.295 0.715

CAGIC 0.342 0.188 0.102 0.063 0.170 0.297 0.905

Table 2.3: Quantitative evaluation of the user preference. The top three methods of
qualitative comparison along with the original image were compared through a human survey
and evaluated by aggregation.

Original Image MAttNet[47] GradCAM[87] CAGIC

Aggregated percentage (%) 21.04 23.93 25.51 29.52

method provides the best results for all metrics, demonstrating that the user intention is best
preserved.
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Image Caption from user CN CN+SA CN+SA+MR+MSCN+SA+MR Full

Black traffic light 

hanging in the sky

A pancake with black 

and dark chocolate on 

it

A bowl of tasty 

noodles and delicious 

meat with tofu

Figure 2.11: Qualitative results of the ablation study of CAGIC. Qualitative comparison
among our methods which consist of the combination of Caption Network (CN), Scale
Anneal (SA), Multiple Restart (MR) and Multi-Scale Bilinear Sampling (MS). The results
show that the combination of all of these elements (proposed full method) together can
provide the best output image.

User study – which crop is better?

Due to the subjective nature of our task, we further perform a user study, where we ask users
to select which image is preferred over the Top-3 methods, as well as the original image as
the baseline. Specifically, we ask users to “Select the crop described by the caption which
looks the best,” given the four images in a graphical user interface. We ask a total of 13
users, resulting in more than 1000 decisions. In the user study, for each user, we show a
randomly selected subset of our dataset. We report the probability of being selected for each
method in Table 2.3. Our method is the most preferred among compared methods. The user
study shows that the subjects preferred the cropped images over the original image. Users
preferred the methods with wider output crops that were not mainly focused on the subject
of the image caption; therefore, they were able to preserve the contextual information. While
the output of GradCAM was contextually correct, users tended to select the proposed method
when the aesthetics of the crop was not pleasing. This highlights that aesthetics need to be
considered when emulating what humans would do.

2.4.4 Comparison with the state-of-the-art on the Visual Genome dataset

Despite the drawbacks discussed in Section 2.4.1, for the completeness of this study, we
compared the eight baseline methods (See Section 2.4.2) with our performance on the Visual
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A man wearing a 

black helmet is 

looking up

Image Caption from user λ = 0.01λ = 0

A cup of coffee is 

on the table

A man is making 

a phone call and 

holding a little 

umbrella

λ = 0.1 λ = 1

Figure 2.12: Comparison of different aesthetics ratios.

Genome benchmark dataset. Here, we show the qualitative highlights and the quantitative
evaluation of the results.

As the dataset is not directly applicable, we randomly select 100 images and a caption
from the dataset. We show qualitative results in Figure 2.13 and 2.14. Notice how our
results successfully return regions corresponding to the provided captions more naturally
than MAttNet. For example, in the first two examples in Figure 2.14, notice how the caption
describes the context in which the object is placed, whereas the annotation nor the result of
MAttNet have such context – e.g. the fire hydrant, the TV. Another example is the fourth
example in Figure 2.13, the annotation is tightly bounding the car, whereas the caption also
refers to the street. When cropped according to the ground truth, which is what MAttNet
successfully did, the context "street" is gone. This further highlights the deficiency of this
dataset – it is not suitable for evaluating natural caption-guided crops.

Table 2.4 presents the quantitative results of all the baselines. Note that these results
should be understood with care, as they do not directly measure the performance of each
method for our task, rather, they measure how well a method locates an object. For the caption-
based image cropping task on the Visual Genome dataset [84] MAttNet [47] performed the
best and our method was the second best among the baselines. This is because MAttNet is
trained to produce tight bounding boxes around the described objects, similar to the ground
truth annotations of the dataset. However, as we discussed before, those image crops are
often not useful as they do not fully represent the user’s caption, or the given user caption
could belong to multiple bounding boxes.
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Image VG [84]
Caption

A2-RL[44] VPN [68] Anchor
[86]

GradCAM
+A2-RL

GradCAM
+Anchor

GradCAM
+VPN

GradCAM
[87]

MAttNet
[47]

CAGIC

A red apple
on the table

A red train
on the tracks

A woman
carrying a
yellow bag

A red car on
the street

Girl is
holding
cupcake

A photo of a
cup of coffee

Apple in the
corner

Large yellow
flower on

table

Soccer ball
on the field

A black top
hat

Black
suitcase on

wheels

The laptop is
white in

color

Cat in front
of bicycle

wheel

Figure 2.13: Qualitative examples for the Visual Genome dataset.
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Image VG [84]
Caption

A2-RL[44] VPN [68] Anchor
[86]

GradCAM
+A2-RL

GradCAM
+Anchor

GradCAM
+VPN

GradCAM
[87]

MAttNet
[47]

CAGIC

Black and
white dog

tied to
hydrant

A cat sitting
on a TV

Small clear
glass with

orange juice

A yellow
banana on a

plate

Four oranges
on the table

Picture of an
Asian lady
on the wall

Figure 2.14: Qualitative examples for the Visual Genome dataset (continued).

Table 2.4: Quantitative comparison of the different methods on the Visual Genome
dataset [84] using IoU on the output bounding boxes. Note that these numbers represent
object localisation performance, not caption-guided cropping.

Method Mean ± Std.

Original 0.113 ± 0.136
A2-RL[44] 0.124 ± 0.150
VPN[68] 0.131 ± 0.146
GradCAM+VPN 0.138 ± 0.143
Anchor [86] 0.142 ± 0.161
GradCAM+Anchor 0.146 ± 0.162
GradCAM[87] 0.148 ± 0.146
GradCAM+A2-RL 0.153 ± 0.149
CAGIC 0.218 ± 0.198

MAttNet[47] 0.471 ± 0.375
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Table 2.5: Quantitative result of the ablation study using IoU measure on the output
bounding boxes.

Method Mean ± Std.

CN 0.334 ± 0.069
CN+SA 0.341 ± 0.058
CN+SA+MR 0.356 ± 0.057
CN+SA+MR+MS 0.382 ± 0.062

CAGIC (Full) 0.416 ± 0.013

2.4.5 Ablation Study

Framework components

To motivate our design choices, we present a qualitative comparison of our method with
various components of our full pipeline disabled; see Figure 2.11.

We compare against five variants. The full method uses the Caption Network (CN) along
with Scale Anneal (SA), Multiple Restart (MR), Multi-scale Bilinear Sampling (MS) as well
as aesthetics. As shown, we can produce more visually appealing crops of the original image
as we introduce aesthetics scores to the system. In the case of CN+SA+MR+MS, the method
can find the relevant part of the original image, but the contents are not placed in the centre,
as can be noticed in the examples shown in the last two rows. MR helps the approach to
centre the content better, while scale annealing prevents drastic scale changes. In short, the
full method delivers the best outcome in all cases. It can be observed that our aesthetic-based
method gives us the most relevant and best-centred crop of the original image.

The quantitative results of the ablation study in Table 2.5 show that every component of
the proposed method is effective and that using aesthetics on top of the different optimisation
and search stabilisation methods improved the results. In addition, we further demonstrate
the effectiveness of the aesthetics loss in our framework in Figure 2.12. In our method, the
aesthetics ratio (λ ) was empirically set to 0.01. As shown, the produced crops are most
similar to the ground truth regions when the aesthetics loss is enabled.

Optimisers

Furthermore, as part of our ablation study, we compared the outputs of our method with
different optimisers. We motivate our choice of optimiser based on this study. We consider
four methods: Adam [90], RMSProp [91], Powell [92], and L-BFGS [81]. The qualitative
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comparisons of the optimisers are shown in Figure 2.15. We also perform the quantitative
comparisons using the IoU measure on the output bounding boxes (See Table 2.6). Based on
our experiments, we found out that for our task, L-BFGS method [81] is the best. Note that
the runtime was not affected by the type of optimisers used during the experiments.

Table 2.6: Quantitative results from different optimisers in terms of IoU.

Method Mean ± Std.

Adam [90] 0.064 ± 0.066
RMSProp [91] 0.199 ± 0.121
Powell [92] 0.361 ± 0.209
L-BFGS [81] 0.416 ± 0.013

Image User Caption Adam [90] RMSProp [91] Powell [92] L-BFGS [81]

A ceiling lamp on
the top of the

room

Slices of colorful
fruits like

watermelon and
pineapple in a red

bowl
A woman in

black wearing a
red scarf is

walking on the
snow holding a
black umbrella

A black cat is
sleeping on a

brown wooden
case

A black camel on
a white and red

sign

A blue cup with
white English

words

Figure 2.15: Qualitative comparison of different optimisers.
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Pre-defined versus fixed aspect ratio

Our method operates on 1:1 aspect ratio images whose design choice was confirmed by our
experimental results discussed in this section. The drawback of extending the method to
handle arbitrary aspect ratios is that when optimising for location, scale and aspect ratio
simultaneously, the search space becomes so large that it makes convergence difficult. In
Section 2.4.3, we compared our method with other state-of-the-art methods which produced
rectangular crops using different ranking techniques. Our qualitative and quantitative results
show that the proposed method performs best despite the fixed aspect ratio. Therefore, we
argue that having an arbitrary aspect ratio would not improve the quality of the image crop.

To support our claim experimentally, we generated candidate output crops, similar to
[68], using the following aspect ratios: 16:9, 4:3, 3:2, 1:1, 2:3, 3:4 and 9:16. We ranked the
candidate crops based on both their aesthetics score and their Ltotal . Then we measured the
IoU score of the best candidates along with the proposed square output crop. Our results
show that using the 1:1 aspect ratio results in higher IoU measures (See Table 2.7.).

Table 2.7: Performance evaluation of the proposed method using different aspect ratios.

IoU Mean ± Std.
Aesthetic score 0.390 ± 0.051
Ltotal 0.405 ± 0.053
1:1 0.416 ± 0.013

2.4.6 Runtime

Our un-optimised implementation cannot run in real-time — it requires an average of 2.06
seconds per single optimisation iteration. CAGIC requires a total of 200 iterations to produce
the desired output crop which takes approximately 6.5 minutes. The runtime of the other
deep learning-based methods where the input goes through one pre-trained network is shorter
than our optimisation-based method. However, despite our method not being real-time, it was
demonstrated that it performs better and it is flexible. Our future work would be to resolve
this, similar to how style transfer [93] started off taking minutes per image but is now able to
run in real-time [94].

2.5 Conclusion

This Chapter proposes a novel optimisation framework that produces image crops that follow
users’ descriptions and aesthetic criteria. The main idea behind this study was to demonstrate



that this can be achieved without training a specialised network but instead utilising two
pre-trained networks on related tasks, namely image captioning and aesthetics measuring. We
designed a new cost function considering the two networks’ outputs together and performed
a search among various bilinear sampling parameters. However, the parameter space is very
large and non-convex, so we designed a new scale annealing and multiple restarts search
strategy to achieve a stable and efficient solution. We have shown that our proposed method
outperforms other existing approaches based solely on saliency-based or caption-based
cropping methods.

A big advantage of not requiring training is when we want to alter the model’s behaviour
later or maybe even add another sub-task to be performed. In this case, a joint-training
strategy would require complete re-training of the model, which may not even be a valid
option. However, with our method, one has to attach a new loss component to optimise or
change the parameterised transform on the input image to include the desired task.

Our ongoing research extends into two directions. The description- and aesthetics-
driven captioning will be coupled with attention mechanisms and gaze estimation. On a
more conceptual level, we are extending the ideas of solving complex tasks in optimisation
frameworks by repurposing existing modular networks trained on auxiliary tasks, thereby
seeking efficient alternatives to extensive learning of networks from scratch.



Chapter 3

Gaze Initialized Framework for
Description and Aesthetic-based Image
Cropping

Figure 3.1: Illustration of a scenario where the users are looking at and describing
the different image parts. Our proposed framework utilises human natural language
expression in combination with eye movements to localise their region of interest. This
multimodal solution can effectively produce high-quality image crops corresponding to the
user’s intention.

3.1 Introduction

Many researchers throughout the past years have demonstrated the usefulness of multimodal
approaches. Regarding speech and description, the existing ambiguity and complexity of
natural speech can be compensated by using other modalities, such as hand gestures [95]
or gaze [96–98]. While hand gestures or other social cues are not always coupled with the
description of the scene, it is inevitable to observe the region of interest to describe it [99].
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With the current advancements in eye-tracking research, eye-tracking devices have become
more affordable and easily accessible to everyone. Therefore we can take advantage of this
extra modality free of cost by placing an eye-tracker in front of the subject and recording their
eye movements before and during describing the image region. This way, we can effortlessly
collect additional, rich contextual information in addition to the recorded speech or image
caption.

Despite its inarguable usefulness of gaze in multimodal communication, this non-verbal
mechanism has been less studied as a communication modality [100]. Previous works used
fixation points on their own as pointers to implicitly localise the user’s region of interest
[101] or to detect the object of interest [102]. Recent research [103] demonstrated gaze
integration’s usefulness in anchoring implicit notes to digital content. Furthermore, Reinholt
et al. [104] proposed to combine gaze information with speech to identify regions of interest
in an image. This assistive system aimed to create detailed descriptions of images with
minimal effort from the image creator.

In this work, we tackle the reverse problem of [104], where we obtain the image descrip-
tion, like in Chapter 2, and the gaze information with no additional cost from the user to crop
the described part of the image. We propose directly integrating the user’s gaze information
into a multimodal image-cropping framework to understand their interest better. We expect
this additional information to improve the accuracy of the state-of-the-art CAGIC methods
and reduce their run time. This framework utilises the gaze information recorded by an
eye-tracking device to initialise the iterative search to localise the described area of the image.
To the best of our knowledge, this is the first work explicitly tackling the gaze-initialised user
description-based image cropping task. Our contributions are four-fold:

• We presented a novel image cropping framework that integrates the user’s intentions
through explicit (user caption) and implicit (user gaze) input into a multimodal frame-
work optimised to achieve aesthetically pleasing output.

• We studied the usefulness of gaze data collected before, during, and after the caption
generation and proposed the Fixed grid and Region proposal on how to leverage the
correlation between them to initialise the image cropping method most efficiently.

• We propose a new multimodal framework to optimise crop parameters adaptively using
the novel Mixed scaling method and gaze-based initialisation coupled with an Early
termination technique.

• With the above-mentioned solution, we were able to significantly reduce the run time
compared to the state-of-the-art and improve the performance.
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Utilising gaze information in a multimodal framework is a complex problem studied
by many [105, 106]. We designed the gaze data collection experiment carefully, similarly
[104], and performed multiple experiments to confirm the quality of the collected gaze
information. We proposed the Fixed Grid and Region proposal methods to find and define
the most looked-at area of the image, which was used as a start region of our optimisation
framework.

For the Gaze initialized, description and aesthetics-based image cropping (G-DAIC)
method, we modified [33] introduced in Chapter 2 and proposed a Mixed scaling method,
where based on the size of the initialisation area, the cropping parameter is either shrinking
or expanding in every iteration. This proposed alteration is crucial to find the desired image
region. Finally, we introduced Early Termination into the multimodal framework to reduce
the number of iterations required to produce the output image crop.

3.2 Related Works

Related works on image cropping have been discussed in detail in Chapter 2. For more
information on the categorisation and existing methods, refer to Section 2.2. In this section,
we discuss the existing multimodal and gaze-based image-cropping solutions.

The primary task of the image cropping algorithms is attention-related. The aim of the
description-based methods, like [47, 69], is to find the described part of the image, keeping in
mind that it might not be the main subject of the image. While aesthetics and attention-based
automatic image cropping algorithms, such as [41], focus on localising the most important
part and preserving the image’s main subject. The attention-based methods can rely on the
user’s gaze information or artificial attention e.g. saliency maps.

3.2.1 Gaze and artificial attention

Gaze-based image cropping

Despite gaze information not being suitable for our task on its own, gaze has been known
as a crucial element of our social interactions. This non-audible signal can be interpreted
and utilised in many ways; hence, its role has been studied by many during the past decades.
Gaze is a well-known primary social clue that can express the subject’s emotions [107].
Furthermore, it is a good guide to the subject’s interest, and intention [108, 109], and it also
functions as a signal for turn-taking [110], and indicator of conversational roles [111, 112].
Gaze in communication is closely related to speech, meaning that in everyday settings, the
user has to address speech w.r.t. to gaze [100].
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Recent eye-tracking technology advancements enabled us to collect high-precision and
accurate eye movement data of the subjects [113]. This high-level precision and affordable
prices boosted the gaze research field and gaze-based multimodal frameworks. One of
the first gaze-based image cropping solutions, a semi-automatic image cropping algorithm
using gaze data, has been proposed by Santella et al. [60]. This method uses gaze data
to identify the important content of the image and generates an image crop based on a set
of composition rules. While this method is useful for photo composition, it is not suitable
for the description-based image cropping task. This semi-automatic method is designed
to identify the main subject of the image. Still, it is not flexible enough to take the user’s
intention explicitly into account to identify any part of the image.

Artificial attention-based image cropping

The usefulness of artificial attention, such as automatically-generated saliency maps using
deep networks, has been demonstrated in attention-based image cropping methods [53, 114,
115]. While these maps are good in indicating the potentially important areas of the image
based on its features, they are not sufficient for the description-based image cropping task
due to the lack of contextual information. Therefore in this work, we aim to extend [33], and
[103] by combining gaze and description information into a multimodal system designed to
crop images based on the natural language expression provided by the users.

3.2.2 Multimodal Image Cropping

Fang et al. [116] proposed an automatic image cropping method that uses composition,
content preservation, and boundary simplicity clues to preserve the image’s subject. This
work was one of the first learning-based automatic solutions which did not hard code the
cropping rules but learned it from online resources. Their study proved that combining
different models in one framework can yield much better performance. Following the
success of [116], Wang et al. proposed a novel deep network solution for attention and
aesthetics-aware image cropping, and they also utilised a cascade attention box regression
and aesthetic quality classification in [117, 118]. The proposed neural network consists of
two branches for predicting attention bounding boxes and analysing aesthetics. This method
infers the initial crop as a bounding box covering the visually important area (attention) and
then selects the best crop with the highest aesthetic quality from a few cropping candidates
generated around the initial crop (aesthetic). Most recently, Horanyi et al. [33] proposed
a multimodal description and aesthetic-based image cropping framework using explicit
user description information in addition to the aesthetics assessment. They re-purposed an
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existing image caption and aesthetic prediction model into one framework. Through a series
of optimisation techniques, they could localise the described part of the image and output
an aesthetically pleasing image crop. Through excessive experiments, it was shown that
the proposed framework outperforms the other learning-based automatic image-cropping
methods. The drawback of this solution is taking a long time to produce an image crop due
to the iterative nature of the algorithm.

Gaze and Description-based Image Cropping

As the gaze-based semi-automatic image cropping method does not use any additional clue
w.r.t.the image context, it is not suitable for description-based image cropping applications.
However, it is important to note that gaze has been known as a crucial element of our social
interactions, and an important characteristic of gaze in communication is that it is closely
connected to speech [100, 119]. Accordingly, an analysis of communication in daily settings
has to address speech in relation to gaze. Therefore, it is natural to assume that gaze can be
coupled with other modalities, such as user description, for applied computer vision tasks.
Our work is the first multimodal, gaze-initialised, and description- and aesthetics-based
image cropping solution to the best of our knowledge.

3.3 Methodology

Gaze information could be used as an indicator of the important part of the image. The
collected fixation points and the coupling temporal information can tell us which part of the
image caught the viewer’s eye first and how its attention shifted throughout the recording.
We propose to use the gaze-based user attention information to define the most attended
area of the input image in addition to the user caption to enhance the performance of the
description-based image cropping algorithm.

3.3.1 Gaze-based initialisation of the image cropping

The collected gaze points can directly define the cropping parameters [60] or could be used
as complementary input coupled with other modalities in a single multimodal framework.
First, from the gathered gaze points, we need to define the centre point of the content and
then use predefined rules to obtain the image crops. To find the centre point and the size
of the bounding box (Iinit) around the visually relevant part of the image, we proposed the
following two solutions: Fixed grid and Region proposal.
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Figure 3.2: Example outputs of the fixed grid method using different scales. In the first
column, we show the original image, the ground truth bounding box annotations (top), and
the heatmap generated using the recorded gaze points (bottom). We visualise the generated
N×N grids, the selected section in green with the highest gaze point count, and the output
initialisation region (Iinit) selected based on the gaze points.

Fixed grid

This solution uses a generated fixed-size grid to divide the image into N×N, uniform grids
Gi, and then classify the gaze points (g) into one of the N2 classes. To select the most
attended image region, we counted the number of fixation points within each grid and chose
the one with the highest value. Denoted as

Iinit = argmax(g(Gi)), (3.1)

where i=1,.., N×N corresponds to the Grid index. A generated output initialisation region
(Iinit) example visualisation is shown in Figure 3.2. In the first column of the figure, at
the top, we show the ground truth bounding box annotations of the image cropping dataset
proposed by [33], and at the bottom, the heatmap generated from the collected gaze data. For
our experiments, the grids were generated using N=2,3,4,5, and 10, shown in the first row
of the figure. In the bottom row of the figure, we show the output of the gaze-based image
region selection using the Fixed grid method. The qualitative highlights and the quantitative
evaluation (See Ablation study, Section 3.4.2, Table 3.5) of the method confirm that the
gaze data is useful to initialise the search by roughly localising the centre of the described
area; however, it is not flexible enough, hence not suitable to fully preserve the contextual
information.
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Figure 3.3: Start region generation from the collected gaze points using the region
proposal method. We show the output region proposal bounding boxes (rp) generated by
[120], the selected three boxes with the highest gaze point density (Top-3), and the generated
start regions RPunion with arbitrary aspect ratio and RPsquare with 1:1 aspect ratio.

Region Proposal

Furthermore, the results of our ablation study, discussed in Section 3.4.2, show that the
selection of N significantly influences the output of the Fixed grid method; therefore, to
alleviate this problem, we propose exploiting context information by using a region proposal
module. This module is implemented by Structured Edge Detector (SED) [120] to get n
region bounding boxes (rpm,m = 1, ...n) for each frame. Note that there are large overlaps
among the generated rectangles; hence calculating the density is a better measure to identify
the most attended image region than counting the number of gaze points. Therefore, for each
bounding box, we calculated the gaze point density (dm) by counting the number of gaze
points inside (gm) and dividing them by the area of the bounding box (A(rpm)).

RPunion =
⋃(

max3{dm =
gm

A(rpm)
,m = 1, .., |rp|}

)
, (3.2)

where |rp| is the number of bounding boxes generated by [120], d is the density function,
and max3 refers to the top-3 highest value elements of the set. We show an example of this
method in Figure 3.3. In the first column, we visualised the collected fixation points; next,
we show the generated bounding boxes using SED [120]. Due to the nature of the region
proposal algorithm, we selected the three highest-density bounding boxes shown in the third
column. To generate the output bounding box for the search initialisation, we merged the
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Figure 3.4: Overall framework of the proposed method: G-DAIC. The search is initialised
using the gaze points collected from the subject during the user caption generation and the
Region Proposal module (SED [120]). The adaptive Mixed Scaling method receives the
initialisation region (RPsquare); meanwhile, the framework takes an image as input, which
goes through multi-scale bilinear sampling to produce a cropped image. We then input this
cropped region into the image captioning and aesthetic networks. The optimisation ends
when the Total loss is below Tloss = 5.23 threshold by the proposed Early termination (*).

selected region by taking the union of the rectangles (fourth column). Then we extended this
rectangle of arbitrary aspect ratio into a square (RPsquare) (last column) initialisation region.

3.3.2 Proposed Framework

The proposed gaze initialised, description and aesthetics-based image cropping framework
(G-DAIC) is shown in Figure 3.4. Based on our experimental results, later discussed in Section
3.4.2, we chose the Region Proposal-based RPsquare method for the gaze-based initialisation.

Mixed Scaling method

Prior methods chose the described part of the image, starting from the full image and
iteratively searching for the optimal output crop. This method used a fixed scale and shrunk
the sample image crop size every iteration. The gaze-based initialisation depends on the
collected gaze points, which are subjective and user dependent. Therefore, the shrinking-only
strategy for finding the desired output crop is not optimal. If the initialisation region is too
small, the method might not be able to localise the described part of the image. Therefore,
we proposed an adaptive scaling strategy based on the size of the generated initialisation area.
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Meaning, that based on the size of Iinit , the algorithm either zooms in (shrink) or zooms out
(expand) every iteration with the scale. Mathematically denoted as:

smixed =

+0.98 (shrink) if A(Iinit)
A(I) > T

−0.98 (expand) otherwise
, (3.3)

where A(Iinit) is the size of the gaze-based input initialisation region, A(I) is the size of the
input image, T is the threshold and smixed is the scale. The threshold T = 0.75 was selected
empirically as part of our ablation study (See Section 3.4.2, Table 3.7). This new scaling
strategy is a crucial part of the initialised search algorithm as the size of the described part
of the image and the calculated initialisation region varies based on the image content, the
image caption, and the user’s search behaviour.

Iterative optimisation

Once we calculated the RPsquare and smixed we input these along with the original image into
the Bilinear Sampler [49]. This module generates a multi-scale sampled image based on the
input information in every iteration. The proposed sample image is chosen based on the crop
parameter θ , which is composed of the centre coordinates of the crop x and y, and its scale
smixed . A pre-trained Aesthetic Network [46] is used to generate the Aesthetic loss of the
sample image, which reflects on the quality of the current image sample. Furthermore, we
used an Image Captioning Network [50] to calculate the Caption loss from the user caption
and the caption generated from the sampled image. The Total loss (Ltotal (I,y,θ)) was
calculated as the sum of these two loss functions. The optimisation is performed iteratively to
minimise Ltotal until we find the optimal output crop which best reflects the user’s intention.

Early Termination

By using gaze-based initialisation, we have a better idea of where the described part of
the image might be. Hence, it is reasonable to assume that the method will require fewer
iterations (Niter) to find the optimal output image crop. To further address the runtime
limitations of [33], we proposed to use an empirical threshold, Tloss = 5.23, to terminate
the iterations early (Early termination) after n iterations (niter < Niter) in case the total loss
(Ltotal (I,y,θ)) was below a given threshold. This module was integrated into the iterative
optimisation cycle.
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Figure 3.5: Example images of the extended, multimodal dataset. The user-defined
ground truth bounding box annotations are shown on the original images in red. We show
the collected Free-viewing, Stimuli and Fixation gaze points and corresponding heatmaps.

3.4 Experiments

We implement our method in Tensorflow [82]. All experiments are run on an Intel i7- CPU
@3.40GHZ, 16 GB RAM, and two NVIDIA TITAN Xp GPU for fair runtime comparison
with [33]. The eye-tracking data was collected using a monitor-mounted Tobii Pro Fusion
Eye Tracker device and the Tobii Pro Lab v1.145 software.

3.4.1 Multimodal Dataset

The dataset proposed in [33], introduced in Section 2.4.1, was extended with gaze data,
shown in Figure 3.5. To analyse the correspondence between the two modalities, gaze and
caption, we recorded the eye movements of the participants before and while they performed
the caption-based image part localisation task. All data generated during this study are
included in Section B.2.

Data collection

Experimental setting. For the data collection, we invited 14 participants to participate in
our experiments. Every participant attended our experiment ten times to ensure that they did
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Figure 3.6: Example visualisation of the eye movements over time during the Stimuli
stage. At the top, we show the original image with the ground truth bounding boxes, the
collected gaze points during Stimuli and the corresponding Stimuli heatmap. Below we
visualise the gaze points word by word over time.

not get exhausted during the recording, and during each session, the participant observed ten
images displayed on the monitor in front of them. The Tobii Pro Fusion eye-tracking device
was mounted to this monitor, and before every session, it was calibrated for the user. All the
experiments were performed in a laboratory with controlled lighting conditions. The data
collection had three stages Free-viewing, Stimuli, and Fixation.

Collected Gaze points. For each image, first, the users observed the image without any given
instruction for 10 seconds (Free-viewing). We recorded the participants’ eye movements
during this experiment while they freely observed the previously unseen image. Without
instructions, the participants naturally observe the image and spend more time on complex or
interesting image parts. Following this stage, we played a recording of the corresponding
image caption to the users from [33]. During the second experiment stage Stimuli, the
participants got to know the contextual information and were asked to follow our instructions.
In this phase, the participants were asked to localise the described part of the image while
listening to the image caption recording. In the experiment’s final Fixation stage, they were
asked to fixate on the region of interest for 5 seconds. Using the collected gaze points, we
generated heat maps corresponding to the image caption. Note that during this stage, the
participants were instructed to fixate on the described image part, which is not a single point
but an image region; therefore, it is expected that the gaze points will be within a certain area
but not limited to a single point.
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Table 3.1: The proportion of detected gaze points inside the ground truth bounding box
during Free-viewing, Stimuli and Fixation.

GT Free viewing Stimuli Fixation Mean ± std

1 58.78 ± 29.91 87.75 ± 17.91 92.42 ± 19.91 79.65 ± 22.58
2 56.25 ± 32.44 83.75 ± 22.77 90.31 ± 23.31 76.77 ± 26.18
3 54.50 ± 31.22 84.37 ± 21.24 90.37 ± 22.77 76.41 ± 25.07
4 57.67 ± 31.46 85.34 ± 21.17 91.48 ± 22.21 78.16 ± 24.95
5 59.12 ± 29.70 86.96 ± 18.51 92.51 ± 19.94 79.53 ± 22.72
6 50.01 ± 32.69 79.41 ± 26.50 85.26 ± 28.97 71.59 ± 29.39
7 49.04 ± 29.83 81.46 ± 22.63 88.28 ± 25.11 72.92 ± 25.86

Mean ± std 55.06 ± 31.28 84.15 ± 21.86 90.09 ± 23.47

During Stimuli, the participants listened to the image caption and were asked to localise
the described part of the image. Naturally, this is a dynamic part of our experiment. We
extended the dataset with a per-word time annotation to study the saccades and divided the
recorded gaze points word by word. This new annotation allowed us to investigate how the
gaze points shifted between different image regions over time. Figure 3.6 shows an example
and the recorded gaze points over time.

Participant information. The participants of the eye-tracking experiment were selected to
be diverse in terms of their country of origin, age, sex, and visual acuity. The participants
were aged 23-29, seven males and seven females from 6 different countries. Five of them
had perfect vision, five of them wore glasses, and four participants used contact lenses during
the recordings.

Dataset analysis

We performed multiple experiments to evaluate the quality of the collected gaze points. First,
we analysed how well the gaze points correspond to the dataset’s ground truth bounding box
annotations by calculating the proportion of the points inside these bounding boxes. This
is an important measure as it influences the quality of the gaze-based initialisation, hence
the overall framework’s accuracy. Then we investigated the dynamic nature of the collected
Stimuli gaze data. We aimed to understand the participants’ eye movements w.r.t.the words
of the image caption.

Gaze points w.r.t.bounding box annotations. We evaluated the different stages of the eye
tracking recording individually and compared the recorded points w.r.t. the seven ground
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truth bounding boxes of the dataset. In this experiment, we used the recorded gaze points
from every participant. In Table 3.1, we can see that the proportion of the gaze points inside
the bounding boxes is very similar for all three stages of the recording. Furthermore, our
results show that over 71% of the gaze points were within the bounding boxes for every
ground truth bounding box.

The lowest percentage of gaze points inside the ground truth bounding boxes belongs to
the Free-viewing stage of the experiment, which is not surprising as the participants were
allowed to observe the image without any contextual constraints during this stage. During
the Stimuli stage, the number of gaze points within the target area increased by more than
29%, reaching nearly 84% accuracy. Overall, this is a high percentage considering that the
proportion was about 90% high during the Fixation stage. In a real-world scenario, users do
not tend to fixate on the described part of the image after providing the description. Therefore,
while the Fixation points are more aligned with the ground truth bounding box annotations
of the dataset, we used the Stimuli points in our experiments for initialisation.

Table 3.2: The proportion of detected gaze points inside the ground truth bounding
boxes w.r.t. the subjects during Free-viewing, Stimuli and Fixation.

User Free viewing Stimuli Fixation Mean ± std

1 55.98 ± 32.63 87.73 ± 17.65 92.72 ± 19.64 78.81 ± 23.30
2 52.48 ± 28.91 89.27 ± 15.63 94.67 ± 17.05 78.81 ± 20.53
3 53.39 ± 33.01 87.97 ± 18.28 94.18 ± 19.97 78.51 ± 23.76
4 59.34 ± 34.73 76.84 ± 30.38 80.87 ± 33.11 72.35 ± 32.74
5 52.45 ± 30.42 84.70 ± 19.55 86.36 ± 25.05 74.50 ± 25.01
6 47.89 ± 28.73 87.18 ± 18.15 94.67 ± 19.58 76.58 ± 22.15
7 54.84 ± 30.53 86.84 ± 18.72 93.93 ± 18.68 78.54 ± 22.65
8 54.62 ± 30.09 83.11 ± 25.92 89.95 ± 27.36 75.89 ± 27.79
9 57.96 ± 31.37 83.57 ± 22.24 92.23 ± 22.35 77.92 ± 25.32
10 66.00 ± 33.92 86.04 ± 22.10 93.03 ± 23.61 81.69 ± 26.54
11 54.58 ± 29.22 80.87 ± 25.03 88.27 ± 23.59 74.57 ± 25.95
12 57.84 ± 31.33 81.77 ± 23.34 90.39 ± 21.61 76.66 ± 25.43
13 54.46 ± 31.04 82.70 ± 20.62 89.39 ± 23.04 75.52 ± 24.90
14 55.92 ± 31.57 78.44 ± 23.64 79.90 ± 27.02 71.42 ± 27.41

Mean ± std 55.06 ± 31.28 84.15 ± 21.86 90.09 ± 23.47

Gaze points w.r.t.participants. It is important to note that the participants’ data had some
disagreements, similar to the subjective nature of the user-annotated bounding boxes of the
dataset. Therefore, we experimented to better understand the subjective nature of the gaze
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Table 3.3: Word by word temporal behaviour analysis of the collected Stimuli gaze
points. The average percentage is calculated by computing the percentage of the gaze points
inside every ground truth bounding box annotation and taking their average. The heatmaps
corresponding to each word are visualised in Figure 3.6.

Word Gaze inside (%)

A 0
Plastic 0
Box 0
Of 0
Many 67.03
Metal 99.34
Forks 100

points. The results of this experiment are shown in Table 3.2. We can observe that some
subjects, like User 10, had higher accuracy during all three stages of the experiment than
others. However, the tendency among the stages is the same for every user, and the overall
percentages are close to each other too.

Temporal information. The eye movements and the description are related and aligned
[121]. During the image description, the observer shifts its attention over time as they receive
more information regarding the described part of the image. One way to analyse the nature
of this transition is by splitting the sentence into words and checking where the subject was
looking when the word was used. Therefore, we analysed the gaze points collected during
the Stimuli stage using temporal information and related the points to each word of the given
image caption. This way, we obtain a linearly ordered sequence of fixation locations encoded
using the word and gaze recording timestamps. We collected the length of each word in the
caption recordings and visualised the gaze points w.r.t.the words, as shown in Figure 3.6.
This figure demonstrates the eye movements of the users during the Stimuli stage.

We calculated the gaze inside score (GIS) over time for quantitative analysis of the
dynamic behaviour of the eye movements. The word-by-word GIS is calculated as follows:

GIS =

∑
i={1,...,m}

gwi
gw

m
, (3.4)

where gw is the number of gaze points recorded during the word, gwi number of gaze points
within i = {1, ...,m} ground truth bounding boxes of the dataset, where m = 7 is the number
of ground truth bounding boxes. In Table 3.3, we show the GIS for each word of the caption
corresponding to the example shown in Figure 3.6. We performed this analysis across the
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Table 3.4: Quantitative comparison of the heatmaps generated based on human gaze
data and by GradCAM [87].

AUC (Mean ± Std.) GradCAMno caption GradCAMcaption

Free-viewing 0.556 ± 0.119 0.545 ± 0.132
Stimuli 0.572 ± 0.201 0.620 ± 0.192
Fixation 0.567 ± 0.219 0.633 ± 0.206

whole dataset and found that the GIS increased over time. The calculated GIS of every user
caption is included in G-DAIC dataset.

Furthermore, based on the computed GIS, we calculated the normalised word index (NWI)
of each caption, defined as:

NWI =
argmax(GISi)

w
, (3.5)

where w refers to the caption length and GISi is the calculated GIS of the i-th word of the
caption. In other words, NWI calculates the position of the word with the highest GIS in
the caption. The normalisation was necessary due to the varying caption length. Note that
when multiple GIS scores are equal, the NWI returns the first appearance of the maximum
value. The average NWI across the dataset is 0.65. This value indicates that the first time
the subject concentrates their attention on the described part of the image typically occurs
during the second half of the caption. This means that while the captions’ last words have
the maximum gaze inside score of 94.65 % of the time, the first occurrence of the subject’s
looking at the described part of the image happens earlier during the caption generation. This
finding shows that using the gaze points collected during Stimuli (entire caption) is beneficial;
however, based on the temporal information, irrelevant gaze points could be removed during
the start region generation. While this result demonstrates a strong correspondence between
the collected gaze points and the image caption, the nature of the GIS increase is highly
context-dependent; therefore, it would require more investigation on efficiently utilising the
temporal information for G-DAIC.

3.4.2 Ablation Study

Human gaze-based versus artificial attention heatmaps. In this analysis, GradCAM
[87] was used in two ways to create a coarse localisation map (artificial attention heatmap)
that spotlighted essential areas in the image for predicting the concept. GradCAMno caption

was used without providing the user caption to the model as part of an image captioning.
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Figure 3.7: Gaze-based and artificial attention heatmap comparison. Illustration of
the heatmaps generated based on the collected gaze points from the users compared
to the artificial attention heatmaps generated by with (GradCAMcaption) and without
(GradCAMno caption) providing the user caption to GradCAM [87].

GradCAMno caption highlighted the image’s salient features, which could be used to describe
the full image. Note that this image captioning model is designed to describe the entire image,
which is different from the user captions. The implementation of this model is available at
1. GradCAMcaption was used as introduced in Section 2.4.2; it was used along with a CN to
extract the parts in the image corresponding to the user caption.

Figure 3.7 shows example heatmaps corresponding to the collected gaze points and the
generated artificial attention heatmaps. We can see that the artificial attention heatmaps are
sparse and poorly aligned with the ground truth bounding box locations compared to the
gaze-based heatmaps. In an attempt to quantitatively measure the similarity among these
heatmaps, we calculated the average AUC scores across the dataset between the heatmaps
generated based on the recorded gaze points (Free-viewing, Stimuli and Fixation) and the
artificial attention heatmaps. The average AUC scores are summarised in Table 3.4. We found
that the GradCAM heatmaps were generated without the caption, which corresponded to the
free-viewing situation when the users were unaware that the caption corresponded vaguely
to the human gaze-based heatmaps. GradCAMcaption made more similar predictions to the

1https://github.com/ramprs/grad-cam#image-captioning
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Table 3.5: Quantitative comparison of the different start region generation methods
using IoU measure (Mean ± Std.) on the output bounding boxes. The gaze data used in
this comparison was collected during Stimuli.

Method GradCAMnocaption GradCAMcaption Gaze data

FixedN=10 0.013 ± 0.003 0.013 ± 0.004 0.049 ± 0.013
FixedN=5 0.056 ± 0.012 0.059 ± 0.010 0.171 ± 0.007
FixedN=4 0.080 ± 0.011 0.094 ± 0.014 0.219 ± 0.017
FixedN=3 0.119 ± 0.012 0.150 ± 0.007 0.280 ± 0.005
FixedN=2 0.179 ± 0.009 0.223 ± 0.007 0.326 ± 0.006
RPunion 0.277 ± 0.009 0.290 ± 0.012 0.355 ± 0.009

RPsquare 0.284 ± 0.010 0.294 ± 0.012 0.361 ± 0.008

human heatmaps. The maximum AUC achieved was 0.63, which corresponded to the fixation
map.

Different initialisation techniques

In Table 3.5, we compare how the different start regions (See more in Section 3.3.1) correlate
to the described part of the image. The start regions were generated based on the collected
gaze points during Stimuli and the output heatmap of GradCAMnocaption and GradCAMcaption.
Without performing any optimisation or image cropping, we compare the proposed image
regions with the ground truth annotations of the dataset using the Intersection over Union
(IoU) measure.

The presented results show that human gaze-based initialisation results in start regions
that correlate more to the desired image region than the artificial attention-based initialisation.
This tendency was present regardless of the type of initialisation method. Furthermore,
aligned with the results presented in Table 3.4, the calculated IoU score of the start regions
generated by GradCAMcaption was higher than the ones generated by GradCAMnocaption.

The results of this experiment show that the gaze data is useful to initialise the framework;
however, more is needed for the description and aesthetics-guided image-cropping task.
Furthermore, we found that the Region Proposal-based RPsquare initialisation method was the
most reliable for start region generation, per our findings in Section 2.4.5.

Human gaze and artificial attention-based initialisation

We evaluated the performance of the G-DAIC framework using artificial attention and human
gaze-based initialisation to compare their usefulness. Based on the results presented in
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Table 3.6: Quantitative comparison of the different attention information for start
region definition using IoU measure (Mean ± Std.) on the output bounding boxes. To
obtain these results, we used the proposed Mixed scaling method for every experiment.

Attention type GradCAMcaption Free-viewing Stimuli Fixation

FixedN=10 0.022 ± 0.005 0.042 ± 0.016 0.075 ± 0.018 0.073 ± 0.015
FixedN=5 0.084 ± 0.013 0.146 ± 0.015 0.242 ± 0.007 0.237 ± 0.007
FixedN=4 0.140 ± 0.018 0.214 ± 0.017 0.294 ± 0.011 0.289 ± 0.013
FixedN=3 0.272 ± 0.020 0.271 ± 0.013 0.365 ± 0.012 0.349 ± 0.013
FixedN=2 0.214 ± 0.013 0.246 ± 0.015 0.328 ± 0.015 0.327 ± 0.018
RPunion 0.298 ± 0.013 0.332 ± 0.013 0.369 ± 0.018 0.368 ± 0.014

RPsquare 0.307 ± 0.021 0.309 ± 0.013 0.433 ± 0.011 0.408 ± 0.013

Table 3.4 and 3.5, we used the artificial attention heatmaps generated by GradCAMcaption to
initialise our framework. Note that gaze point collection from the users during Free-viewing
and Stimuli does not require additional effort from the user; therefore, it is unobtrusive.

Gaze information from different stages. In Table 3.6, we report the IoU scores when the
Mixed scaling method was performed using different gaze data (See Section 3.4.1). Namely,
we compare the differences when using Free-viewing, Stimuli, and Fixation information in
the optimisation framework. In this comparison, we found that using the gaze points from
the Stimuli stage results in the highest similarity with the human ground-truth annotations of
the dataset. Furthermore, regardless of the chosen gaze-based initialisation technique, we
can observe that the computed IoU scores are the lowest when relying on the gaze points
collected during Free-viewing. We found that the algorithm’s performance using the Stimuli
and Fixation information for initialisation is very similar. This is because the users were
aware of the contextual information during both stages of the experiment. The difference
between them might come from the fact that while the Stimuli stage is shorter and more
active during the Fixation stage, the participants’ attention could wander around over time,
potentially influencing the initialisation by introducing Free-viewing like gaze points.

Human versus artificial attention. Finally, Table 3.6 compared also the performance of
the G-DAIC framework initialised by human and artificial attention. The results invariably
confirmed that the artificial attention-based initialisation (GradCAMcaption) performed worse
than when we used the gaze-based initialisation. Note that the caption-aware GradCAMcaption

initialisation proved to yield lower IoU scores compared to even the Free-viewing gaze points-
based output crops. This result aligns well with our qualitative (Figure 3.7) and quantitative
(Table 3.4) findings regarding the artificial attention-based start regions.
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Figure 3.8: Qualitative comparison of the human gaze and artificial attention heatmap
initialised output crops. Example illustration of the generated gaze and GradCAMcaption
-based Iinit regions and the Icrop output crops.

Qualitative highlights of this experiment are shown in Figure 3.8. In this figure, we
show the generated RPsquare start regions based on the collected Stimuli gaze points and
the heatmap of GradCAMcaption and the final output crops of the proposed method. The
qualitative comparison shows that the human gaze data collected during Stimuli is more
useful and preferable for start region generation than the artificial attention heatmaps.

Different Mixed Scaling method thresholds

Furthermore, we analysed the performance of the Mixed scaling method using different
thresholds. We used a 0.75 threshold level in our experiments, as mentioned in Section
3.3.2. This threshold level was chosen empirically based on the results of our experiments
presented in Table 3.7. In this table, we show the performance of the fixed grid and region
proposal-based gaze initialisation methods using the Mixed method with different threshold
levels.
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Figure 3.9: Qualitative comparison highlights. The cropped images obtained by CAGIC,
two baseline methods using Free-viewing and Fixation-based gaze initialisation and the
proposed method (G-DAIC) using Stimuli-based initialisation. The user-defined ground truth
bounding box annotations are shown on the original images in red. The proposed method
well crops the images as the user described.
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Table 3.7: Quantitative comparison of the different thresholds (T ) of the Mixed scaling
method using IoU measure (Mean ± Std.) on the output bounding boxes.

T 0.125 0.250 0.375 0.500 0.625 0.750 0.875

FixedN=10 0.076 ± 0.025 0.070 ± 0.016 0.075 ± 0.017 0.085 ± 0.007 0.075 ± 0.019 0.075 ± 0.018 0.073 ± 0.019
FixedN=5 0.152 ± 0.011 0.243 ± 0.008 0.241 ± 0.008 0.246 ± 0.004 0.240 ± 0.008 0.242 ± 0.007 0.242 ± 0.005
FixedN=4 0.195 ± 0.018 0.289 ± 0.015 0.301 ± 0.008 0.300 ± 0.012 0.296 ± 0.009 0.294 ± 0.011 0.289 ± 0.010
FixedN=3 0.259 ± 0.007 0.258 ± 0.010 0.357 ± 0.011 0.371 ± 0.010 0.369 ± 0.010 0.365 ± 0.012 0.367 ± 0.013
FixedN=2 0.305 ± 0.014 0.301 ± 0.009 0.298 ± 0.014 0.314 ± 0.011 0.317 ± 0.017 0.328 ± 0.015 0.311 ± 0.019
RPunion 0.352 ± 0.016 0.362 ± 0.014 0.377 ± 0.014 0.361 ± 0.017 0.378 ± 0.021 0.369 ± 0.018 0.363 ± 0.020
RPsquare 0.359 ± 0.007 0.368 ± 0.009 0.382 ± 0.007 0.419 ± 0.010 0.428 ± 0.011 0.433 ± 0.011 0.431 ± 0.012

3.4.3 Comparison with the state-of-the-art

Qualitative evaluation

In Figure 3.9, we show qualitative output examples produced by CAGIC [33], the Mixed
initialisation method using Free-viewing and Fixation gaze points, and finally, the proposed
method G-DAIC. In this figure, we demonstrate that using gaze data from different stages
of the eye-tracking experiment in the Mixed initialisation method results in very different
image crops. We can observe that initialising the optimisation framework based on the
Free-viewing gaze information often returned a larger region of the image as the output
image crop. Opposite to the Free-viewing output when the initialisation was based on the
Fixation, the image crops tend to be tightly cropped around the subject. Overall, the crops
generated by G-DAIC correspond to the captions and are aesthetically pleasing. Compared to
the images of CAGIC, we found that the subjects of the caption were more centralised, and
we could crop tight enough around the described image region without losing the contextual
information provided by the user caption.

Quantitative evaluation

As part of our ablation study in Section 3.4.2, we compared the quantitative performance of
the proposed method using different initialisation methods, threshold levels of the proposed
Mixed Scaling method, and different types of gaze information. In this section, we present
the experiment’s results using different scaling methods (Shrink, Expand, and Mixed) and
the outcome of the user studies.

Different scaling methods. In Table 3.8 we show the IoU scores w.r.t.different scaling
methods. Note that during this experiment, we used the gaze points collected during the
stimuli stage based on our ablation study’s findings. CAGIC [33] iteratively zooms into the
described part of the image (Shrink) and does not have gaze-based initialisation (See more
in Section 3.3). When the image cropping framework is initialised, we use three scaling
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Table 3.8: Quantitative comparison of the different scaling methods using IoU measure
(Mean ± Std.) on the output bounding boxes. All the gaze-based initialisation methods
use the Stimuli gaze points.

Scaling Method Shrink Expand Mixed

FixedN=10 0.042 ± 0.021 0.074 ± 0.016 0.075 ± 0.018
FixedN=5 0.151 ± 0.015 0.241 ± 0.008 0.242 ± 0.007
FixedN=4 0.188 ± 0.015 0.303 ± 0.011 0.294 ± 0.011
FixedN=3 0.262 ± 0.010 0.365 ± 0.010 0.365 ± 0.012
FixedN=2 0.302 ± 0.013 0.286 ± 0.019 0.328 ± 0.015
RPunion 0.352 ± 0.015 0.330 ± 0.017 0.369 ± 0.018
RPsquare 0.369 ± 0.007 0.388 ± 0.011 0.433 ± 0.011

CAGIC 0.416 ± 0.013 - -

methods to find the region of interest. Namely, we zoomed in or out in every iteration despite
the size of the initialisation region. Alternatively, in Section 3.3.2, we proposed the adaptive
Mixed scaling method, which flexibly decides to use Shrink or Expand w.r.t.the size of the
initialisation area. Our results show that the Mixed scaling method using Region Proposal
initialisation provides the highest IoU value among the compared methods, exceeding even
the score of the state-of-the-art method, CAGIC.

Overall, based on the quantitative evaluations, we found that using gaze-based initiali-
sation is useful, and with the proposed additions, the new framework G-DAIC was able to
outperform the state-of-the-art method. Furthermore, we found that for the initialisation, it is
best to use the gaze points collected during the Stimuli stage and that the proposed adaptive
Mixed scaling method is better suited for our multimodal framework than the previously pro-
posed Shrinking only method. Among the proposed initialisation methods, we found that the
Region Proposal-based RPsquare initialisation was the most successful in every experiment.

User study

Cycle Crop-Caption consistency. To measure the success of the proposed image-cropping
framework, we performed a quantitative comparison of how well each method preserved the
contextual information of the given user caption. We asked five users who did not participate
in our previous experiments, to describe the output image crops of G-DAIC. The caption
similarity scores were calculated using the same natural language processing metrics as
in [33] and introduced in Section 2.4.3 for a fair comparison. The comparative results are
presented in Table 3.9. This experiment demonstrated that G-DAIC was the most efficient
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Table 3.9: Comparison of user intention presence. We ask users to caption cropped images
and compare with natural language metrics how similar they are with the original desired
caption.

NLP Metric Bleu-1 Bleu-2 Bleu-3 Bleu-4 METEOR ROUGE_L CIDEr

GradCAM[87] 0.2728 0.1410 0.0874 0.0531 0.1182 0.2790 0.6973
MAttNet[47] 0.1718 0.0937 0.0603 0.0355 0.1132 0.2947 0.7154

CAGIC[33] 0.3424 0.1876 0.1017 0.0631 0.1702 0.2970 0.9054

G-DAIC 0.3519 0.1963 0.1065 0.0654 0.1747 0.3072 0.9536

Table 3.10: User study quantitative result. Qualitative comparisons among the state-of-the-
art image cropping methods with the original image and G-DAIC were compared through a
human survey and evaluated by aggregation.

Original
Image

MAttNet [47] GradCAM
[87]

CAGIC [33] G-DAIC

Aggregated
percentage

(%)
18.07 18.73 19.13 20.87 23.20

at preserving the contextual information provided by the user according to every metric.
Meaning that the image captions generated from the output crops were more similar to the
original user caption when we used G-DAIC compared to all the other baseline methods.

Aesthetic assessment. Due to the subjective nature of this research area, we performed a user
study to compare the quality of the image crops provided by the baseline methods and G-DAIC.
We performed an online user study, asking the participants to select the best-looking output
image crop among the five images shown in a randomised order. We asked 15 users, resulting
in 1500 decisions, to choose one among the original image and the output image crops of
MAttNet, GradCAM, CAGIC , and G-DAIC. Table 3.10 shows the aggregated percentages.
This experiment shows that using the aesthetics information in the optimisation framework
improved the quality of the output image crops. Furthermore, based on the users’ votes, the
most popular choice was the proposed method, G-DAIC.

3.4.4 Runtime

Finally, we aimed to reduce the runtime (t) of the description and aesthetics-based image
cropping method compared to the state-of-the-art optimisation method [33] by adding a new
modality to the framework. Therefore, beyond the quantitative and qualitative experiments,
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we measured the runtime of G-DAIC and the baseline image cropping methods. The results of
this experiment are shown in Table 3.11.

Table 3.11: Runtime comparison of the baseline algorithms with the proposed method
using a fixed number of iterations (G-DAIC Niter = 25), Early termination (G-DAIC
niter) and the GradCAMcaption-based (G-DAIC GradCAMcaption).

Method Runtime (sec)

A2RL [44] 0.150
VPN [68] 0.008
Anchor [86] 0.005
GradCAM [87] 0.030
MAttNet [47] 0.020
CAGIC [33] 412

G-DAIC (GradCAMcaption) 23.42
G-DAIC (Niter) 40.92
G-DAIC (niter) 32.52

In agreement with our hypothesis, the gaze-based initialisation successfully reduced
the runtime by 92.11% compared to the results presented in Section 2.4.6 and [33]. This
runtime improvement is especially impressive, considering that both the quantitative and
the qualitative evaluations confirmed that G-DAIC outperformed all the baseline methods.
Therefore, the proposed method is faster and more accurate at localising the described part
of the image and producing an aesthetically pleasing image crop.

Fixed number of iterations.

This runtime improvement was achieved in three steps using two methods. Firstly, the time
to run one iteration (titer) was reduced from 2.06 to 1.637 seconds by optimising the code.
This modification resulted in an average 20.53% runtime decrease per iteration. Secondly, we
maximised the number of iterations (Niter) by 87.5% to 25 instead of 200, assuming that the
provided gaze-based initialisation provides a better starting point for our search than starting
from the original image. This resulted in a 90.07% runtime decrease, where producing a
single image crop took 40.92 seconds (Table 3.11, G-DAIC (Niter)).

Early Termination.

Finally, we used the Early Termination strategy to end the optimisation after niter instead of
Niter when the calculated Total loss (Ltotal (I,y,θ)) was below Tloss = 5.23. The time spent



to generate a single image crop, therefore, is calculated as follows:

t =

titer×niter if Ltotal (I,y,θ)<= Tloss

titer×Niter otherwise
(3.6)

This solution allowed us to save 513, equal to 20.52% of the iterations across the whole
dataset. The Early Termination further reduced the average runtime from 40.92 to 32.52
seconds/image (Table 3.11, G-DAIC (niter)). Overall the average total time to produce a single
output crop takes 32.52 seconds which is 92.11% faster than the original method.

The runtime achieved by G-DAIC is significantly faster than the other iterative optimisation-
based description and aesthetics-based image cropping algorithm CAGIC; however, due to the
iterative nature of the proposed algorithm, it is still significantly slower but better in terms
of performance than the other baselines. Finally, we evaluated the runtime of G-DAIC when
initialised by GradCAMcaption. While this method achieved 34% faster runtime compared
to G-DAIC (niter), the quantitative and qualitative results presented in Section 3.4.2 showed
that its performance was significantly lower compared to the human gaze-based initialisation.
Note that the models in our framework were not fine-tuned nor specifically trained for this
task. The overall runtime could be further improved by using new modalities and potentially
replacing existing or new pre-trained models in the framework.

3.5 Conclusion

This chapter proposes a new gaze-initialized multimodal optimization method for the descrip-
tion and aesthetics-based image cropping problem. The main motivation was to reduce the
runtime of the state-of-the-art image cropping method [33] while preserving the accuracy of
the previously introduced solution. Hence, we designed a new framework, which initialized
the image cropping algorithm based on the subject’s eye movements recorded during the im-
age description generation. In this work, we proposed two solutions, Fixed Grid and Region
Proposal, on integrating and utilizing the gaze information into the proposed multimodal
framework. Furthermore, we implemented the adaptive Mixed method for localization of
the described image region based on the size of the gaze-based initialization area. Finally,
we proposed the Early termination of the optimization to significantly reduce the runtime.
In this chapter, we have shown that with the gaze-based initialization of the description and
aesthetic-based image cropping method, we were able to outperform the state-of-the-art
methods significantly and in addition, we reduced the runtime by more than 92%.
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Following the success of the multimodal approach, a potential extension of this work
would be to include another important social clue, hand gestures, into the framework. Fur-
thermore, we believe that utilizing the temporal information and better understanding the eye
movements w.r.t. the caption could result in a more reliable gaze-based initialization using
the gaze points recorded during the caption generation.



Chapter 4

Where Are They Looking in the 3D
Space?

Figure 4.1: Attention target estimation example use case visualisation. The driver
performs gaze following of the pedestrians to infer their intention and prevent a potential
collision.

4.1 Introduction

We live in a multi-dimensional world and experience our environment through our senses.
Vision is one of the most dominant ways we experience the world. Our sense of orientation
within a given context, location, and place is influenced by an animated 3D model of the
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world our brains construct from the cues around us. Image-based gaze target estimation
aims to infer what the subjects in the image scene are looking at from a single RGB image.
Human gaze following and gaze target estimation in the wild are fundamental for visual
navigation. Furthermore, this information is important to evaluate intentions and predict
human behaviours in various social contexts [122]. For these reasons, gaze analysis has
widely been used in neurophysiology studies [123, 124], relevant saliency prediction [125,
126] and social awareness tracking [127–129]. Humans are naturally good at understanding
the actions of others and estimating where they are looking by leveraging prior knowledge.
They can infer the pose and the person’s orientation and reconstruct the 3D image scene
based on a single view. By looking at the image, they can understand what the person is
doing and predict their intentions. They can even guess what it would look like from another
viewpoint. We can do this because all the previously seen objects and scenes have enabled us
to build prior knowledge and create mental models of object appearance.

Earlier in Figure 1.1, we showed one of the many possible scenarios when people are
trying to estimate other people’s attention targets from a third-person view. In this figure,
we showed a couple observing three actors on the television. Figure 4.1 shows another
example of an everyday scenario where the human gaze following is critical to safe driving.
In this instance, the vehicle’s driver is approaching a junction where two pedestrians are
about to cross the road. A crucial part of safe driving is adequate situational awareness
of the driver. This includes predicting the actions of other road users, such as pedestrians
and cyclists within their proximity and on their path. Gestures such as pedestrians looking
around for traffic could indicate their intention to cross the road and potentially the driver’s
path. Furthermore, this enables the driver to determine whether the pedestrian has spotted
them, which would help to prevent a potential collision. To do so, the driver observes the
pedestrians from a third-person view and estimates their individual and joint gaze direction
and target.

From the neurocognitive perspective, gaze perception is performed by humans to dis-
criminate the gaze direction of others [130] as part of various social interactions, such as
gaze following. This action is a vital part of the cognitive functions that allow people to learn
via observation [131]. Once they successfully perceive the gaze direction of others, they
can utilise this knowledge through their social cognition system in various ways [132], for
example, to engage in joint attention with the observed person. By definition, joint attention
happens when a gaze leader looks at a particular object which induces gaze followers to orient
their attention to the same target. In the field of computer vision, the task of joint attention
target estimation is often referred to as shared attention in the literature [30, 133, 134]. While
these terms are similar, they are subtly different from each other [122, 132]. In this thesis,
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we define joint and shared attention terms according to the neurocognitive perspective as
in [122] and treat gaze perception and joint attention as parts of shared attention. Shared
attention requires both the initiator and the responder to be aware that they are observing the
same object, unlike joint attention.

Recent work showed the ability to estimate the individual’s gaze target directly from
images using neural networks. We differentiate between single and joint attention target
estimation methods based on the number of subjects involved in this process. A key step
towards single attention target estimation was the work by Recasens et al. [135], which
demonstrated the ability to detect the attention target of each person within a single image.
This image-based method did not consider human attention over time and the cases when
the target of the subject’s attention was outside the image frame. This approach was later
extended to handle the issue of out-of-frame gaze targets [136]. Afterwards, Chong et al. [30]
proposed a spatio-temporal approach to gaze target prediction, which models gaze dynamics
from video data. These single-target estimation approaches are attractive because they can
leverage head pose features and the saliency of potential gaze targets to resolve ambiguities
in gaze estimation. However, unlike humans, they only use 2D information to estimate the
point of interest. For the first time, Fang et al. [32] proposed a method using depth prior, 3D
gaze estimation and 2D field-of-view (FOV) estimation for gaze target prediction. This was
essential to more realistic gaze target estimation in 3D space. However, in reality, the FOV of
people is not two-dimensional, as a healthy person can observe things in front of them within
a 3D cone.

In social scenarios, we often infer the gaze target of two or more people simultaneously.
To solve this task, an inefficient way is to use the single target estimation models and estimate
the gaze target of every individual in the scene one by one and then combine these estimates
to find the joint attention target of the scene. Fan et al. [133] proposed to infer the joint
attention target in third-person social scene videos using a spatial-temporal neural network to
overcome the limitations of the single target estimation methods. This solution was based on
a head detector module, region proposal, and saliency estimation. Later, Sumer et al. [137]
proposed an end-to-end solution without using any temporal information, face detector or
head pose estimator to detect and localise joint attention. Both existing joint attention target
estimation methods rely solemnly on 2D data, making the models more prone to errors, such
as physically impossible predictions where the subjects are estimated to look within their
blindspot.

This study extends the previous approaches by developing a model for 3D FOV-based
co-attention target estimation by jointly using 2D and 3D clues and temporal information.
Our motivation is to create a model that can translate the image as humans do and estimate
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where the subject is looking in the 3D space. Introducing strong 3D clues into this framework
helps the model to handle occlusion and other challenging cases better later introduced in
Section 4.3. Our contributions are fourfold:

• We propose a novel joint attention target estimation model which mimics how humans
observe their environment using 2D and 3D clues.

• We trained a spatial model that can utilise the full scope of the 3D information of the
3D space provided by the monocular depth estimator. The predicted 3D FOV of the
subjects are used as a probability map instead of a fixed angle, hard thresholded FOV

cone to make the model more robust against the potential 3D gaze direction estimation
errors.

• This is the first work to incorporate depth information into a joint attention target
model and investigate its usefulness in the case of both joint and single attention target
estimation tasks.

• The proposed joint attention target estimation approach outperformed the state-of-the-
art single and joint attention target estimation methods. The results of the methods
were compared on a large-scale image benchmark dataset and two video datasets.

In this chapter, we rely on an implicit social clue to infer multiple users’ common gaze
target point in the scene. We present the extensive preliminary experiments and the analysis
of the weaknesses of the existing attention target estimation methods, which formed the
proposed solution’s basis. We aim to address the physically impossible predictions of the
models, where the subjects are predicted to observe a point within their blind spot. Inspired
by the working of the human visual system, we proposed to incorporate depth information
into the attention target estimation pipeline. By fully utilising the depth prior generated by
a monocular depth estimator module [138] combined with the subject 3D orientation, we
predicted a 2D probability map indicating the pixel-wise co-attention target likelihood on
the image frame. To the best of our knowledge, this is the first work to fully utilise depth
information in a joint attention target estimation framework.

4.2 Related Works

Attention target estimation methods can be categorised based on the number of people
involved in the social interaction in third-person social images or videos.

Single attention target (SAT). This class of methods focuses on a single subject within the
scene and aims to infer their visual attention target location based on the visual information.
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The pioneering work of this research field was proposed by Recasens et al. [139]. The
proposed deep model was the first to learn to find the gaze target in the image through two
pathways. The input of the scene saliency pathway is an RGB image designed to estimate the
saliency of the scene. The subject’s gaze direction was estimated through the gaze pathway,
which takes the face crop of the subject and its spatial location within the original image
as the input. The image dataset proposed in this paper serves as the primary large-scale
benchmark of this research field. Despite the promising results presented in this work, the
proposed method did not handle out-of-frame targets or modelled the temporal dynamics of
attention. Chong et al. [30] proposed a spatio-temporal model to address these limitations.
The authors proposed a video attention target dataset and extended the image dataset with
out-of-frame annotations. These methods were designed to estimate the attention target
location of a single subject within the 2D image. Other related works include [140–142].

Joint attention target (JAT). Fan et al. [133] proposed a method to infer the joint attention
target of two or more people in the scene. The method takes an image frame as input and,
through a head detector, a gaze estimation module, and a region proposal module, generates a
joint attention spatial heatmap. Furthermore, the authors presented this task’s first large-scale
third-person social scene video dataset. An end-to-end Joint attention target (JAT) estimation
method was developed by Sumer et al. [137]. A frequent common mistake of the presented
SAT and JAT methods is that they do not utilise 3D clues for scene understanding. Therefore,
the target estimates are often located within the subject’s blind spot.

Depth-aware attention target This limitation was addressed by the latest SAT estimation
works proposed by Fang et al. [32] and Bao et al. [143]. [32] proposed an image-based
SAT estimation model. This work does not consider temporal information and despite the
authors developed a 3D gaze direction estimation module, the FOV generator only relies
on 2D gaze and head direction and a view angle of 60◦. [143] proposed to reconstruct the
3D scene to 3D point cloud using relative depth estimation and 3D human pose estimation.
They selected the front-most 3D points along the predefined visual rays to find the final gaze
target position. These works are the first and currently only existing works which took a step
towards integrating the depth clue into the attention target detection model.

The work presented in this Chapter is the first one to use depth information for the JAT

estimation task. We propose formulating the 3D FOV as a probability map instead of hard
thresholding the values along a pre-defined angle or visual rays. This new way of representing
the FOV allows more room for inaccuracies coming from the 3D gaze direction estimator.
Furthermore, our method combines the depth information with the subjects’ pose to produce
a joint 3D FOV probability map to predict joint gaze targets of multiple subjects within the
scene.
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4.3 Research questions and preliminary experiments

To better understand the potential problems which may occur during joint attention target
estimation, we conducted a series of experiments on the single attention target estimation task.
Considering that joint attention is the combination of two or more subjects’ simultaneous
attention, we believe that analysing the gaze targets individually is beneficial for our task.
Therefore, this section introduces our findings on the single attention target estimation field
using static images and videos. We used [30] as a baseline and took incremental steps
to investigate the weaknesses of the state-of-the-art gaze target prediction models. More
specifically, during our preliminary experiments, we investigated the following research
questions:

Q1 Different temporal modes: Is there a better temporal mode we could use instead of
the Convolutional Long Short-Term Memory network (Conv-LSTM)?

Q2 Different attributes: Could we improve the performance by relying on new attributes,
such as body position?

Q3 Non-local network: Would Non-local networks improve scene understanding by
predicting a better attention map?

Q4 Non-local block variants: Which type of Non-local block is the most suitable for our
task?

Q5 Alternative head position encoding: Could we encode the head position more
effectively?

Q6 Inside the head bounding box: Should we allow the model to predict the subject to
look inside their head bounding box?

4.3.1 Dataset and evaluation metrics

Benchmark datasets - Single Attention Target Estimation

GazeFollow dataset. [135] A widely used dataset for predicting the gaze target of the
subjects is the GazeFollow benchmark dataset [135], which contains static images. See
example images in Figure 4.2. Amazon Mechanical Turkers annotated the head and gaze
locations inside the images of 130,339 people in 122,143 images. 10 different people annotate
each image of the test set. The diversity of these annotations well reflects the subjective and
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Figure 4.2: Single attention target estimation benchmark dataset highlights. On the
left we show images of the GazeFollow image dataset [139] and on the right sample image
frames of video sequences of the VideoAttentionTarget dataset [30].

complex nature of the gaze target attention estimation task. This dataset does not handle
cases when the gaze target is outside the image frame.

VideoAttentionTarget (VAT) dataset. [30] The VideoAttentionTarget video dataset [30]
is specifically designed for modelling the gaze target in videos. We show an example of
randomly sampled image frames of different video sequences in Figure 4.2 to demonstrate
the diversity of the dataset. For each video clip, the annotators provided the head bounding
boxes as well as the gaze target of each person with the indication of whether the person was
looking outside the video frame.

Evaluation Metrics

In our experiments, we evaluate the performance of the single attention target estimation
models on the GazeFollow and VAT benchmark datasets using the following three perfor-
mance measures: AUC, Distance, and Out-of-Frame AP.

• AUC: Each cell in the spatially-discretised image is classified as a gaze target or not.
The ground truth comes from thresholding a Gaussian confidence mask centred at the
human annotator’s target location. The final heatmap provides the prediction confidence
score evaluated at different thresholds in the receiver operating characteristic curve
(ROC). The area under the curve (AUC) of this ROC curve is reported.

• Distance: Pixel-wise normalised L2 distance between the ground truth target location
and the pixel of the maximum value in the predicted heatmap.

• Out-of-Frame AP: The gaze target estimation model learns a scalar α which quantifies
whether the person’s focus of attention is located inside or outside the frame, with
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higher values indicating in-frame attention. The average precision (AP) is computed
for the prediction score from the scalar α against the ground truth computed in every
frame.

Note that AUC and Distance are computed whenever an in-frame ground truth gaze target
(the heatmap always has a maximum). Also, the ten ground truth annotation locations of the
GazeFollow dataset were averaged, and the average L2 distance was calculated w.r.t.this new
ground truth location. We found that the average position was completely off from the actual
gaze target in cases where the ground truth annotations disagreed. The minimum L2 distance
was calculated as the minimum distance from all the ground truth gaze locations. We also
show the performance of the annotators (Human performance) across all three measures of
the datasets. This is done by comparing annotator predictions in all pairs and averaging them.

4.3.2 Experimental analysis of the research questions

Q1. Different temporal modes

In the proposed framework, Chong et al. used a Conv-LSTM [144] to integrate temporal
information from a sequence of frames. In this work, they did not compare the performance of
the proposed model using other temporal networks; therefore, in our study, we used Peephole
LSTM [145], Gated Recurrent Unit (GRU) neural network [146] and Temporal Convolutional
Network (TCN) [147]. We trained the models on the VAT dataset using initialisation weights
from the spatial model. In Table 4.1, we show the performance of the trained models. In this
comparison, we found that by using TCN, we achieved better results than the original method
in terms of AUC and L2 distance. The AP measure was slightly below the performance of
[30], which we further investigated.

Table 4.1: Quantitative comparison of the different temporal modes using AUC, L2
distance and AP measure on the VideoAttentionTarget dataset.

Temporal mode AUC ↑ L2 distance ↓ AP ↑

Conv-LSTM [144] 0.860 0.134 0.853
PeepholeLSTM [145] 0.837 0.149 0.853

Conv2DGRU [146] 0.855 0.132 0.847
TCN [147] 0.880 0.132 0.847

VideoAttention [30] 0.860 0.134 0.853
Human performance 0.921 0.051 0.925
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In our qualitative evaluation (See Figure 4.7), we found that the new model using TCN
has three major weaknesses: bias towards humans, occlusion, and ambiguous ground truth
annotations. Specifically, the model tends to predict physically impossible gaze targets
w.r.t.the subject. Namely, the predicted gaze target points were within the blind spots of the
subjects. Finally, we found that the model has a bias towards humans.

Figure 4.3: Visualisation of the SAT framework using different attributes.

Q2. Different attributes

The existing gaze target estimation methods only rely on the head position of the subject;
however, when humans try to estimate others’ gaze targets, they rely on various clues,
including the subject’s eye and body position and other contextual clues. Inspired by our
findings in Chapter 3, we tried to extend the single attention target estimation method by
introducing new attributes. Therefore, we proposed to use different attributes, which are body,
head and eyes and their combinations to provide more information on the subject during
training under the assumption that these new attributes will help the model estimate the
subject’s gaze target. To do this, we extended the architecture of [30] by adding new attribute
branches to the scene branch (See Figure 4.3). Note that we used separate Attribute Conv
modules for each module, then we multiplied the Scene Feature map with every computed
Attribute attention map and concatenated every Attribute Feature map to this product which
was the input of the Gaze Target Detection Module. The quantitative results are shown in
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Table 4.2: Quantitative comparison of the spatial models trained using the eye location,
head position and body position attributes of the subject and their combinations on the
GazeFollow dataset.

Attributes AUC ↑ Avg distance ↓ Min distance ↓

Eye only 0.856 0.144 0.241
Body only 0.814 0.185 0.257
Head + eye 0.877 0.122 0.194
Head + body 0.834 0.202 0.207
Head + eye + body 0.851 0.130 0.238

Head only 0.896 0.106 0.170

Table 4.2. Our quantitative results showed that introducing new attributes does not improve
the model’s performance compared to the model trained using only the head position.

Q3. Non-local network

One of the biggest challenges of Gaze Following is to estimate a correct attention map
w.r.t.the subject’s location within the scene. Saliency estimation methods can better under-
stand the whole image scene but do not reflect the spatial dependence w.r.t.the subject’s
position. Recently, Non-local neural networks were proposed by Wang et al. [148] for
capturing long-range dependencies. Essentially, the proposed non-local operation computes
the response at a position as a weighted sum of the features at all positions. Inspired by the
similarity between our tasks and the use case of this network, our hypothesis was that it
would help us better model the spatial relationship between the subject and its gaze target
point; hence we integrated this block into our current framework.

We defined two bottlenecks for our experiments. Following the architecture of [30],
we used a ResNet-50 as a backbone of one of our architectures. In this case, we defined
five blocks (Stage 1-5 in Figure 4.4.), each with [3,4,6,3,2] layers, respectively. The other
backbone has five blocks with one layer each. Since this architecture is much smaller, we
later refer to this backbone as light. We inserted the Non-local blocks between every layer
(between layers) or between every block (between blocks) into our backbones (See in Figure
4.4). We removed the Head conditioning branch of the original architecture proposed in [30]
and only worked with the main scene branch.

In [148], the authors proposed four different non-local blocks: Gaussian, embedded
gaussian, dot-product and concatenation. However, due to computational power limitations,
we could only use the Gaussian and the Embedded Gaussian Non-local blocks. We show the
quantitative comparison between different backbones, block placements, and block types
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Figure 4.4: Visualisation of different NL block placements between the layers and the
blocks of the backbone.

Table 4.3: Quantitative comparison of different spatial models on the GazeFollow
dataset.

Backbone Spatial model AUC ↑ Avg dist ↓ Min Dist ↓

Light

Between layers, Gaussian 0.783 0.308 0.229
Between blocks, Gaussian 0.855 0.245 0.170
Between layers, Emb. gaussian 0.758 0.324 0.245
Between blocks, Emb. gaussian 0.752 0.321 0.244

ResNet-50

Between layers, Gaussian 0.907 0.173 0.105
Between blocks, Gaussian 0.851 0.259 0.182
Between layers, Emb. gaussian 0.866 0.233 0.158
Between blocks, Emb. gaussian 0.636 0.306 0.240

VideoAttention [30] 0.921 0.137 0.077
Human performance 0.924 0.096 0.040

in Table 4.3. and 4.4. Our experimental results show that the Gaussian non-local blocks
performed better for our task for both backbones. Furthermore, placing the non-local blocks
between the layers improved the performance more in most cases than placing them between
them. Note that when we place the blocks between the layers in the ResNet-50 backbone, we
use 18 blocks instead of 4, and in the case of light, we use five instead of 4 blocks.

Inspired by the design choice of [148], we ran an experiment where we used the ResNet-
50 architecture and inserted 4 Non-local blocks to stage 2 and 6 blocks at stage 3 between
each layer (Model92: ResNet-50, 4-6 between layers, Gaussian) . We also attempted to
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Table 4.4: Quantitative comparison of different spatiotemporal models on the VAT
dataset.

Backbone Spatiotemporal model AUC ↑ L2 distance ↓ AP ↑

Light
Between layers, Gaussian 0.770 0.277 0.752
Between blocks, Gaussian 0.752 0.281 0.747

ResNet-50
Between layers, Gaussian 0.854 0.171 0.843
Between blocks, Gaussian 0.842 0.205 0.809

Chong et al. [30] 0.860 0.134 0.853
Human performance 0.921 0.051 0.925

connect the Head conditioning branch to this model (Combined model: ResNet-50, 4-6
between layers, Gaussian with head branch). The quantitative evaluation of the proposed
spatial models is shown in Table 4.5. We found that the Model92 architecture had a higher
AUC score meaning that the estimated gaze heatmap had a better overlap with the ground
truth than the state-of-the-art method [30]. However, the average and minimum distances are
slightly higher.

We also evaluated this model’s performance on the VAT dataset in Table 4.6. We evaluated
the spatial Model92 without fine-tuning; however, despite the AUC measure being higher
than the state-of-the-art’s, the AP score was very low. This is because the Gazefollow dataset
does not have in/out labels; therefore, our model could not learn when the subject looked
outside the image frame during spatial training. To improve the AP score, we finetuned
Model92 without temporal training using only the binary cross entropy loss because the AUC
score was high. Furthermore, we also trained a spatiotemporal model using TCN. The results
of our experiments show that there is still room for improvement to achieve the performance
of [30]’s full model or the human annotators. Note that Model92 does not use the head
branch; hence we also included the performance of [30] in Table 4.6 without the head branch
as well as without the temporal training. Compared to these models, our proposed model
performed better without any finetuning.

During our qualitative evaluation found the following similarities among the cases with
the highest L2 distance: the heatmap is sparse, the max value is not in the correct image
region, the estimated gaze target is in a physically impossible location (behind the person, on
the subject’s face e.t.c.), the disagreement between the ground truth annotations is very large.
For the cases with the lowest error, we found that the heatmap is concentrated around the
target object, the scenario is typically human-human or human-object interaction, and the
ground truth annotations are very close.
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Table 4.5: Quantitative comparison of different spatial models on the GazeFollow
dataset.

Spatial model AUC ↑ Avg distance ↓ Min distance ↓

Model92 0.921 0.147 0.083
Combined 0.865 0.201 0.135

Chong et al. [30] 0.921 0.137 0.077
Human performance 0.924 0.096 0.040

Table 4.6: Quantitative comparison of different models on the VAT dataset. Note that
there is no Head branch integrated in the Model92 architectures.

Model AUC ↑ L2 distance ↓ AP ↑

Model92 no finetune 0.889 0.148 0.638
Model92 fine-tune, no temporal 0.889 0.148 0.821
Model92 spatiotemporal 0.829 0.170 0.842

Chong et al. [30] no head 0.758 0.258 0.714
Chong et al. [30] no temporal 0.854 0.147 0.848
Chong et al. [30] 0.860 0.134 0.853

Human performance 0.921 0.051 0.925

Q4. Non-local block variants

Non-local blocks proved to be useful in our experiments. Quantitative results on the bench-
mark dataset show that the Compact Generalised Non-local network proposed by Kaiyu et
al. [149] and the Efficient Attention by Shen et al. [150] proposed recently performed better
than [148]. We trained Model92 using these non-local block variants. We show the new
model’s performance in Table 4.7. on the GazeFollow dataset. All the variants performed
similarly; however, for our task, the original Non-local blocks [148] seemed the best choice
based on our results.

Q5. Alternative head position encoding

In Figure 4.5 we show an example input of the existing SAT methods. Namely, the original
image which is the full RGB image of the scene, the head crop of the subject based on
the ground truth head bounding box information. Studies found that providing the head
position as a spatial reference along with the scene helped the model learn faster, therefore,
the methods use the head position encoding in addition.
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Table 4.7: Quantitative comparison of different NL block variants on the GazeFollow
dataset.

Non-local block AUC ↑ Avg distance ↓ Min distance ↓

CG-NLx [149] 0.919 0.151 0.086
EA-NL, 1 head [150] 0.921 0.151 0.086
EA-NL, 2 head [150] 0.920 0.154 0.089

Original [148] (Model92) 0.921 0.147 0.083

Table 4.8: Quantitative comparison of different head position encoding on the GazeFol-
low dataset.

Positional encoding AUC ↑ Avg distance ↓ Min distance ↓

1D addition 0.672 0.236 0.309
1D multiplication 0.780 0.228 0.306
2D 0.887 0.128 0.197

Model92 0.921 0.147 0.083

The head position w.r.t.the image scene is derived from the given head bounding box
information. In our example, we displayed the head bounding box over the original image in
green. Existing method encode this location information as an image, where the bounding
box is a black rectangle on a white image. See example visualisation of the head channel
within the original image frame in the top row of Figure 4.5. The resolution of the encoding
is fixed, in our experiments its 224×224.

When the subject is far from the camera, the currently used head position image would
only have a small bounding box (black rectangle) due to the difference between the original
image and the resolution of the head position encoding. The smaller the rectangle on the
original image, the more likely the information gets lost during transformations. Therefore,
we proposed a new head position encoding, shown in Figure 4.5. The proposed solution
uses the bounding box coordinates to represent the position of the subject’s head within the
original image frame. Our solution used the coordinates of the edges of the rectangles and
formed sequences of evenly spaced numbers between the edge coordinate values with the
desired encoding resolution. See example visualisation at the bottom of Figure 4.5.

In Table 4.8. we show quantitative results using the Model92 architecture with different
head position encodings. First, we multiplied the generated x coordinates of the head
bounding box with the y coordinates (1D multiplication), next we multiplied the x coordinates
with the size of the bounding box and added the y coordinates (1D addition); lastly, we stored
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Figure 4.5: Representation of the proposed new positional head position encoding.

both the x and y coordinates (2D). Our results show that the new 2D head position encoding
is better than the 1D representations we tried, but none gave us better results than the original
spatial encoding.

Q6. The attention target is within the subject’s head bounding box

A person cannot look at their face; therefore, the attention target is unlikely to be within the
subject’s head bounding box. To test our hypothesis, we studied the ground truth head and
co-attention bounding box annotations of the VideoCoAttention (VCA)[133] joint attention
target estimation dataset. See Section 4.5.1 for details on the VCA dataset. We performed
an experiment to show how the prediction accuracy changes when we exclude the head
bounding box area of the subjects within the scene.

First, we calculated the frequency of the ground truth co-attention bounding box anno-
tation’s intersection with the subjects’ head bounding boxes (See Table 4.9a). We found
that the frequency of the intersection occurrence is different among the dataset’s training,
validation and test set. The highest frequency of intersections was counted in the training set,
where 6.42% of the ground truth co-attention annotations intersected with at least one of the
head bounding boxes of the frame. While this number is relatively high, we also measured
the average AUC within the intersection, and we found that the AUC score associated with
these points was very low. Meaning, that while there exists an intersection between the head
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Figure 4.6: Qualitative highlights of the head bounding box exclusion experiment. We
show two examples of the recurring error where the model predicts the user to look within
their head bounding box at their own face. By excluding the area of their head bounding from
the search field the gaze target estimation accuracy improved. The observed subject’s head
bounding box is highlighted in yellow, the ground truth annotation is marked as a yellow
circle or blue dot, and the estimated gaze target estimate is shown as a red circle.

Table 4.9: Quantitative comparison on the VideoCoAtt dataset [133] of the SAT and JAT
accuracy with and without the head bounding box region.

(a) Frequency and average AUC score of the head and co-attention bounding box
intersections in the train, validation and test sets of VCA.

Train Validation Test

Frequency (%) 6.42 3.67 2.55
Average AUC 0.004 0.002 0.002

(b) Results of the quantitative evaluation on the VCA dataset including and excluding
the head bounding box image region for the single and joint attention target prediction.

Single Attention Joint Attention
L2 dist (px) ↓ Inout (%) ↑ L2 dist (px) ↓ Inout (%) ↑

Include 67.38 54.85 56.48 53
Exclude 64.58 56.48 48.70 66.53

and co-attention bounding boxes, the points within this area are not the co-attention target
points.

Therefore, we performed an experiment where we excluded the head bounding box
area of the image and measured the single and joint attention target estimation accuracy in
terms of L2 distance and Out-of-Frame AP (denoted as Inout). In Table 4.9b, we show that
after excluding the points within the head bounding box regions from the attention target
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estimation, the results improved in the case of both single and joint attention target estimation.
Qualitative highlights are shown in Figure 4.6.

4.3.3 Summary

We found the following answers to our questions through the preliminary experiments
presented in this section:

1. We compared the single attention target estimation model’s performance with different
temporal modes, including Conv-LSTM, PeepholeLSTM, GRU and TCN. Our results
showed that using TCN as the temporal part of the model achieved better performance
w.r.t.AUC and the L2 distance measure, meaning that the predicted probability heatmap
was more similar to the ground truth annotations and the target estimate’s distance from
the ground truth annotation was smaller. Regarding AP, it is better to use Conv-LSTM
to predict whether the subject is looking inside or outside the image frame.

2. We conducted experiments using the following attributes and some of their combina-
tions: eye position, head position and body position. The positions within the image
were given as bounding boxes. We extended the framework of [30] and replaced the
head position with other attributes or included new ones. Inspired by our findings
in Chapter 3, we assumed that introducing additional attributes would improve the
model’s performance. We found that using the eye position achieved better perfor-
mance than the body. This is because the eye position is more closely related to the
person’s gaze direction than the body position. However, overall we found that using
head position only resulted in a better estimate using all three measures. We think this
is because the subjects’ eye location in the benchmark datasets is often not visible;
therefore, it might be misleading to the model.

3. To capture the long-range dependencies and therefore calculate a better attention map
w.r.t.the subject’s position, we used Non-local layers. We found that inserting some
Non-local layers between specific layers of the ResNet-50 of the spatial model achieved
a better AUC score than the state-of-the-art method on the GazeFollow benchmark
dataset. Furthermore, we found that in comparison with [30] ablation study results, the
proposed model outperformed different versions of the previous model respectively
by a large margin. However, after the temporal training, we could not surpass the
performance of the existing method. The weaknesses and findings regarding this model
are discussed later at the end of this subsection.
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4. Motivated by the success of the spatial model using Non-local blocks between the
layers of the backbone, we further evaluated the performance of our framework using
three different Non-local block variants. Our experiments showed that the Non-local
blocks proposed by [148] are the best suited to our task.

5. We proposed three head positional encoding alternatives to the one commonly used
in this research field. Our experiments showed that the original positional encoding
method is better regarding AUC and Min distance measures; therefore, we followed
the standard head positional encoding in our following experiments.

6. Lastly, we proposed to exclude the image region of the subject’s head bounding box
annotation from the potential attention target estimate locations. This idea is motivated
by the fact that a person can not look at their face. The results of this experiment showed
that both the individual and the joint attention target estimates accuracy improved
when we excluded the head bounding box area.

Figure 4.7: Visualisation of different failure cases, including human bias (a), ground truth
annotation ambiguity (b), occlusion of the subject (c) and the gaze target (d), and physically
impossible estimates (e). The observed subject’s head bounding box is highlighted in yellow,
the ground truth annotation is marked as a yellow circle or blue dot, and the estimated gaze
target estimate is shown as a red circle.

Finally, after careful analysis of our quantitative and qualitative results, we found the
following problems with the state-of-the-art and the proposed methods:
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• Bias towards humans: In Figure 4.7 a), we show a common mistake of our model.
There are many cases in the benchmark datasets where the gaze target of the subject is
not another person but an object or the ground in front of them or somewhere between
two potential gaze target locations. These cases are especially common in the video
dataset, where we observe the user’s eye movements frame by frame. During the
observed time, the user often shifts their gaze between people or objects. Our analysis
showed that our model is biased towards humans, and it is more likely to predict the
subject to be looking at another person within the image instead of an insignificant
location.

• Ambiguous annotations: We studied the annotation of the GazeFollow image dataset,
where we have ten annotations for each test image to better understand the ambiguity
of the gaze target annotations (example shown in b)). This variation among human
annotations originates from the subjective nature of the task. In part b) of the figure,
we visualised the ground truth annotations of the selected subject’s estimated gaze
target location in blue and their average in red in 3D using a prior depth map. We
show that annotating the gaze target locations on a 2D image can result in inaccuracies.
For example, in b) several ground truth annotations and their average fall behind the
subject.

• Occlusion: Based on the qualitative results, we identified the two most common causes
of failed gaze target estimates, which are:

– Occlusion of the subject: In Subfigure c), we show examples where the occlusion
of the subject’s face caused the prediction error. Generally, when the model is used
to estimate someone’s gaze target from the back, the estimate is often different
from the ground truth annotations. Note that for these cases, the manually
annotated ground truth target locations are not well aligned, meaning that even
the human annotators could not agree on the gaze target, which highlights the
complexity of this case.

– Occlusion of the gaze target: In other cases, we found that the gaze target
selected by the human annotators was occluded by, for example, another person
within the image scene (See Subfigure d)). This scenario is not uncommon in the
existing benchmark datasets. While it is not correct to annotate that the subject at
the top of Subfigure d) is looking at the television even when the other person is
standing in front of him, it makes sense regarding the ongoing activity.
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• Physically impossible estimates: Finally, we found a very common problem where the
model predicted the gaze target to be behind the subject or in a physically impossible
position. In reality, humans can only look at target points within their field of view,
which is defined as the part of their visual field that can be viewed instantaneously
[151]. This error may occur due to an incorrect head pose or gaze direction estimate or
when the most probable target is located behind the subject.

4.4 Methodology

In this Section, we introduce a novel framework using a monocular depth estimator and a
3D FOV-based probability map to estimate the joint attention target while minimising the
physically impossible gaze target estimate. Our assumption is that by integrating relative
depth information of the scene and the calculated joint 3D FOV of the subjects in our
framework, the model will learn to differentiate between the FOV of the subject and the blind
spot. The framework of the proposed method is shown in Figure 4.8.

The input of this method, following the results of our preliminary experiments in Section
4.3, is the original image, the head positional encoding. We use an existing monocular depth
estimation method [138] for relative depth map generation from the single image input and a
gaze direction estimation method [152] to estimate the subjects’ 3D gaze direction.

4.4.1 Framework

Our framework comprises three major components: a Relative Depth Prior Module, a 3D
Field-of-View Module, and finally, a Joint Attention Target Prediction Module.

Relative Depth Prior Module

This module is the core of the proposed method, as the generated depth map is the input of
both the 3D Field-of-View and the Joint Attention Target Prediction Modules. For our task,
we are primarily interested in the order of the objects and where they are located w.r.t.each
other. Therefore, instead of estimating the absolute depth, we used an existing monocular
depth estimation network [138] to estimate the relative depth map of the scene. Relative
depth is the ratio between the depth of two points, which is useful to determine which point
is closer to the camera [153].
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Figure 4.8: Overall framework of the proposed JAT method. The input of the framework
is the RGB image and the head bounding box annotation of the subjects of interest. Head
crops of the subjects are generated based on their head positional encoding and used as
the input of the 3D gaze target estimator. The depth map, generated by the monocular
depth estimation network, is used as the input of the 3D field-of-view (FOV) probability
map generator alongside the estimated 3D gaze direction. The generated depth and 3D FOV
probability maps and the original RGB image are then inputted into the Joint attention target
estimation module to predict the location of the joint attention target of the selected subjects
in the scene. The ground truth attention target location is shown in yellow, and the estimate
of the proposed method is in red.

3D Field-of-View Module

The crop of the subjects’ heads in the scene is used to estimate their 3D head orientation
using an existing 3D gaze estimator module. The 3D direction estimate combined with
the 2D spatial positional encoding of the head bounding boxes allows us to generate the
subjects’ 3D individual FOV (shown at the bottom of Figure 4.8). We generate a shared 3D
FOV probability map for each image, including every subject. Based on the assumption that a
person is more likely to look within their 3D FOV cone than to their blind spot, we assigned a
higher probability for the joint attention targets to be within the intersections of the subject’s
3D FOV cones, and we penalise the predictions which fall outside of the cones. In addition,
based on our preliminary experimental results presented in Section 4.3.2 we assigned the
lowest probability score to the subjects’ head bounding box region. The generator outputs are
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Figure 4.9: Example joint 3D FOV probability map of the subjects looking at the same
attention target. We show the original input image and corresponding monocular depth map
in the first column. Then we show the individual probability maps of each subject. Finally,
on the combined joint attention probability map, we show the ground truth head bounding
boxes and the attention target location in black.

joint 3D FOV probability maps corresponding to the input images. The individual probability
map generation is mathematically denoted as:

Mind = min_max_scaler

(
(i−hx, j−hy,k−hz) · (gx,gy,gz)∥∥i−hx, j−hy,k−hz

∥∥
2 ·
∥∥gx,gy,gz

∥∥
2

)
, (4.1)

where ind={0,...,n} is the index of the subjects in the scene, (i,j,k) is the coordinate of each
point in Mind ,(hx,hy,hz) is the centre of the head bounding box, (gx,gy,gz) is the estimated
3D gaze direction, and min_max_scaler() is the transformation that scales each value of the
probability map between zero and one. Then we set the values within the subject’s head
bounding box ([xmin,xmax,ymin,ymax]) to be equal to zero based on Section 4.3.2.

Mind[xmin,xmax,ymin,ymax] = 0 (4.2)

Finally, the joint attention probability map values are calculated as the average of the
individual probability maps.

MFOV = mean(Mind) (4.3)

An example visualisation of the generated individual and joint 3D FOV probability maps
is shown in Figure 4.9. Four subjects are in the image, their head crops are highlighted at the
left top corner of the individual heatmaps, and the positional encoding is visualised as black
bounding boxes on the joint probability map. The ground truth JAT point is visualised on the
joint probability map in black. We can see that the highest probability map values correspond
to the area where the ground truth point is located within the scene. Furthermore, by using
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the relative depth prior information (shown at the left bottom of the figure), we can see the
clear difference between the pixel values of the blind spot of the individuals and the FOV.

Joint Attention Target Prediction Module

Finally, we defined a JAT prediction module to localise the attention target point of the
individuals in the scene. The input of this module is a series of scene images and the
corresponding relative depth maps, and the calculated 3D joint FOV probability maps. These
inputs are concatenated and fed into an encoder consisting of a ResNet-50 [154] followed by
an additional residual and average pooling layer combined with NL layers [148] motivated by
our findings discussed in Section 4.3.2. In between the layers of the second and third residual
blocks, we included 3 and 5 NL layers, respectively. The concatenated features are encoded
using two convolutional layers in the Encoder. A deconvolutional network composed of
four deconvolution layers upsamples the features calculated by the Encoder into a full-sized
feature map. We found that by combining the scene and the subject-dependent information
using these inputs, we can find the most probable gaze target location on the image from the
joint FOV of the subjects.

4.4.2 Implementation details

We implement our method in PyTorch. All experiments are run on an Intel i9-CPU @
3.30GHz, 125 GB RAM, and four NVIDIA GeForce RTX 2080Ti GPUs.

The input RGB and generated depth images are resized to 224×224 and normalised. As
described in [139], we used random flip, colour jitter, and crop augmentations. We also
added noise to the head position and the 3D gaze direction during training to minimise the
influence of localisation errors. The ground truth heatmap was generated using the output 3D
direction estimate calculated by [152] and by adding Gaussian weight around the centre of
the target for supervision. We implemented two loss functions during training: heatmap and
in-frame loss. We used MSE loss to compute the heatmap loss (Lh) and binary cross-entropy
loss for the in-frame loss (L f ). The total loss L used for training is a weighted sum of these
two: L = whLh +w f L f .
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Figure 4.10: Social interaction detection benchmark dataset highlights. On the left we
show example image frames of video sequences from the LAEO [129] dataset and on the
right, we show examples from the VideoCoAttention JAT estimation benchmark dataset [133].

4.5 Experiments

4.5.1 Dataset and baselines

Benchmark datasets - Social interaction detection

In Section 4.3.1, we introduced the existing single attention target estimation datasets: the
GazeFollow image [139] and VideoAttentionTarget [30] video benchmark datasets. Two
popular benchmark datasets are available for social interaction detection: LAEO [129] and
VideoCoAttention [133] video datasets.

Looking At Each Other (LAEO) dataset [129] The video dataset proposed by Marin et
al. was used to train a model which can analyse one-to-one social interactions between
subjects. The primary question they were trying to answer was whether the subjects looked
at each other (See examples in Figure 4.10). The data consist of three types of annotations:
a binary label indicating the presence of any pair of people looking at each other, the head
bounding boxes of the subjects present at the scene, and, if they exist, the indices of the
subjects looking at each other. The dataset is limited to human-human interactions and
bounding box-level annotations; no pixel-wise gaze target point is available. The dataset
does not extend to cases with more than two participants; therefore, while there are multiple
subjects in the scene, joint attention, as we defined it in this thesis, does not exist in this
dataset.

VideoCoAtt dataset [133]. A more detailed, larger video dataset proposed by Fan et al. was
proposed for training models to estimate the joint attention target of the subjects in the
video frames. This large-scale, diverse dataset consists of 492,100 frames from 380 video
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sequences of 20 different shows. For every frame, they collected the bounding box of joint
attention. The attention targets occluded or outside of the frame were not annotated. In
addition, they collected the head bounding boxes of the currently engaged subjects within the
image frame. The drawbacks of this dataset are that not every person is annotated within the
scene, and only one attention target bounding box is identified per image frame. VideoCoAtt
dataset highlights are shown in Figure 4.10.

4.5.2 Additional Evaluation Metrics

The task of Attention Target Detection consists of two subtasks: spatial location prediction
and temporal interval detection. To evaluate and compare the performance of the joint
attention target prediction models, we used the L2 distance for the localisation task and
reported the Prediction Accuracy for the detection task.

• L2 distance: Using the predicted joint, joint attention confidence map, we compute
the distance between the pixel location of the maximum confidence and the centre of
the ground truth bounding box.

• Prediction Accuracy: We regarded the given frame with joint attention when the
predicted confidence map’s maximum value was above a threshold adopted from [133].
The Prediction Accuracy is calculated as the percentage of the frames with correct
joint attention estimation.

4.5.3 Baselines

The proposed method was evaluated using three benchmark datasets on both the single and
joint attention target detection tasks. We used the datasets and methods introduced in Section
4.3 for the single target estimation evaluation. On the joint attention Target estimation task,
we compare our method against the following methods on the VideoCoAtt dataset [133]:
Fan [133] the first method proposed to infer joint attention in social scene videos, VAT [30]
a single attention target estimation method used on videos, and Attention Flow [137] an
End-to-End Joint Attention Estimation method.

4.5.4 Comparison with the state-of-the-art

For the most exhaustive comparison, the proposed joint attention target estimation model is
evaluated and compared against both single and joint attention target estimation methods.
We present the quantitative and qualitative results of our experiments using three previously
introduced benchmark datasets.
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Figure 4.11: Qualitative highlights of the proposed method with NL layers (Full-NL)
and without (Full) on three attention target estimation datasets: GazeFollow, VAT, and VCA.
In the presented examples, the head bounding box of the observed subjects and the ground
truth annotations are marked as yellow, the average is shown in blue, and the estimated gaze
target estimate is shown in red.

Qualitative results

The qualitative highlights of the proposed Full and Full-NL methods on three benchmark
datasets, GazeFollow, VAT and VCA, are shown in Figure 4.11. These examples were selected
to demonstrate the efficiency of our method in different scenarios, e.g. in case of occlusion
and ground truth ambiguity. Furthermore, we selected cases when the gaze target was not
another person in the scene to address the human bias problem mentioned earlier in Section
4.3.

The attention target estimate of our methods is shown in red, the ground truth annotations
and the head bounding boxes of the observed subjects are yellow, and for the GazeFollow
dataset, we show the average ground truth annotation location in blue. These examples show
that even in challenging cases e.g. when the subject’s face is occluded or not visible or when
the person is surrounded by many people around them and is looking at an object or in the
middle of the field, our models successfully identified the attention target location.

Qualitative results are shown in the last two columns of Figure 4.12, 4.13 and 4.14. In
the first column of these figures, we show the original input image, the prior depth map and
the 3D FOV probability map for each example. Following these in the penultimate column,
we show the predicted heatmap of Full and Full-NL. In the last column, we visualised the
output target prediction, the ground truth annotation and the subject’s head bounding box.
We observed that the two models produce very similar heatmaps reflected in the calculated
AUC scores presented in Section 4.5.4. We found that the Full-NL model generated more
confident and correct heatmaps when the scenario was complex (See Figure 4.12 and 4.13
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first examples). This might be due to the NL layers’ ability to capture long-range spatial
dependencies. For less complicated cases, e.g. last two rows of Figure 4.13, we observed
that the use of the NL layers introduced unwanted dependencies.

Quantitative results

Here, we present the results of the quantitative evaluation. Note that the evaluation metrics
differ for each benchmark dataset. For more details on the metrics, see Section 4.3.1 and
4.5.2. The type of attention target estimation tasks and benchmark datasets organise the
results in this section.

Table 4.10: Quantitative evaluation and ablation study results and comparison with
the state-of-the-art methods on the GazeFollow SAT estimation image dataset. Gaze
direction estimation error shows the range of the random noise added to the 3D gaze direction
of the subjects before the probability map generation.

Method AUC ↑ Min distance ↓ Avg distance ↓

Model 92 (Sec. 4.3.2) 0.921 0.147 0.083
Scene only 0.889 0.143 0.213
Scene + depth 0.894 0.136 0.205
Scene + prob 0.928 0.036 0.084
Full (scene + depth + prob) 0.932 0.036 0.082
NL + Scene only 0.883 0.148 0.216
NL + Scene + depth 0.894 0.136 0.204
NL + Scene + prob 0.925 0.033 0.082
Full-NL (NL + scene + depth + prob) 0.926 0.028 0.075
Full gaze dir error ± 13.5◦ 0.930 0.052 0.100
Full gaze dir error ± 30◦ 0.927 0.047 0.097
Full-NL gaze dir error ± 13.5◦ 0.932 0.039 0.087
Full-NL gaze dir error ± 30◦ 0.929 0.049 0.099

HGTTR [155] 0.905 0.065 0.138
VideoAttention [30] 0.921 0.077 0.137
DAM [32] 0.922 0.067 0.124

SAT estimation on the GazeFollow dataset. The quantitative results on the GazeFollow
dataset are shown in Table 4.10. We compared the performance of our method in the SAT

estimation task with the latest methods HGTTR [155], VideoAttention [30], and DAM
[32] on this image benchmark dataset. Among these, HGTTR and DAM were specifically
designed to solve this task and similar to our solution, DAM used partial, relative depth prior
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Figure 4.12: Qualitative results of ablation study on the GazeFollow SAT benchmark im-
age dataset. The input of the Full and Full-NL proposed models and their variants, the RGB
image, the generated prior depth map and the corresponding calculated 3D FOV probability
map are shown in the first column. We visualised the generated output heatmap of every
variant (Scene only, Scene+depth, Scene+prob) and the Full method (Scene+depth+prob) and,
finally, the gaze target prediction of the Full method. In the target prediction visualisation
and the input image, the head bounding box of the observed subjects and the ground truth
annotations are marked as yellow, and the average is shown in blue, and the estimated gaze
target is shown in red.

information in their method. The results highlighted in Table 4.10, show that in terms of all
the evaluation metrics, the proposed framework with and without the NL layers outperformed
all the existing methods. Furthermore, when using the NL layers in the framework, 58.20%
minimum distance and 39.52% average distance relative improvement were achieved by our
method on the GazeFollow dataset.
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Figure 4.13: Qualitative results of ablation study on the VAT SAT benchmark video
dataset. The input of the Full and Full-NL proposed models and their variants, the RGB
image, the generated prior depth map and the corresponding calculated 3D FOV probability
map are shown in the first column. We visualised the generated output heatmap of every
variant (Scene only, Scene+depth, Scene+prob) and the Full method (Scene+depth+prob) and,
finally, the gaze target prediction of the Full method. In the target prediction visualisation
and the input image, the head bounding box of the observed subjects and the ground truth
annotations are marked as yellow, and the estimated gaze target is shown in red.

Note that the performance of the proposed method with (Full-NL) or without (Full)
the additional NL layers is very similar. We found that in the presence of relative depth
prior information, the NL layers did not contribute towards the performance significantly.
Furthermore, we included the results of Model 92 (See Section 4.3.2) for reference. In
comparison to Model 92, we found that the proposed 3D FOV probability map was more
useful than the inserted NL layers. This is not surprising as the probability map contains
subject-specific information.
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Table 4.11: Quantitative evaluation and ablation study results and comparison with
the state-of-the-art methods on the VAT SAT estimation video dataset. Gaze direction
estimation error shows the range of the random noise added to the 3D gaze direction of the
subjects before the probability map generation.

Method AUC ↑ L2 distance ↓

Scene only 0.711 0.306
Scene + depth 0.728 0.313
Scene + prob 0.935 0.082
Full (scene + depth + prob) 0.937 0.077
NL + Scene only 0.713 0.318
NL + Scene + depth 0.743 0.334
NL + Scene + prob 0.944 0.082
Full-NL (NL + scene + depth + prob) 0.951 0.074
Full gaze dir error ± 13.5◦ 0.930 0.134
Full gaze dir error ± 30◦ 0.911 0.122
Full-NL gaze dir error ± 13.5◦ 0.943 0.093
Full-NL gaze dir error ± 30◦ 0.914 0.153

VideoAttention [30] 0.860 0.134
HGTTR [155] 0.904 0.126
DAM [32] 0.905 0.108

SAT estimation on the VAT dataset. Furthermore, we compared our solution with the same
methods on the SAT estimation using the VAT video benchmark dataset. The results are
shown in Table 4.11. We compared our performance with the previously mentioned HGTTR
[155], VideoAttention [30], and DAM [32] methods. Both proposed methods were more
efficient at estimating the gaze target than the state-of-the-art methods. We found that Full-NL
outperformed the performance of the Full method in terms of both AUC and L2 distance
measures. Full-NL improved the AUC score by 4.84 % and the L2 distance by 31.48 %.

JAT estimation on the VCA dataset. Finally, the quantitative results on the VCA video
benchmark dataset are shown in Table 4.12. We compared the JAT estimation performance of
our method with Fan [133], Sumer [137], VideoAttention [30], and HGTTR [155]. Among
these state-of-the-art methods Fan, Sumer and HGTTR were trained to estimate the attention
target location of multiple subjects in the scene. The results showed that the proposed method
with and without the NL layers significantly outperformed all the state-of-the-art methods
in terms of the L2 distance metric. We were able to reduce the distance error by 71.74 %
compared to the result report by [155]. The NL layers proved useful in achieving the best
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Figure 4.14: Qualitative results of ablation study on the VCA JAT benchmark video
dataset. The input of the Full and Full-NL proposed models and their variants, the RGB
image, the generated prior depth map and the corresponding calculated 3D FOV probability
map are shown in the first column. We visualised the generated output heatmap of every
variant (Scene only, Scene+depth, Scene+prob) and the Full method (Scene+depth+prob) and,
finally, the gaze target prediction of the Full method. In the target prediction visualisation
and the input image, the head bounding box of the observed subjects and the ground truth
annotations are marked as yellow, and the estimated gaze target is shown in red.

prediction accuracy. Overall, the proposed method achieved state-of-the-art performance in
terms of all evaluation metrics on this dataset too.

In summary, the quantitative results confirmed that the JAT estimation method proposed
in Section 4.4 achieved state-of-the-art performance across all the benchmark datasets and
their evaluation metrics on the SAT and JAT estimation tasks. Furthermore, the comparison
between Full and Full-NL across the datasets shows that the usefulness of the NL layers is
context and complexity dependent.



114 Where Are They Looking in the 3D Space?

Table 4.12: Quantitative evaluation and ablation study results and comparison with
the state-of-the-art methods on the VCA JAT estimation video dataset. Gaze direction
estimation error shows the range of the random noise added to the 3D gaze direction of the
subjects before the probability map generation.

Method L2 distance ↓ Pred. Acc. ↑

Scene only 139 13.0
Scene + depth 130 41.5
Scene + prob 16 90.0
Full (scene + depth + prob) 13 90.2
NL + Scene only 145 17.1
NL + Scene + depth 145 31.8
NL + Scene + prob 14 93.0
Full-NL (NL + scene + depth + prob) 13 93.2
Full gaze dir error ± 13.5◦ 21 83.5
Full gaze dir error ± 30◦ 24 50.1
Full-NL gaze dir error ± 13.5◦ 19 80.8
Full-NL gaze dir error ± 30◦ 34 66.2

Fan [133] 62 71.4
Sumer [137] 63 78.1
VideoAttention [30] 57 83.3
HGTTR [155] 46 90.4

4.5.5 Ablation Study

To study the contribution and effectiveness of different components of the proposed method,
we trained several models with different parameters. In this section, we discuss the findings
of these experiments on three benchmark datasets.

Spatial model components

We trained the following variations of the proposed full spatial method: Scene only, Scene+depth,
Scene+probability map, Scene+depth+probability map, and their variants, including the non-
local layers in the encoder. Qualitative highlights are shown in Figure 4.12, 4.13, and 4.14.
Note that the observations discussed below are accurate for all the benchmark datasets.

Across all the benchmark datasets, we found that the Scene only variant performed the
worst compared to the other variants. The heatmaps in the second column of the qualitative
highlights figures also confirmed that the predicted output heatmap of this module alone, most
of the time, did not overlap with the gaze target area of the image, and it was widespread and
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not confident. This is because the model was unaware of any subject-specific information;
therefore, it relied solely on the scene information to estimate the subject-dependent attention
target location.

We also found that when we combined the scene information with the output of the prior
depth map of the monocular depth estimator, the performance of the trained Scene+depth
models improved slightly. The estimated output heatmaps of these models (See the third
column of qualitative figures) were more successful in localising the FOV of the subject.
These heatmaps were more confident; however, they often misplaced the gaze target as it
was selected based on the Scene information. Therefore, despite this improvement, as the
input of these models was still subject-independent, their results were not satisfactory.

The proposed 3D FOV probability map contains depth and subject-dependent informa-
tion. Introducing subject-dependent information into the model significantly improved the
performance quantitatively and qualitatively. The output heatmaps of Scene+prob, shown in
the fourth column of Figure 4.12, 4.13, and 4.14, are concentrated around the correct gaze
target location, the location of the maximum of these heatmaps shifted significantly from the
predictions of the Scene only and Scene+depth models.

Finally, we can see that explicitly using the prior depth map as an input and not just
as a part of the probability map further improved the results. While the improvement was
moderate compared to the Scene+prob performance. However, the Scene+depth+prob with
(Full-NL) or without (Full) the NL layers proved to be the most efficient in estimating the
attention target of single or multiple subjects within the scene.

In summary, the ablation study confirmed that all the modules included in the Full
model (Scene+depth+probability map) are useful and contribute to the proposed solution’s
performance. We demonstrated that relying only or too much on the scene information is
insufficient to estimate the subject’s gaze target location.

Gaze direction estimation error

The proposed probability map’s role in the outstanding performance of the proposed method
has been demonstrated through the previous experiments. The input of the 3D FOV probability
map is the 3D gaze target estimate of the observed subject. To test the robustness of the
proposed method against gaze direction prediction errors, we trained two variants of the Full
and Full-NL models under extreme error levels.

During this experiment, we generated the 3D FOV probability map using additional
random noise added to the subjects’ estimated gaze direction. We chose the noise levels to
reflect the average error (± 13.5◦) of the state-of-the-art 3D gaze direction estimation method



Figure 4.15: Visualisation of the joint 3D FOV probability map effected by gaze direction
error. We show the generated probability map using the 3D gaze estimator Gaze360 [152]
and when additional 13.5 and 30 degree gaze direction error was added.

[152] and to reflect the human’s horizontal central vision range (± 30◦). We show example
probability map variants generated with additional gaze direction error in Figure 4.15.

While adding NL layers to the proposed method did not improve the performance sig-
nificantly under moderate gaze estimation error in the previously presented experiments,
our results show that the Full-NL models were more robust against the additional noise
than the Full models. Furthermore, we found that in the case of the large-scale GazeFollow
image dataset (See Table 4.10) and the VAT video dataset (See Table 4.11) the proposed
model surpassed the performance of the state-of-the-art methods even when we added ± 30◦

gaze direction estimation error, which is more than double the existing 3D gaze estimators’
average angular error. These results on the SAT estimation task are especially outstanding as
the proposed 3D FOV probability map is the most useful in improving the robustness of the
attention target estimation when there is more than one subject within the scene.
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4.6 Conclusion

In this chapter, we proposed a novel joint attention target estimation framework which was
developed to fully utilise the 3D clues of the scene efficiently. Following the findings of
our preliminary experiments, we aimed to tackle the human bias and physically impossible
predictions, which are the major flaws of the previously proposed models. To achieve this,
we proposed to combine a novel 3D field-of-view-based joint attention probability map
with the scene and depth information. Extensive qualitative and quantitative analysis on
three benchmark datasets shows that the proposed method achieved favourable performance
compared to both the state-of-the-art single and joint attention target estimation approaches.
The demonstrated outstanding performance of the proposed method proved our hypothesis
that using 3D clues for the third-person view attention target estimation is advantageous.





Chapter 5

Conclusion

This thesis investigated the benefits of integrating verbal and non-verbal social clues into
different computational frameworks designed to solve human-centred computer vision tasks.
In the experiments presented in this work, natural language expressions and human gaze
information and their combinations were used. This work aimed to demonstrate the usefulness
of multimodal systems and explicit and implicit human input.

The first objective of this work was to use the user’s verbal input for description-based
automatic image cropping. We sought a solution to a highly subjective task during this
experiment by re-purposing different existing models. Besides producing an output crop
which best preserves the user caption information, we aimed to generate aesthetically pleasing,
high-quality output.

The experimental results presented in Chapter 2 proved that integrating user captions
into the automatic image cropping is advantageous and that despite the challenges of this
task, the proposed CAGIC method can produce image crops that the users preferred compared
to those produced by the previous methods. Human annotation generation, such as user
captions and corresponding ground truth image crops, for this task is highly time-consuming.
Therefore, due to the lack of training data, we proposed re-purposing existing models and
integrating them into a novel multimodal optimisation framework instead of training a new
model specifically designed for this task. The input of the framework consists of an image
and the user caption describing a part of the image. To process and utilise the verbal human
input, we integrated an existing CN [50] into the proposed framework. In every iteration
of the optimisation, we select a new image part based on different optimisation techniques
presented in Section 2.3.3, and we use this image region as the input of the CN to generate
a corresponding description. A new caption loss function was designed to measure the
similarity between the original user caption and the generated caption in every iteration.
Besides the CN we also used an Aesthetic Network [46] to generate an aesthetic score of
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the selected image region. Combining the calculated caption and aesthetic scores ensured
that the final output reflected the user’s intention and high quality. Through this work, we
demonstrated that integrating the user caption into the CAGIC framework led to favourable
results and state-of-the-art performance. Due to the algorithm’s iterative nature, this solution’s
main limitation is that the runtime required to produce a single output crop is large. Since
in every iteration, we slowly converge from the full input image to the region of interest,
this method currently takes approximately 5 minutes to generate an image crop based on the
user’s description. As the user can describe any part of the image regardless of its relative
area to the image size, it is crucial to use several iterations to ensure that we find the correct
crop size and location.

The second contribution of this work investigated the usefulness of a combined gaze and
description-based multimodal framework for the task mentioned above. Motivated by the
success of the proposed CAGIC framework, we aimed to tackle its runtime limitation. We
implicitly sought to collect extra information from the users during the image description
without them performing additional actions such as pointing or clicking. A complex cross-
modal alignment exists between language and vision during image description [121, 156].
During description generation, the perceived visual information guides the description gener-
ation [157]; consecutively, the task influences the user’s eye movements [158]. Therefore, we
chose to couple the natural language descriptions generated by the user with gaze data col-
lected during the image description. We used an unobtrusive monitor-mounted eye-tracking
device to record the gaze data surreptitiously.

The study presented in Chapter 3 demonstrated the usefulness of additional user input
through the image cropping performance and runtime improvement. We used the gaze
information to initialise the proposed G-DAIC framework. Utilising human gaze information
is challenging as it could introduce noise and further subjectivity into the experiments. We
proposed different start region generation methods discussed in Section 3.3.1 to prevent this.
With the rough initialisation of the image crop search and the proposed early termination
strategy (See Section 3.4.4), we were able to reduce the number of iterations required to
produce the output image crops by 90.07%. Beyond the overall 92.11% runtime decrease,
we demonstrated state-of-the-art performance through extensive qualitative and quantitative
analysis. To achieve this positive outcome, we further proposed an adaptive scaling method in
Section 3.3.2. This new scaling procedure was essential due to the design differences between
CAGIC and G-DAIC. As opposed to iteratively converging from the full image to the described
image part, we had to account for the possibility of the calculated start region of G-DAIC being
smaller than the region of interest. Therefore, in some cases, it was inevitable to expand the
search field instead of shrinking it. The proposed solution utilised an experimentally chosen,
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pre-defined threshold value to determine the nature of the scaling (shrinkage or expansion)
based on the size of the start region w.r.t.the original image size.

Encouraged by the rich information collected through the non-verbal social clue and
its usefulness in the proposed G-DAIC multimodal system, we further aimed to investigate
how gaze information could be used to localise the interest of the subjects. As the final
contribution of this work, we aimed to rely on only implicit social clues to estimate the joint
attention target of the subjects within the 3D scene from a third-person view. The goal of
the emerging research field of human-centred computer vision, attention target estimation,
is to estimate what the subjects are looking at in the wild. Using visual data from the wild
is challenging as, for example, the subjects are completely unrestricted, and occlusions can
occur frequently. Therefore, we need large-scale data to train a model to solve a complex
problem in a challenging environment. The image and video datasets presented and used in
this study were collected from the web and TV shows for this task, and humans annotated
them. Due to the diversity of the visual data, we designed a deep neural network that
efficiently learns subject-dependent attention targets. As in our everyday life, we are a part
of a 3D environment; we leverage additional information from the depth of the 3D scene
and utilise it to make better estimates. When we deal with image and video data, this depth
information is not automatically provided; therefore, previously existing methods did not
or not fully used this information. The preliminary experiments highlighted several cases
challenging the existing attention target estimation models, such as occlusion, bias towards
humans and physically impossible predictions.

We aimed to overcome these challenges through the work presented in Chapter 4. We
presented our solution: a depth-aware joint attention target estimation model designed to
predict the location of the joint interest point of two or more people in the scene. The input
of our model is an image frame or video sequence and the head bounding box annotations
indicating the position of the subjects within the scene looking at the same attention target.
The proposed framework is the combination of the Relative Depth Prior Module, the 3D FOV

Module, and the JAT Prediction Module. These components are introduced in Section 4.4 in
detail. Using the depth prior module, we generated the corresponding depth map of every
frame generated by an existing monocular depth estimator [138]. The 3D gaze direction of
each subject was estimated by [152]. The quantitative and qualitative ablation study results
showed that the most significant part of the proposed method is the 3D FOV Module. This
novel fusion of the scene and subject-dependent 3D information significantly improved the
model’s performance. Note that unlike the 2D FOV information used by [32] and the 3D FOV

formulation of [143] which are limited by a predefined angle or number of visual rays used
to generate the subject’s FOV, we formulated the 3D FOV as a probability map and assigned a
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probability score to each pixel. This formulation of the probability map made our method
robust against 3D gaze prediction estimation errors. This advantage has been demonstrated
and discussed in Section 4.5.5. For the most comprehensive evaluation of our JAT method, we
compared our performance on the GazeFollow SAT image, the VAT SAT video, and on the VCA

JAT benchmark datasets. The proposed JAT method achieved state-of-the-art performance not
only on the JAT task but also outperformed the existing SAT method on both SAT benchmark
datasets.

In summary, the work presented in this thesis has taken steps towards the three aims
of this project. The methods proposed in the thesis achieved state-of-the-art performances
across multiple benchmark datasets and in different human-centred computer vision tasks.
Through these works, I have confirmed the effectiveness of user input integration into the
computational models. While the results presented in this thesis are encouraging, these
solutions have some technical limitations.

First, the optimisation of the CAGIC and G-DAIC methods rely on the caption loss. This
loss term is calculated using the output of CN and computing its similarity to the user’s input
caption. However, the captions generated by CN are limited by its fixed vocabulary size of
10,000 words [50]. This limitation results in errors where the user, for example, attempts to
describe the part of the image containing a "Baileys" (Irish cream liqueur brand), but the CN

can only generate the words "bottle", "wine" or "champagne". For most humans describing
objects by their brand is satisfactory automatic caption generation methods cannot handle
these cases, resulting in a high caption loss assigned to the region of interest. Therefore,
although we took a significant step towards integrating natural language descriptions into
multimodal frameworks, there are exceptions where our solutions fail. This limitation
is possible to address due to the re-purposing natural of the CAGIC and G-DAIC methods.
Namely, the proposed frameworks use an existing CN, which is replaceable by a novel
caption generation model when researchers in the field of Natural Language Processing
develop a better and more complex one. Furthermore, CAGIC does not consider the order
of the words which could potentially change the meaning of the sentence and prevent the
method from correctly utilising the user description. This is especially problematic in case
of referring expressions, such as the captions of Ref-COCO [83]. Finally the loss function
introduced in Equation 2.4 could be replaced by NLP metrics used later in this thesis during
the caption-crop consistency calculation.

In addition, we showed qualitative highlights of these methods in Chapter 2 and 3. While
the results produce by CAGIC and G-DAIC are better than the other baseline methods in
terms of both quantitative and qualitative measures, there is room for improvement and
further analysis might be required to better understand the pitfalls of the methods. In Figure
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2.10 we showed that CAGIC is able to produce different output crops based on the user
captions from the same image. In the last column of this figure we showed two examples
where the method successfully identified the object of the user description, however, the
positioning of the image crop is not ideal as they are not centralised. Based on these examples,
it is possible that CAGIC is biased towards colours, such as "red" and "green" in the example
user captions of Subfigure c and f. Due to the limited amount of data currently available, this
cannot be proved at the moment. In Figure 2.13 and 2.14, we show additional qualitative
highlights of CAGIC. Note that as mentioned in Section 2.4.1 the captions used in this
experiment are not optimal for our task. While the results are not optimal is every case, note
that in several occasions CAGIC produced better results compared to, the method trained on
this dataset, MattNet [47].

Furthermore, the proposed G-DAIC method builds on the existing relationship between
language description and gaze. The temporal connection between the modalities was intro-
duced in Section 3.4.1. Our solution is currently limited by using the gaze points collected
during Stimuli without taking advantage of the temporal information. Machine translation
alignment models could be trained on a linearly ordered sequence of visual and linguistic
units to find the temporal alignment between the recorded fixation points and the language
expression [121]. For training such a model on our data, one might use the tokens and the
corresponding gaze points based on the timestamp annotations we provided (See example
in Section B.2). In this work, we did not attempt to train an alignment model for our task
due to the existing challenges and limitations of this research area described in [99]. Namely,
the dataset proposed in [33, 34] is too small to train a sequential alignment model. However,
incorporating the temporal information, as discussed in Section 3.4.1, might prove useful to
generate more reliable start regions for the G-DAIC method.

Finally, occasionally the proposed joint attention target estimation method’s predictions
for two consecutive image frames of a given video might vary significantly compared to the
actual attention target shift between them. Our model relies only on spatial information to
estimate the subjects’ interest points; therefore, fluctuations can occur between the image
frames. We think that the method could benefit from the temporal information of the video
sequences; however, this has not been included in our work due to the limited length of the
uncut image sequences of the VCA dataset. Alongside the temporal information of the scene,
a robust temporal monocular depth estimator, such as [159, 160], could replace the one used
in our framework for better alignment between the input image and the generated prior depth
map. Furthermore, the method does not estimate out-of-frame cases as [30] does due to the
lack of in/out annotations of the VCA dataset. However, this might be necessary to investigate
in the future to build a model to predict the joint attention target of people in the wild. Finally,
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the confidence score estimated by the 3D gaze direction estimation module could be further
utilised to fine-tune the proposed 3D FOV probability map.

This thesis investigated the automatic image cropping and joint attention target estimation
tasks in detail. Outside of these applications, the proposed caption-based solutions could
support learning and teaching by highlighting the described part of the slides during presen-
tations. The combination of verbal and non-verbal social clues, such as gaze and speech,
could improve the performance of smart home devices. The devices could better interpret the
user’s interest by relying on two modalities. Finally, the third-person view subject attention
information could be utilised for action recognition and to detect potentially malicious be-
haviour. The methods presented in this thesis took a step towards better understanding the
potential of user input integration into human-centred computer vision tasks and attempted
to perform tasks as humans would.
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Appendix A

Caption and Aesthetic-Guided Image
Cropping

A.1 Additional qualitative highlights

We provide more qualitative results that were omitted due to spatial constraints. We report
the same variants reported in Section 2.4.3 where we compare our results to the eight
baseline methods: A2-RL [44], VPN [68], Anchor [86], GradCam [87], GradCam+A2-RL,
GradCam+VPN, GradCAM+Anchor, and MAttNet [47]. Similarly to the figures in Section
2.4.3, we show multiple ground truth bounding boxes on the original images generated by
eight users based on the captions.

Image User
Caption

A2-RL[44] VPN [68] Anchor
[86]

GradCAM
+A2-RL

GradCAM
+Anchor

GradCAM
+VPN

GradCAM
[87]

MAttNet
[47]

CAGIC

A japanese
style painting
of woman is
on the wall

A bottle of
juice is in the

freezer

A black
suitcase is

lying on the
conveyor belt

A girl is
eating a slice

of pizza

Figure A.1: Qualitative results on our dataset.
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Image User
Caption

A2-RL[44] VPN [68] Anchor
[86]

GradCAM
+A2-RL

GradCAM
+Anchor

GradCAM
+VPN

GradCAM
[87]

MAttNet
[47]

CAGIC

A bird on a
blue boat

A little boy
in white and
red is skiing

A white
toilet bowl is

in a dim
toilet

A woman
with black

hair wearing
glasses is
smiling
A zebra

standing in
the grass is

looking
upward
Slices of
colorful

fruits like
watermelon

and
pineapple in
a red bowl

A green
straw is in a

cup

A dog lying
its head on
black and
white TV

remote

A rusty
phone with
white keys

A colorful
sculpture like

a bird

Two people
holding

surfboards
standing are

together

A magazine
has a cover

with a
woman in

yellow on it

Black traffic
light hanging

in the sky

Figure A.2: Qualitative results on our dataset (continued).
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Image User
Caption

A2-RL[44] VPN [68] Anchor
[86]

GradCAM
+A2-RL

GradCAM
+Anchor

GradCAM
+VPN

GradCAM
[87]

MAttNet
[47]

CAGIC

A man is
making a
phone call
holding a

little
umbrella

A small
green plant is

on a table

A group of
colorful kites
are flying in

the blur

A red tie
with many

small flower
patterns on

A small cat is
sitting in the
shadow next

to a door

A cute baby
is holding a

green
toothbrush

Slices of
green

vegetable on
a white plate

Delicious
vegetable
salad in a
huge glass

bowl

A man
wearing a
glasses is

happy

A tasty pie
with red

strawberry
on it

A woman is
walking and
carrying a

white
surfboard

A bunch of
red flowers
on a black

marble table

A clock on a
wall

A little grey
bird next to a

black iron
cage

A woman is
holding a

yellow
umbrella

A black cat
is sleeping
on a brown

wooden case

Figure A.3: Qualitative results on our dataset (continued).
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A.2 Dataset documentation

The proposed, description-based image cropping dataset introduced in Section 2.4.1 is
available online 1. The dataset is structured as follows:

• Images: A folder containing 100 images (001-100.jpg).

• Ground truth annotations:

– captions.xlsx: Excel file containing the collected user captions corresponding to
the images.

– caption_gt.xlsx: Ground truth annotation information of the proposed dataset
organized as [img name][MS-COCO val2014 Ids][Image caption][7 bbox anno-
tations], where we first list the image filename and the corresponding MS-COCO
dataset ID of the randomly selected image. Following, we provide the user
caption and the 7 ground truth image crop bounding box annotations collected
from human annotators as [xmin,ymin,xmax,ymax].

– annotation.csv: CSV equivalent of the caption_gt.xlsx file.

Figure A.4 shows an example image and its annotation below:
[087.jpg][469936][a magazine has a cover with a woman in yellow on it][[2,222,301,301]
[5,226,206,297] [3,232,216,297] [3,232,216,297] [1,199,224,345] [2,174,239,393] [3,227,206,297]
[38,259,195,249]]

Figure A.4: Dataset example visualisation. Image #87 of the proposed dataset and the
visualisation of its ground truth bounding box annotations as red.

1https://horanyinora.github.io/publication/Horanyi_PR_data.zip



Appendix B

Gaze and Description-Based Image
Cropping

B.1 Performance evaluation of the available eye tracking
devices

B.1.1 Aim and objective

In Section 3.4.1 we introduced a novel dataset for the G-DAIC task. This dataset is the
extension of the CAGIC dataset introduced in Section 2.4.1 proposed in [33]. The experimental
setting of the gaze data collection is discussed in detail in Section 3.4.1. This section
summarises our preliminary experiments before gaze data collection. We aimed to study and
compare the behaviour of the eye tracker devices available in our laboratory and identify the
most suitable one for our data collection task.

B.1.2 Existing eye trackers

Many devices provided by various companies in various price ranges are available for
eye-tracking purposes. Low-end eye trackers, like The Eye Tribe eye tracker, are not
recommended for advanced research but are useful to better understand the technology and
data collection. Middle-end eye trackers such as Mirametrix S2 are adequate for certain
research questions and provide good value for those with a limited budget. Finally, the Tobii
Pro Fusion and Pro Glasses 2 eye trackers are high-end. High-end trackers are normally used
by organisations with more advanced research objectives that rely heavily on high accuracy,
precision, stability, and usability. See Table B.1. for more details.
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We planned to use monitor-mounted or free-standing eye-tracking bars for our screen-
based study. Currently, our laboratory owns an Eye Tribe and a Tobii Pro Fusion screen-based
remote eye tracking bars; therefore, in our experiments, we compared the performance of
these trackers.

Table B.1: Comparison of eye trackers accuracy, frequency and operating distance from
the different price ranges.

Price range Accuracy Frequency Operating distance
The Eye Tribe Tracker $ 0.5 – 1◦ 30 Hz 45 – 75 cm
Mirametrix S2 Tracker $$ 0.5 – 1◦ 60 Hz 65 cm
Tobii Pro Fusion $$$ Approx. 0.4◦ 60 & 120 Hz 50 – 80 cm
Tobii Pro Glasses 2 $$$ Requested 50 & 100 Hz Not screen based

B.1.3 Experiments

Our experiments compare the eye-tracking devices in terms of accuracy and precision. Based
on the specifications of the eye trackers, our expectation was that the cheaper eye tracker
would perform worse than the more expensive screen-based tracker. We anticipated that
the cheap eye tracker with lower frequency would fail to accurately track the faster eye
movements, it would take longer to recover the tracking after blinking, and occasionally
would output incomplete trajectories. Meanwhile, we expected the high-resolution tracker to
provide almost complete and precise eye movement trajectories. To compare the performance
of the available devices, we had to ensure simultaneous tracking in our experimental setup.
The most challenging part of using trackers simultaneously is the synchronisation problem.

Experimental setting

We used the Tobii Pro Lab software (no Linux operating system support) to record and
process the data collected by the Tobii eye tracker device. This software was specifically
developed to provide a simple but efficient user interface from experimental design and
recording to analysis. We used this software to calibrate the Tobii Pro Fusion device through
a VMware Windows virtual machine on a Lambda TensorBook (Linux operating system)
and the Psychology toolbox for the Eye Tribe device. As the toolbox does not support virtual
machines, we had to set up a bridge between the host Ubuntu machine and the guest to stream
data from the tracker devices. Running the two tracker devices simultaneously required a
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graphics card (NVIDIA GeForce RTX 2080), and the power settings of the TensorBook had
to be adjusted.

The screen-based eye tracker was stuck to the bottom of the screen, while for the Eye
Tribe tracker, we used a tripod and carefully positioned it such that the trackers did not block
each other. In Figure B.1, we show the experimental setting. On the screen, we show the
simultaneous output of both trackers using the Eye Tribe SDK and the Tobii Pro Lab software
for visualisation. Both trackers were calibrated in this position before every measurement.
The calibration results of the measurements are shown in Figure B.2.

Figure B.1: Experimental setting for simultaneous eye tracking. In the front an Eye Tribe
eye tracker is standing on a tripod, behind the Tobii eye tracker bar is attached to the bottom
of the screen.

During the measurements, we asked the subjects to fixate on the middle of a predefined
marker circle for as long as it was visible. To perform this experiment, we generated a video
sequence with GT target locations for the recordings. The generated video was similar to
the calibration, where the user had to follow a floating marker on the screen and fixate on
different locations when the marker stopped moving. In our experiment, we distributed nine
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Figure B.2: Illustration of the eye-tracker calibration results.

marker points throughout the scene. For the exact marker locations, refer to Figure B.3. We
ran several experiments to confirm that the experimental setting was suitable for the recording
and that the calibration was robust and reliable.

B.1.4 Results

In Figure B.4. we present the qualitative results of our experiment. At the top left, we show
the fixation points collected from the Eye Tribe eye tracker device and on the right, the points
collected by the Tobii tracker. Note that the points were collected simultaneously during our
experiment and that we only visualise them separately for better visibility. At the bottom of
Figure B.4, we visualise the fixation points of both devices. We evaluated the performance of
the eye trackers by counting the number of points within the ground truth marker locations
and measuring the distance of the fixation points from the centre of the marker.

During the measurement, the ground truth markers appeared on the scene sequentially.
Each marker was displayed on the screen for 3.5 seconds; after this, the marker disappeared
immediately, and 0.25 seconds later, a new one appeared on the screen. Therefore, at
any given time, a maximum of one marker was visible on the screen. As we do not have
information on when exactly the subject begins the fixation on the target points, we divided
the recording into nine sections and the recorded gaze points accordingly to determine which
points belong to a specific marker. Note that the Tobii eye tracker device has a higher
frequency (60-120 Hz) compared to the Eye Tribe cheaper tracker (30 Hz), which can be seen
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Figure B.3: Ground truth locations (x,y coordinates) of the nine fixation points during
our experiment. The floating dot is moving between the predefined fixation points in random
order.

in Figure B.4 and that this way of splitting the data puts the Tobii eye tracker in disadvantage
due to its recording frequency.

The quantitative results are shown in Table B.2. We can see in Figure B.4 that the Tobii
tracker nearly did not have any fixation points within Marker 7, which is reflected in the table
as well.

Table B.2: Error calculated w.r.t.nine ground truth marker positions for both trackers.
Count (%) indicates the percentage of gaze points inside the marker disk.

GT marker
Tobii Pro Fusion Eye Tribe

mean std count mean std count
dx dy euc dx dy euc % dx dy euc dx dy euc %

1 109.65 24.65 125.03 200.88 28.63 212.91 73.16 0.13 0.35 41.15 217.82 33.68 128.57 46.49
2 107.44 176.92 232.04 189.16 209.41 293.86 5.33 134.69 177.65 103.22 227.93 265.79 236.18 42.20
3 60.59 115.66 145.82 93.90 202.20 233.75 74 79.33 166.08 154.63 104.05 217.63 261.27 25.89
4 128.11 145.35 215.70 266.88 252.89 389.43 78.22 175.81 172.47 206.97 279.22 298.19 322.02 64.60
5 318.38 72.45 384.94 597.54 153.73 642.62 73.39 384.48 65.95 276.66 638.44 148.30 447.22 69.03
6 211.47 128.49 284.67 405.08 164.02 457.29 31.11 290.34 119.78 324.55 486.32 194.27 508.43 53.10
7 196.33 95.70 267.81 343.93 51.21 348.84 0.67 246.80 71.25 307.14 362.22 62.84 457.95 52.68
8 215.82 57.26 252.94 409.59 76.07 438.96 76.89 269.62 66.74 307.07 476.64 82.68 462.53 65.49
9 85.31 183.65 206.94 119.95 264.43 287.21 20.26 104.54 177.34 258.38 138.41 302.85 426.51 60

Total 178.13 114.29 235.10 308.00 163.15 367.21 48.13 223.54 129.73 219.97 339.98 185.37 361.19 53.34

B.1.5 Conclusion

The quantitative results show that despite the trackers’ factory specifications (See Table
B.1.) suggest that the Tobii Pro Fusion tracker’s accuracy is higher than the cheaper Eye
Tribe tracker’s, in our experiments, we found that the cheaper tracker had lower average
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Figure B.4: Qualitative comparison of the eye tracker performances. Visualisation of
the simultaneously recorded fixation points of the two trackers separately and together. The
rectangles within the plots represent the screen and the green circles are the ground truth
predefined fixation locations.

Euclidean distance error as well as higher in marker fixation percentage. Note that the
recording frequencies of the devices are different. Therefore, we recorded more points with
the Tobii eye tracker during the dynamic eye movements, which explains why we have more
out-of-marker gaze points. Furthermore, despite the quantitative results, the points recorded
by the Tobii tracker seem more compactly clustered. Finally, we decided to use the Tobii Pro
Fusion eye tracker device for the data collection as our task required higher frequency.
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B.2 Dataset documentation

The extended description-based image cropping dataset, including user fixation information
introduced in Section 3.4.1, is available online1. The dataset is structured as follows:

• CAGIC_annotations_extended.xlsx: We provide the image captions, their bounding
box annotations and the length of each word of the captions in this excel file. The
data is organised as: [img name][MS-COCO val2014 Ids][Image caption][7 bbox
annotations][length (sec) of every word in the caption]

• data/: Folder containing the image files, the annotations and the collected gaze data
for each participant.

– data/[001..100]/: we collected the original image and visualised the ground truth
bounding box annotations of the dataset and the generated caption recordings.

– data/[001...100]/gaze/: we organised the collected gaze data under fixation/[u01...u14]
free/[u01...u14] and stimuli/[u01...u14]. Each folder contains 14 CSV files gener-
ated by the Tobii Pro Lab eye-tracking software.

The directory tree of the dataset is as follows:
CAGIC extended dataset

CAGIC_annotations_extended.xlsx
data

[001...100/] image folder
RGB image
Caption mp3 recording
Ground truth annotation visualisation image
gaze/

fixation/
[u01..014] user fixation CSV file

free/
[u01..014] user free-viewing CSV file

stimuli/
[u01..014] user stimuli CSV file

Figure A.4 shows an example image and its annotation below:
[086.jpg][241934][a pancake with black and dark chocolate on it][[400,172,212,212] [413,183,184,193]
[403,171,209,216] [386,156,226,250] [382,179,227,217] [414,184,196,189] [385,173,227,212]][0
0.204 0.919 1.266 1.752 2.057 2.406 3.131 3.781 4.0228333333]

1https://horanyinora.github.io/publication/Horanyi_ETRA_data.zip
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Figure B.5: Image #86 of the proposed dataset and the visualisation of its ground truth
bounding box annotations as red.

The gaze data (Free-viewing/Stimuli/Fixation) can be visualised as a heatmap as a
collection of gaze points or overlapped over the original image. In Figure B.6, we show the
gaze data visualisation results of Image #86.

Figure B.6: Collected gaze data visualisation example on Image #86 of the extended
dataset. First free-viewing, second stimuli and last, the fixation data visualised in the form
of a heatmap, gaze points, and overlapped with the original image.
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