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Abstract

In recent years, the value chain facilitates the transition of competition among enterprises
from a single link to a comprehensive one, thereby driving intelligent upgrades within man-
ufacturing enterprises. The intelligent upgrading also imposes new constraints on the tradi-
tional assembly line production mode. Inspired by the real production practices of company L,
a global intelligent terminal manufacturing enterprise headquartered in China, this study ad-
dresses the parallel heterogeneous assembly line scheduling problem with fixture constraints
(HALSFC). To tackle this challenging problem, we propose a mixed integer linear programming
(MILP) model that aims to maximize the number of completed work orders within a specified
time. To our best knowledge, this study is among the first attempts to address the HALSFC
problem with setups and related work orders. Due to the NP-hardness of the problem, we pro-
pose an improved adaptive large neighborhood search algorithm (IALNS) for solving HALSFC.
We evaluate both model functionalities and algorithm effectiveness using instances generated
based on the real production data of company L. Extensive experimental results demonstrate
the effectiveness and efficiency of IALNS compared to MILBE Tabu search algorithm (TS) and
genetic algorithm (GA), especially for medium- and large-scale instances. Additionally, the
sensitivity analysis of the quality inspection time, the related work orders proportion and the
minimum cooling time of fixtures is also conducted.
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1. Introduction

In recent years, many advanced interconnected technologies and concepts have emerged,
including intelligent data-driven methodologies and theories, cloud computing, big data, and
value chain digital ecosystems (Bressanin et al., 2021; Priyadarshini et al., 2022). These ad-
vancements have significantly accelerated manufacturer’s production efficiency and labor out-
put (Zhou et al., 2018). At the same time, the dual carbon policy proposal, the impact of the
pandemic, and the complexity of the international landscape have placed manufacturers in a
critical crisis necessitating them to vigorously promote value chain digital ecosystem construc-
tion and data-driven transformations (Xiufan and Decheng, 2023). Consequently, there is an
urgent need to explore strategies for enhancing manufacturers efficiency while reducing costs
(Lee and Chuah, 2001).

In the exploration of intelligent transformation, the automation upgrading of assembly
lines has emerged as an ongoing trend (Chen et al., 2022). The assembly line, a typically
serial production system, significantly enhances production efficiency (Boysen et al., 2022).
Although there are certain differences between assembly lines and individual machines, when
the assembly line operates continuously without interruptions, it can be approximated as a
single non-interruptible machine (Ozbakir et al., 2011). In this production mode, all work
orders are divided into small batch containing a specific number of products based on model
and delivery date. These work orders are allocated to different assembly lines and processed
continuously until completion. Each product’s processing flow is continuous and indivisible, as
depicted in Figure 1. We consider the machines required for work J1-J6 in the assembly line
processing mode as a unified machine MS1, disregarding inter-process influences but focus-
ing on input-output relationships and total processing time. This transformation extends the
original parallel machine scheduling problem (PMSP) to a parallel assembly line scheduling
problem (PALSP).

In real manufacturing environment, the efficiency of the assembly line processing mode is
influenced by various resource constraints, such as tools, workers, and materials (Brucker et al.,
1999). Fixtures are widely used in the industry as auxiliary devices to enhance production ef-
ficiency (Hunter et al., 2006), but they also impose certain limitations and restrictions on the
production process (Hunter et al., 2006). Fixtures share similarities with other production re-
sources such as workers or tools, while they also exhibit distinct differences in terms of working
mode and replacement operation (Da Silva et al., 2014). Consequently, addressing complex

fixture constraints in parallel assembly line scheduling problem poses more intricate challenges



Input Multiple machines Output

i |
| |
| |
| ‘ i [
I 0 sequentially . |
| |
| ®| n [ 2 [ 3] 1 | 55 -@ |
| |
| |
| |
| |
| |

line1 @@ @ d© O

Input Single machine Output

|
|
| ‘
| , Integrate

I 0 9 T

|
 Ol—()
|

|

|

|

|

Figure 1: Schematic diagram of assembly line mode and machine production.

compared to general parallel machine scheduling problems with resource constraints, thereby

necessitating advanced modeling techniques and algorithmic approaches.

In this study, inspired by the real production scenario of Company L !, a global intelligent
terminal manufacturing enterprise headquartered in China, we propose parallel heterogeneous
assembly line scheduling problem with fixture constraints (HALSFC). Similar to previous stud-
ies, we adhere to the general constraints of PMSPE ensuring that preemptive jobs are not
allowed and jobs are processed continuously, e.g., constraints 2-8 of Section 3.3. Moreover, the
pro-
cessing speed of the work order varies on different assembly lines, e.g., p; ; for assembly line i
and work order j, which is referenced from the studies by Fanjul-Peyro et al. (2017); Fleszar
and Hindi (2018); Wang and Alidaee (2019). Specific constraints arising from fixture usage
requirements are proposed for depicting the production scenario of company L. The resource

constraints imposed by fixtures differ from those imposed by other production resources, such

! Actual name of the company is not disclosed to protect confidentiality.



as workers.

Fixture can only be utilized for work orders containing specific model of products, with
each fixture having its own maximum continuous use time limit, e.g., constraints 9 and con-
straints 14-19 of Section 3.3. In order to characterize these constraints, we refer to the relevant
constraints on workers’ working time and rest time restrictions in Fang et al. (2021) and Fanjul-
Peyro et al. (2017). Besides, setup time between different product models are also taken into
account (Allahverdi, 2015; Vallada and Ruiz, 2011; Jiang and Wang, 2019). When Company L
produces a new product model, a specific quality inspection time I is used to check the small-
batch work order, and then arrange the production of the large-batch work order after I time to
ensure that there is no quality problem. Company L defines them as related work orders, thus
we also introduce this definition into our research. To tackle the proposed HALSFC, we
formulate a new mixed integer linear programming (MILP) model and propose an improved

adaptive large neighborhood search algorithm (IALNS).

The main contributions of this study are as follows: (i) To the best of our knowledge, this
study presents one of the initial attempts to address the HALSFC problem incorporating setup
time and related work orders. (ii) A new mixed integer linear programming model is proposed
to address this problem that aims to maximize the number of completed work orders within a
specified time. (iii) An improved adaptive large neighborhood search algorithm with hybrid
acceptance criterion is developed to solve the problem. (iv) A novel strategy with minimum
product quantity of the work orders first allocating (MF) is proposed to improve the quality of
the initial solution. (v) The performance of MILP and IALNS are verified by extensive
experiments, in which different-scale of instances are generated based on the real production

data of Company L.

The remainder of the paper is organized as follows. Section 2 reviews the related liter-
ature. Problem description and model formulation are presented in Section 3. In Section 4,
details of the proposed adaptive large neighborhood search algorithm are given. The compu-
tational experiments are conducted in Section 5. In Section 6, we conclude the research and

discuss promising future research directions.

2. Literature review

In this section, we review the relevant studies in three streams: (i) parallel machine
scheduling problem; (ii) scheduling problem with resource constraints; (iii) application of

adaptive large neighborhood search algorithm in the scheduling problem
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2.1. Parallel machine scheduling problem

Parallel machine scheduling problem, as a significant research branch in the field of
schedul-ing, has received extensive attention from scholars (Tian et al., 2014; Allahverdi,
2016). Vari-ous models and methods have been employed to address PMSP(Zhou et al., 2013).
Rajkanth et al. (2017) explore the parallel machines scheduling problem to minimize job
completion time. Iterated local search (ILS) and grasp models are developed by Abu-Marrul et
al. (2021), which incorporate constructive heuristics and MIP-based neighborhood search
methods for solving PMSP Bitar et al. (2021) consider three different objective functions of
PMSB includ-ing the number of products completed within a given time range, weighted sum of
completion time, and number of auxiliary resources moved. Sara¢ and Tutumlu (2022) present
a multi-objective PMSP and use epsilon constraint method to transform them into single
objective version. Wang et al. (2023a) investigate a variant of PMSP with multiple time
windows and propose two mixed-integer linear programming formulations based on the
concept of non-immediate precedence. Santoro and Junqueira (2023) address the PMSP with
calendar and present a mixed integer linear programming models for the problem with the aim

of minimiz-ing the makespan.

Among the studies conducted on PMSE a majority of them primarily focus on address-ing
the unrelated parallel machine scheduling problem (UPMSP). In this context, each ma-chine’s
processing and utilization are considered to be mutually independent, ensuring that their
respective processing procedures remain unaffected by one another (Sels et al., 2015). Various
heuristics have been employed to tackle the UPMSP problem effectively, such as sim-ulation
annealing algorithm (Kim et al., 2002), greedy-based fixing algorithm (Fanjul-Peyro et al.,
2017), genetic algorithm (Vallada and Ruiz, 2011), local search algorithm (Glass et al., 1994),
threshold-accepting method (Chen and Wu, 2006), artificial bee colony algorithm (Lei et al.,
2021), iterated hybrid metaheuristic(Lin and Hsieh, 2014; Lopez-Esteve et al., 2023), tabu
search algorithm(Lee et al., 2013) and variable neighborhood search(Maecker et al., 2023;
Wang et al., 2023b). In contrast, limited research has been conducted on the devel-oping of
exact algorithms for solving UPMSP The existing approaches include a mathemati-cal
programming-based algorithm (Fanjul-Peyro et al., 2019) and a cutting plane algorithm
(Mokotoff and Chrétienne, 2002).

2.2. Scheduling problem with resource constraints

Researchers have conducted various investigations on the resource constrained project

scheduling problem (RCPSP) across various categories of production resources(Herroelen et al.,
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1998). According to a survey by Pellerin et al. (2020), RCPSP is a prevalent scheduling prob-
lem with extensive applications in manufacturing, production planning, project management,
and other domains. There are different types of resources, including workers, production ma-
terials, tools, etc., where resource durability, quantity, and characteristics collectively impact

the overall production process efficiency(Sanchez et al., 2022).

Production resources, narrowly defined as consumables such as raw materials and en-
ergy required for production (Herroelen, 1972). To address this resource constrained project
scheduling problem, Yunusoglu and Topaloglu Yildiz (2022) develop an accurate solution
method based on constraint programming (CP) and enrich the model by adding lower bound
and redundant constraints. Zhigang et al. (2007) establish a general scheduling model for
multi-resource constrained job shop scheduling problems and propose a job optimization schedul-
ing algorithm based on ant colony optimization algorithms. Cheng and Lin (2017) develop
a Johnson algorithm to solve the two-machine process scheduling problem under resource
constraints. Prilutskii (2007) propose a direct search approach for solving resource schedul-
ing problems under multiple criteria. Moreover, Ma et al. (2016) present a project schedul-
ing model based on uncertainty theory that considers uncertain resource-constrained project
scheduling problems (URCPSP). Herr and Goel (2016) address a single machine scheduling
problem where each job belongs to a specific family, and setups are required between jobs from
different families. The authors provide a mathematical formulation and propose a heuristic so-
lution approach for two variations of this problem. Fang et al. (2013) investigate the flow shop
scheduling problem with constraints on peak power consumption and validate the proposed

model using data from cast iron plate manufacturing.

In a broader sense, production resources encompass not only raw materials but also non-
consumable resources such as space, workers, and tools (Herroelen et al., 1998). The RCPSP
is addressed by Ranjbar and Kianfar (2010) using genetic algorithm with a novel crossover
operator for scheduling activities. For the parallel machine scheduling problem that restricts
employee work and rest time, Fang et al. (2021) implement two distinct algorithms based
on decomposition and heuristic methods. To address the job shop scheduling problem with
stochastic processing time under dual resource constraints of machines and workers, Xiao et al.
(2021a) establish a robust job shop scheduling model using a robust scheduling approach.
Tao and Hao (2009) conduct a classified scheduling based on resource constraints such as
machine tool failure repair time, workers’ departure time and the number of tasks included
in cancelling orders, and utilize the algorithm combining genetic algorithm and simulated

annealing algorithm to obtain the scheduling scheme. Pinto et al. (2013) develop a branch



and bound algorithm to solve the collaborative resource scheduling problem involving workers,
tools, etc. A constrained programming model aimed at solving scheduling and tool allocation

problems in parallel machine environments is proposed by Gokgiir et al. (2018).

2.3. Application of adaptive large neighborhood search algorithm in the scheduling problem

The adaptive large neighborhood search algorithm, an extension of the large neighbor-
hood search (LNS), has emerged as a relatively new metaheuristic algorithm (Ropke and
Pisinger, 2006a,b). ALNS has demonstrate remarkable problem-solving capabilities across di-
verse domains and has been successfully applied in various scenarios (Mara et al., 2022). For
instance, Kiefer et al. (2017) design an ALNS algorithm to allocate lectures to different time
slots and rooms while avoiding course overlap within the same schedule. Wang et al. (2012)
present an ALNS approach for scheduling n jobs on m different parallel machines with multiple
time windows. A multi-objective mixed integer linear programming model is proposed by Zeng
and Zhang (2021) for single batch processor scheduling, which introduces a two-dimensional
rectangular packing constraint. Additionally, ALNS is also used in other routing problems, such
as cumulative capacity vehicle routing problem (Ribeiro and Laporte, 2012), static dial-a-ride
problem with ride and waiting time (Pfeiffer and Schulz, 2022), electric vehicle scheduling
problem (Wen et al., 2016).

To visually illustrate the distinction between our study and previous research, we present
a literature comparison table in Table 1. It is evident that there have been extensive investiga-
tions on PMSB but none have addressed the issue with complex fixture constraints. In order
to bridge this gap, this study first attempts to tackle parallel assembly lines scheduling prob-
lem with complex fixture constraints, in which fixture allocation, worker order assignment,
assembly line assignment and setup time are considered. We formulate a MILP model for this
problem and derive new lower and upper bounds. Given the complexity of this problem and
the proven efficacy of ALNS in solving scheduling problems, we develop an improved adaptive

large neighborhood search algorithm to effectively address the problem.
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3. Problem description and mathematical formulation

3.1. Problem description

As mentioned earlier, we define the addressed problem as parallel heterogeneous as-sembly
line scheduling problem with fixture constraints. In this problem, there are a set

J={1,2,...,n}of work orders, aset M = {1, 2, ..., m} of assembly lines, asetL = {1, 2, ...,
q} of product models, aset O ={1, 2, ..., p} of fixtures, aset F = {1, 2, . . ., h} of fixture types.
Each work order j, consisting of a quantity of Q ;identical products, has its own delivery time d;
and material balance time r;. The products’ models within a given work order are same while
different work orders may have different product models. The work order j is produced
non-preemptively on assembly line i with a processing time of p; ; depending on the assembly
line setting. The production of a work order j requires at most one fixture f and can be started
only after the material balance time r;, and its delivery must occur prior to d;. When two work
orders with different product types are processed successively on a same assembly line, the
setups time s;; needs to be considered, which depends on both the product models involved

and the assembly line settings.

Each fixture f has n;identical copies and all of them are utilized in the same manner.
During the use of fixture f , a minimum cooling time COy is required when reaching U, con-
secutive working-time before the fixture can be utilized again. The continuous processing time
and cooling time of each fixture may different. Additionally, there are related pairs of work
orders involved in the production of a new product model and the former is a small-batch trial
production for this new model. Suppose a related work order pair consists of work order j and
k, where j # k and Q ; < Q,. It is important to note that work order k can only start production
after work order j successfully passes the quality check. Thus, the start time S, of work order k

must be equal to or greater than the completion time C; of work order j, plus the duration time I
required for quality inspection, i.e., C;+ I < §;.

In the real production scenario, Company L may consider multiple decision-making ob-
jectives, including the number of completed work orders within a fixed time, on-time delivery
rate, total product output, and so on. Considering the fact that the total number of work or-
ders far exceeds the number that can be scheduled to a shift, as well as the continuous rolling
production plan of Company L, we focus on the static scheduling plan within a single shift.
Through on-site investigation, the number of completed work orders within a fixed time was
identified as the primary delivery indicator for company L. Moreover, work order serves as the

smallest and indivisible unit in company L's production process, wherein the quantity of
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completed work orders within a fixed time directly determines the extent to which company L
can achieve customer satisfaction. Therefore, the objective of the proposed HALSFC is to de-
termine a schedule that maximizes the number of completed work orders within a fixed time
T.

3.2. An illustrative example

To intuitively understand HALSFC problem, we provide an illustrative example. There are
14 worker orders with 5 product models, 3 assembly lines and 3 types of fixtures. The
corresponding product models and required fixtures are shown in Table 2. Table 3 presents
the processing time p;; of each work order on each assembly line. Figure 2 demonstrates a

schematic diagram of the scheduling results of the HALSFC problem.

Figure 2: Schematic diagram of result for HALSFC.

Among them, work orders 6 and 8 are related pairs of work orders as well as work orders
2 and 11. The product models in each related pairs are identical and can be processed using

10



the same type of fixtures. They can be processed on different assembly lines while maintaining
a sequential processing relationship. Fixtures may be utilized during the processing of work

order, including work orders 1/3/4/7, while others may not be employed, such as work orders
5/9/10. When dealing with work orders involving different product models, it is essential to
consider the setup times during continuous processing, which can vary based on assembly line
settings and the specific models involved (e.g., worker orders 1 and 5). It is evident that all 14
work orders are successfully processed within total time limit through a well-designed

schedule.

Note that when the processing time of a work order crosses T , it is not regarded as a
completed work order. Owing to the indivisibility of the work order, we also refrain from
considering the processed products of the order. In addition, when one kind of fixtures are all
used for processing or cooling, e.g., there are no such kind of free fixtures, the work orders that
need to be processed by such kind of fixtures have to wait until a free fixture is released. Once
the use or cooling of the fixtures start, it must continue uninterrupted until reaching maximum

continuous working time or minimum cooling time, respectively.

Table 2: Product models and corresponding types of fixtures.

J L F J L F
1 1 1 8 1

2 2 2 9 5 -
3 2 2 10 4 -
4 3 3 11 2 2
5 4 - 12 1 1
6 1 1 13 1 1
7 3 3 14 5 -

Note: J: work order number; L: product models; F: corresponding types of fixtures used to process; —: work

orders can be processed without fixtures.

3.3. Mathematical formulation

To begin with, we let T as the length of the planning horizon, and 7 ={0,1,2,...,T —1}
represents the corresponding set of discrete time instances obtained by dividing T into uniform
segments. Each segment t begins at time instant ¢t and ends at time instant t +1. Subsequently,

we define the following variables in Table 4:
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Table 3: Processing time of work orders for example.

J Pij

i=1 i=2 i=3
1 7 9 13
2 15 4 8
3 15 15 11
4 10 9 10
5 7 12 15
6 3 4 5
7 10 8 15
8 15 11 13
9 17 6 4
10 5 12 7
11 11 15 18
12 5 3 4
13 12 13 11
14 4 3 2

Note: J: work order number; p;;: processing time of work order j on assembly line i.

Considering the above advantages, we formulate the HALSFC problem as the following

mixed integer linear programming model. For simplicity, the model is denoted as MILP.

maximize Z Z Z X (D

teT ieM jeJ
st. Ejxr;<S;, VjeJ (2)
C;<d;xE, YjeJ (3)
T
> xy<1vjes 4
ieM 0
t
> > xy<LVieMte{o,..,T—1} (5)
jeJ s:max{O,t—pij+1}
t
yijt:injk)vi€M7j€J7t€{1"“7pij_1} (6)

k=0

12



Table 4: The summary of notations.

Notation Definition
indices:
i,k Work order index, j,k € {1,2,...,n}, where n is the number of work orders

to be scheduled.

Assembly line index, i € {1,2,...,m}, where m is the number of assembly lines.
Product model index, [ € {1,2,...,q}, where g is the number of product models.
Fixture type index, f € {1,2,...,h}, where h is the number of fixture types.
Fixture index, o € {1,2,...,p}, where p is the number of fixtures.

Parameters:

J Set of work orders to be scheduled, J = {1, 2,...,n}

M Set of assembly lines, M = {1,2,...,m}

L Set of Product models, L = {1,2,...,q}
F
0]
R

Set of fixture types, F = {1,2,...,h}
Set of fixtures, O = {1,2,...,p}
A sufficiently large positive number.

Q; Number of products included in work order j.

r; Material balance time for work order j.

d; Delivery time for work order j.

Pij Process time of work order j by assembly line i.

Siv Setup time from product model [ to product model I’ on assembly line i.

Uy Maximum continuous usage time for fixture type f.

COy Minimum cooling time after consecutive working for fixture type f.

I Interval inspection time.

Decision and auxiliary variables:

Oijk 1, if work order j and work order k are processed on assembly line i at the same time,
and j is processed before k; 0, otherwise.

Xije 1, if assembly line i starts processing the work order j at time t; O, otherwise.

&ij 1, if work order j is processed on assembly line i; 0, otherwise.

Yije 1, if assembly line i is operating work order j on at time t; 0, otherwise.

0, 1, if fixture o starts break after finishing some work orders; 0, otherwise.

Zot 1, if fixture o is being used at time t; 0, otherwise.

E; 1, if work order j is accepted; 0, otherwise.

aj 1, if the product model contained in work order j is model [; 0, otherwise.

Y fo 1, if the type of fixture f is type o ; 0, otherwise.

Bio 1, if the work order containing product model [ requires the use of fixture o for processing;
0, otherwise.

Ujg 1, if work order j and work order k are related work orders, j is processed before k;

0, otherwise.
S; The start time of work order j.
C; The complete time of work order j.

13



t
yij[: Z xijk, ViEM,jéJ,tE{pij,...,T}

k:t_pij+1
t+pij_1
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k=t
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The objective 1 is to maximize the number of processed work orders within the time limit.
Constraints 2-3 are used to indicate the acceptance of a work order for processing. Specifically,
work order j can only commence processing after time r;, and it is considered as a valid com-
pleted work order only if it is finished before time d;. Constraints 4-5 ensure that each work
order is processed at most once, and each assembly line can only assemble one work order at
any time. Constraints 6-8 define the relationship between variables x; ;. and y; ;, . Constraints 9
guarantee that the quantity of each type of fixture utilized on all assembly lines at any time
does not exceed the upper limit specified for such fixtures.

Constraints 10 define the relationship between related work orders, in which the start time
of large-batch work order k should not precede the complete time of small-batch work order j
plus the fixed inspection time. Constraints 11 define the relationship between the start time
and complete time of a given work order. Constraints 12 define the set-up time of work orders
with different product models which are processed in succession on a same assembly line.

Constraints 13 define the relationship between S; and x Constraints 14 define the

ijt -
relationship between z,. and x; ;, . Constraints 15 ensure that the continuous use time of fixture
o should not exceed the maximum continuous use time U, based on its fixture type f .
Constraints 16-18 define the relationship between z, and 6,, . Constraints 19 ensure the
minimum cooling time CO after U, consecutive prossesing time. Constraints 20-22 define the
range of variables S;, x; ;, and &; ; in certain cases. Constraints 23 define the relationship

between x;;,and &;;. Constraints 24 present the domains of the decision variables.

3.4. Lower bound and upper bound

In this subsection, we provide a basic lower bound (LB) and upper bound (UB) for the

objective of HALSFC problem, i.e., Equation 1.

In the subsequent section, we introduce the IALNS approach for effectively solving HALSFC
problem. Considering the fact that HALSFC is a maximum optimization problem, it is obvious
that any feasible solution provided by IALNS is a lower bound for HALSFC. In this study, we
utilize the initial solution N,,;, which is obtained by the minimum product quantity of the work
orders first allocating strategy and the greedy-scheduling based approach of IALNS (see
Section 4.1 and Section 5.1), as the lower bound for HALSFC, i.e., LB = Ny,z.

To obtain an upper bound, we define a new model by relaxing the constraints 2-3 of the
original MILP model, i.e., any work order can be processed at the start time, and the work

order that ends processing at any time can be delivered. Obviously, the optimal value of the
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new model is an upper bound of HALSFC. Thus, we can obtain a UB by solving the new model

utilizing the Gurobi solver.

4. Improved adaptive large neighborhood search algorithm

It is easy to see that when we set I = 0, uj =0, r; =0, d; = +09, sy, = 0, the form
of HALSFC problem is quite similar to integrated employee and parallel machine scheduling
problem with consecutive working-time constraints (IEMSCW), which is NP-hard in the ordi-
nary sense with m > 2 (Fang et al., 2021). Therefore, HALSFC problem is also NP-hard, which

is difficult to solve especially for medium- and large-size instances.

It is well know that the time cost of exact algorithms in solving NP-hard problems is gen-
erally much higher than heuristic algorithms (Akbar et al., 2001), while the solution efficiency
is an important requirement for real production scenario (Wauters et al., 2012). Consider-ing
NP-hardness of the HALSFC problem and the successful application of the adaptive large
neighborhood search algorithm in production scheduling, this study adopts ALNS as a solution
approach for the proposed problem(He et al., 2019). To further enhance the performance, we
improve the ALNS by incorporating the key advantage of simulated algorithm, i.e., Metropolis
acceptance criterion, to expand the neighborhood search effect of the algorithm. In the sub-
sequent subsections, we introduce the details of the improved adaptive large neighborhood

search algorithm.

4.1. Initial solution generation

4.1.1. Encoding

Considering the characteristics of HALSFC, such as the related work orders, we encode the
solution by proposing a priority list to ensure that small-batch work orders are processed first
and there is a minimum interval inspection time I between two related work orders. Work
orders are sorted in the descend order of the priority value. Subsequently, work orders are
scheduled according to the priority list. Additionally, if two work orders are related work
orders, the priorities of them are rearranged to ensure the small-batch work order is processed

in advance.
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4.1.2. Decoding

As mentioned earlier, there are five decisions in the HALSFC: (i) work order assignment to
the fixtures of the corresponding model; (ii) work order assignment to the assembly lines; (iii)
determination of the use and rest time of the fixture; (iv) determination of the processing
sequence of the work order; (v) determination of the setups. Considering the fact that
decisions (iv)-(v) can be easily obtained from the decisions (i)—(iii) and the priority list

procedure, we focus on the first three decisions. The decoding strategy is listed as follows:

As presented in Algorithm 4.1, we first initialize the unscheduled work order list J;;, the
scheduled work order list J5, the assembly line occupation list M, , the fixture occupation list
F,, the priority list P, and the set of fixtures O, that can be used for the processing of work order
j. Then, the work orders are allocated in a greedy manner, considering both the prior-ities and
fixture constraints. We establish the termination criterion that no work orders from the
unscheduled work order list can be incorporated into the current scheduling status. If the
termination condition is not reached, we traverse the unscheduled work order list J;, the as-
sembly line list M, and fixture list F; . At this time, the work order is allocated to the assembly
line that finished processing at the earliest, ensuring maximum utilization of each assembly
line. The first idle fixture corresponding to the model is selected. After a work order is sched-
uled, we check whether the currently used fixture can process any work order in J;; . If not, the
fixture is set to cooling state and it can only be utilized after a cooling time. It should be noted

that the cooling time of the fixture may vary with the product model.

To visualize the decoding procedure, we illustrate the decoding diagram in Figure 3. Note
that each priority list corresponds to a feasible solution. Taking advantage of the above encod-
ing and decoding procedures, we can obtain an initial solution by generating the priority list
with minimum product quantity. In other words, work orders comprising fewer products are
assigned higher priorities and allocated to the assembly lines and the fixtures by the greedy

based work order allocation scheme.

Based on HALSFC’s problem characteristics, we propose an initial solution generation
strategy with minimum product quantity of the work orders first allocating (MF). In the un-
scheduled work order list, we assign a higher priority to the work orders that include fewer
products, so that small-batch work orders can be processed as early as possible, which is more
conducive to the increase of the objective function. In addition, we compare the proposed
strategy with the other common initial solution generation strategies, e.g., First Come First

Serve, FCFS; Earliest Due Date, EDD; Longest Processing Time First, SPT; Random generating,
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Algorithm 4.1 Decoding Procedure Based on Greedy Scheduling

Input: J, O, M
Initialize: Jy, Jg, My, Fy, P, O;
ifu, =1,Q; > Q, then
priority; < priorityy
while Need continue=True do
for j €J, do
S=False
forme M do
if S=True then

e NI RN

10: break
11: foro€0; do
12: if C, < Uy then
13: Schedule work order j for processing on assembly line m by fixture o
14: Update: J, Jg, M, F;, S = True
15: else
16: Cooling the fixture o for CO; time
17: continue
18: Update: C,, F;
 Workorderlist | 1 | 2 | 3| 4| 5 | 6 [ k-1 | k
Prio'rit.y list w1 W2 w3 w4 W5 wée | ...... Wk-1 Wk
(original)
Priority list w2 w4 w1 W10 w3 W5 | ...... Wk-1 Wk
(sorted)

Assembly A

Line Wa | Wio | B | vee |

T .

Figure 3: The decoding procedure based on greedy scheduling.
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RD. Since the efficiency difference for these techniques are not quite obvious on small-scale
instances, we select three medium-scale instances and three large-scale instances used in Sec-
tion 5.1 for experimental comparison. As shown in Table 5, the result shows that the proposed

MF strategy outperforms others in most cases.

Table 5: Comparison of different initial solution generation strategies using IALNS.

Instance ML FCFS EDD SPT RD

J201 80 70 73 78 73
0201 66 62 60 63 58
M201 66 62 67 60 66
J301 222 225 218 220 224

0301 230 220 228 224 222
M301 201 196 189 199 195

Note: The figures in the table represent the number of completed work orders included in the final solution.

4.2. Neighborhood generation

In Section 4.1, we obtain an initial solution. For the process of neighborhood generation,
destroy operators and repair operators are commonly utilized (Larranaga et al., 1999). We
propose four kinds of destroy operators and two kinds of repair operators referring to the
previous study of Liu et al. (2017), and define the set of destroy operators and the set of repair
operators as Q~ and Q7, respectively. Figure 4 shows a schematic diagram of these operators.
Each destroy operator selects v elements from the priority list of a given solution, removes
them, and saves them into the removed set V. The elements in V will be reinserted to the
destroyed solution through repair operators to produce a new solution. In each neighborhood

transformation operation, operators are selected according to certain weights.
Details of the four destroy operators are as follows:

Random removal: This is the simplest removal operator. Select v work orders from the

priority list randomly and remove them.

Priority removal: This is a greedy operator, which removes v work orders with the highest

processing time on each assembly line.
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Random removal Delivery removal

;PriorityList Wy X Wy | W, X We | ceeene X Wi dJ dy | dy | dy | dy | ds | dg |- di—y | dy
éReTi(;‘t’ed wa | W [ Wi { Priority List | ", XX | v | X e | oo w,

Priority removal Quantity removal
"""""""""""" maxz maxd T T T  maxs ST et max3 max2 T
Pij Pir | Piz | Pis | Pia | Pis | Pie |~ Pik-1| Pik QJ Q| Q: [ Qs | Qs | Qs | Qs [ Q1| Qr
Priority List X W Ws X " W | e X W, Priority List X X Wy [ W LR [ Wiy | W
Random insert Greedy insert

X | [ X)X XX éPriorityList XX v | | X)X | X|X|:

Priority List

Removed
List

S I e | v [ ] [ ]

Figure 4: Schematic diagram of destroy operators and repair operators.

Delivery removal: This operator removes the work orders according to the delivery dates,
i.e., removes v work orders with the latest delivery dates. In order to optimize the objective
function, when removing the work orders with late delivery dates, priority will be given to

scheduling work orders with relatively early delivery dates.

Quantitive removal: This operator removes v work orders with the largest number of
products. Typically, work orders with fewer products have shorter processing times and are
prioritized to maximize the number of completed work orders. Consequently, the v work orders

containing the highest quantity of products are sequentially eliminated.
Details of the two repair operators are as follows:

Random repair: This operator is similar to random removal operator. v work orders
are randomly selected from the removed set and randomly inserted to the priority list of the
destroyed solution.

Greedy repair: This operator arranges the work orders in the removed list based on their
processing time and selects v work orders with the shortest processing time to be inserted into

the top v available positions of the repaired list.

20



4.3. Adaptive strategy

In section 4.2, four types of destroy operators and two types of repair operators are pro-
posed. Subsequently, we introduce the adaptive implementation process of IALNS, including

operator weight update and acceptance criteria.

4.3.1. Operator weight update

The weight of each destroy operator and repair operator are denoted as p,; and p,, re-
spectively. Similarly, we define the score of each destroy operator and repair operator as 14
and v,, respectively. We assign different scores to the operators in each iteration process by
the quality of the solution, and update the operator weight using the score to ensure that the
operator with higher weight is more likely to be selected in the next iteration. During each al-
gorithm iteration, we use Equation 25 to calculate the weight of each operator where A € [0, 1]
is the reaction factor.

Pa=Apg+(1—A)Yy, pr=2Ap. +(1—2A)Y, (25)

Additionally, we use the roulette wheel selection procedure to determine the neighborhood
operators, ensuring that the selection probabilities of operators are positively correlated with
their weights. After a algorithm iteration is finished, we update the score of the used operators,
including both destroy operator and repair operator, according to the quality of the obtained
solution.

€, if the new solution is a new global best (26)
€, if the new solution is better than the current one 27
Yarbr = €, if the new solution is accepted (28)
e, if the new solution is rejected (29)

We dynamically adjust the scores of the operators based on the quality of new found so-
lution, increasing them when a better solution is discovered and decreasing them if the new
solution is of lower quality. This adaptive approach ensures that the entire process remains
responsive to changing conditions. The evaluation function of operator score is shown in Equa-
tion 26-29, where €; > €, > €5 > €.
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4.3.2. Acceptance criteria

Due to the lack of clear acceptance and termination criteria, the adaptive large neighbor-
hood search algorithm is often combined with the acceptance and termination criteria of other
algorithms (Santini et al., 2018). Metropolis acceptance criterion, the key advantage of sim-
ulated annealing algorithm, can be used as one of the acceptance criteria of ALNS (Gunawan
et al., 2020). In this study, we also adopt this hybrid framework.

During each algorithm iteration, if the objective of the temporary solution N(t) is greater
than that of the current solution N(c), the temporary solution is assigned to the current solu-
tion. Thereafter, if the objective of the current solution N(c) is greater than that of global best
solution N(b), the current solution is assigned to the optimal solution. Otherwise, if the tem-
porary objective is smaller than the current objective, that is, temporary solution is worse than
current solution, metropolis acceptance criterion is used to probabilistic includes the temporary
inferior solution. We implement the above process by generating a random number rnd and
compare it with the acceptance probability, where rnd € [0,1]. The acceptance probability P,
is shown in Equation 30, where T denotes control parameter (temperature).

if N(c) <N(t),

P.{ accept j} =
c e—((N(c)—N(f))/T)J if N(c) > N(t), (30)

T € R denotes control parameter (temperature)

Cooling process follows T, = aT,_;, where a € [0,1] is the cooling rate. Let P; and P,
as the acceptance criterion in the initial solution and final solution, respectively. We define
the cooling rate as Equation 31 (Bennage and Dhingra, 1995), where 7, is the maximum of

algorithm iterations.

ln P 1/(Tmax_1)
a=(15) (31)
nF

Figure 5 shows the whole algorithm search process of a large example, we can see that
the calculation result converges in about 60 iterations. Taking the above advantages, we sum-
marize the outline of IALNS in Algorithm 4.2, where T, denotes termination temperature, T;
denotes initial temperature, x denotes current solution, x* denotes temporary solution and x°
denotes global optimal solution.
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Algorithm 4.2 Improved Adaptive Large Neighborhood Search(IALNS)

1: Input: A feasible solution x using MF strategy (see Section 4.1.2), parameters of the

problem (7, 2", T4y, Ty, Ti, €1, €2, €3, €4)

2: Initialize: x* =x;p,=(1....1);p,=(1...,1)

3: whilet <7
4: while T > T, do

5:

8:

9:
10:
11:
12:
13:
14:
15:
16:

17:
18:
19:
20:
21:
22:
23:
24:
25: return x

max do
select destroy and repair methods d € Q~and r € Q" using the roulette strategy based
on the scores of the methods p,; and p,;
xt=r(d(x))
Obtain N (x),N (x*) and N (xb) using the work order allocation scheme in Algorithm
4.2.
if N (x) < N (x') then
x =x'
if N (x?) < N (x) then
xb=x
Update: p,, p, using Equation 25 and 26
else
Update: p,, p, using Equation 25 and 27
else
Generate random number rnd and calculate acceptance criterion P, using Equation
30
if rnd < P, then

x=x'
Update: p,, p, using Equation 25 and 28
else

Update: p,, p, using Equation 25 and 29
Calculate the cooling rate a at this time using Equation 31
Update: T =aT

Update: T=T;,, 71 =7+1

b
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Figure 5: Convergence curve of IALNS for an example.

5. Experimental study

5.1. Experimental setting

As stated earlier, this study is inspired by the practice of company L. However, for the sake
of data security and company interests, the actual production data of company L complies with
the confidentiality rules. Therefore, on the basis of part real production data provided by
Company L, we have generated the experimental data of different scales to validate the
effectiveness of the proposed IALNS. Nevertheless, we have consulted extensively with Com-
pany L to ensure that our model and algorithm meet the requirements of real-world production
scenarios. We generate three scales of instances according to the number of work orders, i.e.,
20, 100 and 300 for small-scale instances, medium-scale instance and large-scale instance, re-
spectively. The proportion of related work orders is set to 30% of number of all work orders, for
example, if number of work orders is 100, there are 30 related work orders with 15 pairs. Other
parameters, such as the number of assembly lines m, the number of copies of each tool ny, the

type of tool f, the product models g, and time window T , are shown in Table 6.

As we know, the relationship between processing time p;; and time window T exerts a
discernible impact on the experimental results. In this study, we assume that the processing
time of work orders following (5, 30) uniform distribution, which is consistent with the research
of Peng and Liu (2004). The setup time of different models s;;;, is defined to follow a (3, 8)
uniform distribution, as described in the setting of Vallada and Ruiz (2011).

Tabu search algorithm (TS) has demonstrated good performance in solving UPMSP while
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Table 6: Parameter settings of instances.

small instances medium instances large instances
Scenario I co (n=20) (n=100) (n=300)
m f np ¢q T m f no q T m f n q T
1 6,72 2 2 1 2 40 3 2 1 2 300 4 2 1 2 850
2 15 5,79 2 3 1 3 50 3 3 1 3 280 4 3 1 3 880
3 (5,7) 3 2 2 2 60 4 2 2 2 320 5 2 2 2 900
4 46) 2 2 1 2 40 3 2 1 2 300 4 2 1 2 850
S 18 (56,79 2 3 1 3 50 2 3 1 3 280 5 3 1 3 880
6 64 3 2 2 2 60 3 2 2 2 320 4 2 2 2 900
7 47 2 2 1 2 40 2 2 1 2 300 4 2 1 2 850
8 20 (5,76) 2 3 1 3 50 3 3 1 3 280 4 3 1 3 880
9 84 3 2 2 2 60 3 2 2 2 320 5 2 2 2 900

Note: I: inspection time; CO: fixture cool time; m: Number of assembly lines; f: types of fixtures; n;: number
of copies of each type of fixture; q: product types; T: time window.

UPMSP has certain similarity with the proposed HALSFC problem (Lee et al., 2013; Sels et al.,
2015). We select TS as a competitor to verify the performance of the proposed algorithm.
The TS has the same neighborhood structure as IALNS, but it employs a distinct strategy for
conducting the neighborhood search. Moreover, it is well known that genetic algorithm (GA)
is also one of the mainstream metaheuristics. The algorithm is frequently employed to tackle
NP-hard problems and has demonstrated exceptional performance in addressing the parallel
machine scheduling problem (Cochran et al., 2003; Chaudhry and Drake, 2009). To better
evaluate the performance of the proposed IALNS, we select GA as another competitor. We
consider order-based crossover and two points crossover when designing GA operators, which
refer to the study of Sivrikaya-Serifolu and Ulusoy (1999).

All the model and algorithms are implemented by Python programming language and
executed on a personal computer with 9th Gen Intel Core, 2.60 GHz processor and 16GB of
RAM. The MILP is solved by Gurobi 10.0.1 with time limit of 1800s.

5.2. Computational results

In this section, we compare the computational results of MILB IALNS, TS and GA on different-
scale of instances. The gap for IALNS, TS and GA is defined by equation 32 and
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the gap of MILP is obtained from Gurobi solver.

Gap = - x100%; Alg =IALNS,TS,GA (32)

Table 7 shows the computational results of small-scale instances with different scenarios.
It is evident that MILB, IALNS and GA outperform TS in terms of objective value while all of the
former methods achieve the same result. From the perspective of running time, the state-of-
the-art exact technique, MILB solved by Gurobi, outperforms IALNS, TS and GA in most cases,
with the exception of scenario 4 and 6. The difference between IALNS, TS and GA in solving
efficiency is not significant, with all methods exhibiting superiority over the others in certain
examples. This observation demonstrates the applicability of Gurobi in solving optimization

problems with small-scale instances, aligning with our shared understanding.

Table 8 shows the computational results of medium-scale instances. We can see that IALNS
obtains competitive results compared to MILBE TS and GA in terms of both solution efficiency
and solution quality. Due to the complexity of HALSFC, MILP even fails to find a feasible solu-
tion within time limit for some instances. With the increase in instance scale, this phenomenon
becomes increasingly obvious. As table 9 shows, more large instances are unsolved for MILP
within the time limit. Compared to MILB IALNS, TS and GA achieve better results due to the
their heuristic framework, which is suitable to tackle large instances. Specifically, IALNS out-
performs TS in both solution efficiency and solution quality. Although the average running time
of GA is shorter, the quality of the solution obtained by GA is not as good as that of IALNS in
most cases. The above results demonstrate the advantages of IALNS in effectively solving

HALSFC, particularly dealing with large-scale problems.
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Table 10: Comparison of average computational results by MILE Algorithms IALNS, TS and GA in different scale
of instances

Instance scale MILP IALNS TS GA

Obj 13.86 13.86 12.93 13.86

small CPU(s) 15.48 35.84 31.06 36.00
Gap(%) 0 0 5.84 0

Obj - 67.24 63.86 64.67

medium CPU(s) - 159.98 173.10 184.44
Gap(%) - - - -

Obj - 204.30 167.05 189.81

large CPU(s) - 474.14 493.46 444.91
Gap(%) - - - -

Note: Ob j: the objective function value; C PU(s): the computer running time; —: for these instances, the optimal
solutions cannot be obtained within 1800 seconds.

The summarized experimental results for three scales of instances are presented in Table
10. For small-scale instances, both IALNS and GA achieve the same solution quality as MILE
while TS has an average gap of 5.84%. For medium-scale instances, certain instances pose
challenges for MILP to obtain feasible solutions within the specified time limit, resulting in
unattainable average objective function values and other metrics. In such cases, IALNS exhibits
a slightly slower solution speed compared to TS and GA but delivers higher-quality solutions.
For large-scale instances, almost half of the instances cannot be solved by MILP while IALNS
outperforms TS and GA in terms of both solution quality and computational efficiency. These
findings highlight the computing advantages of IALNS for HALSFC problem under large-scale

instances.

5.3. Sensitivity analysis

Considering the variability in experimental outcomes resulting from different parameter
settings, this section investigates the impact of parameter setting. Sensitivity analysis of in-
spection time, the proportion of related work orders and the minimum cooling time of fixtures

on the objective function and gap is presented in Figure 6 - Figure 11, respectively.

In order to investigate the impact of variations in quality inspection time on experimental

results, we conduct five sets of numerical experiments at a consistent scale, solely altering the
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quality inspection time I. We refer to the parameter settings of the medium-scale calculation
example in Table 8. As the processing time p;; follows (5,30) uniform distribution, we set the
range of interval inspection time I to O to 20 during sensitivity analysis. From the experimental
results shown in the Figure 6-7, we can see that with the increase of interval inspection time I,
the objective value of each iteration has a trend of decreasing, and the final solution obtained
is also smaller. Meanwhile, it is evident that a decrease in the quality inspection time leads to
faster algorithm convergence. This implies that a shorter interval inspection time has minimal
impact on the overall model operation and does not disrupt the operational process. However,
once the quality inspection time surpasses a certain threshold, both the algorithm’s solution
speed and final outcome deteriorate, specifically, fewer work orders are completed within the
specified timeframe.
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Figure 6: Influence of quality inspection time on objective function value.

In Section 5, we define the fixed proportion of related work orders as 30%. However, it
is important to note that the proportion of related work orders may significantly impact the
final solution. Therefore, we conduct a sensitivity analysis by gradually varying the proportion
from 0% to 40%, in order to investigate its influence on the experimental results. To ensure
consistency, we also refer to the numerical experiment in Section 5.2 and maintain identical

parameter settings for sensitivity analysis.

Based on the experimental results depicted in Figure 8-9, it is evident that as the pro-
portion of related work orders increases, the objective function value decreases during each
iteration, leading to a smaller final solution. This phenomenon can be attributed to the influ-

ence of related work orders on the original scheduling strategy. When there are fewer related
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be inferior.

90

o0
(=]
1

W
(=]
L

P
(=]
1

Figure 8: Influence of related work orders proportion on objective value.

0 5 10 15 20 25 30

iteration
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work orders, the algorithm tends to prioritize other work orders more extensively, resulting in
improved solution quality. However, when numerous related work orders exist, the algorithm
must first schedule those with larger quantities before addressing those with smaller quanti-

ties. Consequently, scheduling outcomes with a higher number of related work orders tend to

In addition to the parameter settings involved in the related work orders, we further in-
vestigate the influence of the fixture setting. We set the cooling time for each fixture to be the
same to observe the change of solution quality and efficiency. Therefore, we conduct a sen-
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Figure 9: Influence of related work orders proportion on GAP(%).

sitivity analysis by gradually varying the minimum fixture cooling time (CO) from 5s to 25s.

Without changing other parameter settings, we use the instances in scenario 5 for experiments.
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Figure 10: Influence of minimum fixture cooling time on objective value.

As shown in Figure 10-11, as the minimum fixture cooling time increases, the objective
function value decreases. This phenomenon may be attributed to that the increase of the
minimum cooling time reduces the time that the fixtures can be utilized for processing product
in the fixed time T , which further reduces the number of completed work orders. It can be seen

that the selection of fixtures should prioritize those with a lower minimum cooling time
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Figure 11: Influence of minimum fixture cooling time on GAP(%).

when multiple fixtures share the same other parameters. Alternatively, accelerating the cooling

method to reduce the fixture rest time can also enhance production efficiency.

6. Conclusions and future research

In this study, inspired by the real production scenario of a intelligent terminal manufac-
turing enterprise, we address a parallel heterogeneous assembly line scheduling problem with
fixture constraints. The HALSFC problem contains consecutive processing time constraints, fix-
ture cooling time constraints, fixture quantity constraints, and related work order constraints,
aiming to maximize the completed work orders in a given time horizon. We formulate a mixed
integer linear programming model for HALSFC and propose a lower bound and a upper bound
for the objective. To effectively solve this complex problem, we develop an improved adaptive
large neighborhood search algorithm, hybridizing with the framework of simulated algorithm.
Among them, the minimum product quantity of the work orders first allocating strategy (MF) is
proposed to improve the quality of the initial solution. The experimental results show the
effectiveness of MF strategy in solving HALSFC compared with other common strategies, e.g.,
FCFS, EDD, SPT, RD. Four destroy operators and two repair operators are designed to generate
the neighborhood, and metropolis acceptance criterion and adaptive weight strategy are uti-
lized. Extensive experiments confirm the effectiveness and efficiency of the proposed method.
Additionally, sensitivity analysis on the proportion of related work orders, the quality inspec-

tion time and the minimum fixture cooling time are conducted. The results demonstrate that
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an increase in the interval inspection time, the proportion of related work orders and the min-
imum fixture cooling time leads to a degradation in solution quality. This phenomenon can be
attributed to the increased duration of interval inspections, the corresponding proportion of
work orders and minimum fixture cooling time, resulting in more intricate constraints that

limit the scheduling effectiveness.

Fixtures are an essential component in the actual production process of many manufac-
turing enterprises. Despite this, many enterprises still rely on manual methods to select and
schedule fixtures, which significantly hampers production efficiency. This study proposes an
optimization method for the digital transformation of manufacturing enterprises. Intelligent
algorithms, such as IALNS, GA, and TS, have the potential to enhance enterprise decision-
making by reducing reliance on human involvement, improving decision-making capabilities,

and increasing cost-effectiveness and efficiency.

For future research, the proposed model can be enhanced by integrating additional con-
straints from real production scenarios, thereby increasing the realism of the MILP model.
Furthermore, incorporating alternative acceleration strategies for IALNS can further acceler-
ate the algorithm. Moreover, exploration of exact algorithms for HALSFC is also a potential

direction.
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