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INTRODUCTION

The transcriptional regulatory network (TRN) of a bac-
terium consists of all regulatory interactions between 
its transcription factors (TFs) and genes (van Hijum 
et al., 2009). TFs, also referred to as sequence-specific 
DNA-binding factors, sense external signals and then 
bind to promoter regions of operons to regulate gene 
expression levels (Ishihama,  2012). To identify regu-
latory interactions between TFs and genes, the most 
commonly used experimental method is chromatin im-
munoprecipitation followed by sequencing (CHiP-seq) 
(Park, 2009). In CHiP-seq, antibodies are used to select 

TF proteins, and then DNA bound to TF proteins will be 
purified. DNA sequencing for the DNA-TF protein com-
plex will determine the binding site on the genome. A 
group of genes with binding sites of the same TF are 
considered as a regulon. However, the drawbacks of 
CHiP-seq lie in its high cost, time-intensive nature and 
challenges in capturing the diverse growth conditions 
of bacteria (Kidder et al., 2011).

In recent years, many computational methods of 
in-silico reconstruction of TRN have been developed, 
such as coexpression network analysis (Lemoine 
et  al.,  2021) or supervised learning-based methods 
(e.g., GENIE3 (Huynh-Thu et  al.,  2010)). One of the 

R E S E A R C H  A R T I C L E

Systematic elucidation of independently modulated 
genes in Lactiplantibacillus plantarum reveals a trade-off 
between secondary and primary metabolism

Sizhe Qiu1,2   |    Yidi Huang3  |    Shishun Liang4  |    Hong Zeng2  |    Aidong Yang1

Received: 8 December 2023  |  Accepted: 2 February 2024

DOI: 10.1111/1751-7915.14425  

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, 
provided the original work is properly cited.
© 2024 The Authors. Microbial Biotechnology published by Applied Microbiology International and John Wiley & Sons Ltd.

1Department of Engineering Science, 
University of Oxford, Oxford, UK
2School of Food and Health, Beijing 
Technology and Business University, 
Beijing, China
3School of Computer Science and 
Engineering, Beihang University, Beijing, 
China
4Department of Life Science, Imperial 
College London, London, UK

Correspondence
Hong Zeng, School of Food and Health, 
Beijing Technology and Business 
University, Beijing 100048, China.
Email: zenghong@btbu.edu.cn

Aidong Yang, Department of Engineering 
Science, University of Oxford, Oxford OX1 
3PJ, UK.
Email: aidong.yang@eng.ox.ac.uk

Funding information
National Center of Technology Innovation 
for Dairy, Grant/Award Number: 
2023-QNRC-2; National Natural Science 
Foundation of China, Grant/Award 
Number: 32302265

Abstract
Lactiplantibacillus plantarum is a probiotic bacterium widely used in food and 
health industries, but its gene regulatory information is limited in existing da-
tabases, which impedes the research of its physiology and its applications. To 
obtain a better understanding of the transcriptional regulatory network of L. 
plantarum, independent component analysis of its transcriptomes was used 
to derive 45 sets of independently modulated genes (iModulons). Those iM-
odulons were annotated for associated transcription factors and functional 
pathways, and active iModulons in response to different growth conditions 
were identified and characterized in detail. Eventually, the analysis of iModu-
lon activities reveals a trade-off between regulatory activities of secondary 
and primary metabolism in L. plantarum.

https://doi.org/10.1111/1751-7915.14425
www.wileyonlinelibrary.com/journal/mbt2
https://orcid.org/0000-0002-1936-1223
mailto:
mailto:
http://creativecommons.org/licenses/by/4.0/
mailto:zenghong@btbu.edu.cn
mailto:aidong.yang@eng.ox.ac.uk


2 of 12  |      QIU et al.

most popular methods to reconstruct TRN is using in-
dependent component analysis (ICA) to decompose 
the gene expression matrix, which consists of tran-
scriptomic data of different samples, into sets of inde-
pendently modulated genes, called iModulons (IMs) 
(Sastry et al., 2019). Apart from derived IMs, ICA can 
also quantify IM activities in different samples. Unlike 
CHiP-seq being a ‘bottom-up’ method, ICA follows a 
‘top-down’ approach. ICA has been extensively applied 
to study and improve the understanding of many bac-
teria's TRNs. For example, ICA of Vibrio natriegens 
transcriptomes unveils the genetic basis of its natural 
competency (Shin et al., 2023). ICA has also been used 
to discover therapeutic strategies for Streptococcus 
pyogenes by identifying carbon sources that control the 
expression of haemolytic toxins (Hirose et al., 2023).

Lactiplantibacillus plantarum is a gram-positive lactic 
acid bacterium that can be found in diverse ecological 
niches (Seddik et al., 2017). It has been widely used in 
food and health industries. For instance, it is the major 
bacterium involved in the fermentation of mozzarella 
cheese (De Angelis et al., 2008); L. plantarum-derived 
exopolysaccharides (EPSs) have various probiotic 
effects (Silva et  al.,  2019) and anticancer properties 
(Arasu et al., 2016). Due to the importance of L. plan-
tarum in different biological processes, such as dairy 
product fermentation, its gene expression regulation 
has received interest in several studies. For exam-
ple, Jung and Lee identified differentially expressed 
genes when L. plantarum was in the acidic condition 
(Jung & Lee,  2020). Unlike most studies focusing on 
single regulatory genes, Wels et  al. reconstructed 
the gene regulatory network of L. plantarum on the 
basis of correlations between gene expression levels 
and conserved regulatory motifs (Wels et  al.,  2011). 
Nonetheless, the regulon information of L. plantarum 
in RegPrecise (Novichkov et  al.,  2013) only recorded 
47 regulons and 210 TF binding sites, in contrast to 624 
and 943 TF binding sites recorded for Bacillus subti-
lis and Escherichia coli, respectively. The lack of gene 
regulatory information hinders the study of L. planta-
rum's physiology and rational engineering of its cellular 
pathways.

Considering the value of L. plantarum in industry 
and research as well as the limited understanding of its 

TRN, this study managed to infer undiscovered regula-
tory interactions using ICA decomposition of the gene 
expression matrix and to further investigate how L. 
plantarum respond to different growth conditions (e.g., 
acid stress). Moreover, this study, through the analysis 
of IM activities, explored the growth strategy of L. plan-
tarum, in terms of how it balances different biological 
processes (e.g., energy generation, carbohydrate me-
tabolism, stress responses).

EXPERIMENTAL PROCEDURES

Data acquisition and preprocessing

The transcriptomic data used in the study were ob-
tained from 4 independent studies that included vari-
ous experimental conditions: response to pH decrease 
from 6.2 to 5.0 (Jung & Lee, 2020), treatment with N-3-
oxododecanoyl homoserine lactone (a quorum sensing 
molecule) (Spangler et al., 2019), contrasting habitats 
(e.g., bee extract) (Filannino et al., 2018) and change 
of carbon sources (Özcan et al., 2021). The metadata 
of sample conditions can be found in Table S1. In the 
data from the selected 4 studies, genes were all an-
notated based on the genome assembly of L. plan-
tarum WCFS1 (ASM20385v3) (Siezen et al., 2012). All 
transcriptomic sequencing reads were normalized as 
RPKM (Reads Per Kilobase Million). Then, all samples 
were merged as a compendium of transcriptomic data 
(100 samples and 3000 genes). Before independent 
component analysis (ICA) was undertaken, the merged 
dataset was first log-transformed and then centred by 
subtracting the expression levels of the reference con-
dition (i.e., wt_pH6.2 in Table S1). The data quality was 
demonstrated by the higher Pearson correlation coef-
ficients (PCCs) between replicates than PCCs between 
non-replicates (Rychel et al., 2021) (Figure 1A).

Determination of iModulons

ICA decomposition of the merged dataset (i.e., the ex-
pression matrix, 100 samples and 3000 genes) was 
conducted using scripts in precise-db (https://​github.​

F I G U R E  1   ICA decomposes the compendium of transcriptomic data to 45 nonempty iModulons. (A) Quality check of transcriptomic 
data with PCCs. Blue: replicate correlations; Yellow: non-replicate correlations. (B) Schematic illustration of ICA applied to the gene 
expression matrix.

https://github.com/SBRG/precise-db
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com/​SBRG/​preci​se-​db) (Rychel et  al.,  2020). The 
FastICA algorithm in Scikit-Learn (v0.20.3) (Pedregosa 
et al., 2012) was used to calculate independent com-
ponents with 100 iterations with a tolerance of 10−7, 
log(cosh(x)) as the contrast function, and parallel 
search algorithm. The OptICA method was used to 
determine the optimal number of independent compo-
nents (McConn et al., 2021). The outputs of ICA were 
the iModulon matrix (M matrix, 3000 genes and 53 IMs) 
and Activity matrix (A matrix, 53 IMs and 100 samples) 
(Figure  1B). The M and A matrices can be found in 
https://​github.​com/​Sizhe​Qiu/​LPiMo​dulons/​tree/​main/​
data/​IMdata.

Gene weights in each column (for the corresponding 
IM) of the M matrix were used to determine each gene's 
IM membership. The threshold of gene weight absolute 
values for each IM was computed based on D'Agostino's 
K2 test using the PyModulon package (https://​github.​
com/​SBRG/​pymod​ulon) (Sastry et  al.,  2019). The de-
fault K2-statistic cut-off of 550 was used. The genes 
with weight absolute values above the threshold were 
the member genes of the IM. Before annotation, Ims 
were labelled as IM-1 to 53.

Annotation of iModulons via regulon 
enrichment analysis

Regulons of L. plantarum WCFS1 were obtained from 
RegPrecise (Novichkov et al., 2013). Ims that overlap 
with regulons were annotated via regulon enrichment 
analysis. The set of genes in each IM was compared 
to each regulon using the two-sided Fisher's exact 
test (False Discovery Rate (FDR) < 10−5) (Sastry 
et al., 2019). After regulon enrichments were computed 
for Ims, regulatory annotations were manually deter-
mined based on the Venn diagrams of Ims and regu-
lons (see Figure S1). In addition to Ims associated with 
only one regulon (e.g., PyrR IM (IM-36)), there were two 
different annotation expressions for combined regulon 
enrichments: intersection (+) and union (/). If a specific 
combinatorial regulation (genes controlled by multiple 
regulators) was observed in the Venn diagram of the IM 
and enriched regulons, then the IM was annotated with 
regulators linked by ‘+’ (e.g., MalR+MdxR IM (IM-47)). 
Otherwise, ‘/’ was used (e.g., ArgR/MleR IM (IM-26)).

Annotation of iModulons via 
motif comparison

Ims that do not overlap with known regulons were an-
notated via motif discovery and motif comparison. If a 
coding gene's 200 bp upstream region does not overlap 
with another gene (Taboada et  al.,  2010) and BDGP 
Neural Network Promoter Prediction (Reese,  2001) 
predicted this region to be a possible promoter 

(probability score > 0.8), then this 200 bp upstream 
region was used to search for sequence motifs using 
MEME (Bailey, 1994). Motif comparison by TOMTOM 
(Gupta et al.,  2007) then determined the most possi-
ble TF based on the similarity of found motifs and TF 
binding site motifs in databases (e.g., RegTransBase 
(Cipriano et al., 2013)). The p-value and E-value thresh-
olds set in TOMTOM were 0.05 and 10. To further vali-
date whether genes in the IM are regulated by the found 
TF, PCCs of the expression levels of the TF gene and 
IM genes were computed. If the gene had significant 
correlations (p-value < 0.05) with most genes in the IM, 
then the TF would be used to annotate the IM.

RESULTS

Regulatory and functional annotations of 
identified iModulons

The derived 53 Ims account for 85% explained vari-
ance of the gene expression matrix. In each IM, genes 
with absolute values of weights higher than the thresh-
old are determined as IM member genes (see Methods, 
Section “Determination of iModulons”). The details of 
IM member genes can be found in https://​github.​com/​
Sizhe​Qiu/​LPiMo​dulons/​tree/​main/​data/​IMdata/​ as 
IM_genes.csv. Among 53 Ims, 45 are nonempty and 
most Ims’ sizes are within 20 (Figure 2A). Only 17% IM 
member genes overlap with genes in known regulons 
(Figure 2B), and hence, only 13 IMs could be annotated 
via regulon enrichment (Figure 2C). The details of regu-
latory annotations can be found in https://​github.​com/​
Sizhe​Qiu/​LPiMo​dulons/​blob/​main/​data/​IMdata/​IM_​
annot​ation.​csv.

For the 13 IMs annotated with enriched regulons, 
most of them have either high recall or high precision 
(cutoff = 0.6) (Figure 2D). Venn diagrams showing reg-
ulon enrichments in IMs are provided in Figure  S1. 
High recall means that the overlap (of IM and regulon) 
has high coverage of the regulon, while high precision 
means that the overlap has high coverage of the IM. 
IMs with low recall and low precision are considered to 
be incompletely matched with regulons, but that does 
not necessarily mean the IM's regulatory annotation 
is inaccurate. For example, the remaining 3 genes in 
CopR IM that are not included by the current CopR 
regulon of L. plantarum WCFS1 are lp_3055(copA), 
lp_3057(copper-binding protein) and lp_3058(copper-
binding protein), but they are included by the CopR 
regulon of other closely related lactic acid bacteria 
(e.g., Lactococcus lactis subsp. lactis Il1403) (Magnani 
et al., 2008). Therefore, the low recall and precision are 
sometimes resulted by the incompleteness of currently 
known regulons.

In addition to IMs associated with regulons, there 
are 11 IMs annotated via motif search and comparison 

https://github.com/SBRG/precise-db
https://github.com/SizheQiu/LPiModulons/tree/main/data/IMdata
https://github.com/SizheQiu/LPiModulons/tree/main/data/IMdata
https://github.com/SBRG/pymodulon
https://github.com/SBRG/pymodulon
https://github.com/SizheQiu/LPiModulons/tree/main/data/IMdata/
https://github.com/SizheQiu/LPiModulons/tree/main/data/IMdata/
https://github.com/SizheQiu/LPiModulons/blob/main/data/IMdata/IM_annotation.csv
https://github.com/SizheQiu/LPiModulons/blob/main/data/IMdata/IM_annotation.csv
https://github.com/SizheQiu/LPiModulons/blob/main/data/IMdata/IM_annotation.csv
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(Figures 2C and S2). Two representative examples are 
NagC IM (IM-8) and McbR IM (IM-31) (Figure 2E). Their 
regulatory annotations are validated by significant cor-
relations between expression levels of TF genes and IM 
activities (Figure 2F). The remaining 21 IMs (Figure 2C) 
cannot be annotated via motif search and comparison 
either because the IM does not contain multiple possi-
ble promoter sequences for motif search (e.g., IM-19) 

or TOMTOM (Methods, Section “Annotation of iMod-
ulons via Motif Comparison”) fails to find a TF binding 
site motif with a high similarity to the found motif (e.g., 
IM-6).

IMs were also annotated with enriched functional 
pathways (see SI, 3.1), and the details of functional 
annotations can be found in https://​github.​com/​Sizhe​
Qiu/​LPiMo​dulons/​blob/​main/​data/​IMdata/​IM_​annot​

F I G U R E  2   Regulatory and functional pathway annotations of IMs. (A) The histogram of IM sizes, 45 out of 53 IMs are nonempty. (B) 
The Venn diagram of all IM genes and regulon genes. 87 genes in IMs are contained in known regulons. (C) The pie chart of regulatory 
annotation status. Blue: regulon enrichment; Green: motif comparison; Grey: uncharacterized. (D) Recall and precision of IMs with matched 
regulons. (E) Motif comparison of IM-8 and IM-31. (F) The significant correlations between IM activities and gene expression levels of 
associated TFs identified via motif comparison for IM-8 and IM-31 (p-value < 0.05). (G) The pie chart and treemap of functional annotations 
of IMs, the size of each fraction is scaled with the IM size.

https://github.com/SizheQiu/LPiModulons/blob/main/data/IMdata/IM_annotation.csv
https://github.com/SizheQiu/LPiModulons/blob/main/data/IMdata/IM_annotation.csv
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ation.​csv. Apart from the uncharacterized group, 3 
dominant functions of derived IMs are carbohydrate 
metabolism, prophage proteins and transcription 
(Figure 2G). Fur/LexA IM (IM-1) was functionally an-
notated as ‘Stress’, as LexA has already been found 
as a TF for stress response (Ravcheev et al., 2013). 
IM-19 was annotated as ‘Translation’, because 
genes in IM-19 were all ribosomal genes (e.g., rplV 
(lp_1039), large ribosomal subunit protein uL22). 12% 
(scaled with IM sizes) of IMs are uncharacterized in 
functional annotation due to the lack of enriched func-
tional pathways.

Comparison between 
iModulons and regulons

The difference between IMs and regulons can provide 
undiscovered regulatory information. Regulon enrich-
ments of some IMs show combinatorial regulations of 
multiple TFs, such as MalR+MdxR IM. Based on the 
genomic organization, 6 genes in the region between 
151,222 and 158,185 bp belong to the same operon 
(Figure 3A). While mdxE (lp_0175), mdxG (lp_0177) and 
lp_0178 are already included by both MalR and MdxR 
regulons, MalR+MdxR IM also captures the combina-
torial regulatory signals for malS (lp_0179) and msmX 
(lp_0180), which share the same promoter with genes 
in the overlap of MalR and MdxR regulons. All genes 
in MalR+MdxR IM are involved in maltose/maltodextrin 

metabolism, which is the biological process regulated 
by MalR and MdxR (Muscariello et al., 2011; Ravcheev 
et al., 2013).

IMs also have the ability to identify genes with strong 
regulatory interactions with TFs from known regulons. 
For example, the Pearson correlation coefficients 
(PCCs) between TF genes and genes in the overlap 
(of the IM and regulon) exhibit higher distributions com-
pared to those of genes in the regulon for ArgR and 
CcpA (Figure  3B,C). Nevertheless, the overlap does 
not always show stronger regulatory interactions. For 
example, genes in PyrR IM do not have significantly 
higher PCCs with the PyrR gene than with the genes in 
PyrR regulon (Figure 3D).

Active iModulons in response to different 
growth conditions

In addition to the M matrix, the A matrix is another 
output of ICA decomposition, which reveals IM activi-
ties of L. plantarum under different growth conditions. 
In response to acid stress (in terms of pH decrease), 
4 active IMs are observed: Fur/LexA IM, CopR IM, 
McbR IM and PyrR IM (Figure  4A). IM activities of 
all 4 active IMs identified increase with the decrease 
of pH (Figure 4B-E). The gene expression levels of 
Fur (lp_3247) and LexA (lp_2063) both decrease with 
the decrease of pH, though the trends over three pH 
values are not consistently decreasing (Figure  4F). 

F I G U R E  3   Comparison between IMs and regulons of Lactiplantibacillus plantarum. (A) Left: The Venn diagram of MalR+MdxR IM (IM-
47) and Mdx, MalR regulons; Right: Genomic organization of genes in MalR+MdxR IM. (B–D) Comparison of PCCs of the gene expression 
levels of TF gene and genes in the overlap of IM and regulon (orange), regulon (green) and randomly sampled genes (grey) for (B) ArgR/
MelR, (C) CcpA and (D) PyrR IMs. *p-value < 0.05; ***p-value < 0.001; NS, not significant.

https://github.com/SizheQiu/LPiModulons/blob/main/data/IMdata/IM_annotation.csv
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Genes in Fur/LexA IM are related to the biosynthesis 
of exopolysaccharide (EPS), an important second-
ary metabolite (Welman & Maddox, 2003), including 
lp_0302 (extracellular transglycosylase), lp_0304 
(extracellular transglycosylase), lp_2809 (extracel-
lular protein of unknown function), lp_2810 (glycosyl 
hydrolase, family 25), lp_2845 (extracellular trans-
glycosylase, with LysM peptidoglycan binding do-
main), lp_3014 (extracellular transglycosylase, with 
LysM peptidoglycan binding domain) and lp_3050 
(extracellular transglycosylase, membrane-bound). 
Oppositely, the gene expression levels of CopR 
(lp_3365), McbR (lp_2772) and PyrR (lp_2704) in-
crease with the decrease of pH (Figure 4G–I). CopR, 
McbR and PyrR regulate copper homeostasis, 
amino acid metabolism and pyrimidine metabolism, 
respectively.

To further characterize acid-active IMs, regulatory 
networks are reconstructed as weighted correlation net-
works, and genomic organizations of genes in those IMs 
are further investigated. Fur/LexA IM, based on gene 
locations and the weighted correlation network, appear 
to contain two operons regulated by Fur and LexA sepa-
rately: lp_0302 and lp_0304 regulated by Fur; lp_2809 
and lp_2810 regulated by LexA (Figure  5A,B). The 
correlations between Fur and lp_0302, lp_0304 and 
lp_3014 are all negative, consistent with the previous 
finding that Fur is a repressor (Bagg & Neilands, 1987) 
(Figure  5A). The correlations between LexA and its 
regulated genes (i.e., lp_2809, lp_2810 and lp_3050) 
are positive, indicating that LexA functions as an acti-
vator to those genes (Figure 5A). For CopR, McbR and 
PyrR IMs, the correlations between TFs and regulated 
genes are all positive, suggesting that associated TFs 

F I G U R E  4   Identification of active IMs under the acidic condition. (A) The heatmap of IM activities at pH 6.2, 5.5 and 5.0. (B) IM 
activities of Fur/LexA IM at different pH values. (C) IM activities of CopR IM at different pH values. (D) IM activities of McbR IM at different 
pH values. (E) IM activities of PyrR IM at different pH values. (F) The expression levels of Fur (lp_3247) and LexA (lp_2063) at different pH 
values. (G) The expression levels of CopR (lp_3365) at different pH values. (H) The expression levels of McbR (lp_2772) at different pH 
values. (I) The expression levels of PyrR (lp_2704) at different pH values.
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all function as activators (Figure 5C,E,G). Unlike Fur/
LexA IM, member genes of those three IMs are mainly 
in single operons (Figure 5D,F,H).

On the other hand, the change of carbon sources can 
result in transcriptional regulations of carbohydrate metab-
olism (Deutscher, 2008), where GntR IM (IM-16) was found 
to be the most active IM in this study (Figure 6A). Genes in 
GntR IM mainly encode for the utilization of different car-
bon sources (e.g., pts9C (lp_0576), uptake of mannose; 
panD (lp_0579), aspartate 1-decarboxylase) and the bio-
synthesis of capsular polysaccharide (CPS) in the cell wall 
(e.g., cps1F (lp_1182), CPS biosynthesis protein CpsC). 
The biosynthesis of CPS is a part of primary metabolism 
(cellular biomass formation), different from that of EPS, be-
longing to secondary metabolism (Whitfield et al., 2020). 
GntR IM is annotated via motif comparison (Figure S2) 
due to the lack of regulon information, and hence, it is 
hard to determine which TF in the GntR family regulate 
genes in this IM. Top 4 GntR TF genes with highest PCCs 
with activities of GntR IM are lp_2615, lp_2651, lp_3633 
and lp_0563 (Figure 6B). The PCCs between TF genes 
and genes in GntR IM show that lp_2615 and lp_0563 
have significant negative correlations with genes in GntR 
IM, while lp_2651 and lp_3633 have significant positive 
correlations with genes in GntR IM (Figure 6C), which are 
consistent with the PCCs (Figure 6B). Possibly, genes in 
GntR IM are regulated by multiple GntR family TFs.

The trade-off between primary and 
secondary metabolism revealed by 
iModulon activities

Member genes of IMs derived in this study encode con-
nected reactions in one or several metabolic pathways, 

and those reactions were visualized as networks (see 
SI, 3.2) to investigate the links between IMs and cellu-
lar metabolism (Figure 7). For acid-active IMs identified 
in Section “Active iModulons in Response to Different 
Growth Conditions”, genes in McbR IM and PyrR IM 
encode for the biosynthesis of l-cysteine and uridine 
monophosphate, respectively (Figure 7A,B). EPS bio-
synthetic reactions encoded by genes in Fur/LexA IM 
and copper homeostasis encoded by genes in CopR 
IM are currently not included by model iBT721.

Next, 4 representative IMs, namely ArgR/MleR IM, 
CcpA IM, GntR IM and GalR/AraR IM, functionally an-
notated for amino acid metabolism, energy metabolism 
and carbohydrate metabolism, are selected to recon-
struct metabolic pathways encoded by their member 
genes (Figure  2G). ArgR/MleR IM member genes 
encode for the biosynthesis of N-Acetyl-l-glutamate 
5-semialdehyde from l-glutamine (Figure  7C). CcpA 
IM, as an IM for energy metabolism, contains a part of 
glycolysis, the conversion of glycerol to dihydroxyac-
etone phosphate and phosphorylation of nucleosides 
(Figure  7D). GntR IM member genes mainly encode 
for CPS biosynthesis, from the activation of monosac-
charides to the polymerization as explained in Section 
“Active iModulons in Response to Different Growth 
Conditions” (Figure  7E). Two important carbohydrate 
metabolic pathways, namely galactose metabolism and 
pentose phosphate pathway are contained by GalR/
AraR IM (Figure 7F).

In contrast to Fur/LexA IM controlling secondary 
metabolism (EPS biosynthesis induced by acid stress) 
as shown in Section “Active iModulons in Response 
to Different Growth Conditions”, ArgR/MleR, CcpA, 
GntR and GalR/AraR IMs (metabolic pathways visu-
alized in Figure  7C–F) regulate primary metabolism. 

F I G U R E  5   Characterization of genes in acidity-active IMs. (A) The weighted correlation network of Fur, LexA and genes in Fur/LexA 
IM (IM-1). (B) Gene weights and gene locations of Fur/LexA IM. (C) The weighted correlation network of CopR and genes in CopR IM (IM-
15). (D) Gene weights and gene locations of CopR IM. (E) The weighted correlation network of McbR and genes in McbR IM (IM-31). (F) 
Gene weights and gene locations of McbR IM. (G) The weighted correlation network of PyrR and genes in PyrR IM (IM-36). (H) Genomic 
organization of genes in PyrR IM (IM-36). Orange: overlap of IM and regulon; Green: genes only in the regulon. Edge weights in weighted 
correlation networks are scaled to PCCs. Red: positive correlation; Blue: negative correlation; Orange node: the gene in the IM; Purple 
node: the TF gene.
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To investigate the relationship between regulatory ac-
tivities of two branches of cellular metabolism, PCCs 
were computed for the activities of Fur/LexA IM and 4 
IMs for primary metabolism (Figure 8A–D). Significant 
inverse correlations between the activity of Fur/LexA 
IM and activities of ArgR/MleR IM, CcpA IM, GntR 
IM and GalR/AraR IM can be observed, suggesting 
a trade-off between the regulatory activities of sec-
ondary and primary metabolisms. Lactiplantibacillus 
plantarum in acidic media (e.g., bee extract (pH 4.7), 
tomato juice (pH 3.5), see Table S1) have higher Fur/
LexA IM activities and lower IM activities of the 4 IMs 
for primary metabolism than those in relatively neu-
tral media (e.g., faecal extract (pH 5.9), see Table S1). 
Therefore, the balance between regulations of EPS 
biosynthesis and primary metabolism in L. plantarum 

appears to significantly depend on the acidity of extra-
cellular environments.

To assess whether a trade-off relationship also ex-
ists between gene expression levels (in addition to 
regulatory activities) of secondary and primary metab-
olism, PCCs were computed between the total expres-
sion levels of genes in Fur/LexA IM (EPS biosynthetic 
genes) and (i) all glycolytic genes (central carbon ca-
tabolism) (Figure 8E) and (ii) genes in Translational IM 
(IM-19, ribosomal genes) (Figure 8F). An inverse cor-
relation between gene expression levels of EPS bio-
synthetic genes and glycolytic genes is also observed 
(Figure  8E), though the correlation is not statistically 
significant. For EPS biosynthetic genes versus ribo-
somal genes, there is no inverse correlation between 
them (Figure 8F).

F I G U R E  6   Identification of the most active IM in response to different carbon sources: GntR IM (IM-16). (A) The heatmap of 
IM activities with different carbon sources. FOS, fructooligosaccharides; GLC, glucose; HMO, human milk oligosaccharides; PAC1, 
proanthocyanidin fraction 1; PAC2, proanthocyanidin fraction 2; XG, xyloglucans. Detailed information can be found in Özcan et al. (2021). 
(B) The correlations between expression levels of 4 GntR family TF genes and GntR IM activities (p-value < 0.05). Red dashed line: linear fit. 
(C) The weighted correlation networks of 4 GntR family TF genes and genes in GntR IM (p-value < 0.05). Edge weights are scaled to PCCs. 
Red: positive correlation; Blue: negative correlation; Orange node: the gene in the IM; Purple node: the TF gene.
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DISCUSSION

ICA decomposition of L. plantarum transcriptomes 
allowed us to identify 45 nonempty IMs, 53.3% of 
which were annotated with associated TFs via either 
regulon enrichment analysis (13 IMs) or motif com-
parison (11 IMs). Annotated IMs revealed several 
regulatory interactions that have not been reported 
by known regulons of L. plantarum, for example, 
malS (lp_0179) and msmX (lp_0180) captured by 
MalR+MdxR IM (Section “Comparison between iMod-
ulons and Regulons”), which contributed to the recon-
struction of a more complete TRN. Furthermore, the 
Activity matrix (A matrix) output by ICA decomposi-
tion showed the change of regulatory activities of TFs 
in response to different growth conditions (e.g., acid 
stress, carbon source switch), leading to the identi-
fication and characterization of relevant active IMs 
(Section “Active iModulons in Response to Different 
Growth Conditions”). Lastly, the analysis of relation-
ships between IM activities unveiled a trade-off be-
tween secondary metabolism (acid stress-induced 
EPS biosynthesis) and primary metabolism in L. 
plantarum (Section “The Trade-off between Primary 
and Secondary Metabolism Revealed by iModulon 
Activities”), which might shed light on evolutionarily 
beneficial growth strategies.

Though IMs derived in this study provided regula-
tory information for the reconstruction of the TRN of L. 
plantarum, the performance of ICA decomposition was 

limited by the size of the expression matrix, compared 
to other ICA-based studies of bacterial transcriptomes 
(e.g., ICA of Corynebacterium glutamicum collected 
263 samples from 29 independent projects (Zhao 
et al., 2023)). Compared to well-studied organisms such 
as E. coli, the amount of existing transcriptomic data 
of L. plantarum on NCBI Gene Expression Omnibus 
(https://​www.​ncbi.​nlm.​nih.​gov/​geo/​) (Edgar et al., 2002) 
is much smaller. Also, due to the lack of operon annota-
tion in L. plantarum's genome, motif search for TF bind-
ing sites in this study used estimated promoter regions, 
which lowered the accuracy and might explain why 
some IMs were uncharacterized. It is also worth noting 
that the novel regulatory interactions shown by ICA are 
just ‘predicted’ instead of ‘confirmed’. To obtain a more 
valid conclusion, CHiP-seq experiments are needed to 
confirm those findings in future studies.

With regard to the relationship between second-
ary and primary metabolism, theoretical models 
such as Grime's competitor-stress-ruderal triangle 
(Bruggeman et  al.,  2023; Grime,  1977), Synthetic 
Chemostat Model (Panikov,  2021) and regulatory 
proteome allocation model (Qiu et  al.,  2023) all ad-
opted a resource allocation framework to capture the 
balance between two branches of cellular metab-
olism. Through the correlations between the activ-
ities of identified IMs, this study provided evidence 
to the theoretical models for secondary metabolism 
proposed in previous studies by showing the growth 
strategy of L. plantarum that adjusts regulatory 

F I G U R E  7   Metabolic pathways encoded by IM member genes. Reaction information (names, associated genes and IMs) can be found 
in Table S2. Reaction abbreviations are adopted from the BIGG database (http://​bigg.​ucsd.​edu/​) (King et al., 2016). (A) McbR IM. (B) PyrR 
IM. (C) ArgR/MleR IM. (D) CcpA IM. (E) GntR IM. (F) GalR/AraR IM.

https://www.ncbi.nlm.nih.gov/geo/
http://bigg.ucsd.edu/
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activities for different metabolic pathways to react to 
external stress signals (Section “The Trade-off be-
tween Primary and Secondary Metabolism Revealed 
by iModulon Activities”). However, the curated data in 
this study could not support a significant trade-off re-
lationship between gene expression levels of primary 
and secondary metabolism. More transcriptomic and 

proteomic profiling for L. plantarum under different 
growth conditions is needed to quantitatively study 
the balance between stress and cellular growth.

To conclude, this study provided the in-silico TRN 
reconstruction for L. plantarum in a top-down manner 
and unveiled its growth strategy to balance primary 
and secondary metabolism with IM activities, in spite 

F I G U R E  8   The relationships between secondary and primary metabolisms for Lactiplantibacillus plantarum cultivated in different 
growth conditions. (A) Fur/LexA IM activity versus GntR IM activity. (B) Fur/LexA IM activity versus GalR/AraR IM activity. (C) Fur/LexA IM 
activity versus ArgR/MleR IM activity. (D) Fur/LexA IM activity versus CcpA IM activity. (E) The total expression levels (log RPKM) of central 
catabolic genes and EPS biosynthetic genes (genes in Fur/LexA IM). (F) The total expression levels (log RPKM) of ribosomal genes (genes 
in Translation IM (IM-19)) and EPS biosynthetic genes. BEE, bee extract; CB, cheese broth; DE, Drosophila sp. extract; FE, faecal extract; 
LB16_MRS: L. plantarum LB16 in MRS broth; OE, olive extract; PJ, pineapple juice; TJ, tomato juice; WCFS1_MRS: L. plantarum WCFS1 in 
MRS broth; WFH, wheat flour hydrolysate.
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of the limitations discussed above. With the growing 
amount of gene expression data of L. plantarum as 
expected, the quality of IMs derived by ICA will be im-
proved, thus enabling researchers to acquire a better 
understanding of the underlying rationale of its cellu-
lar activities.
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