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Experimentally calibrated models to recover pressures and temperatures of magmas are widely used in igneous petrology. However,
large errors, especially in barometry, limit the capacity of these models to resolve the architecture of crustal igneous systems. Here,
we apply machine learning to a large experimental database to calibrate new regression models that recover P–T of magmas based
on melt composition plus associated phase assemblage. The method is applicable to compositions from basalt to rhyolite, pressures
from 0.2 to 15 kbar, and temperatures of 675◦C to 1400◦C. Testing and optimisation of the model with a filter that removes estimates
with standard deviation above the 50th percentile show that pressures can be recovered with root-mean-square-error (RMSE) of 1.1
to 1.3 kbar and errors on temperature estimates of 21◦C. Our findings demonstrate that, given constraints on the coexisting mineral
assemblage, melt chemistry is a reliable recorder of magmatic variables. This is a consequence of the relatively low thermodynamic
variance of natural magma compositions despite their relatively large number of constituent oxide components. We apply our model
to two contrasting cases with well-constrained geophysical information: Mount St. Helens volcano (USA), and Askja caldera in Iceland.
Dacite whole-rocks from Mount St Helens erupted 1980 to 1986, inferred to represent liquids extracted from cpx–hbl–opx–plag–mt–ilm
mush, yield melt extraction source pressures of 5.1 to 6.7 kbar in excellent agreement with geophysical constraints. Melt inclusions
and matrix glasses record lower pressures (0.7–3.8 kbar), consistent with magma crystallisation within the upper reaches of the imaged
geophysical anomaly and during ascent. Magma reservoir depth estimates for historical eruptions from Askja match the location of
seismic wave speed anomalies. Vp/Vs anomalies at 5 to 10 km depth correspond to hot (∼990◦C) rhyolite source regions, while basaltic
magmas (∼1120◦C) were stored at 7 to 17 km depth under the caldera. These examples illustrate how our model can link petrology and
geophysics to better constrain the architecture of volcanic feeding systems. Our model (MagMaTaB) is accessible through a user-friendly
web application (https://igdrasil.shinyapps.io/MagmaTaBv4/).
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INTRODUCTION
Advances in igneous petrology and volcanology depend critically
on our ability to determine the pressures (P), temperatures (T),
and water contents of magmas (Blundy & Cashman, 2008; Putirka,
2017). By understanding these parameters, petrologists can gain
insights into a wide range of problems, including the construc-
tion and evolution of the crust and mantle (Tibaldi et al., 2013;
Jagoutz, 2014; Plank & Forsyth, 2016; Till, 2017; Ducea et al.,
2021), and the pre-eruptive storage and transport properties of
magmas, which underpin the characterisation of the architecture
of igneous plumbing systems (Edmonds et al., 2019; Maclennan,
2019; Nazzareni et al., 2020; Giordano & Caricchi, 2022). P–T con-
ditions are at the core of establishing meaningful links between
petrological processes and geophysical monitoring of active vol-
canoes (Weber & Castro, 2017; Magee et al., 2018; Pritchard et al.,
2018; Halldórsson et al., 2022; Dayton et al., 2023) and set funda-
mental controls on eruption dynamics (Ruprecht & Bachmann,
2010; Andújar & Scaillet, 2012; Cassidy et al., 2018; Popa et al.,
2021). In addition, diffusion studies are heavily dependent on
temperature information to reconstruct timescales of magmatic
processes (Petrone et al., 2016; Weber et al., 2019; Costa et al.,
2020; Chakraborty & Dohmen, 2022). A thorough understanding of

magmatic variables is, therefore, essential for progress in a variety
of petrological fields.

P–T conditions of magmas can be determined by a range of
methods that rely on equilibrium exchange reactions between
different mineral phases or minerals and melts (e.g. Blundy &
Cashman, 2008; Putirka, 2008). Although temperatures can be
recovered with fairly small errors (typically better than ±30–
60◦C; e.g. Holland & Blundy, 1994; Ghiorso & Evans, 2008; Putirka,
2008; Neave & Putirka, 2017), pressure estimates struggle with
uncertainties that lie at the very limit of usefulness. For example,
the frequently used clinopyroxene–melt (eqn. 32a of Putirka, 2008)
and amphibole–melt barometers (Putirka, 2016) show respective
errors of at least 3 and 4 kbar, corresponding to a depth uncer-
tainty of approximately 10 to 15 km, which is insufficient to
resolve the structure of crustal magmatic systems. This may
be attributed to analytical and experimental challenges (Wieser
et al., 2023a), low P-dependency of the components used in the
regression (Putirka, 2016), or the choice of regression strategy
(Higgins et al., 2022).

An alternative approach is to obtain magma storage conditions
from the major element chemistry of the melt phase in
equilibrium with a particular mineral assemblage. In principle,

D
ow

nloaded from
 https://academ

ic.oup.com
/petrology/article/65/4/egae020/7617762 by guest on 30 April 2024

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

 8206 15817 a 8206 15817 a
 
mailto:gregor.weber@bristol.ac.uk
mailto:gregor.weber@bristol.ac.uk
mailto:gregor.weber@bristol.ac.uk
mailto:gregor.weber@bristol.ac.uk
https://igdrasil.shinyapps.io/MagmaTaBv4/
https://igdrasil.shinyapps.io/MagmaTaBv4/
https://igdrasil.shinyapps.io/MagmaTaBv4/
https://igdrasil.shinyapps.io/MagmaTaBv4/
https://igdrasil.shinyapps.io/MagmaTaBv4/


2 | Journal of Petrology, 2024, Vol. 65, No. 4

hot zone
crystal mush

bulk-rock 
records

P-T

shallow crust

modification

melt extraction
melt extraction

eruption

mush buffered 
melt

re-equilibrated 
magma

glass
records

P-T

eruption

magma source

magma storage

Fig. 1. Conceptual sketch illustrating different types of P–T information
stored in volcanic materials. Melts are extracted from crystal mushes
(hot zones) and buffered by the volumetrically more dominant mineral
assemblage, which will vary as a function of pressure and temperature.
If such liquids are erupted without modification, for example through
magma mixing or crystal accumulation, then the bulk-rock composition
can be used to recover extraction source conditions. Crystallisation
conditions of magmas that have been modified and re-equilibrated can
be reconstructed from the melt (glass) or melt and mineral phase
assemblage pairs. Crystallisation conditions may equate to pre-eruptive
storage conditions if additional time information is available.

volcanic glass chemistry can provide P–T conditions through the
shift of cotectic lines for quartz- and feldspar-saturated melts
(Blundy & Cashman, 2001; Gualda & Ghiorso, 2014), or for mafic
liquids saturated with olivine, plagioclase, and clinopyroxene
(Yang et al., 1996; Hartley et al., 2013). In crystal-rich mushes, of
the type that have been shown geophysically to underlie volcanic
areas worldwide, melt chemistry is buffered by the volumetrically
dominant mineral assemblage, suggesting the possibility to
constrain extraction source conditions in terms of the P and T
at which a melt is multiply-saturated at its liquidus (Blundy,
2022). This approach (Fig. 1) requires only that the melt originated
in a multi-mineral mush at depth and remained closed, except
for loss of volatiles, during subsequent ascent, crystallisation
and pre-eruptive storage (Gualda et al., 2019; Blundy, 2022).
Blundy (2022) used this method to develop a thermobarometer
and hygrometer for volatile-saturated melts in equilibrium with
the common mineral assemblage clinopyroxene–hornblende–
orthopyroxene–magnetite–plagioclase–ilmenite (CHOMPI) using
published phase equilibrium experiments to calibrate the model.
As magmas ascend from their source they may degas and cool,
crystallising in the process. This modifies the composition of the
melt phase to reflect the conditions under which crystallisation
and degassing occurred (Fig. 1). These may, for example, equate
to immediate pre-eruptive storage conditions or to an integrated
polybaric ascent path. P–T information obtained from these melts,
for example, as melt inclusions or matrix glasses, should record
shallower depths than the original source. Unless crystallisation
during ascent leads to physical separation of crystals and melt,
the bulk composition of the system, excepting volatiles, will
remain unchanged and thus preserve information about the
magma source depth.

Although both source extraction and subsequent storage con-
ditions can be successfully determined by melt thermobarometry,
the calibration range of current models is relatively limited. The

large number of available experiments and recent advances in
machine learning make it now possible to test if P–T recovery from
melts can be generalised over a wider range of phase stabilities
and melt compositions. Here, we build a large compilation of
phase equilibrium experiments and calibrate a machine learning
model to predict P–T of crustal magmas from the major element
chemistry of melts and their associated mineral phase assem-
blage. We assess model errors based on experimental data not
used in the calibration and test different optimisation strategies
to obtain the most accurate results. Finally, the model is applied
to two case studies of volcanic systems that have well constrained
geophysical tomography and independent thermobarometric
estimates. Our study introduces an unprecedented methodology,
that for the first time, leverages melt chemistry and phase assem-
blage to estimate P–T conditions, encompassing the full spectrum
of igneous compositions, from basaltic to rhyolitic systems.

RATIONALE
Our strategy to use the major element chemistry of the molten
phase to serve as a recorder of intensive magmatic variables
across a wide range of the compositional space, merits further
theoretical reasoning. In this section, we postulate that this
approach is consistent with basic thermodynamics (Gibbs
Phase Rule), if the number of principal components that vary
independently is considered to explain the variance of the system.

The use of mineral–melt assemblages to constrain pressure
and temperature, such as that espoused by Blundy (2022) or
embedded in the amphibole solidus barometer of Mutch et al.
(2016), has its roots in the Gibbs Phase Rule, Φ + F = C + 2, where
Φ is the number of phases, C the number of components and
F the number of degrees of freedom. To limit the latter to
the two variables of interest, e.g. pressure and temperature,
requires co-existence of a relatively large number of phases. If
we consider magmas to be a ten-component mix of major oxide
species, SiO2–Al2O3–TiO2–Fe2O3–FeO–MgO–CaO–Na2O–K2O–H2O,
then eight minerals need to coexist with melt and fluid to
generate a sufficiently low degree of variance, e.g. P and T. If
fO2 is known, then Fe2O3/FeO ratio can be constrained, reducing
the number of mineral phases to seven. Blundy (2022) settled
on six mineral phases (CHOMPI, above), while the amphibole
barometer requires seven; amphibole–biotite–plagioclase–alkali
feldspar–quartz–magnetite–ilmenite (or titanite). Ensuring that so
many minerals are in equilibrium with a given melt is an exacting
requirement and, in the case of volcanic rocks that originated at
depth in the presence of minerals that may no longer be stable as
phenocrysts, difficult to prove.

However, application of the Gibbs Phase Rule to natural mag-
mas overlooks the fact that not all 10 oxide components are
independent. In fact, natural terrestrial magmas inhabit only a
very small volume of the potential compositional space due to the
strong correlations between components in the relatively limited
number of common igneous minerals. A glance at any Harker plot
of igneous rocks makes this important feature readily apparent.
Thus, natural magmas have a much smaller number of effective
components than their complex compositions would suggest. We
can demonstrate this fact by performing Principal Components
Analysis (PCA) on a large body of igneous rocks. To calculate
the number of independent components necessary to explain
the total variation in 8-dimensional major element, anhydrous
oxide space (SiO2–Al2O3–TiO2–FeO–MgO–CaO–Na2O–K2O), we car-
ried out a PCA on a global compilation of arc magmas (Fig. 2). PCA
reduces the dimensionality of datasets by linearly transforming
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Fig. 2. Principal components analysis of arc magma bulk-rock and glass compositions. a) Cross plot of principal component (PC) 1 versus PC2 with
loadings shown as red vectors. b) Matrix of loading scores for different major element oxides and PCs. Darker colours indicate an increasing
importance of the particular oxide on the PCs. c) Cumulative percentage of variance explained by the different PCs. 96% of variance is explained by
just four components.

the data into a new coordinate system, using Eigenvectors and
the covariance matrix (e.g. Aitchison, 1984). As shown in Fig. 2a,
the first principal component (PC1) is most strongly impacted by
the loadings (eigenvectors ∗ (eigenvalues)1/2) of SiO2, CaO, and FeO,
explaining 69% of the data. PC2 is most significantly affected by
Na2O, describing a further 12% of the total variance. PC3 (9%)
is mainly influenced by TiO2 and Al2O3, while K2O provides the
strongest contribution to PC4 (6%) (Fig. 2b). A cumulative plot
(Fig. 2c) shows that although seven PCs are required to explain
100% of the data, just four PCs encompass 96% of the data.
Considering four components and a typical phase assemblage
(e.g. clinopyroxene–orthopyroxene–olivine–oxide–melt-fluid), the
system would be invariant (F = 0). This finding introduces a novel
perspective for thermobarometry. We suggest that common mag-
mas have fewer effective components than previously assumed
due to strong covariation between major element oxides, which
are not truly independent of each other. This insight not only
challenges conventional wisdom but also opens the door to cali-
brating models using melt chemistry over a much broader range
of compositional space than previously considered.

APPLICATION OF RANDOM FOREST
MACHINE LEARNING IN
THERMOBAROMETRY
Machine learning (ML) is defined as the ability of a computer
algorithm to learn from examples, existing in the form of data,
and leverage this experience to build statistical models that make
predictions on new observations (Zhou, 2021). ML is widely used
for pattern or cluster recognition in unlabelled data, as well
as for classification and regression tasks on labelled datasets.
Among the latter class of models, also called supervised learning,
a wide range of algorithms have been developed, with particular
strengths and weaknesses for different types of data and applica-
tions (Mohammed et al., 2016).

One of the most flexible and widely used supervised learning
algorithms is random forests (Breiman, 2001). In principle,
this method is based on aggregating re-sampled hierarchical
flowcharts (decision trees) to minimise group heterogeneity
(Fig. 3). As shown in Fig. 3a, decision trees consist of an initial root
node, branches, internal nodes and leaf nodes. Starting from the
root node, a tree is built by splitting the data into compartments
(internal nodes) based on data features that correspond to the
independent variables in the model. Leaf nodes then represent
the final outcomes for different possible paths through the tree
structure. In a random forest, a large number of decision trees

is grown through bootstrapping (sampling with replacement) of
the training (calibration) dataset and predictions are made by
averaging the outcomes of all trees (Fig. 3b).

This procedure leads to much improved accuracy of random
forest models compared to single decision trees (Zhou, 2021). The
learning process in random forest models can be tuned through
a set of hyperparameters, such as the number of trees in the
model or the number of variables that are randomly sampled
as candidates for each split. In conventional random forests,
split-point values for each feature variable, defining a tree node,
can be calculated based on different mathematical criteria. A
variation of this method, the extremely randomized trees (ERT)
algorithm (Geurts et al., 2006), involves randomizing the choice
of variables and split points that define each tree node, which
is computationally more efficient and can improve accuracy in
some cases.

The best practice for assessing the performance of both ML
and conventional regression models involves testing them on a
portion of the data, typically around 15% to 20%, which was
not utilized during the model training process (as illustrated in
Fig. 3c). This assessment usually entails splitting the data into
training and testing subsets through a random process, which is
repeated multiple times to gauge the impact of various random-
ized combinations. However, it is essential to acknowledge that
this approach can, in certain instances, result in an underesti-
mation of prediction errors. This underestimation may occur due
to interdependencies in the data structure that can inadvertently
transfer from the training to the testing data (Roberts et al., 2017).

Alternatively, models can be evaluated by dividing the data into
training and testing subsets while preserving the integrity of data
groups, such as entire experimental studies. This approach can
lead to a more robust assessment of prediction errors (Roberts
et al., 2017). Nonetheless, it is worth noting that this testing
strategy may, in some cases, underestimate a model’s predictive
capacity, particularly when dealing with large group sizes, such
as extensive experimental studies. Consequently, the choice of
model testing strategies should be made with careful consider-
ation of the specific context and dataset characteristics.

The accuracy of model predictions is typically assessed using
the root-mean-square-error (RMSE), defined as:

RMSE =
√√√√

n∑
i=1

(
yi − ŷi

)2

n

where ŷ is the predicted value, y is the observed value, and n
is the number of observations. It is important to note that the
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Fig. 3. Methodological summary of the machine learning method (ERT random forest) used for regression. a) Example structure of a decision tree
using mineral assemblage and major element oxides to predict pressure. The decision tree is comprised of a root node (purple) that is split based on a
series of yes and no questions regarding the regression variables into internal nodes (blue) and finally leaf nodes (green). Left and right branches
correspond to yes and no respectively. Each node shows the predicted value (P kbar – top number), and the percentage of observations in the node
(bottom number). The green branches illustrate a prediction path and the dark green leaf node the predicted pressure. b) The predictions of a large
number of decision trees (typically ∼500) are ensembled and averaged without weighting. c) We divided the experimental data into two parts: one for
calibrating the model (training), and the other for testing the model’s performance (testing). This was carried out in two different ways. First, we
randomly split the data into training and testing sets, making sure each split keeps the same proportions of the target variable (P or T). This process
was iterated 100 times (here termed: random split testing). Second, we divided the data while making sure that discrete experimental studies stayed
together in either the training or testing set (grouped testing). This validation type was carried out with 3 different splits.

RMSE is sensitive to the range of observation (e.g. 0–15 kbar
versus 0–30 kbar), which must be considered when comparing
the performance of different models. Conversely, classification
models with categorical prediction variables are evaluated using
a contingency table (or confusion matrix) that compares abso-
lute numbers of predicted and true conditions (i.e. true positives
(TP), false positives (FP), true negatives (TN), and false negatives
(FN)). Commonly used performance measures for such models
include the accuracy ((TP + TN) / (TP + TN + FN + FP)), precision
(TP / (TP + FP)), sensitivity, i.e. true positive rate = TP / (TP + FN)),
and specificity, i.e. true negative rate = TN/ (TN + FP)).

Several random forest-type models have been calibrated
recently to predict pressures and temperatures from mineral
chemistry and mineral–melt pairs (Petrelli et al., 2020; Thomson
et al., 2021; Higgins et al., 2022; Jorgenson et al., 2022; Li & Zhang,
2022). In the first of these studies, Petrelli et al., (2020) calibrated
cpx and cpx–melt thermobarometers using a wide range of
different ML algorithms and obtained best performance metrics
for an ERT algorithm. This model was subsequently optimised
by Jorgenson et al. (2022), showing that removing outcomes
with high variance in the aggregated trees can improve the
accuracy of model predictions. A recent calibration of a random
forest amphibole barometer (Higgins et al., 2022) showed that
reliable magma equilibration depths can be obtained using
the often-maligned hornblende barometer, suggesting that
machine learning methods can uncover patterns in data that
are not captured by conventional linear regression approaches
in thermobarometry. The adaptability of ML methods in this
context is further exemplified by the successful calibration of
unconventional mineral thermobarometers such as biotite (Li &
Zhang, 2022).

METHODOLOGY
Data compilation
To calibrate thermobarometric models based on melt chemistry
and associated mineral assemblages, we compiled 2545 phase
equilibrium experiments from 127 published studies. The library
of experimental phase relations (LEPR; Hirschmann et al., 2008)
was used as a starting point and augmented by an extensive
literature search. The latter comprises 64% of the final database.
Simple synthetic magma compositions, as well as non-terrestrial
and alkaline magmas, were not considered in data mining and
removed from the LEPR compilation. This choice was made to
ensure that the compositions considered lie within the reduced
component space of terrestrial magmas shown in Fig. 2. To ensure
comparability of different melts, major element oxides (i.e. SiO2,
TiO2, Al2O3, FeOt, MgO, CaO, Na2O, K2O) were normalised to 100%
anhydrous. We do not consider P2O5 and MnO in the normalisa-
tion and calibration of the model given that several experimental
studies did not report one or both of these oxides, which would
hamper the intercomparison of different melts. There is a high
degree of variability in the literature when it comes to reporting
stable mineral phase relations, especially with regard to accessory
phases and the classification of Fe-Ti oxides. Therefore, we focus
on 10 major mineral groups (ol, opx, cpx, plag, amph, bt, ksp,
qtz, ox), whose stability is assigned to each experimental melt.
In this scheme, oxide (ox) saturation is allocated to a melt if
the experiment contained either magnetite, ilmenite or both.
Experiments at one atmosphere pressure were not considered in
the compilation, as they frequently show rapid disequilibrium
crystal growth that may bias melt compositions (Mollo et al., 2010;
Ziberna et al., 2017). To assess the impact of analytical uncertainty
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on model performance, we further compiled 368 experimental
melts that provided errors for each analyte. The full experimental
data compilation used in this study is available in the electronic
supplementary materials.

Extremely randomised trees—Random Forest
algorithm
Random forest models were setup in the open-source program-
ming language R, using the ‘ranger’ package, which provides a fast
and flexible implementation suited for high-dimensional data
(Wright & Ziegler, 2017).

To evaluate the model performance and compare the results of
different testing strategies, we carried out two approaches:

1. Random Splitting with Iteration. In the first approach, we ran-
domly partitioned the compilation of experiments into training
and testing subsets, a process repeated 100 times (as depicted
in Fig. 3c). To ensure that prediction variables (P–T) were evenly
represented in both datasets, we implemented stratified random
sampling. This involved dividing each prediction variable into
quartiles and resampling them separately.

2. Grouped Splitting. The second approach involved dividing the
experimental data into training and testing subsets while main-
taining the integrity of complete experimental studies. We took
special care to ensure that the testing subset covered the entire
range of P–T conditions and, when possible, favoured studies with
a lower number of experiments. This testing method was repeated
three times.

The models were trained and tested using normalized (100%
anhydrous) major element oxides (SiO2, TiO2, Al2O3, FeOt,
MgO, CaO, Na2O, K2O) in weight percent and the stability of
specific mineral phases (olivine, orthopyroxene, clinopyroxene,
plagioclase, amphibole, biotite, potassium feldspar, quartz,
oxides) within each melt as input features. The stability of
specific mineral phases was encoded as binary variables (1 for
stable, 0 for unstable). Training of the model to predict P or
T involved recursively splitting the experimental dataset into
smaller compartments (nodes) based on randomly selected
feature values (as illustrated in Fig. 3a). This process generated
decision trees, where each node represented a specific subset of
data defined by particular sets of conditions. Random Forests
were ensembled from multiple decision trees (n = 500), each
incorporating unique randomization due to feature selection and
data sampling. Predictions of P–T conditions were then computed
by passing a composition+mineral assemblage pair through all
decision trees. The final P–T prediction is then computed by
averaging the predictions of all decision trees for a particular
composition+mineral assemblage pair (average vote, Fig. 3b).

After initial performance testing, in accordance with previous
work (Petrelli et al., 2020; Li & Zhang, 2022), best results were con-
sistently achieved using an extremely randomised trees approach
to random forests (Geurts et al., 2006). We, therefore, use an
implementation of this algorithm (ranger: splitrule = ‘extraTrees’)
throughout this study. Sampling was carried out over the entire
training or testing dataset without replacement, and nodes were
split by choosing fully randomised split-points and variables
(Geurts et al., 2006). The number of random splits to consider for
each candidate splitting variable was set to 10. Hyperparameter
tuning did not significantly impact the results and was discarded,
which is in-line with previous studies using igneous geochemical
data (Petrelli et al., 2020; Higgins et al., 2022; Jorgenson et al., 2022).

To evaluate the effectiveness of our models in retrieving infor-
mation on mineral saturation conditions, we further setup three
distinct sets of extremely randomized tree models using only

melt composition as independent variables. These models serve
the following purposes: 1) A classification algorithm designed to
forecast the minimum count of saturated mineral phases based
on melt composition. 2) A model with the objective of identifying
the specific saturated phase assemblage, such as plag-opx-amph-
ox. 3) A regression model tasked with estimating the quantity of
saturated minerals based on liquid chemistry. These model sets
were established to gauge the models’ proficiency in handling
mineral saturation information.

During evaluation we identified a systematic bias arising from
the uneven distribution of training data within the overall P–T
space. This bias manifested as overpredictions at lower pressures
and underpredictions at higher pressures. To address this issue,
we implemented the method proposed by Zhang & Lu (2012),
employing a two-step random forest modelling approach using
the parameters as previously described. Following the creation of
the primary model, we calculated residuals by quantifying the
disparities between actual and predicted values on the training
dataset. These residuals served as the dependent variable in the
subsequent model, utilizing the observed values of the target
variable (P or T) and the variables of the initial model as inde-
pendent predictors. For new or testing datasets we employed the
first model to estimate P or T, and the second model to predict
the residuals. These predicted residuals were then added to the
initial model’s output to yield the corrected value. Optimal results
were achieved by applying an empirical scaling factor of 2 to the
residuals, which was used throughout this study.

The R code used in this study is available in the supplementary
materials. A user-friendly web application ‘MagMaTaB’ was devel-
oped using the R package ‘shiny’ and can be accessed at: https://
igdrasil.shinyapps.io/MagmaTaBv4/

COMPILED VARIABLE SPACE
The compiled experimental melts span a wide geochemical spec-
trum from basalt to rhyolite (Table 1). For the subsequent cali-
bration and application of thermobarometric models, it is crucial
to establish whether these melts are representative of natural
magma compositions in different tectonic settings. To accom-
plish this, we examine their variation relative to bulk-rock and
glass compositions that have been pre-compiled in the GEOROC
database for arc magmas (n = 24 593), East African Rift (n = 8546),
and Iceland (n = 7696). As shown in Fig. 4, the variation of different
major element oxides shows that our compilation is consistent
with the global arc magma array. Interquartile ranges (IQRs), as
well as extreme values (i.e. upper and lower boxplot whiskers,
Fig. 4) fully capture the variation. Rare arc magmas with excep-
tionally high MgO (>25 wt %), K2O (>7 wt %), CaO (>18 wt %), or
low Al2O3 (<5 wt %) were not included in the compiled dataset.
Icelandic magmas are generally well represented by our compila-
tion but can have higher TiO2 (IQR, 1.3–2.6 wt %) and FeO contents
(IQR, 10.1–14.4 wt %), as well as lower Al2O3 (IQR, 13.3–14.8 wt %),
and are, therefore, under-represented by the experimental melts
(IQRTiO2, 0.4–1.0 wt %; IQRFeO, 2.6–8.8 wt %; IQRAl2O3, 14.9–18.0 wt
%). Considerable overlap exists with East African Rift magmas, but
the variation in several major element oxides such as Al2O3, CaO,
Na2O, and K2O is greater in natural samples compared to the com-
piled dataset (Fig. 4). In summary, the compiled major element
oxide space of experimental melts overlaps widely with natural
rock compositions of different geotectonic association, showing
greatest agreement with arc magmas. The dataset captures large
parts of the compositional space for rift settings and Iceland, but
the compilation and, therefore, the subsequent model calibration
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Table 1: Optimization results of the meltassemblage and melt-only models

Statistic Temperature Pressure SiO2 TiO2 Al2O3 FeO CaO MgO K2O Na2O

(◦C) (kbar) wt.% wt.% wt.% wt.% wt.% wt.% wt.% wt.%
Min 675 0.2 44.6 0.0 5.6 0.3 0.1 0.0 0.0 0.2
10th Percentile 850 1.1 49.0 0.2 13.5 1.4 1.6 0.3 0.1 1.8
1st Quartile 900 2.0 51.1 0.3 14.7 2.5 2.9 0.7 0.4 2.5
Median 1020 4.1 58.7 0.6 16.5 6.2 6.7 3.2 1.4 3.4
Mean 1038 5.6 60.6 0.8 16.4 6.1 6.7 4.3 1.7 3.8
3rd Quartile 1160 10.0 70.7 1.0 18.0 8.8 10.1 6.6 2.7 4.3
90th Percentile 1280 12.0 74.3 1.4 19.3 10.7 12.0 10.1 3.9 4.9
Max 1400 15.0 79.9 5.4 24.1 20.9 17.5 19.5 6.9 7.3

Major element oxides normalised to 100% anhydrous without MnO and P2O5 Total number of experiments in the compilation n = 2639
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Fig. 4. Boxplots of major element oxides for compiled experimental melts (n = 2243; orange), compared to bulk-rock and glass compositions from
subduction zones globally (Arcs; n = 24 593; grey), Iceland (n = 7696; blue), and the East African Rift (n = 8546; red). All natural rock compositions have
been taken from precompiled files of the GEOROC database, were filtered between 44–80 wt.% SiO2 and normalised to 100% anhydrous without MnO
and P2O5. The Subduction Zones compilation include the: Aegean, Aleutian, Andean, Cascades, Honshu, Izu-Bonin, Kamchatka, Kurile, Lesser Antilles,
Mariana, Mexican, New Zealand, and Sunda Arcs.

should not be applied to compositions outside the range (Min-
Max) presented in Table 1 (see also Fig. S5).

Focussing on the comparison with arc magmas, Harker dia-
grams using SiO2 (wt.%) as an index of magma differentiation,
show that the compiled experimental melts are fully consis-
tent with geochemical trends of magma evolution (Fig. 5a–f). The
experimental melts span a continuum of compositions, follow-
ing the curvilinear variation of TiO2, Al2O3, and MgO with SiO2

(Fig. 5b–d), along with linear behaviour of CaO, FeO, and alkalis
(Fig. 5a, e–f). Minor deviations from the predominant trends are
observed for intermediate magmas (SiO2 ∼ 60 wt %) with MgO
>7 wt % and andesites with Al2O3 < 13 wt %, which are not
captured by the experiments (Fig. 5c, d). Evolutionary trends in

major element geochemistry for Icelandic magmas show overall
equivalent behaviour (Fig. S1). The most striking differences are
higher TiO2 (>3 wt %) in mafic magmas, lower Al2O3 (<14 wt
%) in intermediate melts, and generally higher FeO contents of
Icelandic melts, which are described by a fairly low number
density of experimental melts. East African Rift magmas display a
much wider variability in geochemical behaviour, such as alkaline
differentiation trends, or non-linear SiO2–CaO variation, that is
only partially captured in the experimental dataset (Fig. S2). As
shown using colour-coding in Fig. 5, experimental magma evo-
lution trends record a temperature control that, as expected,
follows magma differentiation from basalt to rhyolite, but also
tracks more subtle, stratified variation of temperature and mafic
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Fig. 5. Major element oxide (wt.%) versus SiO2 (wt.%) in compiled experimental melts colour-coded for temperature (◦C) compared to bulk-rock and
glass compositions for global arc magmas (grey dots) from the GEOROC database. a) Total alkalis (K2O + Na2O) with compositional fields after Le
Maitre et al. (2002). b) TiO2, c) Al2O3, d) MgO, e) CaO, and f) FeO. All compositions were normalised to 100% anhydrous.

compositions such as low TiO2 (<0.5 wt %) and high MgO (>10 wt
%) for melt temperatures >1200◦C.

The compiled experimental melts cover a temperature range
of 675◦C to 1400◦C and pressures between 0.2 and 15 kbar (Fig. 6;
Table 1). Temperature is distributed fairly symmetrically within
this range, whereas pressures are right (positively) skewed. Exper-
imental pressures below 2.5 kbar, typically the range that can be
reached in cold-seal pressure vessels, comprise 41% of the data.
Considering bins of 2 kbar, the P range between 2.5 and 10 kbar
is typically covered by >200 to 400 experiments. The range from
10 to 15 kbar is covered by 676 experiments. As shown in Fig. 6a,
low T data are sparse for high-pressure (>10 kbar) experiments,
while high-T melts (>1200◦C) are distributed overall uniformly
with pressure. Temperature conditions between 800◦C and 1200◦C
are well represented over the entire P-range. Phase relations in the
compilation, considering only major minerals (ol, opx, cpx, plag,
amph, bt, ksp, qtz, gt, ox), comprise a total number of 124 different
assemblages. The most common mineral assemblages are broadly
gabbroic: opx–cpx–plag–ox (n = 208), ol–cpx–plag (n = 161), plag–
amph–ox (n = 109), and ol–cpx–plag–ox (n = 104). Figure 6 gives
a good indication of the P–T regions that need to be explored
experimentally to provide better calibration coverage. The full list
of assemblages and their frequencies of occurrence is provided
in Fig. S3.

RESULTS
Model calibration and validation
The melt-assemblage model recovers experimental pressures
with RMSE of 1.7 kbar on random split testing data and 1.9 kbar
on grouped testing data (average of three splits) not used in the

Fig. 6. Pressure (kbar) and temperature (◦C) conditions of melts in the
compilation of phase equilibrium experiments. Colour coding reflects
the SiO2 (wt.%) of the melt.

calibration (Fig. 7a, b). Temperature is predicted with RMSE of
36◦C and 42◦C on random and grouped testing data, respectively
(Fig. 7c, d). Error distributions, quantified as difference between
predicted and experimental variable (P or T), show modal
values and medians centred at zero in each case, indicating
a high accuracy of the predictions. The error distributions are
overall symmetrical for T but show a slight tendency towards
overprediction at low values and underprediction at high values
for P.
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Fig. 7. Testing results of the melt+assemblage model for recovery of P and T. Two different testing approaches are shown: random split test data are
presented as grey dots; grouped testing data (where entire experimental studies are kept together) are shown in black. Model performance metrics
RMSE and R2 (Pearson’s correlation coefficient) are shown for the testing results, with number of test data denoted by n. Black solid lines illustrate a
1:1 relation. a) Experimental versus predicted pressure (kbar) for random split testing. b) Experimental versus predicted pressure (kbar) for grouped
split testing. c) Experimental versus predicted temperature (◦C) for random split testing. d) Experimental versus predicted temperature (◦C) for
grouped split testing.

We conducted an additional analysis using the algorithm,
wherein a model was tested to predict P–T only based on
melt composition, without specifying the associated mineral
assemblage. However, this approach generates consistently higher
RMSE values on testing data for each variable (Fig. 8). Pressures
were recovered on randomly split and grouped testing data with
RMSE of 2.3 and 2.2 kbar (Fig. 8a, b), and temperatures with RMSE
of 41◦C and 44◦C (Fig. 8c, d). The shapes of error distributions
are akin to those of the melt-assemblage model (Fig 8b, d, f).
Despite, the systematically higher uncertainties of the melt-only
model compared to the melt-assemblage model, the disparities
are only moderately worse, testifying to the predictive power of
the liquid phase composition. To adopt a conservative approach
with generally lower prediction uncertainties, we focus solely on
the melt+assemblage model for predicting P–T conditions.

In addition to P–T recovery, we set up models to constrain min-
eral phase saturation conditions based on melt chemistry, given
that such information may be useful in model optimisation and
for the general theoretical framework of liquid thermobarometry.
For example, this method allows for an assessment of whether a

given melt is multiply-saturated on its liquidus at the calculated
source conditions. As described in the ‘Methods’ section, three
sets of models were developed to recover saturation conditions:
1) A classification algorithm that predicts the minimum number
of saturated mineral phases from melt composition. 2) A model
aiming to identify the specific saturated phase assemblage (e.g.
plag-opx-amph-ox). 3) A regression model that predicts the num-
ber of saturated minerals from melt chemistry. Based on melt
composition, the algorithm can predict that a liquid is saturated
with ≥3 minerals with average accuracy of 83%, precision of
84%, sensitivity (true positive rate) of 93%, and specificity (true
negative rate) of 62% (Fig. 9a). While the performance scores for
≥4 saturated minerals show acceptable accuracy (76%), precision
(72%), and specificity (87%), the sensitivity is decreased to 58%.
Overall, Model 1 is most useful as a test if a specific liquid
composition is saturated simultaneously with ≥3 minerals at its
liquidus. A model to predict the particular phase assemblage in
equilibrium with the melt (Model 2) returned low accuracy scores
and is, therefore, not considered further. Lastly, estimating the
number of mineral phases (Model 3) results in a symmetrical
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Fig. 8. Testing results of the melt-only model for recovery of P and T. Two different testing approaches are shown: Random split test data are presented
as grey dots, while grouped testing data (where entire experimental studies are kept together) are shown in black. Model performance metrics RMSE
and R2 (Pearson’s correlation coefficient) are shown for the testing results, with number of test data are denoted by ‘n’. All shown performance
metrics are average of all run simulations. Black solid lines illustrate a 1:1 relation. a) Experimental versus predicted pressure (kbar) for random split
testing. b) Experimental versus predicted pressure (kbar) for grouped split testing. c) Experimental versus predicted temperature (◦C) for random split
testing. d) Experimental versus predicted temperature (◦C) for grouped split testing. Note the reduced precision of the melt-only method compared to
the melt+assemblage method (Fig. 7).

error distribution and can be achieved with RMSE of 0.9 phases
based on testing data not used for calibrating the model (Fig. 9b).
In summary, the major element geochemistry of experimental
melts records information on the number, but not the identity, of
saturated mineral phases.

Optimisation of the modelling approach
From a thermodynamic standpoint, for a given number of chem-
ical components, increasing the number of phases should reduce
the degrees of freedom of the system. We, therefore, test if sub-
setting the number (but not the identity) of co-saturated minerals
can optimise the performance scores of our model. However, it
must be noted that the performance is also subject to the effects
of processes involving random number generation. Specifically,
this involves initial splitting of the full dataset into calibration and
testing subsets, as well as building extremely randomised trees.
We tested the impact of random number generation on model
runs by iterating the splitting operation 100 times, obtaining
distributions of RMSE for the testing data (Fig. 10a–c). The results
show that random processes induce variability in the RMSE of P–
T. As expected, sub-setting the experimental dataset for different

minimum numbers of stable mineral phases also impacts the
performance of the model. The effect is strongest for T, showing
a minimum median RMSE of 32◦C for ≥3 minerals compared to a
median RMSE of 38◦C for the full dataset. Likewise, P-estimates
show the lowest median RMSE of 1.6 kbar for saturation with
≥3 minerals (full dataset RMSE: 1.7 and 1.9 kbar on random and
grouped split). Sub-setting the database comes, however, at the
cost of reducing the number of experiments, leading to overall
worse performance in models with ≥4 saturated mineral phases.
Sub-setting is, therefore, only recommended to a certain degree
(i.e. not more than three mineral phases) to optimise the model in
cases with petrographic or circumstantial (e.g. co-genetic plutonic
xenoliths) evidence that such conditions prevailed. Further exper-
imental data for multiply-saturated (>4 minerals) melts would
help to remedy this situation.

Better performance of random forests may also be achieved
through adjusting model-specific parameters (Jorgenson et al.,
2022). Large improvements of the model performance can be
achieved when a filtering approach based on the variance of the
voting structure for individual P–T estimates is applied. Each P
or T estimate is ultimately derived by averaging the results of
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Fig. 9. Classification and regression models to predict mineral phase saturation conditions from experimental melt chemistry. a) Performance
measures (accuracy, precision, sensitivity, and specificity) in percent for prediction of the minimum number of saturated mineral phases on random
split testing data. See methods section for details on how performance measures are calculated. b) Histogram of error on the predicted number of
phases based on random split test data. Red solid line marks the median and dashed lines indicate the 10th and 90th percentile.

Fig. 10. Boxplots of RMSE calculated on testing data using 100 random
splits of training and testing data and three grouped test splits. Results
obtained with the melt+assemblage model are shown in yellow and
melt-only model in green. Experimental data were subset for different
minimum number of saturated mineral phases before splitting into
training and testing sets. The number of experimental melts comprising
the subset is shown on the right-hand side. a) RMSE of P (kbar), b) RMSE
of T (◦C).

500 decision trees. This means that for each estimate a standard
deviation (SD) can be calculated that quantifies how variable the

results of different trees are. As shown in Fig. 11a, errors in P
determinations increase systematically with the SD of the voting
distribution. We used the SD to quantify the voting variability
and removed either 30% or 50% of the highest values for these
measures (Table 2). Filtering out the top 30% of estimates with
the highest SD reduces RMSE of P determinations down to 1.3
and 1.5 kbar for the random split and grouped melt-assemblage
model, respectively. Filtering out 50% of the highest variance tree
ensembles can reduce the RMSE further to 1.1 kbar (random split)
and 1.3 kbar (grouped split). Estimates of T can be obtained with
RMSE of 21◦C (50% filtering). Importantly, filtering the estimates
based on the variability of the voting distribution does not change
the shape of the predicted variable distribution, showing that this
approach does not systematically bias the results (Fig. 11b). In
summary, as illustrated in Fig. 11c, more robust estimates of P–
T can be obtained by the optimisation approach based on SD
filtering but are traded off against the potential removal of a
number of good estimates.

DISCUSSION
In this section, we discuss the performance and limitations of
the model with respect to other thermobarometric calibrations,
and the impacts of analytical uncertainties and the application
of the model to glass and bulk-rock compositions are critically
evaluated. We then apply the model to two volcanic systems in
different tectonic environments, which have been chosen based
on the availability of geophysical tomography and independent
petrological constraints that can be used to cross-validate the
results. For each system, we discuss how the model can be applied
to map the source regions of magmatic liquids, chart their subse-
quent ascent paths and provide estimates of pre-eruptive magma
storage conditions.

Model performance and limitations
A few factors need to be considered before comparing different
thermobarometry models. The comparison should be based on
a common measure of the model error that is ideally tested on
data not used in the calibration. Given that widely used measures
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Table 2: Optimization results of the meltassemblage and melt-only models

Filter Test data P (RMSE) T (RMSE)

n mean sd mean sd mean sd mean sd
% kbar kbar kbar kbar ◦C ◦C ◦C ◦C

melt-assemblage model
Test data Random1 Grouped2 Random Grouped
non 100 1.74 0.07 1.94 0.01 35.9 2.0 42.2 0.3
SD 70 1.30 0.06 1.58 0.02 25.1 1.5 32.1 0.6
SD 50 1.05 0.08 1.33 0.03 21.4 1.7 27.8 0.7

melt-only model
Test data Random Grouped Random Grouped
non 100 2.26 0.08 2.20 0.01 41.2 1.9 44.5 0.3
SD 70 1.65 0.09 1.86 0.03 29.7 1.6 34.0 0.5
SD 50 1.26 0.10 1.48 0.04 26.0 2.0 31.3 0.8

1Average of 100 random splits of training and testing data and decision tree generation
2Average of 3 splits of training and testing data and 100 random seeds in decision tree generation

of prediction accuracy, such as the RMSE or the equivalent
standard error of estimate (SEE), are impacted by the width
of the calibration dataset (scale dependency), it is imperative
to establish that models are compared over a similar range
in conditions (Hyndman & Koehler, 2006). For these reasons,
other melt phase-assemblage thermobarometers, such as ol–
plag–cpx(augite)–melt (OPAM; Yang et al., 1996; Kelley & Barton,
2008; Hartley et al., 2018) and melt–cpx–amph(hornblende)–opx–
magneite–plag–ilmenite (CHOMPI; Blundy, 2022) are difficult to
compare to our model. Sub-setting our calibration dataset to
either of these assemblages, we calculate test data RMSEs of
1.5 ± 0.9 kbar (±2SD of the 100 random splits), 36 ± 15◦C for OPAM
and 2.8 ± 1.1 kbar, 43 ± 23◦C for CHOMPI (mean of 100 splits into
training and testing data). The high variance of these results
reflects the low number of available experiments (n = 92 for OPAM
and n = 61 for CHOMPI) in the compilation, indicating that the
training dataset is not sufficient at present to calibrate these
models.

We now compare the testing results of our model to errors
cited in the literature. As shown in Table 2, our melt+assemblage
model, calibrated for P ≤ 15 kbar, returns P–T with RMSE of 1.7 to
1.9 kbar and 36◦C to 42◦C. The given range reflects the different
but overall similar results of random and grouped split testing.
These errors can be reduced to 1.1 to 1.3 kbar and < 30◦C through
SD filtering (Table 2). Calibrated over a similar range (P < 15 kbar,
T ∼ 750–1300◦C), and tested via random splitting, the ‘crustal’ ML
cpx thermobarometer of Jorgenson et al. (2022), shows uncertain-
ties on testing data of 2.3 kbar for P and 63◦C for T based on
cpx compositions only, which can be improved by approximately
0.5 kbar and 30◦C if the composition of the melt in equilibrium
with cpx is considered. If a wider pressure range is considered in
the calibration, this model determines P–T with 3.2 kbar and 48◦C
(<30 kbar; Jorgenson et al. (2022)). The machine learning cpx-liquid
thermobarometer of Petrelli et al. (2020) recovers P with error of
2.6 kbar and T with 40◦C (<40 kbar), similar to the widely used
cpx-liquid regression of Putirka (2008) that constrain P with RMSE
of 2.6 kbar (Putirka’s eqn. 32b) and T with 42◦C (Putirka’s eqn. 33)
over the same P-range. Restricting the P range to <12 kbar and the
compositional range to mafic and intermediate magmas, the cpx-
liquid barometer of Neave & Putirka (2017) and cpx-only model
of Wang et al. (2021) yield errors of 1.4 and 1.7 kbar, respectively.
Putirka (2016) compared and calibrated different amphibole ther-
mobarometers, concluding that T can be recovered with typical
precision of 30◦C, and P (<30 kbar) with at best 4 kbar on test data.
Subsequently, Higgins et al. (2022) showed that the large errors of

amph-barometry can be reduced to 1.6 kbar using a ML approach,
calibrated for P < 12 kbar. Compared to established and new state-
of-the-art mineral–melt and mineral-only thermobarometers, our
model represents an enhancement in prediction accuracy for P–T
conditions of crustal magmas over a wide range of compositions.
Importantly, our approach can be applied effectively and reliably
to whole-rocks, if these represent liquid compositions and pro-
vided that reasonable assumptions about the source mineralogy
can be made (as discussed below). This makes our approach
applicable to erupted whole-rock compositions as a probe of
melt extraction depths, but also to melt inclusions trapped in a
particular phenocryst phase or matrix glasses to gain insights into
magma storage conditions. In summary, our approach has greater
versatility than most conventional thermobarometers and can be
applied to very large compositional datasets with relative ease.

As shown in Fig. 12, the prediction accuracy of the model
can be improved based on a SD filtering. However, the accuracy
of the model predictions is ultimately limited by the analytical
error on major element oxide measurements from the calibrant
experiments (e.g. Wieser et al., 2023a). We, therefore, tested the
impact of analytical uncertainty on P–T prediction, using a subset
of experiments (n = 368) for which error estimates were available
for each analyte, for example from multiple analyses of the
same run product phase. Running the model using the accepted
measured values, adding, and subtracting the error bounds, we
quantify the deviation on predicted P–T values resulting from
analytical uncertainties alone (Fig. 12). These calculations suggest
that measurement errors limit P-determinations to ±0.8 kbar,
and T-estimates to ±16◦C. These are, in effect, estimates of the
limit of precision that can be achieved using a melt composition
approach calibrated on experimental petrology data. Improve-
ments of the model accuracy of P–T determinations towards these
limits should be possible in principle, for example by expanding
strategically the experimental database. As illustrated in Fig. 6,
the current experimental dataset overrepresents low-P condi-
tions, most likely leading to the systematic over-prediction at low P
and under-prediction at high P (Fig. 7, 8), which has been observed
in other thermobarometric calibrations (e.g. Putirka, 2008; Neave
& Putirka, 2017). Although systematic errors resulting from non-
uniform distributions are potentially resolved by re-sampling the
experimental data to a regular grid (Higgins et al., 2022), reducing
the number of experiments can lead to information loss. Clearly,
further experimental work is needed to reinforce P determina-
tions >3 kbar, especially at low T < 850◦C, but also to expand
the range of melt compositions to alkaline magmas (Figs. 5, 6).
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Fig. 11. Filtering approach to optimise model performance. a) P-error
(kbar) is plotted against the standard deviation (SD) of individual tree
ensembles that produce the average pressure vote for a particular melt
composition. The blue dashed lines indicate a threshold value to filter
out results with SD above the 70th percentile. Colour coding reflects
true experimental pressure in (kbar). b) Histograms of predicted
pressure without filtering (grey) and filtered predictions based on the SD
threshold (blue). c) Predicted versus experimental pressure (kbar) for SD
filtered results.

Moreover, a greater number of precise measurements of H2O
contents in experimental melts would be required to assess the
feasibility of our approach as a reliable hygrometer.

Lastly, in accordance with the phase rule discussed above, the
most accurate results are obtained when the calibration dataset
is confined to liquids that are saturated with ≥3 mineral phases

(Fig. 10). Although accurate results (RMSE: P < 2 kbar) can also
be obtained when calibrating the model only on melts with ≤2
saturated minerals, we encourage the user to test saturation
conditions using the classification and regression approaches
shown in Fig. 9. Application of the model to bulk-rocks requires
due diligence to establish that the composition represents a true
liquid. Further targeted experimental work is likely to boost the
performance of these models, given that the accuracy limit dic-
tated by current analytical capabilities is not yet reached.

Constraining melt source conditions from
bulk-rock compositions
A promising application for our model is that it can potentially be
used to constrain P–T of melt source regions from bulk-rock com-
positions (Fig. 1; Gualda et al., 2019; Blundy, 2022). This approach
differs from constraints on equilibrium magma storage conditions
based on melt-assemblage or mineral thermobarometers, in that
it is based on mineralogical buffering of a melt phase in a crystal-
rich, mushy source region. Field, petrological and geophysical
evidence suggests that most magmatic systems are comprised of
high crystallinity mushes with distributed interstitial melt (e.g.
Bachmann & Bergantz, 2004, 2008; Cashman et al., 2017; Edmonds
et al., 2019; Lissenberg et al., 2019; Sparks et al., 2019). As discussed
in more detail by Blundy (2022), the volumetric dominance of
crystals over melt in mush systems may buffer the composition of
the melt via reactive flow, and extraction of the liquid phase with
subsequent rapid ascent and quenching upon eruption can retain
a chemical memory of P–T of the mush source. However, this
approach is under the premise that the bulk-rock composition is
representative of the extracted liquid. Processes that could modify
the original melt composition include magma mixing and crys-
tal accumulation, as well as fractional crystallisation (i.e. open
system removal of solid phases) of the melt at various crustal
levels. To constrain the impact of modifications to the original
melt composition on P–T estimates, we added 5%, 10%, and 15%
of crystals (ol, plag, opx, cpx, amph, ksp, bt) to experimental
liquids of different bulk composition (basalt, basaltic andesite,
andesite, dacite, rhyolite) in an attempt to simulate the impact
of entrained crystal cargoes on recovered P–T. These calculations
were performed using only the major element oxide chemistry
of the melt composition as independent variable to isolate the
effect of melt chemistry changes on P–T estimates. The results
show that modification processes may lead to erroneous P–T
predictions (up to 5 kbar and 176◦C; Fig. S4). It is, therefore,
important to verify if a particular bulk composition represents a
true liquid composition. We suggest that the following points are
useful to consider in establishing this:

1) Geochemical variation: Major and trace element variation
frequently show evolutionary trends such as curvilinear
behaviour in Al2O3, MgO, Zr, Ba, or P2O5. Magma mixing
and crystal accumulation processes can lead to linear
trajectories, deviating from this behaviour, which can help
to identify such processes (e.g. Sparks & Marshall, 1986;
Deering & Bachmann, 2010; Lee & Bachmann, 2014; Masotta
et al., 2016).

2) Textural observations: The method can be expected to work
best for aphyric or crystal-poor magmas, given that these
may represent extracted liquids that are unlikely to have
experienced significant crystal accumulation.

3) Mineral zoning: Reverse zonation textures such as An-Fe-Mg
rich plagioclase rims (Ruprecht & Wörner, 2007), Cr-rich rims
in pyroxenes (Ubide & Kamber, 2018; Weber et al., 2020)
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Fig. 12. Impact of analytical errors on results. Models were run using the accepted values and with reported errors for each major element oxide.
Positive errors are shown as grey squares and negative errors as black triangles. a) Predicted P (kbar) using accepted value versus predicted P
(kbar) ± analytical error, b) Results for temperature.

or Mg-rich rims in olivine (Gordeychik et al., 2018) are all
suggestive of magma mixing and re-equilibration processes.
Bulk-rocks with crystal cargo dominated by this type of
zoning are thus likely not representative of the original melt
composition and should be avoided when using the melt-
only model.

4) Crystal–melt equilibrium: The importance of open-system pro-
cesses in the history of a bulk-rock may be interrogated by
quantifying deviations from the relevant mineral–melt equi-
librium constants (Ganne et al., 2018). However, it should be
borne in mind than an individual rock may have crystallised
over a wide P–T range and this will be reflected in a diversity
of mineral compositions that were unable to equilibrate fully
with the host melt prior to eruption.

5) Thermometry: Mineral thermometry, such as from co-existing
oxide or pyroxene pairs, and melt-only (source) thermometry
should provide corresponding results within uncertainty, if
no cooling has accompanied the pre-eruptive storage since
melt extraction from the mush (Blundy, 2022).

Application of the model to bulk-rock composition is theoreti-
cally possible by relying solely on the major element chemistry
of the melt. However, due to increased errors compared to the
melt+assemblage approach and potential challenges in deter-
mining whether a bulk-rock composition accurately represents
a melt, we adopt a more conservative approach. Our focus is
on combining bulk rock compositions with an inferred source
mineralogy. Implementing this approach necessitates knowledge
about the source mineralogy from which the melt has been
derived, information that is typically not known a priori. Note
that source mineralogy is not necessarily the same as phenocryst
mineralogy, as minerals stable in the source may not crystallise
from the melt at shallower depths, amphibole being a common
case in point (e.g. Davidson et al., 2007). Despite these potential
complications, reasonable assumptions about the source miner-
alogy can be made in many instances based on: 1) The phase
assemblages of co-erupted mush fragments or plutonic xenoliths
entrained in volcanic bulk-rock samples (e.g. Cooper et al., 2019), 2)
Reconstruction of crystallising mineral assemblages from major

and/or trace element modelling of geochemical trends in igneous
rock suites (e.g. Davidson et al., 2007), and 3) Thermodynamic
modelling of igneous phase equilibria through Gibbs Free Energy
minimization approaches (e.g. Riel et al., 2022).

Although estimates of source mineralogy require careful con-
sideration on a case-by-case basis, our focus here is to quan-
tify the general impact of misidentifying the source mineral-
ogy. We systematically manipulated the true equilibrium mineral
assemblage of experimental melt+assemblage pairs to assess the
resulting impact on predicted P–T conditions. These calculations
were conducted across various melt compositions, encompassing
basalt, basaltic andesite, andesite, dacite, and rhyolite glasses,
each in equilibrium with 3 to 5 mineral phases. To alter the true
experimental mineral assemblage, we either imposed an entirely
randomized set of mineral stabilities to a specific composition
or, in a more optimistic scenario, alternated the stability of one
of the mineral phases. The findings from this analysis reveals
that while P–T estimates significantly degrade using a random
mineral assemblage, the degradation is marginal when only one
mineral is incorrectly inferred (Fig. 13). Notably, there is an excep-
tion for garnet misidentification, which exhibits a pronounced
impact due to its high-pressure stability. However, assessing the
involvement of garnet during magma evolution can be quite easily
accomplished by other geochemical means, for example, through
REE systematics (Harrison & Wood, 1980; Davidson et al., 2007). In
summary, exercising due diligence in petrological considerations
is imperative for the application of our model to reconstructing
melt extraction conditions in crustal crystal mushes.

Tracking magma sources and storage conditions
The 1980–86 eruption of Mt. St. Helens volcano
The iconic 1980–86 eruption of Mount St. Helens, a stratovolcano
in the Cascades arc (USA) produced porphyritic dacites and silicic
andesite (61–65 wt % SiO2) containing phenocrysts of plagioclase,
amphibole, orthopyroxene, magnetite, and ilmenite with scarce
clinopyroxene (Rutherford et al., 1985). The eruption initiated with
a lateral blast on the morning of May 18th 1980, evolving to
a < 19 km high Plinian eruption column and culminating in a
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Fig. 13. Errors of P–T reconstructions resulting from misidentification of the mineral phase assemblage. Boxplots in green show errors using the true
experimental mineral phase assemblage, grey boxplots show an entirely random mineral phase assemblage, yellow boxplots represent cases in which
the stability of one of the mineral phases has been switched. a) Results for pressure in kbar. b) Temperature errors in ◦C.

series of dome-forming episodes through October 1986. Eruption
temperatures, from coexisting Fe-Ti oxides from the entire erup-
tion lie in the range 881 ± 54◦C and fO2 0.2 to 0.8 log units above
NNO (Melson, 1983; Rutherford et al., 1985; Blundy et al., 2008). A
large number of phenocryst-hosted melt inclusions analysed by
SIMS record dissolved H2O contents up to 6.8 wt % and CO2 up
to 1200 ppm, corresponding to calculated saturation pressures of
<3 kbar (Blundy & Cashman, 2005; Blundy et al., 2008; Cashman
& Blundy, 2013). The overall range of melt inclusion volatile con-
tents is consistent with volatile-saturated decompression crys-
tallisation of dacite magma at near-constant temperature due
to counterbalancing of adiabatic cooling by latent heat of crys-
tallisation (Blundy et al., 2006). Plagioclase phenocryst zoning is
consistent with crystallisation over this P–T range (Cashman &
Blundy, 2013).

A large body of experimental data aimed at reproducing
the phenocryst assemblage and matrix glass compositions in
the Plinian phase of the eruption indicate pre-eruptive magma
storage pressures of 2.2 kb, with temperatures of 920◦C and an
fO2 just above NNO (Merzbacher & Eggler, 1984; Rutherford et al.,
1985; Rutherford & Devine, 1988). Cogenetic plutonic xenoliths
in 1980–86 eruptive products (Heliker, 1995; Blundy, 2022) are
dominated by hornblende gabbronorites with interstitial glass
testifying to the presence of such lithologies in the magma source
region. Higher pressure (4–9 kb; Blatter et al., 2013) experiments
suggest that dacites from a previous (3.5 ka) eruption of Mount
St. Helens, similar in composition to 1980–86, were multiply-
saturated on their liquidus with the peritectic assemblage
hornblende-plagioclase-orthopyroxene-magnetite-ilmenite at 7
to 9 kbar, 925◦C and 6 to 7 wt % dissolved H2O. Blundy (2022)

used these observations to justify application of his CHOMPI
barometer to dacite bulk-rock compositions and recovered
source conditions of 4.3 kbar, 950◦C and 5.5 wt % dissolved H2O.
Moreover, there is generally a lack of mixing/mingling textures
in the eruptive products, and a well-documented dominance
of decompression and thermal effects controlling mineral
zonation (Cashman & Blundy, 2013), suggesting that Mt. St
Helens dacites whole-rocks can be treated as melt compositions.
Geochemistry is consistent with generation of dacite magma
by mid- to lower-crustal differentiation of arc basalt or basaltic
andesite with minor crustal assimilation (Smith & Leeman, 1987;
Wanke et al., 2019).

Mount St. Helens is exceptionally well monitored and studied
geophysically. Precisely located earthquake hypocentres extend to
almost 20 km below surface and appear to define a high-velocity
plug at 6 to 9 km depth overlying an aseismic region thought
to be occupied by magma (Lees, 1992). However, the relatively
small magnitude of wave-speed anomalies throughout the sub-
Mount St. Helens crust is more consistent with a mush region
with pockets of higher and lower melt fraction than discrete melt-
rich magma chambers (Lees, 1992; Kiser et al., 2016; Ulberg et al.,
2020). Magnetotelluric images (Hill et al., 2015; Bedrosian et al.,
2018) tell a similar tale of mushy source regions with a well-
developed mid-crustal conductive anomaly at depths of ≥15 km
connected to the volcanic edifice by elongate conductive tendrils
that appear to circumnavigate resistive bodies interpreted as cold,
solid precursor intrusions (Bedrosian et al., 2018). Long-period
seismic events, consistent with fluid release, occur within the
deep conductor at depths of 24 to 40 km below surface (Nichols
et al., 2011).

D
ow

nloaded from
 https://academ

ic.oup.com
/petrology/article/65/4/egae020/7617762 by guest on 30 April 2024



Journal of Petrology, 2024, Vol. 65, No. 4 | 15

Fig. 14. Thermobarometry for Mount St Helens volcano. a) Comparison of seismic velocity variation (%) and earthquake hypocentre locations with P–T
estimates for Mt. St. Helens. The seismic cross-section was modified from Ulberg et al., (2020) and earthquake locations within a 5 km radius of the
summit were taken from the Pacific Northwest Seismic Network database (https://pnsn.org/volcanoes/mount-st-helens). Histograms show b) depth
below sea level (bsl) versus temperature estimates for calculations involving bulk-rock (orange circles) and glasses (light blue triangles) paired with
plag-opx-cpx-amph-ox assemblages. Larger symbols show all calculation results; smaller symbols are results that have been filtered using the SD
filtering approach (50th percentile). Pressures were converted to depth by calculating a density profile from Vp velocities within 30 km of St Helens
(Ulberg et al., 2020) using the equation of Brocher (2005).

We applied the thermobarometer to a compilation of whole-
rock dome lavas and pumices (n = 42) from the 1980–86 eruption
in apparent equilibrium with the assemblage hornblende–
plagioclase–orthopyroxene–magnetite–ilmenite on the basis of
abundant hornblende gabbronorite xenoliths (Heliker, 1995;
Blundy, 2022). Pressure calculations were carried out either
without filtering or with SD filter of 0.5. The minimum number
of saturated phases was set to either 1 or 3, showing overall
similar results. Whole rock+assemblage pairs yield pressures
of 5.1 to 8.8 kbar, which reduces to 5.1 to 6.7 kbar when the
filter is applied. Temperatures for unfiltered bulk-rock samples
are recovered with 954◦C to 997◦C (unfiltered) and 957◦C to
997◦C when the SD filter is applied (Fig. 14). Application of
the model to melt inclusions and groundmass glasses (n = 48)
yields pressures between 0.7 and 3.7 kbar, and temperatures
of 807–894◦C (mean: 851◦C). All melt-assemblage calculations
were carried out using opx–cpx–plag–amph–ox. The calculated
pressures equate to depths of 16 to 22 km for SD filtered whole-
rocks, which we interpret as dacite melt extraction depths and 0.6
to 12 km for melt inclusions and groundmass glasses, which we
equate to decompression crystallisation during ascent, including
brief periods of pre-eruptive storage. Depth was determined
from pressures by utilizing a density profile derived from Vp
velocities within a 30-km radius of St. Helens (Ulberg et al.,
2020) and employing the equation developed by Brocher (2005).
The temperature change from whole-rocks (954–997◦C) to melt
inclusions (807–894◦C) is suggestive of some cooling during ascent
and pre-eruptive storage. The depth results are consistent with
the geophysical data presented above (Fig. 14).

Overall, our results support a petrogenetic model for Mount
St. Helens whereby dacite melts are generated within a laterally
extensive, mid-crustal reservoir of electrically conductive mush
and ascend to the surface via a narrow conduit region, crystallis-
ing, and degassing en route with cooling of up to ∼150◦C. This

scenario is consistent with that proposed by Blundy (2022) for
the Cascades arc more generally. Wieser et al. (2023b) calculate
median pressures for Mount St. Helens dacites of 2 to 3 kbar
based on amphibole and cpx barometry, which lie within the range
we calculate for melt inclusions and groundmass glasses. Wieser
et al. (2023b) interpret their pressures in terms of ‘magma storage
conditions’. However, in the absence of time information, e.g. from
diffusion chronometry, these pressures may equally reflect tran-
sient points on the magma ascent trajectory where crystallisation
of amphibole and cpx occurred. Given that all magmas ascending
from a deep source region, as estimated using our methodology,
will pass through and crystallise under lower pressures, caution
is required in directly ascribing barometry results with magma
storage per se.

Historic eruptions from the Askja caldera (Iceland)
The Askja volcanic system in Iceland provides an ideal test case to
integrate petrological barometry with the results of geophysical
tomography. Askja is located in the Icelandic rift zone and was
frequently active in the early 20th century, producing at least
six small-volume basaltic eruptions in the vicinity of the central
volcano (Hartley & Thordarson, 2013). Notably, in 1875 Askja
produced a major explosive rhyolite eruption, one of Iceland’s
largest in the historical record, creating a 4.5-km wide collapse
caldera that was subsequently filled by Lake Öskuvatn (Hartley
& Thordarson, 2013). Seismic tomography, using local earthquake
locations, provides a snapshot of the crustal magmatic feeding
system beneath Askja, revealing low-velocity structures at multi-
ple levels beneath the caldera (Greenfield et al., 2016). The volcano
is also actively deforming, showing deflation over timescales of
years to decades and a strong surface uplift pattern centred at
about 3 km depth based on Mogi modelling (Zeeuw-van Dalfsen
et al., 2012). It is currently not known how these geophysical fea-
tures of the volcanic plumbing system relate to the compositional
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Fig. 15. Comparison of thermobarometric estimates and seismic tomography for the Askja caldera (Iceland). The seismic velocity structure of the
crust beneath Askja parallel to the spreading direction was taken from Greenfield et al. (2016), with colours reflecting the ratio of P- and S-waves
(Vp/Vs) in km s-1. P–T estimates have been orthogonally projected from the vent location onto the 2D crustal section and are shown as circles for
basalts and squares for rhyolites. Crustal density for Askja was calculated from seismic data of Greenfield et al. (2016) using the relation between wave
speeds and density of Brocher (2005).

diversity and storage depths of the bimodal magma associations
erupted historically at Askja.

We used the melt-assemblage thermobarometer on glass com-
positions for 20th century Askja basalts and 1875 rhyolites utiliz-
ing data published in Hartley et al. (2013) and Schattel et al. (2014)
(Supplementary tables). The basalts have phase assemblages of
ol–cpx–plag–ox (Hartley et al., 2013) and 1875 rhyolites contain
opx–cpx–plag–ox (Schattel et al., 2014). Both basalts and rhyo-
lites are nearly aphyric, with phenocrysts in textural equilibrium
exhibiting normal or no zoning, and show geochemical trends
consistent with magma evolution (Hartley et al., 2013; Schattel
et al., 2014; Fig. S1). Minor andesite glasses erupted in 1875 are not
considered as these most likely represent mixed compositions, as
suggested by SiO2–Al2O3 divergence from the general evolutionary
trend (Fig. S1). Although not all Icelandic magmas are covered
by our experimental compilation, Askja basalts and rhyolites are
captured in most major element oxides, with the exception of
TiO2 and Al2O3, which are only marginally represented (Fig. S1).
Nevertheless, Askja provides an ideal and contrasting case to test
the model on compositions that are not overrepresented exper-
imentally. Temperature reconstructions for the basaltic melts
using our model yield averages of 1085◦C to 1159◦C (mean, 1117◦C;
SD filter = 0.7). No temperature estimates are currently avail-
able for these eruptions, but the calculated temperatures are at
the lower end of estimates for older lava flows from the Askja
fissure swarm based on cpx-liquid thermometry (Hartley et al.,
2013). Our temperature estimates for the 1875 rhyolites (886–
1022◦C; mean, 987◦C) corroborate previous thermometry (940–
1008◦C; Schattel et al., 2014), showing that these melts were
unusually hot. These results support the hypothesis that melting
of hydrothermally altered crust, rather than protracted fractional

crystallisation, play a key role in the origin of Askja rhyolites
(Bindeman et al., 2012).

Depth estimates using our model have been projected orthog-
onally onto the seismic tomography section of Greenfield et al.
(2016), showing excellent correspondence with P-/S-wave velocity
(Vp/Vs) anomalies (Fig. 15). Glass-assemblage pairs of rhyolites
record depth estimates between 4 and 12 km below sea level
(bsl). Pressures were converted into depth based on the empirical
relationship between wave speeds and density of Brocher (2005),
using seismic data from Greenfield et al. (2016). These depths
correspond to a major zone of reduced wave speeds centred at
6 km and a smaller Vp/Vs anomaly located at 9 km bsl, the upper
reaches of which have been inferred to contain about 10% to 20%
of partial melt on average (Greenfield et al., 2016). Basaltic glass
compositions return storage depths between 7 and 17 km (mean,
12 km bsl), corresponding to the lower part of the Vp/Vs anomaly
and a region of active seismicity, which has been interpreted as a
zone of melt movement (Greenfield et al., 2016). The storage depth
range is narrower compared to previous cpx-liquid barometry on
basaltic composition from historical Askja eruptions that indi-
cated a very wide range between 2 and 18 km depth (Hartley et al.,
2013). However, while cpx-liquid barometry may suffer from large
errors (Wieser et al., 2023a), the majority of these estimates (∼11–
14 km bsl) overlap with our constrained storage depth. Depth esti-
mates within the range of shallow crustal deformation are absent
in our calculations, which may reflect that no eruptions have been
sourced from this depth in historical time. Our approach, marked
by its remarkable convergence with seismic tomography, offers a
unique perspective on the storage depths of magmatic systems,
allowing us to assign chemical compositions and temperatures to
specific crustal magma bodies beneath the Askja caldera system,
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which is critical to our understanding of magmatic processes and
assessment of volcanic hazards.

CONCLUSIONS
The ability to quantify magmatic system variables from igneous
rocks is invaluable to igneous petrology. However, thermobaro-
metric models are often limited by large errors on pressure deter-
minations and narrow calibration ranges. In this study, we have
addressed this need by calibrating a widely applicable ERT ran-
dom forest machine learning model to reconstruct magmatic
pressures, and temperatures with increased predictive accuracy.
The model utilizes glass or bulk-rock chemistry together with
mineral paragenesis as independent variables, both of which are
readily available for most volcanic systems. We conclude that:

1) The major element oxide chemistry of melts (±mineral
phase assemblage) is a powerful recorder of P–T for crustal
magmas over a wide range of multiple mineral saturation
conditions and throughout the compositional spectrum
from basalt to rhyolite. This empirical finding can be
attributed to a more flexible regression strategy of large
experimental datasets but may be theoretically grounded
in the limited degrees of freedom of correlated oxide
components in natural magmas.

2) Thorough error assessment of the model, using either
grouped or 100 random splits of training and testing
datasets, indicate that P can be recovered with RMSE of
1.7 kbar on random split and 1.9 kbar on grouped testing
data. Comparison of model predictions with independent
estimates shows excellent agreement for hot-rhyolites
(∼1000◦C), which are scarcely included in the experimental
calibration.

3) Prediction errors can be significantly reduced by filtering
out P–T estimates with standard deviation above the 50th
percentile in the predictions of decision trees that comprise
the random forest (RMSE of 1.1 kbar on random split and
1.3 kbar on grouped test data; Table 2). Better results are
also obtained when the calibration data are restricted to a
minimum of ≥3 saturated mineral phases, but the effect
is small compared to filtering. The model could be further
improved through additional experiments in areas that are
currently underrepresented in P–T space.

4) Calculations using pairs of glass chemistry and mineral
assemblage can be used to reconstruct the last equilibration
conditions of crustal magmas. These may represent pre-
eruptive storage depths, if additional time information is
available, or simply points on the P–T ascent trajectory
where crystallisation occurred. The model also provides
the opportunity to constrain mush extraction conditions
(magma sources) under the premise that bulk-rock or glass
compositions are representative of the extracted melt. The
latter should be tested based on a set of petrographic and
geochemical criteria.

5) Our ERT random forest algorithm allows to better integrate
petrology and geophysical imaging of magmatic feeding
systems. Application of the model to Mount St. Helens
volcano indicates dacite sourcing from a mid-crustal mush
followed by decompression crystallisation and degassing
accompanied by cooling. Barometric calculations for histori-
cal eruptions from the Askja volcanic system in Iceland allow
assignment of rhyolite and basaltic compositions to specific
seismic velocity anomalies beneath the volcano.
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