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Abstract

Double-descent curves in neural networks describe the phe-
nomenon that the generalisation error initially descends with
increasing parameters, then grows after reaching an opti-
mal number of parameters which is less than the number of
data points, but then descends again in the overparameterized
regime. In this paper, we use techniques from random matrix
theory to characterize the spectral distribution of the empiri-
cal feature covariance matrix as a width-dependent perturba-
tion of the spectrum of the neural network Gaussian process
(NNGP) kernel, thus establishing a novel connection between
the NNGP literature and the random matrix theory literature
in the context of neural networks. Our analytical expressions
allow us to explore the generalisation behavior of the corre-
sponding kernel and GP regression. Furthermore, they offer a
new interpretation of double-descent in terms of the discrep-
ancy between the width-dependent empirical kernel and the
width-independent NNGP kernel.

Introduction
Deep learning has achieved unparalleled success across
a wide range of tasks (Krizhevsky, Sutskever, and Hin-
ton 2012; Hannun et al. 2014; LeCun, Bengio, and Hin-
ton 2015; Schmidhuber 2015). Surprisingly, however, the
best-performing deep neural networks (DNNs) operate in a
highly over-parametrised regime, where the number of pa-
rameters in the model is much larger than the number of
training examples (Simonyan and Zisserman 2014). This ap-
pears to violate the conventional statistical wisdom of bias-
variance trade-off which predicts that, in order to avoid over-
fitting and obtain the best possible generalisation, the num-
ber of parameters should be lower than the number of train-
ing examples (Mohri, Rostamizadeh, and A.Talwalkar 2012;
Vapnik 1995; Shalev-Shwartz and Ben-David 2014).

The generalisation error of DNNs as a function of the
number of parameters has been studied empirically (Belkin
et al. 2019; Nakkiran et al. 2021), and it has been observed
that it follows a double-descent curve instead of the classical
U-shaped curve characteristic of the bias-variance trade-off.
Specifically, for a fixed number of training examples, the
generalisation error increases as the number of parameters
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approaches the number of training examples and, past this
so-called interpolation threshold, it starts decreasing again
finding its global minimum when the number of parameters
goes to infinity. Understanding these surprising observations
at a more fundamental level is an important step towards
tackling the deeper question as to why DNNs generalise so
well in practice (Geiger, Petrini, and Wyart 2020).

A number of mathematical frameworks for explaining the
double-descent phenomenon in a variety of DNN architec-
tures have been proposed (Mei and Montanari 2019; Hastie
et al. 2019; Advani, Saxe, and Sompolinsky 2020; Liu, Liao,
and Suykens 2020). Assuming a teacher-student setting (Se-
ung and Sompolinsky 1992), these works derive an analyt-
ical expression for the generalisation error as a function of
the ratios γ = n

N between the number n of training examples
and the width N of the neural network and ψ = n

d between
the number of training examples and the dimension d of the
input. For a fixed value of ψ and varying γ, the generalisa-
tion error derived in these approaches follows a double de-
scent curve; furthermore, the value of the generalisation er-
ror for a given γ and ψ is obtained as a limit where n,N and
d go to infinity while γ and ψ remain constant. These works
typically assume that all layers except the last one remain
untrained, and thus coincide with random features models
(Liao, Couillet, and Mahoney 2020; Gerace et al. 2020).

A (largely orthogonal) line of research has studied the
equivalence between infinitely-wide neural networks with
random weights and Gaussian processes with a particular
covariance function (Lee et al. 2018; Matthews et al. 2018)
called the NNGP (or conjugate) kernel. In the limit of in-
finite width, the class of functions obtained by choosing
the network weights randomly converges in distribution to
a Gaussian process, where the structure of the covariance
function is defined inductively on the number of layers. The
random feature map corresponding to an NNGP is, however,
not explicitly known and thus its study falls within the realm
of the nonparametric kernel literature (Györfi et al. 2002;
Berthier, Bach, and Gaillard 2020).

In this paper, we establish a novel connection between
both of these orthogonal lines of research. Given a fully-
connected neural architecture defined by the input dimen-
sion, the layer widths, the activation function, and the distri-
bution of the weights, we derive an analytical expression for
a width-dependent NNGP kernel which generalises the em-



pirical covariance matrices by (Mei and Montanari 2019)
to a kernel function. We then exploit elements of random
matrix theory (Wigner 1955; Livan, Novaes, and Vivo 2018)
to analytically compute, given a set of training examples,
the spectral distribution of (the covariance matrix associated
to) our width-dependent NNGP kernel. Although similar ex-
pressions have been computed in prior work (Louart, Liao,
and Couillet 2018; Fan and Wang 2020), ours is unique in
that it is given as a function of the spectral distribution of
the NNGP kernel. As a result, our expression enables a new
interpretation of the width-dependent spectral distribution as
a perturbation of the width-independent spectral distribution
that decreases as γ tends to zero so that, in the limit of in-
finite wdith, the width-dependent spectral distribution con-
verges to that of an NNGP. The kernel function and the the
analytical formula for the spectral distribution that we pro-
pose allow us compute the generalisation error of both GP
and kernel regression as a function of γ and ψ. Similarly
to (Mei and Montanari 2019; Hastie et al. 2019; Advani,
Saxe, and Sompolinsky 2020; Bordelon, Canatar, and Pehle-
van 2020; Canatar, Bordelon, and Pehlevan 2021) the value
of the generalisation error at γ and ψ is computed as a limit
where n, N and d go to infinity while the ratios γ and ψ re-
main constant. Furthermore, for a fixed ψ and varying γ, the
generalisation error exhibits double descent behaviour. Our
generalisation error expression is novel in that it isolates the
term that contributes to the double-descent behavior.

Our approach requires only mild assumptions on the neu-
ral architecture and the data generating process. The target
function for learning is assumed to have a bounded second
moment with respect to the data distribution and we only
require mild regularity assumptions (measurability and Lip-
schitzianity) for the activation functions, which are satisfied
by all commonly-used activations functions.

Our results thus provide a new interpretation to the
double-descent phenomenon where the behaviour of the
generalisation error is governed by the discrepancy between
the width-dependent empirical kernel characterising the net-
work’s architecture and the width-independent NNGP ker-
nel of the limit Gaussian process.

Preliminaries
We next introduce the basic concepts underpinning our tech-
nical results. Throughout the paper, we denote matrices by
bold uppercase letters and vectors by bold lowercase letters.

Random matrix theory Random matrix theory (Wigner
1955; Livan, Novaes, and Vivo 2018) is the study of the
spectral distributions of large matrices whose elements are
random variables. The spectral measure Fn of a given ma-
trix with eigenvalues λi is a measure over x ∈ R given
by Fn(x) := 1

n

∑n
i=1 δλi(x), where δλi(x) is the Dirac

measure at an eigenvalue λi. When the matrix is random,
the spectral measure becomes a random measure, often re-
ferred to as the empirical spectral distribution. We study
weak convergences (convergences in distribution) of spec-
tral measures to nonrandom measures (Geronimo and Hill
2002). A useful tool to manipulate spectral measures is the
Stieltjes transform; for a measure F supported on the real

interval I, the Stieltjes transform is given as follows for each
z ∈ C− I: SF (z) =

∫
I
dF (λ)
λ−z . There is a one-to-one corre-

spondence between measures and their Stieltjes transforms,
as per the inversion formula: F (x) = limy→0+ SF (x + iy)
for x ∈ I \ {0}. Pointwise convergence in their Stieltjes
transforms ensures weak convergence of measures.

We will rely on a famous result in random matrix theory.
Consider X ∈ RN×n, a random matrix with i.i.d. entries
drawn from N (0, 1

N ) and Ψ a nonrandom positive semi-
definite matrix. Suppose that Ψ has a limiting spectral mea-
sure µ, and let n,N → ∞ with fixed ratio γ := n

N , then the
random matrix Ψ1/2XTXΨ1/2 has a limiting nonrandom
spectral measure ργMP ⊠µ. The measure ργMP ⊠µ is defined
by its Stieltjes transform S, which solves the Marchenko-
Pastur fixed-point equation (Marchenko and Pastur 1967):

S(z) =

∫
1

x (1− γ − γzS(z))− z
dµ(x). (1)

The measure ργMP ⊠ µ is called the Marchenko-Pastur map
of µ. In the particular case Ψ = In, µ is the Dirac measure at
1, and one recovers the Marchenko-Pastur distribution ργMP .

Neural network Gaussian processes A Gaussian pro-
cess f over a space Rd is a random scalar field such
that its evaluation at any collection of finitely many points
(f(x1), ..., f(xn)) follows a multivariate Gaussian. A Gaus-
sian process is determined by a mean function µ : Rd 7→ R,
and a covariance function K : Rd × Rd 7→ R, which de-
scribe respectively the mean of the Gaussian distribution at
each point and the covariance between the Gaussians at any
two points. For Gaussian processes, the covariance function
is a kernel, i.e. a positive semi-definite symmetric function
(Rasmussen and Williams 2006). We note f ∼ GP(µ,K).

We consider a random fully-connected neural network
(FCN) with zero bias as in (Mei and Montanari 2019)):

xl := ϕ(hl) hl := Wlxl−1 ∀l ∈ 1, ..., L (2)

where N0 := d is the dimension of the input space, x0 ∈
Rd is an arbitrary input, Nl is the width of the l-th layer,
hl := hl(x0) is the preactivation of the l-th layer, the weight
matrices Wl ∈ RNl×Nl−1 have entries drawn i.i.d. from a
Gaussian distribution N (0, 1

Nl−1
), and ϕ is an arbitrary non-

linear activation function acting componentwise.
Applying successively the central limit theorem to each

layer, the infinite-width limit of (2) yields a Gaussian pro-
cess, called the Neural Network Gaussian Process (NNGP).
More precisely, if we let N0, ..., NL−1 → ∞, the hLi ∼
GP(µL,KL) are independent and defined inductively by
layers as follows for all x,x′ ∈ Rd and each l ∈ 1, ..., L:

µl(x) = 0 Kϕ,0(x,x′) = xTx′ (3)

hl−1
i ∼ GP(µl−1,Kϕ,l−1)

Kϕ,l(x,x′) = Eh
(
ϕ(hl−1

i (x))ϕ(hl−1
i (x′))

) (4)

The covariance function Kϕ,L is called the NNGP kernel or
conjugate kernel (Daniely, Frostig, and Singer 2016), which
is determined by the network depth L and the activation
function ϕ; when these are clear, we simply denote it as K.



There is potential for many subtleties in the way the infinite-
width limits are approached (Matthews et al. 2018), and we
follow the approach in (Lee et al. 2018) where infinite lim-
its taken sequentially. The recursive formulae for the NNGP
kernel have also been determined by (Poole et al. 2016) in
the context of mean-field theory of random neural networks.
We will use some of their techniques in our proofs.

The equivalence between randomly-initialised neural net-
works with infinite width and Gaussian processes with par-
ticular covariance functions is a general result which has
been first established in (Neal 1994) and revisited recently
in (Lee et al. 2018; Matthews et al. 2018; Novak et al.
2018; Garriga-Alonso, Rasmussen, and Aitchison 2018;
Yang 2019; Lee et al. 2020) and others.

Problem setup We consider a teacher-student setting
where x ∼ Pd, τ ∼ N (0, στ

2) and y = fd(x) + τ , with d
the input space dimension, x ∈ Rd the input feature vector,
τ the noise, y the output value, (Pd)d∈N a family of probabil-
ity distributions over Rd such that Ex∼Pd(x

Tx) is bounded
as d → ∞; and fd : Rd −→ R a family of functions ver-
ifying that Ex∼Pd

(
fd(x)

2
)

is bounded as d → ∞. These
assumptions, also taken in (Bordelon, Canatar, and Pehle-
van 2020; Canatar, Bordelon, and Pehlevan 2021), are quite
mild as they only exclude pathological behaviors where the
variances of the input or the output explode at infinity.

We sample a number n of examples, i.i.d. from the
teacher. The training set then consists of:

X = (x1, ...,xn)
T ∈ Rn×d

y = fd(X) + t = (y1, ..., yn)
T ∈ Rn

(5)

where fd(X) = (fd(x1), ..., fd(xn))
T ∈ Rn and t =

(τ1, ..., τn)
T ∈ Rn is a noise sample. We study the gener-

alisation error of particular kernel regressions and Gaussian
process regressions trained on this data.

Gaussian process and kernel regression Consider an
NNGP z ∼ GP(0,K), where K is the NNGP kernel ob-
tained with the infinite-width limit of equation (2), and tak-
ing the width of the output layer to be 1, thus yielding an
output z(x) ∈ R. Standard Bayesian inference in Gaussian
process regression (Rasmussen and Williams 2006) gives
us that the predicted z̄, conditional on (X,y,x) follows a
Gaussian distribution z̄|X,y,x ∼ N (µ̄, K̄) where:

µ̄X,y,x = kTx,X(KX,X + σ2
ϵ In)

−1y (6)

K̄X,y,x = K(x,x)− kTx,X(KX,X + σ2
ϵ In)

−1kx,X (7)

if we assume a noise model z|y ∼ N (z, σ2
ϵ ), and KX,X ∈

Rn×n with (KX,X)i,j := K(xi,xj) and kx,X ∈ Rn with
(kx,X)i := K(x,xi). Furthermore, the mean prediction
µ̄X,y,x of GP regression is also the solution of kernel ridge
regression with the same kernel K and ridge parameter σ2

ϵ
(Rasmussen and Williams 2006).

Double Descent from the Perspective of
Gaussian Processes

Previous studies of double descent in neural networks us-
ing random matrix theory (Mei and Montanari 2019; Hastie

et al. 2019; Advani, Saxe, and Sompolinsky 2020; Liu, Liao,
and Suykens 2020) took the network width N to infinity,
along with the dimension of the input space, and the num-
ber of training examples. This motivated us to study double-
descent with NNGPs.

We first characterise a counterpart of the NNGP kernel
with finite width since a well-defined kernel is a prerequisite
to leverage the theories of GP regression and kernel regres-
sion. We were able to identify the random kernel underpin-
ning the empirical covariance matrix by assuming that the
width of the last layer is finite; this alone will allow us to
derive insights on the double-descent phenomenon.

Then, we study the limiting spectral distribution of the
empirical covariance matrix of features. We derive a non-
trivial relationship between the spectral distributions of
the empirical NNGP kernel random matrix and the actual
NNGP kernel random matrix.

Finally, we isolate the dependency to these spectral dis-
tributions in the generalisation errors of GP regression and
kernel regression. This allows us to interpret the double-
descent phenomenon concerning γ, attributing it to the spec-
trum of the related random kernel being a perturbation of the
NNGP kernel limit’s spectrum. The degree of this perturba-
tion varies depending on γ and this variation is mirrored in
the spectral distributions.

A Width-dependent Random Kernel
Consider z ∼ GP(0,K) obtained with the infinite width
limit of (2). Finding a dependence with the width N is not
straightforward in the case of NNGPs because, at this point,
the network width has already been taken to infinity. Our
idea is therefore to study the behavior of a counterpart of the
Gaussian process z before the width is taken to infinity.

Following (Lee et al. 2018), we consider the output
hL,N (xi) =

∑N
k=1 W

L
k ϕ

(
hL−1
k (xi)

)
of a random network

2 with L ≥ 2,N1, ..., NL−2 = ∞,NL−1 = N andNL = 1,
i.e. where all widths have been taken to infinity with the ex-
ception of the last one.
Proposition 1. The covariance matrix of the evaluations of
hL,N , conditional on the pre-activations, satisfies, for all
pairs of training data points xi,xj ∈ Rd (rows of X), that:(
KN

X,ϕ,hL−1

)
i,j

= EWL

(
hL,N (xi)h

L,N (xj)|{hL−1
k }Nk=1

)
=

1

N

N∑
k=1

ϕ
(
hL−1
k (xi)

)
ϕ
(
hL−1
k (xj)

)
where the expectation is thus taken over the last-layer
weights WL, and it is an unbiased estimator of K(xi,xj)

with variance Var

((
KN

X,ϕ,hL−1

)
i,j

)
= ON→∞( 1

N ).

The random matrix KN
X,ϕ,hL−1 is the empirical covari-

ance matrix of the features created by the NNGP (2) before
the last width is taken to infinity.

Conditionally on X, the values K(xi,xj) are constant

and the
(
KN

X,ϕ,hL−1

)
i,j

are random variables whose ran-

domness stems from hL−1. In turn, KN
X,ϕ,hL−1 satisfies the



kernel property (Rasmussen and Williams 2006):
n∑
i=1

n∑
j=1

aiaj

(
KN

X,ϕ,hL−1

)
i,j

=
1

N
aTΦTΦa ≥ 0 (8)

for all a = (a1, ..., an)
T ∈ Rn, where Φ ∈ RN×n with

Φjk = ϕ
(
hL−1
j (xk)

)
, which holds for any realisation of

the random matrix Φ. Note, however, that KN
X,ϕ,hL−1 does

not define a kernel as it is not a well-defined function of
(x,x′) but merely a countable family of random variables
that can be indexed on (x,x′). This is problematic in our
setting since the covariance function in a Gaussian process
must be a kernel with respect to the full, continuous, space.

We next propose a way of converting the aforementioned
family of random variables into a random kernel, i.e. a
kernel-valued random variable.
Theorem 1. For N ∈ (1,∞), and L ≥ 2 there exists
a probability space (ΩN ,AN ,PN ) and a random variable
Kϕ,L,N : ΩN −→ R(Rd)2 with image in the functional
space R(Rd)2 such that :

1. Kϕ,L,N (ω) is a kernel for all ω ∈ ΩN ,
2. for all sets of points X = (x1, ...,xn)

T ∈ Rn×d, the ran-
dom matrix KN

X,ϕ,hL−1 , and the random matrix Kϕ,L,N
X,X ,

defined as,

ΩN −→ Rn×n ω 7→
(
Kϕ,L,N (ω)(xi,xj)

)
ij∈[n]

follow the same distribution: for all xi,xj ∈ Rd,
EKϕ,L,N

(
Kϕ,L,N (xi,xj)

)
= Kϕ,L(xi,xj) , where the

expectation is taken over the random kernel Kϕ,L,N .

We have thus defined a random variable Kϕ,L,N over a
functional space, whose realisations are kernel functions in-
terpolating the random matrices of interest. When there is no
ambiguity, we useKN to denoteKϕ,L,N . We can now study
the random matrices KN

X,X, whose randomness stems from
the random kernel function KN and the random matrix X,
using the more convenient definition of KN

X,ϕ,hL−1 , whose
randomness stems from the random variables hL−1 and the
random matrix X. Conditionally on KN , the corresponding
Gaussian process zKN ∼ GP(0,KN ) is well-defined and
Bayesian inference can be performed with equations (6-7).

Limiting Spectral Distributions
The following theorem relates the limiting spectral distribu-
tion of the actual NNGP kernel random matrix KX,X and
the empirical NNGP kernel random matrix KN

X,X.

Theorem 2. Consider an NNGP obtained with the infinite-
width limit of (2) with L ≥ 2, NL = 1 and the non-linear
activation ϕ, a measurable, Lipschitz function. Consider the
associated NNGP kernel denoted K, the associated ran-
dom kernel function KN and the random matrix KN

X,X de-
fined by Theorem 1 for kernel K. Then, the random ma-
trix KX,X admits, in the limit n, d → ∞ with fixed ratio
n
d = ψ ∈ (0,∞), a limiting nonrandom spectral measure
µϕψ . Furthermore, in the limit N,n, d → ∞ with fixed ratio

n
N = γ ∈ (0,∞), nd = ψ ∈ (0,∞), the empirical spectral
distribution of KN

X,X converges in distribution to the non-
random measure ργMP ⊠ µϕψ .

The proof of Theorem 2, given in the Appendix, relies
on a recent result in random matrix theory (Theorem 1 in
(Banna, Merlevede, and Peligrad 2015)). As a corollary, for
deep linear networks, if the data covariance matrix XXT

admits a limiting spectral distribution µψ , then the limiting
spectral distribution of KN

X,X is ργMP ⊠ µψ . In particular, if
the covariance matrix is isotropic, then µψ = ρψMP and the
limiting spectral distribution is the Marchenko-Pastur map
of a Marchenko-Pastur distribution ργMP ⊠ ρψMP .

Here, we have made an important distinction between the
random matrices KN

X,X and KX,X, which was not made in
previous works (Fan and Wang 2020). Indeed, it is not the
same thing to consider the NNGP kernel K, which appears
after the width of a neural network is taken to infinity, and its
counterpart KN before the width is taken to infinity (which
should be called the empirical NNGP kernel).

Theorem 2 tells us how the spectral distribution of the
empirical covariance matrix of the features created by the
neural network (2) depends on the actual conjugate kernel
of its associated NNGP.

The important fact to notice for the interpretation of
the double-descent curve in neural networks is that, in the
extremely overparametrised regime γ → 0, the spectral
distribution becomes that of the NNGP kernel itself. In-
deed, the fixed-point equation (1), which characterises the
Marchenko-Pastur map of µϕψ , becomes:

S(z) =

∫
1

x− z
dµϕψ(x) = Sµϕψ

(z). (9)

To put it differently from a spectral perspective, the neural
network exhibits behavior akin to its corresponding NNGP
in the highly overparametrised regime. Subsequently, we ex-
plore how the generalization error of the corresponding GP
and kernel regressions hinges on this spectral distribution
and mirrors the double-descent pattern.

Double Descent in NNGPs and Kernel Regression
We are now in position to study the generalisation error of
the corresponding Gaussian process and kernel regressions.
We will calculate the generalisation error of kernel regres-
sion with kernel KN :

EK(K
N ) := Ex,y,X,y

(
(µ̄K

N

X,y,x − y)2
)

(10)

and the generalisation error of Gaussian process regression
with GP zKN :

EGP(K
N ) := Ex,X,y

(
Ey,z̄KN ((z̄KN − y)2|X,y,x)

)
(11)

where µ̄K
N

X,y,x is the prediction mean of the Gaussian process
regression with prior zKN , z̄KN |X,y,x is the posterior dis-
tribution of Gaussian process regression with prior zKN , and
the expectations are taken over the out-of-sample data and



the training samples. These predictions depend on the reali-
sation of the kernel function KN . We study these generali-
sation errors when all quantities go to infinity and averaging
over the random kernel using n = γN , and d = γN

ψ :

EK(γ, ψ) := lim
N→∞

EKN

(
EK(K

N )
)

EGP(γ, ψ) := lim
N→∞

EKN

(
EGP(K

N )
) (12)

The following theorem highlights the dependence of the
generalisation errors with some terms of interest that solely
depend on the spectral measure that we studied in the previ-
ous section. The limits of these spectral measures will give
us the double-descent behavior.

Theorem 3. Under the same assumptions as in our The-
orem 2, the limiting generalisation errors EK(γ, ψ) and
EGP(γ, ψ) can be expressed:

EK(γ, ψ) = D(γ,ψ) + C(γ, ψ)g(γ, ψ)2

+B(γ, ψ)g2(γ, ψ) +A(γ, ψ)g(γ, ψ)
(13)

EGP(γ, ψ) = D̄(γ,ψ) + C(γ, ψ)g(γ, ψ)2

+B(γ, ψ)g2(γ, ψ) + Ā(γ, ψ)g(γ, ψ)
(14)

where:

g(γ, ψ) :=

∫ ∞

0

1

λ+ σ2
ϵ

d(ργMP ⊠ µϕψ)(λ)

g2(γ, ψ) :=

∫ ∞

0

1

(λ+ σ2
ϵ )

2 d(ρ
γ
MP ⊠ µϕψ)(λ)

(15)

and A(γ, ψ), Ā(γ, ψ), B(γ, ψ), C(γ, ψ), D(γ, ψ), D̄(γ, ψ)
are bounded with respect to n,N, d → ∞, and B(γ, ψ) is
non-zero.

The proof of Theorem 3, which is provided in the Ap-
pendix, relies on the diagonalisation of the kernel random
matrix KN

X,X and exploits Theorem 2 to compute the expec-
tation of the inverse of the eigenvalues in the limit of infinite
quantities. Note that we do not need to compute the coef-
ficients A, B, C and D analytically. Indeed, our objective
is not to provide a fine-grained analysis of the generalisation
error, for which other expressions are already available in the
literature ((Jacot et al. 2020; Canatar, Bordelon, and Pehle-
van 2021; Simon et al. 2022) and others), but rather to iso-
late the terms that contribute to the coarse-grained double-
descent behavior, in order to provide a neat interpretation.
Indeed, the boundedness ofA,B,C andD and the bounded-
ness away from zero ofB are sufficient to capture the double
descent behaviour as per the following corollary.

Corollary 1. Suppose that the assumptions of Theorem 2
hold true. Then, in the limit of σϵ → 0 (noise-free), the gen-
eralisation error EK(γ, ψ) exhibits a double descent with
respect to γ. More precisely, the asymptote for the under-
parametrised regime is given by:

lim
γ→∞

EK(γ, ψ) = D(γ, ψ). (16)

The asymptote for the interpolation threshold is given by:

lim
γ→1−

EK(γ, ψ) = ∞ lim
γ→1+

EK(γ, ψ) = ∞. (17)

Finally the asymptote limγ→0EK(γ, ψ) for the over-
parametrised regime is finite and given by

D(γ,ψ) + C(γ, ψ)

(∫ ∞

0

1

λ
d(µϕψ)(λ)

)2

+B(γ, ψ)

∫ ∞

0

1

λ2
d(µϕψ)(λ)

+A(γ, ψ)

∫ ∞

0

1

λ
d(µϕψ)(λ)

The result also holds for EGP(γ, ψ), replacing
A(γ, ψ), D(γ, ψ) by Ā(γ, ψ), D̄(γ, ψ).

The possibility of convergence to a finite value in the
over-parametrised regime is enabled by the behavior of the
Marchenko-Pastur map, as explained by equation (9). In-
deed, the empirical spectral distribution converges to that of
the actual NNGP kernel matrix. The divergence at the inter-
polation threshold is due to eigenvalues becoming arbitrarily
close to zero, due to a structural property independent of the
input data distribution: the strictly positive support of the
nonrandom measure ργMP ⊠µϕψ becomes arbitrarily close to
zero when γ → 1. In practice, the divergence is reduced by
the effects of regularisation (in the case of NNGP regression,
the noise model). More details are given in the Appendix.

Experiments
In this section, we provide empirical evidence demonstrating
the accuracy of our predictions of the spectral distribution of
NNGP kernel random feature matrices, as well as the mani-
festation of the double-descent phenomenon in the general-
isation error of NNGP kernel regression. These experiments
were carried out using GPU resources on Google Colab.

We have simulated the empirical spectral distribution of
the kernel random matrix KN

X,X for high values of N,n, d
for ReLU and tanh with both a synthetic dataset with data
drawn from an isotropic multivariate Gaussian distribution
Pd = N (0, 1dId), and the MNIST dataset (LeCun 2012).

As illustrated in Figure 1, we find excellent agreement
with the theoretical prediction of the limiting spectral distri-
butions. We used the Marchenko-Pastur fixed point equation
(1) to compute the limiting spectral distribution ργMP ⊠ µϕψ ,
by iterating over the recursive sequence it defines in the
Stieltjes transform space and then inverting the Stieljes
transform using the inversion formula. In the case of syn-
thetic data drawn from Pd = N (0, 1dId) and with no nonlin-
earity, the actual NNGP kernel matrix can be characterised
exactly by µϕψ = ρψMP . In general, the actual NNGP ker-
nel is not known, hence we estimated the actual NNGP ker-
nel matrix by sampling KN̂

X,X with a very large value of
N̂ ≫ n,relying on the fact that ρ0MP ⊠ µϕψ = µϕψ . We fo-
cused on a subset of MNIST restricted to digits “0” and “1”
in order to simplify the structure of the covariance matrices
and their spectral distributions.



Figure 1: Simulated empirical spectral distribution (blue his-
tograms) versus theoretical limiting spectral distribution (or-
ange curves) of the empirical covariance matrix KN

X,X. The
X-axis are indexed by the eigenvalues of the kernel random
matrices by increments of 1 and 2 for the top and bottom
figure respectively, and the Y-axis are indexed by the proba-
bility density by increments of 0.5 and 0.05 for the top and
bottom figures, respectively. Top, we use a two-layer NNGP
without non-linearities with teacher distribution N (0, 1dId)
using N = 300, n = 200, and d = 400. Bottom, we
use a two-layer ReLU NNGP on a subset of MNIST tak-
ing N = 600, n = 300, and d = 784 (pixels on MNIST
images). The simulated distribution is obtained by sampling
from the random matrix, and the theoretical distibution is
obtained by solving the Marchenko-Pastur equation.

We have simulated the generalisation errors of NNGP
kernel regression on the same datasets. To calcu-
late the generalisation errors, we relied on the spec-
tral universality assumption (SUA) (Sollich and Halees
2002) to estimate eigenfunctions (and hence coefficients
A(γ, ψ), B(γ, ψ), C(γ, ψ), D(γ, ψ)), which states that in
high dimension eigenfunctions become unstructured and can
be approximated by independent Gaussian entries. Deter-
mining in which cases the SUA is valid is still an active area
of research (Karoui 2010; Cheng and Singer 2013; Fan and
Montanari 2015; Liu, Liao, and Suykens 2020; Lu and Yau
2023). In the case of isotropic data and no nonlinearity, the
SUA is exact (Karoui 2010), which helps explain the very
good agreement shown in Figure 2.

In the case of MNIST with ReLU, there is evi-
dence that the SUA does apply to some extent, see
e.g. (Simon et al. 2022) who also use SUA to esti-
mate generalisation errors of kernel regression in high di-
mensions on MNIST. Note that, while we rely on the
SUA to provide numerical values for the coefficients
A(γ, ψ), Ā(γ, ψ), B(γ, ψ), C(γ, ψ), D(γ, ψ), D̄(γ, ψ) our
general theoretical results only require boundedness of these

coefficients. As can be seen in Figure 2, we find reasonable
agreement. The main sources of discrepancies stem from the
fact that we only use a small subset (300 examples) to esti-
mate the empirical spectral distribution and that the SUA
may not be completely accurate in this particular setting.
Although our predictions for the generalisation error are not
perfectly accurate, we emphasise that they correctly predict
the double-descent phenomenon, and thus support our claim
that the double-descent phenomenon is only driven by the
spectral distribution and its dependence with the width.

Figure 2: Simulated generalisation error (red curves) versus
theoretical limiting generalisation error (green curves), as a
function of 1

γ . The X-axis are indexed by 1
γ by increments

of 2 and 0.5 for the top and bottom figure respectively, and
the Y-axis are indexed by the generalisation error by incre-
ments of 0.5 and 1 for the top and bottom figure respectively.
Top, the simulated error is obtained by sampling from the
kernel random matrix of a single-hidden-layer NNGP with
no non-linearity under a teacher distribution N (0, 1dId). The
theoretical distibution and asymptotes (underparameterized
asymptote in orange and overparameterized asymptote in
blue) are obtained by integrating 1

λ and 1
λ2 over the map

of the distribution ρψMP . Bottom, the simulated error is ob-
tained by sampling from the kernel random matrix of a two-
hidden-layer ReLU NNGP on a subset of MNIST, and the
theoretical distribution is obtained by sampling from the
Marchenko-Pastur map of the empirical NNGP kernel ma-
trix KN̂

X,X, and from independent Gaussian distributions in
lieu of eigenfunctions.

Related Work
The properties of stochastic gradient descent (SGD) have
been proposed as an explanation for the favourable general-
isation power of DNNs in the over-parametrised regime; for
instance, the tendency to escape saddle points (Criscitiello
and Boumal 2019) could explain how solutions that gener-
alise well are selected over all others. The neural tangent ker-



nel describes the dynamics of SGD in the functional space
and its relationship to the generalisation power of DNNs is
well documented (Jacot, Gabriel, and Hongler 2018; Ad-
lam and Pennington 2020a; Bordelon, Canatar, and Pehlevan
2020; Cao et al. 2020; Geiger et al. 2020).

The favourable generalisation properties of DNNs in
the over-parametrised regime may also be explained using
Bayesian methods and other kernel machines in a way that
is unrelated to SGD training; indeed, the good performance
of NNGP regression (Lee et al. 2018, 2020) provides com-
pelling evidence in this direction. A related argument is that
the parameter-function map is exponentially biased towards
Kolmogorov simple functions (Dingle, Camargo, and Louis
2018; Valle-Pérez, Camargo, and Louis 2018; Mingard et al.
2019); since the data on which DNNs are trained has struc-
ture, this inductive bias leads to good generalisation in the
over-parametrised regime. Due to large differences in the
sizes of the basins of attraction (Schaper and Louis 2014),
SGD converges to functions with a probability that is re-
markably close to the Bayesian posterior probability that a
DNN expresses upon random sampling of parameters (Min-
gard et al. 2020). These ideas are still being debated (Ghor-
bani et al. 2020; Wilson and Izmailov 2020; Belkin 2021).

The seminal work of Vallet, Cailton, and Refregier
(1989); Seung and Sompolinsky (1992) on the double-
descent phenomenon and the subsequent developments in
(Mei and Montanari 2019; Hastie et al. 2019; Advani, Saxe,
and Sompolinsky 2020; Liu, Liao, and Suykens 2020) sug-
gest that the favourable generalisation power of DNNs is an
intrinsic characteristic of the set of functions that these mod-
els can learn, as generalisation errors are computed analyti-
cally and independently from the learning algorithm. Meth-
ods of statistical physics have traditionally been the tool of
choice for obtaining closed-form formulae in this setting
(Engel, von Guericke, and den Broeck 2012). Recent works
have provided analytical expressions for the generalisation
error of high-dimensional kernel regressions (Canatar, Bor-
delon, and Pehlevan 2021; Bordelon, Canatar, and Pehlevan
2020; Jacot et al. 2020; Simon et al. 2022; Cui et al. 2022).
In particular, (Jacot et al. 2020) and (Simon et al. 2022) rely
on the spectral universality assumption, just as we do to es-
timate the coefficients in our formula. As pointed out by (Si-
mon et al. 2022), other works take the spectral universality
assumption implicitly via, for instance, the replica method
(Bordelon, Canatar, and Pehlevan 2020; Canatar, Bordelon,
and Pehlevan 2021). Our computation of the generalization
error is thus similar to the works of (Jacot et al. 2020; Simon
et al. 2022). Their results however hold for frozen kernels
and the dependence with the width is not studied.

The limiting spectral distributions of the kernel random
matrices that we study in this paper were first investigated
in (Fan and Wang 2020). Our results are, however, stronger
since they require less restrictive assumptions on the data
generating process and the non-linear activations; for in-
stance, we do not assume the non-linear activation to be
twice differentiable nor the columns of the input data ma-
trix to be ”(ϵ, B)-orthonormal”. This was made possible by
deriving the analytical expression as a function of an im-
plicit quantity: the spectral measure of the actual NNGP

kernel (the assumptions taken in (Fan and Wang 2020) are
precisely needed to derive an explicit formula for the spec-
trum of the actual NNGP kernel). Furthermore, we empha-
sise that the link between the ”CK” kernel random matrix
in (Fan and Wang 2020) and the actual conjugate (NNGP)
kernel is not straightforward. This subtle distinction enables
a more transparent interpretation of the the double-descent
phenomenon. This distinction was already noticed and ex-
ploited by (Louart, Liao, and Couillet 2018), who found an
expression of the limiting spectrum depending on the ac-
tual NNGP kernel matrix (not only its spectrum) under very
general assumptions. In this paper, we introduce a novel
proof technique enabled by the recent result of (Banna, Mer-
levede, and Peligrad 2015) which allows us to isolate the de-
pendency in the spectrum under mild assumptions such as
boundedness of the second moment of the data distribution.

The double-descent behaviour in the learning curves of
high-dimensional kernel regression (including the NNGP
and neural tangent kernels as particular cases) has been de-
scribed in (Canatar, Bordelon, and Pehlevan 2021; Borde-
lon, Canatar, and Pehlevan 2020). Our work improves on this
line of research by introducing the idea of width-dependent
kernels, which is especially well-suited to the context of
DNNs where double descent manifests as the network width
tends to infinity. Recent studies of the double-descent phe-
nomenon have focused on random features regressions in
the case of shallow networks (Gerbelot, Abbara, and Krza-
kala 2020; Liao, Couillet, and Mahoney 2020; Emami et al.
2020; Gerace et al. 2020; Li, Zhou, and Gretton 2021; Ad-
lam and Pennington 2020b; Belkin, Hsu, and Xu 2020; Chen
and Schaeffer 2021; Bosch et al. 2022; D’Ascoli et al. 2020),
or kernel regression with no dependence on the width (Liu,
Liao, and Suykens 2020; Mallinar et al. 2022).

Conclusions
In this paper, we have exploited results from random ma-
trix theory to offer a new perspective on the double descent
phenomenon in FCNs through the lens of Gaussian process
kernels. We have derived analytical expressions for the gen-
eralisation error under teacher-student scenarios, which are
applicable to networks of arbitrary depth and a large family
of nonlinearities. This analysis allows us to predict the dou-
ble descent behaviour as the width of the last layer changes
relatively to the number of examples, and understand it as
simply arising from the discrepancy between the spectrum
of width-dependent random kernel (corresponding the em-
pirical covariance matrix of the features), and that of the
width-independent NNGP kernel. Finally, we hope that the
tools we have developed will motivate further research on
the properties of the generalisation error of neural networks.
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