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Abstract
Many traditional fermented foods and beverages industries around the world 
request the addition of multi-species starter cultures. However, the microbial 
community in starter cultures is subject to fluctuations due to their exposure 
to an open environment during fermentation. A rapid detection approach to 
identify the microbial composition of starter culture is essential to ensure the 
quality of the final products. Here, we applied single-cell Raman spectroscopy 
(SCRS) combined with machine learning to monitor Oceanobacillus species 
in Daqu starter, which plays crucial roles in the process of Chinese baijiu. 
First, a total of six Oceanobacillus species (O. caeni, O. kimchii, O. iheyensis, 
O. sojae, O. oncorhynchi subsp. Oncorhynchi and O. profundus) were de-
tected in 44 Daqu samples by amplicon sequencing and isolated by pure cul-
ture. Then, we created a reference database of these Oceanobacillus strains 
which correlated their taxonomic data and single-cell Raman spectra (SCRS). 
Based on the SCRS dataset, five machine-learning algorithms were used to 
classify Oceanobacillus strains, among which support vector machine (SVM) 
showed the highest rate of accuracy. For validation of SVM-based model, we 
employed a synthetic microbial community composed of varying proportions 
of Oceanobacillus species and demonstrated a remarkable accuracy, with a 
mean error was less than 1% between the predicted result and the expected 
value. The relative abundance of six different Oceanobacillus species during 
Daqu fermentation was predicted within 60 min using this method, and the re-
liability of the method was proved by correlating the Raman spectrum with the 
amplicon sequencing profiles by partial least squares regression. Our study 
provides a rapid, non-destructive and label-free approach for rapid identifica-
tion of Oceanobacillus species in Daqu starter culture, contributing to real-
time monitoring of fermentation process and ensuring high-quality products.
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INTRODUCTION

The technique using Daqu to enrich functional mi-
croorganisms for comprehensive fermentation of 
starchy grains has been used over thousands of years. 
Microorganisms inhabiting Daqu not only participate in 
fermentation of baijiu (Chinese distilled spirits) but also 
provide abundant enzymes for substrate degradation 
and flavour compound production (Wang et al., 2019; 
Zou et  al.,  2018). Meanwhile, microbial metabolites 
formed during Daqu fermentation may be further con-
verted into intermediates for further baijiu fermentation 
of end flavour components, or dissolve in the final prod-
uct, which is referred to as ‘Daqu aroma’ in practice (He 
et al., 2019; Yang et al., 2021). Thus, the diversity and 
abundance of functional microorganisms in Daqu are 
vital for baijiu fermentation.

Since the fermentation process is carried out in 
an open environment, the structure of Daqu micro-
biota can be easily affected by raw materials (Zhang 
et al., 2022), environmental factors (e.g., tools, indoor 
ground, room temperature) (Li et  al.,  2016; Zhang 
et  al.,  2022) and fermentation technology (e.g., ven-
tilation, packing method) (Kang et  al.,  2022), result-
ing in different Daqu types. Recent studies have 
revealed that fermenting Daqu with different raw ma-
terials leads to varying microbial characteristics (Mao 
et al., 2022). Daqu-making environments, such as in-
door ground and tools, are the main sources of fungal 
communities in Daqu, while raw materials primarily 
contribute to bacterial communities (Du et al., 2019). 
By controlling the maximum temperature at the centre 
of the Daqu brick (threshold limit) during the fermen-
tation process, three types of Daqu can be produced: 
low-temperature (40–50°C), medium-temperature 
(50–60°C) and high-temperature Daqu (60–65°C). 
They are used in the production of baijiu with differ-
ent flavours (Wang et  al.,  2011). However, quality of 
Daqu even in the same batch on same maximum tem-
perature of the Daqu brick will be different due to spa-
tial heterogeneity (Shi et  al.,  2022). Therefore, rapid 
detection of microorganisms in Daqu fermentation is 
crucial for making operational decisions and ensuring 
quality control.

Detection of specific species within community 
contexts is a research hotspot in the field of microbial 
ecology. Culture-dependent methods have isolated 
many culturable species from Daqu, such as Bacillus, 
Lactobacillus and Saccharomyces (Li et  al.,  2015; 
Wu et al., 2013). However, these methods are labour 
and time-consuming and have limited ability to de-
tect rare species or non-culturable species (Zheng 
et al., 2012). On the other hand, PCR-based culture-
independent methods such as amplicon sequencing 
and PCR-DGGE have been widely used to assess 
the microbial community structure (Chai et al., 2019, 
2020; Ling et al., 2020). Most of these methods require 

high-quality DNA extraction, specific primers and 
long sequencing and data assembly times (>1 day). 
Consequently, these factors make these approaches 
less suitable for rapid detection of microbes during the 
fermentation process.

Raman spectroscopy is a photonic technique based 
on vibrational Raman scattering, which indicates mo-
lecular vibration information through calculating the 
difference in wavelength between excitation and 
emission upon interaction with a sample (Raman & 
Krishnan, 1928). Single-cell Raman spectra (SCRS) can 
reveal physiological and biochemical information at the 
single-cell level by collecting molecular vibration pro-
files from cells (Cui et al., 2022; Wakisaka et al., 2016). 
With the advantages of being rapid (a few seconds per 
measurement), label-free and non-destructive, SCRS 
is highly attractive for studying different biological ob-
jects in fields such as cancer diagnosis (Xu et al., 2021), 
plant science (Barańska et al., 2012), toxicology (Arend 
et al., 2020) and food safety (Wang et al., 2020). When 
combined with machine learning, SCRS can identify 
various single cells, such as infected and non-infected 
cells from peripheral blood (Arend et  al.,  2020), and 
urinary tract infection strains (Kloss et al., 2013). As a 
result, these characteristics make SCRS coupled with 
machine learning an ideal rapid method for monitoring 
microbial succession in brewing and detecting potential 
spoilage microorganisms.

Oceanobacillus is an alkaliphilic and extremely 
halotolerant genus that is widely found in traditional 
fermented foods such as kimchi (Nam et al., 2008), 
soy sauce (Tominaga et al., 2009) and shrimp paste 
(Namwong et  al.,  2009). In these food fermenta-
tion processes, Oceanobacillus can secrete various 
enzymes and organic acids, which play important 
roles in the formation of unique food flavour (Nam 
et al., 2008; Namwong et al., 2009; Thanapun, 2013; 
Tominaga et  al.,  2009; Zhang et  al.,  2021). In high-
temperature Daqu microbiota, Oceanobacillus has 
recently been identified as a dominant genus (relative 
abundance >1%) correlated with liquefaction and sac-
charification enzyme activity (Chen et al., 2020; Shi 
et  al.,  2022). Metaproteomics analysis showed that 
O. iheyensis could regulate the metabolism of five-
member heterocyclic amino acids in Daqu microbi-
ota (Yang et al., 2023). Furthermore, Oceanobacillus 
functions as a significant contributor to character-
istic compounds during Daqu fermentation (Zhang 
et  al.,  2021). Therefore, detecting the composition 
and content of Oceanobacillus in Daqu fermentation 
is helpful for controlling the fermentation process 
and product quality. In this study, we applied SCRS 
combined with machine learning model to identify six 
Oceanobacillus species in the microbial community of 
high-temperature Daqu. This study provides a label-
free, non-destructive and rapid approach for monitor-
ing functional microorganisms in Daqu fermentation.
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EXPERIMENTAL PROCEDURES

Daqu sampling and amplicon sequencing

Forty-four high-temperature Daqu samples of differ-
ent qualities were collected from several fermentation 
rooms in Guizhou province, China. The samples were 
ground into powder in liquid nitrogen with pestles. The 
total DNA of each Daqu sample was extracted using 
the soil DNA isolation kit (QIAGEN, Germany) accord-
ing to the manufacturer's instructions. Primers 338F 
(5′-ACTCCTACGGGAGGCAGCAG-3′)/806R (5′-GAC​
TACHVGGGTWTCTAAT-3′) were used to amplify the 
V3-V4 hypervariable region of bacterial 16S rRNA 
genes. The amplicon sequencing was completed by 
using the Illumina MiSeq platform (Shanghai Majorbio 
Bio-pharm Technology Co., Ltd.). Sequencing reads 
were grouped into amplicon sequence variants (ASVs) 
as a function of their pairwise sequence similarities. 
The ASVs of Oceanobacillus were collected, and the 
relative abundances of these ASVs in Daqu samples 
were calculated. A phylogenetic tree displaying the 
genotypic heterogeneity of ASVs belonging to the 
genus Oceanobacillus was constructed using the 
neighbour-joining method. MEGA 7 software was em-
ployed to construct the ASVs of Oceanobacillus phylo-
genetic tree with the neighbour-joining method.

Isolation of Oceanobacillus strains

The Nutrient Agar Medium was used to isolate 
Oceanobacillus strains from Daqu, including 1.0% pep-
tone, 0.3% beef extract, 0.5% NaCl and 1.5% agar. The 
taxonomic classification of isolates was performed by se-
quencing the 16S rRNA genes. In total, six Oceanobacillus 
species were isolated from Daqu, namely O. caeni 
ZY111012, O. kimchii ZY10094H, O. iheyensis ZS10902A, 
O. sojae ZS102924, O. oncorhynchi subsp. oncorhynchi 
ZS102907 and O. profundus ZQ100018. The 16S rRNA 
gene sequences of the six Oceanobacillus strains 
were submitted to GenBank (ON935606, ON935612, 
ON935611, ON935610, ON935607 and ON935609). A 
BLAST analysis was conducted to compare the similar-
ity of the 16S rRNA gene sequence of the isolated strain 
and the ASVs of Oceanobacillus from amplicon sequenc-
ing by using DNAman software.

Raman measurement

Six Oceanobacillus strains were cultivated at 37°C 
using Nutrient Medium to reach their log phases. Each 
strain was cultured independently in at least three dif-
ferent batches as biological replicates. Cells in the fer-
mentation broth (1 mL) were obtained by centrifugation 
at 7000 rpm for 2 min and resuspended in sterile water 

three times. Then, 3 μL of the suspension was dried for 
15 min on a sterile aluminium-coated substrate. Raman 
spectra of the six Oceanobacillus strains were measured 
across monolayer regions of the dried samples using 
the auto-measure mode of confocal Raman microscopy 
(HOOKE Instruments Ltd., China). The spectrometer 
response was calibrated against a source with some 
silicon, standard reference materials 2242a, Ne, Ar and 
Hg samples. Meanwhile, 532 nm illumination at 3 mW 
was used with a 600 g/mm grating to generate spectra 
with 4 cm−1 dispersion to maximize signal strength while 
minimizing background signal from autofluorescence. 
To acquire adequate SCRS data to cover different kinds 
of morphological or physiological features, we randomly 
picked 100 single cells from each Oceanobacillus spe-
cies. Next, Raman spectra of the six Oceanobacillus 
species were treated with the same spectrum process-
ing steps, such as removing cosmic ray, correcting 
baseline with adaptive iteratively reweighted penalized 
least-squares (airPLS) (Zhang et al., 2010), smoothing 
spectra with Savitzky–Golay and normalization. Finally, 
the Raman spectra range between 500 and 1800 cm−1 
was used for further analysis.

Chemometric analysis of Oceanobacillus 
Raman spectrum

To analyse the spectral differences in different bac-
terial species, dimension reduction techniques such 
as linear discriminant analysis (LDA) and hierarchi-
cal cluster analysis (HCA) were used to analyse 
SCRS. LDA was performed using the MASS package 
(Ripley, 2015). The significances of LD1 and LD2 val-
ues in different groups were compared by Duncan's 
multiple-range test. Peaks marked with different let-
ters possess significantly different values (p < 0.05). 
HCA was performed by using the Euclidean distance 
of preprocessed average spectral data. The assign-
ment of the major Raman bands in biological samples 
has been investigated by a number of studies, which 
serves as a reference library for spectral interpretation 
in microbiological analysis (De Gelder et  al.,  2007; 
Talari et al., 2014; Wang et al., 2015). Raman peaks 
observed in the spectra of Oceanobacillus species 
and their tentative assignments were summarized. 
Raman peaks from six Oceanobacillus strains were 
analysed by Kruskal–Wallis tests to reveal the sta-
tistical significance of the interpretation of each 
Oceanobacillus strain.

Model training and validation

In order to discriminate different species of 
Oceanobacillus, five machine learning models includ-
ing k-nearest neighbour (kNN) (Zhang et  al.,  2018), 
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logistic regression (LR) (Stoltzfus,  2011), random for-
est (RF) (Ho,  1998), support vector machine (SVM) 
(Tolstik et  al.,  2014) and Gaussian Naive Bayesian 
(GNB) (Bhargava et  al.,  2006) were established. The 
collected Raman spectra of six Oceanobacillus strains 
were used for model establishment, of which 70% were 
used for training and 30% for testing. The scikit-learn 
package was used to perform a grid search function to 
adjust the hyperparameters based on the area under 
curve (AUC) value. The five classification models were 
evaluated by calculating the precision, recall and F1 
score, with the optimal model possessing the highest 
score. The confusion matrix of the model was used to 
visualize the classification and prediction results. The 
row corresponds to the bacterial species identified by 
the standard biological real class, while the column cor-
responds to the bacterial identification predicted by the 
algorithm.

The applicability of the classification model was ver-
ified with synthetic microbial communities (SynComs) 
containing different proportions of Oceanobacillus 
species, Oceanobacillus-free vinegar microbiota (mi-
crobiota within the fermented grains in vinegar brew-
ing) or Oceanobacillus-containing Daqu microbiota. 
The designed combination of Oceanobacillus species 
is shown in Figure 4A. The sample pretreatment and 
Raman detection were carried out according to previ-
ous conditions. The number of collected SCRS was 
100–200 for each SynCom. The Raman spectra were 
input into the classification model to generate predicted 
results. The prediction score threshold of the classifi-
cation model was 0.9 (that is, if the prediction score 
of SCRS is less than 0.9, the single cell is classified 
as another species; if the prediction score is higher 
than 0.9, the cell is classified as the highest score 
strain). The relative abundance of Oceanobacillus in 
each SynCom was calculated, and the predicted ratio 
to the real ratio was calculated by mean absolute 
error. The recovery rate was calculated by the relative 
abundance of O. sojae in SynComs containing Daqu 
microbiota.

Predicting the abundance and numbers of 
Oceanobacillus in Daqu

Three parallel Daqu bricks were taken out from the 
same incubating room on days 2, 4, 6, 10, 20 and 40, 
respectively. Daqu bricks were separately mashed into 
powders, and Daqu (1 g) were homogenized in 5 mL 
of phosphate buffer saline. After being vigorously vor-
texed for 10 min, the cell suspension was centrifuged 
at 500 rpm for 5 min. Then, the supernatant was cen-
trifuged at 7000 rpm for 2 min. The precipitate was 
washed repeatedly with sterile water and centrifuged 
three times. The cell pellets were resuspended in 0.2 mL 
sterile water. Finally, an appropriate amount of bacterial 

suspension was placed on the Raman chip and allowed 
to air dry. The SCRS of Daqu was collected by a confo-
cal Raman spectrometer, with an excitation wavelength 
532 nm, scanning spectrum range of 500 ~ 3750 cm−1, 
laser power range of 3 mW and scanning time of 5 s. 
The determination condition setting of the Raman 
spectrum and the method of Raman data processing 
were the same as that of single cell. More than 500 
SCRS of microorganisms in Daqu were collected. The 
taxonomic information and relative abundance of six 
Oceanobacillus species in Daqu microbiota were de-
termined by using the Oceanobacillus Raman classifi-
cation model. To evaluate the linearity between Raman 
detection and amplicon sequencing, we analysed the 
relative abundance of Oceanobacillus using a PLS-R 
model. The model performance was evaluated using 
the coefficient of determination (R2) and the root mean 
square error (RMSEcv).

RESULTS

Identification of Oceanobacillus in starter 
culture in Daqu

In order to investigate whether Oceanobacillus can be 
used as an indicator strain for monitoring Daqu of vary-
ing quality, we explored the diversity of Oceanobacillus 
community in Daqu with different levels of quality. As 
revealed by 16S rRNA gene sequencing from differ-
ence quality Daqu samples, Oceanobacillus was a 
common bacteria (relative abundances from 0% to 
57.3%, average >10%) in the bacterial community of 
high-temperature Daqu (Figure  1A). At the species 
level, a total of 410 ASVs were annotated by SILVA 
(v132) databases from 44 Daqu samples, in which 11 
ASVs distributed in eight Oceanobacillus species, in-
cluding O. caeni (ASV133, 8.99%), O. oncorhynchi 
subsp. oncorhynchi (ASV207, 4.21%), O. senegalen-
sis (ASV161, 0.56%; ASV150, 0.2%; ASV82, 0.19%), 
O. profundus (ASV247, 0.88%), O. kimchii (ASV42, 
0.27%), O. indicireducens (ASV119, 0.13%; ASV127, 
0.09%), O. iheyensis (ASV287, 0.1%) and O. sojae 
(ASV295, 0.01%). The relative abundances of these 11 
ASVs were significantly different among the 44 Daqu 
samples (p < 0.05), even undetectable in some Daqu 
samples. The Oceanobacillus community content and 
species-level structure exhibit variations in Daqu with 
different flavour and functional nutrients, resulting in 
the differences in Daqu quality (Figure 1A).

Isolation of Oceanobacillus strains

A total of 280 strains were isolated from Daqu sam-
ple by pure culture with Nutrient Agar Medium. Among 
these isolates, 50 strains were classified to the genus 
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Oceanobacillus (identity >97%), by comparing with 
the 16S rRNA gene sequence of model strains in the 
EZBioCloud database. These isolates were further cat-
egorized into six species, O. caeni, O. kimchii, O. ihey-
ensis, O. sojae, O. oncorhynchi subsp. oncorhynchi 
and O. profundus (Figure 1B).

In order to identify the representative strain with the 
highest similarity to the dominant ASV sequence among 
the Oceanobacillus species, the 16S rRNA gene se-
quence of the isolated strains was compared with the 
ASV sequence determined by amplicon sequencing. 
A total of six strains, including O. caeni ZY111012, 
O. kimchii ZY10094H, O. iheyensis ZS10902A, O. 
sojae ZS102924, O. oncorhynchi subsp. oncorhynchi 
ZS102907 and O. profundus ZQ100018, were respec-
tively matched with ASV133, ASV42, ASV287, ASV295, 
ASV207 and ASV247, with the similarity from 98% to 
100% (Figure 1B). The results indicated that the main 
Oceanobacillus species were isolated from the micro-
bial community of Daqu.

Characterizing and distinguishing 
SCRS of Oceanobacillus species

Under the bright field microscope, the cells of differ-
ent Oceanobacillus species were oval, accompanied 
by some spores (Figure 2A) and could not be distin-
guished by the naked eye. More than 100 SCRS for 
each Oceanobacillus species were collected and pro-
cessed by de-background noise, smoothing and nor-
malization. The collected SCRS were linked to their 
taxonomic data, thereby constituting a reference da-
tabase of Daqu Oceanobacillus. In general, all the 
six Oceanobacillus species had strong Raman spec-
tral signals and their average Raman spectral curves 
and intensities were basically similar, with SCRS in the 
range of 500–1800 cm−1 (Figure 2B).

Characteristic Raman peaks observed in the SCRS 
of six Oceanobacillus species and their tentative as-
signments are summarized in Table  S1. Most of the 
peaks could be ascribed to the skeletal structure of 

F I G U R E  1   Targeted isolation of Oceanobacillus species from the high-temperature Daqu microbiota. (A) Species-level diversity 
of Oceanobacillus community in different high-temperature Daqu samples (n = 44) from different baijiu factories, among which Q1–Q15 
belonged to black Daqu, Q16–Q30 belonged to yellow Daqu and Q31–Q44 belonged to white Daqu. The phylogenetic tree displayed the 
genotypic heterogeneity of amplicon sequence variants (ASVs) belonging to the genus Oceanobacillus by the neighbour-joining method. 
Percentage in the bracket means the relative abundance of ASV in the bacterial community of Daqu. (B) Identification of the isolated strains. 
The 16S rRNA gene sequence of the isolated strains was aligned with ASVs of Oceanobacillus determined from the Daqu data set and 
annotated in the EZBioCloud database to match the closest model strain. The similarity was assessed between the ASV sequence and 16S 
rRNA gene, both in comparison to the GenBank database, respectively.
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nucleic acids, proteins, lipids, cytochrome c and car-
bohydrates. The intensity of these Raman peaks 
showed differences among Oceanobacillus species 
(Figure S1). Specifically, the intensities of the charac-
teristic Raman peaks at 540, 748, 964, 1128, 1164, 
1310, 1340, 1582 cm−1 in single cells of O. iheyensi 
were significantly different from other Oceanobacillus 
species (p < 0.05) (Figure S1), indicating obvious me-
tabolism differences.

The SCRS of six Oceanobacillus species were dis-
tinguished by LDA and HCA (Figure  2C,D). Different 
Oceanobacillus species were clustered separately by 
LDA. LD1 and LD2 were able to explain 70.35% of the 
variances in the data (50.33% by LD1 and 25.02% by 
LD2) (Figure 2C). Six Oceanobacillus species showed 
a significant distinction in the LDA scores plot for LD1 
and LD2 by Duncan's multiple-range test (p < 0.05). 
The results of HCA were consistent with that of LDA 
(Figure 2D).

Establishing machine learning model for 
Oceanobacillus classification

In order to predict Oceanobacillus species in un-
known samples, a reliable Oceanobacillus Raman 
spectral database is needed to reflect the biological 

heterogeneity of the species, followed by training and 
learning of the bacterial species identity using tools 
such as machine learning. Machine learning models 
can reduce the workload of operators and improve 
the efficiency and reliability of microbial detection. In 
this study, five machine learning models (kNN, LR, 
RF, SVM and GNB) have been used to distinguish 
six Oceanobacillus species. The precision, recall and 
F1 scores of SVM were 97%, 97% and 96%, which 
were the highest among the five models (Table 1). In 

F I G U R E  2   Multivariate analysis of the single-cell Raman spectra of six Oceanobacillus species. (A) The optical micrograph of the 
typical cell morphology of O. profundus. Under a 100-fold microscope, normal-sized cells and small spore cells were observed. Scale bar, 
10 μm. (B) The averaged Raman spectra of 200 single cells belonging to the six Oceanobacillus species. The shadow areas represent the 
standard deviation of Raman spectra. (C) LDA visualization of the Raman spectra of different Oceanobacillus, in which six groups were 
identified (each point of the plot corresponds to a spectrum taken from one individual cell). LD1 and LD2 represent the results of LDA 
displayed on the x-axis and y-axis, respectively. Statistically significant differences (p < 0.05) are denoted by different letters (e.g., a and b). 
(D) The HCA results based on the averaged Raman spectra of different Oceanobacillus.

TA B L E  1   Performance scores of k-nearest neighbour (kNN), 
logistic regression (LR), random forest (RF), support vector 
machine (SVM) and Gaussian Naive Bayesian (GNB) to predict six 
Oceanobacillus species.

Model Precisiona Recallb F1-scorec

GNB 0.79 0.79 0.79

RF 0.91 0.92 0.91

kNN 0.92 0.92 0.92

LR 0.93 0.95 0.94

SVM 0.97 0.97 0.96
aPrecision, the percentage of positive instances out of the total predicted 
positive instances.
bRecall encapsulates the percentage of positive instances out of the total 
real positive instances.
cF1 score is the mean of precision and recall.
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contrast, the precision of LR, kNN, RF and GNB mod-
els were 75.7%, 91%, 92% and 93%, respectively.

SVM is a widely used classification model that at-
tempts to generate the optimal hyperplane or deci-
sion boundary to best separate different categories 
in a high-dimensional space. The confusion matrix of 
SVM reflected the misclassification probability among 
different Oceanobacillus species (Figure  3). The 
spectra of most species were classified into the cor-
rect category. A few mismatches of O. sojae-O. pro-
fundus and O. iheyensis-O. kimchii were observed, 
but their accuracies were acceptable (accuracy >0.8) 
(Figure 3).

Verification with synthetic 
microbial community

The applicability of SVM-based classification model 
was verified with SynComs containing designed com-
bination of Oceanobacillus species (Figure  4A). The 
predicted relative abundances of six Oceanobacillus 
species were compared with the expected results in 
SynComs 1–8 (Figure  4B). In SynComs 1–4, con-
taining different proportions of Oceanobacillus spe-
cies, the predicted relative abundances were almost 
identical to the expected results, with the mean ab-
solute error less than 0.2%. In SynCom 5, containing 
Oceanobacillus-free vinegar microbiota, the mean ab-
solute error between the predicted and expected re-
sults was 0.75%. In SynComs 6–8, containing Daqu 
microbiota, the predicted relative abundances of 
Oceanobacillus were almost the same with expected 
results, with the standard recovery rates ranging from 
95% to 112%. The above results showed that SCRS 

combined with the SVM-based model can accurately 
identify different Oceanobacillus species in the micro-
bial community of Daqu.

Monitoring of Oceanobacillus species 
during Daqu fermentation

After validating the performance of SCRS combined 
with the SVM model in the detection of Oceanobacillus 
in vitro, we further investigated their feasibility for real-
time Oceanobacillus detection during the fermenta-
tion of high-temperature Daqu. The results of Raman 
detection were similar to those of amplicon sequenc-
ing. T-test results showed no significant difference in 
Oceanobacillus diversity between Raman detection 
and amplicon sequencing (p > 0.1). Oceanobacillus 
was a dominant bacterial genus throughout fermenta-
tion (relative abundance varied from 26% to 50%), but 
the structure of Oceanobacillus community varied sig-
nificantly (Figure  5A). Based on Raman analysis, O. 
profundus dominated the Oceanobacillus community 
in Daqu bricks on days 2–4, while O. caeni became the 
dominant Oceanobacillus species after 4 days of fer-
mentation (Figure 5A). These results were consistent 
with those obtained from the amplicon sequencing. To 
test whether Raman spectra can be correlated with am-
plicon sequencing analysis at the genotype level, the 
PLS-R model demonstrated that a simple linear trans-
formation linked these two types of high-dimensional 
data (Figure 5B). The R2 of PLS-R model was 0.83 and 
the RMSEcv of PLS-R model was 7.48 (Figure 5B). It 
suggests that Raman analysis could be used as a rapid 
method to classify different Oceanobacillus and indi-
cate their relative abundance.

F I G U R E  3   Binary confusion matrix 
for classification of the six Oceanobacillus 
species based on support vector machine.
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DISCUSSION

Complicated microorganisms are beneficial to flavour 
formation in natural food fermentation, but they also 
pose challenges to maintain the batch-to-batch uni-
formity of the fermentation process and the quality of 
the final products. Daqu harbours intricate microbial 
communities (Figure S2), posing a challenge for quality 
assurance in production. Comprehensively understand-
ing the dynamic changes in dominant microorganisms 
presents a challenge due to their abundance and 

difficult to separate. Therefore, the identification of dis-
tinct functional microorganisms in various qualities of 
Daqu, particularly the diverse contents and species of 
Oceanobacillus (Figure 1), proves valuable in utilizing 
Oceanobacillus as marker organisms for monitoring 
Daqu fermentation quality. Moreover, the importance 
of Oceanobacillus in food fermentation has been high-
lighted, as it demonstrates the capacity to produce acid 
and α-glucosidase, and the activities of liquefaction 
and saccharification enzyme in Daqu were positively 
correlated with Oceanobacillus, but few studies have 

F I G U R E  4   Evaluation of the feasibility of Raman spectroscopy coupled with the SVM-based classification model for classification 
of six Oceanobacillus species within synthetic microbial communities (SynComs). (A) Schematic illustration of SynComs with or without 
Oceanobacillus species (O. caeni, O. kimchii, O. iheyensis, O. sojae, O. oncorhynchi, O. profundus). The Daqu microbiota contains 
Oceanobacillus species, and the vinegar microbiota (microbiota within the fermented grains in vinegar brewing) contains no Oceanobacillus 
species. (B) The predicted results by the SVM-based classification model describe the relative abundance of six Oceanobacillus species in 
SynComs.
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identified Oceanobacillus at the species level. To date, 
more than 35 species in the genus Oceanobacillus 
have been recorded in the EzBioCloud database. 
PCR-based assays have limited discrimination power 
in identifying a large number of Oceanobacillus spe-
cies simultaneously, due to the specificity of primers 
or the preference of amplification sequence (Kumar 
et  al.,  2017). Meanwhile, the majority of genotypic 
methods require high-quality DNA extraction, and long 
sequencing and data assembly time (>1 day). Thus, we 
evaluated Raman spectroscopy as a bacterial typing 
tool for identifying Oceanobacillus to the species level 
that can be eventually used as an approach for Daqu 
fermentation.

To ensure the coverage of the established refer-
ence database of Daqu Oceanobacillus, 44 high-
temperature Daqu samples of different qualities were 
collected from different factories for amplicon sequenc-
ing. A total of 11 ASVs distributed in 9 Oceanobacillus 
species were revealed in the microbial community 
of Daqu, demonstrating obvious species diversity of 
Oceanobacillus (Figure 1A). To isolate the representa-
tive strains belonging to all the Oceanobacillus species 
in Daqu samples, the ASV sequences from amplicon 
sequencing were aligned with the 16S rRNA gene se-
quence of isolated strains. The results showed that the 
dominant Oceanobacillus species have been isolated 
from Daqu microbiota (Figure 1B). It is worth noting that 
the annotated results of ASV sequences with the RDA 

and EzBioCloud databases might be different due to 
inconsistent information (Figure 1). With the update of 
the database content, the information of target species 
would be more accurate.

By comparison, it is found that SVM is the optimal ma-
chine learning algorithm for classification of SCRS of six 
Oceanobacillus species. Significantly, among the char-
acteristic Raman peaks of six Oceanobacillus strains, 
some 540 and 1128 cm−1 represent glucose chemical 
bonds, and some 748, 1128, 1310 and 1582 cm−1 repre-
sent cytochrome c bonds. Much research have shown 
that most halophilic and tolerant microorganisms ac-
cumulate high concentrations of organic osmotic sol-
utes (glycerol, monosaccharides and amino acids) 
and need necessary energy across ion pumps of cell 
membrane to protect cells from extreme osmotic pres-
sure (Gunde et al., 2018; Jehlička et al., 2012). This can 
explain why there are a large number of characteristic 
peaks of monosaccharides and cytochrome c. It should 
be pointed out that the SCRS of Oceanobacillus with 
different growth periods are not collected in this study. 
Previous studies have shown that the internal compo-
sition of bacteria will be different under different culture 
conditions or physiological conditions, but this change 
will not affect identification of bacteria using Raman 
spectroscopy at the species level (Huang et al., 2004; 
Hutsebaut et al., 2004; Vossenberg et al., 2013).

According to the results of amplicon sequencing, 
two species that may be in a viable but non-culturable 

F I G U R E  5   Comparison of the 
Oceanobacillus community based on 
SCRS and 16S rRNA gene sequencing. 
(A) Detection of Oceanobacillus at 
the species level in the fermentation 
process of high-temperature Daqu by 
Raman spectroscopy coupled with SVM 
and amplicon sequencing. (B) Use the 
PLS-R model to fit a linear regression 
model between SCRS and 16S rRNA 
gene sequencing of Oceanobacillus in 
Daqu fermentation. The horizontal axis 
represents the predicted value of Raman 
spectroscopy, and the vertical axis 
represents the measured value amplicon 
sequencing by explained.



10 of 12  |      XU et al.

(VBNC) state (Lewis et al., 2020), including O. senegal-
ensis (ASV82, ASV150 and ASV161) and O. indiciredu-
cens (ASV119 and ASV127), were not isolated (Figure 1). 
Although these species are not dominant in the genus 
Oceanobacillus, there could generate some degree of 
interference in the test results of Oceanobacillus in Daqu 
samples. Hence, further studies will focus on isolating 
more Oceanobacillus species from Daqu microbiota, 
by using culturomics and single-cell sorting technolo-
gies such as Raman-activated microbial cell sorting 
(RACS), optical tweezers and microfluidic cell sorting 
technology to isolate similar types for cultivation or mini-
metagenomics (Gross et  al.,  2015; Jing et  al.,  2018). 
Moreover, with the assistance of this technology, the 
isolation of other VBNC microorganisms remains an 
achievable objective. In the future, establishing a dual 
microbial index or a multi-microbial index across differ-
ent genera can enhance the monitoring of the microbial 
community. This approach holds promise for evaluating 
the fermentation quality of Daqu. Overall, this study pro-
vides a rapid, non-destructive and label-free approach 
to detect the composition of Oceanobacillus species in 
Daqu starter. The detection process of a Daqu sam-
ple can be completed within 60 min, from the sample 
processing to the output of result data analysis. This 
method has great potential for application during the 
fermentation process of Daqu.
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