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ABSTRACT

Magmatic arcs are natural laboratories for studying the growth of continental

crusts. The Gangdese arc, southern Tibet, is an archetypal continental magmatic arc

that  formed  due  to  Mesozoic  subduction  of  the  Neo-Tethyan oceanic  lithosphere;

however, its formation and evolution remain controversial.  In this contribution, we

combine newly reported and previously published geochemical and geochronological

data for Mesozoic magmatic rocks in the eastern Gangdese arc to reveal its magmatic

and  metamorphic  histories,  and  review  its  growth,  thickening,  fractionation,  and

mineralization  processes.  Our  results  show that  (1)  the  Gangdese  arc  consists  of

multiple Mesozoic arc-type magmatic rocks, and records voluminous juvenile crustal

growth; (2) The Mesozoic magmatic rocks experienced Late Cretaceous granulite-

facies metamorphism and partial melting, thus producing hydrous and metallogenic

element-rich migmatites that form a major component of the lower arc crust and are a

potential  source  for  the  Miocene  ore-hosting  porphyries;  (3) The  Gangdese  arc

witnessed crustal thickening and reworking during the Middle to Late Jurassic and

Late  Cretaceous;  (4)  Crystallization-fractionation  of  mantle-derived  magmas  and

partial  melting  of  thickened  juvenile  lower  crust  induced  intracrustal  chemical

differentiation during subduction. We suggest that the Gangdese arc underwent the

following  main  tectonic,  magmatic  and  metamorphic  evolution  processes:  normal

subduction  and  associated  mantle-derived  magmatism during  the  Late  Triassic  to

Jurassic; shallow subduction during the Early Cretaceous and an associated magmatic

lull; mid-oceanic ridge subduction, high-temperature metamorphism and an associated

magmatic  flare-up  during  the  early  Late  Cretaceous  ,  and  flat  subduction,  high-

temperature and high-pressure metamorphism, partial melting and associated crust-

derived magmatism during the late Late Cretaceous. Key issues for further research

include  the  temporal  and  spatial  distributions  of  Mesozoic  magmatic  rocks,  the

evolution  of  the  components  and  compositions  of  arc  crust  over  time,  and  the

metallogenic processes that occur in such environments during subduction.
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INTRODUCTION

Magmatic arcs are products of subduction-related magmatism at convergent plate

margins, and are ideal natural laboratories for studying plate tectonic processes, crust–

mantle interaction, and continental crust growth (Davidson and Arculus, 2006; Miller

and  Snoke,  2009;  Jagoutz  and  Schmidt,  2012).  The  formation  and  evolution  of

magmatic arcs has been a topic of interest in earth science for many years (e.g., Zandt

et al., 2004; Kelemen et al., 2007; Lee et al., 2007, 2012; Jagoutz and Behn, 2013;

Ducea et al., 2015; Santosh et al., 2020). The Gangdese magmatic arc, southern Tibet,

formed due to Mesozoic subduction of Neo-Tethyan oceanic lithosphere beneath the

southern margin of the Asian continent, and preserves widespread arc-related plutonic

and  volcanic  rocks,  and  therefore  been  used  as  a  type-example  of  continental

magmatic arcs (Maluski et al., 1982; Xu et al., 1985; Coulon et al., 1986; Debon et al.,

1986; Harris et al., 1998a, b; Yin and Harrison, 2000; Ding et al., 2003; Pan et al.,

2004, 2012; Chung et al., 2005, 2009; Mo et al., 2005; Zhu et al., 2009a, b; Ji et al.,

2009a, b; Zhang et al., 2010a, 2020; Niu et al., 2013; Hou et al., 2015a, b). However,

the  Gangdese  arc  experienced  intense  reworking  during  the  Cenozoic  collision

between the Indian and Asian continents and subsequent underthrusting of the Indian

continent beneath the Asian continent,  producing new magmatic  and metamorphic

lithologies and deformational structures (Molnar et al.,  1993; Murphy et al.,  1997;

Harrison et al., 2000; Yin and Harrison, 2000; Ding and Lai, 2003; Chung et al., 2005;

Mo et al., 2005; Mo and Pan, 2006; Dong et al., 2008; Searle et al., 2011; Ji et al.,

2012,  2016;  Zheng et  al.,  2012,  2014,  2015;  Zhang et  al.,  2013,  2014a,  b,  2015,

2019a; Ding et al., 2014; Palin et al., 2014; Hu et al., 2016; Zhu et al., 2017, 2019;

Searle, 2018).  As a result, despite focused research, the characteristics of Mesozoic

magmatism and metamorphism,  and the  tectonic  evolution  of  the arc  prior  to the

India–Asia collision remain controversial, and several significantly different models

of the Gangdese arc’s formation and evolution have been proposed (e.g.,  Yin and

Harrison,  2000;  Guo  et  al.,  2011;  Pan  et  al.,  2012;  Zhu  et  al.,  2019;  Kapp  and
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DeCelles, 2019).

Between longitudes 88 and 95, the eastern Gangdese arc exposes arc-related

magmatic rocks of diverse types and ages, and related polymetallic deposits (Fig. 1).

Moreover, rocks from the different crustal levels of the arc have been exposed to the

surface due to differential exhumation and erosion during the Late Cenozoic (Burg et

al., 1997; Dong et al., 2010a; Zhang et al., 2010b, 2014b, 2020; Searle et al., 2011;

Guo et  al.,  2012, 2020; Xu et  al.,  2013;  Cao et  al.,  2020).  Therefore,  the eastern

Gangdese arc is a highly favorable area for studying the formation and evolution of

the whole arc. In order to reconstruct the magmatic, metamorphic and metallogenic

processes of the Gangdese arc, in this contribution, we conduct a detailed study and

review of Mesozoic magmatic rocks based on an extensive set of newly reported and

previously  published  geochemical  and  geochronological  data.  The  key  issues

addressed by this study are (1) the juvenile crustal growth, thickening, and intracrustal

differentiation process, (2) the lithological constitution and nature of lower arc crust,

(3) the source and mechanism of porphyry Cu–Au mineralization, and (4) the tectonic

evolution  of  the  eastern  Gangdese  arc  during  Mesozoic  subduction.  Our  results

provide new insight into how the Gangdese arc was built and reworked prior to the

arc-continental  collision,  and the early growth processes  of mature magmatic  arcs

with a complete history from oceanic lithosphere subduction to continental collision.

GEOLOGICAL SETTING AND DATA

The  Tibetan  Plateau  consists  of  five  roughly  east-west-trending  domains,

comprising the Kunlun, Songpan–Ganze,  Northern Qiangtang, Southern Qiangtang

and Lhasa, terranes, and the Himalayan belt (Fig. 1A). These units are separated by

the Kunlun, Jinsha, Longmu Co–Shuanghu, Bangong–Nujiang, and Yarlung–Tsangpo

suture zones, representing relicts of the Paleo-Asian, Paleo-, Meso-, and Neo-Tethyan

oceans,  respectively  (e.g.,  Chang and  Zheng,  1973;  Dewey et  al.,  1988;  Yin  and

Harrison, 2000; Ding et al., 2003).  The Lhasa terrane, bounded to the south by the

Yarlung–Tsangpo  suture  zone  (YTSZ)  and  to  the  north  by  the  Bangong–Nujiang
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suture zone (BNSZ) (Fig. 1),  is a micro-continental block that rifted away from the

northern  margin  of  the  Gondwana  supercontinent,  and  contains  Precambrian

basement,  Paleozoic  to  Mesozoic  sedimentary  rocks,  and  Paleozoic  to  Cenozoic

magmatic rocks (Allègre et al., 1984; Xu et al., 1985; Yin and Harrison, 2000; Ding et

al., 2003; Pan et al., 2004, 2006; Chung et al., 2005; Mo et al., 2005; Zhu et al., 2011;

Zhang et al., 2012a, b, 2014a, 2020).  The Gangdese magmatic arc, with a width of

~100–200 km, is located in the central and southern parts of the Lhasa terrane, and

forms the eastern segment of the Trans-Himalayan magmatic arc, which extends E–W

for up to 2500 km (Fig. 1A).

The  Gangdese  arc  experienced  Mesozoic  Andean-type  orogeny  driven  by

northward subduction of the Neo-Tethyan oceanic lithosphere beneath the southern

margin of the Asian plate (Lhasa terrane), and subsequent Cenozoic Himalayan-type

orogeny related to the Indian plate colliding with the Asian plate (Fig. 2; Allègre et

al., 1984; Xu et al., 1985; Coulon et al., 1986; Debon et al., 1986; Searle et al., 1987;

Pearce and Mei, 1988; Yin and Harrison, 2000; Ding et al., 2003, 2014; Pan et al.,

2004; Mo et al., 2005; Mo and Pan, 2006). Thus the region witnessed long-lasting

magmatism (~220–10 Ma),  with four major  pulses of intrusion during the Middle

Jurassic, Late Cretaceous, Early Eocene and Early Miocene (Fig. 2; Chu et al., 2006,

2011; Wu et al., 2007, 2010; Ji et al., 2009a, 2014; Guo et al., 2011; Zhu et al., 2011,

2017, 2019; Liu et al.,  2014; Zhang et al.,  2019a, 2020). The arc magmatic rocks

consist  mainly  of  Late  Cretaceous  and  Tertiary  intrusive  members  (the  Gangdese

batholith), and the Paleogene Linzizong volcanic succession, and minor Triassic and

Jurassic intrusives and volcanic (-sedimentary) rocks (Fig. 1B; Chung et al., 2005; Mo

et al., 2005, 2007, 2008; Wen et al., 2008a, b; Guo et al., 2011; Zhu et al., 2011, 2019;

Lee et al., 2012; Pan et al., 2012; Wang et al., 2016a, b; Li et al., 2018). The Late

Cretaceous  batholiths  form a  major  component  of  the  eastern  Gangdese  arc,  and

include  gabbro,  diorite,  granodiorite  and  granite,  minor  hornblendite  and  other

ultramafic rocks (Wen et al., 2008a, b; Zhang et al., 2010a, 2014b; Ma et al., 2013a, b,

c; Guo et al., 2020; Tang et al., 2020). The Mesozoic volcanic rocks of the Gangdese
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arc are the Lower Jurassic Yeba Formation and Upper Jurassic–Lower Cretaceous

Sangri Group (Fig. 1B).  The Yeba Formation consists mainly of basalt,  dacite and

rhyolite,  with minor andesite (e.g., Zhu et al.,  2008; Chen et  al.,  2014; Liu et al.,

2018). The Sangri Group is widespread in the eastern Gangdese arc, and consists of

basalt,  basaltic  andesite,  andesite  and minor  dacite  (Dong et  al.,  2006; Zhu et  al.,

2009a; Kang et al., 2014; Zhang et al., 2019b). 

The  Early  Cretaceous  intrusions  and  Lower  Cretaceous  volcano-sedimentary

rocks are widespread in the central and northern parts of the Lhasa terrane (Fig. 1B).

The Early Cretaceous intrusions consist mainly of granitoids (Li et al., 2018). The

Lower  Cretaceous  volcano-sedimentary  rocks  include  the  Zenong  Group,  and

Qushenla  and  Duoni  Formations.  The  Zenong  Group  contains  basaltic  andesite,

andesite  and  dacite,  the  Qushenla  Formation  consists  mainly  of  basalt,  basaltic

andesite  and andesite,  and the  Duoni  Formation  consists  mainly  of  rhyolite,  with

minor basalt and basaltic andesite (Kang et al., 2008, 2009, 2010).

The eastern Gangdese arc and the Eastern Himalayan Syntaxis includes three

tectonic  units;  from  northwest  to  southeast,  these  are  the  Lhasa  terrane  (eastern

Gangdese arc), the YTSZ, and Himalayas (Figs. 1 and 3). The Himalayas include the

Tethyan Himalayan and Greater Himalayan Sequences (Fig. 3). The former consists

of Paleozoic to Mesozoic sedimentary rocks that formed on the passive continental

margin  of  the  Indian  plate,  and  underwent  intensive  deformation  and  low-grade

metamorphism during the  India–Asia collision.  The latter  consists  of  Precambrian

basement rocks of the Indian continent, and Early Paleozoic and Mesozoic magmatic

rocks,  and  underwent  high-grade  metamorphism  and  partial  melting  during  the

Cenozoic  collisional  orogeny  (Yin  and  Harrison,  2000;  Zhang  et  al.,  2021  and

references therein). The Yarlung–Tsangpo suture zone is a tectonic mélange zone that

includes the remnants of Neo-Tethyan oceanic crust and metamorphic rocks from both

the Indian and Asian continental margins (Geng et al., 2006).

The eastern Gangdese arc, near the Eastern Himalayan Syntaxis, consists mainly

of  Late  Cretaceous  gabbro–granodiorite  (Lilong  batholith)  and  granite  (Wolong
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batholith), Paleocene to Eocene granite and gabbro, Late Paleozoic sedimentary rocks,

and  Jurassic  gabbro  and  granite,  and  voluminously  distributed  but  unidentified

intrusions (Fig. 3;  Zhang et  al.,  2020). These rocks underwent variable degrees of

metamorphism  during  the  Mesozoic  to  Cenozoic,  and  were  intruded  by  Late

Oligocene granites, which show no evidence of deformation and metamorphism (Fig.

3). These metamorphic rocks constitute the crustal section of the eastern Gangdese

arc,  with  the  low-grade  (greenschist-  to  epidote  amphibolite-facies),  middle-grade

(amphibolite-facies)  and  high-grade  (granulite-facies)  metamorphic  rocks  (belts)

representing the upper, middle, and lower crustal components, respectively (Fig. 3;

Zhang et al., 2020). Geological mapping shows that the exposed Oligocene lower arc

crust  consists  of  metamorphosed  Late  Cretaceous,  Jurassic,  Paleocene  to  Eocene

gabbros, diorites, and granites, and Late Paleozoic sedimentary rocks (Fig. 3; Zhang

et al., 2020). 

The Jurassic magmatic rocks newly reported here occur as lenses of varying

size or as thin sheets within the Late Cretaceous and Paleocene magmatic rocks (Figs.

3 and 4A).  These  magmatic  rocks  have  been transformed into  migmatitic  garnet-

bearing  amphibolites  and gneisses  during  Late  Cretaceous,  Paleocene and Eocene

high-grade  metamorphism and  partial  melting (Dong  et  al.,  2010a;  Zhang  et  al.,

2010b, 2013, 2014b, 2019a; Guo et al., 2011, 2013a; Niu et al., 2019). The garnet

amphibolites  consist mainly of amphibole,  garnet, epidote,  with minor plagioclase,

quartz, biotite, rutile, ilmenite and zircon, and commonly contain garnet-bearing felsic

leucosomes parallel to the foliation of the host rocks (Figs. 4A–C). The garnet-bearing

gneisses commonly show strong foliation, and consist mainly of plagioclase, quartz,

and biotite, with minor amphibole, garnet, epidote, ilmenite, apatite and zircon (Fig.

4D). The felsic leucosomes contain plagioclase, quartz, garnet, amphibole, epidote,

biotite and zircon (Fig. 4E). Some garnet amphibolites have transformed into garnet-

free amphibolites, consisting of amphibole and epidote, plagioclase, quartz, ilmenite

and quartz (Fig. 4F) due to later retrograde metamorphism at lower amphibolite-facies

conditions.  Sixteen metamorphosed Jurassic  magmatic rocks,  including the garnet-
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bearing and -free gneisses and amphibolites, and one garnet-bearing leucosome (T16-

77-6) are described here, and their mineral assemblages, protolith and metamorphic

ages and sampling locations are summarized in Data Repository Table S1. Zircon U–

Pb  age  data  and  trace  element,  Hf  isotopic  data,  and  whole-rock  chemical

compositions are listed in Tables S2, S3 and S4, respectively. The whole-rock major

and trace element compositions, and zircon U–Pb ages of Mesozoic magmatic rocks

from the  eastern  Gangdese  arc  between  longitudes  88 and  95 compiled  from

literatures are listed in  Table S5. The newly reported SiO2 and Cu concentrations of

the  Late  Cretaceous  magmatic  rocks  are  listed  in  Table  S6. The  Late  Cretaceous

rocks, now occurring as migmatitic garnet amphibolites and gneisses due to late Late

Cretaceous high-grade metamorphism and partial melting, were widely sampled from

the exposed lower arc crust section in the Zhaxi, Milin and Bujiu areas (Fig. 3).

ANALYTICAL METHODS

Major  element  analyses  of  whole  rock  were  conducted  via  XRF (Primus  ,Ⅱ

Rigaku,  Japan)  at  the  Wuhan  Sample  Solution  Analytical  Technology  Co.,  Ltd.,

Wuhan, China. The detailed sample digestion procedure was as follows: (1) Sample

powder (200 mesh) were placed in an oven at 105  for drying of 12 hours; (2)℃

~1.0g dried sample was accurately weighted and placed in the ceramic crucible and

then heated in a muffle furnace at 1000  for 2 hours. After cooling to 400 , this℃ ℃

sample was placed in the drying vessel and weighted again in order to calculate the

loss  on ignition  (LOI).  (3) 0.6 g sample powder was mixed with 6.0 g  cosolvent

(Li2B4O7:LiBO2:LiF = 9:2:1) and 0.3 g oxidant (NH4NO3) in a Pt crucible, which was

placed in the furnace at 1150  for 14 min. Then, this melting sample was quenched℃

with air for 1 min to produce flat discs on the fire brick for the XRF analyses.

Trace  element  analysis  of  whole  rock samples  was  conducted  on  an  Agilent

7700e  ICP-MS  at the Wuhan  Sample  Solution  Analytical  Technology  Co.,  Ltd.,

Wuhan, China. The detailed sample digestion procedure was as follows: (1) Sample

powder (200 mesh) were placed in an oven at 105  for drying of 12 hours; (2) 50℃
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mg sample powder was accurately weighed and placed in a Teflon bomb; (3) 1 ml

HNO3 and 1 ml HF were slowly added into the Teflon bomb; (4) Teflon bomb was

putted in a stainless steel pressure jacket and heated to 190  in an oven for >24℃

hours; (5) After cooling, the Teflon bomb was opened and placed on a hotplate at 140

 and  evaporated  to  incipient  dryness,  and  then  1  ml  HNO℃ 3 was  added  and

evaporated to dryness again; (6) 1 ml of HNO3, 1 ml of MQ water and 1 ml internal

standard solution of 1ppm In were added, and the Teflon bomb was resealed and

placed in the oven at 190  for >12 hours; (7) The final solution was transferred to a℃

polyethylene bottle and diluted to 100 g by the addition of 2% HNO3.

In situ U–Pb dating and trace element analysis of zircon were simultaneously

conducted by LA–ICP–MS at the Wuhan Sample Solution Analytical Technology Co.,

Ltd., Wuhan, China. Detailed operating conditions for the laser ablation system and

the ICP–MS instrument and data reduction are the same as description by Zong et al.

(2017).  The  spot  size  and  frequency  of  the  laser  were  set  to  32  μm  and  5  Hz,

respectively,  in this  study. Each analysis  incorporated a background acquisition of

approximately 20–30 s followed by 50 s of data acquisition from the sample. Zircon

91500 and glass NIST610 were used as external standards for U–Pb dating and trace

element calibration, respectively. GJ-1 and Plešovice zircon standards were used as

secondary reference materials. An Excel-based software ICPMSDataCal was used to

perform off-line selection and integration of background and analyzed signals, time-

drift  correction  and  quantitative  calibration  for  trace  element  analysis  and  U–Pb

dating (Liu et al., 2010). Concordia diagrams and weighted mean calculations were

made using Isoplot/Ex_ver4.15 (Ludwig, 2003).

Experiments of in situ Hf isotope ratio analysis of zircon were conducted in the

same or adjacent locations as the in situ U–Pb dating spots using a Neptune Plus MC–

ICP–MS (Thermo Fisher  Scientific,  Germany)  in  combination  with  a  Geolas  HD

excimer ArF laser ablation system (Coherent, Göttingen, Germany) that was hosted at

the Wuhan Sample Solution Analytical Technology Co., Ltd., Hubei, China. All data

were acquired on zircon in single spot ablation mode at a spot size of 44 μm. The

9

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258



energy density of laser ablation that was used in this study was ~7.0 J cm−2. Each

measurement consisted of 20 s of acquisition of the background signal followed by 50

s of ablation signal acquisition. Detailed operating conditions for the laser ablation

system  and  the  MC–ICP–MS  instrument  and  analytical  method  are  the  same  as

description by Hu et al. (2012).

ZIRCON  U–Pb  AGES  AND  HF  ISOTOPES  OF  THE

METAMORPHOSED JURASSIC MAGMATIC ROCKS

Petrographic observation shows that zircon grains in the metamorphosed Jurassic

magmatic  rocks  (migmatitic  garnet  amphibolites  and  gneisses,  and  associated

leucosome) occur in the matrix and as inclusions within garnet, amphibole, plagioclase

and  quartz.  The  zircon  grains  mostly  have  stubby  prismatic  shapes  and  core–rim

textures in cathodoluminescence (CL) images (Fig. 5). Zircon core domains display

oscillatory and banded zoning, whilst rim domains show slight patchy zoning or no

zoning (Fig. 5). The zircon rims of some samples are too thin to analyze via laser

ablation for geochronology and trace element analyses. For all dated grains, zircon

cores yielded near-concordant U–Pb ages, with weighted mean ages ranging from 155

Ma to 175 Ma (Table S2;  Fig.  6).  Zircon rim domains from nine samples yielded

similar  and concordant  U–Pb ages,  with weighted mean ages  of  82 Ma to 91 Ma

(Table S2; Fig. 6). The zircon core domains have higher rare earth element (REE)

contents, Th/U ratios, and more significant negative Eu anomalies than those of the

rim domains (Table S2; Figs. 7A, B, E and F). The zircon rims from the garnet-rich

gneiss (Fig. 7A) and garnet-rich leucosome (Fig. 7B) samples have relatively low REE

contents,  and weakly  fractionated  and even flat  heavy rare  earth  element  (HREE)

patterns.

The  Lu–Hf  isotopic  analyses  of  eleven  samples  of  gneiss,  amphibolite  and

leucosome show that the zircon core and rim domains have similar and low 176Lu/177Hf

(<0.0031), and with 176Hf/177Hf isotopic ratios ranging from 0.28297 to 0.28315 (Table
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S3), and therefore have relatively high εHf(t) values of +10.7 to +16.3, and young two-

stage Hf model ages from 171 Ma to 551 Ma (Table S3; Fig. 8).

GEOCHEMISTRY OF THE JURASSIC MAGMATIC ROCKS

The Jurassic magmatic rocks reported in this study have variable major and trace

element compositions, with SiO2 of 43.94–75.60 wt. % (Fig. 9A), Al2O3 of 11.29–

18.98 wt. %, total FeO (FeOT) of 1.61–12.45 wt. %, MgO of 0.53–5.43 wt. %, CaO of

2.97–11.16 wt. %, Na2O of 0.56–6.24 wt. %, K2O of 0.14–3.11 wt. %, Sr of 46–896

ppm, and Y of 4.2–125 ppm (Table S4), and varying Sr/Y ratios of 0.4–156 (Fig. 9B).

These rocks are calc-alkalic or calcic, except for sample T16-91-34 being alkalic, and

plot in the compositional fields of gabbro,  diorite,  granodiorite,  and granite in the

igneous rock classification diagram of  Middlemost  (1994). These rocks are mostly

metaluminous with A/CNK values of 0.72–1.02, and have varying Mg# values of

0.32–0.52,  except  for  the  garnet-rich  leucosome  sample  (T16-77-6),  which  is

peraluminous and has a high A/CNK value of 1.40 (Table S4; Fig. 10).

The Jurassic rocks mostly show weakly fractionated REE patterns with light rare

earth element (LREE) enrichment and HREE depletion, and a negative Eu anomaly

(Fig.  11A).  Some samples  show flat  REE patterns  or  positive  Eu anomalies.  The

garnet-rich  leucosome  (T16-77-6)  shows  a  HREE  enrichment  (Fig.  11A).  On  a

primitive mantle-normalized trace element spider diagram, the Jurassic rocks mostly

show enrichment of large ionic lithophilic elements (LILE), and negative anomaly for

Nb, Ta and Ti (Fig. 11B). 

GEOCHEMISTRY OF THE MESOZOIC MAGMATIC ROCKS

The compiled whole-rock geochemical data indicate that the Late Triassic and

Jurassic magmatic rocks of the eastern Gangdese arc have highly variable chemical

compositions, ranging from ultramafic to granitic, with SiO2 contents of 40.90–79.11

wt. % (Table S5; Fig. 9A). These rocks also have variable A/CKN values of 0.53–
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1.49, and Mg# values of 0.21–0.65 (Table S5; Fig. 10). The Jurassic rocks display

fractionated REE patterns, characterized by LREE enrichment and HREE depletion

(Fig.  11C),  and  LILE  enrichment,  and  Nb,  Ta  and  Ti  depletion  (Fig.  11D).  The

magmatic zircons from these Late Triassic and Jurassic magmatic rocks have similar,

positive and high εHf(t) values (mostly > +10), and young two-stage Hf model ages (<

0.6 Ga;  Fig. 8). Notably, the Middle Jurassic (~150–165 Ma) granitic rocks mostly

have relatively high Sr/Y ratios  (>50;  Table S5;  Fig.  9B).  Except for components

compatible with feldspar (Na2O and K2O), other major oxides that favor partitioning

into  pyroxene,  amphibole  and  biotite  (Al2O3,  FeOT,  MgO,  CaO,  TiO2 and  MnO)

exhibit a strong negative correlation with increasing silica of the Jurassic rocks (Fig.

12).

The early Late Cretaceous (90–100 Ma) magmatic rocks are mostly gabbroic and

dioritic in composition, with minor granitic members (Table S5; Fig. 9A), and have

low  A/CNK  values  (<1.0)  and  high  Mg#  values  (>0.40;  Table  S5;  Fig.  10).  By

contrast,  the  late  Late  Cretaceous  (<90  Ma)  magmatic  rocks  have  evolved  SiO2

contents (Table S5; Fig. 9A) and are dominated by granitic rocks, with high A/CNK

values (mostly >0.8) and low Mg# values (mostly <0.50;  Table S5; Fig. 10). These

Late  Cretaceous  rocks  display  fractionated  REE patterns,  characterized  by  LREE

enrichment and HREE depletion (Fig. 11E), and LILE enrichment, and Nb, Ta and Ti

depletion (Fig. 11F).  The magmatic zircons from these Late Cretaceous rocks have

positive but varying εHf(t) values (+5 to +20) and relatively old two-stage Hf model

ages (Fig. 8). It is noted that the late Late Cretaceous (~70–85 Ma) granitoids have

high Sr/Y ratios (mostly >50; Table S5; Fig. 9B), high A/CNK values (>1.0; Fig. 10A)

and low Mg# values (mostly <0.35; Fig. 10B), more fractionated REE patterns (Fig.

11G), and more significant LILE enrichment and negative Ti anomaly (Fig. 11H).

The  granulite-facies  metamorphosed  Late  Cretaceous  and  Jurassic  magmatic

rocks are major components of the Oligocene lower crust of the eastern Gangdese arc

(Fig.  3).  The whole-rock  SiO2 and  Cu contents  reported  here  show that  the  Late

Cretaceous mafic and intermediate rocks (119 samples) have variable Cu contents, but

12

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343



mostly with relatively high Cu (100–1100 ppm;  Table S6; Fig. 13), while the seven

Jurassic rock samples have relatively low Cu contents (13.6–114 ppm; Table S4; Fig.

13).

DISCUSSION

Juvenile Crustal Growth of the Gangdese Arc

Magmatic  arcs  are  generally  characterized  by  the  widespread  occurrence  of

mantle- and subducted oceanic crust-derived magmatic rocks, and therefore represent

sites of significant juvenile crust growth (Davidson and Arculus, 2006;  Niu et  al.,

2013; Ducea et al., 2015; Jagoutz and Kelemen, 2015).  Mesozoic magmatic rocks –

both  plutonic  and  volcanic  rocks  –  widely  occur  throughout  the  Lhasa  terrane,

comprising nearly half of the exposed lithologies (Fig. 1B). These magmatic units are

mostly metaluminous and calc-alkalic mafic to felsic rocks (Figs. 9A and 10A; Table

S5), and characterized by significant enrichment of LILEs, negative anomaly of Nb,

Ta  and  Ti,  and  fractionated  REE  patterns  (Fig.  11).  Therefore,  the  Mesozoic

magmatic  rocks  show  typical  arc-like  geochemical  signatures,  and  mostly  have

depleted mantle-like Hf isotopic compositions (Fig. 8), which are comparable with the

mafic rocks of Neo-Tethyan oceanic crust (Xu and Castillo, 2004; Zhang et al., 2005).

In addition, some magmatic rocks also display adakite-like compositional features,

characterized by high Sr/Y ratios and more fractionated REE patterns with strong

HREE  depletion  (Figs.  9B  and  11).  In  this  case,  it  is  widely  accepted  that  the

Mesozoic magmatic rocks were derived from the partial melting of mantle-wedge that

was metasomatized by subducted slab-related fluids and/or melts, and the remelting of

Mesozoic mantle-derived rocks in the thickened lower arc crust (e.g., Chu et al., 2006,

2011; Wen et al., 2008a, b; Ji et al., 2009a, 2014; Zhang et al., 2010a, 2014a, 2019a,

2020; Guo et al., 2011; Zhu et al., 2011, 2017, 2019; Zheng et al., 2012, 2014; Ma et

al., 2013a, b, c; Wang et al., 2016a, b; Tang et al., 2020).

The  widespread  occurrence  of  Mesozoic  mantle-derived  magmatic  rocks

indicates  that  the  Gangdese  arc  experienced  substantial  crustal  growth  driven  by
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addition of large volumes of juvenile crust, as also proposed by previous studies (Chu

et al., 2006, 2011; Mo et al., 2007, 2008; Ji et al., 2009a; Wu et al., 2010; Zhu et al.,

2011; Hou et al., 2015a; Zhang et al., 2019a). In addition, some workers suggest that

the entire Gangdese arc (southern Lhasa terrane) consists of juvenile crust (e.g., Zhu

et  al.,  2011;  Hou  et  al.,  2013,  2015a);  however,  Paleozoic  magmatic  rocks  and

sedimentary rocks, and minor Precambrian rocks do occur (e.g.,  Dong et al., 2009,

2010a, b; Ma et al., 2019; Zhang et al., 2020), refuting this interpretation. Moreover,

previous studies have shown that the thickened lower crust of Gangdese arc contains

sedimentary rocks that have been deeply buried (Dong et al.,  2010a, b; Qin et al.,

2019;  Guo et  al.,  2020;  Zhang et  al.,  2020),  and the partial  melting  of  the meta-

sedimentary rocks led to emplacement of Early Cenozoic S-type granites (Zhang et

al., 2013; Ji et al., 2017; Ma et al., 2017; Ding and Zhang, 2018).

Early  Cenozoic  intrusions  and  the  Linzizong  volcanic  succession  are  also

widespread  in  the  Gangdese  arc  (Fig.  1B).  These  rocks  show  geochemical

characteristics of arc-related magmatic rocks (e.g.,  Ding et al.,  2003; Chung et al.,

2005; Mo et al., 2007, 2008; Lee et al., 2012; Zhu et al., 2017, 2019). In this case,

many studies argued that juvenile crustal growth of the Gangdese arc continued into

the Early Cenozoic, driven by partial melting of mantle-derived magmatism related to

the  breakoff  of  subducted  Neo-Tethyan  oceanic  lithosphere,  and  remaining  Neo-

Tethyan oceanic crust (e.g., Mo et al., 2007, 2008; Zhu et al., 2011; Niu et al., 2013;

Hou et al., 2015a). However, some Early Cenozoic granitoids  have high Sr/Y ratios

and more fractionated REE patterns,  and therefore were considered as products of

partial melting of the thickened juvenile lower crust (Guo et al., 2011; Guan et al.,

2012; Ji et  al.,  2012; Zhang et  al.,  2013; Yakovlev and Clark,  2014; Zheng et al.,

2014; Zhu et al., 2017; Ding and Zhang, 2018). Overall, we consider that the most

significant additions of juvenile crust to the Gangdese arc occurred during the Middle

Jurassic,  Late  Cretaceous  and  Early  Cenozoic,  corresponding  with  the  three

significant magmatic pulses shown in Fig. 2.
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Crustal Thickening and Differentiation of the Gangdese Arc

The present crust of the Gangdese arc is twice as thick as average continental

crust (up to 60–80 km; Hirn et al., 1984; Molnar, 1988; Zhao et al., 1993; Yakovlev

and Clark, 2014). Because the Gangdese arc experienced Mesozoic accretionary and

Cenozoic  collisional  orogenesis,  the  timing  and  mechanisms  of  crustal  thickening

remain  controversial.  Most  workers  proposed  that  Gangdese  crustal  thickening

occurred after ~60 Ma, representing the onset of continental collision and subsequent

convergence (Molnar et al., 1993; Yin and Harrison, 2000; Chung et al., 2003, 2005;

Hou et al.,  2004, 2015a;  Guo et  al.,  2007;  Mo et al.,  2008; Zhu et  al.,  2017).  By

contrast,  some  studies  based  on  investigations  of  magmatism  and  structural

deformation in the region have argued that the Gangdese arc had a thick crust during

the Late Cretaceous prior to India–Asia collision (Murphy et al., 1997; Ding and Lai,

2003; Ding et al., 2003, 2014; Kapp et al., 2003, 2005a, b, 2007a, b;  Ji et al., 2012;

Cao et al., 2020; Tang et al., 2021).

Our  zircon  geochronology  indicates  that  the  inherited  cores  of  zircon  in  the

garnet-rich  migmatites  and  hosting  leucosome from the  Gangdese  lower  arc  crust

display oscillatory and banded zoning (Fig. 5), have relatively high REE contents and

Th/U ratios, fractionated REE patterns with significant negative Eu anomalies (Table

S2; Fig. 7). These features indicate that the inherited cores of zircon have a magmatic

origin, and therefore the obtained ages of 155–175 Ma represent the protolith ages of

the metamorphosed magmatic rocks. By contrast,  the zircon overgrowth rims show

patchy  zoning  or  no  zoning  (Fig.  5),  have  relatively  low  Th/U  ratios,  low  REE

contents,  and weakly fractionated and even flat  HREE patterns (Table S2; Fig. 7),

indicating that the zircon rim domains are typical of metamorphic origin from high-

grade metamorphic mafic and felsic rocks containing garnet (Schaltegger et al., 1999;

Vavra  et al., 1999; Corfu  et al., 2003; Harley  et al., 2007). The ages of 82–91 Ma

obtained from the zircon rims represent  the high-grade metamorphic and anatectic

ages  of  the  garnet-bearing  migmatites.  Therefore,  our  study  shows  that  Jurassic

magmatic  rocks  underwent  Late  Cretaceous  high-grade  metamorphism and  partial
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melting.

Recent  studies  demonstrated that  the Late Cretaceous (90–100 Ma) magmatic

rocks  and  associated  Paleozoic  sedimentary  rocks  from the  eastern  Gangdese  arc

underwent  Late  Cretaceous  (~68–90  Ma)  upper  amphibolite-  to  granulite-facies

metamorphism and partial melting under conditions of up to 800–900 °C and 1.3–1.7

GPa (Zhang et al., 2010a, b, 2014a, b; Guo et al., 2013a; Niu et al., 2019; Qin et al.,

2019). The data from this study and those from previous works thus indicate that the

Mesozoic  arc-type  magmatic  rocks  and  their  host  sedimentary  rocks  have  been

transported into the lower arc crust, and the crust has been thickened to at least 50–55

km during the late stage of subduction of the Neo-Tethyan oceanic lithosphere. This

conclusion is generally consistent with previous propositions that the Gangdese arc

underwent crustal  thickening during the Late Cretaceous (Ji  et  al.,  2014),  and had

achieved a crustal thickness of 50–60 km by 70–90 Ma (Tang et al.,  2021), which

were obtained by the geochemical evidence of magmatic rocks.

Although underplating and accretion of mantle-derived magmatic rocks lead to

growth of the continental crust, the bulk continental crust has an andesitic composition

and  so  is  not  in  equilibrium with  the  upper  mantle  (Jagoutz  &  Kelemen,  2015).

Therefore,  net  continental  crustal  growth probably involves  the early extraction of

basaltic magma from the mantle and later intracrustal differentiation of mantle-derived

mafic rocks (Taylor and McLennan, 1985; Rudnick, 1995; Rudnick and Gao, 2003;

Hawkesworth and Kemp, 2006). The intracrustal differentiation mechanisms mainly

include  fractional  crystallization  (Davidson  and  Arculus,  2006;  Hawkesworth  and

Kemp, 2006; Keller et al., 2015; Chapman et al., 2016; Jagoutz and Klein, 2018), and

remelting  of  juvenile  crust  (Brown and Rushmer,  2006;  Brown,  2010;  Brown and

Ryan, 2011).

Various  crystallization  differentiation  processes  have  been  proposed  for  the

Mesozoic  Gangdese  arc.  For  example,  Zhang  et  al.  (2014b) argued  that  the  Late

Cretaceous Lilong batholith, forming the main component of the eastern Gangdese arc

crust,  shows  an  original  magmatic  differentiation  trend,  where  gabbro  represents
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cumulates and diorite is the crystalline products of evolved magmas. Subsequently,

Guo  et  al.  (2020) proposed  that  mafic-intermediate  rocks  of  the  Lilong  batholith

represent  a ‘damp’ (i.e.  water-rich)  igneous differentiation sequence,  and  Xu et al.

(2019) indicated  that  the  hornblende-dominated  fractional  crystallization  of  Cuijiu

igneous complex generated the Gangdese arc crust during the Early Mesozoic (~200

Ma). In fact, the Mesozoic magmatic rocks of the eastern Gangdese arc have highly

variable SiO2 contents (Fig. 9A), A/CNK and Mg# values (Fig. 10), indicating that

these  rocks  probably  underwent  significant  fractional  crystallization.  The  data

presented here also show that the Jurassic magmatic rocks from the eastern Gangdese

arc have variations in major and trace element compositions, REE patterns and Eu

anomalies, and the whole-rock SiO2 contents exhibit strong negative correlations with

Al2O3, FeOT, MgO, CaO, TiO2 and MnO contents (Table S4; Figs. 9A, 11A-D and 12).

Such compositional variations are typical for an evolving calc-alkaline magmatic suite

that  originated  from  a  mantle-derived  magma  source.  These  results  suggest  that

fractional crystallization drove intracrustal chemical differentiation of the Gangdese

arc crust during Mesozoic subduction.

The  widespread  occurrence  of  Cenozoic  high  Sr/Y granitoids  in  the  eastern

Gangdese  arc  indicate  that  the  arc  crust  underwent  intense  intracrustal  chemical

differentiation via the remelting of thickened juvenile lower crust during the Cenozoic

collisional  orogeny.  This  study  and  previous  works  demonstrate  that  the  eastern

Gangdese arc lower crust underwent Late Cretaceous (~68–90 Ma) granulite-facies

metamorphism  and  associated  partial  melting.  Moreover,  the  Late  Cretaceous

anatectic rocks are widespread in the Lilong, Zhaxi, Milin and Bujiu areas, and form

major component of the exposed lower crust section of the Gangdese arc (Fig. 3).

Therefore,  we  suggest  that  the  eastern  Gangdese  arc  crust  underwent  intracrustal

chemical  differentiation  in  the  Late  Cretaceous  (<90  Ma)  that  was  induced  by

remelting  of  thickened  juvenile  lower  crust,  which  consisted  mainly  of  the  Late

Cretaceous (90–100 Ma) and Jurassic mantle-derived magmatic rocks. Voluminous

melts generated by this process represent a potential source for the late stage of Late
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Cretaceous  granitoids  (~70–85  Ma),  such  as  the  Wolong  batholith  (Fig.  3).  The

granitoids have chemical features of arc-type magmatic rocks, but higher Sr/Y ratios

(Fig.  9B)  and  A/CNK  values  (Fig.  10A),  lower  Mg#  values  (Fig.  10B),  more

fractionated  REE patterns  (Fig.  11G),  more  significant  enrichment  of  LILEs  and

negative anomalies of Nb, Ta and Ti (Fig. 11H) than other Late Cretaceous arc rocks.

Therefore, previous studies mostly proposed that the Wolong granitoids were derived

from partial melting of thickened juvenile lower crust (e.g., Wen et al., 2008a; Ji et al.,

2014;  Tang  et  al.,  2020).  However,  Guo  et  al.  (2020) argued  that  the  Wolong

granitoids were formed by factional  crystallization of wet  magma and intracrustal

assimilation.  In  fact,  the early  Late Cretaceous (>90 Ma) arc  magmatic  rocks  are

dominated  by  gabbro  and  diorite,  with  minor  granite,  whereas  the  late  Late

Cretaceous  (<90 Ma)  magmatic  rocks  are  mostly  granitic  (Fig.  9A;  Zhang et  al.,

2019a;  Zhu et  al.,  2019).  This  may imply that  the  high Sr/Y granitoids  were not

products of crystallization differentiation of mafic magma. In addition, some Jurassic

(~160 Ma) arc-type granites have high Sr/Y ratios (Fig. 9B), and were considered to

be products of remelting of thickened juvenile lower crust (Wang et al., 2012; Zhang

et  al.,  2014c).  This  indicates  that  the thickening of  juvenile  crust  and intracrustal

chemical  differentiation have occurred in  the early stage of subduction of oceanic

lithosphere.  We therefore suggest  that  the partial  melting of thickened lower crust

plays  an important  role  in  the differentiation and reworking of  Gangdese juvenile

crust  before  arc-continent  collision.  Importantly,  this  is  inconsistent  with  previous

conclusions that differentiation via fractional crystallization is a dominant mechanism

for chemically differentiating  arc crust (Taylor, 1967; Davidson and Arculus, 2006;

Hawkesworth and Kemp, 2006; Keller et al., 2015; Chapman et al., 2016; Jagoutz and

Klein, 2018).

The Component and Nature of the Gangdese Lower Arc Crust

The  lower  crust  (arc  root)  of  continental  magmatic  arcs  is  characterized  by

underplating  of  mantle-derived  magmatic  rocks,  assimilation  and  remelting  of
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juvenile and ancient  crustal  materials,  and mixing,  storage and homogenization of

mantle-  and  crust-derived  melts,  and  therefore  is  the  key  site  of  building  and

reworking of  arc  crusts  (e.g.,  Hildreth  and Moorbath,  1988;  Daczko et  al.,  2001;

Miller and Snoke, 2009). The architecture, lithological constitution, and geochemistry

of the lower levels of continental arc crust – and how each have changed through time

– are poorly constrained. The Gangdese arc offers a rare opportunity to constrain these

variables  through  various  stages  of  the  Wilson  Cycle.  Based  on  the  presence  of

adakitic (high Sr/Y) rocks, Chung et al. (2003) and Hou et al. (2004) considered that

the Miocene thickened lower crust consists of garnet amphibolites and/or eclogites.

Zhang et  al.  (2014b) and  Niu et  al.  (2019) indicated that the garnet amphibolites,

derived from the high-pressure granulite-facies metamorphism and partial melting of

gabbros of the Late Cretaceous Lilong batholith root, are a major component of the

Gangdese arc lower crust. Based on detailed geological mapping, Zhang et al. (2020)

further  revealed  that  the  lower  crust  of  the  eastern  Gangdese  arc  is  composed of

voluminous migmatitic garnet amphibolite (meta-gabbro) and migmatitic orthogneiss

(meta-diorites and meta-granites), and with minor meta-sedimentary rocks (Fig. 3).

Guo  et  al.  (2020) also  showed  that  the  Gangdese  arc  lower  crust  contains  Late

Cretaceous garnet-bearing meta-gabbros (garnet amphibolites). Here, we show that

the Jurassic magmatic rocks, together with the Lilong batholith gabbros and diorites,

were  buried  and  metamorphosed  during  the  Late  Cretaceous  to  form  migmatitic

garnet amphibolites and gneisses in the lower crust at high-temperature (800–900 °C)

and  high-pressure  (1.3–1.7  GPa)  granulite-facies  conditions.  The  occurrence  of

voluminous  amphibole-rich  rocks  of  this  age  in  this  region  indicates  that  the

Gangdese  arc  had  a  hydrous  lower  crust  both  during  Mesozoic  subduction  and

Cenozoic collision,  and that partial  melting occurred at  water-saturated conditions.

This provides robust evidence for the Gangdese arc having a water-rich thickened

lower crust before the arc-continent collision, as also suggested by Xu et al. (2019).

Experimental  study  and  phase  equilibrium  modeling  has  demonstrated  that

clinopyroxene-free garnet amphibolite could be stable at  P–T conditions of 800–900
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C and 1.0–1.7 GPa in the presence of melt (Lόpez and Castro, 2001; Palin et al.,

2016a, 2016b). Melting experiments conducted on high-Al basalt and tholeiite with

variable amounts of H2O show that garnet and amphibole may co-exist with felsic

melt in the presence of excess H2O at 1.0–2.0 GPa and 800–900  C  (Winther and

Nowton, 1991). Water-saturated melting experiments performed on gabbro at 1.25–

1.5 GPa and 800–950 C show that the melts produced are tonalitic in composition,

and the residues contain amphibole, garnet, zoisite, plagioclase, titanite and ilmenite

(Selbekk and Skjerlie, 2002). These results provide support for the thickened lower

crust of the Gangdese arc containing voluminous hydrated garnet amphibolite. It is

possible that the component and nature of the Gangdese lower arc crust evolved over

time. For example, the lower arc crust was relative dry during Late Cretaceous (90–

100 Ma) ridge subduction,  and then  became wet  due  to  hydration  during the  flat

subduction of oceanic slab (see the following section).

Porphyry Cu–Au Mineralization of the Gangdese Arc

Porphyry  Cu–Au  ore  deposits  in  magmatic  arcs  usually  formed  during

subduction of oceanic lithosphere (e.g.,  Skewes and Stern, 1995; Kay et al.,  1999;

Richards et al., 2001; Perello et al., 2003; Sillitoe, 2010). The  mantle-derived calc-

alkaline basaltic magmas undergo a MASH process (melting, assimilation, storage,

and homogenization) in the lower arc crust, which produces ore-bearing magmas with

intermediate to felsic compositions (Richards, 2003; Sillitoe, 2010). The continuous

oceanic slab subduction provides the water, metals, and S required for porphyry Cu–

Au deposit formation (Audétát and Simon, 2012; Wang et al., 2017). However, the

porphyry  Cu–Au deposits  form  only  during  specific,  temporally-constrained

magmatic  periods in the evolution of a long-lived arc.  Jurassic arc-type magmatic

rocks are widespread within the eastern Gangdese arc between longitudes 88 and 95,

however  the Jurassic  arc  magma-related  large and giant  porphyry Cu-Au deposits

occur only at the Xietongmen area of  the western segment of eastern Gangdese arc

(Fig. 1B). The ore-hosting diorite and granodiorite porphyries formed in the Middle
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Jurassic (161–185 Ma), and have depleted mantle-like isotopic compositions (Tang et

al., 2010, 2015; Hou et al., 2015b; Lang et al., 2017; Xu et al., 2017). By contrast, the

ore-barren Jurassic magmatic rocks  from the eastern Gangdese arc are isotopically

less  juvenile.  Hou et  al.  (2015b)  argued  that  incorporation  of  crustal  components

during underplating of Jurassic magma induced copper sulfide accumulation at the arc

base, inhibiting porphyry Cu–Au deposits forming at this time.  In addition, whether

this Jurassic arc is an island arc or a continental arc remains controversial (Aitchison

et al., 2007; Wang et al., 2012; Zhu et al., 2013; Zhang et al., 2014c; Tang et al.,

2015).  Wang et al.  (2017) argued that the Xietongmen porphyry Cu–Au district  is

located  close  to  the  front  of  continental  arc,  where  arc  magmas  show  a  larger

contribution from slab  fluids that carried volatile,  fluid-mobile elements,  and were

more  oxidized,  as  such  fertile  magmas  provide  ideal  conditions  for  generating

porphyry deposits. Xu et al. (2017) proposed that the Xietongmen mineralised diorites

were derived from a Jurassic hydrous mantle wedge induced by slab dehydration.

These magmas contain higher contents of water and other volatiles and have higher

oxidation states, which favored the transfer of metals (such as Cu, Au) to the upper

crust, and then formed the porphyry Cu–Au deposits.

An  important  finding  from  the  Gangdese  arc  is  that  many  large  and  giant

porphyry Cu–Au deposits formed during the Miocene post-collisional orogeny (Fig.

1B; Hou et al., 2009, 2011, 2015a, b; Tafti et al., 2009; Tang et al., 2010; Chen et al.,

2011;  Liang et  al.,  2014;  Yang et  al.,  2015;  Xu et  al.,  2017;  Wang et  al.,  2018).

Because the Miocene ore-hosting porphyries have an affinity to adakitic rocks and

geochemical  features  characteristic  of  the  depleted  mantle,  previous  studies

considered that the ore-hosting rocks were derived from partial melting of thickened

juvenile lower crust (Hou et al., 2009, 2011, 2013, 2015a, b; Yang et al., 2015; Wang

et al., 2018; Zheng et al., 2018). Possible source rocks of the ore-hosting porphyries

are considered to be the Jurassic arc magmatic rocks that underplated into the lower

arc crust before the collision, based on the Miocene and Jurassic rocks having similar

Sr–Nd–Hf isotopic compositions (e.g.,  Hou et al., 2015a, b; Hou and Wang, 2019).
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That is, the remelting of the pre-existing Jurassic mantle-derived mafic rocks in the

thickened lower crust during the post-collision orogeny generated the Miocene ore-

hosting porphyries.

The new data reported here suggest that the metamorphosed Late Cretaceous

gabbros and diorites (migmatitic garnet amphibolites), broadly distributed in the lower

crust of the eastern Gangdese arc, mostly have higher Cu concentrations (mostly >

60–100 ppm) than the Jurassic magmatic rocks outlined here (Cu < 114 ppm; Tables

S4 and S6;  Fig.  13),  and normal  arc  magmatic  rocks  (Cu < 60 ppm;  Hou et  al.,

2015a). Therefore, we propose that the voluminous garnet amphibolites may also be

one of the potential source rocks of the Miocene ore-hosting porphyries. Moreover,

experimental studies (e.g.,  Selbekk and Skjerlie, 2002) have shown that the partial

melting of water-rich  garnet amphibolites can generate magma with very high H2O

content  (up  to  10–16 wt.  %),  which  is  one  of  the  necessary  conditions  to  allow

porphyry Cu mineralization (e.g.,  Hou et al., 2009, 2011; Wang et al., 2014b, 2018;

Lu et  al.,  2015; Yang et  al.,  2015, 2016a,  b).  The water-  and metal  elements-rich

nature of the Late Cretaceous juvenile lower crust of the Gangdese arc are probably

an essential prerequisite for the formation of Miocene ore-hosting porphyries.

Although  porphyry  Cu–Au  ore  deposits  in  the  Andean  arcs  formed  during

subduction of oceanic lithosphere, some studies argued that some large and giant ore-

hosting porphyries were derived from remelting of garnet amphibolites, representing

products of high-pressure metamorphism of mantle-derived gabbros, in the presence

of  water  during  juvenile  crustal  thickening,  which  itself  was  induced  by  shallow

subduction of the Neo-Tethyan oceanic slab (e.g., Kay and Mpodozis, 2001; Bissig et

al.,  2003).  Therefore,  we  propose  that  some  subduction-  and  collision-related

porphyry Cu–Au deposits have a similar metallogenic mechanism, i.e. the ore-hosting

porphyries originated from the remelting of hydrated and thickened juvenile lower

crust, although they formed during different stages of the continental magmatic arc’s

tectonic evolution.
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Mesozoic Tectonic Evolution of the eastern Gangdese Arc

The Gangdese magmatic  arc  documents  a  complete  growth process  spanning

Mesozoic oceanic lithospheric subduction to Cenozoic continental collision. As the

India-Asian continental collision initiated at the Early Cenozoic, around ~65–55 Ma

(e.g., Rowley, 1996; Yin and Harrison, 2000; Mo et al.,  2003; Leech et al.,  2005;

Guillot et al., 2008; Najman et al., 2010; Wu et al., 2014a; Zhu et al., 2015; Hu et al.,

2016; Ding et al., 2017), the formation and evolutionary history of the Gangdese arc

can be divided into two stages: Mesozoic (pre-collisional) subduction and Cenozoic

collision (Fig. 2). The latter stage includes the syn-collisional (65–40 Ma) and post-

collisional (<40 Ma) periods (e.g.,  Mo et al., 2005; Zhu et al., 2017, 2019; Zhang et

al., 2019a). It is widely accepted that  rifting of the Lhasa terrane from the southern

margin of Gondwana supercontinent and the opening of Neo-Tethyan Ocean occurred

during the Carboniferous–Early Permian (e.g.,  Dewey et  al.,  1988;  Sciunnach and

Garzanti, 2012; Li et al., 2016b). However, the age of onset of subduction of Neo-

Tethyan oceanic lithosphere beneath the Lhasa terrane remains a matter of discussion.

Coulon et al. (1986)  suggested that the  Neo-Tethyan subduction began in the Early

Cretaceous time since the remnant  ophiolites  in the Yarlung–Tsangpo suture zone

have Late Jurassic ages. But, the Yarlung–Tsangpo ophiolite does not likely represent

a remnant of the Neo-Tethyan oceanic crust between the Indian and Asian continents

(Wu et al., 2014b), and the Neo-Tethyan oceanic crust had already disappeared owing

to the long duration of subduction and/or erosion during the Mesozoic and Cenozoic

(Wang et al., 2016b).

Late Triassic–Jurassic arc-type magmatic rocks have been increasingly reported

in the Lhasa terrane (e.g., Kapp et al., 2005a; Chu et al., 2006; Dong et al., 2006; Qu

et al., 2007; Zhang et al., 2007; Pullen et al., 2008; Zhu et al., 2008, 2009a, b; Ji et al.,

2009a; Guo et al., 2011; Dong and Zhang, 2013; Kang et al., 2014; Song et al., 2014;

Li et al., 2016a; Wang et al., 2016a). Three tectonic models have been proposed to

explain the origin of these magmatic rocks: (1) northward subduction of Neo-Tethyan

oceanic lithosphere (e.g., Chu et al., 2006; Dong et al., 2006; Zhang et al., 2007; Zhu
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et al., 2008; Guo et al., 2013b; Kang et al.,  2014; Ma et al., 2018), (2) southward

subduction of the Meso-Tethyan (Bangong–Nujiang) oceanic lithosphere (e.g., Pan et

al., 2012; Zhu et al., 2013; Li et al., 2016b, 2018), and (3) roll-back or breakoff of the

Sumdo  oceanic  lithosphere  between  the  southern  and  northern  Lhasa  subterranes

(Dong and Zhang, 2013). However, most studies inferred that these Early Mesozoic

magmatic rocks were related to arc magmatism induced by the northward subduction

of Neo-Tethys (e.g., Ding et al., 2003; Chu et al., 2006; Dong et al., 2006; Geng et al.,

2006; Qu et al., 2007; Zhang et al., 2007, 2012b; Yang, 2008; Zhu et al., 2008; Ji et

al.,  2009a, b;  Pan et  al.,  2012;  Guo et al.,  2013b; Kang et al.,  2014; Meng et al.,

2016a, b; Ma et al., 2017, 2018; Xu et al., 2019). Considering the temporal and spatial

distribution  of  the  Early  Mesozoic  arc-type  magmatic  rocks,  Wang et  al.  (2016a)

proposed  that  the  northward  subduction  of  Neo-Tethys  had begun by the  Middle

Triassic (~237 Ma). Our study shows that Middle and Late Jurassic magmatic rocks

from the  eastern  Gangdese  arc  have  geochemical  signatures  typical  of  arc-related

rocks. Therefore, we suggest that the Jurassic arc-type magmatic rocks formed during

a  period  of  normal  (steep)  subduction  of  Neo-Tethys  (Fig.  14A).  In  addition,  the

underplating and accretion of voluminous mantle-derived rocks probably resulted in

the initial  thickening of arc crust,  and remelting of thickened juvenile lower crust,

which resulted in the formation of Late Jurassic high Sr/Y granitoids.

Early Cretaceous arc-type magmatic rocks (~140–100 Ma) are widespread in the

central and northern parts of Lhasa terrane, but rare in the southern part of the terrane

(Fig.  1B),  which  represents  a  period  when  the  southern  Gangdese  arc  was  in  a

magmatic lull (Figs. 2, 9 and 14B). The geodynamic setting of Early Cretaceous arc-

type rocks has been ascribed to (1) the northward subduction of the Neo-Tethys (e.g.,

Allègre et al., 1984; Coulon et al., 1986; Ding and Lai, 2003; Ding et al., 2003; Kapp

et al., 2003, 2005a, 2007a) or (2) bidirectional subduction beneath both flanks of the

Lhasa  terrane;  that  is,  northward  subduction  of  the  Neo-Tethys  and  southward

subduction of the Meso-Tethys (Zhu et al., 2009b, 2011, 2016). Based on the spatial

and temporal distribution of Early Cretaceous arc magmatic rocks – which mainly
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occur  in  the  central  and northern  Lhasa  terrane,  and the  ages  of  magmatic  rocks

become younger northward (Li et al., 2018), we propose that the subduction angle of

Neo-Tethyan oceanic slab may have gradually flattened between the Late Jurassic and

Early Cretaceous, since the subducted oceanic lithosphere becomes younger and less

dense  as  the  Neo-Tethyan  mid-oceanic  ridge  gradually  approached  the  trench

(subduction zone;  Fig. 14B). Young (<20 Ma) oceanic lithosphere is thin, hot and

buoyant,  and  is  not  easy  to  subduct,  therefore  a  low-angle  subduction  zone  will

preferentially form during subduction of young oceanic lithosphere (e.g., Stern, 2002;

Weller  et  al.,  2019).  Shallow subduction of the oceanic lithosphere is expected to

remove asthenospheric mantle and cause a magmatic lull within the southern Lhasa

terrane, as well as drive northward migration of arc magmatism into the central and

northern Lhasa terrane (Fig. 13B). This is consistent with the observation that the rare

Early  Cretaceous  magmatic  rocks  in  the  southern  Gangdese  arc  show  adakitic

signatures, and are probably derived from partial melting of the thickened juvenile

lower crust or subducted slab (Zhu et al., 2009a; Hernández-Uribe et al., 2020). The

Early  Cretaceous  magmatic  lull  recorded  in  the  southern  Gangdese  arc  has  been

previously  ascribed  to  either  shallow  subduction  of  the  Neo-Tethys  oceanic  slab

(Kapp et al.,  2007; Zhang et al.,  2019c) or retreat and rollback of the Neo-Tethys

subduction zone (Maffione et  al.,  2015; Xiong et al.,  2016; Dai et al.,  2021). The

Early Cretaceous arc magmatic rocks in the northern Lhasa terrane may have formed

from  the  southward  subduction  of  the  Bangong–Nujiang  Tethys,  as  argued  by

previous studies (e.g., Zhu et al., 2009b, 2013, 2016; Sui et al., 2013; Chen et al.,

2014; Li et al., 2018).

Widespread early Late Cretaceous (~90–100 Ma) arc magmatic rocks record a

magmatic  “flare-up”  event  within  the  Gangdese arc  (Figs.  1B and 2;  Wen et  al.,

2008a, b; Zhang et al., 2010a, 2014b; Guo et al., 2013a; Ma et al., 2013a, b, 2015;

Jiang et al., 2014; Zheng et al., 2014; Dai et al., 2015; Zhu et al., 2017; Zhang et al.,

2019a).  Although  this  magmatic  pulse  has  been  widely  related  to  the  northward

subduction  of  the  Neo-Tethys,  three  distinct  geodynamical  models  have  been
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proposed: a) normal-angle subduction (Ji et al., 2009a), b) subducted slab roll-back

(Ma  et  al.,  2013a,  b;  Meng  et  al.,  2020),  and  c)  spreading  mid-oceanic  ridge

subduction (Zhang et al., 2010a).

Active  mid-oceanic  ridge subduction  is  a  natural  consequence  of  the  gradual

consumption and final closure of oceanic basin, and is occurring in the eastern margin

of  Pacific  plate  (e.g.,  DeLong et  al.,  1979;  Cole  and Stewart,  2009).  Subduction-

related magmatism can change markedly due to upwelling of asthenosphere through a

slab window when spreading mid-oceanic ridges enter a subduction zone (Fig. 14C;

Dickinson  and  Snyder,  1979;  Aguillon-Robles  et  al.,  2001;  Thorkelson  and

Breitsprecher, 2005; Cole and Stewart, 2009). In this case, high heat  flow from the

asthenosphere can induce partial melting of overlying arc crust, subducting oceanic

crust  at  slab  window  edges,  mantle  wedge  material,  and  even  asthenosphere  to

generate intermediate to acidic rocks, adakitic rocks, and mafic rocks, respectively

(DeLong et al., 1979; Yogodzinski et al., 2001; Thorkelson and Breitsprecher, 2005).

In addition, spreading ridge subduction along active continental margins can induce

high temperature and ultrahigh-temperature metamorphism of overlying arc crustal

rocks  (Sisson  et  al.,  1989;  Underwood  et  al.,  1999;  Iwamori,  2000;  Santosh  and

Kusky, 2010). 

Zhang et  al.  (2010a,  2011) showed that  the  early  Late  Cretaceous  magmatic

rocks  of  the  eastern  Gangdese  arc  include  calc-alkaline  rocks,  adakites,  high

temperature and anhydrous charnockites, and that the country rocks of the charnockite

experienced syn-intrusive high-temperature metamorphism. Therefore, they suggested

that these magmatic components formed during subduction of the Neo-Tethyan mid-

oceanic ridge (Fig. 14C). The same geodynamic setting was also proposed for the

early Late Cretaceous magmatic event of the Gangdese arc by later studies (e.g., Guan

et al., 2010; Guo et al., 2011, 2013a; Zhu et al., 2013, 2019; Meng et al., 2014; Zheng

et  al.,  2014;  Kapp and DeCelles,  2019).  In  addition,  Zhang et  al.  (2019b) further

revealed that the early Late Cretaceous volcanic rocks of the Gangdese arc include

two  distinct  volcanic  successions:  asthenosphere-derived  basalts  and  slab-derived
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adakitic  dacites.  They  attributed  this  event  to  Neo-Tethyan  mid-oceanic  ridge

subduction  that  allowed  for  contributions  from both  upwelling  asthenosphere  and

melting of subducted slab crust, which differs from the typical scenario of normal-

angle subduction or low-angle/flat subduction and subsequent slab rollback.

The  late  Late  Cretaceous  (~70–90  Ma)  Gangdese  arc  contains  high-pressure

granulite-facies  metamorphic  and  anatectic  migmatites  in  the  lower  crust,  and

voluminous high Sr/Y granites  in  the upper  crust  (Fig.  3).  This  metamorphic  and

magmatic  association  is  probably  related  to  flat  subduction  of  young  oceanic

lithosphere following subduction of the Neo-Tethyan mid-oceanic ridge (Fig. 14D).

This  is  consistent  with  previous  conclusions  that  the  Neo-Tethys  underwent  flat

subduction, and the Gangdese arc crust was notably thick during the Late Cretaceous

(~ 75–80 Ma), as constrained by evidence from deformation, sedimentary strata and

magmatism (e.g., Ding et al., 2003; Chung et al., 2005; Leier et al., 2007; Pullen et al.,

2008;  Ji  et  al.,  2014;  Kapp  and  DeCelles,  2019; Tang  et  al.,  2021).  Low-angle

subduction  of  young  oceanic  lithosphere  would  generate  intense  compressional

stresses in the overlying magmatic arc, and cause intense thickening of arc crust (Fig.

14D; e.g., Stern, 2002). The Late Cretaceous (~70–85 Ma) adakitic granites were thus

probably  derived  from  partial  melting  of  high-pressure  mafic  granulites  in  the

thickened juvenile lower crust that was hydrated by slab-derived aqueous fluids (Fig.

14D). In addition, with the continued subduction of oceanic lithosphere, the ridge slab

gap and associated asthenosphere upwelling probably migrated below the lithosphere

of central Lhasa terrane, which accounts for extension and back-arc magmatism in the

Gangdese arc, as represented by Late Cretaceous bimodal igneous rocks, adakites and

K-rich magmatic rocks (Fig. 14D; Li et al., 2013; Meng et al., 2014; Ma et al., 2015;

Zhang et al., 2019b).

While  our  new data  shed  important  light  on  the  geological  evolution  of  the

Gangdese arc and adjacent regions,  the Mesozoic tectonic model proposed here is

highly simplified. The Gangdese arc probably underwent a more complex evolution

process, including multiple and alternating advance and retreat of the Neo-Tethyan
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slab  and subduction  zone (trench),  and alternating  contraction  and  extension,  and

resultant  thickening  and  thinning  of  the  arc  crust  (Kapp  and  DeCelles,  2019).

Revealing the temporal  and spatial  distributions of Mesozoic magmatic  rocks,  the

petrogenesis of large batholiths, the evolving of component and composition of arc

crust over time, the contributions of ancient crustal materials to the juvenile crustal

building,  and the  metallogenic  processes  during  subduction  remain  key issues  for

further research.

CONCLUDING REMARKS

(1) The Gangdese magmatic arc underwent intense Mesozoic arc-type magmatism,

with two main magmatic pulses in the Middle Jurassic and Late Cretaceous. The

widespread occurrence of depleted mantle-like magmatic rocks indicate that the arc

experienced voluminous growth of juvenile continental crust during the Mesozoic,

driven by subduction of the Neo Tethys oceanic lithosphere.

(2) The Mesozoic magmatic rocks of the eastern Gangdese arc have been buried into

the lower arc crust, and transformed to migmatitic garnet amphibolites during Late

Cretaceous  (~68–90  Ma)  high-grade  metamorphism  and  partial  melting.  The

voluminous  hydrous  and  metal  element-rich  granulitic  migmatites  are  main

component of the lower arc crust, and probably potential source rocks of Miocene

ore-hosting porphyries.

(3)  The  Gangdese  arc  experienced  crustal  thickening  during  the  Middle  to  Late

Jurassic, and Late Cretaceous. The remelting of the thickened juvenile lower crust

produced  high  Sr/Y  granitoids  in  the  upper  crust,  and  is  probably  a  main

mechanism for  intracrustal  chemical  differentiation  of  the  arc  crust  during  the

subduction of Neo-Tethys.

(4)  Major  tectonic  and magmatic  processes  of  the  Gangdese  arc  include the Late

Triassic  to  Jurassic  normal  subduction  of  Neo-Tethys  and  associated  mantle-

derived magmatism, the Early Cretaceous shallow subduction and magmatic lull,

the early Late Cretaceous mid-oceanic ridge subduction and magmatic  flare-up,
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and  the  late  Late  Cretaceous  flat  subduction  and  resultant  crust-derived

magmatism.

(5) The Gangdese arc records a complex process of crustal growth, thickening and

differentiation that occurred before arc-continent collision, and therefore provides

insights into the early building of mature continental magmatic arcs that form and

evolve  through  all  stages  of  oceanic  lithospheric  subduction  to  continental

collision.
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Table S1. Major features of the metamorphosed Jurassic magmatic rocks

Table S2. Zircon U–Pb dating and trace element data of the metamorphosed Jurassic

migmatitic rocks

Table S3. Zircon Hf isotopic data of the metamorphosed Jurassic magmatic rocks

Table  S4.  Whole-rock  chemical  compositions  of  the  metamorphosed  Jurassic

magmatic rocks

Table S5. Whole-rock chemical compositions and zircon U–Pb ages of the Mesozoic

magmatic rocks of the eastern Gangdese arc

Table S6. Whole-rock SiO2 and Cu concentrations of the Late Cretaceous mafic and

intermediate magmatic rocks of the eastern Gangdese arc lower crust.
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Figure captions:

Figure  1.  (A)  Sketch  geological  map  of  the  Tibetan  Plateau.  (B)  Distribution  of

Mesozoic and Cenozoic magmatic rocks of the Lhasa terrane, showing the locations

of giant and large porphyry Cu–Au deposits of Jurassic and Miocene in the Gangdese

arc (modified after Zhu et al., 2011, 2019; Chen et al., 2014; Wang et al., 2014a, 2017,

2018; Li et al., 2018; Zhang et al., 2019b). BNSZ: Bangong–Nujiang (Meso-Tethyan)

Suture zone, JSSZ: Jinsha (Paleo-Tethyan) Suture Zone, KLSZ: Kunlun Suture Zone,

LCSZ:  Longmu Co-Shuanghu  (Meso-Tethyan)  Suture  Zone,  and  YTSZ:  Yarlung–

Tsangpo (Neo-Tethyan) Suture Zone.

Figure 2. Histogram of zircon U–Pb ages of magmatic rocks in the eastern Gangdese

arc, showing four intense pulses of magmatic activity at ~170, ~95, ~50 and ~15 Ma,

and  durations  of  Neo-Tethyan  oceanic  lithosphere  subduction  and  Indo-Asian

collision,  and  the  approximate  durations  of  the  spreading  mid-oceanic  ridge
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subduction, syn- and post-continental collisions. Data sources: zircon U–Pb ages of

<100 Ma are from Zhu et al. (2018) and Zhang et al. (2020), and ages of >100 Ma

from this study (Tables S4) and previous literatures (Table S5).

Figure 3. Geological map of the eastern Gangdese arc near the Eastern Himalayan

Syntaxis (modified after  Zhang et  al.,  2020),  showing the distribution of different

degrees  of  metamorphic  rocks  (belts),  and  locations  of  the  studied  Jurassic  rock

samples.

Figure 4.  Field photos (A, B) and photomicrographs (C–F) of the metamorphosed

Jurassic  magmatic  rocks.  (A)  Migmatitic  amphibolite,  occurring  as  a  thick  layer

within migmatitic gneiss, shows the banded structure, defined by alternating felsic

leucosome and amphibolitic melanosome. (B) Migmatitic garnet amphibolite contains

concordant veins or bands of garnet-rich felsic leucosome. (C) Garnet amphibolite

(TM8-20-2),  containing  amphibole,  plagioclase,  garnet,  epidote,  quartz,  rutile  and

ilmenite.  (D)  Garnet-bearing  gneiss  (TM7-50-2),  consisting  of  plagioclase,  quartz,

garnet,  amphibole,  biotite,  muscovite,  chlorite  and ilmenite,  and showing a strong

foliation.  (E)  Garnet-rich  leucosome (T16-77-6),  consisting  of  plagioclase,  quartz,

garnet,  amphibole,  biotite  and  epidote.  (F)  Amphibolite  (D120302),  containing

amphibole, epidote, plagioclase, ilmenite and rutile, showing strong foliation. Mineral

abbreviations:  Amp =  amphibole,  Bt  =  biotite,  Ep  =  epidote,  Grt  =  garnet,  Pl  =

plagioclase, and Qtz = quartz.

Figure 5. Cathodoluminescence (CL) images of zircon of the metamorphosed Jurassic

magmatic rocks, showing the analyzed spot locations and relevant ages (in Ma). The

scale bars are 100 m. (A) TM07-50-2, garnet-bearing gneiss; (B) T16-77-6, garnet-

rich  leucosome;  (C)  T17-1-25,  gneiss;  (D)  T17-1-26,  gneiss;  (E)  D120302,

amphibolite; (F) D120303, gneiss; (G) D350612, amphibolite; (H) D350613, gneiss.
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Figure 6. Zircon U–Pb concordia diagram of the metamorphosed Jurassic magmatic

rocks, showing the mean ages obtained from magmatic cores of zircon, and the mean

ages from metamorphic rims of zircon.

Figure  7.  Chondrite-normalized  REE  patterns  of  magmatic  cores  (red  lines)  and

metamorphic rims (green lines) of zircon of the metamorphosed Jurassic magmatic

rocks, showing the mean Th/U ratios of magmatic cores and metamorphic rims of

zircon.

Figure 8. Zircon U–Pb ages versus  ɛHf(t) values of the Mesozoic magmatic rocks of

the eastern Gangdese arc. Data sources of the Late Cretaceous rocks are from Guan et

al. (2011), Zhu et al. (2011); Ma et al. (2013a, b), Ji et al. (2014), Zheng et al. (2014),

Xu et al. (2015), Tang et al. (2020) and Zhang et al.  (2020). The data for the zircon

magmatic cores and metamorphic rims of Jurassic magmatic rocks are listed in Table

S3. 

Figure 9. Zircon U–Pb ages versus whole-rock SiO2 contents (A) and Sr/Y (B) of the

Mesozoic magmatic rocks of the eastern Gangdese arc. The data are listed in Tables

S4  and  S5. The  diagram  shows  the  approximate  durations  of  normal,  shallow,

spreading ridge and flat subduction processes of the Neo-Tethyan oceanic lithosphere,

and two stages of arc crustal thickening.

Figure 10.  Zircon U–Pb ages  versus whole-rock A/CNK (A) and Mg# (B) of  the

Mesozoic magmatic rocks of the eastern Gangdese arc. The data are listed in Tables

S4 and S5.

Figure 11. Chondrite-normalized REE (A, C) and primitive mantle-normalized trace

element (B, D) patterns of the Jurassic and Late Cretaceous magmatic rocks of the

eastern Gangdese arc. The newly reported Jurassic rocks are shown by the thick lines

in (A, B). The Late Cretaceous (~70–85 Ma) high Sr/Y granitoids are shown by the
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thick red lines in (C, D). The related data see Tables S4 and S5.

Figure 12. Harker diagrams of SiO2 versus other oxides (in wt. %) of the Jurassic

migmatitic rocks of the eastern Gangdese arc

Figure 13. Diagram of whole-rock SiO2 versus Cu contents of the metamorphosed

Jurassic and Late Cretaceous magmatic rocks from the eastern Gangdese arc lower

crust. The related data see Tables S4 and S6.

Figure 14. Mesozoic tectonic model of the eastern Gangdese arc. (A) Normal (steep)

subduction  of  the  Neo-Tethyan  oceanic  lithosphere,  and  normal  calc-alkaline  arc

magmatic rocks during the Jurassic (180–145 Ma).  (B) Shallow subduction of the

oceanic lithosphere and attenuation of mantle-wedge, magmatic lull in the southern

Lhasa terrane, and enhanced arc magmatism in the central and northern Lhasa terrane

during the Early Cretaceous (145–100 Ma). (C) Subduction of the mid-oceanic ridge

and  upwelling  of  asthenosphere  in  slab  window,  intense  magmatic  activity  with

variable compositions and distinct sources during the Late Cretaceous (100–90 Ma).

(D)  Flat  subduction  and  dehydration  of  the  young  oceanic  slab  during  the  Late

Cretaceous (90–70 Ma), thickening, hydration and partial melting of the juvenile arc

crust,  and formation of high Sr/Y granitoids.  The continued subduction of  a  mid-

oceanic  spreading  ridge  and  upwelling  of  asthenosphere  probably  resulted  in

extension and bimodal magmatism in the central Lhasa terrane.
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	Between longitudes 88 and 95, the eastern Gangdese arc exposes arc-related magmatic rocks of diverse types and ages, and related polymetallic deposits (Fig. 1). Moreover, rocks from the different crustal levels of the arc have been exposed to the surface due to differential exhumation and erosion during the Late Cenozoic (Burg et al., 1997; Dong et al., 2010a; Zhang et al., 2010b, 2014b, 2020; Searle et al., 2011; Guo et al., 2012, 2020; Xu et al., 2013; Cao et al., 2020). Therefore, the eastern Gangdese arc is a highly favorable area for studying the formation and evolution of the whole arc. In order to reconstruct the magmatic, metamorphic and metallogenic processes of the Gangdese arc, in this contribution, we conduct a detailed study and review of Mesozoic magmatic rocks based on an extensive set of newly reported and previously published geochemical and geochronological data. The key issues addressed by this study are (1) the juvenile crustal growth, thickening, and intracrustal differentiation process, (2) the lithological constitution and nature of lower arc crust, (3) the source and mechanism of porphyry Cu–Au mineralization, and (4) the tectonic evolution of the eastern Gangdese arc during Mesozoic subduction. Our results provide new insight into how the Gangdese arc was built and reworked prior to the arc-continental collision, and the early growth processes of mature magmatic arcs with a complete history from oceanic lithosphere subduction to continental collision.
	Crustal Thickening and Differentiation of the Gangdese Arc
	The Component and Nature of the Gangdese Lower Arc Crust
	Porphyry Cu–Au Mineralization of the Gangdese Arc
	Porphyry Cu–Au ore deposits in magmatic arcs usually formed during subduction of oceanic lithosphere (e.g., Skewes and Stern, 1995; Kay et al., 1999; Richards et al., 2001; Perello et al., 2003; Sillitoe, 2010). The mantle-derived calc-alkaline basaltic magmas undergo a MASH process (melting, assimilation, storage, and homogenization) in the lower arc crust, which produces ore-bearing magmas with intermediate to felsic compositions (Richards, 2003; Sillitoe, 2010). The continuous oceanic slab subduction provides the water, metals, and S required for porphyry Cu–Au deposit formation (Audétát and Simon, 2012; Wang et al., 2017). However, the porphyry Cu–Au deposits form only during specific, temporally-constrained magmatic periods in the evolution of a long-lived arc. Jurassic arc-type magmatic rocks are widespread within the eastern Gangdese arc between longitudes 88 and 95, however the Jurassic arc magma-related large and giant porphyry Cu-Au deposits occur only at the Xietongmen area of the western segment of eastern Gangdese arc (Fig. 1B). The ore-hosting diorite and granodiorite porphyries formed in the Middle Jurassic (161–185 Ma), and have depleted mantle-like isotopic compositions (Tang et al., 2010, 2015; Hou et al., 2015b; Lang et al., 2017; Xu et al., 2017). By contrast, the ore-barren Jurassic magmatic rocks from the eastern Gangdese arc are isotopically less juvenile. Hou et al. (2015b) argued that incorporation of crustal components during underplating of Jurassic magma induced copper sulfide accumulation at the arc base, inhibiting porphyry Cu–Au deposits forming at this time. In addition, whether this Jurassic arc is an island arc or a continental arc remains controversial (Aitchison et al., 2007; Wang et al., 2012; Zhu et al., 2013; Zhang et al., 2014c; Tang et al., 2015). Wang et al. (2017) argued that the Xietongmen porphyry Cu–Au district is located close to the front of continental arc, where arc magmas show a larger contribution from slab fluids that carried volatile, fluid-mobile elements, and were more oxidized, as such fertile magmas provide ideal conditions for generating porphyry deposits. Xu et al. (2017) proposed that the Xietongmen mineralised diorites were derived from a Jurassic hydrous mantle wedge induced by slab dehydration. These magmas contain higher contents of water and other volatiles and have higher oxidation states, which favored the transfer of metals (such as Cu, Au) to the upper crust, and then formed the porphyry Cu–Au deposits.
	Mesozoic Tectonic Evolution of the eastern Gangdese Arc

