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ABSTRACT

The early Mesozoic evolution of the Lhasa terrane, which represents a major component of

the Himalayan-Tibetan orogen, remains highly controversial. In particular, geological units
and events documented either side of the eastern Himalayan syntaxis (EHS
correlated. Here, we report new petrological, geochemical and geochronological data for co-
genetiperaluminous S-tygpaenites and metamorphic rocks (gneiss and schist) from the
Motuo—Bomi-Chayu region of the eastern Lhasa terrane, located on the eastern flank of the

EHS. ZircorPU dating indicates that these units record both Late Triassic n
(216-206 Ma and metamorphi€209-198 Ma) episodes. The granites were derived from a
Paleoproterozoic crustahegatricve wEtltovalues (-5.5 to —-16.6) and
Tom2 model ages of 1.541.99 Ga, and are interpretetb have formed by crustal anatexis of

n e ar b y m e t a s e d i m e n t s d ur i n g
The gneisses and schiséxperienced similar upper amphibolite-facies peak metamorphism

and associated partial melting, followed by decompressi
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metamorphism. These rocks were buried to lower-crustal depths and then exhumated to the

surface in a collisional orogenic setting during plate convergence. From comparison of these

data to other metamorphic belts with similar grades a1
coeval granitic magmatism widespread in the central-east Lhasa terrane, we propose that the
studied-genmtaigmatism and metamorMbitsam—iPho mhiee Chayu regic
recorHate TriassdretodnthWNorth Lhasa and South Lhwdaiclkrranes
represents the first evidence of the Palecldethw st hnicepnr(PdfO )
Asia. These data provide new constraints on the spatial and temporal evolution of the Paleo-

Tethyan Wilson Cycle and provide a ‘missing link’ to correlate the geology and |

history of the Lhasa terrane continental crust on either side of the EHS.

Keywordsl:lisional-orageéenlekasa tmrarjgmatism and metamorphi:

Paleo-Tethys Ocean; Zircon U-Pb geochronology

INTRODUCTION

The Himalayan Range and Tibetan Plateau formed due to collision between the Indian and
Asian plates and closure of the Neo-Tethys Ocean dapp&fOnMea Gl, 1986;

O’Brienet al, 2001; Najmant al, 2010; Zhangt al, 2012a; St-Onget al, 2013; Ding

et alL 2006 although this orogeny merely represents the youngest of multip
accretion events that have occurred along the southern margin of Eurasia since the
Paleozoic (e.g. Kapp et al., 2007; Yin & Harrison, 2000; Zhang et al., 2014a). From north to

south, the Tibetan Plateau inclsidegphe-Ganzi, Qiangtang, Lhasa, and Himalaya
terranes, which are separated by the Jinsha, Bangong-Nujiang and Indus-Yarlung Tsang]
suture zones, respectively (Fig. 1a; Burg and Chen, 1984; Xu et al., 1985, 2006, 2015; Searle

et al, 1987; Dewegt al, 1988; Murphet al, 1997; Met al, 2003, 2005, 2006, 2007,

2008; Pamal] 2004, 2006, 2012t ahaxn0el 2b, c, 2013, 2014a, b, c; ZI
etal., 2013, 2015, 2016; Palin et al., 2014, 2015; Ding et al., 2015, 2016). The Lhasa terrane

records geological evidence of Paleoproterozoic magmatism (Zhang & Santosh, 2012; Lin
et al 2013a), Mesoproterozoicemea,ath®dIrPh)smmp(elniimg of t
Mozambique Ocean during the Neoproterozeitca(Ddhkla; Zhaagal, 2012b,

2014a), assembly of Gondwana and subduction of the Proto-Tethyan ocean during the Early

Paleozoic (kf al, 2008; Doreg al, 2009; kit al, 2009; Zhat al, 2012, 2013; Hu

et al., 2013; Ding et al., 2015), subduction and closure of the Paleo-Tethys ocean (PTO) from

the Permian to the TriasetcalYa®@6, 2007, 20088;al.i2009a, b, 2012;
Zenget al, 2009Donget al, 2011b, 2015; Leimal, 2013b; Chewrg al, 2012, 2015;

Weller et al., 2015, 20164, b; Chen et al., 2017), and finally the formation and destruction of
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the Bangong-Nujiang Tethyan and Neo-Tethyan oceans during the Mesozoic and Cenozoic,
respectively (Allegund, 1984; Dieg al, 2003; Meax al, 2003, 2005, 2006, 2007,
2008; Het al 2004, 2006;e4hal, 2009, 2011, 2012, 2013, 2015, 2016; Zha
et al, 2010, 2013, 2014c; Zhang & Santosh, 20é2pul28d 2; Palen al, 2014,

2015; Shui et al., 2017).

Understanding the evolution of the PTO 1is s
tectonothermal history of the Lhasnal thruanthde Tibetan Plateau as a whole
—as the PTO suture zone divides its central-east portions into northern and southern blocks
with distinct geological histories (Fig. 1a; Yang et al., 2006, 2007, 2009; Zhang et al., 2014a;

Chengt al 2015; Wekbltenl 2015, 2016a; €theah 20D).7Previous studies of
Permian to Early Jurassic magmatic and high-grade metamorphic rocks located in central-
east Lhasa terrane (westward of the eastern Himalayan syntaxis) suggest PTO subduction and
ocean-closure in this reagpet al, 2005Yanget al, 2006, 2007, 2009¢tLdl,

2009a, b, 201Zenget al, 2009Zhanget al, 2014a; Cherg al, 2015; Weller al,

2015, 2016a, b; Chewrt al, 2017. However, it is still unclear (1) if these events continued

into the east Lhasa terrane, eastward of the eastern Himalayan syntaxis (EHS); (2) where the

actual location of the PTO orogenic belt is in this region; and (3) the
metamorphic and magmatic events in this area. Together, these represent an important gap in

our understanding of the early evolution of this major orogenic system.

In this paper, we present new petrological, geochemical, and geochronological data for
co-genetic amphibolite-facies metasediments and S-type granites from the Motu
Chayu region of the east Lhasa terrane, eastern flank of the EHE
constraints on the timing and style of collisional orogeny and PTO closure during the Early
Mesozoic. These integrated data represent the first robust constraints on the locat
timing of North-South Lhasa microblock accretion east of the EH
constraints for tectonic reconstructions of terrane evolution in southeast Asia prior to India-

Asia collision.

GEOLOGICAL BACKGROUND AND SAMPLES

The east-west oriented Lhasa terrane, southern Tibet, is 100-300 km wide and over 2000 km

long (Fig. 1a). It is composed dominantly of Precambrian crystalline metamorphic basement

overlain by Paleozoic to Mesozoic marine strata, volcanic rocks and metasediments, and is
intruded by Mesozoic and Cenozoic plutons (¢
et al 2004, 2006, 2012; Metcalfe,t 200500AHh w2011, 2012, 2016; Zhang
et al, 2010, 2012b, 2013, 2014a). The presence of Precambrian basement is shown by the

discovery of Neoproterozoic granitic and mafic rocks and amphibolite- to granulite-fa
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metamorphic rocks in northern block, and Paleo- to Meso-Proterozoic gre
southern block, although these rocks were also furth
Neoproterozoic (Donget al., 2011a, 2020; Zhanget al., 2012b, 2014a; Linet al., 2013a; Hu

et al., 2019 and references therein).

The study region discussed here is located in the easternmost segment of the
terrane, east/southeast of Namche Barwa, near to the towns of Motuo, Bomi, and ¢
(Fig. 1b). This area is characterized by regionally
amphibolite-facies lithologies, Late Paleozoic to Cenozoic s
intrusions, and the exposed roots of the Gangdese Batholith (Fig. 1b). These metamorphic
rocks consist mainly of orthogneiss, schist, marble, migmatite and
t ogether ar e referred t o a s t h e B o m
et al] 1999;eXiel 2007; IR2onagl 2011c, 2015). The radiogenic
2264-2145 Ma, 1330-900 Ma and 600-520 Ma obtained by traditional dating methods show
that remnants of Precambrian metamorphic baseme
et al., 1999; Xie et al., 2007; Dong et al., 2011c, 2015), although recent metamorphic zircon
U-Pb agesf ca217 Ma amch.22-16 Msuggeghat these rocks also experienced
MesozoiandCenozoithermal overprintbogigt al, 2011c, 20.163ate Paleozoic
sediments, Mesozoic marine sediments, and minor Cenozoic sedimentary rocks mainly occur
in the northeast, although Late Paleozoic sediments do not contact the Mesozoic strata and
the Cenozoic sedimentary rocks unconformably overlie the Mesozoic sediments, indicating
punctuated tectonics in this region. The Late Paleozoic se
Devonian marine sediments and Carboniferous-Permian volcanic rc
m a r i n e c I a s t i c r o ck s, rumnmning g
et al, 2004; Wanget al, 2008). Carboniferous, Triassic and Jurassic granites were recently
recognized in this area, although these rocks have been partly transformed into orthogneiss
d ur i n g M e s o z o i c a n d C e n o z o i
et al, 2004; Let al, 2013a; Dongt al, 2015). The Gangdese batholith is predominantly
composed of Cretaceous to Neogene granitoids, which formed as continental arc magm
during subduction and closure of the Neo-Tethyan @e¢ealh ZC0\9y Doreg al,

2013; Li et al., 2013b).

The samples documented here comprise magmatic and metamorphic rocks coll
from two regions of the east Lhasa terrane (east of the EHS), but also located ~150 km apart:
granites and metapelitic schists were collected from ~35 km southwe.
metapelitic gneisses were collected from ~25 km southwest of Bomi (Fig. 1b). This region
has been relatively understudied in comparison with outcrops west of the EHS and so th

degree to which geological units and tectonic events correlate either side of
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uncertain. Outcrop and petrological information for each sample is

Mineral abbreviations are after Whitney and Evans (2010).

ANALYTICAL METHODS

Mineral composition

Mineral compositions were acquired using a JEOL JXA 8900 electron microprobe (EMTF
housed at the Institute of Geology, Chinese Academy of Geological
Beijing. Operating conditions comprised a 15-kV accelerating voltage, 5-nA beam current,
5-pm probe diameter, and count time of 10 s for peak and background, Natul
biotite, plagioclase, and K-feldspar and synthetic silic:
calibrations and a ZAF corArmalyoinc avla 21 nccaerrrtiaeic
Si0,, TiO,, AlLOs;, FeO, MnO, MgO, CaO, Na,0O, K,0, and totalare <1% at abundances >1

wt. %and <8% at abundanceswtl % Compositional data collected for garnet, biotite,
plagioclase, K-feldspar, and cordierite in all rock types are given in Supplementary Tables 1—

5.

Whole-rock composition

All magmatic samples collected from the Chayu area were analysed for major ar
element contents, which are shown in Supplementary table 6. Whole-rock compositions were

obtained at the National Research CenGAeGEBre{Géngn Sltyasnidards
GBW07103, GBWO07121, and GBW07122 were used to monitor analytical quality control.
Major-elements oxides, including loss on ignition (
fluorescence (XRF) on a Rigaku-3080 analyser, which has an analytica
<0.5%. Concentrations of trace elements Zr, Nb, Cr, Sr, Ba, Ni, Rb and Y were determined

using a Rigaku-2100 XRF analyser, which has an analytical uncertainty of <3-5%. Ot
trace elements and rare earth elements (REEs) were determined by induct
plasma mass spectrometry (ICP-MS) using a TJA-PQ-ExCell. Detailed description «
ICP-MS method has been reported by Liangt al. (2000). Analytical uncertainties for ICP-

MS are 1-5% at abundances >1 ppm and 5-10% at abundances <1 ppm.

Zircon U-Pb and Hf isotopes and trace element analysis

Radiogenic isotope geochronology was performed on four of gra:
metasediment samples to determine the timing of key tect
Motuo-Bomi—Chayu region ehghé hasa terrane. Zircon grains were separated from
each sample by magnetic and conventional heavy-liquid techniques at the Hebei Institute of

Regional Geology and Mineral Investigation. Cathodoluminescence (CL) images were taken
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on a HITACHI S2250-N scanning electron microscope at the SHRIMP Unit at the Institute
of Geology, CAGS. -Pbrdeattlpe and trace element analysis were |
simultaneously on an Agilent 7500 ICP-MS equipped with a 193 nm ArF-excimer laser at the
State Key Laboratory of Geological Processes and Mineral Resources, China University of
Geosciences (Wuhan). Detailed operating conditions for the ICP-MS instrum
laser ablation system are as reported by Liuet al. (2010). Zircon 91500 was used as external
standard for-Bb dating, which was analysed twice for every 5 analyses of the samples.
SRM610 were used as external standard for the trace element analysis. Time
drifts of U-Th—Pb isotopic ratios were corrected using a linear interpolation (with time) for
every five analyses according to the variations of zircon 91500. Zircon GJ-1 was usec
standard to monitor the stability-Pahh dd aat@cargayrefl .t1fd lUc
(**Si) was used as an internal standard. The £Pb and trace element data were processed by
ICPMSDataCal (Liuet al., 2010) and Isoplot (Lugwig, 2003) was used to calculate isotopic
ages and construct concordia diagramA.-M1P-MS 4Pb data and the trace element
compositions of the magmatic and metamorphi
metasediments are presented in Supplementary table 7.

In situHf isotope compositions of zircon were obtained by a Neptune MC-ICP-MS at
the State Key Laboratory of Geological Processes and Mineral Resources, China University
of Geosciences (Wuhan). The laser had a beam diameter of 44 pm, a frequency of 8 F
energy of 60 mJ, and a fluence of>5Alndlynical spots were chosen on the same
domains with LA-ICP-MS spots. The zircon standards GJ-1 (Elhloat al., 2006) and 91500
(Blichert, 2008) were analysed as reference materials
Hf/'7"Hf ratios of 0.282012 + 11 (10, n = 4) and 0.282305 + 10 (10, n = 10), respectively.
T h e s e val ues m atc h t h e r e co mmend
1, E1l1 hleotu.al 2006 ; 0.282308 + 6 for 91500, Blic
'""Mf/Hf ratios were calculatélluusddogythenstant of ¥y867 x 10
(Soderpktuad2004)4()Thelaes were calculated usi
YMf)Hf ratio of 0.282785fawf/dHf ratio of 0.0336 (Betuwle2008). The
depleted-mantle-Hf model ages (Tpm) were calculated with respect to a depleted present-day
mantle '"°Hf/""’Hf ratio of 0.28325 and’®Lu/""’Hf ratio of 0.0384 (Griffimt al, 2000). The
Hf crustal model ages (Towm2) of each zircon were calculated by assuming its parental magma
to have been derived from an average continentd.at0Htf with015 (Griffin
et al., 2002). In-situ Lu—Hf isotopic ratios from two granites are presented in Supplementary
table 8.
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RESULTS

Petrology

Magmatic rocks

Magmatic rocks collected from the Chayu area include undefo
T H45¢ , T 1 5 - 46 -8 andnHdlwed&1+P deformed
T1546-1, T1546-3, T1546-4, T1546-5, T1547-2 and T1374). The undeformed

granite displays a phaneritic texture and contains5@faj;zK(4@ldspar-G00%),

plagioclase (20-25%), biotite (2-3%) and muscovite (2-3%), with accessory zircon, apatite,

and sphene (Fig. 2a and c). The weakly deformed granites display a slight foliation in outcrop

and consist of gd50ty, (KOfelds2psa% )(2Plagioer®9e) (DSiotite

(3-5%) and variable muscovite, garnet, and accessory minerals zircon and apatite (Fig. 2b

a n d d ) . T h e f i n e 1 y c r y s t a 1 1
quarftel dspar and biotite grains, which
(Fig. 2d).

Metamorphic rocks
Two high-grade gneis328 @RU5TA333-7) were collected from southwest c
Bomi. They show prominent foliation in outcrop and comprise pale plagioclase-rich (Pl-rich)
quartzofeldspathic leucosomes, which are generally aligned subparallel to the foliation, and
dark melanosomes. The (Pl-rich) leucosomes range from millimeter
thickness and often occur as interlayers or small- to large-scale lenses (Fig. :
diagnostic of partial melting during metamorphism and locally mi
T15323 is a metapelitic gneiss containing biotite, muscovite, quartz, pla
garnet, with minor sillimanite, ilmenite and chlorite (Fig. 4a and b). Large porphyroblasts of
garnet are set in a matrix with a foliation defined by oriented mica and quartzofeldspathic
domains (Fig. 4a). Chlorite partially pseudomorphs biotite and garnet (Fig. 4a), suggesting a
r etrogrTrade o-3r—3 g h m s 8§ a amipml iel aTrl 5m i n e 1
T15-32-3, but contains additional K-feldspar (Efg. Bkcrsample T433-7, muscovite
occurs as both large lath-like porphyroblasts and randomly orientated fine-grained
(Fig. 4d), which suggest a retrograde origin (Ashworth, 1975, 1979; Tyler &
1982). Cuspate quartz also exhibits very small dihedral angles against plagioclase (Fig. 4e),
and K-feldspar grains are surrounded by plagioclase rims (Fig. 4f). These microstru
features suggest the presence of partial melt during metamorphism (e.g. Holness & Clemens,
1999; Holness & Sawyer, 2008; Feisel et al., 2018).

Two metapelitic schists €438 and T1543-3) were collected from southwest of

Chayu. They have the appearance of stromatic migmatitic rocks and consist of millimeter to
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centimeter thick white-beige felsic domains (leucosomes), which occur as concordant layers

or small-scale rootless folds, alternating with grey domai
feldspathic material with interstitial biotite (Fig. 3b). These outcrop features imply that these

rocks experienced partial melting and the melt did not migra
Sample T15-43-1 is a garnet-two-mica schist containing garnet porphyroblasts with biotite,
muscovite, plagioclase, quartz and minor ilmenite as matrix minera
Muscovite occurs both as flakes that are aligned within the foliation and as larger, unfoliated

and subhedral to euhedral grains against garnet rims (Fig. 5a and b). These microstructural
relationships indicate two generations of muscovite growth (cf. Ashworth, 1975, 1979; Tyler

& Ashworth, 1982). Garnet rims and internal fractures are o
aggregates of biotite, muscovite, and plagioclase (Fig.
retrogression. Sample-#333 is a garnet-sillimanite-cordierite schist containing biotite,
p 1l a g i o c 1l a s e, K - f e 1l d s p a r , ¢
5c—f). The foliation is defined by aligned fibrous/prismatic sillimanite and biotite flakes that

wrap around coarse K-feldspar, plagioclase and quartz in the matrix. Garnet porphyroblasts

have inclusion-rich cores, containing biotite, plagioclase and quartz, whereas rim domail
are mostly inclusion-free (Fig. 5d and f). Some ga
pseudomorphed at their rims by biotite and cordierite (fjgM5dor perthite occurs in

the matrix, exhibiting micro-exsolved lamellae of plagioclase hosted by K-feldspar (Fig. 5e),

and polymineralic inclusions of biotite + plagioclase + quartz are occasionally preserved in
garnet cores (Fig. 5f), suggesting the studied rocks under
Holness & Clemens, MWdt®rs, 20HQglness & Sawyer, 2008; e£halh 2017;

Feiselet al, 201§. In all samples, garnet rians partly replaced byotite + plagioclase

+ muscovite aggregates {&Figmsd 8a,b,k)gcording back-reaction involving mel

crystallization (e.g., Waters, 2001; Kriegsman & Alvarez-Valero, 2010).

Mineral chemistry

Bomi gneiss

Bomi gneiss samples T15-32—3 and T15-33-7 contain garnet porphyroblasts of composition
Xrer6-78Xnmgi0-12Xcaz-s Xame-o (Xre = Fe**/(Fe** + Mn + Mg + Ca), with Xca, Xug and Xy, defined
accordingrloaXKress Xmgs Xca Xmso respectively (Supplementary tab
Porphyroblasts in both samples thus lack systematic compositional zonation from c
rim. Matrix biotite haéuah= Mg/(Mg + Fe)] of 0.35-0.42 in Fdmp2e3 and

0.450.49 iil'15-33-7. The Ti contents of eacl ar®0.18 and 0.20.23 cations per

formula unit (cpfu) based on an 11-oxygen calculation, respectively (Supplementary ta
2). Plagioclase inTsla5%ip3eis oligoclaseXawithCa/(Ca + K + Na)] of
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0.180.23, andlso oligoclase wWith= 0.26-0.29 sample T+33-7, whereas those
surrouiKdifrmgdasrppamalbitec.wiOh 0 -0.03 (Supplementar
and K-feldspar has Xn, [= Na/(Ca + K + Na)] of 0.11-0.12 (Supplementary table 4).

These petrographic observations and patterns in mineral chemistry sug;
B o m i g n e i s s e s c ontaimnwed a p
Grt + Sil + Bt + Ms + Pl + Qz £ Ilm + melt for sample T15-32-3 and Grt + Sil + Bt + Kfs +
Pl + Qz + melt for sample-BB57. Retrograde cooling and exhumation likely initiated

growth of secondary Ms, Chl, and Ab surrounding some K-feldspar grains.

Chayu schist

Garnet porphyroblasts from Chayu schist sa
characteristics, with homogenous broad cores and weakly zoned rims. C
T1431 have comXre:XitgiXcBeXuams, oWhich change to out
compositXensXvg:-Xas Xme-1§Supplementary Fdgle6d). By contrast,
garnet porphyroblasts in sEh®48-3 have core compositioXss0fXug1-Xca-

sXmmi1-13 and rim compositionsXfro7:Xmgo-1Xco-Xmms-1{Supplementary table 1; Fig.

6b). These patterns are diagnostic of diffusion-driven homogenization at peak metamorphic
conditions, followed by diffusion-controlled retrograde resorption during exhumation, which

led to compositional inflections in outer rim dofaagn¥lorence & Spear, 1991; Spear,

1991, 1993; Kohn & Spear, 2000; Caddick et al., 2010).

Insample T-¥3-1,biotite grains in the matrix and adjacent to garnet rims
Xumgvalues of 0-B051 and 04852, respectively, although the former have higher Ti
contents (~0.08) than theOMa)tt(eSSupP.l@mentakiygtabhdh &se
compositional patterns confirm minor breakdown of garnet durir
conditions, leading to biotite formation during retrogression. Plagioclase grains in the matrix
and adjacent to garnet rims have similar compositions Xc, = 0.23-0.30, (Supplementary table
3). Imample F43%3,biotite inclusions within garnet cores have relative
contents of 0.160.18 cpfu and low X, values of 0.460.49, whereas biotites in the matrix
have a relatively low Ti €bdtterwtp {0) 1a2n d vhyivgah ues of-0.39
(Supplementary EaplecPlagioclase in the matrdisx eOx BH0b2¢s X
(Supplementary table 3) and K-feldspar in the matrixhas0X14-0.20 (Supplementary
table 4). Cordierite grains adjacwgvtaltwe gaaHed6.G9ms h
(Supplementary table 5).

These petrographic observations and patterns in mineral chemistry sug;
Chayu schists preserve petrographic eviden

I n s a m-g-H e TH & p e ak metamorphic s t
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and foliation-forming matrix minerals (Grt + Bt + Mblm)Pdmd Qetrograde

m e t a m o r p h i s m i n d u c e d Cc o m p
(e.g. Mn spikes; cf. Kohn & Speand2®dx@pheral breakdown to form secondary
muscovite, biotite and plagioclase. In sample T15-43—-3, peak metamorphism is characterized

by g arne-t c or e s a n d t heir a s s o cCciat.e
Sil + Kfs + Bt + PI + Qz.Akin to sampleT15-43-1, retrograde cooling induced garnet rims

resorption and recrystallization to biotite and plagioclase, although here additional cordierite

formed during decompression. These mineral assemblages and reaction textures indicate that

all s amples e x perienced a similar

P-T conditions quantified using thermobarometry (see below).

Whole-rock geochemistry

Allgranites have high69i®5-76.12 wt.;%)(1R2133-14.58 wt. %) and
Na,O + K,O (4.36-8.59 wt. %) contents, and low Fe,Os" (0.64—4.24 wt. %), MgO (0.11-2.96
wt. %), Ca0O (0.73-2.50 wt. %) and MnO (0.02-0.07 wt. %) contents (Supplementary table
6). Most are weakly peraluminous with A/CNK values
T15-46-1 and T15hals6ad atypically higher value of 1.21 and 1.20 res]
(Supplementary table 6).

On a primitive mantle-normalized spider diagram (Fig. 7a), all samples are enriched in
large ion lithophile elements (LILE), such as Rb, Th, U and K, and depleted in some high
field strength elements (HFSE), such as Nb, Ta, Sr and Ti. In addition, I
depleted compared to Rb and Th. When normalized to chondritic values, all grani
strongly enriched and show similar fractionated REE patterr
(La/nY$%)5.45-)46w3i6h LREE-enrichment, HREE-depletio
anomalies (6EB2-0).63lthough sdmpled6-7 is only moderately enrich
(Supplementary table 6; Fig. 7b).

Zircon U-Pb ages and Hf isotope

Zircons from granites T15-46-3, T15-46-5, T15-46-7, and T15-47-2 show similar internal

structures, are colourless to pale brown, euhedral to subhedral prismatic in form (70-170 pm

long), and have regular oscillatory zoning with inherited detrital cores in CL images (Fig. 9a—

d). Most of the analysed zircon spots have relatively high Th/U ratios (>0
contents, and are characterized by fractionated REE patterns with LREE depletion, HREF
enrichment, and negative Eu anomalies (Supplementary table 7; Fig. 10a)
structure and compositional features suggest a magmatic origin (Hoskin and Schal

2003). Zircon data from these four samples yielded near-consistent 206Pb/238U ages, with
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weighted mean ages ranging from 216 Ma to 206 Ma (Fig. 11a-d). These ages a
interpreted to represent magma emplacement/crystallization age.

Zircons from the gneiss and schist samples T15-32-3, T15-33-7, T15-43-1, and T15-
43-3 are mostly colourless, oval or sub-rounded in shape, and show well-preserved core-rim
zonation (Fig. 9e—f). Inherited cores have a variable size, irregular form and random zoning,
implying that zircon cores are detrital/xenocrystic and the protoliths of the studied samples
are sedimentary rocks. In contrast, metamorphic rims show weak patchy zoning (or have no
zoning at all), and have relatively low Th/U ratios, low REE contents and fractionated REE
patterns with depleted LREE, flat HREE an
(Supplementary table; Fig. 10b) typical of a metamorphic origin (Hoskin & Schaltegger,
2003). The analysed spots of the metamorphic rims yieldatear-concordant?***Pb/***U ages,
with weighted means d98 + 3.3Ma, 202 + 3.4Ma, 209 + 2.8Ma and203 + 3.1Ma for
T15-32-3, T15-33-7, T15-43-1, and T15-43-3, respectively (Fig. 11e-h).

Together, these data are interpreted to record Late Triassic crt
216-206 Ma and regional metamorphism at 209—198 Ma in the east Lhasa terrane.

Zircons from two Late TriesasicLpnsmnitesrahnethea
T15-46-3 and T15-46-5) have initial'’°Hf/’’Hf ratios ranging from 0.282308 to 0.282525
and variableuy(hewaltioee €E-8.6 to —-16.2). These va
Tommodel ages-df99.88mpplementay¥itga.bl@)§ inadicating

Paleoproterozoic crustal magma source.

DISCUSSION

Metamorphic P-T path of gneiss and schist

In order to constrain the tectonothermal evolution of metamorphic sampl
diagram-based thermobarometry and conventional techniques were employed tc
P-T conditions for various stages of their prograde, peak and retrogr
evolutions.

In general, bulk-rock-specific phase diagrams (pseudosections) -
precise constrainRsoo® conditions of metamorphism than conventional techni
(cf. Powell & Holland, 2008), thus allowing discrete changes in crustal depth and thermal
stateduring the burial and exhumation cycle to be(¢deginw@lleat al, 2015; Palin
et al, 2018). Typical uncertainties associated with cation exchange thermometers an
transfer barometers are at least + 50 °C and + 1 kbar at 1. S.D., which is primarily a function
of uncertainty on thermodynamic end-member data and inaccuracies in the descriptio
activity-coan)pxorsiltaitoimn(s describing elemental mixi
(e.g. Greetmmal 2016; Waters, 2019). While uncertainty on the absolute p
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assemblage field boundaries on any individual pseudosection are of a similar magnitude to
those for conventional techniqueéPowell & Holland, 2008; Paliet al., 2016), as all phase
diagrams in this study were calculated using the same t
a—x relations, similar absolute errors cancel, and the calculated phase equilibria shown below

are relatively precise to within £0.2 kbar and £10-15 °C (Worley & Powell, 2000). Su
values allow distinct Pd-iPfhaeahesnte sbbedateeerrmined,
discrimination of depths of burial and calculated geotherms
performed with confidenceHergandez-Uribdteal, 2018Hernandez-Uri&ePalin,

2019; Liet al., 2018). Nonetheless, conventional techniques must be employed in scenarios

where the bulk-rock composition of a rock is not representative of reaching ‘equilibration’
volume, such as for retrograde breakdown within porphyroblast st
et al, 2013; Waters, 2019). As such, the conditions of late-stage retrograde metamorphism
were identified using conventional techniques explicitly considering the minerals that formed

during these events: not the surrounding peak metamorphic assemblage.

Phase equilibria modelling
Allpseudosections were calculated using Perple_X (Connolly, 2005; versi
internally consistent thermodynamic dataset ds-55 of Holland and Powell
systM mD OHOC a-KO-F e-M g-0;0,-S i, OO- TOi (M n NCKFMASH
The folloawixneglationships were employedetbudtd0d Y),ajcm
plagioclase and K-feldspar (Holland & Powell, 2003), ga
staurolite, chlorite, ilmenite and sile¢adé-2elldjWhite, sillimanite,
quartz, and rutile are treated as purPsphaosections were calculated using XRF-
derived bulk-rock compositiSsnpplementary tableafigi fluid was considered as pure
HO. All iron was considered as ferrous due to the lack
Fe* -rich minerals in the schists and gneisses.

Quantitative P-T pseudosections calculated for gneisses T15-32-3 between 600-800 °C
and 4-9 kbar and T15-33-7 between 600—-850 °C and 3-9 kbare shown in Fig. 8a and b,
r e s p e ¢ t i v e 1 y . Q u a r t z é
P-T range and garnet is stable in both except for low-P conditions, where cordierite is stable
instead. The measured H,O contents for each sample saturate the solidus in each case, which
is located at ~660-690 °C (Fig. 8a and b).

F o r s a m p 1l e T 1 5 - 3 2 - 3, t h e 0 |
Bt + Ms + Pl + Grt + Sil + Qz + melt is stable in a relatively broad fi
4.9-8.7 kbar and 670-745 °(Fig. 8a), although isopleths for garnet inner-rim composition

(Xmg=0.10-0.12pnstrain peak conditions within this range to a minimum pressure
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~6 kbar (pink field in Fig. 8a). Retrograde effects where garnet compositions h
modified by diffusional cation exchange with matrix phases are not considered here when
determining peak metamorphic conditions. As suchample T15-32-3likely equilibrated at

5.7-7.5 kbar and 675725 °C. For sample T15-33-7, the observed peak mineral assemblage

ofGrt + Sil + Kfs + Bt + Bidet+t Qs calculated to be stable
3.2-9.6 kbar and 675-820 °(Fig. 8b) This range was reduced by matching observed and
calculated garnet compowdtfohd4-X.169,(X.04-0.05) and biotite Ti contents
(0.20-0.23 cpfu), as Ca in garnet and Ti in biotite have slow diffusi
measured concentrations should represent those obtained at peak metamorphism. Isopleths
delineating these ranges constrain peak P—T conditions to 5.3—6.7 kbar and 750-765 °C (pink

field in Fig. 8b).

The calculated P-T pseudosection for garnet-biotite schist sample T15-43—1 shows that
q u a r t z , p 1l a g i o c 1 a s e a n d b i
P-T range, and garnet is stable everywhere except for <3.1 kbar and 675-685 °C. The fluid-
saturated solidus is located at 670—-690 °C, and the muscovite-out/sillimanite-in reaction has
a positive slope betwe680°C and750 °C. The observed peak-metamorphic assemblage
(Grt + Bt + Ms + Pl + Qz+ melt) is stable a6.4-10 kbar and 675-730 °C, and garnet core
Xwumgand plagioclase Xc, isopleths constrain peak P—T conditions to be >7.9 kbar and 690-720
°C (pink field in Fig. 8c). Retrograde alteration at garnet rims, forming coarse aggregates of
biotite, plagioclase, and muscovite, but no sillimanite, constrain
retrogression to have a steep angle in P—T space. If heating had continued, or decompression
had occurred isothermally, sillimanite would be expected to form within strain
although this is not obseruatphl8 T133-3 contains sillimanite in the matrix, but is
otherwise mineralogicalhyilar toasnple T1543-1. In a calculatdd-T pseudosection
for T15-43-3, the interprete¢peak assemblage oGrt + Sil + Kfs + Bt + Pl + Qz + melt is
stable a4.6—9 kbar and 710-800 °C, whereas the retrograde-metamorphic assemblage
Grt + Sil + Kfs + Crd + Bt + Pl + Qz yield3d range of 3.6-5.4 kbar and 705-800 °C
(Fig. 8dYThe highest Ti content of biotite isopleths was used to provide the m
temperature and constrain the peak metamofpliiconditions of 4.6-8.7 kbar and 710-

765 °C (pinKieldin Fig. 8d) and retrograde-metamorphiltconditions of 3.6—4.9 kbar
and 727-760 °C (blue field in Fig. 8d).

These calculated phase relations infer a comm
P-Tpath for metamorphic rocks from the Bomi and Chayu regions, which formed alo
similar geothermal gradients and reached similaP-aBsohdigions (Fig. 8e and f),
despite being located ~150 km apart along strike.
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Geothermobarometry
The garsakeitotite (GB) thermometer (Holdaway, 20001)ipehag gac hete
quartz (GBPQ) baromee¢tal 2WQ4) were applied to calculate the pe
retrograde-metamomphTconditions of the studied gneisses and schists. These result
were used both as an independent check on the conditions calculated via phase
analysis and due to local disequilibrium that may have developed d
retrograde recrystallization, which obviates pseudosection modeling from interp:
P-T conditions of retrograde exhumation far below the solidus.

For gneiss samples, flat garnet core compositions are interpreted to be the resu
homogenization of cations at the thermal peak of metamorphism (e.g. Caddick et al., 2010).
Garnet core compositions alongside those of matrix biotite and plagioclase produced peak-
metamorphiP—Tconditions of 6-8.7 kbar and 67317°C (samplé'15-32-3; yellow-
filled circle in Fig. 8a) ahB-6.4 kbarand 703-727 °C (samplél'15-33-7; yellow-filled
circle in Fig. 8b) using these calibrations. For schist samples, the garnet porphyroblasts show
compositional zoning, and their cores and rims are interpreted to be formed during the peak
and retrograde metamorphism respectively. Therefore, compositions
matrix biotite and plagioclase that are not adjacent to garnet grains were selected to calculate
the peak-metaRm-oeTcpomiditions. These calibrati®nls lproad waeld 5.5
673588 C for safipMedl gellow-filled circ)lmnd Fdgne8crim
compositions were combined with compositions of neocrystalline biotite and plagioclase to
constrain retrograde metamorphic P-T conditions of 3.9-4.5 kbar and 627-645 °C, shown by
a blue-filled circle in Fig. 8c. No result
T15-43-3.

These peak metamorphicP—T conditions calculated via thermobarometry are similar to
those constrained by phase equilibria modelling, although the calculated pressures of schist
sampleél'1543-1 are significantly lower than those estimated via pseudosection analysis
Given that full bulk-rock compositions are not appropriate to forward-model mineralogical
changes occurring in discrete domains, such as garnet strain sh
metamorpRid conditiofmgsample F4#3-1 determitbhegdthermobarometry are
considered most reliable in this cdFhese conditions lie below the fluid-saturated solidus
and are interpreted to correlate with the retrograde closure temperature for effective cation

exchange between garnet and the adjacent matrix (Ehlers et al., 1994).

Late Triassic metamorphism in the east Lhasa terrane
Petrological observations, zircon geochronology, and phase equilibria modelling show that a

major metamorphic episode affbetddotuo—Bomi—Chayu region of the eastern Lhasa



15

504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

t er daunre n g t h e L ate Triassic. G neiss
P-T conditions (5.7-7.5 kbar and 675-725 °C) to gneiss sample T15-33-7 (5.3—6.7 kbar and

750-765 °C), and these are considered as peak metamorphism in the Bomi area. Given their

proximity with no evident structural discontinuities between outcrops, both sample
have experienced the same tectonothermal evolution, even if the former preser
temperature than the latter. The occurrence of fine-grained and large lath-like porphyroblasts

of retrograde muscovite formed in sample T15-33-7, alongside the absence of cordier
constrains the post-peak exhumation history to involve decompressional cooling, as shown in

Fig. 8e. By contrast, schists from the Chayu area ~150 km to the southeast under
retrograd®—Tpath characterized by near-isothermal decompression at high temperatures,
causing the growth of cordierite and the consumption of garnet, and ther
cooling towards to the inferred early progradd&lieebdudiggle Bfs)es and
schists thus experienced similar peak-stage upper amphibolite-facies met
were buried to low<rustal levelduring orogenesidhese conditions are consistent with
Barrovian-type metamorphism, peaking at sillimanite-g
characteristic of collisional orogeny (e
et al, 2020); especially when followed by decompression along a cooling path associate
with tectonic exhf{hrgiand & Richardson, 1977; England & Thompsol
Thompson & England, 1984; Harley, 1989). Slight differences in th
exhumation path can be attributed to local thermal gradients, such
magmatic intrusions in the Chayu region that allow the metamorphic rocks to remain hotter
during retrograde exhumation than those in the Bomi area. Var
exhumation along strike is not uncommon in collisional orogens at this length scal
importantly has been well-documented in the Andes (Leaset al. 2016), which is a modern-

day accretionary orogen with many tectonic parallels with the south Asian margin dt
closure of the Neo-Tethys ocean.

The metamorphic zircon rims from the gneisses and
concentrations and fractionated REE patterns
(Fig. 10pjndicating the metamorphic zircon grew coevally with garnet and plag:
during medium- to high-grade metamorphism (Rubatto, 2002; Rubatto & Hermann, 2007;
Rubattet al, 2013). Therefore, the ages—49&Ma obtained from these grains are
taken to represent the timing of peak metamorphism, w
P-T conditions just above the fluid-saturated solidus for metapelitic rocks (Palin & Dyck,
2020). These thermobarometric results are consistent with outcroj
observations of incipient partial melt development and the generation of zircon at or soo

after the onset of cooling and melt crystallization (Bea & Montero, 1999; Kunz et al., 2018).
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Late Triassic magmatism in the east Lhasa terrane
Four samples of granite collected fMatubeBomi—Chayu region efthé hasa
terrane yielded similar zircon U-Pb crystallization ages of 216-206 Ma, which correlate with
U-Pb ages of magmatic zircons in biotite-hornblende schist (c. 217 Ma) from the same area
(Fig. 1;eObD@md@ 011 c). The granitic rocks stuc
eni(t) values of—8.6 to —16.2and old crustal model ages ($vC) of ca.1.51 to 1.99 Ga (Fig.
12)ijndicating that they were derived from partial melting of Paleopr
materials. Dioritén the same arewith a slightly younger age (c. 194 Ma) have negative
eni(t) values of-0.1 to —6.5 Donget al, 2015, and so also likely formed from these older
precursor rocks. Therefore, the east Lhasa terrane must have experienced widespread crustal-
derived magmatism during the Late Triassic.

The Late Triassic granites studied here from the Chayu region plot in the S-type granite
field on an A—-C-F diagram (Fig. 13a) and haverelatively high AkO, contents (12.33—-14.58
wt. %), high A/CNK values (1.04—1.21), negative eu¢(t) values (—8.6 to —16.2) and are mixed
magmas sourced from greywacke- and pelite-derived melts (Fig. 13b). This par
supported by most zircons analysed from these granites containing inherited detrital co
(Fig. 9ad) with metasedimentary protolith characteristics. These features suggest that tl
studied S-type granites likely formed by crustal anatexis of the me
collisional orogeny (e.gt. &Zlhafg3; Chappell & White, 1992; Barbarin, 1¢
Liegeois, 1998), as S-type granites are uncommon in non-convergent plate

intraplate environments.

Tectonic implications

The Lhasa terrane represents the southern margin of Tibet and so is a key tectonic unit for
documenting the spatio-temporal evolution of the India-Asia collision during the Cenozoic.

The terrane is bordered by the Bangong-Nujiang suture zone to the north and by the Indus-
Yarlung Tsangpo suture zone to the south, was initially divided into the northern, central, and
southern sub-terranes, separated by the Shiquan River-
Luobadui-Milashan fault, respectively (e.g., Raml, 2004, 2006; Zhwt al, 2011, 2013).

The southern part of Lhasa terrane preserves a semi-continuous record of th
northward subduction of the Neo-Tethyan ocean and the Cenozoic collision between India
and Asia (eAlbtddO9e84; Acharyya, 2000; Yin & Ha
et al, 2001; Kappet al, 2003, 2007; Houet al., 2004, 2006; Chungt al, 2005; Moet al,

2005; Zhangt al, 2010; Xiet al, 2011; Panet al, 2012; Zhang & Santosh, 2012; Zhu

etal., 2013; Dong et al., 2018). However, the recent discovery of Sumdo high-pressure (HP)
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metamorphic belt argued that Lhasa terrane also records the subduction and closure of Paleo-
T e t h y s 0O C e a n f r o m t h e L at e P a I e
et al., 2006, 2007, 2009; Li et al., 2009b, 2012; Zeng et al., 2009; Cheng et al., 2015; Weller
et al, 2015, 2016a; Cheat al, 2017. Together with the contemporaneous island volcanic
rocks to the north, dismembered ophiolite units and the regional angul
between the Middle and the Upper Permian, the belt is considered as a suture zone, which
represents the relics of the northward su
et al, 2009; Zengt al, 2009; Let al, 2009a, b; Chengg al, 2012, 2015Welleret al,
2015, 20169. Separated by this suture zone, the Lhasa terrane is now considered to consist
of two discrete crustal fragments: the North and South Lhasa terranes, with no central block
(Fig. 15; Yang et al., 2006, 2007, 2009; Li et al., 2009a, b, 2012; Zeng et al., 2009; Zhang et
al., 2014a; Cheng et al., 2015; Weller et al., 2015, 2016a; Chen et al., 2017).

The Sumdo Belt, central-east Lhasa terrane, contains high-pressure eclogite with a Late
Permian metamorphic age of 2240Ma (Yanget al, 2006, 2007, 2009; Xat al, 2007;
Chenet al, 2008; Let al, 2009b; Zengt al, 2009; Chengt al, 2012, 2015WVelleret
al, 2015, 2016§aThese rocks must have formed prior to the onset of collisional orogeny.
Studies conducted on these rocks indicate that they experienced an amphibolite-
epidote-amphibolite-facies retrograde metambi@iasnwhich3thatches the
evolution of many other metamorphic rocks with the sil®H#rconditions andlockwise
P-Tpath(MP amphibolite-facies, typical of the Barrovian-type metamorphism) and
(Late Triassic to Early Jurassiz25-192 Ma) along the central Lhasa terrane (Figs. 14 and
15), although they havght variation in the character BfTthaths due to different
local thermal gradients in this length scalAe caldlisioabfortbgeas
lithologies constitute a large-scale Late Triassic to Early Jurassic metamorphic belt striking
east—west for at least 500 km, from the Nyaingentanglha in the west, through the Sumdo in
the central, to the Dongjiu region adjacent to Namche Barwa in the east (Fig. 15). This linear
belt is now considered as the primary record of the collisional orogeny between North and
South Lhasa terranes during the Early Mesozoic, and resulted from closure
(Li et al., 2008, 2009a, 2011, 2012; Dong et al., 2011b; Lin et al., 2013b; Cheng et al., 2015;
Welletr a)l 2015, 2hle6mat; a)l 2017). Additionally, the Ear
metamorphism along the central Lhasa terrane is associated with widespread coeval granitic
magmatism, which is also interpreted to be the products of the collision between North and
South terraneBig. 15Kappet al, 2005; Liat al, 2006; Zhareg al, 2007; Ldt al,
2008, 2009a; Zthul 2011; Doartgal 2015elleat al 2019bTherefore, we
s ugges:t that the L ate T riassic ma g m a |

Motuo—Bomi—Chayu region of the eastern Lhasa terrane formed in a same tectonic setting of
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collisional orogeny between North and South Lhasa terranes, resulted from the closure of the

PTO (Fig. 16). These data firstly indicate that the east Lhasa terrane east of the EHS, like the

central-east Lhasa terrane to the west of the syntawitnebsed closure of the Paleo-

Tethys oceanic basin, anhletfamtdo metamorphic/orogenic belt documented in tt
east-central Lhasa terrane as recording the demise of the PTO should be extended eastward

past the EHS into the east Lhasa terrane (Fig. 15).

There are key implications for this proposed extension of the Sumdo orogenic belt east
of the EHS, where no HP or UHP eclogite-facies rocks have yet been discc
absence of canonical indicators of paleo-subduction in this region of the Lhasa terrane east
of Namche Barwa, such as lithofacies that form only at convergent plate boundaries (i
mélange, blueschist, MORB-type eclogitet, gdde(1iXe;PSkiemrn& White,
2016), has historically hindered tracing the paleo-closure of the North and
blocks. Our new data provide evidence that regional scale metam:¢
thickening were occurring in this region simultaneously with units in
Sumdo, central Tibet (Welleet al., 2015, 2016a), where HP mafic eclogite is well exposed.

Further, Carboniferous-Permian volcanic rocks are documented on the southern margin
the North Lhasa plate in both the central Lhasa block and in the Motuo—Bomi—Chayu region

( Fig . 15), indicatindg c oeval alo
et al, 2008; Yangt al, 2009). Why, then, are there not equivalent HP eclogite exposures
east of the EHS? The exhumation potential of subducted oc
depending on a wide range of petrophysical factors (e.g. Guillot et al., 2001; Warren, 2013).

Further, a wide range of mechanisms has been proposed for allowing exposure at the Earth’s

surface following an initial period of rapid exhumation based on positive buoyancy (e.g. St-

Onge et al., 2013).

Firstly, it may be considered that the subducted PTO lithosphere experienced a
strike variation in dip angle, as noted today in the
et al, 2001) and proposed for the lack of Cenozoic (U)HP eclogite in the central and east
Himalaya (O’Brienet al., 2001; Leechet al., 2005). Eclogite from the Sumdo complex near
to Basong Tso (Fig. 15) reached peRkT conditions of 27 kbar and 670 °C, equivalent to
transport to a depth of ~95 km before exhumation (Weéleal, 2016a). If slab subduction
beneath the eastern Lhasa terrane during the Mesozoic occurred at a much steeper angle, it is
possible that the subducted oceanic root achieved negative buoyancy at an equivalent time to
the Basong Tso eclogites (Aegaal 2009), and so upon slab fragmentation descended
terminally into the lower mantle. Alternatively, if the slab angle in this region was shallower
than that interpreted for Basong Tso, relatively low-pressure eclogite may have formed (e.g.

Hernandez-Uribe & Palin, 2019), although such low-angle subduction is often ass
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with formation of slab-derived magmas (adakites; Drummond et al., 1996), which are absent
from the Motuo—Bomi—Chayu region. Thus, this latter hypothesis appears unlikely based on
the current understanding of the geology of this part of the Lhasa terrane.

If (U)HP eclogite formed during closure of the PTO east of the EHS, and was exhumed
and incorporated into the overlying crust, it may thus be pres
subsurface, as the metamorphic pressures calculated from the rocks in this region are slightly
lower than the eclogitic host gneisses in the Sumdo and Basong Tso region (cf. 9 kbar
Basong Tso; Welleet al, 2015). Thus, we interpret that the level of exposure of the Lhasa
terrane in Motuo—-Bomi—Chayu region is slightly shallower than the temporal
along-strike to the west. Such an assessment of orogen-parallel variation in exhumation rate
should be considered in large-scale reconstructions of the evolution of the Tibetan r

prior to the onset of uplift during Cenozoic collision with India.

CONCLUSIONS

T h e e a s t L h a s a t e r r a n e W
(216206 M3y and regional metamorplf26®198 Ma)Metasedimentary gneisses and
schists studiMdo tfueo-mB olmei -Chayu region, eastern
experienced medium-pressure amphibolite-facies
followed by a decompressional cooling retrograddg@ioatesTriassic granites are
peraluminous S-type granites and derived from the partial melting of nearby metasediments,

indicating localized melt transportThe coeval Late Triassic magmatism and metamorphism

in the east Lhasa terrane are related to thellision betweeimNorth and South Lhasawhich

resulted from closure of the Paleo-Tethys Ocean. Finally, these new data s
recently discovered Sumdo metamorphic/orogenic belt that formed during closure of the PTO

should be extended eastward to at least the east Lhasa terrane.
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FIGURE CAPTIONS

Fig. 1.(a) Simplified geological map of the Lhasa terrane, showing the main suture zones
and terranes. JSSZ, Jinsha suture zone; LSSZ, Longmu Tso-Shuanghu suture zone; BNSZ,
Bangong-Nujiang suture zone; SDSZ, Sumdo Paleo-Tethys suture zone; ITSZ, Indus-Yarlung

Tsangpo suture zone; ATF, Altyn Tagh Fault; KJF, Karakurum-Jiali Fault; RRK, Red River
Fault; EHS, eastern Himalayan syntaxis; NQ, North Qiangtang terrane; SQ, South Qiangtang

terrane; NL, North Lhasa terrane; SL, South Lhasa terrane. (b) Geological map of the east
Lhasa terrane, showing the sample locations and magmatic and metamorphic ages reported in

this work. The literature data are after Dong et al., (2011c, 2015).

Fig. 2.Field photographs and photomicrographs of the magmatic rocks from the east Lhasa
terrane, showing the texture and mineral components of granite. Ms, muscovite; Bt, biotite;

Pl, plagioclase; Kfs, K-feldspar; Q, quartz.

Fig. 3. Outcrops of metapelitic gneiss (a) and schist (b) in the east Lhasa terrane.

Fig. 4. Photomicrographs of mineral assemblages and microstructures of the gneisses. (a) and

(b) Sample T15-32iHB large garnet porphyroblasts surrounded by an aligned m
defined bybiotitemuscoviteplagioclase, quartz and misdlimaniteGarnet and biotite

are partly replaced by chlorites. (c) andsfdw Smagnphei Tdtzep3e 7

sillimanite-biotite—plagioclase—quartz matrix with garnet and K-feldspar porphyroblasts, and
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large lath-like or randomly orientated fine-grained muscovite. (e) A very small cuspate quartz

dihedral angle against plagioclasen sample T15-33-7. (fK-feldspar grains surrounded by
plagioclase rimsample T15-33-7. Ms, muscovite; Bt, biotite; Pl, plagioclase; Kfs,
feldspar; Q, quartz; Sil, sillimanite; Grt, garnet; Chl, Chlorite; Ilm, ilmenite.

Fig. 5. Photomicrographs ofmineral assemblages and microstructures ofhe schists. (a) and

(b) Sample T15-43-1 exhibiting large garnet porphyrobllastsims replaced by biotite-
muscovite-plagwiomapped bggaematesx folia
biotite, muscovite, plagioclase, quartz and minor ilmenite Muscovite occurs both as aligned

flakes within foliation and as larger, subhedral to euhedral, unfoliated grains against garnet
rims. (c) and (d) Sample T15-43-3 containing garnet porphyroblasts surrounded by a matrix

f o I i a t i o n d e f i n e d b vy b i o
q u aG ratrzn e t r i m s a 1 e p a 1 t
cordierite (e) Micro-exsolved lamellae of plagioclase hosted by K-feldspar in sample T15-
43-3. @arnet grains have inclusion-rich cores and inclusion-absen
textural equilibration with matrix phases. Ms, muscovite; Bt, biotite; P, plagioclase; Kfs, K-

feldspar; Q, quartz; Sil, sillimanite; Grt, garnet; Crd, Cordierite; Ilm, ilmenite.

Fig.C@&@mpositional profiles of garnet por
sample T15-43-1; b, sample T15-43-3) and Xy vs. Ti (cpfu) diagram for biotite (c).

Fig. 7. (a) Primitive mantle normalized trace element diagrams and (b) chondrite normalized
rare earth element (REE) diagrams of granites. The trace element data for primitive mantle
and REE data for chondrites are after Sun and McDonough (1989).

Fig. 8.Pressure—temperaturd’¢-1T) pseudosections for samples (a) T15-32-3, (b) T15-33—

7, (c) T15-43-1 and (d) T15-43-3, calculated using the bulk-rock compositions give
Supplementégey aabléfd S ummarey plot s
P-Tevolution of studied gneisses and schists respectively. The red bold fonts refer to t
observed mineral assemblage. The bold brown lines mark the positions of the solidus, bold
yellow lines mark the stability of muscovite. The blue, purple, green
represent plagioclase)(Kiotite (Ti) and garned @id (X) isopleths, respectively.

The pink- and blue-filled polygons represent the peak
conditions. The yellow-filled circles represent the
thermobarometry. The bold black lines and dashed lines with arrow refer to the

prograde and reRrdjganlde. Peak apparent thermal gradients we



35

1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261

assuming a crustal density of 3000 kg/m’ and a linear gradient.

Fig. 9. Representative cathodoluminescence (CL) images of zircon grains from studied rocks

showing the analysed spot locations and related ages (in Ma).

Fig. 10.Chondrite-normalized REE patterns of zircons from granites (a) and metamorphic
rocks (b). Chondrite values are after Sun and McDonough (1989).

Fig. 11. Zircon U-Pb concordia diagrams for studied rocks.

Fig. 12. Zircon ey(t) values vs. U-Pb ages diagram of the Late Triassic granites.

Fig. 13. (a) A—C—F discrimination diagram for I-type and S-type magmas (after Chappell and
White, 1992) and (b) Rb/Sr vs. Rb/Ba discrimination diagram for source of the
(after Sylvester, 1998).

Fig. 14. Summary of the inferred P-T—t paths for the studied east Lhasa terrane gneisses and
schists, and comparison with those reconstructed fo
metamorphic rocks from central-east Lhasa terrane.
P-Tpaths. The geothermal gradients of 20, 27 and 45°C/km are shown. Aluminos
phase relations are after Pattison (1992).
etal. (2011b), Lin et al. (2013b), Weller et al. (2015) and Chen et al. (2017).

Fig. 15The distribution characteristics of the Paleo-Tethys Ocean orogenic belt

related magmatic and metamorphic rocks. The abbreviations are the same as in Fig. 1.

Fig. 16. Schematic plate tectonic evolution model of the east Lhasa terrane during the Early

Mesozoic. The abbreviations are the same as in Fig. 1.

TABLE CAPTIONS

Table 1. The major features of the studied rocks from the east Lhasa terrane.

Supplementary tabllkelcompositions of representative garnet from the east L

terrane metamorphic rocks.

Supplementary tabllbe2compositions of representative biotite from the east L

terrane metamorphic rocks.
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Supplementary table 3. The compositions of representative plagioclase from the east Lhasa

terrane metamorphic rocks.

Supplementary table 4. The compositions of representative K-feldspar from the east Lhasa

terrane metamorphic rocks.

Supplementary table The compositions of representative cordierite from the east Lhasa

terrane metamorphic rocks.

Supplementary tableMajor (wt. %) and trace (ppm) element data of the studied rocks

from the east Lhasa terrane.

Supplementary tablleAZICRMS U-Pb dating and rare earth element results of the

magmatic and metamorphic zircons.

Supplementary tabldf8isotopic data of zircons for the granites from the east Lhas.

terrane.
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