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Abstract

The surface energy balance on an atmosphereless body consists of solar irradiance, subsurface heat conduction,
and thermal radiation to space by the Stefan–Boltzmann law. Here we extend the semi-implicit Crank–Nicolson
method to this specific nonlinear boundary condition and validate its accuracy. A rapid change in incoming solar
flux can cause a numerical instability, and several approaches to dampen this instability are analyzed. A predictor
based on the Volterra integral equation formulation for the heat equation is also derived and can be used to improve
accuracy and stability. The publicly available implementation provides a fast and robust thermophysical model that
has been applied to lunar, Martian, and asteroidal surfaces, on occasion to millions of surface facets or parameter
combinations.

Unified Astronomy Thesaurus concepts: Computational methods (1965); Planetary surfaces (2113)

1. Introduction: 1D Thermal Model for Planetary Surfaces

The one-dimensional heat equation is routinely solved to
calculate the temperature in the shallow subsurface on airless
bodies (the Moon, asteroids) or planetary bodies with tenuous
atmospheres (Mars). Finite-difference schemes for the heat
equation with an implicit or semi-implicit time step are
unconditionally stable for linear boundary conditions, when the
surface temperature or energy input is a prescribed function of
time (Crank & Nicolson 1947; Press et al. 1992). However, the
Stefan–Boltzmann radiation law is a nonlinear boundary condi-
tion because it involves the surface temperature itself, and it is
unclear whether these classical results are still valid. This study is
dedicated to the description and analysis of a fast numerical solver
for this important application in planetary science.

The governing equations considered here are
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where Q(t) is the incoming solar irradiance and T(z, t) is the
temperature. Variables are listed in Table 1. The Stefan–
Boltzmann law, òσT4, makes this initial value problem nonlinear,
as solutions of the homogeneous equation can no longer be
superposed. Two variants of the surface energy balance will also
be considered in this work. The thermal properties k, ρ, and c
might be functions of z and t. Temperature gradients normal to
the surface are often orders of magnitude larger than temperature
gradients parallel to the surface, so the one-dimensional heat
equation suffices for a great many applications.

The content described in Section 2 was developed by the
authors in the time period 2001–2003. We have since used this
model for numerous studies, some involving millions of model
runs where a 1D heat equation is solved for each pixel (e.g.,
Aharonson & Schorghofer 2006; Schorghofer et al. 2019;
Schorghofer & Williams 2020). Since then, other semi-implicit
solvers with a Stefan–Boltzmann law boundary condition have
been implemented and briefly described in the literature (e.g.,
Pohl 2014; Young 2017; Magri et al. 2018), but many 1D
thermal models currently used for planetary surfaces use simple
explicit time steps (e.g., Spencer et al. 1989; Rozitis &
Green 2011; Kieffer 2013) and are not competitive from a
computational perspective. There has been a lack of analysis
and development for this important application; compare, for
example, with the large volume of work on numerical methods
to solve Kepler’s equation (Taff & Brennan 1989) or the
dedicated techniques invented for long-term trajectory integra-
tions (symplectic integrators; Wisdom & Holman 1991), two
other standard numerical problems in planetary science. The
present work is an overdue effort to advance numerical
treatment of the heat equation with radiative cooling on the
surface. The desired duration of integration can be long (many
solar days over many orbits for many locations), and changes in
surface temperature can be rapid on an airless body (at sunrise),
challenging the speed and stability of the numerical technique.
Section 3 provides validations and benchmarks for our method.
In Section 4 we analyze the numerical stability of the method
and several approaches to eliminate instabilities. Recently, we
developed a Volterra integral equation approach, which is
described in Section 5.

2. Semi-implicit Scheme for Inhomogeneous Medium on
Irregular Grid

2.1. Flux-conservative Discretization and Semi-implicit Scheme

Consider grid points at depths z1,K, zN in a direction normal
to the surface, with z1 the first point below the surface. The heat
flux is H=−k∂T/∂z. A flux-conservative discretization (e.g.,
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LeVeque 2007) on an irregularly spaced grid is given by
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Subscript j refers to position zj. The spatial discretization of the
heat Equation (1b) then becomes
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Introducing the coefficients
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the discretized system of equations becomes
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A semi-implicit time discretization of Equation (1b) is of the
form (Crank & Nicolson 1947)
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where superscript n refers to the time step. Hence,
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which leads to the system of equations
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for 1< j<N.
This tridiagonal linear system can be solved in O(N) steps.

Moreover, the system is diagonally dominant and can therefore
be solved robustly. In the spatial discretization (3), the
temperature Tj is defined on grid point zj, whereas the
conductivity +kj 1

2
is defined in between points. In

Equation (4), the volumetric heat capacity (ρc)j is defined on
zj. This is inconvenient because the thermal properties k and ρc,
which are use-supplied variables, are evaluated at different
depths, offset by half a grid point. In our program implementa-
tion, the values for the volumetric heat capacity are shifted by
half a grid point, so the thermal properties k and ρc are defined
on the same points. When the value of ρc at zj is needed, it is
calculated from the average of the two neighboring values.
Although the derivation was made with time-constant

thermal parameters k and ρc, it remains applicable if these
parameters change slowly with time, because the additional
time discretization error will be small. An example is the
contribution of radiative heat transfer to the conductivity,
which is proportional to T3. The time step should be chosen
small enough so that the thermal parameters do not change
dramatically within a single time step.

2.2. Upper Boundary Condition: Prescribed Surface
Temperature

Take as a boundary condition a prescribed surface temper-
ature Ts= T(0, t). The general formulae (5) and (9) with
T0= Ts and z0= 0 yield
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This is a standard Crank–Nicolson solver for an irregularly
spaced grid and inhomogeneous thermal properties.

2.3. Upper Boundary Condition: Stefan–Boltzmann
Radiation Law

An implicit-in-time discretization of the full problem with
nonlinear heat transfer results in a nonlinear algebraic system of
equations that could be solved using, e.g., Newton’s method.
The computational expense of solving such a system at each
time step would, however, be large, especially if the properties
of the medium are changing in time. Instead, to retain the
advantages of an implicit scheme, we linearize the nonlinear
boundary condition (1a).
Considering that the flux is evaluated in between grid points

(see Equation (3)), it is natural to impose the surface energy
balance halfway between z1 and an imaginary point z0=− z1,
with the surface at z= 0, as illustrated in Figure 1. Introduce
the auxiliary quantity T0, such that the surface temperature
Ts= (T0+ T1)/2. The first two grid points are chosen as
z1=Δz/2 and z2= z1+Δz= 3z1. The coefficients for the
upper boundary condition will be derived for this choice of
z2/z1. No restrictions are imposed on z3 and beyond.

Table 1
Frequently Used Variables

Symbol Meaning

H = −k ∂T/∂z Heat flux
= - =H H z zgeotherm N∣ Geothermal heat flux

N Number of grid points
Q Absorbed (radiative) heat flux
T Temperature
T(0, t), Ts Surface temperature
c Specific heat capacity
k Thermal conductivity
t Time
u Nondimensional temperature
z Coordinate normal to the surface

rG = k c Thermal inertia

αj, γj Coefficients in tridiagonal matrix
ò (Infrared) emissivity
κ = k/(ρc) Thermal diffusivity
ρ Density
σ Stefan–Boltzmann constant
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so that T0= a+ bT1. The relation for j= 1 in Equation (9)
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The coefficients (5a) and (5b) involve the imaginary grid point
z0=−Δz/2. Define
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As the reference temperature choose the surface temperature at
the current time, =T Tr s

n. Other choices of Tr will be described
in Sections 4 and 5.

2.4. Upper Boundary Condition with Seasonal Frost
Cover (Mars)

On Mars, atmospheric CO2 can condense (desublimate)
seasonally. The surface energy balance (1a) with the latent heat
of CO2 sublimation added is
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where LCO2 is the specific latent heat and mCO2 is the areal mass
density of CO2 ice. Time integration has to switch between the
boundary conditions described in Sections 2.2 and 2.3.
Use the boundary condition of Section 2.3 when the surface

temperature Ts is above the CO2 frost point temperature or if
=m 0CO2 , and use the boundary condition of Section 2.2 when

Ts is below the CO2 frost point or if >m 0CO2 . In the latter
case, set +Ts

n 1 to the CO2 frost point temperature based on the
atmospheric pressure and calculate the energy difference to
update mCO2. Specifically,
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where Hs=− k(∂T/∂z)|z=0. In addition, adjust the surface
albedo and infrared emissivity to account for the difference
between bare ground and a frost-covered surface.
(Integration with constant time steps may temporarily result

in a slightly negative value for mCO2. Energy is conserved more
accurately in the long term when the value is allowed to remain
negative, although it should be output as zero.)

2.5. Lower Boundary Condition

At the lower boundary of the domain, a known value is
imposed on the heat flux (1c):
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(If the z-axis points downward, then an upward heat flux is
negative, and the value of Hgeotherm is positive.) Assume that
the position of the hypothetical next grid point is set by
zN+1− zN= zN− zN−1 and =+ -k kN N1

2
1
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Figure 1. Illustration of grid spacing, as used for the derivation with a
nonlinear boundary condition. Temperatures Tj are defined at the centers of
cells, whereas the heat flux Hj+1/2 is evaluated in between grid points. The
surface is placed halfway from the shallowest grid point because the surface
energy balance is imposed on the flux.
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In system (9) the equation for j=N becomes
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Alternatively, the geothermal flux could be imposed at depth
zN+1/2. In this case Equation (25) is replaced by

g g

g g
r

+ - =

= - + +
D

-

+
-
+

-
-

T T

T T
t

c

H

z z

1

1 , 27

N N
n

N N
n

N N
n

N N
n

N N N

1
1
1

1
geotherm

1

( )

( )
( )

( )

with the same definition for γN. Our current implementation
uses Equation (25), but both choices work.

2.6. Miscellaneous

Literature sources for the values of thermal conductivity and
heat capacity appropriate for planetary surfaces are provided in
Appendix A. General thoughts on equilibration times for
thermal model calculations are presented in Appendix B.

3. Validations

3.1. Analytical Solution for Sinusoidal Surface Temperature

For a sinusoidally varying surface temperature with period P,
the solution to the heat equation for a homogeneous material in
an infinite half-space is known analytically:
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where d k p= P is the thermal skin depth. Figure 2 shows a
comparison of the analytical solution with the numerical
solution.

3.2. Asymptotic Solution for Sudden Radiative Cooling

A short-term solution for the heat equation with a Stefan–
Boltzmann radiation surface boundary condition was derived
by Handelsman & Olmstead (1972). Their nondimensional
equations are Tt= Tzz, Tz(0, t)= Tn(0, t)− f (t), T(z, 0)= 0,

=¥T z tlim , 0z ( ) . In our case n= 4 and =f t Te
4( ) , where

Te is an ambient temperature. In this case, their solution is
=

p
T t T t0, e

2 4( ) for small t, a result also derived in
Chambré (1959). After redimensionalizing, the surface temp-
erature is found to change as


p
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where T0= T(0, 0) is the initial surface temperature. Figure 3
shows that the numerical solver reproduces the expected
behavior for this discontinuous change in incoming flux.

3.3. Convergence Test

Convergence of some solutions with Δt and Δz has been
verified. In the absence of an analytically known solution, the
error can be defined as the difference between one numerical
solution and another numerical solution at twice the resolution.
The difference between the two numerical solutions is defined
by a vector norm. Figure 4 demonstrates that the error
decreases proportionally to Δt2, as expected for a semi-implicit
scheme (Crank & Nicolson 1947; Press et al. 1992). An explicit
or fully implicit time discretization converges only to first order
in Δt.

3.4. Test of Energy Conservation

For periodic solutions the heat flux H=−k∂T/∂z, time-
averaged over one period, must be the same at all depths and
equal to the heat flux imposed at the bottom boundary.
Consider the time average of Equation (1b) over one period.
After the solution has equilibrated (has become periodic), and
as long as the heat capacity does not vary with time, the time
average of H must be constant with depth, even if the thermal
properties vary with depth. Figure 5 shows a flux conservation
test. The heat flux is conserved even across an interface with a
sudden change in thermal properties, something the finite-

Figure 2. Comparison of the numerical solution with the analytical solution for
Crank–Nicolson solver with a periodic surface boundary condition. The
deviations at the bottom are justified because the analytical solution (28) is for
an infinite half-space. Nonequidistant grid points were used in this example.

Figure 3. Response of numerical solution to a sudden change in incoming flux
compared to the analytically obtained expansion for small times, Equation (29).
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difference scheme was not designed for but copes with
excellently.

3.5. Implementation and Performance

Figure 6 shows the surface temperature over one solar day
(sol) for an unobstructed flat surface. The temperature varies
smoothly, with a sudden increase at sunrise. Figure 6(b) shows
the solution using a time step Δt and 1/10 of that time step; the
solutions look almost identical. Plotting the difference between
the two solutions (Figure 6(c)) starts to reveal deviations. At
sunrise and sunset the solver overestimates the surface
temperature. Also shown in Figure 6(c) is a solution using a
different reference temperature for the linearization, based on
an estimate from the Volterra integral equation, which will be
described in detail in Section 5. This reduces the errors to
about half.

The thermal model was originally implemented in Modern
FORTRAN, and that is also the version benchmarked here.
Several implementations are available on GitHub (Schörgho-
fer 2024), along with validation examples. Insight into the
relative computational cost of various components is gained by
counting, to leading order, the number of floating point
operations (FLOPs) based on the expressions in the program
code. The tridiagonal solver (Press et al. 1992) takes about 7N
FLOPs, where N is the number of grid points. To assign the
matrix coefficients and calculate the right-hand side of
Equation (9), we count about 22N additional FLOPs in our
program implementation. These are necessary because the grid
spacing is irregular and the thermal properties are allowed to be
inhomogeneous. Our implementation of the upper boundary
law (Section 2.3) consumes about 23 FLOPs per time step,
which is the equivalent of less than one extra grid point.

Run times were measured on a workstation with a 3.6 GHz
Intel Xeon CPU with six cores (but the executable runs on a
single thread), running Linux with Gnu FORTRAN compiler
version 11.4.0, compiler optimization flag -O2. Our bench-
mark scenario is for Mars over 6686 sols (one Mars year has

668.60 solar days, so this spans 10 Mars years), with 100 steps
per sol and N= 80 grid points. This corresponds to
approximately 15-minute time steps over 18.8 Earth years.
Total execution time is 1.2 s, or 2 μs per time step. This is
measured with the Linux time utility, so it includes start-up
cost, trigonometry to calculate the incoming sunlight, and a
simple model for atmospheric absorption on Mars, but profiling
reveals that these subtasks consume only a few percent of the
execution time. This example demonstrates that millions of
time steps can be performed in seconds. Taking advantage of
(trivial) parallelization on a multicore processor, thermophysi-
cal models can be run for millions of pixels over millions of
time steps within a few days of compute time.
Profiling revealed that 44% of the time was spent in the

tridiagonal solver and an additional 52% in the routines that
calculate the coefficients at every time step that serve as input
to the tridiagonal solver. Another version was written where the
coefficients are precomputed, possible if the thermal properties
are time independent. Precomputing the coefficients saves on
arithmetic but requires more data movement. This improved
execution speed by about one-third.
The C version equals the speed of the FORTRAN version,

whereas our current implementations in Matlab and Python are
more than an order of magnitude slower.

4. Numerical Stability

Although the Crank–Nicolson method is unconditionally
stable for both a temperature boundary condition, T(0, t)=
Ts(t), and a linear flux boundary condition, Tz(0, t)=Q(t), this
is not guaranteed for a nonlinear flux boundary condition like
the Stefan–Boltzmann law, kTz(0, t)= òσT4(0, t)−Q(t). We
have observed a transient instability in cases when the input
flux changes abruptly within a single time step, such as a
sunrise above an elevated horizon. The above linearization of
the Stefan–Boltzmann law (Section 2.3) works well as long as
the surface temperature changes slowly, but it fails for large
discontinuous changes.
Figure 7 shows results for a horizon elevation of 20°. The

discontinuous change in incoming flux causes a major over-
shoot at the first time step after sunrise. The numerical solution

Figure 4. Convergence with time step Δt for the Crank–Nicolson method with
a nonlinear boundary condition. Errors are evaluated as ||TΔt(z, t) − TΔt/2(z,
t)||, where the subscript indicates the time step. The 1-norm is the average
absolute deviation between the two numerical solutions, and the max-norm is
the maximum absolute deviation, -D DT z t T z tmax , ,j t j t j2∣ ( ) ( )∣. The black
lines have slopes 1 and 2, respectively, and arbitrary prefactors. The rate of
convergence is second order.

Figure 5. Validation of the conservation of the heat flux (flux-conservative
discretization). The ice table at 10 cm depth causes dramatic changes in thermal
properties. Left panel: minimum and maximum subsurface temperatures over
one Mars year. Middle panel: temperature averaged over one Mars year, which
changes linearly within each layer because the thermal conductivity is constant
within each layer. Right panel: heat flux averaged over one Mars year, which is
preserved across changes in thermal properties and is equal to the heat flux
imposed at the bottom boundary of 0.028 W m−2.

5

The Planetary Science Journal, 5:120 (11pp), 2024 May Schörghofer & Khatiwala



returns to stable behavior after a few time steps, but the
instability is clearly unacceptable. Three approaches to cure the
instability will be described in this section.

But first a note about the stability of the explicit scheme.
Milton & Goss (1973) derived a stability criterion for radiant
heat loss, uniform thermal properties, and uniform grid spacing.
After translating their result for the nondimensional equations

into dimensional form and into our notation, their result is


k s

D
D

+ D
t

z

T2 1 4
. 30

z

k

2

3( )
( ) ( )

This is not a rigorous criterion, but they found it to be
sufficient, and even generous, for all of their numerical
examples. This stability requirement is even worse than for
an explicit scheme with a linear boundary condition, where

Figure 6. Example of surface temperature output. Parameters: period
29.53 days, 120 time steps per solar day, Γ = 200 J m−2K−1s−1/2, 1 au from
the Sun, albedo 0.2, emissivity 1, latitude 0°, solar decl. 0°, N = 30
(geometrically spaced with a factor of 1.05; 10 grid points within first thermal
skin depth).

Figure 7. Comparison of stabilizers (Table 2). Here sunrise is delayed by a 20°
high horizon, leading to a discontinuity in the incoming solar flux. All three
methods cure the instability, but unphysical oscillations of small magnitude are
still discernible, for all three methods. Parameters are as in Figure 6, but with a
lower thermal inertia of Γ = 100 J m−2K−1s−1/2 and an elevated horizon.
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Δt� (Δz)2/(2κ). We are not aware of any equivalent result for
an implicit scheme with radiant heat loss.

Williams & Curry (1977) experimented with four methods of
incorporating radiant heat loss into a fully implicit solver. A
linearization, similar to the one above (Section 2.3), can result
in instabilities. An iterative approach, where the tridiagonal
linear system is solved repeatedly while a modified Newton
method is applied to the surface temperature, turned out to be
robust, but it is computationally expensive. They also studied a
semi-iterative method, where an iteration is performed in
between the two stages of the tridiagonal solver, an interesting
approach we have not pursued for the semi-implicit method.

Our approaches to cure the instability are summarized in
Table 2.

4.1. Flux Smoothing (Reduced Time Step)

One approach to enhance stability is “artificial flux
smoothing,” where the time step is subdivided into multiple
substeps, using linear interpolation of the incoming flux from
Qn to Qn+1. It turns a discontinuous change in Q into a
continuous change. This approach does not identify a nascent
instability or answer how many substeps are required to cure it,
but it reduces the linearization error.

Figure 7 shows the outcome of this approach. When the
surface temperature changed by more than 20% (which
occurred only once over the last sol shown in the figure), the
time step was internally reduced by a factor of five. This
eliminates the instability almost entirely. Subsequent steps use
the full original time step, because changes in temperature are
below the empirically set threshold.

The computational cost is considerable, because the
tridiagonal system is re-solved, here five times, if and only if
an instability is suspected. For almost the same computational
cost, one could reduce the time step from the outset and use
fluxes Q for these fractional time steps. However, that approach
would not eliminate a discontinuous change in Q, and hence an
“artificial” smoothing of Q is preferred.

The procedure could be applied recursively, but recursive
functions come with a performance penalty, and we apply flux
smoothing at only one level, e.g., with a step 5 times smaller
than the original time step. (The number of substeps could be
adjusted according to the perceived magnitude of the instability.)

4.2. Iterative Predictor-corrector for Reference Temperature

In Section 2.3, the thermal emission is linearized around the
reference temperature =T Tr s

n. If +Ts
n 1 is far from Ts

n, a
significant error is incurred in the evaluation of the emitted
energy. This can be alleviated by repeating the calculation with
a new reference temperature Tr somewhere in between Ts

n and
+Ts

n 1. An empirical choice is the geometric mean of the
previous reference temperature and the new surface temper-
ature. This predictor-corrector step is iteratively applied until Tr

is within 20% of +Ts
n 1. In our experience, the iterations always

converge.
Figure 7 includes a solution with this predictor-corrector, and

it successfully dampens the instability. The amplitude of the
oscillations is larger than for the flux smoothing method
described above, but the computational overhead of this
method is smaller than for the flux smoothing method, as one
or two iterations often suffice.
The methods described in Sections 4.1 and 4.2 both require

that a criterion for a suspected instability is monitored and the
temperature profile at time step n is stored instead of being
overwritten in place by the new profile at time step n+ 1.

4.3. Volterra Predictor for Reference Temperature

Another approach to enhance stability is based on the
Volterra integral equation and will be described next. Its result
when used to choose an improved linearization temperature Tr
is already included in Figure 7. The outcome is similar to the
iterative predictor-corrector approach but requires no additional
solves of the tridiagonal system. It is computationally by far the
fastest approach among the three stabilizers. Moreover, the
Volterra predictor also improves accuracy at all time steps
(Figure 6(c)).

5. Volterra Integral Equation Approach

The initial value problem of a partial differential equation
can sometimes be formulated as an integral equation. The one-
dimensional heat equation can be transformed into a Volterra
integral equation. We take advantage of this approach to
develop a predictor step for the surface temperature.

5.1. Solution to Volterra Integral Equation

Cannon (1984) provides a treatise for the one-dimensional
heat equation. Theorem 7.3.1 considers the problem

= < <u u x0 1 heat equation 31at xx ( ) ( )

= < <u x f x x, 0 0 1 initial cond. 31b( ) ( ) ( ) ( )

=u t t u t0, , 0, upper b.c. 31cx ( ) ( ( )) ( ) ( )

=u t h t1, lower b.c. 31dx ( ) ( ) ( ) ( )

for t> 0. If the functions f and h are piecewise continuous and
 is continuous, the solution is of the form

= -u x t w x t v x t, , , , 32( ) ( ) ( ) ( )

where

ò x x x x= Q - + Q +w x t x t x t f d, , , 33
0

1
( ) [ ( ) ( )] ( ) ( )

Table 2
List of Stabilization Methods

Method Description Criterion Extra Solves

Artificial flux smoothing Smooths incident flux +T Ts
n

s
n1 0 or 5

Iterative predictor-corrector Iteratively adjusts Tr
+T Ts

n
s
n1 variable

Volterra predictor Estimates +Ts
n 1 and = + +T T T 2r s

n
s
n 1( ) L 0

Note. The last column lists the number of additional tridiagonal solves carried out if an instability is anticipated.
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Moreover, if  is Lipschitz continuous, i.e., its derivative with
respect to t does not exceed a fixed value, then u is unique and
f(t)= u(0, t); see also Jumarhon et al. (1996).

On the surface (x= 0),
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This integral equation for the surface temperature u(0, t)
provides an alternative approach to the initial value problem for
all times, as long as thermal properties are uniform. We will
derive an approximate solution to this integral equation to
estimate the surface temperature after a small time step. For this
purpose, thermal properties need to be approximately constant
only over the shallow depth that heat propagates within a single
time step.

5.2. Approximation of Solution

To approximate Equations (36) and (37), we only retain
terms where the exponent can vanish, because otherwise the
exponential factors tend to be small. This leaves only the terms
with n= 0 in the sums,


ò

t t
p t

t»
-

v t
u

t
d0,

, 0,
38

t

0
( ) ( ( ))

( )
( )

òp
x x»

x
-w t

t
e f d0,

1
. 39t

0

1
4

2

( ) ( ) ( )

For t→ 0, v(0, t) goes to zero and w(0, t) approaches
u(0, 0). The latter is apparent considering that d =x( )

  p -+ xlim 1 4 exp 40
2( ) ( ) is a representation of the

double-sided Dirac δ-function. Hence,

òp
x x=

x

 

-w t
t

e f dlim 0, lim
2

4
40

t t
t

0 0 0

1
4

2

( ) ( ) ( )

ò d x x x= = =f d f u2 0 0, 0 , 41
0

1
( ) ( ) ( ) ( ) ( )

where a factor of 1/2 was picked up, because the integral
captures only half of the double-sided δ-function.

5.3. Redimensionalize

The dimensional equations use T(z, t) instead of u(x, t) and z
instead of x:

r = < <cT kT z z0 heat eq. 42at z z max( ) ( ) ( )
= < <T z f z z z, 0 0 initial cond. 42bmax( ) ( ) ( ) ( )

s= -kT t T t Q t0, 0, upper b.c. 42cz
4( ) ( ) ( ) ( ) ( )

=kT z t H, lower b.c. . 42dz max geotherm( ) ( ) ( )

The integral equation approach is only applicable for uniform
thermal properties, so k can be pulled out of the derivative. The
transformation k=z x maps the dimensional Equations (42)
to the dimensionless Equations (31) and leads to




s
=

-
G

t T t
T t Q t

, 0,
0,

43
4

( ( )) ( ) ( ) ( )

and h=Hgeotherm/Γ. The parameter combination rG = k c is
known as the thermal inertia. The surface temperature in
dimensionalized form is given by T=W− V, with


òp

s t t
t

t»
G

-
-

V t
T Q

t
d0,

1 0,
44

t

0

4
( ) ( ) ( ) ( )

òpk
z z»

z
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-W t
t

e T d0,
1

, 0 . 45
z
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0

4
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2

( ) ( ) ( )

Physically, V represents the net radiative heat loss from the
surface over a time t, and W represents the heat that flows from
the subsurface to the surface during the time period t.

5.4. Numerical Approximation of V (Time Integral)

Next, Equation (44) is evaluated for a small time step t. The
integrand is singular. First, note

ò ò-
=

-
=

t s
ds t

s

t s
ds t

1
2 and

4

3
.

46

t t

0 0

3 2

( )

The lowest-order approximation of Equation (44) is


p

s»
G

-V t
t

T Q0,
4 1

0, 0 0 . 474( ) [ ( ) ( )] ( )

An expression of this type can also be obtained from a
simple physics argument. The heat input from radiation is

s r- = DQ T t cz T. 484( ) ( )

This heats a layer of a thickness z given by

k»z t4 492 ( )

and increases its temperature by ΔT. Hence, D »T
s- GQ T t 24( ) ( ). This reproduces Equation (47), except

with a factor of 1/2 instead of p2 . A layer of thickness
pk=z t 2 would have reproduced the result exactly.

In practice, the first order expression (47) is insufficient,
because a sunrise, when Q(t) suddenly increases, would be
incorporated only in the subsequent time step. To obtain a
higher-order approximation, absorbed flux and temperature are
interpolated linearly in τ:

t
t

= + -Q Q
t

Q t Q0 0 50( ) ( ) [ ( ) ( )] ( )

t
t

= + -T T
t

T t T0, 0, 0 0, 0, 0 . 51( ) ( ) [ ( ) ( )] ( )

Q(t) is known ahead of time, whereas T(0, t) will eventually
be solved for. We linearize T4 to have only the first power
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of T(0, t),
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» + -T T T T t T
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Equation (44) becomes
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5.5. Numerical Approximation of W (Spatial Integral)

The spatial integral (45) has to be evaluated on a predefined
discretized grid. In the limit t→ 0 it equals T(0, 0), and the
integrand is singular on the surface.

First, Taylor expand

z z= +
¶
¶

+T T
T

z
, 0 0, 0 0, 0 .... 54( ) ( ) ( ) ( )

Note that
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where the limits are for small t. Using these integration results
in Equation (45) yields

k
p

» +
¶
¶

+W t T
t T

z
0, 0, 0

4
0, 0 ... 57( ) ( ) ( ) ( )

p
= -

G
+T

t
H0, 0

4 1
0, 0 ..., 58( ) ( ) ( )

where H=− k ∂T/∂z is the heat flux. The gradient can be
approximated by

¶
¶

»
-T

z

T z T

z
0, 0

, 0 0, 0
, 591

1
( ) ( ) ( ) ( )

where z1 is the depth of the first grid point below the surface.
A simple physics argument again produces a similar result.

The heat input to the surface from conduction is

r
¶
¶

= Dk
T

z
t cz T 60( )

and heats a layer of thickness z, estimated by Equation (49).
Hence, kD = ¶ ¶T t T z2( ) . This matches Equation (58)
except with a factor of 1/2 instead of p2 , the same
discrepancy as observed for the time integral.

5.6. Volterra Predictor

Combining these results leads to an estimate for the surface
temperature at the next time step. For the first-order approx-
imation of V, subtracting Equation (47) from Equation (58)

yields



p

p
s

= -

» -
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+

-
G

-

T t W V

T
t H

t
T Q

0,

0, 0
4 0, 0

4 1
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( ) ( )

[ ( ) ( )] ( )

Note that this reproduces the asymptotic expansion (29), where
H(0, 0)= 0 and s=Q Te

4.
For the second-order approximation of V, combining

Equations (53) and (58) yields
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Figure 8 shows the predicted value compared to the full
solution at each time step for a realistic application. Evaluation
of Equation (62) requires about 16 FLOPs plus evaluation of a
square root. The cost of a square root is typically about seven
times that of an addition or multiplication (Schörghofer 2018).
As described in Section 3.5, the total number of FLOPs per
time step is about 29N. Hence, the cost of computing the
Volterra prediction at each time step corresponds to less than
the cost of one extra grid point.
The reference temperature in the linearization of the surface

energy balance, Tr (Section 2.3), can be based on the estimated
value of T(0, t). The same reference temperature is used for the
linearization of T0

n, +T n
0

1, T1
n, and +T n

1
1 (using the notation of

Section 2.3, where subscripts 0 and 1 straddle the surface), so
we choose Tr= (T(0, 0)+ T(0, Δt))/2. An example of its
impact on accuracy is shown in Figure 6. An outcome for
damping an instability is plotted in Figure 7 and was described
in Section 4.3.

6. Conclusions

A semi-implicit solver for the diffusion equation in a one-
dimensional inhomogeneous medium and a Stefan–Boltzmann
law boundary condition is derived and analyzed. It provides

Figure 8. Volterra predictor. At each time step, the prediction (62) is shown
compared to the full numerical solution. Parameters: Γ = 100 J m−2K−1s−1/2,
N = 30, 60 time steps per sol.
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solutions with second-order time accuracy and only O(N)
FLOPs per time step, where N is the number of grid points. We
verified the accuracy of this finite-difference solver and have
used it extensively in various planetary science applications.

Linearization of the upper boundary condition can cause
instabilities when the input irradiance changes rapidly, as can
occur when the Sun rises above an elevated horizon. Three
approaches to eliminate the instability are analyzed: artificial
smoothing of the input flux using fractional time steps, a
predictor-corrector that iteratively adjusts the reference temp-
erature used for the linearization, and a predictor temperature
based on an approximate solution of the Volterra integral
equation that also adjusts the reference temperature. All three
approaches dampen the instability dramatically, with the
artificial flux smoothing providing the most robust approach.
What remains to be discovered is a numerical method that is
guaranteed to be stable for large discontinuous changes in
incoming flux.

The Volterra integral equation approach can be used to
predict the surface temperature at the next time step. We
derived a computationally light Volterra predictor, which is
beneficial to both accuracy and stability.
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Appendix A
Thermal Properties of the Ground

In the terrestrial context, Robertson (1988) provides an
extensive compilation of thermal properties of bulk rock. For the
heat capacity of silicates as a function of temperature see Winter
& Saari (1969) and Biele et al. (2022). Notably, many silicates
have about the same specific heat capacity. The parameterization
of thermal conductivity in particulate soil is a vast subject (e.g.,
Gundlach & Blum 2013; Sakatani et al. 2018). Conductivities
can vary by at least four orders of magnitude on planetary
surfaces, primarily due to the dependence on grain size.
Parameterizations of thermal properties for the lunar surface
can be found in Hayne et al. (2017).

Ice can greatly change the thermal properties of the ground
(e.g., massive ice below dry soil represents a huge contrast in
thermal conductivity). For the temperature dependence of the
thermal properties of ice see, e.g., the Handbook of Chemistry
and Physics (Lide 2003). For vapor-deposited ice in a soil matrix,
consult the laboratory measurements in Siegler et al. (2012).

Appendix B
Spin-up

Many applications of this thermal model involve periodic
solutions set by the orbital period around the Sun. The thicker
the domain, the longer it will take for the model to equilibrate,
but too thin a domain will yield inaccurate results. A domain
depth of 4–5 times the skin depth of the longest period suffices
for accuracy but can require, say, 20 periods for thermal
equilibration.

An accurate initial guess for the mean temperature is most
helpful. When the thermal parameters are constant in time, the
time-averaged temperature profile can be calculated from the
time-averaged surface temperature. Without geothermal heat,
the time-averaged temperature is in fact constant with depth. A
suitable initialization temperature can be based on the time-
averaged absorbed flux. A finite temperature amplitude will
lead to more radiative cooling than calculated based on this
time-averaged flux, but the deviation is large only for small
thermal inertia.
The required spin-up time can be further shortened by

resetting the temperature profile after the first few orbits. Based
on the provisional mean surface temperature T0

0, the mean
temperature profile is obtained with

= +
-

+
+

+
T T H

z z

k
. B1j j

j j

j
1

0 0
geotherm

1

1
2

( )

This profile is then used for re-initialization. This can also be
applied “on the fly” when the comparison is made with the
temperature time-averaged over the previous period but applied
to an instantaneous temperature profile.
At very low temperatures, radiative heat loss (σT4) becomes

small compared to the heat flux within the thermal skin depth,
and it takes a long time to reach equilibrium. In this situation,
the surface temperature amplitude is small for the same reason,
and the absorbed flux can be time-averaged over one period
and used for initialization, a method that has already been
pointed out above.
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