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1 Introduction

Compactifying SCFTs on compact manifolds has been a fruitful avenue for constructing
new SCFTs. Given a parent SCFT with a holographic dual, it is natural to consider the
holographic dual of the compactified theory. The earliest examples of such dual pairs were
constructed in [1], and studied the compactification of both 4d N = 4 super-Yang-Mills
and the 6d N = (2, 0) theory on a Riemann surface with genus g > 1. Since then this
avenue of research has been extended in multiple directions. In this work we will primarily
be interested in 4d N = 2 theories that can be obtained from M-theory. Theories of class
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S are 4d N = 2 SCFTs which arise from wrapping the 6d N = (2, 0) theory living on M5-
branes on a punctured Riemann surface with gravity duals classified in [2, 3].1 Extensions
to 4d N = 1 theories from wrapped M5-branes have been studied in [6–9].

The prototypical setup for studying branes wrapped on various compact cycles is to
consider embedding the cycle in some larger geometry, for example a Calabi-Yau or G2
manifold and taking the metric on the compact space to be the one with constant curvature.
Given that we typically view these types of solutions as the IR fixed point of an RG
flow interpolating between dimensions, or rather the near-horizon of some black object,
one can motivate this ansatz, at least for Riemann surfaces, from known uniformization
theorems [10, 11]. Under some assumptions, they state that one can take the UV solution
to have an arbitrary metric on the Riemann surface, and along the RG flow this is washed
out leaving just the constant curvature metric at the IR fixed point. Key assumptions
for these theories are that supersymmetry is realised by a topological twist and that the
metrics are smooth.

Recently, solutions with non-constant curvature metrics have been studied in string
and M-theory, thus evading the uniformization theorems. These solutions are known as
spindles [12–22] and discs [18, 23–29] and can be viewed as the horizon of accelerating
black objects.2 Spindles are the orbifold WCP1

n−,n+ , i.e. a two-sphere with conical deficits
at both poles. Discs on the other hand have the topology of (unsurprisingly) a disc, with an
orbifold singularity at the centre and a boundary on which the metric is locally a cylinder
but singular. The two types of solutions are intimately related and have been shown to be
different global completions of the same local solutions [18, 25]. Apart from having metrics
of non-constant curvature one of the interesting features of these geometries is the method
in which supersymmetry is preserved. The mechanism is not the usual topological twist but
instead requires a mixing between the parent R-symmetry and the isometry direction of the
compactification space. For spindles there are two different types of twist, the anti-twist
or the topological twist [20], while for discs a different mechanism involving a holonomy
for a gauge field on the boundary of the disc allows for the preservation of supersymmetry.
See also [33, 34] which consider 4d orbifolds with non-constant curvature.

In this work we will be interested in extensions of disc solutions, specifically for M5-
branes wrapped on a disc. In [23, 24] (BBMN) the first disc solution was presented and
a dual field theory was proposed. The dual field theory is a 4d N = 2 SCFT of Argyres-
Douglas type and constitutes the first holographic dual for such a theory. The dual field
theory was shown to be (IN̂,k̂, Yl), which is the theory on a stack of M5-branes of A-type
wrapped on a twice punctured sphere, with one irregular puncture of type I at one pole and
a regular puncture of a particular type at the other pole, we will review this nomenclature
in section 4. The goal of the present paper is to extend to more general Argyres-Douglas
theories. In particular we will provide holographic duals for the SCFTs with arbitrary
regular puncture and fixed type I irregular puncture. We provide evidence for the proposal
by matching various observables on the two sides.

1The type IIA picture is given in [4, 5].
2For discussion on accelerating black holes not embedded in string or M-theory see for example [30–32]

and references within.
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The outline of the paper is as follows. In section 2 we begin by reviewing the disc
solution in [23, 24]. Our presentation uses a different set of coordinates which are better
adapted for later. We embed the solution into the classification of N = 2 AdS5 solutions
in M-theory in [2, 35] studying the equivalent electrostatic problem. The electrostatic
problem has some new and novel features, in particular unusual boundary conditions for
the potential. In section 3 we generalise the disc solution building on the original solu-
tion. We show that the new solutions are well-defined supergravity solutions, performing
a regularity analysis and flux quantisation. We proceed to compute various observables
of the gravity solution with which to match to the field theory analysis in section 4. We
provide a dictionary between the field theory and gravity solution with which we can com-
pare the observables on the two sides and find perfect agreement in the holographic limit.
We relegate some material to two appendices. The first shows how to obtain AdS7 and
the Maldacena-Nunez solutions from our starting point, whilst the second performs an
independent check of the observable computations by using anomaly inflow.

2 M5-branes on a disc

In [24] an AdS5×Σ solution in 7d gauged supergravity was found where Σ is topologically a
disc. The boundary of the disc corresponds to a singularity of the overall metric, while the
centre of the disc has a conical singularity. Upon uplifting the solution to 11d supergravity
on an S4 one obtains a 1/2 BPS AdS5 solution, and one can give a physical interpretation
of the singularities; the boundary of the disc arises due to a stack of smeared M5-branes
whereas the conical deficit is due to the presence of a monopole. In [24] they conjectured
that the solution was holographically dual to an Argyres-Douglas theory with one regular
and one irregular puncture. In the following we will review the solution, albeit from a
different parametrisation, before embedding the solution into the classification of N = 2
AdS5 solutions of 11d supergravity constructed in [2, 35]. We use the reformulation of the
solution in terms of an electrostatics problem for a single potential, determining it for the
disc solution before studying its properties and flux quantisation within the electrostatics
reformulation.

2.1 AdS5 × Σ solutions of 7d gauged supergravity

In this section we will study the AdS5×Σ solution of 7d U(1)2 gauged supergravity originally
found in [24] using the conventions there for the gauged supergravity theory. As pointed
out in [18, 25] one can obtain disc solutions as different global completion of the same local
solutions from which one may construct spindle solutions. In the following we will use
the parametrisation of the spindle solutions in [36] specialised to the disc solution.3 The

3This solution specialised to preserve N = 2 may also be found in [35]. In fact in this reference a
more general 7d solution is presented up to solving a non-trivial ODE. This generalises the solution here
by including an additional scalar field. In the uplifted theory this breaks a U(1) symmetry, which will be
essential for our generalisation and therefore we stick with this less general solution.
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solution is

ds2
7 =

(
wP (w)

)1/5[
4ds2(AdS5) + w

f(w)dw2 + f(w)
P (w)dz2

]
,

Ai = − si
hi(w)dz , Xi(w) =

(
wP (w)

)2/5

hi(w) , (2.1)

where ds2(AdS5) is the unit radius metric on AdS5, satisfying Rµν = −4gµν and the
functions take the form

hi(w) = w2 − si , P (w) = h1(w)h2(w) , f(w) = P (w)− w3 . (2.2)

The solution depends on two real constants, si. In order to obtain a disc the functions f(w)
and P (w) must have a common root. Given the form of the polynomials, it is clear that
this must necessarily be at w = 0 and therefore in order to obtain a disc we set, without
loss of generality, s2 = 0. In fact this limit leads to an enhancement of supersymmetry,
with the solution preserving N = 2 supersymmetry, rather than N = 1. We will show this
later by explicitly embedding the solution into the N = 2 classification of AdS5 solutions of
11d supergravity in [2, 35]. This local metric also admits other interesting limits. One may
recover both pure AdS7 and the Maldacena-Nunez solution [1] by taking different limits of
this local metric as we show in appendix A.

Regularity in 7d. Let us begin by considering the regime of the s1 which gives rise to a
well-defined metric. We require f(w) to admit two roots, one at 0 and the second positive.
The latter condition is necessary for the metric to have the correct signature, since there
are terms proportional to w appearing in the metric. The roots of f(w) are

w0 = 0 , (twice) , w± = 1
2
(
1±
√

1 + 4s1
)
. (2.3)

In order for there to be a real positive root and for the scalars to be positive we require

− 1
4 ≤ s1 ≤ 0 . (2.4)

This leads to two positive roots and we take the domain of the line interval parametrised
by w to be

w ∈ [0, w−] . (2.5)

We must now check how the metric degenerates at the end-points.
First consider the end-point at w = w−. Since P (w−) 6= 0 we need only consider the

metric on Σ at this end-point. Expanding the metric on Σ around w = w− we find

ds2(Σ) ' w−
|f ′(w−)|(w− − w)dw2 + |f

′(w−)|
P (w−) (w− − w)dz2

= 4w−
|f ′(w−)|

[
dr2 + |f

′(w−)|2

4w4
−

r2dz2
]
, (2.6)
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where w− − w = r2. Fixing the period of z to be

∆z
2π =

2w2
−

l|f ′(w−)| = 2
l(w+ − w−) , l ∈ Z+ (2.7)

the space is the orbifold R2/Zl.
Let us now consider the end-point at w = 0. Expanding the 7d metric around w = 0

we find

ds2
7 ' w3/5w

1/5
−

[
4ds2(AdS5) + dz2 + 1

ww+w−
dw2

]
= r6/5w

1/5
−

[
4ds2(AdS5) + dz2 + 4

w+w−
dr2

]
, (2.8)

where we performed the change of coordinate w = r2. Clearly this is singular, as one can
verify by computing the Ricci scalar, or any other curvature invariant. In addition, the
scalars also have a singular behaviour,

X1 ∼
r12/5

|s1|3/5
, X2 ∼

|s1|2/5

r8/5 . (2.9)

One should contrast this singular behaviour with the singular behaviour of the 4d and
5d solutions for M2-branes [18, 27] and D3-branes [25, 26] on discs. One notes that in
addition to the singular metric only a single scalar diverges in each of these cases with
the other scalars tending to zero. These scalars describe the stretching and squashing of
the sphere in the uplifted theory, when written in embedding coordinates adapted to the
U(1)n symmetry. In the M2-branes and D3-branes cases the sphere diverges along one
direction and shrinks in the remaining directions. In contrast, here we have three scalars
parametrising the squashing; two of which diverge and only one vanishes. We will see later,
using the uplifted solution, that the behaviour of M5-branes on a disc is somewhat different
to that of the M2-brane and D3-brane cases.

Magnetic charge and holonomy. The metric is supported by a single magneticaly
charged gauge field. The magnetic charge is defined to be

Qi = 1
2π

∫
Σ
Fi , (2.10)

which for the solution at hand is

Q ≡ Q1 = −w−
∆z
2π , Q2 = 0 . (2.11)

Note that due to the orbifold it is not necessary that Q is integer but rather the weaker
condition l Q ∈ Z. As such let us define

lQ = −p , p ∈ Z+ . (2.12)

Since the disc also has a boundary one can define the holonomy of the gauge field on the
boundary. One should choose a gauge for the gauge field so that it is globally well-defined
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on the disc. Since the circle shrinks at the centre of the disc we must require that the
gauge field vanishes there. This uniquely fixes the gauge and the globally well-defined
gauge field is

A1 = −
(

s1
w2 − s1

− s1
w2
− − s1

)
dz . (2.13)

The holonomy of the gauge field along the boundary is then

hol∂Σ(A1) = 1
2π

∮
∂Σ
A1 = w−

∆z
2π = −Q , (2.14)

which gives minus the total magnetic charge threading through the disc.

Euler Characteristic. The final observable that we can compute is the Euler charac-
teristic of the disc. We have

χ(Σ) = 1
4π

∫
Σ
Rdvol(Σ) + 1

2π

∫
∂Σ
κdvol(∂Σ)

= ∆z
4π

w3/2(3f(w)− wf ′(w))
P (w)3/2

∣∣∣∣w=w−

w=0

= 1
l
, (2.15)

where in the going to the second line we have used that the geodesic curvature of the
boundary of the disc is 0, it is locally a cylinder there, and hence the boundary contribution
vanishes.

Using that w+ + w− = 1 we find the relation

χ(Σ)−Q = ∆z
4π . (2.16)

This relation is a generic feature of disc geometries, with equivalent expressions for M2-
branes, D3-branes and D4-D8-brane compactifications [18, 25–28].

As an aside one may express everything in terms of the orbifold weight l and the integer
magnetic charge p defined in (2.12). The roots in terms of these integer parameters are

w− = p

2(p+ 1) , w+ = 1− w− = p+ 2
2(p+ 1) , (2.17)

and the period satisfies

γ ≡ ∆z
2π = 2(p+ 1)

l
. (2.18)

It is useful for later to introduce the 2π-periodic coordinate ẑ as

ẑ = z

γ
. (2.19)
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Dictionary to compare with BBMN. To translate between the parametrisation given
above and the solution appearing in [24] one should perform the following identifications:

w = Bw̃

2
√

1− w̃2
,

∆z
4π = C , 4s1 = −B2 , m = 1 , l = lBBMN . (2.20)

This puts the metric into the form

m2ds2
7(BBMN) = Bw̃3/5

2
√

1− w̃2

[
4ds2(AdS5) + 2

w̃h(w̃)(1− w̃2)3/2 dw̃2 + 4C2h(w̃)
B

dz̃2
]
,

(2.21)
which is as given in [24]. Note that the gauge field and scalar are equivalent as well after the
above redefinition. By using this dictionary one finds that the regularity analysis performed
above agrees with the equivalent analysis performed in [24].

This concludes our review of the 7d solution and we turn our attention to the uplift of
the solution to 11d supergravity on an S4.

2.2 11d uplift and regularity

In the previous section we have studied the regularity of the 7d solution. We have seen
that the solution exhibits two distinct singular behaviours; one at the centre of the disc
and one along the boundary. In this section we will study the 11d uplift of the solution,
focussing in particular on the singular regimes from the 7d solution.

Using the uplifting formula in [37] the metric is

ds2
11 = Ω1/3(wP (w)

)1/5[ds2
7 + 1

Ω
(
wP (w)

)1/5
(
X−1

0 dµ2
0 +

2∑
i=1

X−1
i (dµ2

i + µ2
i (dφi +Ai)2)

)]
,

(2.22)

with

Ω =
2∑
I=0

XIµ
2
I , X0 = X−2

1 X−2
2 ,

2∑
I=0

µ2
I = 1 . (2.23)

Note that X0 = X2 for the disc. Given this symmetry it is useful to parametrise the µI as

µ0 =
√

1− µ2 cos θ , µ2 =
√

1− µ2 sin θ , µ1 = µ , (2.24)

and to define

Ω = Ω̃
w4/5h1(w)3/5 , with Ω̃ = w2µ2 + h1(w)(1− µ2) . (2.25)

Note that Ω̃ vanishes at (w = 0, µ = 1) but is otherwise positive definite. Next define

f̂(w) = (w− − w)(w+ − w) , (2.26)

then the metric takes the form

ds2
11 = w1/3Ω̃1/3

[
4ds2(AdS5) + 1

wf̂(w)
dw2 + f̂(w)

h1(w)dz2 + w2(1− µ2)
wΩ̃

ds2(S2)(θ,φ2)

+ h1(w)µ2
1

wΩ̃
Dφ2

1 + 1
w(1− µ2

1)
dµ2

1

]
, (2.27)
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0

µ

1

ww−

S1
φ1

shrinks

S2 shrinks

M
onopole

L̂
=

−
l

L̂ = 0

S
m
e
a
re
d

M
5
b
ra

n
e

Figure 1. A schematic plot of the rectangle over which the S2×S1
z ×S1

φ1
fibers are defined. In the

interior of the rectangle all the fibers remain of finite size, whilst along the boundary various cycles
shrink. The red dot on the bottom right hand corner is the location of a monopole of charge l.

with
h1(w) = f̂(w) + w , Dφ1 = dφ1 +A1 . (2.28)

Note that the singularity at w = 0 of the 7d metric persists in the uplifted solution. This
is in contrast to the behaviour of the M2-brane and D3-brane disc solutions discussed
in [18, 27] and [25, 26] respectively, where the line w = 0 is no longer singular only the
point (w = 0, µ = 1).

In order to interpret the solution it is useful to observe that it can be written in the
form of an S2×S1

z×S1
φ1

fibration over the rectangle [0, w−]×[0, 1]. Away from the boundary
of the rectangle the metric is smooth and the fibers are non-shrinking. Along the boundary
various fibers shrink, see figure 1.4

Since the behaviour of the various edges of the rectangle will play a prominent role
later we will study this in detail. The results we find are in agreement with the results
in [24] and the reader familiar with the analysis there may skip to the next section safely.
We will first study the degeneration along the sides away from the vertices.

µ = 0 degeneration. Consider first the degeneration at µ = 0. We can see that the
φ1 circle shrinks smoothly giving R2 if φ1 has period 2π. This is of course the expected
behaviour given the S4 origin.

4The rectangle we take looks somewhat different at first from the one in [24]. To compare the two one
should take µ2 = 1− µ2

BBMN
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µ = 1 degeneration. At µ = 1 we see that the S2 shrinks smoothly giving R3. As
before this is the expected result given the S4 origin.

w = w− degeneration. To properly understand the degeneration at w = w− we should
rewrite the metric in the form of the S1

z circle fibered over the S1
φ1

circle. It is also
convenient to perform a gauge transformation of the gauge field whilst performing the
rewriting, δA1 = nzdz. The choice of the constant nz we will make is such that the Killing
spinor on the disc is independent of the angular coordinate. This is achieved by taking
nz = −1

2 . The S
1
z ×S1

φ1
part of the metric, ignoring the overall warp-factor w1/3Ω̃1/3, after

the rewriting takes the form

ds2(S1
z n S1

φ1) = R2
z(dz + Ldφ1)2 +R2

φ1dφ2
1 , (2.29)

with

R2
z = µ2(w2 − w−w+)2 + 4wf̂(w)Ω̃

4wh1(w)Ω̃
, (2.30)

R2
φ1 = 4µ2f̂(w)h1(w)

µ2(w2 − w−w+)2 + 4wf̂(w)Ω̃
, (2.31)

L = 2µ2(w2 − w−w+)h1(w)
µ2(w2 − w−w+)2 + 4wf̂(w)Ω̃

. (2.32)

Note that Rφ1 vanishes at both µ = 0 and w = w− whilst Rz only vanishes at the point
(w = w−, µ = 0). Note also that the function L is piecewise constant on the two-edges:
µ = 0 and w = w−. Along µ = 0 it vanishes, whilst along w = w− it is a non-zero constant.
Since Ldφ1 defines a connection for the fibration the physical parameter is

L̂(w, µ) = 2πL(w, µ)
∆z , (2.33)

and we find L̂(w−, µ) = −l. This signifies the presence of a monopole at (w = w−, µ = 0).
To see this more clearly let us take the simultaneous limit towards this point. We

change coordinates to

µ = r cos2
(
ζ

2

)
, w = w− −

w+ − w−
4 r2 sin2

(
ζ

2

)
. (2.34)

and then take the r → 0 limit. The S2 metric remains of finite size and the remaining 4d
part of the internal space becomes

ds2
4 = 1

w−

[
dr2 + r2

4

( 4
l2
(
dẑ − l

2(1 + cos ξ)dφ1
)2 + dξ2 + sin2 ξdφ2

1

)]
. (2.35)

This is the metric on R4/Zl, and is due to the presence of a monopole.
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w = 0 degeneration. The final edge of the rectangle is the one along w = 0. Series
expanding along w = 0 the metric reads

ds2 'w1/3f̂(0)1/3(1− µ2)1/3
[(

4ds2(AdS5) + dz2
)

+ 1
w

{ 1
1− µ2 dµ2 + µ2

1− µ2 dφ2
1

+ 1
f̂(0)

(
dw2 + w2ds2(S2)

)}]
. (2.36)

Away from µ = 1 this is the metric on an M5-brane wrapping AdS5 × S1
z , located at the

tip of R3 and smeared along the two directions spanned by µ and φ1.

2.3 LLM reformulation

In the previous section we have studied the uplifted solution. In this section we will extend
this analysis by showing that the solution can be embedded into the classification of N = 2
preserving AdS5 solutions of 11d supergravity of [2, 35].5 Ultimately we want to consider
the equivalent electrostatic description of the problem [2], but for ease of exposition we will
present the intermediate steps. We will follow the conventions of [2] in the following. Any
N = 2 AdS5 solution of 11d supergravity takes the following form:

ds2
11 = e2λ

[
4ds2(AdS5) + y2e−6λds2(S2) + ds2

4

]
, (2.37)

ds2
4 = 4

1− y∂yD
Dχ2 − ∂yD

y

(
dy2 + eD(dx2

1 + dx2
2)
)
, (2.38)

Dχ = dχ+ vidxi , vi = 1
2εij∂jD , v = vidxi (2.39)

e−6λ = − ∂yD

y(1− y∂yD) , (2.40)

G4 = 2dvol(S2) ∧
[
Dχ ∧ d(y3e−6λ) + y(1− y2e−6λ)dv − 1

2∂ye
Ddx1 ∧ dx2

]
. (2.41)

As before, the metric on AdS5 is the unit radius one. The potential D, which determines
the full solution is a solution of the (infinite) Toda equation

�xD + ∂2
yeD = 0 . (2.42)

Comparing the general form of the metric with the solution (2.27) we can immediately
identify

e2λ = w1/3Ω̃1/3 . (2.43)

After a little rewriting the metric takes the form

ds2
11 = e2λ

[
4ds2(AdS5) + w2(1− µ2)e−6λds2(S2)(θ,φ2) + ds2

4

]
, (2.44)

ds2
4 = dµ2

w(1− µ2) + µ2
1h1(w)

w
(
(1− µ2)h1(w) + µ2w2)(dφ1 +A1)2 + w

f(w)dw2 + f(w)
P (w)γ

2dẑ2 .

5In [24] they showed that the solution can indeed be embedded into the N = 2 classification. Since our
conventions differ we will present the results from scratch as they are needed as an intermediate step.
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From the coefficient of the two-sphere we can then identify

y = w
√

1− µ2 . (2.45)

Since the solution has an enhancement of symmetry compared to the general classification,
there is an additional U(1) symmetry, we define the polar coordinates

x1 + ix2 = reiβ . (2.46)

We now want to identify the radial coordinate r and potential D in terms of w, µ. We find
that they are given by

r(w, µ) = H

[
µ2(w+ − w

) 2w+
w+−w−

(
w− − w

)− 2w−
w+−w−

]
, (2.47)

eD = wµ

∂wr(w, µ)∂µr(w, µ) , (2.48)

with H an arbitrary function of one variable with continuous first derivative.6 We can
fix the function to be of the form H(x) = xα, with α a constant. There are different
choices one could make for α, for example if one takes α = 1

2 one finds that the potential
D is independent of the coordinate µ. We will instead make the seemingly crazy choice
α = −γ−1, see equation (2.18) for the definition of γ. This turns out to be useful because
the metric takes the canonical LLM form upon making the change of coordinates

φ1 = −2χ+
(

2 + γ

2

)
β , ẑ = 2

γ
χ−

(
1 + 2

γ

)
β , (2.49)

which importantly has Jacobian 1, leading to 2π periodic coordinates in the canonical
N = 2 form. Other choices of α do not have this property. The potential and radial
coordinate with this choice are7

r =
[
µ2(w+−w

) 2w+
w+−w−

(
w−−w

)− 2w−
w+−w−

]− 1
γ

, eD = γ2µ2(w − w−)(w − w+)
4r(w, µ)2 . (2.50)

One can check that the potential satisfies the Toda equation (2.42) as it should.

2.4 Electrostatics reformulation

In the previous section we have rewritten the solution in terms of the classification of N = 2
AdS5 solutions of 11d supergravity, determined by a potential satisfying the Toda equation.
For solutions with two U(1)-isometries, like our solution, there is a formulation one can

6The fact that the function H is undetermined is due to the conformal symmetry of the solution in the
Toda picture.

7When w− = w+ the centre of the disc becomes H2 rather than R2. The radial coordinate is

r = H[µ2e2w−/(w−−w)] .

This behaviour is rather different to the more general case that we will study here. Note that at the H2

end-point the solution is of the form AdS5 × H2. As we show in appendix A.2, taking the limit carefully
one obtains the Maldacena-Nunez solution.
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use by performing a Bäcklund transform [2]. Rather than being determined by a potential
satisfying the Toda equation, the solution is now determined by a potential satisfying the
3d cylindrical Laplace equation. In terms of this potential the problem can be interpreted
as an electrostatic problem with a linear line-charge density λ as we will now review.

To perform the Bäcklund transform we follow the conventions in [2] and introduce the
new coordinates ρ, η defined via

r2eD = ρ2 , y = ρ∂ρV (ρ, η) ≡ V̇ , log r = ∂ηV (ρ, η) ≡ V ′ . (2.51)

The metric and flux after the coordinate transformation become

ds2 =
(
V̇ ∆̃
2V ′′

)1/3 [
4ds2(AdS5) + 2V̇ V ′′

∆̃
ds2(S2) + 2V ′′

V̇

(
dη2 + dρ2 + 2V̇

2V̇ − V̈
ρ2dχ2

)

+ 2(2V̇ − V̈ )
V̇ ∆̃

(
dβ + 2V̇ V̇ ′

2V̇ − V̈
dχ
)2 ]

, (2.52)

C3 =2
[
− 2V̇ 2V ′′

∆̃
dχ+

(
V̇ V̇ ′

∆̃
− η

)
dβ
]
∧ dvol(S2) , (2.53)

where

•̇ ≡ ρ∂ρ , •′ ≡ ∂η , ∆̃ = (2V̇ − V̈ )V ′′ + (V̇ ′)2 . (2.54)

The potential V satisfies the 3d cylindrical Laplace equation

V̈ + ρ2V ′′ = 0 . (2.55)

To every potential giving rise to a sensible geometry and satisfying the Laplace equation
one can define a line-charge density

λ(η) = y(ρ = 0, η) . (2.56)

The benefit of the electrostatic description is that the cylindrical Laplace equation is lin-
ear and therefore we may construct more general solutions using superposition of known
solutions.

Let us now turn our attention to obtaining the new coordinates ρ, η and the potential
V for the disc solution. The coordinate ρ is simple to extract in terms of w, µ and is
given by

ρ = γµ
√

(w− − w)(w+ − w)
2 , (2.57)

where we have taken the positive root without loss of generality. To compute η note that
the integrability of the coordinate change implies the two constraints

∂ηy = eD/2∂ρr , ∂ρy = −eD/2∂ηr , (2.58)

which are independent of the potential V . We may now solve for η which gives

η = γ(1− 2w)
√

1− µ2

4 . (2.59)
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This is defined up to the addition of a constant, however since this may always be absorbed
by a coordinate transformation later we set this constant to zero. With ρ and η in hand
we can now determine the potential V ,

V = −1
4

[
log

(1 +
√

1− µ2

1−
√

1− µ2

)
+
√

1− µ2
(
(1− 2w) log(r)− 2

)]
, (2.60)

which is also defined up to the addition of a constant, and again this constant is trivial.
This indeed satisfies the cylindrically symmetric Laplace equation in 3d as it should.

We have now determined both the new coordinates ρ, η and the potential V for the
electrostatic problem. However in our presentation above the potential is still written in
terms of the original w, µ coordinates. To invert this we note that we may determine the
w, µ coordinates in terms of ρ, η as

w= 1
4γ

(
2γ−

√
2
√
γ2(1−4w−w+)+16(η2+ρ2)+

√(
16(η2+ρ2)−γ2(w+−w−)2)2+64γ2(w+−w−)2ρ2

)
,

µ2 = 4ρ2

γ2(w−−w)(w+−w) , (2.61)

where one should insert the expression for w into µ2. The final potential is

−4V = log
(
γ(1− 2w) + 4η
γ(1− 2w)− 4η

)
+ 4η

γ
log

[
4ρ2

γ2

(
w+ − w
w− − w

) 1
w+−w−

]
− 8η
γ(1− 2w) , (2.62)

and w should be understood to be the function of ρ, η, depending on the constants p, l
given in (2.61). It is interesting to note that the potential can be broken into three pieces
each of which are solutions of the 3d cylindrical Laplace equation on their own:

−4V1 = log
(
γ(1− 2w) + 4η
γ(1− 2w)− 4η

)
,

−4V2 = 8η
γ

log 2ρ
γ
, (2.63)

−4V3 = −4η
γ

( 2
1− 2w −

1
w+ − w−

log w+ − w
w− − w

)
.

The second term is the simplest, non-trivial solution to the cylindrical Laplace equation
one can construct. Note that both pure AdS7 and the Maldacena-Nunez solution have
the same form of blocks, see appendix A. Of course this is expected given that both of
these solutions can be obtained from the same local solution considered here as we show
in appendix A.

Properties of the electrostatic setup. Having reformulated the disc solution in terms
of an electrostatic problem we will now study the solution from this vantage point. The
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ρ

η

γ (w+ -w-)

4

γ

4

γ w+ w-

2

(w,1)

(w-,μ)

(w,0) (0,μ)

Figure 2. We plot the region in (ρ, η) space where the electrostatic problem is defined. The
coloured segments correspond to the different faces of the rectangle in (w, µ) space, see figure 1.
The points are the vertices of this rectangle in (w, µ) space. Starting with the origin and going
clockwise they are: orange=(w−, 1), magenta=(w−, 0) (monopole), violet=(0, 0), cyan=(0, 1). The
red line forming the ellipse is the location of the smeared brane, whilst the magenta dot (lying on
the η-axis at the focus point of the ellipse) arises due to the presence of a monopole.

first task is to identify the range of the ρ and η coordinates. By inserting the boundary
values of w, µ we find that the boundary of the (w, µ)-rectangle is identified with

µ = 0⇒ ρ = 0 , µ = 1⇒ η = 0 , w = w− ⇒ ρ = 0 , w = 0⇒ γ2 = 16η2 + 4ρ2

w+w−
.

(2.64)
We find that the ranges of ρ and η are

ρ ∈
[
0,
γ
√
w+w−

2
]
, η ∈

[
0, γ4

]
. (2.65)

Note that the location of the smeared branes (irregular puncture) defines an ellipse in the
(ρ, η) coordinates, see the last condition in (2.64). The focal point of the ellipse is at

(ρ, η)Focus =
(
0,±γw+ − w−

4
)
, (2.66)

which, for the sign within the domain (+), is the location of the monopole! In figure 2
we have plotted the resultant domain in the (ρ, η) coordinates, colour coded to match the
regions in figure 1 for the (w, µ) coordinates.

The prototypical example of solutions in the literature of this electrostatic problem
includes a non-compact domain, with both ρ and η non-compact, see for example [2, 35].
The typical boundary condition imposed is that V̇ vanishes along η = 0, and we find
that this is also true of the solutions discussed here. Some solutions with η compact have
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been found in the literature, see for example [4, 5, 38], where the domain is a rectangle.
The additional boundary condition imposed in these works is that V̇ vanishes along a line
η = η∗ for some η∗ > 0. Our compact domain is quite novel being a quarter of an ellipse.
The inclusion of the smeared brane (irregular puncture) leads to a non-trivial boundary
condition for the electrostatic problem, that is the boundary condition that V̇ vanishes on
an ellipse. This sets the disc solution apart from previous examples in the literature.

Line Charge. Having determined the potential V it is a simple matter to obtain the line
charge λ(η). We find

λ(η) = y(ρ = 0, η) =


lp
p+1η η ∈ [0, 1

2l ] ,
1
2 −

l
p+1η η ∈ [ 1

2l ,
p+1
2l ] ,

(2.67)

where we have used (2.17) and (2.18) to express the result in terms of the magnetic charge
defined in (2.12) and the orbifold weight. Note that the change in slope at the monopole
point is l, the orbifold weight. The reader familiar with the conditions in [2] may be uneasy
that η does not take integer values at the monopole point and that the slope is not integer.
As we will explain later this still gives rise to a well-defined solution, in fact the constraints
in [2] are too strong and not all constraints imposed there are needed for a well-defined
solution of this type. As we will see the non-integer slope leads to operators in the dual
field theory having non-integer scaling dimensions.

As an aside, note that there is a scaling symmetry of the solution. One may perform
the transformation

V (ρ, η, p)→M V (Ξρ,Ξη + c, p) , (2.68)

for M and Ξ some constants, and retain a solution to the cylindrical Laplace equation.
This transformation leads to a transformation of the line charge as

λ(η)→Mλ(Ξη + c) , (2.69)

and therefore one could use this freedom to make the line charge satisfy the conditions
in [2]. Note that the parameter c is precisely the linear shift we could have performed
earlier when obtaining the coordinate η. We will refrain from performing these rescalings
for the time being.

Line charge kinks analysis. Let us now substantiate our claim that the following
line charge and potential do give rise to a well-defined geometry. We will show that the
monopole number is indeed l and that the flux is properly quantised. Since the analysis
goes through allowing for an arbitrary number of kinks in the line charge and we will need
this later, we perform the analysis allowing for f kinks in the line charge. We perform the
analysis by assuming that the line-charge and potential V have the properties of the disc
solution, in particular that V̇ vanishes along η = 0 and along some curve generalising the
ellipse above. The final results will depend only on the implicit line-charge and not the
details of this curve. As such let us denote the locations of the kinks of the line charge to
be na with a = {1, . . . , f} and let the changes in slope be la. Finally the end-point of the
line charge, where λ(η) vanishes will be taken to be nf+1.
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First let us consider the expansion of the metric around a kink of the line charge,
taking this point to be n. Let us perform the change of coordinates

ρ = r2 sin ζ , η = n+ r2 cos ζ , ζ ∈ [0, π] , (2.70)

which form semi-circles around the monopole in this 2d plane. Expanding the terms ap-
pearing in the metric around r = 0 we have

V̇ = λ(n) , V̈ = r2 sin ζ
2 δλ(n) , V ′′ = − 1

2r2 δλ(n) ,

V̇ ′ = 1
2δλ(n)(cos ζ − 1)−

∑
m>n

δλ(m) , ∆ = − 1
r2λ(n)δλ(n) , (2.71)

where in taking the derivative of λ around the monopole point we have

δλ(n) = lim
ε→0+

(
λ′(n+ ε)− λ′(n− ε)

)
, (2.72)

and the sum is over monopoles higher along the η axis. In this limit the metric becomes

ds2 = λ(n)2/3
[
4ds2(AdS5) + ds2(S2) (2.73)

− 4δλ(n)
λ(n)

{
dr2 + r2

4
(
dζ2 + sin2 ζdχ2 + 4

(
|δλ(n)|−1dβ +

(1
2(cos ζ − 1) + α

)
dφ
)2)}]

,

where α is an additive constant which can be removed by a gauge transformation. This
is then the metric on AdS5 × S2 × R4/|δλ(n)| and implies that we should take δλ(n) to
be a negative integer. This imposes that the line charge density is convex and has integer
changes in the slope at a location of the monopole.

Flux quantisation. Next consider flux quantisation. We may rewrite the three-form
potential in the form

C3 =
[
fχ(ρ, η)dχ+ fβ(ρ, η)dβ

]
∧ dvol(S2) , (2.74)

with
fχ(ρ, η) = −4V̇ 2V ′′

∆̃
, fβ(ρ, η) = 2

(
V̇ V̇ ′

∆̃
− η

)
. (2.75)

Flux quantisation imposes that

1
(2π`p)3

∫
Σ
G4 ∈ Z , (2.76)

for all integral four-cycles Σ.
We must first identify all integral four-cycles in the geometry. There are two types

of four-cycle to consider depending on shrinking cycles in the geometry. The first type
of cycle, which we denote by Ca, are constructed by taking the cycle which shrinks along
ρ = 0 and the two-sphere which shrinks along η = 0 which is topologically a four-sphere.
Pictorially they are given by a line stretching from a point on the η axis to the ρ axis. For
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f kinks there are f + 1 such cycles that can be constructed by taking the shrinking cycle
to be located at some point between two kinks na (the end-points included).

The second class of four-cycle is topologically either S2×S2 or S4. and is constructed
by taking the shrinking β cycle along ρ = 0 between two kinks (or the end-points) and the
round two-sphere, and will be denoted by Da. For the cycles involving the two end-points
the four-cycle is topologically an S4 and otherwise is topologically S2 × S2.

Let us first consider the four-cycles Ca, and let a = {0, . . . , f}. We must identify the
exact S1 that is shrinking along ρ = 0, this depends where it is located along the η-axis.
We may identify the 2π periodic coordinate which parametrises this shrinking S1 by finding
a Killing vector with vanishing norm as ρ → 0 which is normalised such that the surface
gravity is 1. The Killing vector satisfying these properties is8

∂ϕ = ∂χ − λ′(η)∂β . (2.77)

Note that since λ(η) is linear that this is independent of the coordinate η, but depends on
the location along the ρ = 0 line due to the jumps in λ′(η). We find

1
(2π`p)3

∫
Ca
G4 = 8π

(2π`p)3

[
fχ(ρ, η)− λ′(η)fβ(ρ, η)

]ρ=0

η=0

= − 16π2

(2π`p)3 λ(η)
∣∣∣
constant piece

, (2.78)

where we take λ in the interval given by the index ‘a’. This should be integer for all four-
cycles. Note that since λ(0) = 0 the flux through the cycle C0 is 0 always, whilst the cycle
Cf gives the total number of M5-branes wrapping the punctured sphere.

Consider now the second type of cycle Da. Let the locations of the monopole along
the η axis be denoted by na, with n0=0, and nf+1 the end-point of the η-axis. We have

1
(2π`p)3

∫
Da
G4 = − 16π2

(2π`p)3 (na − na−1) . (2.79)

To simplify the results let us take the line charge to be the union of lines of the
schematic form

λ = raη +ma . (2.80)

Then the quantisation conditions in general are equivalent to

ra−1 − ra ≡ la ∈ Z ,
16π2

(2π`p)3ma ≡Ma ∈ Z ,
16π2

(2π`p)3na ≡ Na ∈ Z (2.81)

8When λ(η)′ is integer in all intervals along ρ = 0 the two U(1)’s give rise to a regular fibration of a T2,
however if λ(η)′ is instead rational but not integer, then this gives rise to a quasi-regular fibration. As we
will see, there is no requirement from imposing regularity conditions on the metric nor flux quantisation
that constrains λ(η)′ to be integer generically, this is an assumption made in [2]. What is constrained is
the difference of λ(η)′ between segments which must be integer. As we will see the disc solution gives rise
to a quasi-regular fibration generically and λ(η)′ is not integer, though the difference between segments is.
The assumption that λ(η)′ is integer is useful for writing the explicit quiver but is not essential as we will
explain at the end of this section. When considering a line-charge which plateaus rather than vanishes one
must take the slopes to be integer however.
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We should understand Ma as the number of M5-branes making the puncture with Mf the
total number of M5-branes.

For the line charge in (2.67) we have

n0 = 0 , n1 = 1
2l , n2 = p+ 1

2l , r0 = lp

p+ 1 , r1 = − l

p+ 1 , m0 = 0 , m1 = 1
2 .

(2.82)
Note that r0 − r1 = l and is integer. The quantisation conditions are satisfied if

1
πl`3p

= N ∈ Z , (2.83)

and p ∈ Z. Note that this is different from the quantisation condition considered in [2],
where the l is not present. We emphasise that despite the line-charge not satisfying all
the properties required in [2], in particular the integer slopes the solution is globally well-
defined. In [2] for certain choices of line charge where it plateaus one is still forced into
having integer slopes, however when the line charge does not plateau and either increases
to infinity or has a zero away from η = 0 then this assumption is too restrictive. As we
will see when considering the field theory, the non-integer slope leads to operators in the
dual SCFT with fractional scaling dimensions.

Having understood the constraints for a well-defined solution let us consider the scaling
symmetry (2.68) which we may use to redefine the parameters na. Under this scaling
symmetry the parameters labelling the solution transform as

na →
na
Ξ , ra →MΞra , ma →Mma . (2.84)

We want to keep the change in the slope at the kinks fixed under the symmetry since this
gives rise to the physical parameter labelling the orbifold weight. This forces us to take
MΞ = 1 in the following and it follows that the scaling symmetry acts the same on ma

and na. Consequently, we may absorb this scaling by redefining the flux quanta N : this is
to be expected since this scaling symmetry, whilst holding the change in the slope at the
kink fixed, does not give rise to a physical parameter. We can then use the symmetry to
fix M = Ξ−1 = 2l which makes the new distinguished locations, na, integer. We find the
rescaled variables

n0 = 0 , n1 = 1 , n2 = p+ 1 , m0 = 0 , m1 = l , N = 2
π`3p

. (2.85)

We should emphasise that this rescaling has not changed the physics in any way since
it can be absorbed in the relation between N and the Planck length `p. The parameter
Nm2 gives the total number of M5-branes wrapped on the two-sphere whilst the flux Nm1
measures the number of M5-branes giving rise to the regular puncture at Nn1. Note the
identity

(r0 − r1)n1 = −r1n2 , (2.86)

which follows since line-charge vanishes at two points. More generally if there are a total
of f kinks we have

f∑
a=1

Na(ra−1 − ra) = −rfNf+1 . (2.87)
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Observe that the convex condition implies that each term in the sum on the left-hand-side
is positive and consistency requires each term to be integer, thus the right-hand-side is
also positive and integer. We can interpret this constraint as a partitioning of the positive
integer −rfNf+1 and will be related to the construction of a Young diagram for the regular
puncture in section 4. In [24] it was shown that this particular gravity solution is dual to
a certain Argyres-Douglas theory. The goal of this paper is to generalise this construction.

2.5 Observables

Having quantised the fluxes and checked regularity let us turn our attention to the observ-
ables of the theory which we can compare to the field theory. One such observable is the ‘a’
central charge, which we study in the following section. A second is the scaling dimension
of probe M2-branes, and the third observable that we will consider is the flavour central
charges of the solution.

Central Charge. The leading order contribution to the a central charge for an AdS5
solution of the form [39]

ds2
11 = e2A

[
4ds2(AdS5) + ds2(M6)

]
, (2.88)

is
a = 25π3

(2π`p)9

∫
M6

e9Advol(M6) . (2.89)

From the form of the metric in electrostatic coordinates we identify

e9A =
( V̇ ∆̃

2V ′′
)3/2

, (2.90)

dvol(M6) = 8
√

2ρ(V ′′)5/2

V̇ 1/2∆̃3/2 dvol(S2) ∧ dη ∧ dρ ∧ dχ ∧ dβ , (2.91)

and therefore we have

a = 27π3

(2π`p)9

∫
M6

ρV̇ V ′′dvol(S2) ∧ dη ∧ dρ ∧ dχ ∧ dβ . (2.92)

Using the cylindrical Laplace equation we may rewrite this as

a = 210π6

(2π`p)9

∫
∂ρ(V̇ 2)dη ∧ dρ . (2.93)

It follows that we can integrate over ρ by defining the integration domain to go from ρ = 0
to the ellipse

n2(p+ 1)2 = η2 + (p+ 1)2

p(p+ 2)ρ
2 , (2.94)

and gives

a = 210π6

(2π`p)9

∫ [
λ(η)2 − V̇ (ρ, η)2

∣∣∣
ellipse

]
dη , (2.95)
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where it is understood that the second term is evaluated on the ellipse by eliminating the
ρ coordinate. However, the boundary condition along the ellipse requires V̇ to vanish and
therefore the only contribution comes from the line charge term and we have9

a = 210π6

(2π`p)9

∫
λ(η)2dη . (2.96)

Note that this holds generally for a solution whose domain is fixed like the disc solution,
i.e. has a similar boundary structure to figure 2 where the ellipse may be replaced by a
more complicated curve along which V̇ = 0. Carefully performing the integral we find

a =
( 2
π`3p

)3 l2p2

12(p+ 1) , (2.97)

which upon using the quantisation condition (2.85) gives

a = N3 l2p2

12(p+ 1) . (2.98)

This agrees with the result in [24] upon using the following dictionary between our variables

NBBMN = lN , KBBMN = pN . (2.99)

Scaling dimensions of probe M2-branes. One may wrap probe M2-branes around
calibrated two-cycles in the geometry giving a BPS particle. With the metric in (2.88) the
calibration condition on a 2d submanifold Σ2 reads [39]

X
∣∣∣
Σ2

= dvolM6(Σ2) , (2.100)

where X is the calibrated two-form which can be constructed as a spinor bilinear and will
be given momentarily. The right-hand-side denotes the restriction of the volume form on
M6 to the 2d submanifold. For such a calibrated two-cycle the conformal dimension of the
BPS particle is given by

∆ = 4π
(2π`p)3

∫
Σ2

e3AX . (2.101)

The calibration two-form X was given in [24, 35] in terms of the Toda frame and we refer
the reader to [24] in particular for further details on its construction. Following [24] it is
convenient to write the metric on the round two-sphere as

ds2(S2) = dτ2

1− τ2 + (1− τ2)dϕ2 , (2.102)

with τ ∈ [−1, 1], 1 giving the north pole and −1 the south pole, and ϕ is 2π-periodic.
Then, the calibration two-form X in the Toda frame (see (2.37)–(2.41)) is10

X = y3e−9λdvol(S2) + ye−3λ(1− y2e−6λ)dτ ∧Dχ− τe−3λDχ ∧ dy + τye−9λeD

1− y2e−6λdx1 ∧ dx2.

(2.103)
9A similar expression for the central charge appears in [40].

10There are some factors of 2 and signs different between the expression here and the one presented in [24]
which are related to the different normalisation we employ and the different choices of volume form.
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We may transform this to the electrostatic description by the change of coordinates

y = V̇ , x1 + ix2 = reiβ , log r = V ′ , r2eD = ρ2 , β → β , χ→ χ+ β , (2.104)

which gives the calibration two-form

X = 2
(2V ′′

V̇ ∆̃

)1/2[ V̇ 2V ′′

∆̃
dvol(S2)+τ

(
V̇ ′dη+!ρ−1V̈ dρ

)
∧
(
dχ+! V̇ ′

(V̇ ′)2 − V̈ V ′′
dβ
)

(2.105)

+ V̇

∆̃
dτ ∧

((
(V̇ ′)2 − V ′′V̈

)
dχ+ V̇ ′dβ

)
+ τρ2V ′′

(V̇ ′)2 − V̈ V ′′
(
V ′′dη + ρ−1V̇ ′dρ

)
∧ dβ

]
.

Note that this holds for any solution written in electrostatic coordinates following the
conventions used in this paper. The calibrated two-cycle that we will consider in the
following is the round two-sphere at fixed positions in M6. The calibration condition forces
the cycle to be located at the positions of the kink of the line charge.

Let us check the calibration condition for the two-cycles. The calibration condition is

2V̇ V ′′ = ∆̃ . (2.106)

This condition holds at the monopole point as one can verify from the expansion in (2.71),
in fact this is the only point that it holds true for the potential we study. The conformal
dimension of the BPS particle is then

∆(O1) = 4π
(2π`p)3

∫
S2
λ(n)dvol(S2)

=
( 2
π`3p

)
λ(n) . (2.107)

For the solution in BBMN we find

∆(O1) = N
lp

p+ 1 , (2.108)

which agrees with the result in [24] upon using the dictionary provided in equation (2.99).

Flavour symmetries. To each flavour symmetry we can associate a flavour central
charge. One can use anomaly inflow methods to compute a mixed U(1)R-flavour Chern-
Simons term in AdS5. From [2] we have that the contribution to the flavour central charge
due to the flavour group at the kink is

k(SU(l)) =
( 4
π`3p

)
λ(n) , (2.109)

which gives
k(SU(l)) = 2N lp

p+ 1 , (2.110)

in agreement with [24] after using the dictionary in equation (2.99). As a consistency check
we have obtained this result from an anomaly inflow computation in appendix B.
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3 Generalised regular puncture

In the previous section we have discussed how to rewrite the disc solution of [24] in terms of
an electrostatic problem. We have obtained a potential V which depends on two integers, p
and l. Since the cylindrical Laplace equation is linear we may sum different potentials and
obtain a new solution. In particular we can sum up the potential of the previous section
with the different potentials depending on different parameters p and l. We will interpret
this as giving rise to a general Young diagram for the regular puncture. As we will show
there are some constraints that the potential blocks must satisfy in order to give rise to
a consistent solution. In the following sections we will analyse this in detail and compute
the observables of the theory considered in the previous section.

3.1 Building block of the generalised regular puncture

In this section we will construct the general building block form of the potential which
we will use in the remainder of the section. We saw earlier that the potential directly
following from the disc solution can be more conveniently written by using the constant
scaling symmetry of the electrostatic description. In order to make the discussion of the
superposition of potentials simpler we will use this symmetry to construct the building
block potential. Taking the potential in (2.62) and transforming it via

V (ρ, η; p, l)→ 2lnV
( ρ

2ln ,
η

2ln ; p, l
)

= V(ρ, η; p, l, n) (3.1)

we end up with the building block

V(ρ, η; p, l, n) = l

2

{ 2η
(p+ 1)(1− 2w) − n log

[n(p+ 1)(1− 2w) + η

n(p+ 1)(1− 2w)− η
]
− 2η
p+ 1 log ρ

2n(p+ 1)

− η log
[2 + p− 2(p+ 1)w

p− 2(p+ 1)w
]}

(3.2)

where

w(ρ, η; p, n) = 1
2 −

1
2
√

2n(p+ 1)

√
n2 + η2 + ρ2 +

√
(ρ2 + η2 − n2)2 + 4n2ρ2 . (3.3)

Note that we have included an additional integer parameter n which places the kink at n
rather than at 1. This parameter is trivial in the single kink case since it could be absorbed
by redefining the flux quanta N , however, with multiple kinks this is no longer true and it
becomes a bonafide parameter. The domain for the building block potential is a quarter
of an ellipse satisfying

ρ ∈ [0, n
√
p(p+ 2)] , η ∈ [0, n(p+ 1)] , 1 ≥ η2

n2(p+ 1)2 + ρ2

n2p(p+ 2) , (3.4)

with focus at
ρ = 0, η = n . (3.5)

It is interesting to note that the level-sets of w are ellipses defined by

w(ρ, η; p, n) = α

1 + 2α , ⇔ n2

(1 + 2α)2 = η2

(p+ 1)2 + ρ2

(p− 2α)(p+ 2(α+ 1)) , (3.6)
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with focus at n. The maximal value of the level set is

wmax = p

2(p+ 1) , (3.7)

which is of course the value of the root of the disc, and occurs at ρ = η = 0. In terms of α
this corresponds to 2α = p and therefore we should take −1 ≤ 2α ≤ p.

We may rewrite the potential block V by first defining

ŵ(ρ, η; n) = 1√
2n

√
n2 + η2 + ρ2 +

√
(ρ2 + η2 − n2)2 + 4n2ρ2 , (3.8)

then

V(ρ,η; p, l,n) = l

2

{ 2η
ŵ(ρ,η;n)−η log

[ ŵ(ρ,η;n)+1
ŵ(ρ,η,n)−1

]
−n log

[nŵ(ρ,η;n)+η
nŵ(ρ,η;n)−η

]
− 2η
p+1 logρ

}
,

(3.9)

and we have removed the following term

δV = 2η
p+ 1 log[2n(p+ 1)] , (3.10)

from the original potential in (3.2) since it is a trivial term and does not appear in any of
the functions describing the solution as it is linear in η. Note that the potential satisfies

ρ∂ρV = 2lη
p+ 1

w(ρ, η; p, n)
1− 2w(ρ, η; p, n) = lη

p+ 1
p+ 1− ŵ(ρ, η;n)

ŵ(ρ, η;n) , (3.11)

which vanishes when either η = 0 or w = 0 (ŵ = p+ 1). The latter has a line of zeroes on
the ellipse defined in (3.4). The line-charge for the potential is

λ(η) =


pl
p+1η , 0 ≤ η ≤ n ,
nl − l

p+1η , n ≤ η ≤ n(p+ 1) .
(3.12)

3.2 Summing up building blocks

We now want to sum an arbitrary number of the building block potentials V(ρ, η; p, l, n)
with different integers p, l, n. We must take the l’s integer and we choose to take the n’s
integer too for later simplicity, this can always be arranged by the quantisation condition.
The p’s are no longer constrained to be integer though. Let us index the different potentials
by a subscript a with a = {1, . . . , f+1}, and order the na so that 0 < n1 < n2 < . . . < nf <

nf+1. The largest of the n’s, nf+1 is the end-point and we understand pf+1 = lf+1 = 0
and n0 = 0. Then, the general potential is

V =
f∑
a=1
V(ρ, η; pa, la, na) , (3.13)

and depends (naively) on 3f parameters in total. However, as can be seen from the form
of the potential in (3.9) the final potential actually depends only on 2f + 1 parameters:
the f la’s, the f na’s and the end-point nf+1, or equivalently the slope

rf = −
f∑
a=1

la
pa + 1 . (3.14)
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The resultant line charge from this general potential is

λ(η) =



η
(
rf +

∑f
a=1 la

)
, 0 ≤ η ≤ n1 ,

...
...

η
(
rf +

∑f
a=i la

)
+
∑i−1
a=1 lana , ni−1 ≤ η ≤ ni ,

...
...

η rf +
∑f
a=1 nala , nf ≤ η ≤ nf+1 ,

(3.15)

where

rf = −
∑f
a=1 nala
nf+1

. (3.16)

Generically the slope rf is not integer, but becomes integer if
∑f
a=1 nala = mnf+1 for

some integer m. The end-point nf+1 has been fixed by solving λ(nf+1) = 0 and assuming
that there is no other positive 0 of the line charge. If the line charge has a zero at a positive
value smaller than nf+1 we must cut off the line-charge there. Note by construction that
the line charge is convex and has kinks at na with change of slope la.11 The conditions
arising from flux quantisation impose (this follows straightforwardly from section 2.4 so we
do not repeat the analysis)

2
π`3p

na = Na ∈ Z ,
2
π`3p

nala ∈ Z , (3.17)

for all a. We may solve all these conditions by defining

N = 2
π`3p

g∑f
a=1 laPa

, (3.18)

where

Pa =
∏
b 6=a

(pb + 1) , P =
f∏
a=1

(pa + 1) , g = gcd
[
P

f∑
a=1

nala,
f∑
b=1

lbPb

]
. (3.19)

We end up with 2f + 1 independent quanta, the f changes of slope la and the f + 1
positions Na, Nf+1 included. We will relate combinations of these quanta to the field
theory parameters. The introduction of the integer N is useful for understanding the
holographic limit of the solution, however in comparing to the field theory it is more useful
to work with the integers Na and Nf+1.

One may wonder whether it is possible to extract out the building blocks used to
construct the potential. One can recover information about the location of the monopoles
of the building blocks and the associated change of slope, however there is no way to recover
the information about p. One can construct multiple choices of building block with fixed na
and la but varying pa giving rise to the same final configuration. In figure 3 we present four
examples of different building blocks giving rise to the same final theory with two kinks.
It would be interesting to understand whether one can understand this as the collision of
regular punctures giving rise to the composite regular puncture.

11If two of the na are equal then the change in the slope is the sum of the 2 l’s and there exists a value
for p such that the two potentials can be described by a single potential.
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η

λ(η)

n1 n2 n3

(a) Plot for p1 = 2, p2 = 2
5 .

η

λ(η)

n1 n2 n3

(b) Plot for p1 = 5
3 , p2 = 3

5 .

η

λ(η)

n1 n2 n3

(c) Plot for p1 = 1, p2 = 9
5 .

η

λ(η)

n1 n2 n3

(d) Plot for p1 = 2
3 , p2 = 6.

Figure 3. We plot various choices of the building blocks giving rise to the same theory. The red
line is the line charge of the composite potential which is identical in all four figures with end-point
n3 = 8. The black line is the line charge of the first building block giving the kink at n1 = 3 with
change of slope l1 = 15. The blue line is the second building block with kink at n2 = 5 and change
of slope l2 = 7.

Another interesting aspect of the superposition of these solutions is that one can find
solutions where the kinks and change of slope at the kinks are identical but the location of
the zero at nf+1 is changed. This hints that the information contained in the kinks labels
a regular puncture whilst the location of the non-trivial zero contains irregular puncture
data. This will motivate the proposal for the holographic dictionary we present in section 4.
We have plotted a few examples of this behaviour in figure 4.

The domain of (ρ, η) is fixed in a similar manner to the single kink case. We restrict to
the positive quadrant in the (ρ, η)-plane. Along ρ = 0 the circle with coordinate φ shrinks
smoothly, whilst along η = 0, V̇ = 0 and the S2 shrinks smoothly. The final bound is
obtained by solving V̇ = 0 away from η = 0 and is the analogue of the ellipse in the single
kink case. To understand the shape of the domain it is useful to recall that the level sets
of the function w defined in (3.3) are ellipses, with focus at n. We can then consider the
intersection of the various level sets of the building blocks V̇(ρ, η; pa, la, na). With the level
sets defined in (3.6), the condition V̇ = 0 becomes

f∑
a=1

la
pa + 1αa = 0 . (3.20)

We keep fixed pa, la, na and solve this for choices of αa subject to −1 ≤ 2αa ≤ pa. Clearly
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η

λ(η)

n1 n2

Figure 4. We plot four choices of line-charge with two kinks. Each has identical change of slopes
and kink locations but with different end-point n3. As we will show later from the kink locations
and changes of slope one may construct a Young diagram labelling the choice of regular puncture
of the sphere. On the other hand the location nf+1 will be data for the irregular puncture. The
solutions giving rise to the line charges plotted here are therefore dual to theories with the same
regular puncture but with a different irregular puncture.

for arbitrary values of the αa’s there may not be a solution, however for a fixed set of α’s
with solution this gives rise to a combination of f curves (either ellipses or hyperbolas)
which intersect at a point in the positive quadrant. Plotting all possible points as we vary
the possible α’s gives rise to a smooth curve going from (ρ, η) = (0, nf+1) to a point along
the η = 0 axis. This point along the η = 0 axis is a solution to a set of f coupled equations
and we are unable to give a closed form expression for this point. One must solve

n2
a(pa − 2αa)

(
pa − 2(αa + 1)

)
(1 + 2αa)2 = ρ2

∗ , ∀ a ∈ [1, f ] , (3.21)

subject to (3.20) for the f − 1 remaining αa’s and finally for the location ρ∗.

3.3 Observables

Central charge. We can now compute the central charge of the solution using the general
form from (2.96)

a =
( 2
π`3p

)3 1
4

∫ nf+1

0
λ(η)2dη

=
( 2
π`3p

)3 1
12

f∑
a=0

λ(na+1)3 − λ(na)3

ra
(3.22)

=
( 2
π`3p

)3 1
12

f∑
a=0

[
r2
a(n3

a+1 − n3
a) + 3rama(n2

a+1 − n2
a) + 3m2

a(na+1 − na)
]
,
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where we have used the short-hand

ma =
a∑
b=1

nblb . (3.23)

It is useful to split the various terms up, we may write the first term as

( 2
π`3p

)3 f∑
a=0

r2
a(n3

a+1 − n3
a) = N̂2Nf+1 +

f−1∑
a=0

[( f∑
b=a+1

lb
)2

(N3
a+1 −N3

a )
]
− 2 N̂

Nf+1

f∑
a=0

N3
a la ,

(3.24)
where

N̂ =
f∑
a=1

Nala , (3.25)

and we have used the quantisation conditions (3.17). The second term gives

( 2
π`3p

)3 f∑
a=0

rama(n2
a+1 − n2

a) =

− N̂2Nf+1 +
f−1∑
a=0

(
N2
a+1 −N2

a

)[ f∑
b=a+1

lb
] a∑
c=1

lcNc + N̂

Nf+1

f∑
a=1

N3
a la

(3.26)

whilst the third term gives

( 2
π`3p

)3 f∑
a=0

m2
a(na+1−na) = Nf+1N̂

2−Nf N̂
2+

f−1∑
a=0

[
N̂−

f∑
b=a+1

Nblb
]2(Na+1−Na). (3.27)

Putting everything together we have

a = 1
12Nf+1

{
N̂2N2

f+1 + N̂
f∑
a=1

N3
a la +Nf+1

f−1∑
a=0

(
(N3

a+1 −N3
a )
[ f∑
b=a+1

lb
]2

+
[ f∑
b=a+1

lb
][ a∑

c=1
Nclc

]
+ (Na+1 −Na)

[ a∑
b=1

Nblb
]2)
−NfNf+1N̂

2
}
. (3.28)

Scaling dimensions of BPS probe M2-branes. Using the result in (2.107) the scaling
dimensions of BPS probe M2-branes located at the kinks is given by

∆(Oa) = 2
π`3p

λ(na) = Na

( f∑
b=a

lb −
N̂

Nf+1

)
+
a−1∑
b=1

Nblb . (3.29)

It is convenient to rewrite this by first defining

Aa = Na

f∑
b=a

lb +
a−1∑
b=1

Nblb (3.30)

then

∆(Oa) = Aa
Nf+1 − N̂
Nf+1

+ (Aa −Na)
N̂

Nf+1
(3.31)

= Aa −Na
N̂

Nf+1
. (3.32)
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We will see that the combination Aa−Na appears later in the field theory section and can
be obtained by studying a Young tableau.

Flavour symmetries. Wemay also compute the flavour central charge due to the flavour
groups arising at the location of the kinks. From (2.109) we have that the central charge
at the a’th kink is

kFa = 4
π`3p

λ(na) , (3.33)

which gives

kFa = 2
[
Na

( f∑
b=a

lb −
N̂

Nf+1

)
+
a−1∑
b=1

Nblb

]
, (3.34)

with N̂ as given in (3.25). Note that this is twice the scaling dimensions of the BPS
operators considered above.

4 Field theory dual

In [24] the dual field theory of the disc solution that we reviewed in section 2 was identified
to be the 4d N = 2 theory (

IN̂,k̂, Ŷl
)
, (4.1)

with regular puncture given by the Young diagram Yl consisting of the rectangle with l

columns and N̂/l rows. This class of SCFTs are of Argyres-Douglas type and arise from
the low-energy limit of N̂ M5-branes wrapped on a sphere with irregular puncture of type
IN̂,k̂ and regular puncture with associated Young diagram Yl. Equivalently, they are the
compactification of the 6d N = (2, 0) AN̂−1 theory on the same punctured sphere.

Motivated by this we conjecture that the solutions we constructed in section 3 are the
holographic duals of the 4d N = 2 theories

(
IN̂,k̂ , Y

)
, (4.2)

where the Young diagram Y is a general partition of N̂ , not necessarily rectangular.
To keep this paper as self-contained as possible and to clarify the notation we will use,

we first review the Argyres-Douglas theories with emphasis on the observables that we can
match with the holographic solutions in section 4.1, the reader familiar with these theories
and their notation may safely skip this section. We then proceed to explain how to read
off the holographic dictionary between the gravity solutions in section 3, in particular from
the data contained in the line charge in equation (3.15), and the parameters of the field
theory. We show that the leading order contributions to the central charges from gravity
match the field theory results and in addition compare the scaling dimensions of certain
BPS operators.
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4.1 Review of Argyres-Douglas theories

Argyres-Douglas theories describe a set of 4d N = 2 SCFTs which admit fractional scaling
dimensions of the Coulomb branch operators and dimensional coupling constants. They
were first found in [41, 42] as a point on the Coulomb branch of pure N = 2 SU(3)
gauge theory and have been extended to many different constructions since [43–48]. They
are intrinsically strongly coupled theories and because of the non-integer Coulomb branch
operators the conformal fixed points cannot be described by a N = 2 Lagrangian gauge
theory.12

One can engineer Argyres-Douglas theories using geometric engineering, in particular
there are constructions in both type IIB and in M-theory. We will be concerned with
the class of theories which can be obtained by compactifying the 6d N = (2, 0) theory of
g=ADE type on a punctured sphere. If the punctures of the sphere are all of regular type
one obtains theories of class S, with integer scaling dimensions. If instead, one allows for
irregular singularities one can obtain Argyres-Douglas theories, [46, 48, 54].

One can only obtain a 4d N = 2 SCFT with an irregular puncture by compactifying
on a sphere and not on a higher order genus Riemann surface. The complex coordinate of
the Riemann surface should transform non-trivially under the U(1)R R-symmetry in the
presence an irregular puncture. As such, the puncture must be placed at a fixed point of
this rotational symmetry. In the space of Riemann surfaces, only the sphere admits a U(1)
action with fixed points. It follows that we may place an irregular puncture at one of the
poles of the sphere and at most one regular puncture at the other. Any other configurations
containing an irregular puncture, whether it be a different Riemann surface or with more
than one regular puncture, will not give rise to a N = 2 SCFT [46].13

The possible irregular punctures were classified in [46] using the Hitchin equation.
Similar to the classification of theories of type S one can identify the Seiberg-Witten curve
with the spectral curve of the Hitchin system on the sphere. The Hitchin system consists
of a pair of one-forms, (A, φ) one a gauge field and the other a Higgs field, each valued in
some Lie Algebra g. Hitchin’s equations are equivalent to imposing that the curvature of
A = A+ iφ is flat. Punctures correspond to singular solutions to Hitchin’s equations, the
form of which are constrained. Let z be a complex coordinate on the sphere and Φ(z) be
the holomorphic part of the Higgs field φ. Consider the six-dimensional AN̂−1 (2, 0) theory,
i.e. the Hitchin system is SU(N̂) valued. Then, for an irregular singularity at z = 0 the
Higgs field near the singularity behaves as one of the following three forms

Type I , Ik̂, N̂ : Φ(z) = T

z2+r + · · · , r = k̂

N̂
> −1 ,

Type II , IIk̂, N̂ : Φ(z) = T

z2+r + · · · , r = k̂

N̂ − 1
> −1 , (4.3)

Type III , IIIYl,··· ,Y1 : Φ(z) = Tl
zl + · · ·+ T1

z + · · · , Yl ⊂Yl−1 ⊂ · · · ⊂ Y1 .

12Despite this there are 4d N = 1 Lagrangian gauge theories that flow to Argyres Douglas theories, see
for example [49–53].

13Note that if there is no irregular puncture the complex coordinate of the Riemann surface does not
transform under the U(1)R R-symmetry and therefore the above analysis does not apply. One can allow
for an arbitrary number of regular punctures for any Riemann surface and obtain a theory of class S.
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The final dots denote non-divergent terms and the matrices T are SU(N̂) valued diagonal
matrices. For type I and type II theories they have N̂ independent eigenvalues whilst for
type III theories the degeneracy of the eigenvalues is encoded in the corresponding Young
tableaux Yi. The inclusion of a regular puncture with one of the above three irregular
punctures gives rise to a type IV theory. These theories are labelled by the choice of
irregular puncture P and regular puncture Y , and will be denoted (P, Y ). In this work
we will be interested in type IV theories where the irregular puncture is of type I. The
Seiberg-Witten curve takes the form

0 = xN̂ + zk̂ +
∑

(m,n)∈S
vm,nznxm , (4.4)

where S is defined by the Newton polygon for the theory. The scaling dimension of x and z
are fixed by taking the Seiberg-Witten differential x dz to have dimension 1, and therefore

[x] = k̂

k̂ + N̂
, [z] = N̂

k̂ + N̂
. (4.5)

We refer the reader eager for more details on the classification of irregular punctures and
Newton polygons, after this short and simplified review, to [46, 48].

4.2 Observables

Central charges. The main observable that we wish to compare to our gravity solutions
is the leading order contribution to the ‘a’-central charge. There is a “straightforward”
way of obtaining the central charge from knowledge of the central charge of the maximal
puncture theory and the regular puncture theory [55]. We will focus on the leading order
terms for large N̂ , k̂ and suppress the subleading terms. As explained in [55] the central
charges of the (IN̂,k̂, Y ) theory are equal to the sum of four pieces:

a = aY + N̂

N̂ + k̂

6IρY − N̂(N̂2 − 1)
12 + aIN̂,k̂ , (4.6)

c = cY + N̂

N̂ + k̂

6IρY − N̂(N̂2 − 1)
12 + cIN̂,k̂ . (4.7)

Here aY and cY are the standard contributions from the puncture Y , IρY is the embedding
index of SU(2) in SU(N̂) associated to the nilpotent vacuum expectation value which is
turned on to deform the full puncture to the puncture Y . Finally, aIN̂,k̂ and cIN̂,k̂ are the
central charges of the IN̂,k̂ theory, i.e. the theory with just the irregular puncture. Keeping
only the leading order terms the last terms contribute

aIN̂,k̂ = cIN̂,k̂ = k̂2N̂2

12(k̂ + N̂)
, (4.8)

to the total central charge. To understand the contributions from the regular puncture let
us set the conventions for the Young diagram. We will view the Young diagram as a series
of rectangles with height n̂a, a ∈ (1, f) and width la. In total the Young diagram consists
of N̂ =

∑f
a=1 n̂ala boxes, thus giving a partition of N̂ , see figure 5.
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n̂f

lf

1 lf. . .

. . . N̂

...

if−1. . .

...

· · · n̂a

la

ia. . .

... · · ·
i1. . .

... n̂1

l1

Figure 5. Our conventions for the Young diagram and its labelling. The boxes are labelled from
left to right, bottom to top and give a partition of N̂ . The corner boxes are distinguished and we
denote them by ia with a ∈ {1, . . . , f} and are defined in (4.17). By construction N̂ = if .

The embedding index in these conventions is

IρY = 1
6

f∑
a=1

n̂a(n̂2
a − 1)la , (4.9)

and this regular puncture leads to the flavour symmetry

Gflavour = S
( f∏
a=1

U(la)
)
. (4.10)

The final, as of yet unspecified, contributions are from aY and cY . Following the conventions
in [56] we have (dropping some obviously subleading terms)

aY = 1
6N̂

3 + 1
24
(
nh(Y ) + 5nv(Y )

)
, cY = 1

6N̂
3 + 1

12
(
nh(Y ) + 2nv(Y )

)
, (4.11)

where nh(Y ) and nv(Y ) are the effective number of hypermultiplets and vector multiplets
from the regular puncture. We have

nv(Y ) = −1
2
(
N̂2 − 1

)
+

f∑
a=1

n̂a∑
i=n̂a−1+1

( a−1∑
b=1

[
(n̂b − n̂b−1)

f∑
c=b

lc

]
+ (i− n̂a−1)

f∑
b=a

lb

)2
− n̂f N̂2

(4.12)

nh(Y ) = nv(Y )− 1
2 + 1

2

f∑
a=1

a∑
b=1

f∑
c=b

la(n̂b − n̂b−1)lc . (4.13)

Note that in the holographic limit nh(Y ) = nv(Y ) since the last two terms of (4.13) are
subleading. Moreover, the first terms in (4.12) are also subleading and can therefore be
dropped too leaving only the summation term. Note in addition that the summation term
contains terms with different scaling properties in the holographic limit.
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BPS operator scaling dimensions. There are a set of distinguished BPS operators
in the spectrum that we can compute the dimensions of and match to the supergravity
solution. To proceed we label the boxes of the Young diagram, working from left to right
and bottom to top. To the j’th box we associate the number sj = j − height(j). The
f boxes on the far right which have no box above them are distinguished and we denote
them by ia. They correspond to operators associated to monomials of the form

Oa
zsia x

N̂−ia , (4.14)

in the Seiberg-Witten curve. We may compute their dimension by using the dimension of
the coordinates x, z:

[x] = k̂

k̂ + N̂
, [z] = N̂

k̂ + N̂
. (4.15)

It thus follows that the operator Oa has dimension

[Oa] =
(
N̂ − (N̂ − ia)

)
[x] + sia [z]

= ia − height(ia)
N̂

k̂ + N̂
. (4.16)

For the Young diagram pictured in figure 5 and focussing on the a’th distinguished box at
the a’th right-most corner (working form below) we can write

ia = na

f∑
b=a

lb +
a−1∑
b=1

nblb , height(ia) = na , (4.17)

and the conformal dimension becomes

∆(Oa) = na

f∑
b=a

lb +
a−1∑
b=1

nblb − na
N̂

k̂ + N̂
. (4.18)

Flavour central charges. With the above operator dimensions in hand it is a simple
matter to compute the central charge of the a’th non-abelian gauge factor. Following the
conjecture in [57] the flavour central charge is twice the conformal dimension of the operator
located the corresponding right-most box of the Young diagram. Using the results above
we have

kFa = 2
[
na

f∑
b=a

lb +
a−1∑
b=1

nblb − na
N̂

k̂ + N̂

]
. (4.19)

4.3 Setting up the holographic dictionary

We now want to understand how to map the gravity parameters to the field theory pa-
rameters introduced in the previous section. One may ask whether we can use the rules
of [2] to construct a dual quiver theory. The short answer is that generically we cannot
apply the rules to construct a quiver. Given that the (IN̂,k̂, Y ) theories are generically
non-Lagrangian this is somewhat reassuring since we wish to identify them as a dual pair.
To see why application of the rules in [2] for constructing a quiver fails one should note
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the non-integer slopes of the line-charge for the solutions discussed here. In [2] they are
taken to be integer, which is a requirement for constructing a dual quiver since the values
of the line charge at the integer values of η become the ranks of the gauge groups in the
quiver. We emphasise that having integer slopes for the line charge is not a requirement of
a well-defined supergravity solution, only that the change of the slopes at the kinks is inte-
ger. For certain choices of the parameters we can make the slope rf integer, and therefore
all the other slopes too, which allows for the construction of a dual quiver theory, however
this is not a generic choice one can make and so we will not focus on this possibility.

Recall that the line charge depends on 2f + 1 parameters, the f changes of slopes la,
the f kink locations na and the end-point nf+1. The field theory we conjecture is dual also
has 2f + 1 parameters: the integer k̂ and the 2f parameters describing the Young diagram
giving a partition of N̂ . We conjecture that the dictionary between the field theory and
gravity solutions is

k̂ = Nf+1 − N̂ , N̂ =
f∑
a=1

Nala , (4.20)

with the identifications
n̂a = Na , lSCFTa = lSUGRA

a , (4.21)

where the Na are defined in equation (3.17) as

2
π`3s

na = Na ∈ Z . (4.22)

Note that this reduces to the identifications made for the disc solution in [24] as it should.

4.4 Matching of observables

We now want to match the central charge of the proposed field theory with the gravity
result in (3.22) using the above dictionary. The large N limit is obtained by taking the
n̂a’s, N̂ and k̂ all large and of the same order. It is useful to note that the central charge
coming from field theory may be written as

a = 1
12Nf+1

[
N2
f+1N̂

2 + 3Nf+1nh(Y ) + N̂
f∑
a=1

n̂3
ala

]
(4.23)

where we have used our dictionary which gives k̂+ N̂ = Nf+1. It is helpful to compare the
Nf+1 coefficients. The first and last terms match on the nose with the gravity expressions.
The second term is not as obvious but after a short but not particularly enlightening
calculation, and removing subleading terms one finds that this term also matches between
the field theory and gravity result. We conclude that the central charge of the gravity
solution we discuss in section 3 and the central charge of the (IN̂,k̂, Y ) theories match to
leading order given the holographic dictionary in section 4.3.

Similarly we may check the match for the scaling dimension of the probe BPS M2-
branes we studied in section 3.3. These BPS M2-branes were located at the monopole
positions or kinks in the line charge. In terms of the Young diagram these should cor-
respond to the distinguished operators at the right-most corners. Comparing (4.18) with

– 33 –



J
H
E
P
0
7
(
2
0
2
2
)
1
0
2

the gravity result in (3.32) by using the dictionary (4.20) and (4.21) we find perfect agree-
ment. Additionally since the flavour central charges on both sides is given by twice the
dimensions of the corresponding state/operator they clearly match given the matching of
the conformal dimensions.

One interesting point to consider is when one can draw a dual quiver using the pre-
scription in [2]. As we explained earlier, their prescription for drawing a dual quiver given
a line charge, relies on the slope of the line charge being integer. In our setup this follows
if the slope rf in (3.16) is integer, which imposes

− rf = N̂

k̂ + N̂
= [z] ∈ Z . (4.24)

Thus, for these theories the scaling dimensions of the operators we consider are integer. The
non-integer slope of the line charge is therefore essential for obtaining theories containing
operators with non-integer scaling dimensions. A final check of the proposed duality is to
study the quiver following from the prescription in [2] when we take the slope of the line
charge to be integer. Constructing the quiver following the prescription in [2] one can show
that the central charges match exactly with the ones presented in (4.6)–(4.7), including
subleading terms. This gives added evidence that our conjectured duality is correct.

5 Conclusion

In this paper we have studied the holographic duals of the Argyres-Douglas theories(
IN̂,k̂ , Y

)
, (5.1)

with Y an arbitrary regular puncture generalising the work in [24]. We have shown that
there is a perfect match between the field theory and gravity solutions in the holographic
limit. It would be interesting to go beyond the leading order analysis conducted here and
compute subleading corrections on the gravity side, for example to study the gravitational
anomaly a− c and check the matching of the central charges more generally. Recently, 4d
N = 2 SCFTs with a = c have been constructed in [58] with the holographic duals currently
unknown. It is natural to wonder whether using similar singular gravity solutions as those
in this paper one can construct the duals of these theories too.

One of the results of our analysis which deviates from folklore are the necessary con-
straints a line charge must satisfy to give rise to a well-defined N = 2 AdS5 solution
using [2]. We have seen that it is necessary for the integer condition of the slope to be
relaxed if the line charge does not plateau. This can be reinterpreted as the T2 fibration
of the internal manifold being quasi-regular as opposed to regular when the slopes are all
integer. This leads to M5-branes wrapping cycles in this torus and in the quasi-regular
case the dual SCFT is non-Lagrangian and dual operators have fractional dimensions. The
gravity analysis then gives a concrete condition on when one can construct a dual quiver
and additionally by using the rules in [2] how to do this. It seems worthwhile to see
whether relaxing this condition in previously studied solutions in the literature gives rise
to interesting solutions which have been missed previously.
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There remain a number of interesting avenues to pursue. For example it remains to
construct the holographic duals of spheres with the other types of irregular puncture. We
have constructed the holographic dual for the most general type IV theory using a type
I irregular puncture however a holographic dual for the theories using the other irregular
punctures is currently missing. In a similar vein it would be interesting to construct the
holographic duals of the Argyres-Douglas theories constructed from the 6d N = (2, 0)
D-series theory, one may obtain some inspiration from [59]. Further constructing the
SCFT duals for the other disc compactifications is an outstanding problem. For the D3
discs, [25, 26] it is tempting to conjecture that this is dual to N = 4 SYM on a punctured
sphere which preserves N = (2, 2) in 2d. Similarly the field theory dual for M2-branes
on a disc [18, 27] should correspond to ABJM on a punctured sphere, and for the D4-
D8 system [28] to 5d N = 1 USp(2N) theory on a punctured sphere. In a similar spirit
identifying the dual field theories for compactifications on a spindle still remains an open
problem.
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A Special limits of the 7d metric

In this section we will show that both the Maldacena-Nunez solution [1] and AdS7 can be
obtained from the metric in (2.1) as special limits. We will first study the AdS7 solution
before studying the limit for the Maldacena-Nunez solution. We will focus on the uplifted
11d solution (2.27) in the following for ease of comparison.

A.1 AdS7

Since the AdS7 solution should not be supported by any gauge fields we must set them to
be pure gauge. We may achieve this by setting s1 = s2 = 0. Note that this implies that the
scalars are set to 1, which is indeed the correct supersymmetric constant values. Changing
coordinates to w = cosh2 ζ, z = 2ẑ and µ = sin θ the metric becomes

ds2
11 = 4

(
cosh2 ζds2(AdS5) + sinh2 ζdẑ2 + dζ2

)
+ dθ2 + cos2 θds2(S2) + sin2 θdφ2

1 , (A.1)

which is the metric on AdS7×S4. We therefore see that the metric in (2.27) has as special
limit AdS7 × S4. Note that the s1 = s2 = 0 is one of the special end-points for the range
of well-defined values for s1 at fixed s2 = 0. It is the value for which P (w) obtains a 4-fold
root and f(w) obtains a triple root.

The potential giving the AdS7 solution in the electrostatic description is

V = η log r + 1
2 cos θ + 1

4 log
(1− cos θ

1 + cos θ

)
, (A.2)
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where η = 1
2 cos θ cosh 2ζ, r = sin θ sinh2 ζ. This can be obtained by taking a suitable limit

of the general potential we give in (3.2).

A.2 Maldacena-Nunez solution

We noted in the main text that there is a second special point in s1 parameter space with
s2 = 0 fixed, namely s1 = −1

4 . At this point the roots of f(w) are w = 0 twice and w = 1
2

twice. We noted earlier that since w = 1
2 is now a double root the metric at this end-point

looks locally like H2 rather than R2/Zl as at a generic value −1
4 < s1 < 0. Indeed, as we

will show momentarily by taking a suitable scaling limit to this point in parameter space
we find the Maldacena-Nunez solution.

First, let us take µ = sin θ and perform the rescalings14

l1 = −1
4 , w = λ

y
+ 1

2 , z = −x
λ
, (A.3)

whilst also performing the coordinate shift

φ1 → φ1 −
x

λ
, (A.4)

which removes a singular term from the gauge field. Expanding around λ = 0 the metric
becomes

ds2
11 = 1

2(1+cos2 θ)1/3
[
4ds2(AdS5)+2dθ2+ 2cos2 θ

1+cos2 θ
ds2(S2)+ 4sin2 θ

1+cos2 θ
(dφ1+y−1dx)2

+ 2
y2

(
dy2+dx2

)]
, (A.5)

which is precisely the metric in [1], with the coordinates used there. We therefore find that
the same metric can be globally completed to obtain three seemingly distinct solutions,
disc solutions, Maldacena-Nunez solution and pure AdS7. It is interesting to note that
the Maldacena-Nunez solution preserves supersymmetry via a topological twist whilst the
disc solution does not involve a topological twist but an altogether different mechanism,
in particular the Killing spinors of the disc are not independent of the disc coordinates as
they would be for a topological twist.

The electrostatic potential for the Maldacena-Nunez solution is

V = η log r + 1
2 cos θ + 1

4 log
(1− cos θ

1 + cos θ

)
, (A.6)

where η = 1+y2

4y cos θ, r = y−1
y+1 . This can also be obtained from the general potential we

provide in (3.2) after performing the limit in (A.3).

14The coordinate names have been chosen to match the conventions in [1] and y has no relation to the y
introduced earlier in the main text.
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B Anomaly inflow

In this section we will study the global symmetries and ‘t Hooft anomalies of the dual SCFT
by using anomaly inflow methods [60–62]. This section is an extension of the computations
performed in [24] to account for the more general flavour symmetry that our solutions
exhibit, as such we will present the bare bones computation when there is no risk of
confusion.15 The ultimate goal of this section is to give an independent derivation of the
observables studied in the gravity theory and to understand the breaking of a u(1) isometry
algebra by a Stückelberg mechanism as observed in [24].

We want to understand the anomalies of the 4d SCFT living on a stack of M5-branes
compactified on a punctured sphere. The 6d internal space, M6 arising in the holographic
solution encodes the information about the global symmetries and anomalies of the theory.
Following [62] one excises a small tubular neighbourhood around the stack of M5-branes,
giving the 11d space spacetime a boundary ∂M11 = M10. M10 is a fibration of M6 over
the 4d worldvolume W4 on which the 4d SCFT lives. The fibration is determined by the
gauge connections for the continuous symmetries of M6 which descend to symmetries of
the 4d SCFT. From the magnetic source G4 for the M5-brane stack one can define a closed,
globally well-defined four-form E4 on M10, with integral periods, which is invariant under
the structure group of the fibration and when restricted to M6 reduces to G4. The presence
of the boundary in 11d leads to the topological terms of 11d supergravity no longer being
invariant under gauge transformations of background fields on W4. The variation of the
Chern-Simons terms give rise to a 10-form linear in the gauge parameters which, via the
decent procedure is related to an anomaly 12-form I12 which encodes the anomalies of the
theory and takes the form

I12 = − 1
(2π`p)9

1
3!E4 ∧ E4 ∧ E4 . (B.1)

The 6d anomaly polynomial of the 4d SCFT, in the holographic limit, is given by

ISCFT6 = −
∫
M6
I12 , (B.2)

with the integration over the M6 fibers.

B.1 Constructing E4

We now want to construct E4 for the background in the main text. We will gauge all
the symmetries in M6. As in [24] one finds that there is a spontaneous breaking of the
continuous symmetries of M6 by a Stückelberg mechanism. We will review this quickly for
completeness, but refer the reader there for further details. The four-form takes the form

G4 = dvol(S2) ∧
[
dfχ(ρ, η) ∧ dχ+ dfβ(ρ, η) ∧ dβ

]
, (B.3)

with
fχ(ρ, η) = −4V̇ 2V ′′

∆̃
, fβ(ρ, η) = 2

( V̇ V̇ ′
∆̃
− η

)
. (B.4)

15We will use a different presentation in terms of coordinates adapted to the electrostatic description in
which our solution is naturally written.
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We may gauge the continuous isometries of M6, in total we have the SU(2) and two U(1)’s
to gauge. This is implemented by the replacements

dβ → Dβ = dβ +A1 , dχ→ Dχ = dχ+A2 , dvol(S2)→ 4πe2 , (B.5)

with e2 the global angular form of SO(3). Let us introduce the index notation, I = {1, 2} ≡
{β, χ} then the most general form for E4 is

(2π`p)3E4 = Gd→D
4 +

2∑
I=1

F I ∧ ωd→D
I +

2∑
I,J=1

σ(IJ)F
I ∧ F J , (B.6)

with F I = dAI , ωI two two-forms on M6 and σ(IJ) three real scalars on M6. Imposing
that E4 is closed allows us to fix the two-forms ωI and scalars σ(IJ):

∂IyG4 + dωI = 0 , ∂(IyωJ) + dσ(IJ) = 0 . (B.7)

We have
∂IyG4 = −d

[
4πfI(ρ, η)e2

]
, (B.8)

which are both globally well-defined forms on M6. However, only for I = 2 = χ is this an
exact form as is necessary to satisfy (B.7). To see this consider the degeneration along the
smeared brane where the S2 shrinks. For the two-form fI(ρ, η)e2 to be globally well-defined
we require that fI(ρ, η) vanishes there since the two-sphere shrinks there. From (B.4) we
see that on the smeared brane locus where V̇ = 0 only fχ vanishes there whilst fβ does not.
The smeared brane source giving rise to the irregular puncture leads to the failure for fβ
to vanish and thus this acts as an obstruction to constructing E4 as above. As explained
in [24] this requires the introduction of an axion which leads to the spontaneous symmetry
breaking of the gauge field Aβ .

Following [24] one introduces an axion α with field strength f̂ which satisfies

df̂ =
2∑
I=1

qIF
I , (B.9)

and modifies the ansatz for E4 to take the form

(2π`p)3E4 = Gd→D
4 +

2∑
I=1

F I ∧ ωd→D
I +

2∑
I,J=1

σ(IJ)F
I ∧ F J + f̂ ∧ Λ , (B.10)

with
Λ = −4πdfβ ∧ e2 . (B.11)

Closure of E4 implies

∂IyG4 + dωI + qIΛ = 0 , ∂(IyωJ) + dσ(IJ) = 0 . (B.12)

It then follows that imposing closure fixes

ω1 = 0 , ω2 = −4πfχe2 , σ(IJ) = 0 , q1 = −1 , q2 = 0 . (B.13)
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The Bianchi identity for the axion field strength is

df̂ = −F 1 , ⇒ f̂ = dα−A1 . (B.14)

As shown in [24] this leads to the U(1) gauge field A1 becoming massive via a Stückelberg
mechanism leading to the symmetry being spontaneously broken.

We now want to include the contributions of the flavour symmetries. Recall that at
the locations of the kinks of the line-charge the metric is locally the orbifold R4/Zla and
leads to an SU(la) flavour symmetry. The orbifold leads to la − 1 resolution two-cycles
on which we may wrap the three-form potential C3 leading to la − 1 abelian gauge fields
for each kink. Let the resolution two-cycles be denoted by ωa,i with i ∈ {1, . . . , la − 1}
and a ∈ {1, . . . , f}. These should be understood to be localised at the kink locations and
therefore the intersection of any two of these two-cycles located at different kinks is zero.
The intersection pairing then gives∫

R4/Zla
ωa,i ∧ ωa,j = −Csu(la)

ij . (B.15)

We can now turn on background gauge fields Aa,i, with field strength Fa,i again with
i ∈ {1, . . . , la − 1} and a ∈ {1, . . . , f} by including the term

∆E4 =
f∑
a=1

la−1∑
i=1

ωa,i ∧ Fa,i . (B.16)

B.2 Anomaly polynomial from anomaly inflow

We can now insert the ansatz for E4 into the 12-form anomaly polynomial and integrate
over M6 to obtain the anomaly polynomial for the 4d theory. To proceed we need a few
results that may be extracted from the literature. The Bott-Cattaneo formula [63] gives∫

S2
e2 = 1 ,

∫
S2
e2 ∧ e2 = 0 ,

∫
S2
e2 ∧ e2 ∧ e2 = −c2(SU(2)R) , (B.17)

whilst the gauge field Fχ has bundle

Fχ = −4πc1(U(1)r) , (B.18)

and
la−1∑
i,j=1

C
su(la)
ij Fa,i ∧ Fa,j = 2c2(SU(la)) . (B.19)

The final result is due to non-perturbative M2-brane states which enhance the U(1)la−1

symmetry to the full non-abelian symmetry SU(la) as opposed to its Cartan.
Plugging all these ingredients into (B.2) we find

ISCFT6 = −c1(U(1)r) ∧ c2(SU(2)R) 1
2(π`p)3

∫
df2

χ ∧ dfβ

+ 4
π`3p

f∑
a=1

λ(na)c1(U(1)r) ∧ c2(SU(la)) .
(B.20)
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This should be compared with the anomaly polynomial of class S which reads

IclassS6 = (nv − nh)
[1

3c1(U(1)r)3 − 1
12c1(U(1)r) ∧ p1(T 4)

]
− nvc1(U(1)r) ∧ c2(SU(2)R)

+
∑

flavours
kF c1(U(1)r) ∧ c2(SU(fa)) . (B.21)

We can immediately read off the flavour symmetry for the a’th kink,

kFa = 4
π`3p

λ(na) , (B.22)

in agreement with the result we used from [2].
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