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1 Introduction and summary

Strongly coupled quantum field theories have been a subject of intense interest in theoretical
physics because they help us to understand fundamental aspects of nature such as, for
example, confinement in gauge theories. However, these theories pose a formidable theoretical
challenge since traditional perturbative tools become ineffective. Over the last 25 years,
holography has offered an alternative method to explore this elusive regime. This duality
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establishes a connection between certain supersymmetric quantum field theories and higher-
dimensional gravity theories and gives valuable insights into the strongly coupled dynamics
of the quantum field theories by investigating their dual gravitational descriptions. This
remarkable development has opened up various new avenues of research, revealing profound
connections between quantum gravity and supersymmetric quantum field theories. As a
result, it has become an indispensable tool in understanding some of the most enigmatic
aspects of theoretical physics.

A particularly significant set of examples of such strongly coupled field theories are the
four-dimensional N = 2 (generalised) Argyres-Douglas theories [1, 2]. A large subset of these
theories appear at singular points on the moduli space of N = 2 gauge theories, far away
from weak coupling, where non-local dyons become simultaneously massless [3, 4]. For this
reason, these theories are intrinsically strongly coupled and evade a conventional Lagrangian
approach. Although notoriously hard to access, their existence has been firmly established
using both field theoretical and string theoretical arguments.

A particularly notable construction of these theories involves the compactification of
the six-dimensional N = (2, 0) theory on a sphere with two punctures — one regular and
one irregular [2, 5–7]. Specifically, within the framework of (2, 0) theories of type AN−1
this set-up corresponds to M5-branes wrapping this punctured sphere. This M-theory
construction introduces a new avenue for investigating these theories via holography. Indeed,
the works [8, 9] (see also [10, 11] for the generalisation to generic regular punctures) argued
that these theories can be effectively studied through dual supergravity solutions of the form
AdS5 ×D, where D topologically is a two-dimensional disc.

These supergravity backgrounds in question, are similar in nature to those corresponding
to M5-branes wrapped on a (possibly punctured) higher genus Riemann surface, [12–15]
which preserve supersymmetry via a topological twist. One crucial difference arises from
the type of metrics that exist on the wrapped two-dimensional surface D, which necessitates
a different way of preserving supersymmetry. The metric on the higher genus Riemann
surfaces considered in [12–15] have constant curvature, whereas the metric on the disc and its
closely related cousin, the spindle, do not admit constant curvature metrics. Consequently,
supersymmetry cannot be preserved via a topological twist, but rather using an altogether
different mechanism.

For spindles [16–40] supersymmetry can be preserved in two ways, the twist or the
anti-twist [26]. The twist is topologically a topological twist, with the total R-symmetry
flux threading through the spindle precisely cancelling the integrated curvature (Euler
characteristic). The anti-twist on the other hand, is even more novel, the total R-symmetry
flux through the spindle is not equal to the Euler characteristic, yet supersymmetry is still
preserved. Both twists have one crucial ingredient in common, namely that the R-symmetry
vector mixes with the isometry of the spindle. In a similar vein, supersymmetry is preserved
on the disc by mixing the R-symmetry with the isometry of the disc. The situation on
the disc is similar to the anti-twist in that the total R-symmetry flux threading through
the disc [24, 41–46] is not equal to the Euler characteristic. We emphasise, however, that
the mechanism differs from the anti-twist and should be seen as a separate mechanism to
preserve supersymmetry. One can interpret this mechanism as the twist required to preserve
supersymmetry in the presence of an irregular puncture which necessitates the mixing of
the sphere isometry with the R-symmetry [2].
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Following the success of the spindle and disc solutions, a natural question is whether one
can generalise such wrapped brane solutions to higher-dimensional orbifolds. Generalisations
of this type have indeed been studied in [47–49] and through our work we will be able to
further extend these results.

Summary of results. In this paper, we study particular aspects of the holographic duals
of (generalised) Argyres-Douglas theories. In the first part of the paper, we comment on
a puzzle raised in [9] regarding the global symmetries of the holographic duals. In the
second part of the paper, we construct a consistent truncation of seven-dimensional maximal
gauged supergravity on the disc down to five dimensional supergravity allowing us to probe
more general states and observables of the dual SCFTs as well as construct new solutions
corresponding to M5-branes wrapped on higher-dimensional orbifolds.

Argyres-Douglas SCFTs generically possess a single U(1) global symmetry corresponding
to the superconformal R-symmetry.1 However, in the holographic duals constructed in [8–11]
the supergravity background always contains two U(1) isometries. The second isometry can
be seen as a remnant of the smearing of the M5-branes over a circle in the internal space. This
smearing is in line with the expectation from the Seiberg-Witten geometry which indicates
that near the irregular puncture the M5-branes should be intrinsically separated [7]. This
smeared set-up is however merely a remnant of the supergravity description and subleading
contributions in 1/N are expected to lift the smearing resulting in a localised distribution
of (stacks of) M5-branes along the smeared directions. Localising the branes along the
smearing circle breaks the additional U(1) symmetry, resulting in the correct number of
global symmetries. In [9] the absence of this second U(1) was argued for by considering
anomaly inflow and the equivariant completion of the four-form flux. They showed that global
properties of the solution require the presence of an axion, which through the Stückelberg
mechanism, gives a mass to one of the gauge fields, breaking the unwanted U(1).

Given that this additional U(1) is not an essential ingredient and, stronger even, is
supposed to be broken in a bona fide holographic dual it should be possible to explicitly
break it and thus give a direct realisation of the proposed Stückelberg mechanism. In the
first sections of this work we set out to accomplish exactly this. The solutions we will
discuss can be obtained by adding a scalar Y1, analogous to the axion in the Stückelberg
mechanism, parameterising an SL(2)/SO(2) coset.2 Similar to the original spindle and
disc the local solution we consider can be obtained as an analytic continuation of the BPS
bubbling solutions constructed in [50] and further discussed in [51]. Our solutions, however,
are markedly different when we consider global aspects. Indeed, the straightforward analytic
continuation of these bubbling solutions results in a non-compact two-dimensional surface.
Such solutions interpolate between a geometry of the form AdS5 times a conical defect and
an asymptotic AdS7 geometry. Instead of describing a four-dimensional SCFT, they can be

1Strictly speaking, this is only true when gcd(N, k) = 1, where N and k are parameters defining the
Argyres-Douglas theory (For more details see [2]), since for non co-prime N and k the field theory possesses
additional global symmetries, however, these additional symmetries are realised holographically in a different
way, distinguishing them from the ‘unwanted’ U(1) symmetry discussed henceforth.

2One can parameterise this coset with one complex scalar. However, one degree of freedom can be absorbed
in the gauge field, which ultimately becomes massive. After fixing the gauge, the scalar therefore carries one
real degree of freedom.
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interpreted as defects in the six-dimensional N = (2, 0) theory. This situation is very similar to
the set-up considered in [52, 53] and indeed, using our local solution one can straightforwardly
proceed to analyse more general defects within the six-dimensional N = (2, 0) theory.

Moving from the local solution to a global completion corresponding holographically
to a genuine 4d SCFT, i.e. with a compact two-dimensional internal space D, proves to be
somewhat subtle. Indeed, as we will show it is impossible to find N = 1 backgrounds of
this kind with the additional scalars turned on.3 The local solutions depend crucially on
one function f(w), whose roots determine the boundaries of the range of the coordinate w
of the two-dimensional internal space.4 The (non-)compactness of the internal space D is
then fully determined by whether this range is (non-)compact. The outcome of our analysis
is that compact solutions with an extra scalar only exist when one of the end-points of the
line interval is at w = 0. For the case where this is a root of f(w) the solution simplifies
and undergoes supersymmetry enhancement, preserving N = 2 supersymmetry. When the
scalar is turned off these backgrounds are exactly the ones described in [8, 9] conjectured
to be dual to a class of generalised Argyres-Douglas theories. The effect of turning on the
scalar Y1 is precisely to break one of the two U(1) isometries by providing a mass term for
the corresponding gauge field. As such we provide an explicit realisation of the breaking
of the unwanted U(1) symmetry of the original background.

In order to support our claims and further analyse our solutions, we uplift them to
eleven-dimensional supergravity and embed them into the most general form of N = 2 AdS5
solutions [50]. This allows us to compute a range of holographic observables, including
central charges, R-symmetry anomalies, and a set of conformal dimensions of operators
corresponding to wrapped M2-branes. These observables can be computed on both sides
of the duality, and we show that they match exactly in the large N limit. In addition, this
allows us to further scrutinise the local internal geometry corresponding to the (ir)regular
puncture on the sphere. In particular, we note that near the regular puncture, the scalar
field Y1 tends to zero, locally restoring the additional U(1) global symmetry. Therefore, close
to the puncture, we can use this symmetry to transform the system into an electrostatics
problem using a Bäcklund transform [54] and find local solutions for a more general type
of regular punctures. However, unlike the case without the additional scalar field Y1, when
moving away from this locus, the second U(1) is broken, which implies that we may not
perform a global Bäcklund transformation as was used in [10, 11] in order to construct a
global solution with generic regular punctures.

In the second part of the paper, we shift our focus to a different facet of the Argyres-
Douglas theories. In particular, we set out to explore more general solutions of seven-
dimensional supergravity by allowing for more general five-dimensional manifolds. Such
solutions come in different flavours, some describing more general states in the Argyres-
Douglas theories, whereas other describe the compactification of the Argyres-Douglas theory
on a generic Riemann surface as well as the compactification of the N = (2, 0) theory on
four-dimensional orbifolds.

3Preserving only N = 1 supersymmetry, one can in principle turn on two scalars Y1,2. However, both of
them are prohibited when one demands the internal space to be compact.

4There is also another possibility that the space ends at w = 0 without this necessarily being a root of
f(w). We will not comment further on this possibility here.
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The main tool we use to construct these solutions is the development of a consistent
truncation of the seven-dimensional maximal SO(5) gauged supergravity to five-dimensional
Romans’ SU(2)×U(1) gauged supergravity [55]. We construct this truncation by considering
the truncation of the LLM geometry to Romans’ supergravity considered in [56] and subse-
quently specialising their results to our case of interest, namely M5-branes wrapped on a disc
both with and without the additional scalar Y1. Similar truncations for M5-branes wrapped
on smooth (higher genus) Riemann surfaces and spindles to minimal supergravity have been
studied in [47, 57, 58] as well [59] to maximal gauged supergravity in five dimensions.5 With
this truncation at hand we are now free to take any solution of five-dimensional Romans’ su-
pergravity and automatically obtain a corresponding solution of seven-dimensional maximally
gauged supergravity. Constructing solutions in the five-dimensional gauged supergravity
theory is often much easier than constructing the corresponding wrapped brane solutions
directly in seven or eleven dimensions and hence this method gives us access to a wealth
of new information.

As a first application one could consider more general asymptotically locally AdS5 solu-
tions of Romans’ supergravity. Through our novel consistent truncation such backgrounds
holographically probe more general states in the dual Argyres-Douglas theories, the prime
example of this being black hole backgrounds. These backgrounds correspond to the chaotic
high energy regime of the dual SCFT dominating the high energy physics. As such, the
Bekenstein-Hawking entropy of these supersymmetric black holes reproduces the supercon-
formal index of the dual Argyres-Douglas theories. Indeed, recently there has been a lot of
activity studying the thermodynamic and microscopic properties of supersymmetric AdS black
holes and their dual SCFT description, see for example [60] and references therein. Follow-
ing [58], one can compute the black hole entropy and match it to the large N index of the dual
Argyres-Douglas theories. We leave this kind of exploration to a future research endeavour.

A second application of our consistent truncations consists in finding new solutions
corresponding to M5-branes wrapped on more general (higher-dimensional) orbifolds. Starting
with [16] and subsequent generalisations, it has been appreciated that there are more general
ways of preserving supersymmetry on two-dimensional spaces with conical defects. A natural
generalisation of this line of thought is to consider higher-dimensional orbifolds. This option
has been explored in [25, 47, 48] for M5-branes and D4-branes wrapped on four-dimensional
orbifolds. In these works the four-dimensional orbifold has been obtained as a warped
products of two spindles. In particular in these cases the lower dimensional theory was always
the minimal supergravity theory which only allows for spindle solutions but not discs.

In this work, we generalise this set-up and instead consider five-dimensional solutions
of the form AdS3 ×D and AdS3 ×Σ, where Σ denotes the spindle, and uplift them to seven
dimensions to obtain the corresponding AdS3 ×D×D and AdS3 ×Σ×D solutions. We discuss
in detail the parameter space of such local solutions and show that at generic loci in the
parameter space, the disc originating from the seven-dimensional solution is non-trivially
fibred over the second disc or spindle. Therefore, the resulting seven-dimensional solutions
describe a stack of M5-branes wrapped on a genuine four-dimensional orbifold. On the other
hand, for a specific class of D × D solutions, the fibration becomes trivial. In this case, the

5Considering the (singular) limit to H2, we recover the truncation of [59].
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uplifted solution represents a stack of M5-branes wrapped on a factorised four-dimensional
space, consisting of two discs D × D. Finally, our truncation enables the straightforward
construction of AdS3 ×Σg ×D solutions, where Σg denotes Riemann surface of genus g.6 This,
in turn, permits us to employ holography as a means to probe the physics of Argyres-Douglas
theories compactified on a generic Riemann surface.

Structure of this paper. The remainder of this paper is organised as follows. In section 2,
we present the relevant supergravity solutions in seven dimensions. Subsequently, in section 3,
we discuss their uplift to eleven-dimensional supergravity and analyse the novel aspects of
our solutions and their impact on the symmetries and anomalies of the dual SCFTs. In
section 4, we explore a consistent truncation on the disc and study a selection of novel disc
solutions and their implications through the holographic correspondence. We finish with a
discussion of future directions in section 5. Further technical details and a demonstration
of the absence of analogous solution for backgrounds corresponding to M5-branes wrapping
a spindle are expounded upon in appendices A–D.

2 Supergravity solutions

We begin by introducing the supergravity solutions of interest and analyse their properties.
Generating explicit solutions directly in the context of eleven dimensional supergravity is
known to be a difficult task. Therefore, we adopt a two-step strategy: initially constructing
these solutions in seven-dimensional gauged supergravity, and subsequently uplifting them
to eleven dimensions.

2.1 Seven-dimensional background

The seven-dimensional theory of interest is maximal SO(5) gauged supergravity [61] which
can be obtained by compactifying eleven-dimensional supergravity on a four-sphere. In order
to construct our solutions we will restrict ourselves to a further truncation to U(1)2 gauged
supergravity. This truncation contains the metric a three-form C, two gauge fields A(i),
two real neutral scalars Xi and two additional complex scalars Yi, each charged under one
of the U(1)’s.7 For more details on these truncations, as well as the BPS equations and
equations of motion see appendix A.

We are interested in AdS5 solutions corresponding to M5-branes wrapped on the spindle
or disc, as such we choose the following ansatz for the metric,

ds2
7 = (wH(w))

1
5

(
ds2

AdS5 +
w

4f(w)dw
2 + f(w)

H(w)dz
2
)

(2.1)

where
H(w) = h1(w)h2(w)

f(w) = 1
4H(w)− w3

(2.2)

6These solutions can be obtained through various (singular) scaling limits of the local solutions presented
in section 4.4.

7The phase of the complex scalars can be removed by a gauge transformation. However, doing so fixes a
choice of gauge such that the value of the gauge field at infinity becomes physical.
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The gauge fields and scalars in turn are given by

A(i) = − w2

hi(w)
dz , Xi(w) =

(wH(w))2/5

hi(w)
, cosh Yi(w) =

1
2wh

′
i(w) , (2.3)

where the prime indicates a derivative with respect to w. The three-form necessarily vanishes
as a non-zero value is incompatible with the symmetries of our ansatz. One can check that
this ansatz indeed solves all equations of motion and BPS equations, provided that the
functions hi(w) solve the following system of non-linear ODEs,8

f(w)
(
h′i(w)− wh′′i (w)

)
= w

H(w)
hi(w)

(1
4h

′
i(w)2 − w2

)
. (2.4)

The coordinate z is periodic with period z ∼ z + 2π∆z, while the coordinate w takes value
on the interval bounded by two roots of the function f .

Solving the above system of ODEs is prohibitively hard, and we are not able to find a
general solution. One particular solution is provided by the functions

hi(w) = qi + w2 . (2.5)

Note that in this case the additional scalars vanish and in fact the whole solution reduces to
the standard spindle/disc solution as described for example in [8, 9, 21]. To find additional
non-trivial solutions we proceed by noting that we are looking for functions hi(w) such that
f(w) has at least two real roots and is positive in between. In appendix B we prove that
given our ansatz it is not possible to find N = 1 solutions with spindle topology.

All hope is not lost however, it is possible to find N = 2 solutions. In this case the
solution simplifies significantly as the enhanced supersymmetry forces the function h2 to be

h2(w) = w2 . (2.6)

In addition, the gauge fields and scalars reduce to

A(2) = 0 , X2(w) = X1(w)−
2
3 , Y2(w) = 0 . (2.7)

After these simplifications, the ODE (2.4) for i = 2 is automatically solved, while the
remaining non-trivial ODE takes the form,(

h1(W )− 4W 1/2
)
h′′1(W ) +

(
h′1(W )2 − 1

)
= 0 , (2.8)

where we changed coordinates, W = w2, and a prime is now understood as a derivative
with respect to W . Unfortunately, the nature of this equation prevents us from finding
a general analytic solution, but we can make progress using numerics, by expanding the
solution around the boundaries of the range of W ; W = 0 and W = W0 and shooting
between the two expansions.

8These solutions can alternatively be obtained as a double analytic continuation of the two-charge black
hole solutions of [51].
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Around the root, W = W0, we expand the function h1 as follows,

h1(W ) = 4
√
W0 + (W −W0) + (W −W0)α

∞∑
k=1

ak(W −W0)k , (2.9)

where the first two coefficients are fixed by demanding that f(W0) = 0 and h′1(W0) = 1 and
the exponents α ∈ N>0. Substituting this expansion in the ODE (2.8), we can solve it order
by order to obtain a perturbative solution around W =W0. Fixing α to a particular value,
the first order determines the position of W0 as9

W0 = 4α2

(2 + α)2 . (2.10)

This expression indicates that it is not possible to find solutions satisfying the boundary
conditions for any value of W0, in particular we find that the maximal possible value of
the second root is W0 = 4. At first this might seem a severe restriction on the possible
set of solutions. However, as we will show momentarily, this discrete set includes all of the
possibilities allowed by the quantisation of the magnetic flux through the disc. Going to
higher order, we find at each order a linear equation determining the coefficients ak with
k ≥ 2 in terms of the free parameter a1.

Next, we expand the ODE around W = 0 at which point an appropriate expansion
for the function h is given by,

h1(W ) =
∞∑

k=0
bkW

k
2 . (2.11)

The first order of the expansion fixes the coefficients b1 = b3 = 0. Going to higher orders
we find that all the coefficients bk with k > 2 are determined as a function of the two free
parameters b0 and b2. Note that in this expansion we seemingly have one parameter more
then in the expansions around W0. However, only one combination of the two coefficients
should be fixed in terms of the value of W0 while the other one can be matched with the
degree of freedom appearing in the expansion around W0. The value of W0 cannot be directly
inferred from the expansion at W = 0. Instead, we can solve the ODE (2.8) numerically and
match the two expansions. From the point of view of the expansion at W = 0 any value
of W0 appears on equal footing. It is only when matching to the expansion at W0 that the
condition (2.10) enters. We do not have an analytic expression for the map between the
parameters of the two expressions. In order to find the map numerically we proceed in two
steps. First we find a numerical solution with an allowed value of W0 imposing the boundary
conditions at W = 0. By construction this numerical solution matches the expansion at
W = 0. The second step then consists of numerically minimizing the difference between the
expansion at W =W0 and the numerical solution. This procedure then returns the optimal
match for the parameter a1. In figure 1 below we demonstrate this matching for α = 2. The
two expansions agree with excellent accuracy with the numerical solution in a large domain.
In fact, combining the two expansions completely covers the numerical solution.

9In order to generalise our ansatz and find a continuous range for the possible values of W0, one could
contemplate letting α range over all the positive real numbers. Although this seems to be a sensible option
at first, and indeed at first order gives rise to the same condition (2.10) for W0, at higher orders this leads
to inconsistencies.
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Figure 1. The function f(W ) plotted for α = 2, i.e. W0 = 1. The parameters in this example are
given by b0 = 2.5, b2 ≃ 2.4748 for the expansions around W = 0 and a1 ≃ 0.63 for the expansion
at W0 = 1.

2.2 Regularity analysis

The range of the coordinate w is constrained by the requirement that the scalars X1, Y1 be
real and the metric be positive definite. Analogous to the disc solutions without the additional
scalar we analyse the conditions on the parameters in order to find solutions with orbifold
singularities and appropriately quantised magnetic flux [9, 26]. We can study this in general
without explicitly solving the ODE as the analysis solely depends on the boundary conditions.

The seven-dimensional metric, (2.1), takes the form10

ds2
7 = (wH(w))

1
5
(
ds2

AdS5 + ds2
D

)
. (2.12)

When approaching w = w0, the internal metric on the disc becomes,

ds2
D ≃ w0

f ′(w0)

[
dρ2 + ρ2

n2dz
2
]
, n = − 2w2

0
∆z f ′(w0)

, (2.13)

where we changed coordinates ρ = 2(w − w0)1/2 and used the two relations h1(w0) = 4w0
and h′1(w0) = 2w0 which follow from general properties of the root. Locally around the
root w0 the metric therefore takes the form of a R2/Zn orbifold provided that the period
of the z coordinate satisfies,

∆z = 4
n(w0 − 2) . (2.14)

It is useful for later to also introduce the coordinate z = (∆z)ẑ, so that ẑ is 2π-periodic.
On the other side of the interval, at w = 0, we expand the metric using the expan-

sion (2.11), resulting in

ds2
7 ≃ r6/5b

1/5
0

4

[
4ds2

AdS5 + dr2 + 16
b0

dz2
]
, r → 0+ , (2.15)

10For the regularity analysis we go back to the original coordinate w. As a reminder, the coordinate
transformation to the coordinate W above is given by W = w2.
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where we performed the coordinate transformation w = r2. The space D has the topology of
a disc with a conical defect at w = w0 and a boundary at w = 0. Indeed, at w = 0 the z
circle does not shrink. The Euler characteristic of the internal space, D, is given by

χ(D) = 1
4π

∫
D
R vol(D) + 1

2π

∫
∂D
κ vol(∂D)

=
4∆z w3/2(3f(w)− wf ′(w)

)
H(w)3/2

∣∣∣∣∣
w=w0

= 1
n
,

(2.16)

which is indeed the expected Euler characteristic for a disc with a conical deficit. Note
that there is no contribution from the boundary of the disc to the Euler character since
the intrinsic curvature κ vanishes there.

Next, we consider the quantisation of the magnetic flux through the disc. Due to the
presence of the conical defect the flux should be quantised in integer multiples of 1

n . We
therefore impose

p

n
= 1

2π

∫
D
F (1) = w0

n(2− w0)
∈ 1
n

Z . (2.17)

Hence, the parameter p should be integer quantised. We can express the (quantised) position
of the root as,

w0 = 2p
p+ 1 , (2.18)

with p a positive integer. Finally, the holonomy of the gauge field along the boundary remains
unchanged from the case without additional scalar and is given by

hol∂D

(
A(1)

)
=
∮

∂D

A(1)

2π = −
∫
D

F (1)

2π = − p

n
(2.19)

where we assigned positive orientation to dw ∧ dz.
In the analysis of the ODE above we noticed that the expansion (2.9) around w = w0

is well-behaved only for certain quantised values of the root,

w0 = 2α
α+ 2 , α ∈ N>0 . (2.20)

Comparing this with (2.18) we find that only even values of α ∈ 2N>0 are consistent with an
appropriately quantised flux. As the value of the magnetic flux increases the power of the
leading order term in the expansion of h1(w) around the solution without the additional scalar
similarly increases. In particular, all the allowed values of p are included in our expansions
and (numerical) solutions. We conclude that for each of the solutions without the additional
scalar turned on there is a corresponding family of solutions with the scalar turned on and
one additional free parameter given by the value of Y1(0).

– 10 –



J
H
E
P
0
1
(
2
0
2
4
)
0
8
8

3 Uplift and analysis

In order to analyse the N = 2 disc solutions with an extra scalar turned on we proceed to
uplift the solution constructed in the previous section to eleven-dimensional supergravity. As
we emphasised above, the nature of the ODE (2.8) implies that the solutions only exist for
discrete set of parameters. Luckily, this set can be mapped precisely to the set of appropriately
quantised solutions where the scalar is trivial and thus for each solution without the additional
scalar there exists a deformed solution with the extra scalar. The main goal of this section is
to compare and contrast the these two cases by analysing the internal geometry in eleven
dimensions and computing a range of holographic observables.

3.1 Eleven-dimensional background

The uplift formulae for general solutions of seven-dimensional SO(5) gauged supergravity to
eleven-dimensional supergravity [62, 63] are given in appendix C. Here we restrict ourselves to
presenting the final form of the expressions and refer the reader to said appendix for further
details. In order to keep the expressions as compact as possible we define the functions,

Z = sin2 ϕ eY1(w) + cos2 ϕ e−Y1(w) ,

∆̃ = w4/5h
3/5
1 ∆ = µ2h1(w) + w2(1− µ2)Z ,

(3.1)

in terms of which the metric takes the following form,

ds2 = (w∆̃)1/3

4

[
4ds2

AdS5 +
w

f(w)dw
2 + 4f(w)

w2h1(w)
dz2 + 4µ2w

∆̃
ds2

S2 (3.2)

+ 4
∆̃

(
h1(w)(1− µ2)Z

w

(
Dϕ+ 2µ sinϕ cosϕ sinh(Y1(w))

(1− µ2)Z dµ
)2

+ ∆̃
w(1− µ2)Z dµ2

)]
,

where
Dϕ = dϕ−A(1) . (3.3)

The four-form flux supporting this solution takes the compact form

G4 = d
[
− µ3h1(w)

∆̃
Dϕ+ 2w3µ2 sinϕ cosϕ sinh(Y1(w))

∆̃
dµ
]
∧ dvolS2 . (3.4)

Note that the second term vanishes when the scalar becomes trivial. One can contrast the
solution here with the one in [10] where the solution without this additional scalar was
presented.11 The most immediate difference is the presence of the function Z which depends
on the coordinate ϕ. The explicit dependence of the metric on ϕ results in the vector field
∂ϕ no longer being a Killing vector field of the solution. It is not hard to see that the Lie
derivative of the metric along this direction takes the schematic form,

L∂ϕ
gµν ∝ sinh(Y1(w))Uµν , (3.5)

with Uµν a smooth non-vanishing symmetric tensor whose explicit form is not relevant for
our discussion. Therefore, on sub-manifolds where sinh(Y1(w)) = 0, we observe an emergent

11Different coordinates were used in the two solutions, however the coordinates transformations are straight-
forward.
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Figure 2. The internal space of the 11d solution is an S2 × S1 fibration over the cuboid depicted in
this figure. At non-zero ϕ the metric is regular. At ϕ = µ = 0, the S2 smoothly shrinks. At ϕ = 0,
µ = 1 and w = w0 we find a monopole.

U(1) symmetry. From the boundary conditions imposed in the previous section we have
that at the location of the regular puncture sinh(Y1(w0)) = 0 and thus we find that such
enhancement of the symmetry occurs along the surface w = w0.

3.2 Regularity analysis

Next, let us proceed by analysing the regularity of the uplifted metric. One can view the
internal space as an S2 ×S1 fibration over a cuboid with the edges defined by the coordinates
(w, µ, ϕ). Despite the metric depending on the coordinate ϕ it needs to be taken to be
2π-periodic, we will see a consistency check of this fact momentarily. This means that the
cuboid should have one face 2π periodically identified with the mirror face, and is thus
[0, w0] × [0, 1] × [0, 2π). Moreover, for all values of ϕ ∈ [0, 2π) the metric is smooth and
therefore we need only consider the degeneration of the internal space along the edges of
the rectangle in (w, µ) coordinates at some fixed value of ϕ.

Let us first consider the degeneration at the end-points of the µ interval. For µ = 0 we see
that the S2 shrinks smoothly, combining with the dµ2 term to give R3 around this point. For
the µ = 1 degeneration the limit is a bit more subtle. We see that the circle with coordinate
ϕ shrinks at this point. To see this one should change coordinate as 1− µ2 = r2U(w, ϕ) with
U(w, ϕ) a rather complicated function which is nonetheless easily definable as a PDE. Taking
the r → 0 limit one finds that around µ = 1 the circle shrinks smoothly giving R2.

We have now studied two of the four edges of the front rectangle in figure 2, it remains to
study the metric around w = 0 and w = w0. First, let us consider the metric around w = w0.
Recall that at w = w0 we have f(w0) = 0 and Y1(w0) = 0. One finds that the vector

V = n∂ẑ − p∂ϕ , (3.6)

shrinks smoothly along w = w0. At first sight, the conical singularity of the disc at w = w0
seems to have been resolved in the uplifted metric, however this is not fully correct. Indeed,
at w = w0, µ = 1 we find a remnant singularity. To see this more clearly we rewrite the
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metric slightly before changing coordinates adapted to the singular point:

ds2 = (w∆̃)1/3

4

[
4ds2

AdS5 +
w

f(w)dw
2 + 4

w(1− µ2)Z dµ2 + 4µ2w

∆̃
ds2

S2

+R2
z(dz + Lϕdϕ+ Lµdµ)2 +R2

ϕ(dϕ+ L̂µdµ)2
]
,

(3.7)

where

R2
z =

4
(
f(w)∆̃ + (1− µ2)w5Z

)
w2h1(w)∆̃

, R2
ϕ = 16(1− µ2)f(w)Z

4w(f(w)∆̃ + (1− µ)2w5Z
,

Lϕ = w3(1− µ2)h1(w)Z
f(w)∆̃ + (1− µ2)w5Z

, Lµ = 2 sinh(Y1(w))w3µ cosϕ sinϕh1(w)
f(w)∆̃ + (1− µ2)w5Z

,

L̂µ = 2 sinh(Y1(w))µ cosϕ sinϕ
(1− µ2)Z .

(3.8)

This rewriting shows that the circle with ϕ-coordinate shrinks for both µ = 1 and w = w0
whilst the circle with z coordinate only shrinks at the intersection of the two lines at w = w0
and µ = 1. Moreover, observe that Lϕ is piecewise constant along the two edges with12

Lϕ

∣∣∣
µ=1

= 0 ,
Lϕ

∣∣
w=w0

∆z = −n
p

(3.9)

indicating the presence of a monopole at this point. To see this more clearly let us change
coordinates as

µ = 1− r2 cos2 ζ
2 , w = w0 +

2f ′(w0)
w2

0
r2 sin2 ζ

2 , ϕ = ϕ̂− z

2 , (3.10)

and consider the part of the internal metric excluding the round S2. Taking the limit r → 0
the four-dimensional metric becomes

ds2
4 → p

4(p+ 1)

[
dr2 + r2

4
((
n−1dẑ − 2 cos2 ζ

2dϕ̂
)2 + dζ2 + sin2 ζdϕ̂2

)]
, (3.11)

which is precisely the metric on R4/Zn. Not that this is analogous with the behaviour of
the solution without the scalar turned on, indeed this is to be expected since at this point
the scalar necessarily vanishes.

Finally, we have a single remaining degeneration to consider at w = 0. This locus located
on the left face in figure 2 gives rise to a genuine singularity of the solution. However, as in the
case without the extra scalar turned on it arises due to the presence of smeared branes [8–10].
Carefully taking the w → 0 limit the metric becomes

ds2 → w1/3µ2/3h1(0)1/3

4

[
4ds2

AdS5 + dz2 + 4
wµ2h1(0)

[
µ2(dw2 + w2ds2

S2
)

+ (1− µ2)h1(0)Z0

(
dϕ+ 2µ sinh(Y1(0)) cosϕ sinϕ

(1− µ2)Z0
dµ
)2

+ µ2h1(0)
(1− µ2)Z0

dµ2
]]
,

(3.12)

12The expression here differs slightly with that in [10], this is not an effect of the non-trivial scalar but
rather a different choice of the gauge of the gauge field which manifests itself in a different definition of the
coordinate ϕ.
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with
Z0 = eY1(0) sin2 ϕ+ e−Y1(0) cos2 ϕ . (3.13)

This is the metric of a stack of M5-branes with world-volume AdS5 ×S1
z , smeared along two

directions. Thus, despite the metric being singular at this point, it degenerates in such a way
that is physically sensible. Furthermore, expanding the flux around w = 0 we find

G4 → vol(S2) ∧ dϕ ∧ dµ , (3.14)

which is indeed the expected form of the flux for an M5-brane wrapping AdS5 ×S1
z .

3.3 Flux quantisation and observables

Having studied the regularity of the metric we now proceed to appropriately quantise the
fluxes and subsequently compute various observables of the dual theory. As a first step, we
need to identify all the compact four-cycles in the geometry. The first four-cycle is the S4

from the uplift and may be obtained by fixing w, z to constant values, let us denote this cycle
by S. The second four-cycle arises from considering the circle shrinking at w = w0, µ = 1
and the S2 shrinking along µ = 0, we denote this one by C. The final four-cycle consists
of the same shrinking circle at w = w0, µ = 1 together with the shrinking S2 along w = 0.
we denote this final four-cycle as D.

Considering the first four-cycle S we have,

N = 1
(2πℓp)3

∫
S
G4 = 1

πℓ3p
∈ Z , (3.15)

with N the number of M5-branes wrapped on the disc. The two remaining flux quanta
are slightly more delicate to compute. Recall that in our analysis of the degeneration at
w = w0, µ = 1 we were required to perform a coordinate transformation of the angular
coordinates, see equation (3.10). Taking this into account we find

1
(2πℓp)3

∫
C
G4 = N

n
,

1
(2πℓp)3

∫
D
G4 = Np

n
.

(3.16)

In order for the solution to be well defined, we immediately see that we have to require
that N

n to be integer, while the quantisation of p resulting from the 7d solutions ensures
that the other flux is appropriately quantised.

3.3.1 Central charge

Having determined the appropriate quantisation conditions, We proceed by computing the
central charge of the dual field theory. For an AdS5 solution of the form

ds2
11 = e2λ

[
4ds2

AdS5 + ds2
6

]
, (3.17)

the central charge is given by [64],

a = 25π3

(2πℓp)9

∫
M6

e9λvol(M6) . (3.18)
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Explicit computation results in,

a = N3p2

12n(p+ 1) . (3.19)

Note that result precisely matches the central charge computed for the solution without
the scalar turned on. This indeed matches our intuition from the earlier discussion as we
conjecture that the sole purpose of this scalar is to break the unwanted isometry, without
changing the dual SCFT.

3.3.2 Conformal dimension of operators

An additional set of holographic observables that we may compute observables are the
dimensions of a set of BPS operators dual to M2-branes wrapped on calibrated two-cycles.
The calibrated two-form X is given in appendix D, in terms of which the calibration condition
on a 2d sub-manifold Σ2 reads,

X
∣∣
Σ2

= vol(M6)(Σ2) , (3.20)

where the right hand side denotes the restriction of X to the world-volume of the probe
M2-brane. For such calibrated two-cycles, we can find the dimension of the dual operator to be

∆(Σ2) =
4π

(2πℓp)3

∫
Σ2

e3λX , (3.21)

where λ is a function in the most general N = 2 AdS5 background as defined in [50] and
is given explicitly in the section below. The calibration form X is given in appendix D.
For an M2-brane wrapping the round S2 the calibration condition becomes y = e−3λ which
is precisely the location where the R-symmetry vector shrinks. At this locus we find the
dimension of the corresponding BPS operator O1

∆(O1) = N
w0
2 = N

p

p+ 1 . (3.22)

The other choice of calibrated sub-manifold is obtained by considering the y and R-symmetry
coordinate located at the north pole of the S2. We find

∆(O2) = N
p

n
(3.23)

Similar to the central charges above, we note that there is no modification of these observables
in comparison to the solution with the scalar turned off. Similarly, one can show that the
entire analysis of symmetries and anomalies of [9–11] can be reproduced identically with the
only modification being that in this case there is no subtleties in completing the four-form
flux into a equivariant form with respect to the isometry corresponding to ∂ϕ since in our
background this isometry is explicitly broken.

One can even show that the subleading contributions to the flavour levels, central charges
and R-symmetry current algebra levels are also not modified with the inclusion of the
additional scalar. We will present results in this direction in [65].
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4 Consistent truncation on the disc

In the previous sections we have studied a family of disc solutions with a novel scalar turned
on. We constructed the eleven-dimensional solutions using the uplift of solutions in a sub-
truncation of 7d maximal gauged supergravity. In this section we will show how to perform
a consistent truncation of the 7d solution down to 5d Romans’ gauged supergravity on the
disc. Our consistent truncation has multiple uses, with a key one being that it facilitates
the construction of the holographic duals of the Argyres-Douglas theories on an arbitrary
Riemann surface. We start this section with a detailed description of the truncation after
which we consider a selection of applications.

4.1 Embedding 5d supergravity in LLM

Our method for constructing the consistent truncation from seven to five dimensions by
reducing on the disc utilises a number of results in the literature. Rather than explicitly
constructing the consistent truncation using (well motivated) trial and error, as in [47–49],
we will go through a different route. Our construction uses that there is a known truncation
of the Lin-Lunin-Maldacena (LLM) geometries [50] down to 5d Romans’ gauged supergravity.
By rewriting our disc solution in the classification of LLM and then reinterpreting the solution
as arising from uplifting a 7d solution on the round S4 we may obtain a truncation of the
7d theory on a disc down to 5d Romans’ gauged supergravity. Below we present the most
important steps of the derivation while referring much of the technical material to appendix D.

As a first step we briefly review the consistent truncation of the eleven-dimensional LLM
geometry to five-dimensional Romans’ SU(2)×U(1) gauged supergravity as worked out in [56].
The bosonic field content of the five-dimensional gauged supergravity consists of the metric,
a real dilatonic scalar field X, a U(1) gauge field B, a triplet of SU(2) gauge fields Ai and
a complex two-form C which is charged under the U(1) gauge group.

G2 = dB, F i
2 = dAi − 1

2
√
2
ϵijkAj ∧ Ak , F3 = dC + i

2B ∧ C . (4.1)

In terms or these fields, the eleven-dimensional metric takes the following form

ds2
11 =

(Ω
X

)1/3
e2λ
[
4ds2

5 +
Xe−6λ

1− y2e−6λ

(
dy2 + eD(dx2

1 + dx2
2
))

+ 4X2(1− y2e−6λ)
Ω (dχ+ v + 1

2B)
2 + y2e−6λ

XΩ D̃µ̃aD̃µ̃a
]
,

(4.2)

where we defined the function

Ω = Xy2e−6λ +X−2(1− y2e−6λ) , (4.3)

and the gauged one-forms D̃µ̃ are given by,

D̃µ̃a = dµ̃a + 1√
2
ϵabcµ̃

bAc . (4.4)

The expression for the associated four-form flux as well as more details on how to obtain
this truncation can be found in appendix D.3.
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4.2 Embedding 7d supergravity in LLM

Having defined the truncation from LLM to five dimensional gauged supergravity we proceed
to rewrite the seven-dimensional solutions obtained above into the general form of a N = 2
AdS5 solution, as classified in [50], and reviewed in appendix D.2. We can immediately read
off both the warp factor and the coordinate y,

e6λ = 1
64w∆̃ , y = wµ

4 . (4.5)

In order to make the R-symmetry vector manifest we define z = 2χ in terms of which we find

v = 1
∆̃− 4wµ2

(
4wµ sinϕ cosϕ sinh(Y1)dµ+ 2w(1− µ2)Zdϕ

)
. (4.6)

At this point we need to distinguish between Y1(w) = 0 and Y1(w) ̸= 0 to extract out the
potential and xi-coordinates.

Non-trivial scalar: Y1(w) ̸= 0. Taking Y1(w) to be non-zero the xi coordinates are
found to be13

x1 = cosϕ
√
1− µ2 eY1(w)/2

2 sinh(Y1(w))
, x2 = sinϕ

√
1− µ2 e−Y1(w)/2

2 sinh(Y1(w))
. (4.7)

The Toda potential in this case is given by

eD = −w sinh2(Y1(w))
8Y ′

1(w)
. (4.8)

This expression is clearly ill-defined if we take Y1(w) = 0.

Trivial scalar: Y1(w) = 0. When Y1(w) = 0 on the other hand we can explicitly solve
the ODE (2.8), finding as solution

h1(w) = w2 + 4(1− a2) . (4.9)

In this case, the coordinates xi are then given by

x1 + ix2 = eiϕ
√
1− µ2f+(w)

a+1
2a f−(w)

a−1
2a , (4.10)

where we have defined

f(w) = w2

4 f+(w)f−(w) , f±(w) = w − 2(1− a) , (4.11)

and the associated Toda potential is

eD = 1
16

(
f−(w)
f+(w)

)1/a

. (4.12)

13Of course these coordinates are not unique. We are free to perform any SO(2) transformation on the
coordinates as well as perform a constant scaling transformation. The constant rescaling requires that one
modifies the Toda potential by an inverse squared power of the scaling parameter.
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Note that there is an additional symmetry transformation that may be performed on the
coordinates and Toda potential which gives the same metric, Indeed, we can consider the
following form of the coordinates and Toda potential

x1 + ix2 = eikϕ
[√

1− µ2f+(w)
a+1
2a f−(w)

a−1
2a

]k
,

eD =
(
f−(w)
f+(w)

)1/a

[√
1− µ2f+(w)

a+1
2a f−(w)

a−1
2a

]2(1−k)

16 .

(4.13)

Given that we accompany the above symmetry transformation with the following shift of
the z = 2χ coordinate,

χ→ χ+ (1− k)dϕ , (4.14)

the eleven-dimensional metric remains invariant.

4.3 Embedding 5d supergravity in 7d supergravity on a disc

So far we have shown how to embed solutions of both five-dimensional Romans’ supergravity
as well as seven-dimensional maximal SO(5) gauged supergravity into the LLM classification.
With both these embeddings at hand we are now ready to show how to embed a solution
of 5d Romans’ theory into the 7d theory on a disc.

Starting from a generic solution of the 5d theory, we can rewrite its embedding into
the LLM geometry as an S4 fibration over a 7d space. Doing so we can extract a solution
of 7d gauged supergravity from this background following the rules for the embedding of a
seven-dimensional solution into the LLM geometry. After some rather tedious manipulations
the eleven-dimensional metric as written in (4.2) takes the form

ds2
11 = Ω̃1/3

[
ds2

5 +
wX

f(w)dw
2 + 4X4f(w)

f(w) + w3X3Dχ
2 + w2µ2

16X2Ω̃
D̃µ̃2

a + 4X
w(1− µ2)Z dµ2 (4.15)

+
(
f(w) + w3X3)(1− µ2)Z

4w2X2Ω̃

(
dϕ+ 2 sinh(Y1) cosϕ sinϕµ

(1− µ2)Z dµ− X3w4

2(f(w) + w3X3)Dχ
)2 ]

,

where the gauged one-form Dχ is given by

Dχ ≡ dχ+ 1
2B = 1

2
(
dz + B

)
, (4.16)

and we defined the function

Ω̃ ≡ Ω
Xe−6λ

=
4µ2(f(w) + w3X3)+ w4(1− µ2)Z

64wX3 . (4.17)

This metric takes a form very similar to the one we obtained from uplifting a 7d solution to
eleven dimensions in (3.2). Indeed, the last step of our derivation consists of interpreting the
final four directions of the metric to be those of a squashed S4, so that the 11d metric can be
precisely interpreted as the uplift of a 5d solution to 7d maximal SO(5) gauged supergravity on
an S4. At this point it is not hard to see that the fields of 7d maximal gauged supergravity can
be extracted as follows. The metric can be written in the canonical form for an uplift from 7d,

ds2
11 = ∆1/3

[
ds2

7 +
1
∆T−1

ij DµiDµj
]
, (4.18)
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with the seven-dimensional metric being

ds2
7 = w

4XX̂1/3
1

(
ds2

5 +
wX

f(w)dw
2 + 4X4f(w)

f(w) + w3X3Dχ
2
)
. (4.19)

The scalar matrix Tij can be read of to be

Tij = diag
(
X̂1e−Y1(w), X̂1eY1(w), X̂2, X̂2, X̂2

)
, (4.20)

where

X̂1 =
[

w4

4
(
f(w) + w3X3)

]3/5
, X̂2 =

[4(f(w) + w3X3)
w4

]2/5
. (4.21)

With a bit more work we can also extract the non-trivial gauge fields from this metric as

A12 = − w4X3

2
(
f(w) + w3X3)(dχ+ 1

2B) ,

A34 = 1√
2
A3 , A45 = 1√

2
A1 , A53 = 1√

2
A2 ,

(4.22)

where the second line gives rise to a triplet of SU(2) gauge fields.
Finally, to complete our background of 7d gauged supergravity, it remains to extract

out the three-form fields Si. These fields do not appear in the metric and hence we need
to carefully compare the four-form flux of the five- and seven-dimensional uplift to LLM.
This last step is rather technical and the details are referred to appendix D.4. A tedious
computation shows that the three-form gauge fields are given by

S1 =
√
2eY1(w)/2X2

[√
f(w)
w

⋆5 Im[e−iχF3] ∧Dχ− w

2
√
f(w)

⋆5 Re[e−iχF3] ∧ dw
]

−
√
f(w)eY1(w)/2

√
2w

Im[e−iχF3] ,

S2 = −
√
2e−Y1(w)/2X2

[√
f(w)
w

⋆5 Re[e−iχF3] ∧Dχ+ w

2
√
f(w)

⋆5 Im[e−iχF3] ∧ dw
]

+
√
f(w)e−Y1(w)/2

√
2w

Re[e−iχF3] ,

Sa+2 = wf(w)
2
√
2(f(w) + w2X3)

Fa ∧Dχ+ w

4
√
2X2 ⋆5 Fa , (4.23)

where in the last expression a ∈ {1, 2, 3}. This completes our uplift formulae and as such
we have found a complete uplift for any solutions of Romans’ supergravity to maximal 7d
gauged supergravity.14

14Observe that by truncating to minimal gauged supergravity, see appendix D.1, we recover (a subset) of
the truncation performed in [47]. Note that the gauge choice for the gauge field is uniquely picked for us
by our embedding process: the gauge is such that it is the unique R-symmetry vector which is gauged with
respect to the U(1) graviphoton. This confirms the intuition for why such a gauge choice is important, it is
precisely the gauge in which ∂z is dual to the R-symmetry, see [47, 48].
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Figure 3. The coloured regions indicate the various allowed regions of the parameter space (s1, s2).
In each coloured region, the polynomial f has three real roots, the signs of which are indicated in the
figure. Along the red and green curve the 2d space has the topology of a disc. Along the red curve
supersymmetry is enhanced. Along the yellow curve the 2d space contains a cusp-like singurity where
the metric locally becomes H2. At the intersection of the red and green line the 5d space is given
by AdS5.

4.4 Applications

With the consistent truncation at hand we are now ready to study a variety of new solutions
by uplifting solutions from 5d gauged supergravity to seven dimensions. The main examples
we consider here are five-dimensional AdS3 ×D and AdS3 ×Σ solutions [18, 19]. The local
form of the metric is given by

ds2
5 = h(x)1/3

[
ds2

AdS3 +
1

4f(x)dx
2 + f(x)

h(x)dψ
2
]
, (4.24)

where we defined the functions,

h(x) = (x− s1)2(x− s2) and f(x) = h(x)− x2 . (4.25)

The remaining non-vanishing fields in this background are given by,

B = x

x− s2
dψ , A3 = x

x− s1
dψ , X = h(x)1/3

x− s1
. (4.26)

Before uplifting this solution to seven dimensions, let us briefly investigate what the global
completion of the two-dimensional space represents, depending on the parameters (s1, s2).
The situation is summarised below and illustrated in figure 3.

In the uncoloured region the function f only has a single real root and therefore the
two-dimensional space is necessarily non-compact. In the coloured regions, f has three real
roots thus allowing for compact topologies. At a generic point the three roots are distinct
and non-zero. The different coloured regions are distinguished by the signs of the roots. As
f is a cubic monic polynomial, it is positive in between its first two roots. Taking this as
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the domain of the coordinate x the global solution is given by a compact two-dimensional
surface. At such generic points in the allowed region the compact surface has the topology
of a spindle and the background preserves N = (2, 0) supersymmetry. There are however
various special loci in the parameter space, at which the global completion has a different
topology and/or supersymmetry is enhanced:

• s1 = 0: this locus, indicated by the red line in figure 3, is characterised by trivial SU(2)
gauge fields. In this case, two roots merge to form a double root located at x = 0. To
properly discuss these solutions we need to further divide it into two cases.

– On the sub-locus where 0 > s2 > −1 the bottom two roots merge, and hence
compact solutions cease to exist. This is indicated in the figure by the dashed
segment of the red line.

– For s2 < −1, the two largest roots merge and we find a solution with the topology
of a disc, analogous to the seven-dimensional backgrounds studied in the first part
of this work.

Irrespective of the value of s2, we observe supersymmetry enhancement to (at least)
N = (4, 2) supersymmetry.

• s2 = 0: on this locus, indicated by the green line, the U(1) gauge field is trivial. It is
distinguished by the smallest root lying at x = 0. Although at every point where s1 ̸= 0
this is a single root, the global completion has the topology of a disc. At this locus we
observe an enhancement to N = (2, 2) supersymmetry.

• Left boundary segment with s2 > −1: along this segment, indicated by the yellow
curve, the two largest roots coincide at a value x0 > 0. Along this edge, s2 ̸= 0, the
two-dimensional space becomes a “black bottle”. This geometry has a conical defect
at one end-point and a cusp at the other which locally looks like H2. Despite the
appearance of a seemingly non-compact end-point the space still has finite volume.

• Along the other boundary segments the first two roots coincide hence such solutions
cannot give rise to compact surfaces.

•
(
−1

4 , 0
)
: at the intersection of the yellow and green line we have a single root at x = 0

and a double root at x0 > 0. The geometry at this point is dubbed a “black goblet”
and can be obtained as a limit of the disc where the conical defect becomes a cusp, i.e.
locally H2.

• (s1, s2) =
(
− 8

27 ,
1
27

)
: at this intersection of the two boundary segments, f has a triple

root at x = 4
27 . This point does not represent a compact two-dimensional space.

• (s1, s2) = (0,−1): at this point we find a triple root at x = 0. This point does not
represent a compact two-dimensional space.

• (s1, s2) = (0, 0): at this point the five dimensional space reduces to the maximally
supersymmetric AdS5 vacuum of Romans’ supergravity with AdS radius LAdS5 =

√
10
3 .

At this point supersymmetry is enhanced to N = (4, 4) or, in 4d language, N = 2.
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Having analysed the various possible global completions of the metric resulting from the local
solution (4.24) we still have to make sure all fields in the background are well defined. In
particular, we have to impose that the scalar has to be positive in the full range of the solution.
This restriction, together with the positivity of the metric, imposes the following condition,

x ≥ max(s1, s2) , (4.27)

between the two smallest roots of the solution. Imposing this constraint rules out the blue,
orange and light green regions in figure 3 and leaves us with only the dark green and purple
region, including the AdS5 point and the yellow edge but excluding all other edges.

We refrain from giving a complete discussion of the flux quantisation in these solutions
but rather point out the most important characteristics and leave an in depth discussion of
all the different cases for future work. As discussed in [26], the spindle solutions above can
realise the twist or anti-twist in order to preserve supersymmetry.15 Which mechanism is
realised depends on the sign of the roots, where two roots of the same sign give rise to a twist,
while roots with different signs give rise to the anti-twist. In terms of the colours in figure 3
we see that the purple region gives rise to anti-twist solutions, while the dark green region
produces twist solutions. Along the green line we find topological disc solutions preserving
enhanced N = (2, 2) supersymmetry. Similar to the 7d case discussed in section 2 these
solutions realise a distinct yet similar mechanism to the anti-twist to preserve supersymmetry
(see for example [41, 42] for a discussion of the N = (2, 2) case). The red line is completely
excluded except at the point where it intersects with the green line and the geometry reduces
to AdS5. Finally, at the yellow boundary one of the endpoints reduces to a cusp where the
metric locally becomes H2. In addition, through various (singular) scaling limits, similar to
those in appendix C of [48] one can obtain any smooth compact Riemann surface.16

Using our newly constructed consistent truncation, we can uplift the solution (4.24)
– (4.26) to seven dimensions. One can understand these solutions as the holographic duals
of the Argyres-Douglas theories wrapped on the surface Σ, with metric given in (4.24).
Inspecting the uplifted metric (4.19) and (4.16) we notice that whenever the U(1) gauge
field is non-trivial, the disc originating from the 7d solution is non-trivially fibred over the
second surface. Such solutions therefore describe novel backgrounds corresponding to a stack
of M5-branes wrapping honest four-dimensional orbifolds. The exception are the solutions
corresponding to the green line in figure 3. In this case, the surface has the topology of a
disc and supersymmetry is enhanced to N = (2, 2). For this class of solutions, including
the AdS5 vacuum at (s1, s2) = (0, 0), the fibration is trivial and the four-dimensional space
wrapped by the M5-branes takes a factorised form D1 × D2.

15In [26], as well as in [41, 42], the compactification of N = 4 SYM on a topological disc is studied. These
solutions are therefore constructed in 5d U(1)3 gauged supergravity. Romans’ supergravity can be obtained by
identifying two of the charges in this theory and therefore all their results carry over to our set-up through
this specialisation.

16A scaling limit around the point (s1, s2) =
(
− 8

27 , 1
27

)
gives rise to T 2, while a scaling limit at the yellow

edge gives rise to compact Riemann surfaces of genus g > 1. Finally, a scaling limit at the top boundary can
give rise to S2 geometries. Observe that in the original solution on which we performed our truncation we
may also take a scaling limit to obtain the metric on a constant curvature Riemann surface, in this case only
H2, and necessarily with Y1 = 0. We therefore obtain solutions of the form Σg × H2, with g arbitrary. These
are a subset of the solutions studied in [66–68].
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We will leave a detailed analysis of the various cases to future work but will finish by
making some preliminary comments about the factorised D1 ×D2 background. To understand
in more detail what this solution represents in terms of a brane set-up it proves instructive
to analyse it around its various singular points. First, fixing a generic x ∈ (0, x0), we see that
the solution behaves exactly as the eleven-dimensional solutions described before. Indeed,
zooming in around w → 0 and (w, µ) → (w0, 1) we find the same singular behaviour as in
section 3.2, corresponding to a stack of smeared M5s and a KK-monopole respectively. On
the other hand, fixing a generic point w ∈ (0, w0), near x0 the solution again behaves as a
KK-monopole, but with the roles of the two discs interchanged. Near x→ 0, however, the
behaviour is rather different. For generic w the metric at this locus is completely regular.
This is in contrast with the result obtained by uplifting the five-dimensional solutions to IIB
supergravity where the analogous limit was seen to correspond to D3-branes smeared over
three directions [41]. It is only in the simultaneous limit (x,w, µ) → (0, w0, 1) that the metric
becomes singular. At this point the metric takes the form of a intersection of a KK-monopole
with a stack of (smeared) M5-branes. In addition, one can compute the anomalies of the
dual theories using the same tools as in [66, 67]. While a comprehensive analysis of this
singularity is beyond the scope of this project, delving deeper into the intricacies of these
singularities would undoubtedly yield intriguing insights.

5 Discussion

The objectives of this work are two-fold. We discussed new solutions obtained by adding
a scalar Y1 to the existing disc solutions. These solutions explicitly realise the breaking
of the unwanted U(1) symmetry present in the dual supergravity backgrounds originally
presented in [8, 9]. The second aim of this paper was to initiate a study of novel solutions
corresponding to more general states in general Argyres-Douglas theories as well as solutions
corresponding to M5-branes wrapping four-dimensional spaces. These four-dimensional spaces
are obtained as the fibration of a disc over a disc or spindle. Obtaining these solutions was
made possible through the construction of a consistent truncation of the 7d maximal gauged
supergravity on the disc.

The results presented in this work unfold a plethora of potential avenues for future
investigation. To begin with, there is a natural extension of this programme by adapting our
results to M2, D3 or D4, wrapping discs or spindles. The local solutions can immediately
be established through analytic continuations of the solutions presented in [51]. It would
be interesting to investigate which solutions allow for a global completion as disc or spindle
solutions. Of specific interest is the case of D3-branes where the ODEs analogous to (2.8)
allow for analytic solutions in a certain limit. In this context, identifying the precise dual
SCFTs is an open question. Incorporating an additional set of parameters can provide more
refined information aiding this goal.

Related to the above, in appendix B we discuss the impossibility of adding extra scalars
to the solutions corresponding to wrapping M5-branes on a spindle. This indicates that
in contrast to the Argyres-Douglas theories, the dual SCFTs have a genuine U(1)3 global
symmetry which cannot be broken through a Stückelberg mechanism. Since in this case the
dual SCFT is at present unknown it would be very interesting to further investigate the
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symmetries in order to make a more informed attempt towards identifying a precise dual
SCFT. We are eager to present progress in this direction in the upcoming [69].

In addition, the solutions presented in this work provide novel ways of solving the Toda
equation defining an N = 2 AdS5 background. This example therefore provides a window
into obtaining a whole new set of solutions. A key point characterising the solutions in
this work is that they break the additional U(1) symmetry which was previously present.
For this reason, one can no longer globally perform a Bäcklund transform to rewrite the
problem as a simpler electrostatics problem. Locally around the regular puncture one is still
allowed to do so but finding a consistent way of gluing such local solutions into a global
solution remains a outstanding challenge. However, the addition of the novel scalar only
mildly affects the structure resulting from the Toda equation. Therefore, it might prove
useful to proceed, guided by this example and the strategy of [11], by transforming the
Toda equation into a separable form. Doing so successfully could result in a plethora of
new solutions without a global axial symmetry.

Another generalisation of this work is to lift the restriction to compactifications of
the six-dimensional theory of type AN−1 on a twice punctured sphere. Indeed, the 6d
N = (2, 0) theory comes in different flavours, classifies by a simply laced Lie algebra
g ∈ {AN−1, DN , E6,7,8}. The holographic duals for the Argyres-Douglas theories obtained
from six-dimensional type DN theories as well as the Argyres-Douglas theories obtained by
wrapping the AN−1 or DN theories on a sphere with twisted punctures will be presented
in [46]. Starting from their solutions, it becomes a straightforward task to extend our results
to encompass this particular case.

Moving away from compact two-dimensional surfaces, one can consider BPS surface
defects in the N = (2, 0) theory — or any lower dimensional SCFT for that matter. Such
defect operators can be represented by exactly the same local solutions. However, to capture
the physics of such objects the w coordinate on the disc has to be unbounded such that
asymptotically, far away from the defect we find an ambient higher dimensional AdS region.
Such solutions were described in for example [52, 53, 70, 71] in various dimensions. For each
of these solutions one can add the scalar described in this work, resulting in more general
conformal surface defects. In particular, in N = 4 a well-known class of surface defects is
described by Gukov-Witten surface defects [72], which are parameterised by four elements of
a maximal torus of the gauge algebra. It is tempting to conjecture that adding additional
scalars gives access to a more generic set of these parameters. It would be very interesting
to make this proposal more precise.

Finally, in [73, 74], the authors outlined a method for harnessing the potential of
equivariant localisation in supergravity. This was achieved by carefully defining the equivariant
action with respect to the U(1)R symmetry present in almost any supersymmetric field theory.
When applied to the set-up of LLM geometries, one can utilise their techniques to compute
various subleading contributions to the observables computed in this work. Additionally, it
offers an elegant and streamlined approach for deriving the anomaly inflow from M-theory [75–
78]. Progress made in this direction will be documented in an upcoming publication [65].
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A 7d gauged supergravity

In this appendix we clarify our conventions and collect the 7d equations of motion and BPS
equations. The relevant supergravity theory is the maximal seven-dimensional SO(5) gauged
supergravity [61]. We follow the conventions of [79]. This theory contains 14 scalars, contained
in the SL(5,R)/SO(5) coset VI

i, gauge fields F IJ in the adjoint of SO(5) and three-form
gauge fields SI in the fundamental of SO(5). The bosonic Lagrangian of this theory is given by

2κ2e−1L = R+ m2

2 (T 2 − 2TijT
ij)− Pµ

ijPµ ij − 1
8
(
VI

iVJ
jF IJ

µν

)2
+m2

(
(V −1)I

iS
I
µνρ

)2

+ e−1 ⋆

(
m

48 δIJS
I ∧ dSJ + 1

16
√
3
ϵIJKLMSI ∧ F JK ∧ FLM +m−1CS7(A)

)
,

(A.1)
where CS7(A) denotes the seven-dimensional Chern-Simons functional for the SO(5) principal
bundle. For all situations of interest in this paper CS7(A) vanishes and hence we will ignore
this term from here on. The tensor Tij is defined as Tij = V −1

i
IV −1

j
JδIJ and T = TrT .

Both I, J = 1, . . . 5 and i, j = 1, . . . 5 indices are raised and lowered with the Kronecker delta.
The scalar kinetic term is defined in terms of P ij

µ , which is given as the symmetric part of
V −1

i
IDµVI

j where DµVI
i = ∂µVI

i + AµI
JVJ

i.
In this paper we consider a U(1)2 truncation of this theory where the only non-vanishing

gauge fields are given by F (1) = F 12 and F (2) = F 34. The scalar manifold in our truncation
take is given by

SO(2)2 ×
(SL(2,R)

SO(2)

)2
(A.2)

Where the SO(2) factors parameterise two scalars Xi neutral under the U(1)2 gauge symmetry
and the SL(2,R)

SO(2) cosets parameterise two charged scalars Yi. In terms of the coset V j
I the

scalars in our truncation are given by

V i
I = diag

[
X

−1/2
1 eY1/2 , X

−1/2
1 e−Y1/2 , X

−1/2
2 eY2/2 , X

−1/2
2 e−Y2/2 , X1X2

]
. (A.3)

Although the presence of an external three-form is incompatible with the symmetries of our
ansatz in section 2, they will be needed when we consider more general solutions obtained
from our novel consistent truncation.
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Substituting the above truncation in (A.1), we obtain the following Lagrangian

2κ2e−1L = R− V − 5∂(λ1 + λ2)2 − ∂(λ1 − λ2)2 − 1
2∂Y1

2 − 1
2∂Y2

2

− 2
(
sinh2 Y1A

(1)2 + sinh2 Y2A
(2)2
)
− 1

2e
−4λ1F (1)2 − 1

2e
−4λ2F (2)2 (A.4)

+m2e−4λ1−4λ2S2 + e−1 ⋆

(
m

6 S ∧ dS + 1
2
√
3
S ∧ F (1) ∧ F (2)

)
,

where the potential V is given by

V = m2

2 e−8(λ1+λ2)
(
2 + 4e12λ1+8λ2 cosh 2Y1 + 4e8λ1+12λ2 cosh 2Y2

−
(
1 + 2e6λ1+4λ2 cosh Y1 + 2e4λ1+6λ2 cosh Y2

)2 )
.

(A.5)

and the length scale of the AdS7 vacuum of this theory is given by LAdS = 2
m .17 For future

convenience, we redefined Xi = e2λi .
The equations of motion derived from this Lagrangian are as follows. The scalar

equations are given by

∇2(3λ1 + 2λ2) = −1
4e

−4λ1F (1)2 +m2e−4λ1−4λ2S2 + 1
4∂λ1V ,

∇2(2λ1 + 3λ2) = −1
4e

−4λ2F (2)2 +m2e−4λ1−4λ2S2 + 1
4∂λ2V ,

∇2(Y1) = 2 sinh2 Y1A
(1)2 + ∂Y1V ,

∇2(Y2) = 2 sinh2 Y2A
(2)2 + ∂Y2V ,

(A.6)

The gauge field equations of motion are given by

∇µ(e−4λ1F (1)
µν ) = 4 sinh2 Y1A

(1)
ν + 1

2
√
3
ϵµν

λσαβγ∇µ(F (2)
λσ Sαβγ),

∇µ(e−4λ2F (2)
µν ) = 4 sinh2 Y2A

(2)
ν + 1

2
√
3
ϵµν

λσαβγ∇µ(F (1)
λσ Sαβγ),

(A.7)

The three-form S satisfies the following self-duality equation

e−4λ1−4λ2Sµνρ = 1
6mϵµνρ

αβγδ∂αSβγδ −
1

8
√
3m2 ϵµνρ

αβγδF
(1)
αβ F

(2)
γδ . (A.8)

Finally, the (trace subtracted) Einstein equation is given by

Rµν = 1
5gµνV + 5∂µ(λ1 + λ2)∂ν(λ1 + λ2) + ∂µ(λ1 − λ2)∂ν(λ1 − λ2)

+ 1
2∂µY1∂νY1 +

1
2∂µY2∂νY2 + 2 sinh2 Y1A

(1)
µ A(1)

ν + 2 sinh2 Y2A
(2)
µ A(2)

ν

+ 1
2e

−4λ1

(
F (1)

µν
2 − 1

10gµνF
(1)2

)
+ 1

2e
−4λ2

(
F (2)

µν
2 − 1

10gµνF
(2)2

)
− 3m2e−4λ1−4λ2

(
S2

µν − 2
15S

2
)
.

(A.9)

17In the main text we set m = 1 but it can be reinstated straightforwardly.
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The supersymmetry variations are given by

δψµ =
[
Dµ + m

20Tγµ − 1
80
(
γµ

νρ − 8δν
µγ

ρ
)
ΓijV i

I V
j

J F
IJ
νρ (A.10)

+ m

10
√
3

(
γµ

νλσ − 9
2δ

ν
µγ

λσ
)
ΓiV −1I

iS
I
νλσ

]
ϵ ,

δλi =
[
m

2

(
Tij −

1
5δijT

)
Γj + 1

2γ
µPµijΓj + 1

32γ
µν
(
ΓklΓi − 1

5Γ
iΓkl

)
V k

KV
l

LF
KL
µν (A.11)

+ m

20
√
3
γµνλ

(
Γij − 4δij

)
V −1J

j S
J
µνλ

]
ϵ ,

They simplify considerably when we consider the following linear combinations,

ψ̂µ = ψµ + 1
2γµΓ5λ5 , (A.12)

λ(1) = (Γ1λ1 + Γ2λ2) +
3
2(Γ

3λ3 + Γ4λ4) , λ(3) = (Γ1λ1 − Γ2λ2) , (A.13)

λ(2) = 3
2(Γ

1λ1 + Γ2λ2) + (Γ3λ3 + Γ4λ4) , λ(4) = (Γ3λ3 − Γ4λ4) . (A.14)

For the truncation under consideration the supersymmetry variations reduce to the set
following equations,

δψ̂µ =
[
∇µ + g

2
(
A(1)

µ Γ12 +A(2)
µ Γ34

)
+ m

4 e−4(λ1+λ2)γµ (A.15)

+ 1
4γ

ν
(
e−2λ1F (1)

µν Γ12 + e−2λ2F (2)
µν Γ34

)
+ 1

2γµγ
ν∂ν(λ1 + λ2)

− m
√
3

4 γνλe−2λ1−2λ2SµνλΓ5
]
ϵ

δλ(1) =
[
m

2
(
e2λ1 cosh Y1 − e−4(λ1+λ2)

)
− 1

2γ
µ∂µ(3λ1 + 2λ2)−

1
8γ

µνe−2λ1F (1)
µν Γ12 (A.16)

+ m

4
√
3
γµνλe−2λ1−2λ2SµνλΓ5

]
ϵ

δλ(2) =
[
m

2
(
e2λ2 cosh Y2 − e−4(λ1+λ2)

)
− 1

2γ
µ∂µ(2λ1 + 3λ2)−

1
8γ

µνe−2λ2F (2)
µν Γ34 (A.17)

+ m

4
√
3
γµνλe−2λ1−2λ2SµνλΓ5

]
ϵ

δλ(3) =
[
me2λ1 sinh Y1 −

1
2γ

µ∂µY1 + sinh Y1γ
µA(1)

µ Γ12
]
ϵ (A.18)

δλ(4) =
[
me2λ2 sinh Y2 −

1
2γ

µ∂µY2 + sinh Y2γ
µA(2)

µ Γ34
]
ϵ . (A.19)

As usual, supersymmetry fixes the gauge coupling in terms of the AdS length as g = 2m.
Having introduced the general equations of motion and BPS equations, in the following
we will restrict ourselves to the AdS5 solutions introduced in section 2. As already noted
before, the three-form necessarily has to vanish for this type of solution. The metric and
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gauge fields take the form

ds2 = f(w)ds2
AdS5 + g1(w)dw2 + g2(w)dz2 , A(i) = A(i)

z (w) dz , (A.20)

and all scalars solely depend on the coordinate w.
With this ansatz at hand we can now proceed to further simplify the BPS equations fol-

lowing a similar approach as in [9]. To do so it is useful to introduce an explicit representation
of the 7d gamma matrices,

γα = ρα ⊗ σ3 , γ6 = 14 ⊗ σ1 , γ7 = 14 ⊗ σ2 , (A.21)

where α = 1, . . . , 5 runs along the AdS5 directions. The five dimensional gamma matrices
ρα are given by

ρ1 = iσ1 ⊗ 12 , ρ2 = σ2 ⊗ 12 , ρ3 = σ3 ⊗ σ1 ,

ρ4 = σ3 ⊗ σ2 , ρ5 = σ3 ⊗ σ3 .
(A.22)

In line with the 5 + 2 split of the gamma matrices we write the supersymmetry parameter
as a tensor product,

ϵI = nIθ ⊗ η , (A.23)

where θ is a conformal Killing spinor on AdS5 satisfying,

∇AdS5
α θ = 1

2s1ραθ , s1 = ±1 , (A.24)

where the sign s1 is arbitrary. For concreteness we fix it to be s1 = 1 in the remainder of the
analysis. The constants nI are the components of an object in the 4 of SO(5) transforming
under the SO(5) Γ-matrices. The 2-component spinor η depends only on w and z and
moreover, since ∂z is a Killing vector we can assume that the spinor has a definite charge
under the U(1)z isometry. In other words we have

η(w, z) ≡ eiqzη(w) . (A.25)

Depending on the solution, we have to impose either one or two projection conditions
corresponding to respectively a 4d N = 2 or N = 1 dual SCFT. In this appendix we
analyse the more general case with N = 1 supersymmetry. When a solution preserves N = 2
supersymmetry one of the projectors (or a linear combination thereof) will be redundant
and does not need to be imposed. For minimally supersymmetric solutions, the projection
conditions are as follows,

(Γ12)I
Jn

J = inI , (Γ34)I
Jn

J = inI , , (A.26)

in principle we should allow for arbitrary signs in these equations but these can always
be absorbed in the gauge fields.
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Substituting the explicit form of the gamma matrices and factorised spinors in the BPS
equations (A.15)–(A.19) we find six algebraic equations,

0= s1
f1/2 η+

1
g

1/2
1

(
f ′

2f +λ
′
1+λ′2

)
(iσ2η)+m

2 e−4(λ1+λ2)(σ3η) , (A.27)

0=− 1
2(g1g2)1/2

(
e−2λ1A′(1)

z +e−2λ2A′(2)
z

)
η+ g

2g1/2
2

(
A(1)

z +A(1)
z +2q

g

)
(σ1η)

+ 1
g

1/2
1

(
g′2
2g2

+λ′1+λ′2
)
(iσ2η)+m

2 e−4(λ1+λ2)(σ3η) , (A.28)

0= 1
2(g1g2)1/2 e

−2λ1A′(1)
z η− 1

g
1/2
1

(3λ′1+2λ′2)(iσ2η)+m
(
e2λ1 coshY1−e−4(λ1+λ2)

)
(σ3η) ,

(A.29)

0= 1
2(g1g2)1/2 e

−2λ2A′(2)
z η− 1

g
1/2
1

(2λ′1+3λ′2)(iσ2η)+m
(
e2λ2 coshY2−e−4(λ1+λ2)

)
(σ3η) ,

(A.30)

0= 1
g

1/2
2

sinhY1A
(1)
z (σ1η)+

1
2g1/2

1
Y ′

1(iσ2η)−me2λ1 sinhY1(σ3η) (A.31)

0= 1
g

1/2
2

sinhY2A
(2)
z (σ1η)+

1
2g1/2

1
Y ′

2(iσ2η)−me2λ2 sinhY2(σ3η) . (A.32)

In addition, the w component of (A.15) gives rise to one ODE which determines the Killing
spinor.

0 = ∂wη+
1
2
(
λ′1 + λ′2

)
η+m

4 e−4(λ1+λ2)g
1/2
1 (σ1η)+ 1

2
(
e−2λ1A′(1)

z + e−2λ2A′(2)
z

)
(iσ2η) (A.33)

In order to solve these equations, note that the general form of the algebraic equations
is given by,

Miη =
(
X

(0)
i 1 +X

(1)
i σ1 +X

(2)
i iσ2 +X

(3)
i σ3

)
η = 0 . (A.34)

We can then collectively write all the equations as,


M1
M2

...


[
η1
η2

]
=



0
0
0
0
...


. (A.35)

A necessary condition to solve this system of equations is to impose that all 2 × 2 minors
have to vanish. Defining

vi =
(
X

(0)
i +X

(3)
i X

(1)
i +X

(2)
i

)
, wi =

(
X

(1)
i −X

(2)
i X

(0)
i −X

(3)
i

)
(A.36)

we therefore impose

Aij = det
(
vi

wj

)
= 0 , Bij = det

(
vi

vj

)
= 0 , Cij = det

(
wi

wj

)
= 0 . (A.37)
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These equations are clearly not all independent but a maximal set of independent equations
is given for example by

0 = A11 = A12 = A13 = A14 = A15 = A16 = B12 = C13 . (A.38)

Our reparameterisation of the solutions is redundant and we are free to fix g2. Rearranging
and taking linear combinations allows us to find all the other fields by solving six algebraic
equations and two non-linear differential equations. We checked that any solution to these
equations is also a solution to the equations of motion.

It is straightforward to check that these equations are indeed solved by the background
given in (2.1), (2.3) provided the functions hi(w) satisfy the system of non-linear ODEs (2.4).
Having showed that this background indeed solves the BPS equations and equations of
motion we can proceed to solve the ODE (A.33) and find the following explicit expression
for the two-dimensional spinor,

η = eiqz w1/20
√
2H(w)1/5

√H(w)1/2 + 2w3/2√
H(w)1/2 − 2w3/2

 . (A.39)

Note that, as a function of hi(w), this spinor is identical to the case without the additional
scalar, see e.g. [26]. The functions hi(w), however, are much more intricate when one adds
the extra scalar.

B Absence of spindle solutions with extra scalars

In this appendix, we give a proof for the absence of spindle solutions with additional scalars,
analogous to the disc solutions presented in the main text. The general solution with the
scalars Yi turned, (2.1)–(2.3), is completely determined in terms of the two functions h1(w)
and h2(w). In order for these fields to solve the equations of motion and BPS equations, the
functions hi(w) have to solve the system of ODEs (2.4), which we repeat here for convenience,

f(w)
(
h′i(w)− wh′′i (w)

)
= w

H(w)
hi(w)

(1
4h

′
i(w)2 − w2

)
. (B.1)

Solving this system of ODEs is prohibitively hard, and we cannot find a general solution. To
go beyond the standard spindle/disc solution (2.5), note that we are looking for functions
hi such that f has at least two real roots and is positive in the interval bounded by them.
Therefore, we can make progress by solving the ODEs perturbatively around a root w0
of f . To analyse these equations it will be useful to change coordinates to W = w2 such
that the ODEs take the form,

4f(W )h′′i (W ) + H(W )
hi(W )

(
h′i(W )2 − 1

)
= 0 , (B.2)

where f(w) = f(W ) and the prime is now understood as a derivative with respect to W .
Around a root W = W0 of f the ODEs reduce to h′2i (W ) = 1, where only the positive
sign makes sense given the expressions for the scalars Yi, (2.3). We expand the functions
hi as follows

hi(W ) = ci + (W −W0) + (W −W0)αi

∞∑
k=1

a
(i)
k (W −W0)k , (B.3)
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where the leading exponents αi ∈ N>0. Demanding h′i(W0) = 1 fixes the linear term, while
requiring that f(W0) = 0 fixes c2 = −4W 3/2

0 /c1. Substituting these expansions in (B.2),
for each pair of integers αi, the leading order determines the coefficients c1 as well as the
position of the root W0 to be

c1 = 54α1α
2
2

(2 + α1 + α2)3 , W0 = 81α2
1α

2
2

(2 + α1 + α2)4 . (B.4)

At the root the derivative of f is given by

f ′(W0) = − 27α1α2
(2 + α1 + α2)2 < 0 , (B.5)

and therefore we see that when for both functions hi(w) contain higher order terms it is
impossible to find solutions where the function f has multiple roots and is positive in between.

In the above we demanded both functions to have higher order terms, however, we can
still find spindle solutions when one of the functions, say h2, is linear, with c2 ̸= W0,

h2(W ) = c2 + (W −W0) . (B.6)

Proceeding analogously as above we find that ci are completely fixed in terms of α1 and W0,

c2 = −4W 3/2
0
c1

, c1 = 3W 1/2
0 ± W

1/2
0

α
1/2
1

(
9α1 − 4W 1/2

0 (2 + α1)
)1/2

. (B.7)

In order to find real solutions we need to constrain the allowed range of W0 to be

W0 ∈
[
0 , 81α2

1
16(2 + α1)2

]
. (B.8)

Substituting the expansion in the derivative of f at W0 gives,

f ′(W0) = − 2W0

3α1 ± α
1/2
1

(
9α1 − 4W 1/2

0 (2 + α1)
)1/2 ≤ 0 . (B.9)

Within the allowed range for W0 this function is always negative, see figure 4, meaning that
again we cannot find a solution with two nonzero roots with this ansatz for the expansion.
Indeed, this is reflected in the observation that when we find numerical solutions to the system
of ODEs, we always encounter a singularity when approaching a second root, indicating
that at this point the ODEs cannot be solved.

The only way to avoid this is to set q2 = 0, which in turn fixes one root to lie at W = 0.
This case is described in detail in the main text. The observation that for the spindle
solutions the U(1)2 isometry of the internal space cannot be explicitly broken by adding such
scalars suggests that, in this case, the isometries do correspond to honest symmetries of their
holographically dual SCFTs. This is in line with the analysis of [69].
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Figure 4. A plot of the derivative of f at a root W0 for generic values of α1. The red (blue) line
corresponds to the plus (minus) sign in the expression for f ′(W0). Varying the value of α1 simply
rescales the plot.

C Uplift formulae

In this work, we constructed various solutions of maximal SO(5) gauged supergravity. In order
to uplift these solutions to eleven-dimensional supergravity solutions, we use the uplift formulae
of [62, 63]. In terms of the seven-dimensional fields, the eleven-dimensional metric is given by,

ds2
11 = ∆1/3

[
ds2

7 +∆−1T−1
ij DµiDµj

]
, (C.1)

where µi, i = 1, . . . , 5 are embedding coordinates on S4 satisfying
5∑

i=1
(µi)2 = 1 (C.2)

For our purposes a convenient parameterisation of the embedding coordinates is,

µ1 =
√
1− µ2 cosϕ , µ2 =

√
1− µ2 sinϕ ,

µ3 =µ cos θ , µ4 =µ sin θ cosψ ,
µ5 =µ sin θ sinψ .

(C.3)

The function ∆ is defined in terms of the scalar matrix Tij as,

∆ = Tijµ
iµj , (C.4)

whilst the one-forms Dµi are defined to be,

Dµi = dµi + gAijµj , (C.5)

where Aij are the SO(5) gauge fields and g the gauged supergravity coupling constant. This
completely fixes the uplift of the metric and all that remains is to specify the form of the
four-form flux of eleven-dimensional supergravity. This in turn is given by

G4 = 1
4!g3∆2 ϵi1...i5

[
− Uµi1Dµi2 ∧ Dµi3 ∧ Dµi4 ∧ Dµi5

+ 4µj1µj2T i1j1DT i2j2 ∧ Dµi3 ∧ Dµi4 ∧ Dµi5

+ 6g∆F i1i2 ∧ Dµi3 ∧ Dµi4 T i5jµj
]

− Tij ⋆7 S
iµj + 1

g
Si ∧ Dµi ,

(C.6)
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where ⋆7 is the seven-dimensional Hodge star operator, and we defined

U = 2TijTjkµ
iµj −∆Tii . (C.7)

When considering seven-dimensional AdS5 solutions, it is sufficient to restrict to a further
U(1)2 sub-truncation of the full seven-dimensional SO(5) gauged supergravity. In this
sub-truncation, the only non-trivial SO(5) gauge fields are,

A12 = A(1) , A34 = A(2) . (C.8)

Demanding N = 2 supersymmetry furthermore fixes A(2) to be zero. Furthermore, as the
presence of a three-form is incompatible with the isometries of an AdS5 background all
three-form gauge fields necessarily vanish in this sub-truncation.

When considering the more general solutions obtained through our consistent truncation
to 5d we should relax some of these restrictions. Indeed, in this case we are forced to
turn on a set of non-vanishing SU(2) gauge fields on top of the U(1) gauge field A(1).
Additionally, generically the three-form gauge fields SI will also be turned on. Indeed, from
the branching rule,

SO(5) → SU(2)×U(1) : 5 → 30 ⊕ 12 ⊕ 1−2, , (C.9)

we see that in the 5d theory these three-forms decompose as a neutral SU(2) triplet and
two charged three-forms in line with the expected field content from 5d gauged supergravity
where the 30 gives rise to the SU(2) gauge fields while the 1±2 gives rise to the charged
two form gauge fields.

D Consistent truncations for N = 2 AdS5 solutions

In this appendix we spell out additional details regarding general N = 2 preserving AdS5
solutions. In this paper we consider such solutions form various vantage points, we construct
seven-dimensional AdS5 solutions, consider a truncation to five dimensions and along the
way embed both types of solutions in the most general eleven-dimensional set-up [50]. The
seven-dimensional solutions were constructed in maximal SO(5) gauged supergravity as
discussed in detail in appendix A. The five-dimensional solutions on the other hand are be
constructed in 5d SU(2) × U(1) Romans’ gauged supergravity. We start this appendix by
reviewing and introducing the most important aspects of both Romans’ supergravity as well
as the general eleven-dimension solution of [50]. After that we provide details omitted in
the main text regarding the consistent truncation from LLM to Romans supergravity as
constructed in [56] as well as technical details for obtaining our novel consistent truncation
from seven to five dimensions.

D.1 Romans’ 5d SU(2) × U(1) gauged supergravity

We start by giving some details on Romans’ supergravity. The goal of this subsection is
merely to set our conventions in order to resolve possible confusion. We therefore content
ourselves with giving the field content and Lagrangian and refrain from giving explicitly the
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equations of motion and BPS equations. All the solutions constructed in this work can be
embedded in seven- or eleven-dimensional supergravity and we checked that indeed they solve
the five-, seven- and eleven-dimensional equations of motion and BPS equations.

The bosonic field content of Romans’ SU(2)×U(1) gauged supergravity [55] consists of
the metric, a real scalar field X, a collection of U(1) × SU(2) gauge fields B and Aa, with
a ∈ {1, 2, 3} and a complex two-form C whose real and imaginary part form a charged doublet
with respect to the U(1) gauge field. The Lagrangian for this theory is given by

L = R ⋆ 1− 3
X2dX ∧ ⋆dX − X4

2 G2 ∧ ⋆G2 −
1

2X2

(
F i

2 ∧ ⋆F i
2 + C̄ ∧ ⋆C

)
− i C ∧ F̄3 −

1
2F

a
2 ∧ Fa

2 ∧ B + (X2 + 2X−1) ⋆ 1 .

where with respect to [55] we set g1 = −1 and g2 = −
√
2. The field strengths appearing

above are defined as

G2 = dB , Fa
2 ≡ D̃Aa = dAa − 1

2
√
2
ϵabcAb ∧ Ac , F3 = dC + i

2B ∧ C . (D.1)

The kinetic term for the scalar field may be written in the canonical form by introducing

a dilaton field ϕ defined through X = e−
1√
6 ϕ. One can further truncated this theory to 5d

Einstein-Maxwell, a.k.a. minimal, supergravity by letting ϕ = F1
2 = F2

2 = F3 = 0 vanish and
identifying F3

2 =
√
2G2 =

√
1
3F and B =

√
1
3A. The resulting Lagrangian is

L = (R− 3) ⋆ 1− 1
2F ∧ ⋆F − 1

3
√
3
F ∧ F ∧ A . (D.2)

D.2 N = 2 AdS5 solutions of 11d supergravity

Having discussed the 5d Romans’ supergravity we move on to discussing the most general
N = 2 preserving AdS5 background of eleven-dimensional supergravity as introduced in [50].

The metric and four-form flux for this background are given by

ds2 = e2λ
(
4ds2

AdS5 + y2e−6λds2
S2 + ds2

4

)
,

ds2
4 = 4

(
1− y2e−6λ

)
(dχ+ v)2 + e−6λ

1− y2e−6λ

(
dy2 + eD(dx2

1 + dx2
2)
)
,

G4 = F ∧ vol(S2) ,

e−6λ = − ∂yD

y(1− y∂yD) , (D.3)

v = 1
2ϵij∂jDdxi ,

F = d
(
4y3e−6λ(dχ+ v)

)
+ dB̂ ,

dB̂ = 4ydv − 2∂yeDdx1 ∧ dx2 .

Note that this solution is completely determined by a single potential D which satisfies
the SU(∞) Toda equation,

□D + ∂2
yeD =

(
∂2

x1 + ∂2
x2

)
D + ∂2

yeD = 0 . (D.4)
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In this way any solution of the above Toda equations can be mapped to a N = 2 preserving
AdS5 solutions in eleven-dimensional supergravity.

In section 3, in order to compute the conformal dimensions of the BPS particles corre-
sponding to wrapped probe M2-branes we need to formulate a calibration condition in order
to ensure supersymmetry of said operators. In [80] a generalised calibration was described for
the most general N = 1 AdS5 solution of M-theory [64]. Specifying to the LLM system, the
calibration 2-form X was given in [9]. We refer the reader to the above mentioned references
for more details on its construction. In terms of the LLM fields it takes the form,

X = y3e−9λvol(S2) + ye−3λ(1− y2e−6λ)dτ ∧ (dχ+ v)

− τe−3λ(dχ+ v) ∧ dy + τye−9λeD

1− y2e−6λ
dx1 ∧ dx1 ,

(D.5)

where the metric on the round two-sphere is given by

ds2
S2 = dτ2

1− τ2 + (1− τ2)dφ2 , where τ ∈ [−1, 1] . (D.6)

D.3 Consistent truncation of LLM to 5d gauged supergravity

Having introduced both Romans’ supergravity in five dimensions as well as the eleven-
dimensional LLM geometry we are ready to discuss the consistent truncation of the latter
to the former [56].18 Here we give all the necessary formulae needed in the main text, for
more details we refer the reader to the original reference.

In order to truncate the LLM geometry to five dimension, we rewrite the metric as follows,

ds2
11 =

(Ω
X

)1/3
e2λ
[
4ds2

5 +
Xe−6λ

1− y2e−6λ

(
dy2 + eD(dx2

1 + dx2
2
))

+ 4X2(1− y2e−6λ)
Ω (dχ+ v + 1

2B)
2 + y2e−6λ

XΩ D̃µ̃aD̃µ̃a
]
, (D.7)

where we defined the function

Ω = Xy2e−6λ +X−2(1− y2e−6λ) . (D.8)

The sphere is defined in terms of the embedding coordinates µ̃i which satisfy ∑i (̃µi)2 = 1
The gauged one-forms appearing in the metric are defined as

D̃µ̃a = dµ̃a + 1√
2
ϵabcµ̃

bAc . (D.9)

18Note that our notation differs slightly from that in [56]. The coordinates and functions here are related to
theirs as follows,

zGV = y2e−6λ, λGV = e−2λ, ρGV = y .

In addition, we fixed the overall constant m = 1
2 .
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Rewriting the four-form flux in terms of the five-dimensional fields is slightly more complicated,
with the resulting expression for G4 being

G4 = G̃4 + G2 ∧ β2 + Fa
2 ∧ βa

2 + ⋆5Fa
2 ∧ βa

1 + (C ∧ α2 + F2 ∧ α1 + c.c.) , (D.10)

G̃4 = − 1
2ϵabcµ̃

aD̃µ̃b ∧ D̃µ̃c ∧
[
d
(
e6λ(−∂yD)

4X2Ω

)
∧ 1
2eλ
√
1− y2e−6λ

ê3

+ e6λ(−∂yD)
4X2Ω ∧ d

(
1

2eλ
√
1− y2e−6λ

e3
)
+
( 2y
e2λ

e1 ∧ e2 + 2eλê3 ∧ e4
)]

.

(D.11)

In these expressions, ⋆5 denotes the Hodge dual with respect to the five-dimensional metric
ds2

5 and c.c. denotes the complex conjugated expression. The internal components of the
four-form flux are in turn given by

β2 = Xy3e−6λ

2Ω ϵabc µ̃
a D̃µ̃b ∧ D̃µ̃c ,

βa
2 = 1√

2

[
y
√
1− y2e−6λ

X2Ω e−λ D̃µ̃a ∧ ê3 − µ̃a
(
y e−2λ e12 + eλ ê34

)]
,

βa
1 = − 1√

2X2

(
µ̃a dy + y D̃µ̃a

)
,

α1 = 1√
2
e2λ

√
1− y2e−6λ

(
e1 − ie2

)
,

α2 = 1
2
√
2

(
e1 − ie2

)
∧
(
y e−2λe4 + ieλ ê3

)
.

(D.12)

In the expression above, we defined eab = ea ∧ eb (and similarly ê3a = ê3 ∧ ea) where the
vielbein ea are

e1 = e−2λeD/2√
1− y2e−6λ

(
sinχdx1 + cosχdx2

)
,

e2 = e−2λeD/2√
1− y2e−6λ

(
− cosχdx1 + sinχdx2

)
,

e3 = 2eλ
√
1− y2e−6λ(dχ+ v) ,

e4 = e−2λdy√
1− y2e−6λ

.

(D.13)

Finally ê3 denotes the gauging of the e3 vielbein by the gauge field B via dχ→ dχ+ 1
2B.

ê3 = 2eλ
√
1− y2e−6λ

(
dχ+ v + 1

2B
)

(D.14)

This concludes all the necessary expressions specifying the consistent truncation of the LLM
geometry to five-dimensional Romans’ supergravity.

D.4 Consistent truncation of 7d to 5d gauged supergravity

Finally, all the ingredients are in place to discuss the truncation of seven-dimensional
maximal SO(5) gauged supergravity to five-dimensional Romans’ supergravity. In the main
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text we discuss how to extract the metric, scalars and one-form gauge fields as these can
straightforwardly be extracted from the eleven-dimensional metric. In order complete the
truncation of the 7d theory we are left with determining the correct form of the three-forms
Si. This, however, is more subtle, since they appear only in the flux G4 and therefore we
need to carefully study the flux to extract these fields.

To do so let us start by defining the gauged volume,

vol(S2)g = 1
2ϵijkµ̃

iDµ̃j ∧Dµ̃k , (D.15)

which reduces to the volume of the unit radius two-sphere when the SU(2) gauge fields
are set to vanish. Next, in order to efficiently compare the flux we rewrite it to take the
form (D.10). The β-forms appearing in (D.12) are

β2 = y3

Ω̃
vol(S2)g ,

βa
1 = 1

4
√
2X2

(
wDµa+2 + µa+2dw

)
,

(D.16)

while the α’s are

α1 = e−iχ
[√

f(w)
2
√
2w

(
ieY1(w)/2Dµ1 + e−Y1(w)/2Dµ2)

+ 1
2
√
2
(
ie−Y1(w)/2µ1 + eY1(w)/2µ2) [ w2

4
√
f(w)

dw − i
√
f(w)
w

A12
] ]

,

α2 = 1
2
√
2
e−iχ

[(
eY1(w)/2Dµ1 − ie−Y1(w)/2Dµ2

)
∧
(

iw
2
√
f(w)

dw −
√
f(w)
w

Dχ

)

+ iw2√f(w)
4(f(w) + w3X3)

(
ie−Y1(w)/2µ1 + eY1(w)/2µ2)dw ∧Dχ

]
.

(D.17)

Similarly, we can extract the external part of the four-form flux to find,

G̃4 =− 2vol(S2)g ∧
[
d
[
2y
(
1− y2

Ω̃

)]
(Dχ+ v) + 2y

(
1− y2

Ω̃

)
dv

− 2dy ∧ (Dχ+ v)− ∂yD dx1 ∧ dx2
]
. (D.18)

Note that Ω̃ was given in (4.17) and we have refrained from giving the explicit form of βa
2 since

it is complicated and we have extracted this term out of the flux from the 7d uplift below.
With these expressions at hand we can now compare these terms with the flux arising from

uplifting a seven-dimensional solution of maximal gauge supergravity, see (C.6). Carefully
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rewriting the uplifted G4 for our 7d truncation results in the following terms

G
(1)
4 = µ2U

∆2 vol(S2)g ∧ dµ ∧
(
dϕ−A12

)
,

G
(2)
4 = − 2(1− µ2)µ2X̂2

1
∆2 vol(S2)g ∧ dµ ∧

(
cosϕ sinϕdY1

+ sinh(Y1(w))
(
e−Y1(w) cos2 ϕ− eY1(w) sin2 ϕ

)
A12

)
,

+ µ3
(
X̂2

2

(
µ1d

(
e−Y1(w)X̂1X̂

−1
2
)
∧ Dµ2 − µ2d

(
eY1(w)X̂1X̂

−1
2
)
∧ Dµ1

)
+ 2 sinh

(
Y1(w)

)
X̂1X̂2A

12 ∧
(
µ2Dµ2 − µ1Dµ2)) ∧ vol(S2)g ,

G
(3)
4 = − β2 ∧ dB − βa

2 ∧ Fa

− X̂
5/3
1 µ3

16Xw2Ω̃
(
3wf(w)dX +X(w3X3 + 4f(w)− wf ′(w))dw

)
∧Dχ

− wf(w)
2
√
2(f(w) + w3X3)

Fa ∧Dχ ∧ Dµa + 2 + 1
2
√
2
µa+2dw ∧Dχ ∧ Fa .

(D.19)

The labels in superscript indicate the origin of the respective term in the uplift of 7d maximal
gauged supergravity and corresponds to the line number in equation (C.6). After all this
preparatory work we can now simply compare the terms of the two truncations to obtain the
resulting expressions for the three-forms (4.23) presented in the main text. By construction,
the truncation of the 7d theory on the disc is consistent.
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