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Effective application of mathematical models
to interpret biological data and make accurate
predictions often requires that model parameters
are identifiable. Approaches to assess the so-
called structural identifiability of models are
well established for ordinary differential equation
models, yet there are no commonly adopted
approaches that can be applied to assess the structural
identifiability of the partial differential equation (PDE)
models that are requisite to capture spatial features
inherent to many phenomena. The differential algebra
approach to structural identifiability has recently
been demonstrated to be applicable to several
specific PDE models. In this brief article, we present
general methodology for performing structural
identifiability analysis on partially observed reaction–
advection–diffusion PDE models that are linear
in the unobserved quantities. We show that the
differential algebra approach can always, in theory,
be applied to such models. Moreover, despite the
perceived complexity introduced by the addition
of advection and diffusion terms, consideration
of spatial analogues of non-spatial models cannot
exacerbate structural identifiability. We conclude by
discussing future possibilities and the computational
cost of performing structural identifiability analysis
on more general PDE models.
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1. Introduction
Mathematical models play an irreplaceable role in the interpretation of biological data. Model
parameters are now routinely used to objectively quantify observed behaviour and characterize
behaviours that cannot be directly measured [1,2]. The question of whether it is possible, in
theory, for model parameters to be uniquely identified given a specified mathematical model and
a specified set of observed quantities, is referred to as structural identifiability [3–7]. Assessing the
structural identifiability of a model and observation process can provide vital insights that guide
data collection before experiments have been conducted [8]; establish identifiable parameter
combinations that resolve issues of non-identifiability either through reparametrization or
additional experimentation [9]; and provide confidence in predictions drawn from calibrated
mathematical models [10].

Tools for assessing structural identifiability are well established for deterministic, ordinary
differential equation (ODE) models [11–14]. The advent of open-source and even web-based
software [15] to automate the otherwise tedious analysis has ingrained questions related to
structural identifiability into the inference process for ODE models [14]. Methods originate
with differential-algebra-based approaches [16], which for linear or polynomial systems assess
identifiability through a so-called input–output relation: a set of monic polynomials in the
derivatives of observed variables, the coefficients of which form the set of identifiable parameter
combinations. Differential algebra approaches are trivial if all variables in a system are observed,
although questions of structural identifiability very often relate to partially observed systems,
where only measurements of a subset of state variables are available [3,8,17]. For such partially
observed systems, the algorithmic complexity of differential algebra approaches comes from the
reduction of a high-dimensional (in the number of state variables), lower-derivative-order system
to a set of higher-derivative-order polynomials that include only the observed quantities [11].
Several alternative approaches for structural identifiability have been since been established;
notably those based on Taylor series, generating series and Lie derivatives [7,18], and similarity
transforms [7,19]. Many of these more modern approaches are more broadly applicable to analytic
systems, and significantly more computationally efficient than those based on differential algebra.

However, many forms of biological data are inherently spatial, and therefore not
well described by ODE models [20]: data relating to cell migration [21,22] or diffusive processes
[23,24], for example. Yet, tools for assessing the structural identifiability of the partial differential
equation (PDE) models that capture spatial heterogeneity remain almost entirely undeveloped.
Recent work has demonstrated the application of the differential algebra method to assess
structural identifiability of a class of first-order age-structured PDE models [25], and a system
comprising a single diffusive species [26]. Significantly, Renardy et al. [25] demonstrate that
the differential-algebra approach may be applicable more generally to systems of linear first-
order PDE models. However, structural identifiability of more generic systems that contain
both first- and second-order spatial derivatives (hereafter referred to as reaction–advection–
diffusion (RAD) systems) have not, to the best of our knowledge, been explored. In particular,
it has remained unclear whether the differential algebra approach can always be applied to PDE
models, or whether such analysis of PDE models is more restrictive. Even more basic questions,
including whether the apparent additional complexity of including a diffusion term exacerbates
or alleviates issues relating to structural identifiability, remain unanswered. Given the prevalence
of spatial data in biology, in no small part due to advancements in microscopy and imaging
technologies, it is imperative that tools for structural identifiability are developed for the PDE
models that account for inherently spatial behaviour.

In this brief article, we present a methodology and a series of general results for the structural
identifiability of linear RAD PDE models subject to partial observation. We also demonstrate
that our methodology can be applied to any nonlinear RAD PDE model that is linear in the
unobserved quantities: we refer to such models as semi-linear. For a more thorough and formal
introduction to structural identifiability and the differential algebra approach, we direct the
reader to [25,27]. We present our results through example, first presenting a didactic guide to
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Figure 1. Partially observed spatial data in a scratch assay experiment. (a) Scratch assays involve growing a monolayer of
cells (purple) in a well before making an artificial scratch or wound (white) and imaging a central region. (b) Snapshots
collected at 0 h and 48ḣ from a typical scratch assay experiment conducted using PC3 prostate cancer cells [28]. Averaging in the
direction of the scratch provides one-dimensional spatio-temporal information relating to the total cell density. (c) Scratch assay
experiment with cell cycle information conducted using WM983C melanoma cells [29]. Encoding cells with FUCCI technology
allows additional visualization of the cell cycle [30], shown schematically in (d). FUCCI scratch assay experiments provide spatio-
temporal information relating to the density of cells in each stage of the cell cycle. Panels in (b) and (c) are reprinted from [28,29],
respectively, under a CC-BY and CC-attribution licence.

the procedure for a two-state model of cell proliferation and migration inspired by common
scratch assay experiments (figure 1) [21]. Next, in §2(b), we present more general methodology
and general results for a generic two-state RAD model; these results are then compared with
the corresponding ODE model before the role of the initial condition—which differs significantly
to the ODE case—is discussed in §2(c). In §2(d), we formally present results for generic linear
systems comprising an arbitrary number of states. Finally, in §2(e), we present an example set of
results for two semi-linear systems: a model of bacterial chemotaxis, and a three-state nonlinear
analogue of the scratch assay model. Avenues for future work and key features that distinguish
the structural identifiability problem for ODE models from those of PDE models are discussed
in §3.

2. Methods and results

(a) Linear cell-cycle model
To demonstrate the differential algebra approach for linear PDE models, we first consider a two-
state cell cycle model of cell migration subject to exponential growth [21,31]. We divide the cell
cycle (figure 1d) into two subspecies that approximately correspond to the fluorescent markers in
a FUCCI [30] scratch assay (figure 1c): cells in G1 phase fluoresce red, and cells in S/G2/M phase
fluoresce green [21]. During M-phase (mitosis), a green cell proliferates into two daughter cells
that eventually fluoresce red. Finally, we model cell motility using linear diffusion. The model is
given by

∂r
∂t

= D1
∂2r
∂x2 − k1r + 2k2g (2.1a)

and
∂g
∂t

= D2
∂2g
∂x2 + k1r − k2g, (2.1b)
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for t > 0 and x ∈ [0, L], and where r(x, t) and g(x, t) denote the density of cells in G1 (red) and G2
(green), respectively; D1 and D2 are the diffusion coefficients associated with each subspecies;
k1 is the G1 (red) to G2 (green) transition rate; and k2 the mitotic rate of green cells. For
compactness, from this point on we denote derivatives using superscripts such that r(i,j) =
∂ i+jr/∂xi∂tj, and denote the undifferentiated variables interchangeably without such that r(0,0) ≡ r.
We prescribe homogeneous Neumann (no-flux) boundary conditions on a domain x ∈ [0, L], such
that no additional information is available from the equations that govern the behaviour at the
boundaries. The initial condition is assumed to be general: r(x, 0) = r0(x) and g(x, 0) = g0(x).

While the model is motivated by FUCCI experiments that provide information on the cell-cycle
status of individual cells (figure 1b), more typical experimental data is of the form

n(x, t) = r(x, t) + g(x, t), (2.2)

as shown in figure 1c [32]. A key question of interest is: can the model parameters, including
the transition rates between cell-cycle states that are not individually observed, be inferred from
an observation process of the form given by equation (2.2); i.e. by measuring only the total cell
density?

Application of the differential algebra approach to assess this question of structural
identifiability requires first that we write the system equation (2.1) as a differential-algebraic
equation in terms only of the variable that we observe, n, and its derivatives. To do so, we first
write

n(0,1) = D1n(2,0) + (D2 − D1)g(2,0) + k2g(0,0), (2.3)

to eliminate r. At this point, it is clear that the analysis is far simpler in the case that D2 = D1 = D:
all that remains in this case is to solve equation (2.3) for g in terms of n(0,1) and n(2,0), and substitute
into equation (2.1b). For distinct diffusivities, progress is made by solving equations (2.3) and
(2.1b) simultaneously for g(0,1) and g(2,0) in terms of n and its derivatives to obtain

g(0,1) = k1n(0,0) +
[
D2(k1 + 2k2) − D1(k1 + k2)

]
g(0,0) − D2n(0,1) + D1D2n(2,0)

D1 − D2
(2.4a)

and

g(2,0) = k2g(0,0) − n(0,1) + D1n(2,0)

D1 − D2
. (2.4b)

This step is advantageous as it yields a first-order equation, giving greater flexibility in
subsequent equations that can be produced up to a specified order. Importantly, we note both
the previous and all following steps may be carried out using only multiplication and elimination
to avoid division by zero in determining the requisite first-order equation.

Next, we differentiate equations (2.4a) and (2.4b) with respect to x twice and t, respectively, to
obtain two expressions for g(2,1) that can be equated to give, after some simplification,

0 = −k1k2n(0,0) + (k1 + k2)n(0,1) + n(0,2) − (D2k1 + D1k2)n(2,0) − (D1 + D2)n(2,1) + D1D2n(4,0).
(2.5)

At this point, many authors divide through by the coefficient of the ‘highest-order’ term,
following some ordering, to ensure that the resultant polynomial system is monic and therefore
unique. A pathological example that illustrates why we must do this is to consider that we could
otherwise multiply equation (2.5) through by an arbitrarily chosen parameter. This would give
the impression that the chosen parameter is identifiable through the coefficient of n(0,2). We take a
more practical approach to ensure uniqueness and divide the resultant polynomial through by an
arbitrarily chosen coefficient. For equation (2.5), we trivially divide through by the coefficient
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of n(0,2). Thus, the following set of polynomial coefficients (multiplied through by −1 where
appropriate), are structurally identifiable:

{
k1k2, k1 + k2, D2k1 + D1k2, D1 + D2, D1D2

}
. (2.6)

Clearly, since both the product k1k2 and sum k1 + k2 are structurally identifiable, so too are the
individual parameters k1 and k2. A similar observation can be made for the diffusivities, and so
all model parameters are structurally identifiable. As we expect, removing spatial information
(for example, by initializing the system with a spatially homogeneous initial condition such that
n(i,0) = 0 for all i = 1, 2, . . .), the polynomial system reduces to terms that do not include D1 nor
D2; however, the rate constants k1 and k2 remain identifiable.

(b) Generic two-state reaction–advection–diffusion system
Having established the general procedure for applying the differential algebra framework to
reaction–diffusion models, we now consider the general two-state model

u(0,1) = Duu(2,0) + αuu(1,0) + p1u + p2v + p3 (2.7a)

and
v(0,1) = Dvv

(2,0) + αvv
(1,0) + p4u + p5v + p6, (2.7b)

for t > 0 and subject to observations of the form n(x, t) = u(x, t) + v(x, t). The initial conditions are
fully prescribed by n(x, 0) = n0(x) and v(x, 0) = v0(x). We do not consider a domain or boundary
conditions, only assuming that no information is available through observation of the system at
the boundaries.

Analysis of such a system captures both extensions to the linear cell-cycle model that
incorporates advection, and canonical models analysed in the structural identifiability literature
such as the so-called ‘two-pool model’ [33]. The following results are trivially applicable to other
linear combinations of the states (for example, observations of the form αu(x, t) + βv(x, t) where α

and β are unknown parameters) through a rescaling.
The procedure for determining the required polynomial equation is now complicated by the

presence of first-order spatial derivatives v(1,0) in the system. To proceed, we first eliminate u to
obtain a two-state system in n and v, with

n(0,1) = Dun(2,0) + (Dv − Du)v(2,0) + αun(1,0) + (αv − αu)v(1,0)

+ (p1 + p4)n(0,0) + (p2 + p5 − p1 − p4)v(0,0) + p3 + p6. (2.8)

We proceed by solving equations (2.7b) and (2.8) for (v(2,0), v(0,1)) so as to obtain a system of one
first-order and one second-order equation. We can then expand the resultant system by taking
appropriate derivatives up to ith order to end up with a linear system with more equations than
unknown variables. In this case, this is achieved by considering derivatives up to order i = 4,
which yields 16 equations in all 15 possible fourth-order derivatives of the unobserved variable
v. The resultant system will always be linear for all linear and what we term ‘semi-linear’ systems,
the latter defined as systems that are linear in the variables we wish to eliminate (a logistic term
of the form v(1 − n) would be semi-linear, since n is observed).

Thus, we arrive at the over-determined system

Av(4) = b, (2.9)

where v(i) ∈ R
(i+1)(i+2)/2 denotes a vector of all possible ith order derivatives. We then proceed by

performing Gaussian elimination to reduce the augmented matrix (A|b) into row echelon form.
This provides a set of expressions, based upon linear combinations of the elements of b, that
necessarily vanish; thus providing the required set of polynomial equations.

It is not necessarily the case that we must work with the full set of fourth-order equations,
just that we are required to do so to ensure that the system is appropriately determined. This
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is important as it is possible for the system to be characterized by more than one polynomial
equation: the number of polynomial equations we require for linear and semi-linear problems
will be given by the difference in rank of A and the rank of the augmented matrix (A|b) from
the over-determined system. For the two-state RAD system, we thus require a single polynomial
equation. It happens in our case that we are able to obtain this single polynomial equation from
a subset of third-order equations. Algebraic manipulations are performed in Mathematica [34]
and available as electronic supplementary material, code with algorithmic details provided in
appendix A.

For the system defined by equation (2.7), we arrive at the set of polynomial coefficients
{

p1p5 − p2p4, p1 + p5, p5αu + p1αv , αu + αv , Dvp1 + Dup5 + αuαv ,

− Du − Dv , Dvαu + Duαv , DuDv , (p5 − p4)p3 + (p1 − p2)p6

}
. (2.10)

Equation (2.10) provides an exhaustive set of identifiable parameter combinations. We then
reduce this set further to establish a fully reduced set of identifiable parameters and parameter
combinations. For example, denoting two combinations by c6 = Du + Dv and c8 = DuDv we can
solve for the parameters Du and Dv in terms of the identifiable parameter combinations c6 and c8,
thus establishing that Du and Dv are identifiable. For equation (2.7), the reduced set of identifiable
parameter combinations is given by

{
Du, Dv , αu, αv , p1, p5, p2p4, (p5 − p4)p3 + (p1 − p2)p6

}
. (2.11)

By setting αu = αv = 0 in equation (2.10), we see that these results are identical to the no-advection
model. However, results differ slightly for the non-spatial model. Setting Du = Dv = αu = αv = 0
to remove spatial derivatives, we see that the reduced set of identifiable parameter combinations
is now {

p1p5 − p2p4, p1 + p5, (p5 − p4)p3 + (p1 − p2)p6

}
, (2.12)

so we can no longer identify any rate parameters individually. This result demonstrates that we
are potentially able to learn more about the process by introducing spatial heterogeneity into the
system.

(c) Role of the initial condition in identifiability
Clearly, if we observe only n(x, t) = u(x, t) + v(x, t) we cannot always fully ascertain the initial
condition v0(x). A key point of distinction between such partially observed PDE models and
their ODE counterparts is that the initial condition is an unknown function, whereas for an ODE
model the initial condition is merely an additional unknown scalar parameter. In the case of
structural identifiability, we assume that we perfectly observe not only n(x, 0) = n0(x) but also
its derivatives. Thus, we can consider that the right-hand-side of equation (2.8) is ‘observed’ such
that the functional

f (x) := n(0,1)
0 (x) = Dun(2,0)

0 (x) + (Dv − Du)v(2,0)
0 (x) + αun(1,0)

0 (x) + (αv − αu)v(1,0)
0 (x)

+ (p1 + p4)n(x) + (p2 + p5 − p1 − p4)v0(x) + p3 + p6 (2.13)

is also ‘identifiable’ in a similar sense to the other identifiable parameter combinations in equation
(2.11). This result shows a clear interdependence between model parameters and the initial
condition: specifiying a functional form for the initial condition has a similar role to fixing a
non-identifiable parameter that appears in combination with other model parameters. Thus, it
is possible for a practitioner to unknowingly render structurally non-identifiable parameters
identifiable through an assumption related to the initial condition, highlighting the importance of
considering structural identifiability when working with partially observed PDE models.

We illustrate these results in figure 2 by noting that equation (2.11) gives combinations of
parameters that can produce identical model outputs. For example, we can set p2 �→ 2p2 and see
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Figure 2. Non-identifiability of the linear RAD model. (a) Individual (unobserved) states, u(x, t) and v(x, t), at t =
0, 2, 4 and 6. The arrow indicates the direction of increasing t. Shown are curves for the original set of parameter values
(green and blue solid curves, top row) and curves for the modified set of parameter values where p2 �→ 2p2 (red dashed,
bottom row). Note the difference in initial condition between parameter sets. (b) Observed variable, n(x, t) = u(x, t) +
v(x, t) at the original set of parameter values (grey) and modified set of parameter values (red dashed). Note that the
parameter sets are indistinguishable. (c) Equivalent dynamics for the ODE model, showing n(t) and v(t) at the original
parameter set (solid) and modified parameter set (dashed). Original parameters are Du = 20, Dv = 10, α1 = −5,
α2 = 5, pi = 0.1 (i �= 2) and p2 = 0.2.

no change to n(x, t) provided other parameters and the initial condition are adjusted accordingly.
Solving the model with an initial parameter set and initial condition for n(x, 0) provides f (x) to
determine the new initial condition for v(x, t) in terms of equation (2.13), a steady-state reaction–
advection equation (figure 2a). Solving the full system again (figure 2b) demonstrates structural
non-identifiability: model outputs are indistinguishable. We show the equivalent set of results for
the corresponding ODE model in figure 2c.

(d) Generic linear systems
A question naturally arising from our analysis of the generic two-state system is whether the
procedure is applicable to linear systems with an arbitrary number of states and outputs; a second
is whether the reduction in the number of identifiable parameter combinations when reducing to
a corresponding ODE model is generally true of RAD models.

To determine whether it is, in theory, possible to find a polynomial system for all m-state linear
RAD models subject to observations of � variables, we need only consider whether it is possible
to close such a system through repeated differentiation. That is, is there an order of derivative at
which we are guaranteed that we will have more determining equations than variables? We arrive
at the following result.

Theorem 2.1. All linear RAD models of m states can be reduced to a set of polynomial relations
involving derivatives of order no more than 4(m − 1).

Proof. We can rewrite the system of m equations to include at least one first-order equation.
Expanding the system to include derivatives up to order n yields at least q(n) = (mn2 − mn + 2n)/2
equations, with no more than v(n) = (n + 1)(n + 2)(m − 1)/2 unknown variables (i.e. nth order
and lower derivatives of the unobserved quantities). The number of excess variables is no more
than d(n) = q(n) − v(n), which we require to be positive. Defining n∗ = min n : d(n) ≥ 0, n ∈ Z, it is
straightforward to see that n∗ = 4(m − 1), as required. �

Theorem 2.1 highlights the potential computational cost of performing structural identifiability
for PDE models with large numbers of states: application of our method for a linear system of only
three states would potentially require us to perform Gaussian elimination symbolically on a 92
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equation system. While analysis of the two-state system required a wall time of approximately 1 s,
attempting to analyse a corresponding generic three-state model subject to a single observation
did not yield results within a 12 h run time (Mathematica 13.1 [34], Apple M1 Pro with
16GB RAM). Importantly, however, theorem 2.1 demonstrates that it is always theoretically
possible to perform structural identifiability analysis on linear RAD models. Furthermore, the
Gaussian-elimination-based reduction procedure requires only that the system be linear in the
unobserved quantities, thus theorem 2.1 will hold for all semi-linear systems, including, for
example, analogues of equation (2.1) with logistic growth terms and observation processes that
include the total population.

Secondly, we observe for the linear two-state system that the PDE model contains a greater
number of identifiable parameter combinations than the corresponding ODE (i.e. spatially
homogeneous) model. We present the following result.

Corollary 2.2. Identifiable parameter combinations in a linear spatially homogeneous system are a
subset of the identifiable parameter combinations in all corresponding spatially heterogeneous models
subject to linear advection and/or diffusion with general unknown initial conditions.

Proof. By theorem 2.1, we are guaranteed that the spatially heterogeneous system may be
written as set of polynomial relations, and, therefore, that we can express the system as a set
of polynomial relations involving only observed variables and their derivatives. Thus, we can
obtain a set of identifiable parameter combinations, Q, from the set of polynomial coefficients.
Next, we can recover the set of identifiable parameter combinations in the spatially homogeneous
model, Q∗, by considering that all terms involving spatial derivatives vanish. Thus, Q∗ ⊆Q as
required. �

As stated previously, we will also be able to write semi-linear systems as over-determined
linear system of differential-algebraic equations, and consequentially theorem 2.2 will also hold
for semi-linear systems. Furthermore, we propose that one cannot increase the set of identifiable
parameter combinations by imposing additional constraints on the problem (for example, by
prescribing a particular form for the initial condition). Thus, we also expect theorem 2.2 to hold
for systems with nonlinear source terms by considering identifiability of systems with no-flux
boundary conditions and homogeneous initial conditions, which reduce to the corresponding set
of ODEs.

(e) Semi-linear systems
We now briefly present and discuss analysis of two specific semi-linear systems: a two-state model
of bacteria migration due to chemotaxis, and a three-state cell-cycle model subject to logistic
growth.

(i) Two-state model of bacteria chemotaxis

First, we consider a model of bacteria chemotaxis. Bacteria, ρ(x, t), secrete a chemotactic factor,
c(x, t), at rate k > 0. Both bacteria and the chemotactic factor diffuse; however, bacteria additionally
undergo directed motion due to the spatial gradients in the chemotactic factor, with strength
and direction given by χ (χ > 0 and χ < 0 correspond to negative and regular chemotaxis,
respectively). The chemotactic factor degrades at constant rate α > 0. The dynamics are described
by the nonlinear system [20]

ρ(0,1) = Dρρ(2,0) +
chemotaxis︷ ︸︸ ︷

χ (ρc(0,1))(0,1)

and
c(0,1) = Dcc(2,0) + kρ − αc,

for t > 0 and x ∈ [0, L]. We consider a realistic experimental set-up where only information relating
to the density of bacteria is available (i.e. the concentration of the chemotactic factor is not

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

26
 A

pr
il 

20
24

 



9

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A480:20230911

..........................................................

0

0.5

1.0
t = 0 t = 10 t = 20

0 25 50 75
x

c(
x,

 t)
ρ(

x,
 t)

x x
100

0

0.2

0.4

0.6

0 25 50 75 100 0 25 50 75 100

Figure 3. Non-identifiability of the chemotaxismodel. Solutions show the observed variableρ(x, t) (top row), and unobserved
variable c(x, t), at the original parameter set (solid curves) andmodified parameter set whereχ �→ 2χ (red dashed). Original
parameters are Dρ = 20, Dc = 100, χ = k = α = 1. Note that the choice χ > 0 prescribes negative chemotaxis: bacteria
move down the chemotactic gradient.

observed). The experiment is initiated without the chemotactic factor, c(x, 0) = 0, and the field
of view is such that no-flux boundary conditions are appropriate. We consider the system to be
semi-linear as it is linear in the unobserved quantity, c.

Results in theorem 2.1 indicate that, after eliminating c(2,0) from one equation, we can expand
the system to include derivatives up to fourth order to ensure that the system is fully determined.
Performing row reduction on the expanded system yields a polynomial expression containing 212
coefficients, which determine the identifiable parameter combinations (full calculations available
as electronic supplementary material, code) as

{Dρ , Dc, k, αχ}. (2.14)

Thus, Dρ , Dc and k are structurally identifiable as is the product αχ , while the individual
constituents α and χ are not. This analysis agrees with results that one would arrive at through
the scaling c̃ = αc to eliminate the disparate appearance of α and χ in (14).

A key difference between analysis of the chemotaxis model and the general linear model
considered previously is the role of the initial condition. While it may be true that α and χ would
become individually identifiable if information relating to a non-homogeneous non-zero initial
condition were known, the initial condition c(x, 0) conveys no information about the parameters.
Indeed, we can demonstrate that α and χ can compensate for each other without varying the
initial condition (figure 3).

(ii) Three-state cell-cycle model of cell migration subject to logistic growth

Finally, we consider a three-state cell cycle model of cell migration that extends on that presented
in §2a by capturing the intermediate stage where cells appear to fluoresce yellow in FUCCI assays,
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and where contact inhibition prevents cells in G2 from undergoing mitosis [31,35]. The model is
given by

r(0,1) = D1r(2,0) − λ1r + 2λ3g(1 − n/K), (2.15a)

y(0,1) = D2y(2,0) − λ2y + λ1r (2.15b)

and g(0,1) = D3g(2,0) − λ3g(1 − n/K) + λ2y. (2.15c)

Here, the variable y corresponds to cells that fluoresce both red and green and hence appear to
fluoresce yellow. We consider that FUCCI scratch assay experiments are conducted (figure 1b), but
that we do not attempt to distinguish the period of fluorescent overlap so that only measurements
relating to r and g are available.

While this problem seems more complex—both due to the nonlinearity introduced by the
logistic growth term and the additional state variable—it is relatively straightforward to eliminate
y and its derivatives without expanding the system through differentiation. To do this, we solve
equation (2.15b) explicitly for y to obtain

y(0,0) = −λ3(g(0,0))2 + λ3g(0,0)(K − r(0,0)) + K
(
g(0,1) − D3g(2,0))

Kλ2 + λ3g(0,0)

and then substitute the resultant expression directly into equations (2.15a) and (2.15b). This
approach is advantageous in that it can be applied to any nonlinear PDE model in which we
can solve for the unobserved quantities in terms of the observed quantities and respective
derivatives; we could, for example, apply such a technique to a model where growth inhibition
is modelled through alternative growth models such as Gompertz or Richards (for models with
non-polynomial terms the orthogonality of terms will also need to be established to construct the
set of coefficients). Expanding the resultant system reveals that all parameters are structurally
identifiable, in agreement with the result in theorem 2.2, where we find that the corresponding
ODE model is also structurally identifiable according to the online tool SIAN [15,36].

3. Discussion and conclusion
Many processes are inherently spatial, and not well described by ODE models. Yet, tools for
assessing the identifiability of the PDE models that are increasingly used to interpret spatial
data are almost entirely undeveloped. In this brief article, we illustrate how the well-established
differential algebra approach to structural identifiability of ODE models can be transferred to
analyse a large class of spatial models.

While we demonstrate that the differential algebra approach can be applied to any system
of linear RAD equations, we have restricted our demonstration to two- and three-state systems
in one spatial dimension. Results in theorem 2.1 show that the derivative order required grows
rapidly as the number of state variables increases; we expect this to be exacerbated for PDE
models with more than one spatial dimension. This presents not only computational difficulties,
but practical issues with interpretation: the resultant set of polynomial coefficients will be verbous
and potentially complicated, making it difficult to establish a reduced set of identifiable parameter
combinations. We see this even for the relatively simple semi-linear chemotaxis model (electronic
supplementary material, code). Such computational issues are a well-established shortcoming of
the differential algebra approach, even for ODE models [13]. While this bottleneck presents a clear
shortcoming, many PDE models used in practice only possess a small number of state variables:
perhaps more so than for ODE models, where large systems are common [37]. Common systems
of PDE models that we can analyse include models of chemotaxis [20], Turing patterning and
morphogenesis [38], age-structured epidemic models [25], systems of heat and wave equations
and many more. For some systems, one approach to deal with larger numbers of state variables is
through a transformation that decouples states [39]; identifiability can then be established for each
species sequentially.
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Another approach to alleviate the computational cost is to develop more efficient algorithmic
implementations of state-variable elimination that do not involve expanding to a fully determined
system. In the ODE literature, Ritt’s algorithm is commonly employed alongside a Gröbner
basis factorization to eliminate state variables automatically [12,40]. An advantage of eventual
implementation of these algorithms for analysis of PDE models is their application to nonlinear
problems: computing the Gröbner basis is equivalent to Gaussian elimination for linear systems
of equations, but can be applied generally to any polynomial system. While it remains unclear
whether this can, given infinite computational time, always be applied to PDE models (as we have
shown is the case for linear systems), such software will enable analysis of a much larger class of
PDE models that can be written as polynomial in both state variables and their corresponding
derivatives [41].

A unique feature in the application of PDE models to interpret data is the mode of
measurements that may be collected. It is not always the case that experimental observations
correspond to measurements of a spatio-temporal function: rather, observations could comprise
scalar measurements at a single point in space (for example, measurements of temperature by a
probe in a heat conduction experiment [42]) or scalar measurements of a spatial average (i.e. of
total cell count). Summary-statistic type measurements can be even more complicated for models
with two or more spatial dimensions [43]. The scratch assay experiment is an example of this,
as data collected from the full, two-dimensional, process often comprises spatial averages in the
direction parallel to the scratch [32]. This example is trivial as, provided appropriate constraints
are placed on the initial condition, the extraneous spatial dimension can be integrated out of the
full two-dimensional model to yield the one-dimensional model that we analyse. It is entirely
unclear whether it is possible, in the general case, to reduce a system of PDEs to a polynomial
system involving an observation function that does not include space.

This question of lower-dimensional observation functions is particularly relevant to structural
identifiability analysis of stochastic differential equation (SDE) models [44]. It is unclear whether
such equations can be reduced to eliminate unobserved states, since the underlying stochastic
process is typically not differentiable. One approach is to analyse the corresponding system
of Fokker–Plank equations, a PDE in as many spatial dimensions as SDE state variables.
Partially observing the system, therefore, corresponds to observing marginals of the Fokker–Plank
equation solution; in effect, integrating over unobserved spatial variables.

PDE models are widely used to characterize spatial processes and interpret spatial biological
data. It is, therefore, paramount that effective and efficient tools to assess the structural
identifiability of these models be developed. We build on existing work [25,26] to show that
the differential algebra approach to structural identifiability analysis can be applied to all
linear RAD PDE models, and some classes of nonlinear PDE models. We demonstrate the
interdependence between structural identifiability and the initial conditions in partially observed
models, highlighting the importance of assessing the structural identifiability before attempting
to infer parameters in PDE models from experimental data.
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Appendix A. Algorithm of implementation
In algorithm 1, we provide an algorithm that outlines our implementation of the differential
algebra approach to assess the structural identifiability of m-state RAD PDE subject to �

linearly independent observations. An implementation of the analysis in Mathematica [34] is
available as electronic supplementary material on GitHub (https://github.com/ap-browning/
pde_structural_identifiability).

Algorithm 1. Differential algebra framework for linear and semi-linear RAD PDE models.

1: Given a system of m equations, denoted Y , and a set of � < m linearly independent observed
quantities.

2: Rewrite the system Y in terms of only the � observed quantities and a remaining set of
k = m − � unobserved quantities that are to be eliminated. The rewritten system of m equations
is denoted by Y1.

3: Reduce Y1 such that the first equation is first order in the unobserved quantities. The reduced
system is denoted by Y2. This can be done by, for example, solving the last m − 1 equations
simultaneously for the second-order spatial derivatives of the unobserved quantities and
substituting the resultant expressions into the first equation.

4: Apply theorem 2.1 to determine that the required order of the expanded system is at most
n∗ = 4(m − 1).

5: Expand Y2 up to order n∗ by taking all possible order n∗ − 1 partial derivatives of the first
equation, and all possible order n∗ − 2 partial derivatives of the remaining equations. The
expanded system, denoted by Y3 will comprise m̃ equations, linear in a total of ñ < m̃ partial
derivatives of the unobserved variables.

6: Write the expanded system as the linear system Av(n∗) = b, where A ∈ R
(m̃,ñ) and b ∈ R

(m̃).
7: Perform Gaussian elimination to reduce the symbolic augmented matrix (A|b) into row-

echelon form, denoted (Are|bre).
8: The set of polynomial equations, denoted by R, is given by the non-zero elements of bre

corresponding to rows of Are that are identically zero. Elements of R are polynomial in the
set of partial derivatives of the observed � quantities and are also considered to be observed.

9: Normalize each polynomial to ensure uniqueness by dividing through by a chosen non-zero
coefficient. The set of monic polynomials is denoted by R1.

10: The set of identifiable parameter combinations, Q, is given by union of the sets of polynomial
coefficients of each element of R1. Coefficients that do not depend on the unknown quantities
should be removed before further reduction.
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