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A B S T R A C T 

Rotation curves are the key observational manifestation of the dark matter distribution around late-type galaxies. In a halo model 
context, the precision of constraints on halo parameters is a complex function of properties of the measurements as well as 
properties of the galaxy itself. Forthcoming surveys will resolve rotation curves to varying degrees of precision, or measure 
their integrated effect in the H I linewidth. To ascertain the relative significance of the rele v ant quantities for constraining halo 

properties, we study the information on halo mass and concentration as quantified by the Kullback–Leibler divergence of the 
kinematics-informed posterior from the uninformative prior. We calculate this divergence as a function of the different types of 
spectroscopic observation, properties of the measurement, galaxy properties, and auxiliary observational data on the baryonic 
components. Using the SPARC (Spitzer Photometry & Accurate Rotation Curves) sample, we find that fits to the full rotation 

curv e e xhibit a large variation in information gain between galaxies, ranging from ∼1 to ∼11 bits. The variation is predominantly 

caused by the v ast dif ferences in the number of data points and the size of velocity uncertainties between the SPARC galaxies. 
We also study the relative importance of the minimum H I surface density probed and the size of velocity uncertainties on 

the constraining power on the inner halo density slope, finding the latter to be significantly more important. We spell out the 
implications of these results for the optimization of galaxy surv e ys aiming to constrain galaxies’ dark matter distributions, 
highlighting the need for precise velocity measurements. 

Key words: galaxies: kinematics and dynamics – galaxies: statistics – dark matter. 

1

I  

t  

s  

f  

s  

m  

c  

T
 

d  

k  

t  

f  

L  

g  

u  

m  

a  

V  

I  

m  

�

S  

t  

p  

n  

R  

g  

N  

p  

m  

f  

L  

e
 

fi  

W  

t  

p  

(  

a  

p  

t  

t  

R  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/525/4/5066/7257575 by D
unn School of Pathology Library user on 25 April 2024
 I N T RO D U C T I O N  

n the standard model of cosmology, dark matter clusters under
he action of gravity to form virialized, approximately spherical
tructures known as haloes. Galaxy formation occurs when baryons
all into their deep potential wells, cooling and condensing to form
tars. Constraining the relationship between galaxies and their dark
atter haloes, the ‘galaxy–halo connection’, is an important step to

onstruct a complete theory of galaxy formation (see Wechsler &
inker 2018 , and references therein). 
Perhaps the most direct method to measure dark matter halo

ensity profiles is through spectroscopic observations of galaxies’
inematics. The mass distribution is then inferred by comparing
he observed motions of the gas and stars to the motions expected
rom the observed luminous matter through Newtonian gravity.
ate-type galaxies are ideal systems to study, as their stars and
as follow approximately circular orbits that directly trace the
nderlying potential. Spatially resolved observations are able to
easure rotation curves (RCs), the rotational velocity of the stars

nd gas as a function of radius (e.g. Walter et al. 2008 ; Ponomare v a,
erheijen & Bosma 2016 ; Lelli, McGaugh & Schombert 2016a ).

t has been argued that observed correlations between the dark
atter and baryons implied by the RCs (e.g. McGaugh, Lelli &
 E-mail: tariq.yasin@physics.ox.ac.uk 

m  

Published by Oxford University Press on behalf of Royal Astronomical Socie
Commons Attribution License ( https://cr eativecommons.or g/licenses/by/4.0/), whi
chombert 2016 ; McGaugh et al. 2019 ) cannot be explained in
he cold dark matter paradigm. This has lead to an abundance of
roposed extensions to the standard model, either in the form of
ew dark matter physics (e.g. Adhikari et al. 2022 ; Khelashvili,
udako vsk yi & Hossenfelder 2022 ) or modifications to the theory of
ravity (e.g. Milgrom 1983 ; Burrage, Copeland & Millington 2017 ;
aik et al. 2019 ). Improving the precision of constraints on halo
roperties is therefore also vital to assess the viability of dark matter
odels. One approach is to compare the halo properties inferred

rom kinematics to cosmological expectations (e.g Katz et al. 2017 ;
i et al. 2020 ; Posti & Fall 2021 ; Mancera Pi ̃ na et al. 2022 ; Yasin
t al. 2022 ). 

The density profile of dark matter is usually constrained by
tting parametrized functions (e.g. Burkert 1995 ; Navarro, Frenk &
hite 1997 ; Di Cintio et al. 2014 ; Read, Agertz & Collins 2016 )

o the measured RC. The parameters, which we refer to as the
roperties of the halo, are typically the virial mass, the concentration
a measure of the autocorrelation of dark matter within the halo)
nd sometimes additional parameters describing the shape of the
rofile, such as the steepness of the inner slope. The tightness of
he constraints on the free parameters is a complex function of
he properties of the measurements (e.g. the number of measured
C data points, the uncertainties on the measured velocities, the
aximum radius probed), properties of the galaxy (e.g. stellar surface
© The Author(s) 2023. 
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ensity, gas fraction), and the precision of auxiliary data on the galaxy 
inclination, distance, baryon content). 

Rotation curves can be measured using a variety of kinematic 
racers. Radio telescopes, in either single dish or interferometer 
onfigurations, probe atomic hydrogen (H I ), which has the advantage 
f extending far beyond the optical disc for late-type galaxies, into 
he region where dark matter dominates. The SPARC (Lelli et al. 
016a ) data base, the largest of its type, contains H I rotation curves
or 175 late-type galaxies. Collated from archi v al observ ations, the
easurement properties vary greatly between different RCs. For 

xample, the best sampled RC has 120 data points, and the worst
ampled has five. In this paper, we use SPARC to study the precision
f constraints on halo parameters as a function of measurement and 
alaxy properties. This will reveal the ways in which future surveys
ught to be designed to maximize their constraining power on the 
ark matter distributions around galaxies. 
Other tracers do not probe as far as H I , b ut ha ve their own

dvantages. Optical integral field unit (IFU) surveys such as Dis- 
Mass (Martinsson et al. 2013 ), Mapping Nearby Galaxies at APO 

MaNGA, Bundy et al. 2014 ), and SAMI (Croom et al. 2021 ) use
ptical emission from ionized gas or stars, which extends only as far
s the galaxy’s stellar component, although the resolution is higher 
han H I surv e ys. Sub-mm telescopes (again either in single dish or
nterferometric configurations) can be used to probe the molecular 
O gas disc, which usually extends to 50–70 per cent of the radius
f the stellar disc (e.g. Lang et al. 2020 ). 
Future and current surv e ys H I are seeking to study larger, statisti-

ally representative samples of galaxies (e.g. Oosterloo, Verheijen & 

an Cappellen 2010 ; Maddox et al. 2021 ) and galaxies at larger
istances. F or e xample, MIGHTEE-HI is an ongoing blind surv e y
hat will measure RCs out to z = 0.5. Due to the further distances,
he RCs are sampled more coarsely than in nearby catalogues such 
s SPARC (Ponomare v a et al. 2021 ). RCs can be measured to lower
adius but higher redshift using optical (Di Teodoro, Fraternali & 

iller 2016 ; Stott et al. 2016 ) and sub-mm (Jones et al. 2021 ;
elli et al. 2021 , 2023 ) instruments. Strongly lensed galaxies can
lso be used to increase the distance probed (e.g. Rizzo et al.
021 ). 
Finally all of the methods described abo v e can be used to

btain spatially integrated spectra, which requires significantly less 
ntegration time and so can be obtained for orders of magnitude 

ore galaxies. Current surv e ys such as Arecibo Le gac y F ast ALFA
ALF ALF A, Haynes et al. 2018 ), and future surv e ys such as the

idefield ASKAP L-band Le gac y All-sk y Blind surv eY (WAL-
ABY, Koribalski et al. 2020 ; Deg et al. 2022 ), Commensal Radio
stronomy F asT Surv e y (CRAFTS, Zhang et al. 2020 ), and the
quare Kilometre Array (SKA, Yahya et al. 2015 ) will measure 

he spatially integrated H I emission for cosmological volumes of 
alaxies. 

These dif ferent observ ational techniques and tracers will measure 
otation velocities with varying precision and will probe different 
arts of the RC. The constraining power of these different types of
inematic measurement on halo properties has never been studied 
n detail. To be gin inv estigation of this question, we study here the
nformation content contained in different parts of the RCs of the 
PARC galaxies. This is achieved by constraining halo properties 
sing the RC summary statistics recorded in SPARC, each of which 
haracterize a particular part of the RC. These statistics are V flat , the
peed of the flat part of the rotation curve, V max , the peak rotational
peed and V 2.2 , the circular velocity at 2.2 times the disc exponential
cale length, and W p20 the width of the spatially integrated H I line
rofile at 20 per cent of the peak flux. 
RC summary statistics have previously been utilized e xtensiv ely 
n the study of the Tully–Fisher relation (TFR), the tight empirical
elationship between the mass or luminosity of a galaxy and some
easure of its rotational velocity. The TFR was first defined using
 I linewidth (Tully & Fisher 1977 ), and later studies have used V max 

Conselice et al. 2004 ), V 2.2 (Courteau 1997 ) or V flat (McGaugh 2005 ;
onomare v a et al. 2018 ). Recently Lelli et al. ( 2019 , henceforth L19 )
ompared the baryonic TFR (McGaugh et al. 2000 ; McGaugh 2005 ;
orio et al. 2016 ; Lelli, McGaugh & Schombert 2016b ) produced by
ifferent summary statistics of the RC, as well as the H I line width,
or the SPARC galaxies. The study of the dark matter halo constraints
ffered by these summary statistics is also interesting in this context.
A velocity summary statistic is sensitive only to the enclosed 

ynamical mass within the radius it probes (which can be estimated as 
 ∼ V 

2 R / G , Caserano & Shostak 1980 ). Hence, although summary
tatistics do provide information on halo mass and concentration 
once a profile is assumed), the constraints are relatively weak due
o the de generac y between the two parameters: the same enclosed

ass can be generated by either a high mass, low concentration or
 low mass, high concentration halo. The de generac y can be broken
o some extent by assuming a halo mass–concentration relation from 

imulations (e.g. Posti, Fraternali & Marasco 2019 ), but the extent
o which these relationships are obeyed by real haloes is uncertain
Dutton & Macci ̀o 2014 ; Katz et al. 2017 ; Li et al. 2020 ; Mancera
i ̃ na et al. 2022 ). F or e xample, due to assembly bias (Dalal et al.
008 ), we do not expect a population of relatively isolated, late-type
alaxies such as those found in SPARC to follow an identical mass–
oncentration relationship to that of all the haloes in a simulation. 

Without an informative prior linking mass and concentration, 
he kinematic data alone can sometimes not exclude unphysical 
cenarios such as low-mass galaxies having cluster mass haloes. 
tudying the degenerate posterior in mass–concentration can still 
ield insight ho we ver. The constraints from summary statistics can
e compared and/or combined with other pieces of information, 
uch as abundance matching (Yasin et al. 2022 ), optical kinematics
proposed by Taranu et al. 2017 ) or weak lensing data (Shajib et al.
021 , for Sloan Digital Sky Survey velocity dispersions). Therefore 
n this study we choose to analyse the constraining power in the mass–
oncentration plane offered by the different types of measurements 
ithout applying a mass–concentration prior, although we discuss the 

ffects this would have in Section 4.1 . We quantify the precision of
onstraints on halo properties using the Kullback–Leibler divergence 
 D KL , Kullback & Leibler 1951 ) of the posterior from the prior, a
easure of information gain based on information theory. We study 

he information gain of the 2D total mass–concentration posterior 
where total mass is equal to the halo mass plus the galaxy mass).

e use total mass rather than halo mass, because the lower bound of
he prior on total mass can be naturally set to the galaxy mass, whereas
he halo mass, when sampled logarithmically (as is computationally 
ecessary), has no natural lower bound. Our method could equally be
pplied to additional parameters describing shape. By quantifying the 
nformation gain on these halo properties when using either the full
Cs, H I line widths or summary statistics to constrain the kinematic
odel, we aim to answer the following questions: 

(i) How does the information content depend on properties of the 
easurement such as velocity uncertainties, the minimum H I surface 

ensity probed and auxiliary data on galaxy parameters. 
(ii) How does the information content depend on galaxy proper- 

ies? 
(iii) How much information is contained in different summary 

tatistics compared to the full RC? 
MNRAS 525, 5066–5079 (2023) 
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(iv) How much information is there in integrated H I measure-
ents relative to more expensive, spatially resolved measurements? 

To answer the first two questions we will construct a predictive
odel for D KL given the galaxy and measurement properties as

nput. The paper is structured as follows: Section 2 describes the
PARC data. Section 3 describes the Bayesian models for inferring
alo properties from the observations. In Section 4 , we present the
nformation content as a function of different types of observations,
easurement properties, and galaxy properties. We discuss the

mplications of our results in Section 5 , and conclude in Section 6 .
e define the halo mass M halo using the o v erdensity condition � vir =

78 of Bryan & Norman ( 1998 ). All logarithms are base-10 unless
tated otherwise. 

 OBSERVA  T I O NA L  DA  TA  

PARC 

1 (Lelli et al. 2016a ) is a data base of rotation curves for 175
ate-type galaxies, collated from archi v al resolved H I observations.
n addition, 56 galaxies have hybrid rotation curves with high-
esolution H α data in the inner parts. Each galaxy has Spitzer pho-
ometry (Schombert & McGaugh 2014 ) at 3.6 μm, a band in which
he mass-to-light ratio is relatively constant (Schombert, McGaugh &
elli 2018 ), which reduces the disc–halo de generac y in kinematic
nalyses. The distributions of the stars and gas ( mass models ) are
rovided in the form of the contribution of each component to the
ircular velocity as a function of radius. We also utilize the H I surface
ensity ( � H I ) as a function of radius (F. Lelli, pri v ate communication)
n our analysis. The SPARC galaxies span a wide range in luminosity
10 7 to 10 12 L �), surface brightness ( ∼5 to ∼5000 L � pc −2 ), H I mass
 ∼10 7 to 10 10 . 6 M �), and morphological type (S0 to Im/BCD). 

L19 calculate the RC summary statistics V flat , V max , V 2.2 , and
heir associated errors for a subset of SPARC sample with cuts
n properties such as i and number of data points. We use their
efinitions to calculate V max and V 2.2 for the whole sample, but
e calculate V flat using our own definition, which we describe

n Section 3.2 . The definitions of the velocity measurements are
ummarized in Table 1 . L19 also compile H I linewidths from
rchi v al data for various different definitions. We choose to use
 p20 , the width at 20 per cent of the peak flux, as it is available

or the most galaxies. Unlike L19 , we do not include the contribution
rom inclination to the observational uncertainties on the summary
tatistics and W p20 , as inclination is a free parameter in our inference.

 M E T H O D S  

.1 Rotation cur v e model 

ark matter halo properties are inferred by fitting a parametrized halo
rofile to the observ ational data. Dif ferent halo profiles have been
tudied e xtensiv ely in literature but a clear picture has yet to emerge of
he relationship between the properties of a galaxy and the shape of its
alo (Katz et al. 2017 ; Li et al. 2020 ). The haloes in dark matter-only
imulations were found to have a universal profile dubbed Navarro–
renk–White (NFW) (Navarro et al. 1997 ), but profiles moti v ated
y hydrodynamical simulations, that interpolate between a cusp and
 core based on galaxy/halo properties (Di Cintio et al. 2014 ; Read
t al. 2016 ), have been found to fit the SPARC data better than the
FW profile (Katz et al. 2017 ; Li et al. 2020 ). Ho we v er cores hav e
NRAS 525, 5066–5079 (2023) 
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p

c

een observed in high mass systems (Collett et al. 2017 ), including
or the SPARC galaxies (Li et al. 2019 , 2022 ), which is against the
ass-dependent behaviour of the supernova-induced core flattening

redicted by the aforementioned hydrodynamical simulations. On
he other hand many studies have found NFW haloes to be good
ts to clusters and weak lensing data for high-mass galaxies (e.g.
andelbaum et al. 2016 ), and some have argued that the inference

f cores from 21-cm rotation curve observations may be due to
ystematics (Roper et al. 2022 ). In light of this uncertainty we
hoose to study the NFW and Burkert (Burkert 1995 ) profiles as
epresentativ e e xamples of a cusped and cored profiles respectiv ely.
ue to the preference of most SPARC galaxies for cores using our
odelling procedure (in agreement with Li et al. 2020 , although

ee Posti et al. 2019 for a different analysis), we present our results
rimarily for the Burkert profile. 
The NFW density profile is 

NFW 

( r) = 

ρs (
r 
r s 

) [ 
1 + 

(
r 
r s 

)] 2 , (1) 

here r s is a scale radius and ρs a characteristic density. The enclosed
ass at radius r is 

 NFW 

( r) = 4 πρs r 
3 
s 

[
ln (1 + x) − x 

1 + x 

]
, (2) 

here x ≡ r / r s . The Burkert density profile is 

Burkert ( r) = 

ρs (
1 + 

r 
r s 

)[
1 + 

(
r 
r s 

)2 
] , (3) 

nd the enclosed mass is given by 

 Burkert ( r) = 2 πρs r 
3 
c 

[
1 

2 
ln 
(
1 + x 2 

) + ln (1 + x) − arctan ( x) 

]
. (4) 

We also analyse how well observations can constrain a shape
arameter for the inner halo by studying the generalized-NFW profile
gNFW, e.g. Umetsu et al. 2011 ), with density 

gNFW 

( r) = 

ρs (
r 
r s 

)α [ 
1 + 

(
r 
r s 

)] 3 −α
. (5) 

his reduces to NFW for α = 1. The mass enclosed is given by 

 gNFW 

( r) = 4 πρs r 
3 
s [ B( x/ (1 + x) , 3 − α, 0) ] , (6) 

here B( z; a, b) ≡ ∫ z 
0 u 

a−1 (1 − u ) b−1 d u . 
Typically rotation curve measurements extend to only a small

raction of the virial radius (e.g. Katz et al. 2019 ). Therefore
onstraining halo mass requires a large extrapolation. Whilst gNFW,
FW, and Burkert differ in shape towards the centre, at large radii

hey all decline as ρ ∝ 1/ r 3 , so the comparison between the inferred
asses is fair. 
The circular speed due to the dark matter at radius r is V DM 

=
 

GM DM 

( r) /r . It is conveniently expressed in terms of M halo , the
irial velocity ( V halo ), and the virial radius ( R halo ), 

V DM 

( r) 

V halo 
= 

√ 

M DM 

( r) 

M halo 

R halo 

r 
, (7) 

here V halo ≡
√ 

GM halo /R halo . Concentration is commonly defined
ased on the radius at which the logarithmic slope of the density
rofile is −2 ( r −2 , which for NFW is equal to r s ) 

 = 

R halo 

r −2 
. (8) 

http://astroweb.cwru.edu/SPARC/
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Table 1. The summary statistics of the full rotation curve and H I linewidth definition used in this paper. 

Measurement Interpretation Sample size 

Full RC The full rotation curve. 175 
V flat The velocity of the flat part of the rotation curve. The algorithm to identify the flat part of the rotation curve is 

listed in Section 3.2 and differs slightly from the definition used in the SPARC data base. 
123 

V max The maximum velocity of the rotation curve. If the rotation curve is continuously rising in the observed range 
then this is the outermost measured point 

175 

V 2.2 The velocity at twice the exponential stellar disc scale length. This is found by linearly interpolating between 
data points on either side of the required radius. 

167 

W p20 The width of the global H I 21-cm emission line of a galaxy measured at 20 per cent of the peak flux. 148 

Table 2. The free parameters in our kinematic model, their physical definitions, and their Bayesian priors. We sample all parameters in logarithmic space except 
inclination and distance. 

Parameter Units Definition Prior 

M tot (M �) Total mass M tot = M halo + M bar Flat in range log ( M bar / M �) < log ( M tot / M �) < 15 . 5 
c 0.1 - Halo concentration, as defined in equation ( 9 ) Flat in range 0.5 < log c 0.1 < 2 
ϒ disc ( M �/ L �) Disc mass-to-light ratio Lognormal ( μ = log (0.5), σ = 0.1) 
ϒ bulge ( M �/ L �) Bulge mass-to-light ratio Lognormal ( μ = log (0.7), σ = 0.1) 
D (Mpc) Physical distance to galaxy Gaussian prior from SPARC value and its uncertainty 
i (deg) Inclination (0 ◦ face on; 90 ◦ edge on) Gaussian prior from SPARC value and its uncertainty 
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ollowing Yasin et al. ( 2022 ) we instead use the definition 

 0 . 1 = 

R halo 

r 0 . 1 
, (9) 

here r 0.1 is the radius enclosing 10 per cent of M halo . This definition
as three advantages: (1) It can be calculated in simulations by simply
ounting dark matter particles, rather than fitting a profile; (2) r 0.1 is
efined for all halo profiles, as it does not require a particular slope;
3) It is not based on the halo’s shape, and hence is more intuitive. 

Our Bayesian fitting procedure is similar to those of Katz et al.
 2017 ) and Li et al. ( 2020 ). As the late-type galaxies studied are
otationally dominated, we assume the rotational speed is equal to 
he circular speed. We try a non-fiducial model where we add 10
m s −1 in quadrature to all velocities as a crude ‘asymmetric drift’
orrection, and find it does not affect our results (see Bureau &
arignan 2002 ; Oh et al. 2015 ; Iorio et al. 2016 for a full discussion
f asymmetric drift). The total circular speed, V c ( r ) is equal to the
um in quadrature of the circular speed due to the dark matter and
ach baryonic component (dark matter, gas, stellar disc, stellar bulge) 

 

2 
c ( r) = V DM 

| V DM 

| + ϒ bulge V bulge | V bulge | + ϒ disc V disc | V disc | + V gas | V gas | , (10) 

here each V is also a function of r , and ϒ bulge/disc is the mass-to-
ight ratio of the bulge or disc. The latter are tabulated in the SPARC
ata base for each galaxy. The baryonic mass models depend on the
ssumed distance as 

 disc,bulge,gas ( r) ∝ 

√ 

D , (11) 

nd the radius depends on the assumed distance as 

 ∝ D. (12) 

he model prediction for the line-of-sight rotational speed is found 
y correcting V c ( r ) for the inclination i of the galaxy ( i = 0 ◦ face-on;
 = 90 ◦ edge-on) 

 pred ( r) = V c ( r) sin i. (13) 

 , i , ϒ disc , and ϒ bulge are free parameters in the inference. When
tting to the full RC, V pred ( r ) can be compared directly to the observed
C. For the summary statistics, V pred ( r ) is e v aluated at the same radii
s the observed data points, and then the same algorithm that was
sed to calculate each summary statistic from the observed RC is
pplied. 

.2 Definition of V flat 

he algorithm to calculate V flat in the SPARC data base (see Lelli,
cGaugh & Schombert 2015 ) starts by defining the outermost 

bserved data point as being the flat part of the RC, and then adds
dditional points to it iteratively. At each step the next innermost data
oint at radius r i − 1 is added if its speed is within 5 per cent of the
ean of the data points already included: 

 ≡ | V − V i−1 | 
V 

< 0 . 05 . (14) 

f the difference is greater than 5 per cent the process terminates,
nd V flat is the mean of the points already included. A galaxy is only
onsidered to have a defined V flat if the flat part constitutes at least
hree points when the algorithm terminates. The definition depends 
n the distance between the points, which means finely sampled RCs
an still be considered flat even if they are much steeper than less
nely sampled RCs. To lessen this bias we change the condition to a

imit on � per stellar disc scale length ( R disc ), 

� 

( R i − R i−1 ) /R disc 
< 0 . 10 . (15) 

he condition is set to 10 per cent per disc scale length so V flat 

s defined for a similar number of galaxies (123) as the original
efinition (133). Our results are not sensitive to the exact value.
or galaxies which meet both the old and new V flat definition, the
ifference between the two values is negligible. 

.3 H I linewidth model 

he summary statistics V max , V 2.2 , and V flat can be calculated from
he RC alone. To calculate a model W p20 that can be compared to the
bserved value, we must calculate a model H I integrated spectrum 

rom the RC and the H I surface density profile. Our method is
escribed and validated in detail in Yasin et al. ( 2022 ), but we describe
MNRAS 525, 5066–5079 (2023) 
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t here in brief. We use the method of Obreschkow et al. ( 2009 ),
reating the H I disc as a series of concentric infinitely thin rings
ach with circular velocity given by V pred ( r ). We want to calculate
he flux observed at the wavelength λ that corresponds to gas with a
adial velocity V λ relative to the kinematic centre of the galaxy. The
ormalized flux from a single infinitely thin ring of gas is given by 

˜ 
 

(
V λ, V pred 

) = 

{ 1 

π
√ 

V 2 pred −V 2 λ

if | V λ| < V pred 

0 , otherwise. 
(16) 

e assume the gas has a constant velocity dispersion of 10 km s −1 

based on observations of local galaxies: Leroy et al. 2008 ; Mogotsi
t al. 2016 ), which broadens the flux distribution from each ring 

 

(
V λ, V pred 

) = 

σ−1 
H I √ 

2 π

∫ +∞ 

−∞ 

d V exp 

[
( V λ − V ) 2 

−2 σ 2 
H I 

]
˜ ψ 

(
V , V pred 

)
. 

(17) 

he total, integrated flux profile of the galaxy is then obtained by
ntegrating across the whole H I disc: 

 HI ( V λ) = 

2 π

M HI 

∫ ∞ 

0 
d r r � HI ( r ) ψ 

(
V λ, V pred ( r ) 

)
. (18) 

he resulting flux profile is symmetric, so the model W p20 summary
tatistic can be trivially calculated by finding a peak of the distri-
ution, and moving outwards to larger speed until the flux drops to
0 per cent of the maximum. Although the observed profile may be
symmetric, the important quantity is the width, so this should not
ias the results. This is verified for the SPARC sample in Yasin et al.
 2022 ). 

.4 Inference 

ayes’ theorem is used to calculate the probability of our parameters
condition on our data D given the model M , 

( θ | D , M ) = 

L ( D | θ, M ) π ( θ | M ) 

p( D | M ) 
, (19) 

here L ( D| θ, M ) is the likelihood of the data, π ( θ | M ) is the prior
robability density, and p( D| M ) the marginalized likelihood. For
 flat , V max , V 2.2 , W p20 , which consist of a single observation, the

ikelihood of the data is 

 ( W obs | θ, M ) = 

exp {−( W obs − W pred ) 2 / (2 δW 

2 
obs ) } √ 

2 πδW obs 

, (20) 

here W obs is the observed velocity summary statistic and W pred the
odel prediction. For the full rotation curve the likelihood is 

 ( D| θ, M ) = 

∏ 

i 

exp {−( V i,obs − V pred ( r i )) 2 / (2 δV 

2 
i,obs ) } √ 

2 πδV i,obs 

. (21) 

When fitting with summary statistics we find some galaxies have
on-zero posterior probability at M halo = 0. Therefore in order to raise
he lower limit of the posterior to a finite value we sample log M tot =
og ( M halo + M bar ) rather than M halo itself, setting the lower bound
n its flat prior to be log M bar . A minimum baryonic content for each
 alaxy reg ardless of ϒ is ensured by the H I mass, which is relatively
ell constrained by observations and so is not allowed to vary in our
odel (apart from through its dependence on distance). 
The total free parameters are { M tot , c 0.1 , ϒ disc , ϒ bulge , i , D }

summarised in Table 2 ). The priors on ϒ disc and ϒ bulge are lognormal
ith means of log (0.5) and log (0.7) respectively, and 0.1 dex scatter

following Li et al. 2020 ). The priors on i and D are normal with
ean given by the observed values and scatter by the observational
NRAS 525, 5066–5079 (2023) 
ncertainties from SPARC. The posterior is sampled using the
mcee ensemble sampler (F oreman-Macke y et al. 2013 ). We set

he number of w alk ers to 200 and the stretch mo v e to a = 2. To
nsure the chain is converged we run the sampler until the chain
s at least 50 times the autocorrelation length (Goodman & Weare
010 ) in all parameters, or a minimum of 10 000 steps to ensure the
osterior is densely sampled to aid in the calculation of D KL . The
rst 25 autocorrelation lengths are discarded as burn-in. 

.5 Goodness-of-fit 

e wish to examine the dependence of constraining power on the
ype and precision of the measurements. A nuisance effect is that
onstraints can be very tight for models that are a poor fit to the data,
s a small fraction of parameter space can still have high likelihood
elative to the rest of it, even if the absolute value of the likelihood
s low for that region (a problem previously identified for rotation
urves, e.g. Li et al. 2020 ). 

To exclude galaxies that are poor fits to a particular profile, we
xamine the distribution of normalized residuals 

 i = 

V i,obs − V pred ( r i ) 

δV i,obs 
, (22) 

 v aluated for the i RC data points of a galaxy. The set of R i should be
rawn from a standardized normal distribution if the model is perfect
Andrae, Schulze-Hartung & Melchior 2010 ; Zentner et al. 2022 ).

e identify galaxies as having poor fits if the probability that the
istribution of residuals is drawn from a standardized normal is p fit <

.05, as calculated by the Kolmogoro v–Smirno v test (Masse y 1951 ).
he probabilistic nature of the test means it is more stringent for
etter sampled rotation curves, which is desirable as better sampled
otation curves generally give stronger constraints on halo properties.

e define a galaxy as o v erfit if p fit < 0.05 and the standard deviation
f their residuals is less than 1, and underfit if p fit < 0.05 and the
tandard deviation of residuals is greater than 1. This procedure
nds 23 (14) galaxies to be underfit and 8 (11) o v erfit for the NFW
Burkert) profile in the fiducial model. These are remo v ed from the
ample. 

We find that the galaxies for which Burkert is underfit have higher
han average mass, but for NFW there is no clear trend with any
alaxy property (including inclination). There is no clear trend for
 v erfitting using either halo profile. Finally, removing under/overfit
alaxies does not significantly impact the distribution of D KL for the
ample. This suggests that whether or not the abo v e procedure has
dentified all poor fits, the issue of poorly fitting galaxies having tight
onstraints is unlikely to bias our subsequent analysis of D KL . 

.6 Abundance matching 

or reference we also show the information gain on halo properties
rom abundance matching (AM), an empirical model that matches
he haloes in simulations to observed galaxies by positing an
pproximately monotonic relationship between a halo property (the
roxy ) and a galaxy observable (e.g. Kravtsov et al. 2004 ; Conroy,
echsler & Kravtsov 2006 ). In the simplest model the proxy is halo
ass and the galaxy observable is stellar mass or luminosity. We

se the proxy of Lehmann et al. ( 2016 ) which models assembly

ias through the hybrid proxy v β : = V halo 

(
v max 
V halo 

)β

, where v max is the

aximum circular velocity of the halo and V halo is the velocity at the
irial radius. The free parameters in the model are the AM scatter
AM 

and β, which they constrain by clustering to β = 0 . 57 + 0 . 20 
−0 . 27 and
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Figure 1. The correlation between the KL divergence ( D KL ) of the posterior 
from the prior in M tot − c 0.1 space and the area of the 2D posterior (for 
varying confidence intervals) from fitting Burkert haloes to the full RC for 
the whole sample of galaxies. The solid lines show the mean posterior area 
in bin of D KL (15 bins total), with the band showing the 1 σ spread in each 
bin. D KL and posterior size are strongly correlated, with a small scatter due 
to changing shapes of the posteriors and the prior on M tot that is a function 
of the galaxy’s M bar . 

σ

u
Y

3

T
u  

t

D

I  

b  

w  

t  

b  

f
s  

t
e  

t

e
a  

b  

e  

c
n

 

o
f  

t  

D  

a  

p  

b
i  

d  

o

3

W  

m  

a
(
a  

f  

b  

f  

o  

R  

e  

o
q  

r  

a  

u

u  

n  

a  

v
 

w  

(  

t  

a  

i  

i  

a  

a
w  

s  

a
o

R

w  

a  

a  

o

4

4

4

I  

K  

m  

d  

i  

s  

c  

b  

s  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/525/4/5066/7257575 by D
unn School of Pathology Library user on 25 April 2024
AM 

= 0 . 17 + 0 . 03 
−0 . 05 . We calculate the posterior on mass–concentration 

sing the Bayesian inverse subhalo abundance matching scheme of 
asin et al. ( 2022 , section 3.3), sampling o v er σ AM 

and β. 

.7 The Kullback–Leibler di v er gence 

he Kullback–Leibler divergence (Kullback & Leibler 1951 ) can be 
sed to quantify the information gain in an experiment in going from
he prior distribution to the posterior in units of bits 

 KL ( P ‖ π ) = 

∫ 
θ

P ( θ ) log 2 

(P ( θ ) 

π ( θ ) 

)
d θ. (23) 

t quantifies the similarity between P( θ ) and the reference distri-
ution π ( θ ). In information theory terms it is the excess surprise
hen using P( θ ) compared to π ( θ ). It is the appropriate metric

o use when comparing the impro v ement on precision in constraints
etween two experiments (Buchner 2022 ), as it takes into account the
ull probability distributions, as opposed to comparing a summary 
tatistic such as the 2 σ credible interv al. Ho we ver, this comes at
he expense of ease of interpretation. An intuitive example is an 
xperiment with a flat prior that produces a flat posterior that has a k
imes smaller hypervolume. In this case D KL = log 2 ( k ). 

To calculate D KL , kernel density estimation (KDE) is used to 
stimate the posterior probability distribution. We use the fastKDE 

lgorithm (O’Brien et al. 2014 , 2016 ), which selects the kernel and
andwidth based on the criteria of Bernacchia & Pigolotti ( 2011 ). We
nsure that D KL is converged with respect to the number of Markov
hain Monte Carlo (MCMC) samples by checking that our results do 
ot change when using a shorter or longer chain. 
In Fig. 1 we plot D KL against the 2D credible interval size for

ne of our runs, showing the strong correlation between them. Two 
actors cause a scatter between D KL and the size of a contour. Firstly
wo posteriors with the same size 2 σ contours will have a different
 KL if the rest of their contours are different. The prior on M tot is also
 function of the galaxy’s M bar . D KL is dependent on the size of the
rior. Our prior bounds are well moti v ated for mass, and the lo wer
ound of concentration. Ho we ver, the upper bound of concentration 
s arbitrary. Ho we ver we are interested in the relative D KL between
ifferent measures, so our conclusions are not sensitive to the choice
f prior. 

.8 A predicti v e model for D KL 

e aim to study the dependence of D KL on the properties of the
easurement and the properties of the galaxy. To do this we build
 predictive model for D KL using the ExtraTrees algorithm 

Pedregosa et al. 2011 ). We optimize the hyperparameters through 
 grid search with 5-fold cross-validation (see Kohavi 1995 ). The
eatures are the set of galaxy properties listed in the SPARC data
ase. In addition, when fitting using the full RC, we add the following
eatures that describe the details of the galaxy and RC: N (the number
f RC data points); R out (the radius of the outermost data point);
 out / R eff (the ratio of the radius of the outermost data point to the
f fecti ve radius of the galaxy); 1 

N 

∑ 

i V obs,i /V bar,i (the mean ratio
f the observed velocity to the baryonic circular velocity, which 
uantifies the mean dark matter dominance); V obs ( r )/ V bar ( r ) at the
adii R out , R disk , and R 2.2 (this quantifies the dark matter dominance
t different points in the galaxy); the summary statistics and their
ncertainties; δV out / V out (the uncertainty on the outermost data point); 

1 
N 

∑ 

i δV obs,i /V obs,i (the mean velocity uncertainty). When fitting 
sing individual summary statistics, as most of the abo v e features are
ot rele v ant, we only add the summary statistic and its uncertainty,
s well the ratio of the summary statistic to the baryonic circular
elocity at the corresponding radius e.g. V max / V bar ( R max ). 

To find which features are most important in determining D KL ,
e use the feature importance analysis method of Stiskalek et al.

 2022 , section 3.6). Features are added to the list of features used
o train the ExtraTrees regressor one at a time, with the feature
dded at each increment the one that yields the greatest impro v ement
n accuracy. This produces a list of features, ranked from most
mportant (added first) to least important (added last), and the new
ccuracy after their inclusion. This method a v oids the ambiguities
ssociated with correlated features. Due to the small sample size, 
e divide the sample into 10 and calculate predictions for each

ubsample using a regressor trained on the rest of the samples. The
ccuracy of the model’s predictions are assessed using the coefficient 
f determination (Draper & Smith 1998 ) 

 

2 = 1 −
∑ 

i ( y i, true − y i, pred ) 2 ∑ 

i ( y i, true − ˆ y true ) 2 
, (24) 

here y i ,true is the test set value, y i ,pred the corresponding prediction,
nd ˆ y true the mean test set value. R = 1 corresponds to perfect
ccuracy, and R = 0 to a model that al w ays predicts ˆ y true irrespective
f the data. 

 RESULTS  

.1 Summary statistics 

.1.1 Overview 

n our primary analysis we wish to study the dependence of the
L divergence ( D KL ) on the type of measurement, properties of the
easurement, and properties of the galaxy. In Fig. 2 , we show the

istribution of D KL when fitting to the different types of measurement
n the kinematic inference: the full RC, W p20 , or the summary
tatistics (see Table 1 ). The full rotation curve produces the tightest
onstraints, with a fairly flat distribution of D KL between 4 and 10
its (corresponding roughly to posteriors that are 16 and 1000 times
maller than the prior). The broad distribution of D KL is due to
MNRAS 525, 5066–5079 (2023) 
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M

Figure 2. Kernel density estimation plots showing the distribution of the 
K ullback–Leibler div ergence ( D KL ) for the different types of measurement, 
smoothed with a Gaussian kernel with a standard deviation of 0.3 D KL to 
remo v e unphysical small-scale noise. The full rotation curve (‘Full’) contains 
the most information. The single point summary statistics ( W p20 / V max / V 2.2 ) 
contain much less information and are similar to each other. V flat has much 
less information than the full RC, albeit more than other summary statistics, 
showing the importance of the inner parts of the RC in constraining the shape 
of the halo and breaking the de generac y between mass and concentration. 
Abundance matching has more information than any measure except the full 
RC. 
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he massi ve v ariation both in measurement properties and galaxy
roperties across the sample. The summary statistics and W p20 

roduce similar distributions in D KL , with a minimum of close to
 bits (meaning the posterior is similar to the prior) and a maximum
f 6 bits (approximately half that of the full RC fits). V flat has a
igher mean D KL than the other summary statistics. We also show
he distribution of D KL from abundance matching, which is narrow
nd has a mean 1–2 bits higher than the summary statistics. 

We use the ExtraTrees algorithm to construct a predictive
odel for D KL and carry out a feature importance analysis (as

escribed in Section 3.8 ) and show the results in Fig. 3 . The model
s moderately predictive, with an accuracy of R 2 = 0.77. The most
mportant features for predicting D KL are, in descending order of
mportance: the number of data points N , the uncertainty on the
utermost measured velocity δV out / V out , the fractional uncertainty on
nclination δi / i , the mean ratio of the observed velocity to baryonic
ircular velocity V obs /V bar and the ratio of the radius of the outermost
ata point to the ef fecti ve radius R out / R eff . We reiterate that the
ncertainties on V obs do not include a contribution from inclination
which is treated separately. 
As illustrative examples, in Fig. 4 we show the RCs and posteriors

f F574-1, a low surface-brightness galaxy, and NGC4157, an
ntermediate mass spiral galaxy. F574-1 is an example of a galaxy that
s dark matter dominated. Its RC gradually rises and le vels of f to a flat
art close to the last measured point. NGC4157 is baryon-dominated
n its inner parts, with an RC that sharply rises to a maximum velocity
hat corresponds to the peak in the stellar velocity, before declining
lightly to the flat part. Both galaxies have a similar number of data
oints, and uncertainties on observed distance and inclination. In
eneral dark matter dominated galaxies have tighter constraints on
alo properties, as when V bar is lo w relati ve to V obs , the uncertainties
n V bar (which are set by the uncertainties on the mass-to-light ratios)
re less important. The RC of F574-1 is also sampled further out into
NRAS 525, 5066–5079 (2023) 
he halo (relative to the virial radius) than NGC4157, contributing to
ts tighter constraints. 

We note that stellar mass and surface brightness, which were input
eatures to our feature importance analysis, do not appear among the
eatures identified as important for predicting D KL . This is because,
lthough they are correlated with the dark matter fraction, they do
ot themselves directly impact the strength of the constraints on
alo properties. Once V obs /V bar (when fitting to the full RC) or
 max / V bar ( R max ) (when fitting to V max ) are selected, adding stellar
ass or surface brightness does not impro v e predictivity further. 

.1.2 W p20 , V 2.2 , V max 

sing either W p20 , V 2.2 , and V max in the inference produces posteriors
hat are very similar in shape for most galaxies. We show the poste-
iors for W p20 in Fig. 4 . As we have assumed the halo is spherically
ymmetric, the circular velocity due to the halo depends solely on
ts enclosed mass. This results in a complete de generac y between
he halo mass and concentration for W p20 / V 2.2 / V max , which do not
onstrain the shape of the RC. For the dark matter dominated F574-
, the posteriors are simply a band corresponding to the additional
ircular velocity required from the dark matter to generated the
bserved W p20 / V 2.2 / V max , thickened by its observational uncertainty
nd the uncertainties on i , D , and ϒ disc/bulge . 

For NGC4157 the constraints on halo properties from
 p20 / V 2.2 / V max are extremely weak, as the baryons alone can generate

he observed values of these summary statistics. Therefore a large
ange of haloes are compatible with observation, as long as they
o not significantly change: the mass enclosed within the H I disc
or W p20 ; the maximum observed velocity for V max ; the velocity
t R 2.2 for V 2.2 . These three criteria result in similar constraints: a
alo must have mass or concentration low enough such that there
s no significant halo mass at lower radii. In the case of W p20 , the
e generac y between mass and concentration can be broken by fitting
he full H I flux profile rather than just the linewidth, as an extended,
at RC produces a very different H I profile to a RC that peaks and

hen declines (as occurs with very low mass/concentration haloes).
e leave this to future work. 
The mean D KL for W p20 / V max / V 2.2 is 2.76/2.41/2.27. In Fig. 3 ,

e present the D KL feature importance analysis for V max only. V max 

s chosen because it is available for more galaxies than W p20 and
 2.2 , but all three give similar results. The important features are, in
escending order: V max / V bar ( R max ) (which measures the dark matter-
ominance at R max ), δV max / V max , its fractional uncertainty, and δi / i .
e interpret the ordering of the mean D KL for the three measurements

s being due to the dark matter dominance of the region probed by
ach quantity. The H I disc extends beyond R 2.2 , and so probes the RC
n the more dark matter-dominated outer re gions. F or most galaxies
n our sample, V max coincides with the outer point of the RC (as in
574-1), which is typically beyond R 2.2 . Ho we ver for the galaxies
ith baryon-dominated inner regions such as NGC4157 V max roughly

oincides with R 2.2 . Hence, the mean D KL for V max is between W p20 

nd V 2.2 . 

.1.3 V flat 

 flat has higher mean D KL than W p20 , V max , and V 2.2 . Its posteriors (see
ig. 4 ) are either a band similar to W p20 (NGC4157) or a truncated
and (F574-1). There are two distinct contributors to the constraining
ower on halo properties from the V flat statistic. The first is that M halo 

nd c 0.1 must generate an RC that meets the flatness criterion. If this
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Figure 3. The important features for predicting the KL divergence ( D KL ) from fitting to the full rotation curve ( left-hand panel ) and fitting to V max ( right-hand 
panel ) using an ExtraTrees regressor. Features are added left to right in the order which maximizes accuracy at each increment, as described in Section 3.8 . 
No features are predictive on their own, but for the full rotation curve the combination of number of data points N , the fractional uncertainty on the outermost 
measured velocity δV out / V out , the fractional uncertainty on inclination δi / i , and the mean ratio of observed rotational velocity to baryonic circular velocity 
V obs /V bar (a measure of dark matter dominance) give reasonable accuracy, with R 2 = 0.77. For V max a combination of V max / V bar ( R max ) and the fractional 
uncertainty δV max / V max give good accuracy ( R 

2 = 0.9). The full list of features used in our analysis are described in Section 3.8 , but includes all galaxy 
properties (such as stellar mass) given in the SPARC data base, as well as additional features characterizing the rotation curve (such as H α, a binary variable 
for whether or not a galaxy has H α kinematic data.). 
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s met, then the velocity of the flat part of the model RC must also
e equal to the observed V flat . The second criteria is similar to the
ummary statistics V 2.2 and V max , in that it simply requires one part of
he RC to be a certain value, resulting in a degenerate band posterior.
t is the flatness criterion that can truncate the band, as it does for
574-1. 
To demonstrate the behaviour of the flatness criterion in isolation, 

n Fig. 4 we show the regions for which the RC is considered flat in
rey. The shape of the RC depends on the parameters describing the
aryons, so we consider a given M tot , c 0.1 to meet the flatness criterion
f the probability of the RC being flat is > 34 per cent (i.e. 1 σ ) when
arginalizing o v er D and ϒ . A much smaller re gion of the M tot , c 0.1 

rior is considered flat for F574-1 than NGC4157. This is because 
or NGC4157 the RC with baryons alone is considered flat, as it is
ently declining o v er man y disc scale lengths. But generating a flat
C for F574-1 requires a dark matter halo that is both dominant o v er

he baryonic component and has high enough concentration to have 
eached the gently declining ‘flat’ part by the outer most RC point. 

To separate the second criteria out from the flatness requirement, 
e calculate D KL for a new summary statistic: V flat (speed only) . This

s a single data point that is the mean speed of the flat part of the RC,
ccurring at its mean radius, without any flatness requirement. We 
ee in Fig. 2 that the D KL for V flat (speed only) are similar to W p20 ,
 max, and V 2.2 . This e x ercise demonstrates the e xtra constraining
ower that comes from observing a flat rotation curve over its length,
ompared to just measuring a single point from it. 

We train an ExtraTrees regressor on D KL for V flat , but found it
o be poorly predictive. This is due to difficulty in predicting the size
f the region for which the flatness criterion is met, which depends
n the detailed shape of the circular velocity due to the baryons. 
d

.2 D KL as a function of measurement properties 

n the feature importance analysis the uncertainties on inclination 
nd velocity were found to be important predictors of D KL . We now
solate their effect on D KL for the full RC by scaling their uncertainties
y a constant factor s , i.e. δV obs,scaled = s δV obs or δi obs,scaled = s δi obs ,
nd repeating the inference. We do this for δV obs and δi separately,
or a range of values of s . We also apply the same procedure to the
catter on the prior of ϒ disc/bulge (changing it for both disc and bulge
imultaneously). 

We exclude bad fits using the residual analysis described in 
ection 3.5 . To ensure we use the same sample for all three quantities,
alaxies are only included if they are not bad fits for any value of s for
ll of V obs , i , and ϒ disc/bulge . With a minimum value of s = 0.25 (the
ts are worst for lower s ), this leaves 98 galaxies in the sample. We
how their D KL as a function of s in Fig. 5 . D KL shows the greatest
ependence on the velocity uncertainties, and is relatively flat for the
est. The rate of increase in D KL steepens as s decreases for δV obs 

nd i . 
R out was identified as an important feature for predicting D KL . It

s set by the minimum H I surface density probed by the observation.
e study the effect of varying the minimum H I density on D KL , by

epeating the inference with modified RCs that only include data 
oints at radii where the H I surface density is abo v e a chosen
inimum value, which we vary. In this analysis we include only

alaxies that each have a � H I ( r) that fully spans the range 1–
 M �/ pc 2 , and which do not ha ve H α observations, lea ving 45
alaxies. The D KL for this sample is shown in Fig. 6 . If one
new the uncertainty on � H I , an alternative approach would be
o vary the minimum signal-to-noise ratio rather than the surface 
ensity. 
MNRAS 525, 5066–5079 (2023) 
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Figure 4. Comparison between observed and model rotation curves ( top panels ), and the posteriors in mass–concentration space for F574-1 ( left-hand panel ), 
a low-surface brightness galaxy, and NGC4157 ( right-hand panel ), an intermediate mass spiral galaxy. Different colours in the bottom panel show posteriors 
computed from fitting to the full rotation (green), fitting to the HI linewidth W p20 (red) and fitting to the V flat summary statistic (orange, see Section 3.2 ). The grey 
shows the posterior from just requiring that the rotation curve flatness condition be met, without matching the actual value of V flat . The D KL of each posterior is 
shown on the right. The posteriors for V max and V 2.2 are not shown, but are similar to W p20 . The abundance matching posterior for each galaxy is also shown 
for comparison. 
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.3 Halo profile comparison 

e now study the constraining power of observations on whether
 halo has a cusp or a core. In contrast to D KL , we found that it
as not possible to generate a decently predictive model for the
recision of the inner slope constraints from the galaxy/RC features.
his is likely because the relationship between galaxy/RC properties
nd the precision of inner slope constraints is more complicated
han for D KL , and so a larger sample size is required to generate
 predictive model. Therefore, we instead focus on analysing how
 arying indi vidual features af fect the precision of the inner slope
onstraints. 

In the D KL analysis δV obs was found to be the most important
easurement uncertainty. Therefore we study the dependence of

he likelihood ratio test between an NFW and Burkert profile on
V obs , using the same uncertainty scaling procedure as abo v e. We
lot the resulting distribution of likelihood ratios in Fig. 7 . We
nterpret a likelihood ratio greater than 100 as one halo profile being
ignificantly fa v oured o v er the other. F or s = 1 (no scaling) this occurs
NRAS 525, 5066–5079 (2023) 
or around 30 per cent of galaxies, with most fa v ouring Burkert. For
 = 2 this drops to 15 per cent, and for = 0.5 it rises to 70 per cent. 

Another way of looking at this is to examine how much con-
training power an observation has on the shape parameter of three
arameter halo profiles. The α parameter of the gNFW profile
ontrols the gradient of the inner slope. A cusped profile has α = 1
nd a cored profile α = 0. We repeat the uncertainty scaling procedure
bo v e, but this time fitting a gNFW profile instead. The uncertainty
n the marginalized α parameter (which we take to be its standard
e viation, std( α) measures ho w well the inner slope is constrained.
 galaxy with a smaller uncertainty on α has a better known inner
alo shape, with �α = 1 the difference between a cored and a cusped
1/ r ) inner profile. We study the distribution of std( α) for the sample
s a function of s in Fig. 7 . The mean scatter on α only drops below
.2 for s ∼ 0.6. In the right column of Fig. 7 , we repeat the same
alo profile comparison analysis as abo v e, but this time varying the
inimum H I density instead s . We find the dependence is much
eaker than for δV obs . 
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Figure 5. The dependence of D KL on the uncertainties on velocity, incli- 
nation, and mass-to-light ratio. At each point, the uncertainties are scaled 
on either the velocities, the inclination, or the mass-to-light ratios on the 
bulge and disk by a constant factor s (such that δ

′ = s δ) and the D KL 

from fitting to the full rotation curve is recalculated for each galaxy. Any 
galaxy that is considered underfit (see 3.5 ) for any value of s for any of 
v elocity/inclination/mass-to-light is e xcluded from this analysis. Therefore, 
D KL is calculated for the same sample of 98 galaxies for all points. The solid 
lines show the mean of D KL at each value of s (marked by crosses), and the 
dashed lines show the 16th and 84th quantiles of the distribution. D KL is most 
dependent on the velocity uncertainties. 
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Another possibly important factor for determining the inner slope 
onstraints is whether or not a galaxy has H α observations. We split
he sample in two, and find galaxies with H α have a mean std( α)
f 0.23, but those without have a mean of 0.3. We have checked the
wo populations of galaxies do not significantly differ with respect to 
ther variables that drive the constraints on D KL , and so conclude that
dding H α observations moderately reduces the uncertainty on the 
nner slope (comparable to halving the velocity uncertainties from 

heir fiducial values). 

 DISCUSSION  

.1 Predicting information gain 

onstraining halo mass and concentration from fits to rotation curve 
ata is routine procedure in the study of late-type galaxies. Ho we ver,
o our knowledge, this study is the first to formally quantify the
recision of the constraints and study their variation with galaxy and 
easurement properties. For the SPARC sample, we found massive 

ariation in precision on M tot and c 0.1 when fitting to the full RC, rang-
ng from 1 to 11 bits of information gain. This range is equi v alent to
he difference between a flat prior shrinking to a flat posterior by only
 factor of 2 (2 1 ) compared to ∼2000 (2 11 ). We created a predictive
odel for D KL using the ExtraTrees algorithm, and conducted a 

eature importance analysis to identify the galaxy and measurement 
roperties that are the strongest predictors of information gain. The 
easurement properties are, in descending order of importance: the 

umber of data points N , the fractional uncertainty on the outermost
easured velocity δV out / V out , the fractional uncertainty on inclination 

i / i , and the radius of the outermost measured velocity normalized
y the ef fecti ve radius R out / R eff . The only important galaxy property
s V obs /V bar , a measure of the dark matter dominance. N ranks

ore highly than both the maximum radius of the RC (although 
he two are positively correlated, with a Spearman coefficient of 
.58) and whether or not a galaxy has H α data. This shows the
mportance of sampling at many points across the RC to constrain the
hape. 

The moderate predictivity of our model ( R 

2 = 0.77) is part due
o the small sample size, and part due to the input features not fully
apturing the full details of the RC and the distribution of the baryons.
 or e xample N does not account for the autocorrelation of the RC,
nd V obs /V bar is only an average. Our model is more predictive for
he fits to the single data point summary statistics, W p20 , V 2.2 , and
 max , with the latter giving R 

2 = 0.9 and depending only on the
ncertainty on V max and V max / V bar ( R max ), a measure of dark matter
ominance. 
Our feature importance analysis only ranks the measurement 

roperties by importance. In order to quantify the size of their
ffect on D KL , we varied the uncertainties on velocity and inclination
hilst holding the rest of the inference constant. We also varied
ncertainties on the mass-to-light ratios ϒ disc and ϒ bulge , applied 
n our model through the priors. We find that the constraints are

ost dependent on the velocity uncertainties, with the inclination 
nd mass-to-light showing only weaker dependence. In Fig. 6 , we
alculated the dependence of D KL on the minimum H I density probed
which sets the maximum radius of the RC). Reducing the minimum
ensity by 1 M �/ pc 2 yields an additional 0.4 bits of information gain.
n order to investigate whether this dependence on the minimum H I

ensity simply mirrors the strong dependence on N found earlier 
Fig. 3 ), we also plotted D KL / N for the different runs (not shown), and
ound no strong trend with the minimum H I density. This suggests
hat the observed trend in D KL with minimum H I density is driven
rimarily by N , rather than say the points in the outer RC (where the
 I density is lowest) yielding disproportionately more information. 
his concurs with our earlier finding that R out / R eff is a less important

eature than N . 
Our results can inform future surv e y design, by highlighting which

eatures of the measurement should be prioritized for optimization. 
he main way to impro v e constraints is of course to use longer

ntegration times or higher instrument sensitivity, which would 
ncrease the number of data points (Stav ele y-Smith & Oosterloo
015 ). Ho we ver, specific optimizations are possible. The beam size
ets the maximum resolution. At fix ed sensitivity/inte gration time, 
here is a trade off between minimum H I density that can be probed
i.e. the maximum radius) and resolution, although this can be altered
ith adaptive smoothing techniques in post-processing (Briggs 
995 ). Reducing the velocity uncertainties would require improving 
he model used to determine the velocities and/or increasing the 
pectroscopic resolution. SPARC inclinations are produced as output 
f the fits to the 2D velocity field (Lelli et al. 2016a ), so the
ncertainties would be reduced by improving the velocity map. 
nclination can also be calculated using the ellipticity of the H I

eroth-moment map (Ponomare v a et al. 2021 ), including forward
odelling it to the datacube (Mancera Pi ̃ na et al. 2021 ), or more

mprecisely using optical data. Kourkchi, Tully & Courtois ( 2022 )
ecently used a combination of machine learning and citizen science 
o impro v e inclinations from optical data. Schombert, McGaugh &
elli ( 2022 ) use stellar population models to study the variation of the
ncertainty on ϒ with the passband, and the available morphology 
nd colour information. 

.2 Summary statistics 

e compared the information gain when constraining halo parame- 
ers using the full RC, summary statistics or the H I linewidth W p20 .
ur feature importance analysis found the degree of dark matter 
ominance at the radius of the velocity measurement was the most
MNRAS 525, 5066–5079 (2023) 
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Figure 6. The dependence of D KL (grey line, sample mean; band, 16th and 84th quantiles) on the minimum HI surface density probed � HI,min (left-hand panel). 
The procedure for varying � HI,min is illustrated for a single galaxy (NGC4157) in the right-hand panel: for each value of � HI,min (pink lines), only the data 
points of the rotation curve (blue) at radii where � H I > � HI,min (i.e. green > pink) are used in the inference. The D KL for NGC4137 is shown as a dashed line in 
the left-hand panel. This analysis is only applied to the subsample of 54 galaxies that each have an H I surface density profile that spans all the way from 1 to 8 
� H I / M �pc −2 . For this sample, D KL increases strongly (with an approximately linear relationship) as � HI,min is reduced and the lower surface density regions 
towards the outskirts of the galaxy are added to the observation. 
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mportant factor in determining D KL . The ranking of mean D KL for the
ummary statistics from highest to lowest is { V flat , W p20 , V max , V 2.2 } ,
hich reflects how far out into the halo each measurement probes,

nd hence the degree of dark matter domination. L19 calculated the
ntrinsic scatter of the baryonic Tully-Fisher relationships (BTFRs)
onstructed using the different summary statistics as the velocity
easure. For the ones studied in this paper, they found { V flat , W p20 ,
 max , V 2.2 } had an intrinsic orthogonal scatter of { 0.026, 0.035,
.040, 0.070 } respectively, which is the inverse ordering of D KL .
19 interpret the amount of scatter to be ne gativ ely correlated with

he closeness of the summary statistic to the true flat value of the
otation curve (as opposed to the observed V flat , which is limited by
aximum radius probed in some galaxies). Hence, it is not surprising

hat the mean information content on halo properties from each mea-
urement is ne gativ ely correlated with the scatter of their respective
TFRs. 
In this work we chose not to apply a prior based on the mass–

oncentration relationship from dark matter-only simulations. Al-
hough this would have helped break the degeneracy between mass
nd concentration (see also Section 1 ), it would also have imported
ssumptions from N -body simulations and galaxy formation theory
assembly bias) which we prefer to a v oid. Ho we ver, we no w
ualitatively discuss the effect this prior would have on our results.
pplying the mass–concentration prior increases D KL significantly

or all galaxies, with the effect greatest when using relatively weak
ata such as summary statistics for which the mass–concentration
e generac y is especially pronounced. Applying the prior whilst
ssuming a cuspy profile leads to a finite constraint on halo mass even
hen using such summary statistics (this is studied for linewidths

n more detail in Yasin et al. 2022 ). Ho we v er for man y galaxies,
ven with the mass–concentration prior applied there is still a strong
emaining de generac y (e.g. NGC4157 in the right-hand panel of
ig. 4 ), especially when assuming a cored profile. Nevertheless D KL 

till increases significantly compared to the no-prior case, even when
he de generac y is not fully broken. It is important to bear in mind
o we ver that in this case the information gain is not purely from the
inematic data. 
NRAS 525, 5066–5079 (2023) 
.3 Constraining the inner halo shape 

e studied the ability of observations to constraint the inner halo
hape in two ways. Firstly we studied the impact of the δV obs 

ncertainties on the ability to distinguish between the cored Burkert
rofile and cusped NFW profile using a likelihood ratio test. We
ound that with the unmodified velocity uncertainties, one profile
as decisively fa v oured o v er another in 40 per cent of cases, with

his rising to 70 per cent when the uncertainties are halved. On the
ther hand, when the uncertainties are doubled, one halo is only
trongly fa v oured in only 20 per cent of galaxies. We also studied the
ncertainty of the inner slope parameter α when fitting a 3-parameter
eneralized NFW profile. With the normal SPARC uncertainties the
ean std( α) is ∼0.3 (the change in α is 1 between a cored gNFW

rofile and a normal NFW profile), but there are a significant number
f galaxies with std( α) > 0.5. This suggests a surv e y with v elocity
easurements more precise than SPARC is necessary to precisely

onstrain the inner halo shape for whole samples of galaxies. We
epeated the analysis varying the minimum H I density probed, and
ound a much weaker dependence. This demonstrates the importance
f obtaining kinematic data sets with precise velocity uncertainties
hen targetting the cusp-core problem (see Del Popolo & Le Delliou
021 , for a re vie w) relati ve to probing lo wer H I surface densities. 

.4 Comparison to literature 

aburo va, Kasparo va & Katko v ( 2016 ) used a sample of 14 galaxies
rom The HI Nearby Galaxy Surv e y (THINGS, Walter et al. 2008 ) to
tudy the size of the uncertainties on halo parameters derived from
otation curve fitting, in particular identifying the halo concentration
s often poorly constrained. The main differences to this paper are
ur quantification of the constraining power using the Kullback–
eibler divergence, our focus on the constraining power in the
ass–concentration plane rather than the uncertainty on individual

arameters, our study of the constraining power as a function
f measurement and galaxy properties, and our Bayesian fitting
rocedure that propagates the uncertainties on galaxy parameters
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Figure 7. Top panels: The fraction of galaxies in the sample for which the ratio of the maximum likelihood estimates of the two profiles ˆ L Burkert / ̂  L NFW 

(or the 
inverse) is above a certain value, as a function of a multiplicative scaling s of the velocity uncertainties ( left-hand panels , see Fig. 5 ) and the minimum H I surface 
density probed ( right-hand panels , see Fig. 6 ). We interpret ˆ L Burkert / ̂  L NFW 

> 100 (10) as strongly (moderately) fa v ouring Burkert o v er NFW (and vice-versa). 
At s = 1 (no scaling) one halo is strongly fa v oured o v er another in around ∼40 per cent of galaxies, with most fa v ouring Burkert. If the velocity uncertainties 
are halved ( s = 0.5), this rises to 70 per cent. For reference we also show the corresponding difference in Bayesian Information Criterion. 
Bottom panels: The distribution of the uncertainties on the α shape parameter from fitting a gNFW halo to the full rotation curve (solid line, mean; band, 16th 
and 84th quantiles in bins of s ). Both the uncertainties on α and the likelihood ratios show a strong dependence on the velocity uncertainties, but a weaker 
dependence on the H I surface density. 
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nto the constraints on halo properties. In agreement with Saburova 
t al. ( 2016 ), we find that for many galaxies the constraining
o wer of fered by rotation curves can still be relatively weak
as evidenced by the long tail to low D KL for the full RC in
ig. 2 ). 
We have highlighted the important measurement properties which 

hould be targeted by future surv e ys. Identifying the observational 
arameters (such as integration time) required to achieve the desired 
easurement properties is beyond the scope of this work. Recent 
ork has simulated spectroscopic H I observations of simulated 

ate-type galaxies (Oman 2019 ), which in theory allows an end- 
o-end determination of the effect of observational properties such 
s integration time on the constraints on halo properties. Ho we ver,
ur analysis of real observations is an important complementary 
pproach, as simulations still struggle to produce realistic samples 
f rotation curves (Roper et al. 2022 ). 
In light of increasingly e xpensiv e observations, but comparatively 

heap computational resources, there are an increasing number of 
tudies examining optimal observational strategies. For example, 
g  
wo recent studies have used the Fisher-matrix formalism to quantify 
he information content in stellar streams (Bonaca & Hogg 2018 )
nd the cosmic web (Kosti ́c et al. 2022 ) in order to identify the best
bservational strategy. 

 C O N C L U S I O N  

e have used the Kullback–Leibler divergence ( D KL ) of the posterior
n total mass–concentration (where total mass is equal to the halo
ass plus the galaxy mass) from the prior to quantify the gain in

nformation obtained from spectroscopic observations of the late- 
ype galaxies of the SPARC data base. We set the observable in the
inematic inference to be either the full rotation curve, summary 
tatistics of the rotation curve ( V max , V 2.2 , V flat ), or the linewidth
f the integrated 21-cm spectrum, W p20 , in order to quantify the
nformation contained in different parts of the rotation curve and 
ifferent types of measurement. Further, to determine the properties 
f the measurements that are most important for the information 
ain, we study the variation on D KL as we modify properties of the
MNRAS 525, 5066–5079 (2023) 
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otation curve observations such as the uncertainties on velocity or
he minimum H I surface density probed. Our conclusions are as
ollows: 

(i) The full RC fitting offers a wide range of information gain
or the SPARC galaxies, ranging from ∼1 to ∼11 bits. This is
redominantly due to the massive range in the number of data
oints each rotation curve has, and the large variation in velocity
ncertainties. 
(ii) Fits to the summary statistics of the RCs offer much smaller

ains, ranging from ∼0 to ∼6 bits, as the posteriors are degenerate in
ass–concentration and run up against the prior bounds. V flat offers
 modest increase due to the flatness constraint. For most SPARC
alaxies W p20 , V flat , V 2.2 , and V max all probe regions of the rotation
urve which are dark matter dominated, and hence contain similar
nformation on the halo. 

(iii) We measured D KL as a function of the minimum H I surface
ensity probed, and the uncertainties on velocity, inclination, and
ass-to-light ratios. Its dependence is strongest on the minimum

urface density and the velocity uncertainties. These results can be
sed to weigh up the increase in precision on halo constraints afforded
y improving each aspect of the measurement against the associated
ost. 

(iv) The tightness of the constraints on the inner halo shape
re strongly dependent on the velocity uncertainties, but have a
uch weaker dependence on the minimum H I surface density. This

uggests that whilst both sensitivity and velocity uncertainties are
mportant for obtaining tight constraints on halo properties, surv e ys
pecifically targeting e.g. the cusp-core problem should prioritize the
atter. 

Our study has identified the most important variables for improv-
ng the constraints on dark matter halo properties from spectroscopic
bservations of late-type galaxies. With forthcoming instruments set
o greatly enhance our ability to probe the dark matter distribution
round galaxies, in terms of number of galaxies, increasing redshift
nd measurement precision, these results should inform future surv e y
esign to maximize the return of knowledge on the galaxy–halo
onnection. 
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