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Abstract
Aim: Quantifying	the	relative	contribution	of	environmental	filtering	versus	limiting	
similarity	 in	 shaping	communities	 is	 challenging	because	 these	processes	often	act	
simultaneously	 and	 their	 effect	 is	 scale-	dependent.	 Focusing	 on	 caves,	 island-	like	
natural	 laboratories	with	 limited	environmental	variability	and	species	diversity,	we	
tested:	(i)	the	relative	contribution	of	environmental	filtering	and	limiting	similarity	in	
determining	community	assembly	in	caves;	(ii)	how	the	relative	contribution	of	these	
driving	forces	changes	along	environmental	gradients.
Location: Europe.
Time period: Present.
Major taxa studied: Subterranean	spiders.
Methods: We	used	data	on	distribution	and	traits	for	European	cave	spiders	(n = 475	
communities).	We	estimated	 the	 trait	 space	of	 each	 community	 using	probabilistic	
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1  |  INTRODUC TION

An	 omnipresent	 scheme	 in	 introductory	 textbooks	 of	 ecology	 il-
lustrates	 the	 numerous	 filters	 selecting	which	 species	 end	 up	 as-
sembling	 into	 local	 communities	 from	 a	 regional	 pool.	 An	 elusive	
problem	concerning	this	‘filtering’	metaphor	is	quantifying	the	rela-
tive	contribution	of	abiotic	and	biotic	factors	in	shaping	communities	
(Chalmandrier	et	al.,	2022;	Kraft	et	al.,	2015;	Lamanna	et	al.,	2014).	
In	 a	 nutshell,	 environmental	 filtering	 is	 the	 process	 whereby	 abi-
otic	constraints	prevent	species	 from	establishing	 in	a	community,	
selecting	 for	a	narrow	set	of	 traits	 suitable	 to	cope	with	 the	 local	
conditions,	leading	to	lower	differences	in	trait	composition	than	ex-
pected	by	chance	(‘trait	underdispersion’).	Conversely,	limiting	simi-
larity	drives	functionally	similar	species	to	diverge	in	key	phenotypic	
traits	to	reduce	niche	overlap,	leading	to	higher	differences	in	trait	
composition	than	expected	by	chance	(‘trait	overdispersion’).	It	fol-
lows	that	looking	at	biological	communities	through	the	lens	of	func-
tional	ecology	(i.e.	the	traits	expressed	in	each	community)	is	one	of	
the	most	effective	ways	to	quantify	the	interplay	between	these	two	
assembly	processes	(McGill	et	al.,	2006).	The	use	of	traits	in	lieu	of	
species	identities	allows	an	explicit	focus	on	the	mechanisms	gener-
ating	biodiversity	patterns,	often	 facilitating	 the	conceptualization	
of	general	principles	that	are	valid	across	species	pools	or	distantly	
related	taxa	(Luza	et	al.,	2023).

Even	 with	 trait-	based	 approaches,	 however,	 it	 remains	 diffi-
cult	 to	separate	the	main	mechanisms	filtering	the	species	pool	of	
potential resident species to the subset that occurs within a given 
community	(α-	diversity)	and	in	driving	variations	across	communities	
(β-	diversity)	(Vellend,	2010).	The	distinction	between	environmental	
filtering	and	limiting	similarity	is	too	often	conceptualized	as	a	‘black	
or	white’	dichotomy,	whereby	communities	are	described	to	be	dom-
inated	by	one	or	the	other	process.	The	ecological	reality	is	instead	
more	 nuanced,	 with	 the	 two	 processes	 acting	 simultaneously	 in	
shaping	communities,	although	with	different	 intensities	given	the	
local	 environmental	 conditions	 (Germain	et	 al.,	2018;	 Loughnan	&	
Gilbert,	2017).	Furthermore,	like	any	dimension	of	biodiversity,	func-
tional	diversity	change	is	scale-	dependent	(Graco-	Roza	et	al.,	2022; 
Jarzyna	&	Jetz,	2018),	forcing	us	to	account	for	the	pervasive	effect	
that	scale	has	on	emerging	patterns	(McGill,	2010).	Since	biotic	in-
teractions	require	spatial	proximity,	the	effect	of	 limiting	similarity	
should	often	decrease	with	increasing	scale	and,	vice	versa,	the	fil-
tering	effect	posed	by	the	abiotic	environment	should	increase	with	
spatial	scale—generally	resulting	in	a	predominance	of	trait	overdis-
persion at local scales and trait underdispersion at broader scales 
(Belmaker	et	al.,	2013;	Lhotsky	et	al.,	2016).

Mounting	 evidence	 demonstrates	 that	 the	 relative	 influence	
of	 environmental	 filtering	 and	 limiting	 similarity	 broadly	 changes	
along	spatial	and	temporal	gradients—for	example,	 for	vertebrates	
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hypervolumes,	and	obtained	estimations	of	 functional	 richness	 independent	of	 the	
species	richness	of	each	community	via	null	modelling.	We	model	functional	diversity	
change	along	environmental	gradients	using	generalized	dissimilarity	modelling.
Results: Sixty-	three	percent	of	subterranean	spider	communities	exhibited	a	preva-
lence	of	trait	underdispersion.	However,	most	communities	displayed	trait	dispersion	
that	did	not	depart	significantly	from	random,	suggesting	that	environmental	filtering	
and	limiting	similarity	were	both	exerting	equally	weak	or	strong,	yet	opposing	influ-
ences.	Overdispersed	communities	were	primarily	concentrated	in	southern	latitudes,	
particularly	in	the	Dinaric	karst,	where	there	is	greater	subterranean	habitat	availabil-
ity.	Pairwise	comparisons	of	functional	richness	across	caves	revealed	these	effects	
to	be	strongly	scale-	dependent,	largely	varying	across	gradients	of	cave	development,	
elevation,	 precipitation,	 entrance	 size	 and	 annual	 temperature	 range.	 Conversely,	
geographical	distance	weakly	affected	trait	composition,	suggesting	convergence	in	
traits	among	communities	that	are	far	apart.
Main conclusions: Even	 systems	with	 stringent	 environmental	 conditions	maintain	
the	potential	for	trait	differentiation,	especially	 in	areas	of	greater	habitat	availabil-
ity.	Yet,	the	relative	influence	of	environmental	filtering	and	limiting	similarity	change	
with	scale,	along	clear	environmental	gradients.	The	interplay	of	these	processes	may	
explain	the	assembly	of	species-	poor	subterranean	communities	displaying	high	func-
tional	specialization.

K E Y W O R D S
Araneae,	beta	diversity,	cave,	functional	diversity,	functional	guild,	morphology,	trait	space,	
troglobiont
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(Belmaker	et	al.,	2013;	 Jarzyna	&	Jetz,	2018;	McLean	et	al.,	2021; 
Mouillot	 et	 al.,	 2014;	 Toussaint	 et	 al.,	 2021)	 and	 plants	 (Kraft	
et	al.,	2008;	Lamanna	et	al.,	2014;	Lhotsky	et	al.,	2016).	However,	
there	 is	 still	 discussion	 on	 the	 direction	 of	 these	 changes	 and	
their	 causes	 (Germain	et	 al.,	2018;	Kraft	et	 al.,	2015;	 Loughnan	&	
Gilbert,	2017).	To	minimize	confounding	factors	and	achieve	a	better	
understanding	of	community	assembly	rules,	scientists	are	therefore	
increasingly	turning	their	attention	to	island-	like	model	systems	(e.g.	
oceanic	islands,	lakes,	tank-	bromeliads,	floating	plant-	island,	moun-
tain	summits;	Itescu,	2019;	Srivastava	et	al.,	2004)	and	specific	bio-
logical	communities	within	them	(e.g.	plants	[Ottaviani	et	al.,	2020; 
Schrader	 et	 al.,	 2021];	 birds	 [Ross	 et	 al.,	 2019;	 Sato	 et	 al.,	 2020; 
Triantis	et	al.,	2022]).	The	use	of	island-	like	systems,	that	is,	mostly	
closed,	with	known	histories,	and	with	a	 relatively	 low	richness	of	
species,	 allows	 ecologists	 to	 more	 easily	 disentangle	 community	
assembly	 processes	 while	 controlling	 for	 immigration,	 extinction	
and	 dispersal	 dynamics	 (Itescu,	2019;	Mammola,	2019;	Whittaker	
et	al.,	2017).

Under	 this	 framework,	 caves	 and	 other	 subterranean	 ecosys-
tems	stand	out	as	ideal	model	systems	for	the	study	of	community	
assembly	processes	through	a	functional	lens.	Foremost,	caves	are	
semi-	closed	systems	extensively	replicated	across	the	Earth	(Culver	
&	Pipan,	2019),	where	stringent	environmental	conditions	promote	
trait	 convergence	 among	 successful	 colonizers	 (Cardoso,	 2012; 
Lunghi	et	al.,	2015;	Trontelj	et	al.,	2012).	Second,	subterranean	com-
munities	 generally	 exhibit	 lower	 species	 richness	 and	 functional	
diversity	 than	 neighbouring	 surface	 communities	 (Cardoso,	 2012; 
Gibert	&	Deharveng,	2002;	Hose	 et	 al.,	2022;	 but	 see	 Fernandes	
et	 al.,	2016),	making	 it	 easier	 to	 disentangle	 the	 relative	 effect	 of	
environmental	conditions	in	selecting	species	possessing	specialized	
traits	within	the	community	(Mammola,	Arnedo,	et	al.,	2020).	Third,	
caves	 have	 clear	 surface-	subterranean	 environmental	 gradients	
(Kozel	et	al.,	2019;	Lunghi	et	al.,	2015;	Tobin	et	al.,	2013)	and	display	
a	reduced	variability	in	their	abiotic	conditions	(Badino,	2010),	two	
factors	that	avoid	many	of	the	confounding	factors	typical	of	other	
systems	(Mammola,	2019).

To	study	community	assembly	rules,	we	leveraged	the	unprece-
dented	amount	of	data	available	for	subterranean	spiders	in	Europe	
(Mammola	 et	 al.,	 2018),	 namely	 community	 composition	 data	 for	
selected	 caves	 across	 the	 continent	 (Mammola	 et	 al.,	 2019a)	 and	
standardized	traits	for	all	species	(Mammola	et	al.,	2022).	A	previous	
analysis	of	the	taxonomic	component	of	this	dataset	demonstrated	
a	quick	turnover	in	the	taxonomic	diversity	of	subterranean	spiders	
across	Europe,	mediated	primarily	by	geographical	distance	among	
caves,	and	secondarily	by	the	climatic	conditions	and	availability	of	
karst.	Conversely,	local-	scale	characteristics	of	caves	exerted	a	neg-
ligible	effect	on	species	turnover	(Mammola	et	al.,	2019b).	Here,	we	
explore	the	functional	dimension	of	these	patterns,	testing:	(i)	the	rel-
ative	contribution	of	environmental	filtering	and	limiting	similarity	in	
determining	community	assembly	in	caves,	and	(ii)	how	the	contribu-
tion	of	these	driving	forces	changes	along	environmental	gradients.

At the α-	diversity	 level,	 we	 expect	 (H1a)	 communities	 to	 be	
predominantly	functionally	underdispersed	because	the	stringent	

environmental	 conditions	 of	 caves	 should	 filter	 a	 narrow	 set	 of	
trait	combinations,	resulting	in	lower	functional	richness	than	what	
would	be	expected	for	a	given	species	richness.	Concurrently,	we	
predict	that	(H1b)	 limiting	similarity	plays	a	stronger	role	 in	cases	
where more niches are available and where local conditions allow 
for	 smaller	 niche	 overlap	 (e.g.	 larger	 caves,	 larger	 karst	 areas,	
regions	 with	 higher	 diversity	 of	 climates),	 leading	 to	 character	
displacement.

At the β-	diversity	level,	we	hypothesize	that	(H2)	environmental	
factors	have	a	stronger	effect	than	geographical	distance	on	func-
tional	turnover.	This	is	because	we	expect	that	functional	composi-
tion	is	strongly	influenced	by	local	environmental	conditions,	which	
modulate	 the	 availability	 of	 niches	 and	 the	 potential	 for	 species	
interactions.

2  |  MATERIAL S AND METHODS

2.1  |  Community- level data

We	 obtained	 data	 for	 subterranean	 spider	 communities	 across	
Europe	 from	 Mammola	 et	 al.	 (2019a).	 The	 dataset	 comprises	
data	 from	 475	 subterranean	 sites	 (limestone,	 volcanic,	 talus	 and	
salt	 caves,	 as	 well	 as	 artificial	 sites	 including	 mines,	 blockhouses	
and	 cellars;	 the	 general	 term	 ‘cave’	 is	 used	 hereafter)	 across	 27	
European	 countries,	 covering	 a	 latitudinal	 range	 from	 35°	 to	 70°.	
The	dataset	only	 includes	 subterranean	 sites	 for	which	 the	 spider	
fauna	is	exhaustively	known.	For	each	site,	the	spider	composition	
is	represented	as	incidence	data—presence/absence	of	each	species.	
The	database	includes	326	species	(average	[±SD]	number	of	species	
per	cave	of	4.3	[±2.35];	range:	0–15).	Note	that	we	focused	solely	
on	 ‘subterranean	 spiders’	 (Mammola	et	 al.,	2018,	2022),	 excluding	
‘accidental’	 surface	 species	 (sensu	 Trajano	 &	 de	 Carvalho,	 2017)	
occasionally	found	underground.

2.2  |  Environmental and geographical gradients

We	 collated	 a	 site-	by-	environment	 matrix	 including	 local-	scale	
environmental	 characteristics	 of	 each	 cave	 and	 broad-	scale	
variables	extracted	from	raster	 layers	using	the	coordinates	of	the	
cave	entrance.	Furthermore,	from	the	coordinates	of	each	cave	we	
calculated	pairwise	geographical	distances	among	caves	(expressed	
in	decimal	degrees),	useful	for	β-	diversity	analyses	(see	subsection	
‘Calculation	of	α-		and	β-	diversity’).

As	 local-	scale	 predictors,	 we	 used	 the	 altitude	 of	 the	 cave	
entrance	(in	metres	a.s.l.),	the	main	entrance	size	(estimated	area	
of	 the	main	entrance	 in	 square	metres),	 cave	development	 (total	
planimetric	 development	 of	 the	 cave	 in	metres)	 and	 cave	 depth	
(total	 drop	 in	 metres).	 These	 are	 frequently	 used	 variables	 in	
macroecological	 analyses	 focused	 on	 caves	 (Jiménez-	Valverde	
et	al.,	2017),	which	we	here	interpreted	as	proxies	for	local-	scale	
conditions	and	niche	space	availability.	For	example,	caves	with	a	
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vertical	drop	and	a	large	entrance	tend	to	accumulate	more	exter-
nal	food	resources	(detritus)	than	horizontal	caves	with	a	narrow	
entrance.

As	 broad-	scale	 predictors,	 we	 included	 three	 climatic	 vari-
ables	 (mean	 annual	 temperature,	 annual	 temperature	 range,	 cu-
mulative	 precipitation),	 one	 variable	 reflecting	 availability	 of	
carbonatic	 rocks	 (karst)	 and	one	biogeographical	 factor	 (the	dis-
tance	 of	 each	 cave	 to	 the	 margin	 of	 the	 glacier	 in	 Last	 Glacial	
Maximum;	 ca.	 21,000 years	 ago).	 We	 extracted	 climatic	 data	
from	WordClim	2	 rasters	 (Fick	&	Hijmans,	2017)	 at	 a	 resolution	
of	2.5 min.	Although	broad-	scale	variables	may	 fall	 short	 in	cap-
turing	microclimatic	variability	within	caves	(Ficetola	et	al.,	2020),	
they	are	good	surrogates	for	general	subterranean	climatic	condi-
tions	 (Christman	et	al.,	2016;	Mammola	&	Leroy,	2018;	Sánchez-	
Fernández	et	al.,	2018;	Zagmajster	et	al.,	2014).	We	extracted	the	
size	of	the	karst	patch	in	which	a	cave	occurs	using	the	World	Map	
of	Carbonate	Rock	Outcrops	(version	3.0).	Given	that	most	 loca-
tions	 in	our	database	were	karst	caves,	we	 interpreted	 this	vari-
able as a proxy	 of	habitat	 availability	 in	 the	 surrounding	of	 each	
cave,	and	an	indirect	measure	of	habitat	connectivity	(Bregović	&	
Zagmajster,	2016;	Curl,	1986).	Finally,	we	derived	the	distance	of	
each	cave	from	the	Last	Glacial	Maximum	glacier	from	reconstruc-
tions	by	Ehlers	et	al.	(2011).	We	interpreted	this	as	a	proxy	for	the	
influence	of	past	glacial	cycles	on	the	current	distribution	of	sub-
terranean	 species	 (Assmann	et	 al.,	2010;	Mammola,	 Schönhofer,	
et	al.,	2019).

2.3  |  Functional traits

For	 each	 spider	 species	 included	 in	 the	 database,	 we	 derived	
functional	 traits	 from	Mammola	 et	 al.	 (2022).	 This	 trait	 database	
contains	64	traits,	with	some	redundancy	across	traits,	and	many	traits	
riddled	with	a	high	proportion	of	missing	data	(>50%	observations).	
For	this	analysis,	we	selected	a	subset	of	20	traits	(8	continuous,	9	
binary	and	3	fuzzy	coded)	from	the	whole	trait	matrix.	This	subset	
of	traits	maximizes	the	information	contained	in	the	trait	database	
(Mammola	et	al.,	2022),	while	minimizing	the	number	of	missing	data	
and	hence	the	need	for	trait	imputation	(the	full	list	of	traits	and	their	
distributions is available in Figure 1).	The	selected	traits	represent:	(i)	
general	morphology	and	size	of	species	(average	body	size,	prosoma	
shape,	sexual	size	dimorphism).	Body	size	and	shape	are	meant	to	be	
related	to	habitat	 (pore)	size	 (Pipan	&	Culver,	2017)	and	metabolic	
processes	 (Mammola	 &	 Isaia,	 2017).	 Sexual	 size	 dimorphism	 is	
meant	 to	 provide	 information	 on	 sexual	 selection	 mechanisms	
operating	in	subterranean	environments	(Mammola	et	al.,	2022);	(ii)	
morphological	adaptation	to	subterranean	conditions	(eye	measures	
[AME,	ALE,	PME,	PLE],	eye	reduction,	degree	of	pigmentation,	 leg	
elongation).	This	combination	of	traits	captures	the	degree	to	which	
each	species	is	morphologically	adapted	to	the	permanent	darkness	
of	 subterranean	 ecosystems	 (Culver	 &	 Pipan,	 2015;	 Mammola	 &	
Isaia,	2017)	and	(iii)	webs	and	hunting	strategies,	including	numerous	
traits	capturing	important	differences	in	the	modes	of	life	of	spiders	

(Cardoso	et	al.,	2011).	To	ensure	exact	matching	between	the	spider	
species	names	in	the	community	and	trait	matrices,	we	standardized	
and	 updated	 taxonomy	 using	 the	 function	 checknames in the R 
package	‘arakno’	version	1.1.1.	(Cardoso	&	Pekar,	2022).

2.4  |  Data analysis

We	analysed	data	in	R	version	4.1.2	(R	Core	Team,	2021),	using	the	
suite	‘tidyverse’	(Wickham	et	al.,	2019)	for	data	manipulation	and	vis-
ualization.	In	all	functional	diversity	analyses,	we	followed	the	general	
analytical	pipeline	described	in	Mammola	et	al.	(2021),	and	the	pro-
tocol	for	transparent	reporting	by	Palacio	et	al.	(2022).	A	reproduc-
ibility	checklist	for	the	study	is	available	in	Table S1.	Since	functional	
analyses	 were	 computationally	 demanding,	 we	 ran	 all	 analyses	 in	
high-	performance	computing	services	(see	‘Acknowledgments’).

2.4.1  |  Data	exploration

We	 carried	 out	 data	 exploration	 following	 Palacio	 et	 al.	 (2022),	
checking	variable	distribution,	multicollinearity	and	the	presence	of	
missing	data	(Figure 1).	As	a	result	of	data	exploration,	we	standardized	
all	continuous	traits	(mean = 0	and	standard	deviation = 1)	to	ensure	
comparable	 ranges	 among	 different	 traits.	 In	 the	 environmental	
matrix,	 we	 checked	 variable	 distributions	 and	 log-	transformed	 all	
numerical	variables	(except	coordinates,	annual	temperature	range	
and	mean	temperature)	to	homogenize	distribution	and	reduce	the	
effect	of	outliers.	None	of	the	predictors	showed	correlation	values	
higher	than	Pearson's	r > ±0.7	(Zuur	et	al.,	2009).

2.4.2  |  Functional	space	estimation

We	 estimated	 the	 trait	 space	 of	 each	 cave	 using	 probabilistic	 hy-
pervolumes	 (Blonder,	 2019;	 Blonder	 et	 al.,	 2014;	 Mammola	 &	
Cardoso,	2020).	Probabilistic	hypervolumes	have	a	key	advantage	over	
other	commonly	used	trait-	space	characterizations	(e.g.	dendrograms	
[Petchey	&	Gaston,	2002]	or	convex	hulls	[Cornwell	et	al.,	2006]),	in	
that	they	allow	the	detection	of	areas	of	higher	or	 lower	density	in	
the	 trait	 space,	 thus	 representing	uneven	probabilities	of	 finding	 a	
species	with	a	given	trait	combination	throughout	the	boundaries	of	
the	trait	space	(Blonder,	2016;	Mammola	&	Cardoso,	2020).

Prior	to	analyses,	we	excluded	caves	with	less	than	three	spe-
cies	because	these	might	lead	to	uninformative	trait	spaces,	result-
ing	in	a	total	sample	size	of	367	caves.	Since	the	trait	matrix	was	
a	mixture	of	continuous,	binary	and	fuzzy-	coded	traits,	and	con-
tained	missing	data	 for	certain	 traits,	we	used	a	Gower	distance	
to	estimate	trait	dissimilarity	among	species	(Gower,	1971).	In	cal-
culating	Gower	distance,	we	used	the	optimization	method	by	de	
Bello	 et	 al.	 (2021)	 to	 attribute	weight	 to	 traits	within	 the	 three	
groups	of	 variables	 (column	 ‘grouping’	 in	 Figure 1).	 This	method	
addresses	the	issue	of	uneven	contributions	from	different	traits,	
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    |  5 of 14MAMMOLA et al.

especially	 fuzzy-	coded	 ones,	 in	 calculating	multi-	trait	 dissimilar-
ities.	 The	 solution	 involves	 determining	 weights	 that	 minimize	
variations	in	the	correlation	between	the	dissimilarity	of	individual	
traits	and	 the	multi-	trait	dissimilarity.	This	ensures	 that	each	set	
of	 traits	exerts	a	 comparable	 influence	on	 the	overall	multi-	trait	
dissimilarity	(de	Bello	et	al.,	2021).

We	 analysed	 the	 resulting	 distance	 matrix	 through	 Principal	
Coordinate	Analysis	with	the	R	package	‘ape’	version	5.5.0	(Paradis	

&	Schliep,	2019),	extracting	three	orthogonal	axes	that	we	used	to	
delineate	the	probabilistic	hypervolumes	for	each	cave.	Using	three	
trait	 axes	 ensures	 a	 good	 trade-	off	 between	 accuracy	 and	 com-
putation	 time	 (Graco-	Roza	 et	 al.,	2022;	Mouillot	 et	 al.,	2021).	We	
constructed	hypervolumes	with	a	Gaussian	kernel	density	estima-
tor	and	a	default	bandwidth	for	each	axis	(Blonder	et	al.,	2018),	as	
implemented	 in	 the	 function	hypervolume_gaussian	 in	 the	package	
‘hypervolume’	version	3.0.1	(Blonder,	2022).

F I G U R E  1 Summary	of	the	traits	used	in	the	analysis.	We	refer	to	Mammola	et	al.	(2022)	for	a	full	description	of	traits	and	their	
hypothesized	functional	meaning.	Column	‘Group’	refers	to	the	grouping	used	in	the	estimation	of	weights	for	the	Gower	distance	sensu	
de	Bello	et	al.	(2021),	whereby:	‘Adaptation’	are	traits	related	to	morphological	adaptation	to	subterranean	conditions	(especially	darkness);	
‘Morphology’	are	traits	describing	general	morphology	of	species	and	‘Ecology’	refers	to	traits	describing	webs	and	hunting	strategies.
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6 of 14  |     MAMMOLA et al.

2.4.3  |  Calculation	of	α-		and	β-	diversity

We	 measured	 the	 properties	 of	 the	 estimated	 trait	 spaces	 using	
hypervolume-	based	 functions	 (Mammola	 &	 Cardoso,	 2020)	 from	
the	R	package	 ‘BAT’	version	2.7.1	 (Cardoso	et	al.,	2015,	2021).	We	
calculated	 the	 functional	 richness	 of	 each	 community	 (α-	diversity)	
as	the	total	volume	of	each	hypervolume	(kernel.alpha	function).	We	
estimated	 pairwise	 functional	 β-	diversity	 among	 communities	 as	
a	 Sørensen	 dissimilarity	 index,	 calculated	 through	 a	 modified	 ver-
sion	 of	 the	 kernel.beta	 function	 that	 enables	 parallel	 estimation	 of	
pairwise	 comparisons	 (Graco-	Roza	 et	 al.,	2022).	 This	 estimation	 of	
β-	diversity	further	decomposes	the	two	processes	underlying	over-
all	dissimilarity	 (βtotal)	among	hypervolumes	 following	Carvalho	and	
Cardoso	(2020),	namely:	the	replacement	of	trait	space	between	com-
munities	(βreplacement),	and	the	net	differences	between	the	amounts	
of	trait	space	enclosed	by	the	two	communities	(βrichness).	β-	diversity	
ranges	from	0	(identical	trait	spaces)	to	1	(fully	dissimilar	trait	spaces).

2.4.4  |  Null	modelling

Estimations	of	functional	diversity	are	mathematically	dependent	on	
the	taxonomic	diversity,	particularly	the	species	richness	feature	for	
α-	diversity	 and	 species	 composition	 for	 the	β-	diversity.	 Statistically	
controlling	 for	 this	 association	may	 reveal	 the	 actual	 degree	of	 im-
portance	of	trait	composition	to	community	patterns	(Götzenberger	
et	 al.,	2016;	Mammola	et	 al.,	2021).	 To	 this	 end,	we	 randomly	per-
muted	without	replication	the	rows	of	the	initial	trait	matrix	999	times	
to	generate	a	null	distribution	of	each	hypervolume-	based	trait	space.	
For	each	random	iteration,	we	calculated	all	α-		and	β-	diversity	meas-
ures.	We	estimated	significant	deviation	of	observed	values	from	the	
null	distribution	as	the	proportion	of	instances	where	the	estimated	
values	were	less	than	the	observed	values,	plus	half	of	the	instances	
where	the	estimated	values	were	equal	to	the	observed	values,	divided	
by	the	total	number	of	estimated	values.	Specifically,	we	determined	
significance	by	a	threshold	of	rank	<0.025 or >0.975.	We	estimated	
standard	effect	sizes	(SES)	using	probit-	transformed	p-	values	(Lhotsky	
et	al.,	2016).	Probit	 transformation	 is	used	as	an	alternative	to	 logit	
transformation	in	generalized	linear	models	to	transform	probabilities	
into	 the	minus-	infinity-	to-	infinity	 range	 (Dobson,	2002).	We	 chose	
this	approach	because	it	is	known	to	be	less	sensitive	to	skewed	dis-
tribution	of	null	values	(Lhotsky	et	al.,	2016).	This	approach	is	known	
to	partially	underestimate	the	effect	size	when	the	observed	value	is	
completely	outside	the	null	distribution;	however,	 this	problem	was	
trivial	in	our	case,	as	none	of	our	observed	values	fell	outside	the	null	
distribution	(that	is,	p-	value of 0	or	1).

2.4.5  |  Hypothesis	testing

To	test	our	first	set	of	hypotheses	on	alpha	diversity	patterns	(H1),	
we	 modelled	 the	 relationship	 between	 SES	 values	 for	 functional	
richness	 (α-	diversity),	 and	 all	 local	 and	 broad-	scale	 environmental	

characteristics	of	each	cave	using	a	generalized	least	squares	fitted	
with	 the	package	 ‘nlme’	 version	3.1-	157	 (Pinheiro	 et	 al.,	2019).	 To	
account	 for	 spatial	 autocorrelation,	we	 introduced	 an	 exponential	
correlation	 structure	 on	 the	 longitude	 and	 latitude	 coordinates	 of	
each	 cave.	 Prior	 to	 model	 fitting,	 we	 standardized	 all	 predictors	
(mean = 0	 and	 standard	 deviation = 1)	 to	 ease	model	 convergence.	
We	 validated	 the	model	 by	 inspecting	 the	 normality	 of	 residuals,	
heteroscedasticity	and	degree	of	collinearity	(Zuur	et	al.,	2009).

To	test	our	hypothesis	on	beta	diversity	pattern	(H2),	we	used	a	
Bayesian	bootstrap	extension	of	generalized	dissimilarity	modelling	
(BBGDM),	as	 implemented	 in	 the	R	package	 ‘bbgdm’	version	1.0.1	
(Woolley	et	al.,	2017).	Generalized	dissimilarity	modelling	is	a	matrix	
regression	technique	that	incorporates	variation	in	the	rate	of	com-
positional	turnover	along	an	environmental	or	spatial	gradient	(non-	
stationarity)	 in	a	monotonic	nonlinear	fashion	 (Ferrier	et	al.,	2007; 
Mokany	et	 al.,	2022).	Because	 the	elements	of	 a	dissimilarity	ma-
trix	are	not	 fully	 independent,	BBGDM	uses	a	Bayesian	bootstrap	
procedure	to	correct	the	uncertainty	of	model	parameters	(Woolley	
et	al.,	2017).	We	used	as	input	the	predictors	and	the	functional	β-	
diversity	matrices.	We	fitted	individual	BBGDMs	for	the	three	func-
tional β-	diversity	matrices	(βtotal,	βreplacement and βrichness)	with	default	
parameters	 of	 three	 I-	splines	 for	 each	 predictor	 and	 default	 knot	
values.

Because	we	ran	BBGDM	for	both	the	actual	β-	diversity	matrices	
and also the β-	diversity	matrices	 resulting	 from	null	 trait	matrices	
(see	section	‘Null modelling’),	several	metrics	of	SES	could	be	derived	
to	address	different	questions.	Here,	we	tested	whether	a	given	vari-
able	had	a	stronger	or	weaker	effect	on	β-	diversity	than	what	would	
be	expected	for	a	given	change	in	species	composition	by	extracting	
the	sum	of	splines	coefficients	for	each	variable	in	the	999	BBGDMs.	
This	 way,	 we	 generated	 a	 null	 distribution	 of	 model	 coefficients	
which	could	further	be	tested	using	non-	parametric	SES.	The	sum	of	
spline	coefficients	of	each	variable	describes	the	total	change	in	β-	
diversity promoted by a single predictor holding all other predictors 
constant.	Furthermore,	we	tested	whether	SES	values	change	along	
the	environmental	or	geographical	gradient.	This	is	relevant	to	eval-
uate	if	changes	in	trait	composition	are	disproportionately	stronger	
(positive	SES)	than	changes	in	species	composition	when	caves	are	
in	close	geographical	proximity,	and	disproportionately	weaker	(neg-
ative	SES)	than	changes	in	species	composition	when	caves	are	far	
apart.	To	this	end,	we	extracted	the	prediction	values	for	all	the	sites	
in	each	of	the	null	BBGDMs	and	used	these	to	generate	a	null	distri-
bution	of	prediction	values	which	was	further	compared	against	the	
observed	predictions	and	converted	into	SES	values.

3  |  RESULTS

3.1  |  Cave spider's trait space

A	representation	of	the	trait	space	in	which	the	species	included	in	
the analysis are positioned is shown in Figure 2.	Most	traits	included	
in	the	analysis	contributed	to	the	three	synthetic	PCoA	axes,	except	
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    |  7 of 14MAMMOLA et al.

for	 sensing	 web,	 ambush	 hunters	 and	 food	 specialist	 (Table S2).	
Adaptations to subterranean conditions mostly correlate with both 
PCoA	1	and	2,	encompassing	traits	related	to	eye	diameter	and	leg	
elongation.	Body	length	correlates	predominantly	with	PCoA	1,	cre-
ating	a	gradient	from	large	to	small-	sized	species.	Hunting	strategy	
is	mainly	correlated	with	PCoA	2,	resulting	in	a	gradient	due	to	spi-
ders	employing	different	types	of	webs	and	active	hunters	that	do	
not	 rely	 on	webs	 for	 prey	 capture.	 The	 functional	 composition	 of	
the species included in our dataset clustered in three major groups. 
The	first	cluster	(Figure 2,	top	left)	 includes	large	web-	weaver	spi-
ders	(e.g.	Meta	spp.,	Pimoa	spp.,	various	genera	of	Agelenidae),	typi-
cally	inhabiting	cave	entrances	and	thus	exhibiting	a	lower	degree	of	
morphological	 adaptation	 to	 subterranean	 conditions.	 The	 second	
cluster	 (Figure 2,	 bottom	 left)	 consists	 primarily	 of	 large-	sized	 ac-
tive	hunters,	such	as	Segestridae	and	Dyseridae.	The	latter	includes	
some	of	the	most	specialized	subterranean	species	in	the	database	

(several	eyeless	and	fully	depigmented	species),	which	are	primarily	
found	in	the	Dinaric	karst.	The	third	cluster	(Figure 3)	on	the	right	
is	the	most	dense,	encompassing	most	Linyphiidae,	Nesticidae	and	
Leptonetidae,	with	numerous	species	of	smaller	size	showing	vary-
ing	 degrees	 of	 subterranean	 adaptations	 and	mostly	 hunting	with	
webs.

3.2  |  α- Diversity

SES	values	for	the	functional	richness	of	each	community	were	left-	
skewed,	with	63%	of	caves	displaying	a	prevalence	of	functional	un-
derdispersion	over	functional	overdispersion	(Figure 3a,b).	Still,	most	
of	these	caves	clustered	towards	SES	values	close	to	zero	(Figure 3b),	
with only seven communities completely underdispersed and one com-
pletely	overdispersed	(p < 0.05).	In	general,	caves	with	a	prevalence	of	

TA B L E  1 Estimated	regression	coefficients	for	the	generalized	least	square	model.

Term Estimate Standard error t- Statistic p- Value VIFa

Intercept −0.23 0.05 −5.02 >0.001

Entrance	size	(m2) −0.01 0.05 −0.16 0.870 1.17

Development	(m) −0.02 0.05 −0.38 0.707 1.27

Negative	drop	(m) 0.11 0.05 2.16 0.031 1.21

Elevation	(m) 0.1 0.05 1.77 0.077 1.35

LGM	ice	distance	(km) 0 0.06 0.01 0.994 1.3

Karst	area	(km2) 0.12 0.05 2.33 0.020 1.22

Temperature	(°C) 0.06 0.06 0.91 0.364 1.86

Annual	range	(°C) 0.26 0.06 4.22 >0.001 1.66

Precipitation	(mm) 0.01 0.06 0.14 0.889 1.7

Note:	Significant	values	are	highlighted	in	bold.
Abbreviation:	LGM,	last	glacial	maximum.
aVariance	Inflation	Factor.

F I G U R E  2 Distribution	of	European	
subterranean	spiders	along	the	first	two	
axes	of	a	principal	coordinate	analysis	
describing the trait similarity among 
species.	Gradient	of	colour	denote	density	
of	species—higher	density	in	darker	areas.	
The	small	dots	in	the	figure	represent	
the	position	of	each	species	in	the	trait	
space while the larger circles indicate the 
centroid	position	of	each	trait	value.
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8 of 14  |     MAMMOLA et al.

overdispersion	 were	 concentrated	 at	 southern	 latitudes,	 especially	
in	the	Dinaric	karst	(western	Balkans)	(Figure 3a).	A	generalized	least	
squares	model	 fitted	 through	 the	 data	 suggested	 that	 communities	
in	caves	with	a	greater	depth	(negative	drop),	occurring	within	larger	
karst	areas,	and	in	areas	with	a	broader	annual	temperature	range	were	
more	likely	to	be	functionally	overdispersed	(Figure 3c).	The	addition	
of	spatial	component	did	not	improve	our	model	significantly,	suggest-
ing	the	absence	of	spatial	correlation	in	our	data.

3.3  |  β- Diversity

Patterns	 of	 functional	β-	diversity	were	 primarily	 driven,	 based	 on	
effect	sizes,	by	cave	development,	elevation,	precipitation,	entrance	
size	and	annual	range	of	temperature.	The	contribution	of	additional	
predictors	was	negligible	(Figure 4).	The	rate	of	turnover	along	the	
cave	 development	 gradient	 was	 monotonically	 asymptotic,	 with	
rates	of	turnover	steeply	increasing	in	the	first	portion	of	the	gradient	

F I G U R E  3 Functional	diversity	at	the	α-	diversity	level	for	subterranean	spider	communities	in	Europe.	(a)	Distribution	of	the	studied	
caves	(N = 367	caves).	The	size	of	each	dot	represents	species	richness.	Dots	are	coloured	according	to	their	standard	effect	size	(SES)	value	
for	functional	richness,	where	functional	richness	is	estimated	as	the	volume	of	the	hypervolume	representing	each	cave's	trait	space.	(b)	
Density	of	SES	for	functional	richness	across	the	studied	caves.	Percentage	of	caves	with	negative	or	positive	SES	values	are	indicated.	Dark	
lines	at	the	bottom	of	the	density	curve	show	the	frequency	of	observed	values.	(c)	Environmental	factors	driving	variation	of	SES	values	
for	functional	richness.	Estimated	parameters	are	based	on	a	generalized	least	square	model	(significant	effect	in	a	darker	colour).	Error	bars	
indicate	standard	errors.	The	exact	estimated	regression	parameters	and	p-	values	for	the	model	are	in	Table 1.	Note	that	the	sample	size	of	
this	model	is	297	(not	367)	because	of	missing	data	in	the	environmental	data	for	some	caves.	LGM,	last	glacial	maximum.

(a) (b)

(c)

F I G U R E  4 Results	of	Bayesian	bootstrap	generalized	dissimilarity	modelling	for	change	in	total	functional	β-	diversity	(βtotal)	of	
subterranean	spider	communities	across	Europe	(i.e.	unit	increase	in	mean	β	along	a	given	gradient).	Variables	are	sorted	by	their	
contribution	(on	top:	highest	contribution).	(a)	Fitted	I-	splines	(partial	regression	fits)	for	the	considered	environmental	and	geographical	
gradients.	The	maximum	height	reached	by	each	curve	indicates	the	total	amount	of	compositional	turnover	explained	by	that	variable	
(holding	all	other	variables	constant),	whereas	the	shape	of	each	spline	indicates	how	the	rate	of	compositional	turnover	varies	along	the	
gradient.	(b)	Distribution	of	expected	values	(histogram)	versus	the	observed	value	(coloured	line)	of	each	gradient,	based	on	null	modelling	
(999	iterations).	In	other	words,	these	panels	provide	information	as	to	whether	the	effect	of	a	given	variable	is	higher	or	smaller	than	
expected	given	species	composition.	(c)	Variation	in	the	magnitude	of	the	standard	effect	size	(SES)	values	along	the	observed	gradient.	In	
other	words,	these	panels	provide	information	as	to	whether	the	effect	of	a	given	variable	in	determining	trait	dispersion	changes	along	the	
gradient.	In	(b)	and	(c),	significant	effects	(Rank	<0.025|>0.975)	are	highlighted	with	a	darker	purple.
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before	 reaching	 a	 plateau	 (Figure 4a).	 This	 effect	 was	 significant	
along	 the	 whole	 gradient	 (Figure 4c).	 We	 also	 observed	 some	
degree	 of	 turnover	 along	 the	 gradients	 of	 elevation,	 precipitation	
and	temperature	range.	That	is,	communities	in	caves	with	different	
elevations,	temperatures	and	precipitation	regimes	tend	to	express	
different	 functions.	 For	 precipitation,	 SES	 values	 indicated	 that	
there	is	underdispersion	along	the	first	half	of	the	gradient	and	an	
increasing	predominance	of	functional	overdispersion	in	the	second	
half	of	the	gradient.	The	pattern	was	reversed	for	the	annual	range	
of	temperature.

The	 effect	 of	 geographical	 distance	 on	 functional	 β-	diversity	
followed	 a	 power-	law	 curve	 (linearly	 asymptotic),	 and	 was	 rather	
weak—that	 is	 to	 say,	 at	 increasing	 distance	 between	 two	 caves,	
there	was	only	a	limited	turnover	in	functional	richness	(Figure 4a).	
Interestingly,	when	looking	at	variation	in	the	effect	over	the	geo-
graphical	 gradient	 (Figure 4c),	 we	 observed	 a	 prevalence	 of	 trait	
overdispersion at a smaller spatial scale which progressively de-
creased	towards	zero	when	caves	were >2000 km	apart.

Most	of	 the	variation	 in	β-	diversity	was	due	to	replacement	of	
trait	space	among	communities	(βreplacement; Figure S1),	with	patterns	
largely	mimicking	the	variation	in	total	β-	diversity	(βtotal).	Conversely,	
the	contribution	of	βrichness	was	negligible	in	all	cases	except	for	cave	
drop	(Figure S2).

4  |  DISCUSSION

Focusing	 on	 the	 natural	 laboratory	 offered	 by	 caves,	 we	 studied	
functional	 diversity	 patterns	 in	 subterranean	 spider	 communities	
across	 Europe,	 testing	 general	 hypotheses	 ruling	 community	
assembly.	 Two	 important	 points,	 largely	 generalizable	 across	
systems	and	species	pools,	emerge	from	our	analysis.

The	first	point	is	that	environmental	filtering	and	limiting	sim-
ilarity	 are	 not	 mutually	 exclusive	 processes	 (Pillar	 et	 al.,	 2009).	
Even	 in	caves,	where	environmental	 filtering	 is	meant	 to	be	par-
ticularly	strong	(Gibert	&	Deharveng,	2002),	the	relative	influence	
of	these	two	processes	varied	substantially	given	the	local	habitat	
conditions.	Whereas	the	direction	of	SES	for	 functional	 richness	
was	predominantly	towards	underdispersion	(Figure 2b),	 the	ma-
jority	of	values	were	close	to	zero.	This	result	may	be	an	outcome	
of	 environmental	 filtering	 and	 limiting	 similarity	 both	 acting	 in	
equally	weak	or	strong,	but	opposing,	directions—although	other	
scenarios	cannot	be	ruled	out.	Environmental	filtering	is	indeed	a	
demonstrably	strong	factor	in	caves,	with	many	traits	and	portions	
of	the	potential	functional	space	being	absent.	Yet,	our	results	add	
quantitative	 evidence	 to	 a	 growing	 body	 of	 literature	 (Culver	 &	
Pipan,	2015;	Fernandes	et	al.,	2016;	Mammola	et	al.,	2016;	Trontelj	
et	al.,	2012)	emphasizing	the	importance	of	reconsidering	the	role	
of	niche-	based	processes	as	an	important	force	driving	the	evolu-
tion	of	cave	communities.

Subterranean	 communities	 with	 local	 trait	 overdispersion	
were	more	 frequently	 associated	with	 large	 karst	 patches,	 areas	
with	 broader	 temperature	 ranges	 and	 deeper	 caves	 (Figure 2c),	

all	conditions	that	provide	more	niche	space	to	be	exploited.	This	
was	 particularly	 evident	 in	 the	 Dinaric	 karst	 (western	 Balkans),	
the	 most	 important	 global	 hotspot	 of	 subterranean	 biodiversity	
(Culver	et	al.,	2006;	Sket,	2011),	where	virtually	all	cave	trait	spaces	
were	 predominantly	 overdispersed.	 Large	 patches	 of	 karst,	 such	
as	 in	 the	Dinarides,	 imply	 greater	 habitat	 availability	 (Bregović	&	
Zagmajster,	2016)	and,	possibly,	connectivity	(Curl,	1986),	hence	a	
broader	niche	space.	In	contrast,	in	smaller	regions	the	limited	habi-
tat	availability	(i.e.	more	stringent	conditions)	constrained	the	func-
tional	space	and	the	number	of	co-	existing	functional	forms	hence	
leading	 to	 fewer	 overdispersed	 communities	 compared	 to	 larger	
Karstic	 regions.	 However,	 the	 size	 and	 resolution	 of	 our	 dataset	
may	not	be	sufficient	to	confirm	the	relevance	of	limiting	similarity	
to	our	patterns,	as	 they	could	also	emerge	 from	weaker	environ-
mental	 filtering	or	 stronger	niche	complementarity.	 Likewise,	 the	
positive association between trait overdispersion and temperature 
range	can	be	interpreted	in	the	light	of	the	influence	of	tempera-
ture	 variability	 on	 species	 range	 size	 and	 dispersal	 (Ghalambor	
et	al.,	2006;	Janzen,	1967;	Polato	et	al.,	2018),	including	subterra-
nean	spiders	 (Mammola,	Piano,	et	al.,	2019).	Finally,	communities	
in	caves	with	a	greater	drop	tend	to	be,	on	average,	predominantly	
overdispersed.	Deeper	caves	tend	to	express	more	areas	with	dif-
fering	availability	of	resources,	offering	higher	trait	differentiation.

The	second	point	emerging	from	our	study	is	the	importance	of	
scale	in	the	perception	of	community	assembly	patterns.	Accounting	
for	scale	in	trait	analyses	has	been	achieved,	for	example,	by	looking	
at	variations	in	individual	trait	values	along	ecological	gradients	(e.g.	
elevation;	 Swenson	 et	 al.,	 2011),	 or	 by	 contrasting	 taxonomic	 and	
functional	diversity	change	in	highly	dispersive	organisms	(e.g.	birds;	
Jarzyna	&	Jetz,	2018).	Here,	we	devised	a	novel	approach	to	account	
for	the	magnitude	of	trait	dispersion	change	along	the	studied	eco-
logical	gradients,	combining	gradients	and	traits	in	a	single	model.	We	
observed	how	functional	β-	diversity	patterns	varied	along	multiple	
ecological	gradients.	The	most	important	one	was	the	difference	in	
the	development	among	the	studied	caves,	whereby	the	largest	re-
placement	of	functions	occurred	between	pairs	of	caves	with	diver-
gent	development	(i.e.	large	vs.	small	caves;	with	an	inflection	point	
with cave >5 m	in	development).	A	plausible	explanation	is	that	cave	
development is a proxy	for	the	availability	of	spatial	niches.	In	partic-
ular,	small	caves	will	be	primarily	colonized	by	spiders	adapted	to	the	
cave	entrance	conditions,	and	large	caves	will	often	sustain	a	greater	
number	of	specialized	species,	accounting,	overall,	for	drastically	dif-
ferent	functions.	Other	important	gradients	of	variations	were	eleva-
tion	and	precipitation,	reflecting	the	influence	of	climatic	conditions	
and	habitat	heterogeneity	in	the	local	structuring	of	functions.

In	terms	of	distance	decay	in	functional	diversity,	trait	composi-
tion	changed	randomly	with	respect	to	species	composition,	with	a	
slightly	higher	likelihood	of	a	more	pronounced	replacement	of	traits	
that	decreased	along	the	gradient	 (Figure 4c).	This	means	that,	al-
though	some	replacement	of	traits	does	occur,	overall	turnover	hap-
pens	by	substitution	of	species	pursuing	similar	functions.	Still,	when	
decoupling	functional	patterns	from	taxonomic	diversity,	the	func-
tional responses varied along the geographical gradient according to 

 14668238, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/geb.13840 by T

est, W
iley O

nline L
ibrary on [24/04/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



    |  11 of 14MAMMOLA et al.

theoretical	expectations,	showing	stronger	overdispersion	at	smaller	
distances,	 and	 progressive	moving	 towards	 SES	 values	 of	 zero	 at	
larger	 distances.	 This	 highlights	 the	 scale	 dependency	 of	 regional	
trait	 dispersion,	with	nearby	 caves	more	 likely	 to	have	 interacting	
communities	and	such	effect	becoming	weaker	with	increasing	spa-
tial distance.

5  |  CONCLUSIONS

The	 use	 of	 caves	 as	model	 systems	 for	 investigating	 (macro-	)eco-
logical	patterns	in	space	and	time	is	still	underexploited	(Mammola,	
Amorim,	et	al.,	2020).	This	is	partly	a	problem	related	to	the	objec-
tive	 difficulties	 of	working	 in	 caves	 (resulting	 in	 a	 general	 lack	 of	
data	at	 the	 right	 resolution)	 and	partly	 a	methodological	problem.	
Nonetheless,	thanks	to	the	recent	development	in	databases	of	spe-
cies	distributions	and	traits,	and	the	emergence	of	novel	analytical	
tools,	there	is	a	vast	potential	to	leverage	these	systems	as	ideal	set-
tings	 in	which	 to	model	 across	 space.	Using	 an	 explicit	 functional	
diversity	approach,	we	showed	that	(i)	even	systems	with	stringent	
environmental	conditions	maintain	the	potential	for	trait	differentia-
tion,	especially	 in	areas	of	greater	habitat	connectivity	and	 (ii)	 the	
relative	 influence	 of	 environmental	 filtering	 and	 limiting	 similarity	
changes	 with	 scale,	 along	 ecological	 gradients	 of	 cave	 develop-
ment,	elevation,	precipitation,	entrance	size	and	annual	temperature	
range.	 Overall,	 our	 findings	 reconcile	 contrasted	 views	 about	 the	
relative	 importance	of	the	two	main	mechanisms	shaping	patterns	
of	biodiversity	and	provide	a	conceptual	foundation	to	account	for	
scaling	effects	 in	 the	study	of	community	assembly.	This	 informa-
tion	is	key	amidst	escalating	global	anthropogenic	threats	affecting	
surface	 (Bowler	et	al.,	2020)	 and	subterranean	ecosystems	 (Nanni	
et	al.,	2023;	Vaccarelli	et	al.,	2023),	 insofar	as	 realistic	predictions	
of	biodiversity	change	require	explicitly	accounting	for	community	
assembly	processes	(Ovaskainen	et	al.,	2019).
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