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Figure 1. The Splatter Image is an ultra-efficient method for single- and few-view 3D reconstruction. It uses an image-to-image neural
network to map the input image to another image that holds the parameters of one coloured 3D Gaussian per pixel. Splatter Image achieves
excellent 3D reconstruction quality on synthetic, real and large-scale datasets while using a single GPU for training.

Abstract

We introduce the Splatter Image, an ultra-efficient ap-
proach for monocular 3D object reconstruction. Splatter
Image is based on Gaussian Splatting, which allows fast
and high-quality reconstruction of 3D scenes from multiple
images. We apply Gaussian Splatting to monocular recon-
struction by learning a neural network that, at test time,
performs reconstruction in a feed-forward manner, at 38
FPS. Our main innovation is the surprisingly straightfor-
ward design of this network, which, using 2D operators,
maps the input image to one 3D Gaussian per pixel. The re-
sulting set of Gaussians thus has the form an image, the
Splatter Image. We further extend the method take sev-
eral images as input via cross-view attention. Owning to
the speed of the renderer (588 FPS), we use a single GPU
for training while generating entire images at each itera-
tion to optimize perceptual metrics like LPIPS. On several
synthetic, real, multi-category and large-scale benchmark
datasets, we achieve better results in terms of PSNR, LPIPS,
and other metrics while training and evaluating much faster
than prior works. Code, models, demo and more results are
available at https://szymanowiczs.github.io/
splatter-image.

1. Introduction

We contribute Splatter Image, a method that achieves ultra-
fast single-view reconstruction of the 3D shape and appear-
ance of objects. Splatter Image uses a set of 3D Gaussians
as the 3D representation, taking advantage of the rendering
quality and speed of Gaussian Splatting [22]. Splatter Im-
age works by predicting a 3D Gaussian for each of the input
image pixels, using an image-to-image neural network. Re-
markably, the predicted 3D Gaussians provide 360◦ recon-
structions of quality comparable or superior to much slower
methods (Fig. 1).

We formulate monocular 3D reconstruction as the prob-
lem of designing a neural network that takes an image of
an object as input and produces as output a corresponding
Gaussian mixture that represents all sides of it. While a
Gaussian mixture is a set, i.e., an unordered collection, it
can still be stored in an ordered data structure. Splatter Im-
age takes advantage of this fact by using a 2D image as the
container of the 3D Gaussians, storing the parameters of one
Gaussian (i.e., its opacity, position, shape, and colour) per
pixel. The Gaussians predominantly lie on the rays from the
camera to the object, but they can also be placed off the rays
(Fig. 2), enabling 360◦ object representation.

The advantage of storing a set of 3D Gaussians in an im-
age is that it reduces the reconstruction problem to learning
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an image-to-image neural network. In this manner, the re-
constructor can be implemented utilizing only efficient 2D
operators (e.g., 2D convolution instead of 3D convolution).
We use in particular a U-Net [42] as those have demon-
strated excellent performance in image generation [41]. In
our case, their ability to capture small image details [55]
helps to obtain higher-quality reconstructions.

Since the 3D representation in Splatter Image is a mix-
ture of 3D Gaussians, it enjoys the rendering and space effi-
ciency of Gaussian Splatting, which benefits inference and
training. In particular, rendering stops being a training bot-
tleneck [34] and we can afford to generate complete views
of the object to optimize perceptual metrics like LPIPS [56].
More importantly, the efficiency is such that our model can
be trained on a single GPU on standard benchmarks of
3D objects or two GPUs on large datasets such as Obja-
verse [10], whereas alternative methods typically require
distributed training on dozens [26] or even hundreds [17]
of GPUs. We also extend Splatter Image to take several
views as input. This is achieved by taking the union of the
Gaussian mixtures predicted from individual views, after
registering them to a common coordinate frame. The dif-
ferent views communicate during prediction via lightweight
cross-view attention layers in the architecture.

Empirically, we show that, while the network only sees
one side of the object, it can still produce a 360◦ recon-
struction of it by using the prior acquired during training.
The 360◦ information is encoded in the 2D image by allo-
cating different Gaussians in a given 2D neighbourhood to
different parts of the 3D object.

We validate Splatter Image by comparing it to alterna-
tive, slower reconstructors on standard benchmark datasets
like ShapeNet [5] and CO3D [38]. To assess scalability
and generalization, we also apply Splatter Image to multi-
category reconstruction and train it on Objaverse [10], and
evaluate it on Google Scanned Objects [12]. We obtain re-
sults of quality comparable to the recent Large Reconstruc-
tion Model of [15, 17], which is 50× more expensive to
train. In fact, in several cases we even outperform slower
methods in PSNR and LPIPS. We argue that this is because
the very efficient design allows training the model very ef-
fectively, including using image-level losses like LPIPS.

To summarise, our contributions are: (1) to port Gaus-
sian Splatting to learning-based monocular reconstruction;
(2) to do so with the Splatter Image, a straightforward, effi-
cient and performant 3D reconstruction approach that oper-
ates at 38 FPS on a standard GPU and affords single-GPU
training; (3) to also extend the method to multi-view re-
construction; (4) and to obtain state-of-the-art reconstruc-
tion performance in multiple standard benchmarks, includ-
ing synthetic, real, multi-category and large-scale datasets,
in terms of reconstruction quality and speed.

2. Related work

Representations for single-view 3D reconstruction. In
recent years, implicit representations like NeRF [34] have
dominated learning-based few-view reconstruction, param-
eterising the MLP in NeRF using global [19, 39], local [55]
or both global and local codes [26]. However, implicit rep-
resentations, particularly MLP-based ones, are notoriously
slow to render, up to 2s for a single 128× 128 image.

Follow-up works [14, 48] used faster, explicit, voxel
grid representations that encode opacities and colours di-
rectly. Similar to DVGO [47], they achieve significant
speed-ups, but, due to their voxel-based representation, they
scale poorly with resolution. They also assume the knowl-
edge of the absolute viewpoint of each object image.

The triplane representation [3, 7] was proposed as a com-
promise between rendering speed and memory consump-
tion. While they are not as fast to render as explicit rep-
resentations, they allow view-space reconstruction [13] and
are fast enough to be effectively used for single-view recon-
struction [1, 13]. Triplane-based reconstructors were shown
to scale to large datasets like Objaverse [9, 10], albeit at the
cost of hundreds of GPUs for multiple days [17, 50].

In contrast to these works, our method predicts a mixture
of 3D Gaussians in a feed-forward manner. As a result, our
method is cheap to train (1-2 GPUs), fast at inference and
achieves real-time rendering speeds while achieving state-
of-the-art image quality across multiple metrics on multiple
standard single-view reconstruction benchmarks, including
single- [45] and multi-category ShapeNet [5, 21].

When more than one view is available at the input, one
can use them to estimate the scene geometry [6, 31], learn a
view interpolation function [51] or optimize a 3D represen-
tation of a scene using priors [18]. Our method is primar-
ily a single-view reconstruction network, but we do show
how Splatter Image can be extended to fuse multiple views.
However, we focus our work on object-centric reconstruc-
tion rather than on generalising to unseen scenes.

3D Reconstruction with Point Clouds. PointOutNet [11]
took image encoding as input and trained point cloud pre-
diction networks [37] using 3D point cloud supervision.
PVD [58] and PC2 [32] extended this approach using Diffu-
sion Models [16] by conditioning the denoising process on
partial point clouds and RGB images, respectively. These
approaches require ground truth 3D point clouds, limit-
ing their applicability. Other works [27, 40, 53] use point
clouds as intermediate 3D representations for conditioning
2D inpainting or generation networks. However, these point
clouds are assumed to correspond to only visible object
points. In contrast, our Gaussians can model any part of
the object, and thus afford 360◦ reconstruction.

Point cloud-based representations have also been used
for high-quality reconstruction from multi-view images.



Novel views can be rendered with 2D inpainting networks
for hole-filling [43], or by using non-isotropic 3D Gaus-
sians with variable scale [22]. While showing high-quality
results, Gaussian Splatting [22] requires many images per
scene and has not yet been used in a learning-based recon-
struction framework as we do here.

Our method also uses 3D Gaussians as an underlying
representation but predicts them from as few as a single
image. Moreover, it outputs a full 360◦ 3D reconstruction
without using 2D or 3D inpainting networks.

Probabilistic 3D Reconstruction. Single-view 3D recon-
struction is an ambiguous problem, so recently it has been
tackled as a conditional generation task. Diffusion Mod-
els have been employed for conditional novel view synthe-
sis [4, 29, 52]. Due to generating images without underly-
ing geometries, the output images exhibit noticeable flicker.
This can be mitigated by simultaneously generating multi-
view images [30, 44], reconstructing a geometry at every
step of the denoising process [48, 49, 54] or training a ro-
bust reconstructor [25, 28]. Other works build and use a
3D [8, 35] or 2D [13, 33] prior which can be used in an
image-conditioned auto-decoding framework.

Here, we focus on deterministic reconstruction. How-
ever, few-view reconstruction is required to output 3D ge-
ometries from feed-forward methods [30, 44, 48, 49, 54].
Our method is capable of few-view 3D reconstruction, thus
it is complementary to these generative methods and could
lead to improvements in generation speed and quality.

3. Method

We discuss Gaussian Splatting in Sec. 3.1 for background,
and then describe the Splatter Image in Secs. 3.2 to 3.6.

3.1. Overview of Gaussian Splatting

A radiance field [34] is a pair of functions, assigning an
opacity σ(x) ∈ R+ and a colour c(x,ν) ∈ R3 to each
3D point x ∈ R3 and viewing direction ν ∈ S2. Gaus-
sian Splatting [60] represents the two functions σ and c as a
mixture θ of G colored 3D Gaussians

gi(x) = exp

(
−1

2
(x− µi)

⊤Σ−1
i (x− µi)

)
,

where 1 ≤ i ≤ G, µi ∈ R3 is the Gaussian mean or center
and Σi ∈ R3×3 is its covariance, specifying its shape and
size. Each Gaussian has also an opacity σi ∈ [0, 1] and a
view-dependent colour ci(v) ∈ R3. Together, they define a
radiance field as follows:

σ(x) =

G∑
i=1

σigi(x), c(x,ν) =

∑G
i=1 ci(ν)σigi(x)∑G

j=1 σigi(x)
.

(1)

The mixture of Gaussians is thus given by the set

θ = {(σi,µi,Σi, ci), i = 1, . . . , G}.

A raidance field is rendered into an image I(u) by inte-
grating the colors observed along the ray xτ = x0 − τν,
τ ∈ R+ that passes through each image pixel u via the
equation:

I(u) =

∫ ∞

0

c(xτ ,ν)σ(xτ )e
−

∫ τ
0

σ(xµ) dµ dτ. (2)

Gaussian Splatting [22, 60] provides a very fast differen-
tiable renderer I = R(θ, π) that approximates Eq. (2), map-
ping the mixture θ and the viewpoint π to an image I .

3.2. The Splatter Image

To perform monocular reconstruction we seek for a func-
tion θ = S(I) which is the ‘inverse’ of the renderer R,
mapping an image I to a mixture of 3D Gaussians θ. Our
key innovation is to propose an extremely simple and yet
effective design for such a function. Specifically, we pre-
dict a Gaussian for each pixel of the input image I using a
standard image-to-image neural network architecture. We
call its output image M the Splatter Image.

In more detail, Let u = (u1, u2, 1) denote one of the
H × W image pixels. This corresponds to ray x = ud in
camera space, where d is the depth of the ray point. Our
network f takes as input the H ×W × 3 RGB image I , and
outputs directly a H×W×K tensor M , where each pixel is
associated to the K-dimensional feature vector packing the
parameters Mu = (σ,µ,Σ, c) of a corresponding Gaussian.

We assume that Gaussians are expressed in the same ref-
erence frame of the camera. As illustrated in Fig. 2, the
network predicts the depth d and offset (∆x,∆y,∆y), set-
ting

µ =

u1d+∆x

u2d+∆y

d+∆z

 . (3)

The network also predicts the opacity σ, the shape Σ and
the colour c. For now, we assume that the colour is Lam-
bertian, i.e., c(ν) = c ∈ R3, and relax this assumption in
Sec. 3.5. Section 3.6 provides more detail on the network
architecture.

Discussion. One may wonder how this design can predict a
full 360◦ reconstruction of the object when the reconstruc-
tion is aligned a single input view. We find that the network
adjusts the 3D offsets ∆ and depths d to allocate some of
the 3D Gaussians to reconstruct the input view, and some
to reconstruct unseen portions of the object, automatically.
The network can also decide to switch off any Gaussian by
simply predicting σ = 0, if needed. These points are then
not rendered and can be culled in post-processing.
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Figure 2. Predicting locations. The location of each Gaussian
is parameterised by depth d and a 3D offset ∆ = (∆x,∆y,∆z).
The 3D Gaussians are projected to depth d (blue) along camera
rays (green) and moved by the 3D offset ∆ (red).

Our design can also be seen as an extension of depth pre-
diction networks which only predicting the depth of each
pixel. Here, we also predict unobserved parts of the geom-
etry, as well as the shape and appearance of each Gaussian.

3.3. Learning formulation

Learning to predict the Splatter Image is simple and effi-
cient. It can be done on a single GPU using at most 20GB
of memory at training time in most of our single-view re-
construction experiments (except for Objaverse, where we
use 2 GPUs and using 26GB of memory on each). For
training, we assume a multi-view dataset, either real or syn-
thetic. The dataset D consists of triplets (I, J, π), where I
is a source image, J a target image, and π the viewpoint
change between the source and the target cameras. Then
we simply feed the source I as input to Splatter Image, and
minimize the average reconstruction loss of target view J :

L(S) = 1

|D|
∑

(I,J,π)∈D

∥J −R(S(I), π)∥2. (4)

Image-level losses. A main advantage of the speed and ef-
ficiency of our method is that it allows for rendering entire
images at each training iteration, even for relatively large
batches (this differs from NeRF [34], which only generates
a certain number of pixels in a batch). In particular, this
means that, in addition to decomposable losses like the L2
loss above, we can use image-level losses like LPIPS [56],
which do not decompose into per-pixel losses. In practice,
we experiment with a combination of such losses.

Regularisations. We also add generic regularisers to pre-
vent parameters from taking on unreasonable values (e.g.,
Gaussians which are larger than the reconstructed objects,
or vanishingly small). Please see the sup. mat. for details.

3.4. Extension to multiple input viewpoints

If two or more input views Ij , j ∈ {1, . . . , N} are pro-
vided, we can apply network S multiple times to obtain

multiple Splatter Images Mj , one per view. If (R, T ) is the
relative camera pose change from an additional view to the
reference view, we can take the mixture of 3D Gaussians
θ defined in the additional view’s coordinates and warp it
to the reference view. Specifically, a Gaussian of parame-
ters (σ,µ,Σ, c) maps to Gaussian of parameters (σ, µ̃, Σ̃, c̃)
where µ̃ = Rµ+ T , Σ̃ = RΣR⊤, c̃ = c. We use the sym-
bol ϕ[θ] to denote the Gaussian mixture obtained by warp-
ing each Gaussian in θ. Here we have also assumed a Lam-
bertian colour model and will discuss in Sec. 3.5 how more
complex models transform.

Given N different views Ij and corresponding warps ϕ,
we can obtain a composite mixture of 3D Gaussians simply
by taking their union Θ =

⋃N
j=1 ϕj [S(Ij)]. Note that this

set of 3D Gaussians is defined in the coordinate system of
the reference camera.

3.5. View-dependent colour

Generalising beyond the Lambertian colour model, we
use spherical harmonics [22] to represent view-dependent
colours. For a particular Gaussian (σ,µ,Σ, c), we then de-
fine [c(ν;α)]i =

∑L
l=0

∑L
m=−L αilmY m

l (ν) where αilm

are coefficients predicted by the network and Y m
l are spher-

ical harmonics, L is the order of the expansion, and ν ∈ S2
is the viewing direction.

The viewpoint change of Sec. 3.4 transforms a viewing
direction ν in the source camera to the corresponding view-
ing direction in the reference frame as ν̃ = Rν. We can
then find the transformed colour function by finding the co-
efficients α̃ such that c(ν;α) = c(ν̃; α̃). This is possible
because (each order of) spherical harmonics are closed un-
der rotation. However, the general case requires the compu-
tation of Wigner matrices. For simplicity, we only consider
orders L = 0 (Lambertian) and L = 1. Hence, the first
level has one constant component Y 0

0 and the second level
has three components which we can write collectively as
Y1 = [Y −1

1 , Y 0
1 , Y

1
1 ] such that

Y1(ν) =

√
3

4π
Πν, Π =

0 1 0
0 0 1
1 0 0

 .

We can then conveniently rewrite [c(ν;α)]i = αi0 +
α⊤

i1Y1(ν). From this and c(ν;α0,α1) = c(ν̃; α̃0, α̃1) we
conclude that α̃i0 = α̃i0, and α̃i1 = Π−1RΠαi1.

3.6. Neural network architecture

The bulk of the predictor S mapping the input image I
to the mixture of Gaussians θ is architecturally identical
to the SongUNet of [46]. The last layer is replaced with
a 1 × 1 convolutional layer with 12 + kc output chan-
nels, where kc ∈ {3, 12} depending on the colour model.
Given I ∈ R3×H×W as input, the network thus produces



a (12 + kc) × H × W tensor as output, coding, for each
pixel u channels, the parameters (σ̂,∆, d̂, ŝ, q̂,α) which
are then transformed to opacity, offset, depth, scale, rota-
tion and colour, respectively. These are activated by non-
linear functions to obtain the Gaussian parameters. Specif-
ically, the opacity is obtained using the sigmoid opera-
tor as σ = sigmoid(σ̂). The depth is obtained as d =

(zfar − znear) sigmoid(d̂) + znear. The mean µ is then ob-
tained using Eq. (3). Following [22], the covariance is ob-
tained as Σ = R(q) diag(exp ŝ)2R(q)⊤ where R(q) is the
rotation matrix with quaternion q = q̂/∥q̂∥ and q̂ ∈ R4.

For multi-view reconstruction, we apply the same net-
work to each input view and then use the approach
of Sec. 3.4 to fuse the individual reconstructions. In order to
allow the network to coordinate and exchange information
between views, we apply two modifications to it.

First, we condition the network with the corresponding
camera pose (R, T ) (we only assume access to the relative
camera pose to a common but otherwise arbitrary reference
frame). In fact, since we consider cameras in a turn-table-
like configuration, we only pass vectors (Re3, T ) where
e3 = (0, 0, 1). We do so by encoding each entry via a si-
nusoidal positional embedding of order 9, resulting in 60
dimensions in total. Finally, these are applied to the U-Net
blocks via FiLM [36] embeddings.

Second, we add cross-attention layers to allow commu-
nication between the features of different views. We do so
in a manner similar to [44], but only at the lowest UNet res-
olution, which maintains the computational cost very low.

4. Experiments

We evaluate our method extensively for single-view recon-
struction on six standard benchmarks. Next, we assess
the quality of multi-view reconstruction, and finish with an
evaluation of the speed of the method.

Datasets. The standard benchmark for evaluating single-
view 3D reconstruction is ShapeNet-SRN [45]. We train our
method in the single-class setting and report results on the
“Car” and “Chair” classes, following prior work. Moreover,
we challenge our method with two classes of real objects
from the CO3D [38] dataset: Hydrants and Teddybears. In
this challenging dataset ripe with ambiguities we set zfar and
znear to depend on ground truth distance zgt between the ob-
ject and camera.

We further test our method on two multi-category
datasets. First, we use the standard benchmark of multi-
category ShapeNet (with objects from 13 largest cate-
gories), and use the renderings, standard splits and target
views from NMR [21]. Secondly, we train one model on
renderings of objects from Objaverse-LVIS [10] which con-
tains over 1k object categories, using the renderings from
Zero-1-to-3 [29]. We evaluate this model on all objects

Method RC 1-view Cars 1-view Chairs
PSNR ↑SSIM ↑LPIPS ↓PSNR ↑SSIM ↑LPIPS ↓

SRN ✗ 22.25 0.88 0.129 22.89 0.89 0.104
CodeNeRF ✗ 23.80 0.91 0.128 23.66 0.90 0.166
FE-NVS ✗ 22.83 0.91 0.099 23.21 0.92 0.077
ViewsetDiff w/o D ✗ 23.21 0.90 0.116 24.16 0.91 0.088

PixelNeRF ✓ 23.17 0.89 0.146 23.72 0.90 0.128
VisionNeRF ✓ 22.88 0.90 0.084 24.48 0.92 0.077
NeRFDiff w/o NGD✓ 23.95 0.92 0.092 24.80 0.93 0.070

Ours ✓ 24.00 0.92 0.078 24.43 0.93 0.067

Table 1. ShapeNet-SRN: Single-View Reconstruction. Our
method achieves State-of-the-Art reconstruction quality on all
metrics on the Car dataset and on two metrics in the Chair dataset,
while performing reconstruction in the camera view-space. ‘RC’
indicates if a method can operate using only relative camera poses.

from the Google Scanned Objects dataset [12], using the
same renderings as used for evaluation in Free3D [57]. We
train and evaluate all models at 128× 128 resolution, apart
from multi-category ShapeNet which is at 64× 64. Finally,
we use the ShapeNet-SRN Cars dataset for the evaluation
of the two-view reconstruction quality. For more details on
datasets see supp. mat.

Baselines. For ShapeNet (both single-class and multi-
class), we compare against implicit [19, 26, 45, 55], hydrid
implicit-explicit [13] and explicit methods [2, 14, 48]. We
use the deterministic variants of [13, 48] by using their re-
construction network in a single forward pass. For CO3D
we compare against PixelNeRF which we train for 400,000
iterations with their officially released code on the same
data as used for our method. Finally, on Objaverse-LVIS
we compare to OpenLRM [15] (open-source version of
LRM [17]): a large triplane-based reconstructor, trained on
the full Objaverse dataset. Since we are proposing a de-
terministic reconstruction method, we do not compare to
methods that employ Score Distillation [29, 59] or feed-
forward diffusion models [4, 28, 52, 54].

Implementation details can be found in the supp. mat.

4.1. Evaluation of reconstruction quality

In line with related works [26, 55], we assess the quality of
the reconstructions by measuring novel view synthesis qual-
ity and report Peak Signal-to-Noise Ratio (PSNR), Struc-
tural Similarity (SSIM) and a perceptual loss (LPIPS). We
perform reconstruction from a given source view and ren-
der the 3D shape to unseen target views following standard
protocols as detailed in the supp. mat.

4.1.1 Single-view 3D reconstruction

ShapeNet. In Tab. 1 and Fig. 3 we compare the single-view
reconstruction quality on the ShapeNet-SRN benchmark.



Input PixelNeRF Ours GTVisionNeRF

Figure 3. ShapeNet-SRN Comparison. Our method outputs
more accurate reconstructions (cars’ backs, top chair) and better
represents thin regions (bottom chair).

PixelNeRF [55] FE-NVS [14] FWD [2] VisionNeRF [26] Ours

PSNR ↑ 26.80 27.08 26.66 28.76 29.38
SSIM ↑ 0.91 0.92 0.91 0.93 0.95
LPIPS ↓ 0.108 0.082 0.055 0.065 0.047

Table 2. Our method achieves State-of-the-Art quality of single-
view reconstruction on multi-class ShapeNet dataset.

Object Method PSNR ↑ SSIM ↑ LPIPS ↓
Hydrant PixelNeRF 21.76 0.78 0.203
Hydrant Ours 21.80 0.80 0.150

Teddybear PixelNeRF 19.38 0.65 0.290
Teddybear Ours 19.44 0.73 0.231

Table 3. CO3D: Single-View. Our method outperforms Pixel-
NeRF on this challenging benchmark across all metrics.

Our method outperforms all deterministic reconstructors in
SSIM and LPIPS, obtaining sharper new views. Further-
more, our method requires only relative camera poses in-
stead of absolute/canonical ones. Qualitatively, our method
does well in challenging situations with limited visibility
and thin structures. In Tab. 2, we use instead the multi-
category ShapeNet protocol we observe that our method
outperforms more expensive baselines [26] across all met-
rics in the multi-category ShapeNet setting.

CO3D. On CO3D bears and hydrants, our model outper-
forms PixelNeRF on all metrics (Tab. 3), and qualitatively
produces sharper images (Fig. 4) while being 1,000× faster.

Objaverse-LVIS and Google Scanned Objects. We com-
pare our method to OpenLRM [15], an open-source ver-
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Figure 4. CO3D Hydrants and Teddybears. Our method outputs
sharper reconstructions than PixelNeRF while being 100x faster in
inference.

Method PSNR ↑ SSIM ↑ LPIPS ↓
OpenLRM 18.06 0.84 0.129

Ours 21.06 0.88 0.111

Table 4. Google Scanned Objects: Single-View. Our method
outperforms the much more expensive LRM [15, 17] on single-
view open-world reconstruction.
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Figure 5. Google Scanned Objects. On large datasets our model
has similar quality to much more expensive baselines (shoe). Our
reconstructions have more accurate lighting (Jenga), object pose
(horse) and shape (toy).

sion of the LRM model [17], on the Google Scanned Ob-
jects [12] evaluation renderings from Free3D [57]. Quan-
titatively, in Tab. 4 Splatter Image outperforms OpenLRM
and, qualitatively (Fig. 5), it is comparable. Our models
perform well even on images collected from the Internet
Fig. 6, after removing backgrounds and resizing. Remark-
ably, our method, trained for 7 GPU days, is able to compete
with OpenLRM, which uses hundreds of GPUs for several
days [15, 17].



Source Renders RendersSource

Figure 6. Our models trained on single classes (top) and on Obja-
verse (bottom) can be used on in-the-wild Internet images (right).

Method Relative 2-view Cars
Pose PSNR ↑ SSIM ↑

SRN ✗ 24.84 0.92
CodeNeRF ✗ 25.71 0.91

FE-NVS ✗ 24.64 0.93

PixelNeRF ✓ 25.66 0.94
Ours ✓ 26.01 0.94

Table 5. Two-view reconstruction on ShapeNet-SRN Cars.

4.1.2 Two-view 3D reconstruction

We compare our multi-view reconstruction model on
ShapeNet-SRN Cars by training it for two-view predictions
(see Tab. 5). Prior work often relies on absolute camera pose
conditioning, meaning that the model learns to rely on the
canonical orientation of the object in the dataset. This lim-
its the applicability of these models, as in practice for a new
image of an object, the absolute camera pose is of course
unknown. Here, only ours and PixelNeRF can deal with
relative camera poses as input. Interestingly, our method
shows not only better performance than PixelNeRF in both
real and synthetic data but also improves over SRN, CodeN-
eRF, and FE-NVS that rely on absolute camera poses.

4.1.3 Ablations

We evaluate the influence of individual components of our
method, using a shorter training schedule than models in
Tab. 1 for efficiency. Ablations of the multi-view model are
given in the supp. mat.

We show the results of our ablation study for the single-
view model in Tab. 6. We train a model (w/o image) that
uses a fully connected, unstructured output instead of a
Splatter Image. This model cannot transfer image informa-
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Figure 7. Analysis. Splatter Images represent full 360◦ of objects
by allocating background pixels to appropriate 3D locations (third
row) to predict occluded elements like wheels (left) or chair legs
(middle). Alternatively, it predicts offsets in the foreground pixels
to represent occluded chair parts (right).

tion directly to their corresponding Gaussians and does not
achieve good performance. We also ablate predicting the
depth along the ray by simply predicting 3D coordinates for
each Gaussian. This version also suffers from its inability
to easily align the input image with the output. Remov-
ing the 3D offset prediction mainly harms the backside of
the object while leaving the front faces the same. This re-
sults in a lower impact on the overall performance of this
component. Changing the degrees of freedom of appear-
ance predictions (by fixing Gaussians to be isotropic or re-
moving view-dependence) also reduced the image fidelity.
Finally, removing perceptual loss (w/o LLPIPS) results in a
significant worsening of LPIPS, indicating this loss is im-
portant for perceptual sharpness of reconstructions. Being
able to use LPIPS in optimisation is a direct consequence of
employing a fast-to-render representation and being able to
render full images at training time.

Analysis. In Fig. 7, we analyse how 3D information is
stored inside a Splatter Image. Since all information is ar-
ranged in an image format, we can visualise each of the
modalities: opacity, depth, and location. Pixels of the input
image that belong to the object tend to describe their cor-
responding 3D structure, while pixels outside of the object
wrap around to close the object on the back.

4.2. Evaluation of reconstruction efficiency

A key advantage of the Splatter Image is its training and test
time efficiency, which we assess below.



PSNR ↑ SSIM ↑ LPIPS ↓
Full model 22.25 0.90 0.115

w/o image 20.60 0.87 0.152
w/o depth 21.21 0.88 0.145
w/o view dir. 21.77 0.89 0.121
isotropic 22.01 0.89 0.118
w/o offset 22.06 0.90 0.119
w/o LLPIPS 22.22 0.89 0.141

Table 6. Ablations: Single-View Reconstruction.

RP E ↓ R ↓ Forward ↓ Test ↓
NeRFDiff ✓ (0.031) (0.0180) (0.103) (4.531)
FE-NVS ✗ (0.015) (0.0032) (0.028) (0.815)

VisionNeRF ✓ 0.008 2.4312 9.733 607.8
PixelNeRF ✓ 0.003 1.8572 7.432 463.3
ViewsetDiff ✗ 0.025 0.0064 0.051 1.625

Ours 2-view ✓ 0.030 0.0017 0.037 0.455
Ours 1-view ✓ 0.026 0.0017 0.033 0.451

Table 7. Speed. Time required for image encoding (E), render-
ing (R), the ‘Forward’ time, indicative of train-time efficiency and
the ‘Test’ time, indicative of test-time efficiency. Our method is
the most efficient in both train and test time across open-source
available methods and only requires relative camera poses. ‘RP’
indicates if a method can operate using only relative camera poses.

Test-time efficiency. First, we assess the ‘Test’ time speed,
i.e., the time it takes for the trained model to reconstruct an
object and generate a certain number of images. We refer-
ence the evaluation protocol of the standard ShapeNet-SRN
benchmark [45] and render 250 images at 1282 resolution.

Assessing wall-clock time fairly is challenging as it de-
pends on many factors. All measurements reported here are
done on a single NVIDIA V100 GPU. We use officially re-
leased code of Viewset Diffusion [48], PixelNeRF [55] and
VisionNeRF [26] and rerun those on our hardware. NeRFD-
iff [13] and FE-NVS [14] do not have code available, so we
use their self-reported metrics. According to the authors,
FE-NVS was evaluated on the same type of GPU, while
NeRFDiff does not include information about the hardware
used and we were unable to obtain more information. Since
we could not perfectly control these experiments, the com-
parisons to NeRFDiff and FE-NVS are only indicative. For
Viewset Diffusion and NeRFDiff we report the time for a
single pass through the reconstruction network.

Tab. 7 reports the ‘Encoding’ (E) time, spent by the net-
work to compute the object’s 3D representation from an im-
age, and the ‘Rendering’ (R) time, spent by the network to
render new images from the 3D representation. From those,
we calculate the ‘Test’ time, equal to the ‘Encoding’ time
plus 250 ‘Rendering’ time. As shown in the last column

of Tab. 7, our method is more than 1000× faster in testing
than PixelNeRF and VisionNeRF (while achieving equal or
superior quality of reconstruction in Tab. 1). Our method is
also faster than voxel-based Viewset Diffusion even though
it does not require knowing the absolute camera pose. The
efficiency of our method is very useful to iterate quickly
in research; for instance, evaluating our method on the full
ShapeNet-Car validation set takes less than 10 minutes on
a single GPU. In contrast, PixelNeRF takes 45 GPU-hours.

Train-time efficiency. Next, we assess the efficiency of the
method during training. Here, the encoding time becomes
more significant because one typically renders only a few
images to compute the reconstruction loss and obtain a gra-
dient (e.g., because there are only so many views available
in the training dataset, or because generating more views
provides diminishing returns in terms of supervision). As
typical values (and as used by us in this work), we assume
that the method is tasked with generating 4 new views at
each iteration instead of 250 as before. We call this the ‘For-
ward’ time and measure it the same way. As shown in the
‘Forward’ column of Tab. 7, our method is 246× faster at
training time than implicit methods and 1.5× than Viewset
Diffusion, which uses an explicit representation. With this,
we can train models achieving state-of-the-art quality on a
single A6000 GPU in 7 days, while VisionNeRF requires
16 A100 GPUs for 5 days. What is even more remarkable,
we can train models on large datasets such as Objaverse on
two A6000 GPUs in 3.5 days, while triplane-based meth-
ods such as LRM require 128 A100 GPUs for 3 days [17].

5. Conclusion

We have presented Splatter Image, a simple method for
single- or few-view 3D reconstruction. The method uses
an off-the-shelf 2D image-to-image network and predicts
a pseudo-image containing one colored 3D Gaussian per
pixel. By combining fast inference with fast rendering via
Gaussian Splatting, Splatter Image can be trained and eval-
uated quickly on synthetic and real benchmarks. Splatter
Image achieves state-of-the-art reconstruction performance
without requiring absolute/canonical camera poses at test
time, is simple to implement, and can be trained and tested
much faster than many alternatives.
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Splatter Image: Ultra-Fast Single-View 3D Reconstruction

Supplementary Material

PSNR ↑ SSIM ↑ LPIPS ↓
Full model 24.11 0.92 0.087

w/o cross-view attn 23.68 0.92 0.091
w/o cam embed 23.91 0.92 0.088
w/o warping 23.84 0.92 0.088

Table 8. Ablations: Multi-View Reconstruction.

A. Additional results
Additional qualitative results Our project website con-
tains a short summary of Splatter Image, videos of compar-
isons of our method to baselines and additional results from
our method on the 4 object classes and the 2 multi-class
datasets. Moreover, we present static comparisons of our
method to PixelNeRF [55] and VisionNeRF on ShapeNet-
SRN Cars and Chairs in Fig. 8, as well as static comparisons
of our method to PixelNeRF on CO3D Hydrants and Ted-
dybears in Fig. 9. In Fig. 10 we present additional static
comparisons of our method to OpenLRM on the Google
Scanned Objects dataset.

Multi-view model ablation. Table 8 ablates the multi-
view model. We individually remove the multi-view atten-
tion blocks, the camera embedding and the warping com-
ponent of the multi-view model and find that they all are
important to achieve the final performance.

B. Data details
B.1. ShapeNet-SRN Cars and Chairs

We follow standard protocol in the ShapeNet-SRN datasets.
We use the images, camera intrinsics, camera poses and data
splits as provided by the dataset [45] at 128 × 128 resolu-
tion and train our method using relative camera poses: the
reconstruction is done in the view space of the condition-
ing camera. For single-view reconstruction, we use view 64
as the conditioning view and in two-view reconstruction we
use views 64 and 128 as conditioning. All other available
views are used as target views in which we compute novel
view synthesis merics.

B.2. CO3D

We use the first frame as input and all other frames as tar-
get frames. We use all testing sequences in the Hydrant and
Teddybear classes where the first conditioning frame has a
valid foreground mask (with probability p > 0.8). In prac-
tice, this means evaluating on 49 ‘Hydrant’ and 93 ‘Teddy-

bear’ sequences.

Image center-cropping. Similarly to recent methods [4,
49] we take the largest crop in the original images centered
on the principal point and resize to 128 × 128 resolution
with Lanczos interpolation. Similarly to many single- and
few-view reconstruction methods [24, 55, 59] we also re-
move backgrounds. We adjust the focal length accordingly
with the resulting transformations. This is the only pre-
processing we do – CO3D objects already have their point
clouds normalised to zero-mean and unit variance.

Predicting Gaussian positions. Estimating the distance
between the object and the camera from visual information
alone is a challenging problem in this dataset: focal lengths
vary between and within sequences, objects are partially
cropped, and global scene parameters such as distance to
the object, camera trajectory and the angle at which objects
are viewed all vary, posing a challenge to both our and base-
line methods. Thus, for both PixelNeRF and our method we
set the center of prediction to the center of the object.

In our method we achieve this by setting znear = zgt − w
and zfar = zgt + w, where zgt is the ground truth distance
from the object to the source camera and w is a fixed scalar
w = 2.0. In PixelNeRF, we provide the network with x =
xv − zgt where x is the sample location at which we query
the network and xv is the sample location in camera view
space. zgt is computed as the perpendicular distance (along
camera z-axis) to the world origin, which coincides with the
center of the point cloud in CO3D.

B.3. Multi-class ShapeNet.

Identically to prior work, we use images, splits and camera
parameters from NMR [21] which provides 64 × 64 ren-
ders from cameras at fixed elevations. For direct compar-
ison with prior work [26, 55] we use the same source and
target views for evaluation.

B.4. Objaverse and GSO data details.

We use renders from Zero-1-to-3 [29], filtered by the ob-
jects which appear in the LVIS subset to use only high-
quality assets. The data is rendered at 512× 512 resolution
with focal length 560px with cameras pointing at the cen-
ter of the object at randomly sampled distances. We resize
data to 128×128 resolution with Lanczos interpolation, ad-
justing the focal length accordingly. At training and testing
time we rescale the ground truth camera positions so that
the distance from the object to the camera is a fixed scalar
d = 2. GSO renders provided by Free3D [57] were ren-
dered with the same parameters (resolution, distances, fo-
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Figure 8. ShapeNet-SRN. Our method (fourth column) outputs reconstructions which are better than PixelNeRF (second column) and
more or equally accurate than VisionNeRF (third column) while rendering 3 orders of magnitude faster (rendering speed in Frames Per
Second denoted underneath method name).
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Figure 9. CO3D. Our method (third column) outputs reconstructions which are sharper than PixelNeRF (second column) while rendering
3 orders of magnitude faster (rendering speed in Frames Per Second denoted underneath method name).
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Figure 10. Google Scanned Objects. Our method (third column) outputs reconstructions which are comparable in quality to OpenLRM
(second column) while requiring ×50 less resources to train.



cal length) and we apply the same resolution scaling, focal
length adjustment and camera scale adjustment at evalua-
tion time.

C. Implementation details.
C.1. Splatter Image training.

We train our model (based on SongUNet [46]) with L2 re-
construction loss (Eq.4 main paper) on 3 unseen views and
the conditioning view for 800,000 iterations. We use the
network implementation from [20]. For single-class mod-
els, we use the Adam optimizer [23] with learning rate
5× 10−5 and batch size 8. For multi-class ShapeNet model
we use the same learning rate and batch size 32. Batch sizes
are mainly dictated by GPU memory limits. For rasteriza-
tion, we use the Gaussian Splatting implementation of [22].
After 800,000 iterations we decrease the learning rate by a
factor of 10 and train for a further 100,000 (Cars, Hydrants,
Teddybears), 150,000 (multi-class ShapeNet) or 200,000
(Chairs) iterations with the loss L = (1− α)L2 + αLLPIPS
and α = 0.01. Training done is on a single NVIDIA A6000
GPU and takes around 7 days.

Large dataset training. Training on Objaverse is done
with Mixed Precision and effective batch size 32. We train
first for 350, 000 iterations with learning rate 5× 10−5 and
α = 0, followed by 40, 000 iterations with learning rate
6.3 × 10−5 and α = 0.338. Training takes place on two
NVIDIA A6000 GPUs for around 3.5 days.

Regularizers. For CO3D we additionally use regularisa-
tion losses to prevent exceedingly large or vanishingly small
Gaussians for numerical stability. We regularize large
Gaussians with the mean of their activated scale s = exp ŝ
when it is bigger than a threshold scale sbig = 20.

Lbig = (
∑

i si1(si > sbig))/(
∑

i 1(si > sbig)).
Small Gaussians are regularized with a mean of their

negative deactivated scale ŝ when it is smaller than a
threshold ŝsmall = −5: Lsmall = (

∑
i −ŝi1(ŝi <

ŝsmal l))/(
∑

i 1(ŝi < ŝsmall)).

Ablations. Due to computational costs, ablation models
are trained at a shorter schedule 100k iterations with L2 and
further 25k with L2 and LLPIPS with α = 0.1.

C.2. PixelNeRF.

For ShapeNet (single-class and multi-class) we use the
scores reported in the original paper [55], as we train and
evaluate on the same data. For training on CO3D, we use
the official PixelNeRF implementation [55]. We use the
same preprocessed data as for our method. We modify the
activation function of opacity from ReLU to Softplus with
the β parameter β = 3.0 for improved training stability.
Parametrization of the sampling points to be centered about
the ground truth distance to the camera zgt as discussed

Method GPU Memory # GPUs Days GPU × Days

VisionNeRF A100 80G 16 5 80
NeRFDiff A100 80G 16* 3 48
ViewDiff A40 48G 2 3 6

PixelNeRF TiRTX 24G 1 6 6

Ours - small scale A6000 48G 1 7 7

LRM / OpenLRM* A100 40G 128 3 384
Ours - Objaverse A6000 48G 2 3.5 7

Table 9. Training resources. Ours, Viewset Diffusion and Pix-
elNeRF have significantly lower compute costs than VisionNeRF
and NeRFDiff. Our method is ×50 cheaper to train than LRM.
Memory denotes the memory capacity of the GPU. * denotes esti-
mates.

in Appendix B.2 is available as default in the official im-
plementation. As in original work, we train for 400, 000
iterations.

C.3. OpenLRM.

OpenLRM was trained assuming distance to the object
d = 1.9 and field-of-view FOV = 40◦. To match this,
we rescale the ground truth cameras so that the source cam-
era was at distance d = 1.9 from the object. For exact
comparison we use the same data for the baselines as for
our method. For a fair comparison, we pass the 128 × 128
image as an input and render novel views at 128× 128 too.
Through experimentation we found that the best quantita-
tive results were achieved by assuming the same field-of-
view as at training time FOV = 40◦.

D. Training resource estimate
We compare the compute resources needed at training time
by noting the GPU used, its capacity, the number of GPUs
and the number of days needed for training in Tab. 9. We
report the compute resources reported in original works,
where available. NeRFDiff only reports the resources
needed to train their ‘Base’ models and the authors did not
respond to our clarification emails about their ‘Large’ mod-
els which we compare against in the main paper. We thus
report an estimate of such resources which we obtained by
multiplying the number of GPUs used in the ‘Base’ mod-
els by a factor of 2. Our method is significantly cheaper
than VisionNeRF and NeRFDiff. The resources required
are similar to those of Viewset Diffusion and PixelNeRF,
while we achieve better performance and do not require ab-
solute camera poses. The difference between our method
and prior works is even more striking on large datasets like
Objaverse, where our method is ×50 cheaper than LRM.

E. Covariance warping implementation
As described in Sec. 3.4 in the main paper, the 3D Gaus-
sians are warped from one view’s reference frame to another



with Σ̃ = RΣR⊤ where R is the relative rotation matrix of
the reference frame transformation. The covariance is pre-
dicted using a 3-dimensional scale and quaternion rotation
so that Σ = RqSR

⊤
q where S = diag (exp(ŝ))

2. Thus the
warping is applied by applying rotation matrix R to the ori-
entation of the Gaussian R̃q = RRq . In practice this is im-
plemented in the quaternion space with the composition of
the predicted quaternion q and the quaternion representation
of the relative rotation p = m2q(R) where m2q denotes the
matrix-to-quaternion transformation, resulting in q̃ = pq.
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