
Enhancing and Applying Daitch-Mokotoff Soundex
Algorithm on Ethnic Names

Abiodun F. Oketunji∗
University of Oxford

Oxford, United Kingdom
abiodun.oketunji@conted.ox.ac.uk

Abstract

The study examines how the Daitch-Mokotoff Soundex Algorithm can handle
names from different cultures, such as Nigerian, Hindu, and Urdu. It shows how the
algorithm helps compare and search names, even with language barriers. The paper
explains how modifying the algorithm works well with diverse name structures
and pronunciations. Thorough research and practical applications make this study
valuable, bridging the gap between the algorithm and these distinct cultures. It
reveals this powerful tool’s potential in improving name-matching precision. The
study evaluates the algorithm’s performance and accuracy in detail. It contributes
significantly to the discourse on multicultural data processing algorithms. The study
offers insights into the algorithm’s adaptability to various languages and phonetic
systems. Ultimately, it showcases the Daitch-Mokotoff Soundex Algorithm as a
powerful tool in the multicultural digital era.

Keywords: NYSIIS, Phonetic, Encoding, Algorithm, Daitch-Mokotoff, Rajkovic-
Jankovic, Levenstein, Jaro-Winkler

1 Introduction

The technological world is increasingly multicultural, and so the Daitch-Mokotoff Soundex Algorithm
finds its significance in this era. This study examines the algorithm’s capacity to manage names
originating from diverse cultures—namely, Nigerian, Indian, and Pakistani. It uncovers how the
algorithm facilitates the comparison and search of names, regardless of language barriers.

This paper goes beyond theoretical exploration to demonstrate the practical application of the Daitch-
Mokotoff Soundex Algorithm. By modifying the algorithm to accommodate varied name structures
and pronunciations, this research provides a valuable tool for bridging the gap between the algorithm
and culturally distinct names.

A key finding of this study is the Daitch-Mokotoff Soundex Algorithm’s potential to significantly
improve the precision of name matching. This research rigorously evaluates its performance and
accuracy, providing detailed evidence of its effectiveness. As such, this study makes a substantial
contribution to the field of algorithms for processing multicultural data. The algorithm’s flexibility
is another focal point of the study. It spotlights how the algorithm adapts to different languages
and phonetic systems, offering valuable insights. The adaptability of the Daitch-Mokotoff Soundex
Algorithm underlines its robustness and versatility.

The study concludes by positioning the Daitch-Mokotoff Soundex Algorithm as a remarkable tool
in the multicultural digital age. It affirms the algorithm’s role in a world where cultural diversity

∗Engineering Manager —Data/Software Engineer

© 2024 Abiodun Finbarrs Oketunji. Address all correspondence to the Author.

enriches digital data, emphasising its utility and potential. This study paves the way for further
exploration into multicultural data processing algorithms and their increasingly significant role in our
digital world.

2 The Daitch-Mokotoff Soundex Algorithm

Randy Daitch and Gary Mokotoff from the Jewish Genealogical Society in New York created the
Daitch-Mokotoff Soundex System. They developed it because the existing system, Robert Russell’s
1918 version used by the U.S. National Archives and Records Administration (NARA), did not
suit many Slavic and Yiddish surnames. Their Soundex system also includes ethnicity-independent
enhancements [1].

The Soundex algorithm, initially used by the U.S. Census Bureau to classify surnames phonetically,
had limitations in capturing phonetic variations and often resulted in false positives or negatives [2].
The Daitch-Mokotoff Soundex Algorithm addressed these issues by considering consonant positions
and assigning different codes to letter combinations to capture phonetic nuances better [3].

Implementing this algorithm in the New York State Identification and Intelligence System (NYSIIS)
has significantly improved the accuracy and speed of record searches, reducing false positives
and negatives and ensuring reliable linking of criminal records to individuals [4]. It has also
facilitated efficient data exchange between law enforcement agencies, courts, and correctional
facilities, supporting criminal investigations and sentencing decisions [4].

Beyond criminal justice, the algorithm has proven valuable in genealogical and historical research,
helping trace family histories and identify historical records across various documents and periods
[1]. Despite limitations in capturing all phonetic variations, particularly for non-European names,
the Daitch-Mokotoff Soundex Algorithm has revolutionised the management and accessibility of
records and information [1]. More recently, Petar Rajkovic and Dragan Jankovic proposed adapting
and applying the Daitch-Mokotoff Soundex Algorithm to Serbian names in their 2007 paper. This
research was presented at the XVII Conference on Applied Mathematics, which the Department of
Mathematics and Informatics in Novi Sad published [5].

As technology evolves, this innovative solution will likely continue to adapt and meet the changing
needs of organisations relying on phonetic coding systems for name-based searches.

3 Enhancing and Applying Daitch-Mokotoff SoundEx Algorithm

The enhanced Daitch-Mokotoff Soundex algorithm implementation in Go demonstrates support for
Yoruba, Igbo, Hausa, Hindi, and Urdu. Let’s examine the details of how each language is handled
within the implementation.

1. Yoruba Language Support: The implementation addresses the specific phonetic character-
istics of the Yoruba language. In the translateFirstCharacters function, the code checks
for the prefix TS in the name. If found, it replaces TS with S (name = "S" + name[2:]). This
transformation is a result of the phonetic rules of Yoruba, where the combination of T and S
is pronounced as S. In the translateChar function, the code checks for combining T and S
characters at any position in the name. If it encounters them, it replaces TS with S (char =
’S’). This ensures the phonetic representation of Yoruba names is accurately captured.

2. Igbo Language Support: In the translateFirstCharacters function, the code checks for the
prefixes GB, KP, and NW due to the Igbo language’s unique phonetic combination. If found,
it applies the following transformations: GB is replaced with J (name = "J" + name[2:]),
KP is replaced with P (name = "P" + name[2:]) and NW is replaced with W (name =
"W" + name[2:]). The Igbos pronounce certain combinations of consonants differently.
Furthermore, in the translateChar function, the code checks for the combinations GB, KP,
and NW at any position in the name. If encountered, it applies the same transformations
as mentioned above (char = ’J’, char = ’P’, char = ’W’). It ensures that Igbo names are
phonetically encoded accurately.

3. Hausa Language Support: The Hausa language has a specific phonetic rule I addressed
in the implementation. In the translateFirstCharacters function, the code checks for the

2

prefix SH. If found, it replaces SH with S (name = "S" + name[2:]). The transformation is a
result of the phonetic rules of Hausa, where the combination of S and H is pronounced as S.
Similarly, in the translateChar function, the code checks for the combination of S and H
characters at any position in the name. If encountered, it replaces SH with S (char = ’S’). It
ensures that Hausa names are phonetically encoded correctly.

4. Hindi Language Support: The Hindi language has several unique phonetic combinations
handled in the implementation. In the translateFirstCharacters function, the code checks
for the prefixes BH, DH, GH, JH, KH, PH, and TH. If found, it applies the following
transformations: BH is replaced with B (name = "B" + name[2:]), DH is replaced with
D (name = "D" + name[2:]), GH is replaced with G (name = "G" + name[2:]), JH is
replaced with J (name = "J" + name[2:]), KH is replaced with K (name = "K" + name[2:]),
PH is replaced with F (name = "F" + name[2:]) and TH is replaced with T (name =
"T" + name[2:]). Additionally, in the translateChar function, the code checks for the
same combinations (BH, DH, GH, JH, KH, PH, and TH) at any position in the name. If
encountered, it applies the corresponding transformations (char = ’B’, char = ’D’, char =
’G’, char = ’J’, char = ’K’, char = ’F’, char = ’T’). Doing so ensures that Hindi names are
phonetically encoded accurately.

5. Urdu Language Support: In the translateFirstCharacters function, the code checks for
the prefixes CH, GH, KH, SH, and ZH. If found, it applies the following transformations:
CH is replaced with C (name = "C" + name[2:]), GH is replaced with G (name = "G" +
name[2:]), KH is replaced with K (name = "K" + name[2:]), SH is replaced with S (name =
"S" + name[2:]) and ZH is replaced with J (name = "J" + name[2:]). Furthermore, in the
translateChar function, the code checks for the same combinations (CH, GH, KH, SH, ZH)
at any position in the name. If encountered, it applies the corresponding transformations
(char =’ C’, char =’ G’, char =’ K’, char =’ S’, char =’ J’), which ensures that Urdu names
are phonetically encoded accurately.

The implementation includes additional features to handle vowel harmony, ignore tonal differences,
remove trailing S and A characters, and truncate the generated key to a maximum length of six
characters. These features contribute to the overall effectiveness of the phonetic encoding process.

The Encode function is the entry point for encoding a name using the enhanced Daitch-Mokotoff
Soundex algorithm. It preprocesses the name by converting it to uppercase and removing non-
alphanumeric characters. It then applies the language-specific transformations and generates the
phonetic key based on the modified name.

The enhanced Daitch-Mokotoff Soundex algorithm supports Yoruba, Igbo, Hausa, Hindi, and Urdu
languages, demonstrating the algorithm’s adaptability and extensibility to handle diverse linguistic
characteristics. By incorporating language-specific phonetic rules and transformations, the algorithm
can effectively encode names from these languages, improving the accuracy of name-matching and
searching applications.

The implementation is not a final product, but a solid starting point. It may require further refinements
and optimisations, which we can tailor to each language’s specific requirements and characteristics.
This flexibility empowers you to enhance the accuracy and effectiveness of the phonetic encoding for
names in these languages through thorough testing and validation.

The practical utility is a testament to its ability to adapt and excel in diverse linguistic scenarios. By
incorporating language-specific phonetic rules and transformations, it can accommodate multiple
languages, including Yoruba, Igbo, Hausa, Hindi, and Urdu. This enhancement not only expands the
algorithm’s applicability but also inspires confidence in its performance, significantly improving its
effectiveness in name-matching and searching scenarios involving diverse linguistic backgrounds.

4 Enhanced NYSIIS Algorithm in Golang

The enhanced NYSIIS algorithm, implemented in Golang, utilises strong typing, concurrency support,
and an extensive standard library. Rigorous testing using name datasets from Yoruba, Igbo, Hausa,
Hindi, and Urdu languages evaluated its accuracy in generating phonetic codes and performance in
processing speed and resource utilisation. Comparisons with the original NYSIIS algorithm and other
phonetic encoding techniques demonstrated the enhanced algorithm’s superiority in handling names

3

from these languages. By considering linguistic characteristics and implementing the algorithm in a
high-performance programming language, this research contributes to developing robust and efficient
multi-lingual name-matching techniques. The outcomes facilitate cross-lingual name retrieval,
enhance data linkage across different language datasets, and support multi-lingual information
retrieval.

1 package nysiis
2

3 import (
4 "regexp"
5 "strings"
6)
7

8 type Nysiis struct {
9 vowels map[rune]bool

10 }
11

12 func NewNysiis () *Nysiis {
13 return &Nysiis{
14 vowels: map[rune]bool{
15 ’A’: true ,
16 ’E’: true ,
17 ’I’: true ,
18 ’O’: true ,
19 ’U’: true ,
20 },
21 }
22 }
23

24 func (n *Nysiis) preprocessName(name string) string {
25 name = strings.ToUpper(name)
26 name = regexp.MustCompile (‘[^A-Z]‘).ReplaceAllString(name , "")
27 return name
28 }
29

30 func (n *Nysiis) translateFirstCharacters(name string) string {
31 switch {
32 case strings.HasPrefix(name , "MAC"):
33 name = "MCC" + name [3:]
34 case strings.HasPrefix(name , "KN"):
35 name = "NN" + name [2:]
36 case strings.HasPrefix(name , "K"):
37 name = "C" + name [1:]
38 case strings.HasPrefix(name , "PH"):
39 name = "FF" + name [2:]
40 case strings.HasPrefix(name , "PF"):
41 name = "FF" + name [2:]
42 case strings.HasPrefix(name , "SCH"):
43 name = "SSS" + name [3:]
44 case strings.HasPrefix(name , "GB"):
45 name = "J" + name [2:] // Igbo: ’Gb’ -> ’J’
46 case strings.HasPrefix(name , "KP"):
47 name = "P" + name [2:] // Igbo: ’Kp’ -> ’P’
48 case strings.HasPrefix(name , "NW"):
49 name = "W" + name [2:] // Igbo: ’Nw’ -> ’W’
50 case strings.HasPrefix(name , "TS"):
51 name = "S" + name [2:] // Yoruba: ’Ts’ -> ’S’
52 case strings.HasPrefix(name , "SH"):
53 name = "S" + name [2:] // Hausa: ’Sh’ -> ’S’
54 case strings.HasPrefix(name , "BH"):
55 name = "B" + name [2:] // Hindi: ’Bh’ -> ’B’
56 case strings.HasPrefix(name , "DH"):
57 name = "D" + name [2:] // Hindi: ’Dh’ -> ’D’
58 case strings.HasPrefix(name , "GH"):
59 name = "G" + name [2:] // Hindi: ’Gh’ -> ’G’

4

60 case strings.HasPrefix(name , "JH"):
61 name = "J" + name [2:] // Hindi: ’Jh’ -> ’J’
62 case strings.HasPrefix(name , "KH"):
63 name = "K" + name [2:] // Hindi: ’Kh’ -> ’K’
64 case strings.HasPrefix(name , "PH"):
65 name = "F" + name [2:] // Hindi: ’Ph’ -> ’F’
66 case strings.HasPrefix(name , "TH"):
67 name = "T" + name [2:] // Hindi: ’Th’ -> ’T’
68 case strings.HasPrefix(name , "CH"):
69 name = "C" + name [2:] // Urdu: ’Ch’ -> ’C’
70 case strings.HasPrefix(name , "GH"):
71 name = "G" + name [2:] // Urdu: ’Gh’ -> ’G’
72 case strings.HasPrefix(name , "KH"):
73 name = "K" + name [2:] // Urdu: ’Kh’ -> ’K’
74 case strings.HasPrefix(name , "SH"):
75 name = "S" + name [2:] // Urdu: ’Sh’ -> ’S’
76 case strings.HasPrefix(name , "ZH"):
77 name = "J" + name [2:] // Urdu: ’Zh’ -> ’J’
78 }
79 return name
80 }
81

82 func (n *Nysiis) translateLastCharacters(name string) string {
83 switch {
84 case strings.HasSuffix(name , "EE"), strings.HasSuffix(name , "IE"):
85 name = name[:len(name) -2] + "Y"
86 case strings.HasSuffix(name , "DT"), strings.HasSuffix(name , "RT"),

strings.HasSuffix(name , "RD"), strings.HasSuffix(name , "NT"),
strings.HasSuffix(name , "ND"):

87 name = name[:len(name) -2] + "D"
88 }
89 return name
90 }
91

92 func (n *Nysiis) generateKey(name string) string {
93 key := string(name [0])
94 var prevChar rune = rune(name [0])
95

96 for i := 1; i < len(name); i++ {
97 char := rune(name[i])
98 if n.vowels[char] {
99 char = ’A’

100 }
101

102 char = n.translateChar(char , name , i)
103 char = n.handleVowelHarmony(char , prevChar)
104 char = n.ignoreTonalDifferences(char)
105

106 if char != prevChar {
107 key += string(char)
108 }
109

110 prevChar = char
111 }
112

113 key = n.removeTrailingS(key)
114 key = n.translateAY(key)
115 key = n.removeTrailingA(key)
116 key = n.truncateKey(key)
117

118 return key
119 }
120

121 func (n *Nysiis) translateChar(char rune , name string , i int) rune {
122 if char == ’E’ && i+1 < len(name) && name[i+1] == ’V’ {

5

123 char = ’A’
124 } else if char == ’Q’ {
125 char = ’G’
126 } else if char == ’Z’ {
127 char = ’S’
128 } else if char == ’M’ {
129 char = ’N’
130 } else if char == ’K’ {
131 if i+1 < len(name) && name[i+1] == ’N’ {
132 char = rune(name[i])
133 } else {
134 char = ’C’
135 }
136 } else if char == ’S’ && i+2 < len(name) && name[i:i+3] == "SCH" {
137 char = ’S’
138 } else if char == ’P’ && i+1 < len(name) && name[i+1] == ’H’ {
139 char = ’F’
140 } else if char == ’H’ && (i == 0 || i+1 == len(name) || !n.vowels[

rune(name[i-1])] || !n.vowels[rune(name[i+1])]) {
141 char = rune(name[i-1])
142 } else if char == ’W’ && i > 0 && n.vowels[rune(name[i-1])] {
143 char = rune(name[i-1])
144 } else if char == ’G’ && i+1 < len(name) && name[i+1] == ’B’ {
145 char = ’J’ // Igbo: ’Gb’ -> ’J’
146 } else if char == ’K’ && i+1 < len(name) && name[i+1] == ’P’ {
147 char = ’P’ // Igbo: ’Kp’ -> ’P’
148 } else if char == ’N’ && i+1 < len(name) && name[i+1] == ’W’ {
149 char = ’W’ // Igbo: ’Nw’ -> ’W’
150 } else if char == ’T’ && i+1 < len(name) && name[i+1] == ’S’ {
151 char = ’S’ // Yoruba: ’Ts’ -> ’S’
152 } else if char == ’S’ && i+1 < len(name) && name[i+1] == ’H’ {
153 char = ’S’ // Hausa , Urdu: ’Sh’ -> ’S’
154 } else if char == ’B’ && i+1 < len(name) && name[i+1] == ’H’ {
155 char = ’B’ // Hindi: ’Bh’ -> ’B’
156 } else if char == ’D’ && i+1 < len(name) && name[i+1] == ’H’ {
157 char = ’D’ // Hindi: ’Dh’ -> ’D’
158 } else if char == ’G’ && i+1 < len(name) && name[i+1] == ’H’ {
159 char = ’G’ // Hindi , Urdu: ’Gh’ -> ’G’
160 } else if char == ’J’ && i+1 < len(name) && name[i+1] == ’H’ {
161 char = ’J’ // Hindi: ’Jh’ -> ’J’
162 } else if char == ’K’ && i+1 < len(name) && name[i+1] == ’H’ {
163 char = ’K’ // Hindi , Urdu: ’Kh’ -> ’K’
164 } else if char == ’P’ && i+1 < len(name) && name[i+1] == ’H’ {
165 char = ’F’ // Hindi: ’Ph’ -> ’F’
166 } else if char == ’T’ && i+1 < len(name) && name[i+1] == ’H’ {
167 char = ’T’ // Hindi: ’Th’ -> ’T’
168 } else if char == ’C’ && i+1 < len(name) && name[i+1] == ’H’ {
169 char = ’C’ // Urdu: ’Ch’ -> ’C’
170 } else if char == ’Z’ && i+1 < len(name) && name[i+1] == ’H’ {
171 char = ’J’ // Urdu: ’Zh’ -> ’J’
172 }
173

174 return char
175 }
176

177 func (n *Nysiis) handleVowelHarmony(char , prevChar rune) rune {
178 if n.vowels[char] && n.vowels[prevChar] {
179 if prevChar == ’A’ || prevChar == ’O’ || prevChar == ’U’ {
180 if char == ’E’ || char == ’I’ {
181 char = ’A’
182 }
183 } else if prevChar == ’E’ || prevChar == ’I’ {
184 if char == ’A’ || char == ’O’ || char == ’U’ {
185 char = ’E’
186 }

6

187 }
188 }
189 return char
190 }
191

192 func (n *Nysiis) ignoreTonalDifferences(char rune) rune {
193 if char >= ’A’ && char <= ’Z’ {
194 char = rune(strings.ToUpper(string(char))[0])
195 }
196 return char
197 }
198

199 func (n *Nysiis) removeTrailingS(key string) string {
200 if len(key) > 1 && strings.HasSuffix(key , "S") {
201 key = key[:len(key) -1]
202 }
203 return key
204 }
205

206 func (n *Nysiis) translateAY(key string) string {
207 if strings.HasSuffix(key , "AY") {
208 key = key[:len(key) -2] + "Y"
209 }
210 return key
211 }
212

213 func (n *Nysiis) removeTrailingA(key string) string {
214 if len(key) > 1 && strings.HasSuffix(key , "A") {
215 key = key[:len(key) -1]
216 }
217 return key
218 }
219

220 func (n *Nysiis) truncateKey(key string) string {
221 if len(key) > 6 {
222 key = key [:6]
223 }
224 return key
225 }
226

227 func (n *Nysiis) Encode(name string) string {
228 if name == "" {
229 return ""
230 }
231

232 name = n.preprocessName(name)
233

234 if len(name) < 2 {
235 return name
236 }
237

238 name = n.translateFirstCharacters(name)
239 name = n.translateLastCharacters(name)
240 key := n.generateKey(name)
241

242 return key
243 }

Listing 1: Enhanced NYSIIS Algorithm

7

5 Conclusion

An enhanced NYSIIS algorithm generates accurate phonetic codes for Yoruba, Igbo, Hausa, Hindi,
and Urdu names. Tailored to linguistic characteristics, it improves speed and resource utilisation.
Testing the algorithm validated accuracy and performance, surpassing original NYSIIS and other
techniques and contributing to multi-lingual name-matching and retrieval.

The Golang2, Python3, and JavaScript/TypeScript4 packages provide user-friendly interfaces and
documentation for seamless integration. Multi-language availability promotes adoption across
platforms, benefiting users and applications.

Future research will support more languages, optimise performance, and explore integration with
other techniques to advance multi-lingual information retrieval and data linkage for diverse datasets.

6 Acknowledgements

The author wishes to express his gratitude to Petar Rajkovic and Dragan Jankovic, the creators of
the Adaptation and Application of Daitch-Mokotoff Soundex Algorithm on Serbian Names, for their
scholarly contribution, as presented in their paper at the XVII Conference on Applied Mathematics in
2007 [Rajkovic and Jankovic, 2007].

References
[1] JewishGen. Soundex coding, n.d.

[2] Fred Patman and Larry Shaefer. Is soundex good enough for you? on the hidden risks of
soundex-based name searching. Language Analysis Systems, Inc, 2001–2023.

[3] Gary Mokotoff, Sallyann Amdur Sack, and Alexander Sharon. Where Once We Walked: A
Guide to the Jewish Communities Destroyed in the Holocaust. Avotaynu, Teaneck, NJ, hardcover
edition, 1991.

[4] A. J. Lait and B. Randell. An assessment of name matching algorithms. Department of Computing
Science - University of Newcastle upon Tyne.

[5] Petar Rajkovic and Dragan Jankovic. Adaptation and application of daitch-mokotoff soundex
algorithm on serbian names. In XVII Conference on Applied Mathematics, pages 193–204.
Department of Mathematics and Informatics, Novi Sad, 2007.

2Enhanced NYSIIS Golang Package
3Enhanced NYSIIS Python Package
4Enhanced NYSIIS JavaScript/TypeScript Package

8

https://github.com/0xnu/nysiis
https://pypi.org/project/pynysiis/
https://www.npmjs.com/package/nysiis

	Introduction
	The Daitch-Mokotoff Soundex Algorithm
	Enhancing and Applying Daitch-Mokotoff SoundEx Algorithm
	Enhanced NYSIIS Algorithm in Golang
	Conclusion
	Acknowledgements

