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Local dominance unveils clusters in
networks
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Clusters or communities can provide a coarse-grained description of complex systems at multiple
scales, but their detection remains challenging in practice.Community detectionmethodsoftendefine
communities as dense subgraphs, or subgraphswith few connections in-between, via concepts such
as the cut, conductance, or modularity. Here we consider another perspective built on the notion of
local dominance, where low-degree nodes are assigned to the basin of influence of high-degree
nodes, and design an efficient algorithm based on local information. Local dominance gives rises to
community centers, and uncovers local hierarchies in the network. Community centers have a larger
degree than their neighbors and are sufficiently distant from other centers. The strength of our
framework is demonstrated on synthesized and empirical networks with ground-truth community
labels. The notion of local dominance and the associated asymmetric relations between nodes are not
restricted to community detection, and can be utilised in clustering problems, as we illustrate on
networks derived from vector data.

Many real-world datasets can be viewed as a collection of objects embedded
into a global metric space, thereby providing a vector representation1.
Alternatively, networks have become another fundamental way to model
complex systems with a focus on direct pairwise interactions between
constituents2–4. In the case of social systems, for instance, these com-
plementary representations may correspond to a set of socio-demographic
variables for each individual, e.g., in a Blau space5, or to a social network of
interactionsbetween individuals, e.g., via amobile communicationnetwork6

or spatio-temporal co-occurrence interactions7. In each representation, real-
world systems tend to exhibit groups: regions of high density in the spatial
representation, known as clusters, or high-density subgraphs in the net-
work, known as communities. Such cluster or community structure pro-
vides a coarse-grained representation of the underlying complex system8–11,
often associated to different functions and impacting its collective
behaviors12–14, and their unsupervised detection is thus essential in different
areas of data science1,10.

In the vector representation, the introduction of a dissimilarity func-
tion and ideally of a distance in a metric space, provides a natural way to
identify the center of a cluster, e.g., themedoid in a general metric space15,16,

and a hierarchywould formwithin a cluster between central and othermore
peripheral nodes, implying an asymmetric relationship between them. On
theotherhand, in the case of asymmetric pairwise interactions,which canbe
associated to an implicit hierarchy17 and have long been recognized18–22 in
various network systems, community detectionmethods for networks place
much less emphasis on the concept of community center and hierarchy
within communities.We can always use network centralitymeasures on the
subgraphs identified as communities to identify core and peripheral nodes a
posteriori, but these roles are not central to community detection23,24, in
stark contrast to clustering methods based on embedding the data in a
metric space.

In this paper, we propose a community detection algorithm in
networks, Local Search (LS), that explicitly uses the notion of local
dominance and identifies community centers based on local infor-
mation. In our method, every node is given at most one parent node
deemed to be higher up in a partial ranking. Nodes that have a
dominant position in their immediate neighborhood18 or even
beyond are identified as local leaders18. This defines a rooted tree that
spans the network and gives rise to community centers that are local
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leaders18 with both a larger degree than the nodes in their basin of
attraction and a relatively long distance to other local leaders higher
up in the ranking. Our approach possesses several interesting prop-
erties. Firstly, to the best of our knowledge, it provides a new per-
spective on community detection and delivers community centers
and a hierarchy within the community and even a hierarchy among
communities as an explicit part of our algorithm, and so mimics
advantageous features of the methods based on embedding data in a
metric space. Secondly, the identification of communities through
local dominance is highly efficient, as it uses purely local topological
information and breadth-first search, and runs in linear time. The
method does not require the heuristic optimization of an objective
function that relies on a global null model9,25–29 or computationally
costly spreading dynamics30–32. Also, our method does not rely on a
similarity measure for which there is a wide choice, with an asso-
ciated uncertainty and variability in results, such as is found in
hierarchical clustering based methods8,14,33,34. Finally, LS is not as
susceptible to noise as most methods10,35, and is less therefore sus-
ceptible to finding spurious communities in random graph model
realisations36.

We demonstrate the strength of LS on several classical but
challenging synthetic benchmarks and on standard empirical net-
works with known ground-truth community labels. Our numerical
evaluation also includes network representations derived from vector
data. As the LS method naturally provides community centers and
local hierarchies, it creates an explicit analogy with the notion of
cluster centers and distances within clusters that are found in vector
clustering methods. Moreover, we also show that applying LS on
discretised version of data cloud points outperforms classical unsu-
pervised vector data clustering methods on benchmarks16.

Results
Local search algorithm
Cluster analysis and community detection share many conceptual simila-
rities, but often have a contrasting focus. Cluster analysis puts emphasis on
the center of a cluster15,16, while community boundaries often play a more
predominant role in community detection37. Community centers can be
inferred from some community detection algorithm outputs, for example,
the nodes associated to the largest absolute weights of the leading eigen-
vector of the modularity matrix, or exhibiting a higher density of connec-
tions inside the communities, are deemed to be community centers, core
members or provincial hubs23,38. But centers are only a by-product of those
algorithms, rather thanat their core ofmethodologies.The approach thatwe
proposehere is explicitly focusing oncommunity centers to identify clusters,
which is motivated by the existence of underlying asymmetries between
nodes19–21, the concept of local leaders18 in networks and borrows ideas from
density and distance based clustering algorithms on vector data16. In our
local search (LS) algorithm, the local dominance refers to a leader-follower
relation, and we pose a further restriction that each node has eventually at
most one out-going link pointing to its leader. We hypothesise that com-
munities are organized around centers that are nodes with both a dominant
position in its neighborhood (e.g., has a larger degree, or other centrality
measures, than its neighbors) and distant enough from other potential
centers. Then based on community centers, partition is naturally ensuing.
The process of our LS algorithm involves four steps:

Firstly, we calculate the degree ku of each node (see digits in Fig. 1a).
Secondly, we point each node u to its largest-degree-neighbor v if this
neighbor is no smaller than itself on degree (i.e., kv ≥ ku and
kv ¼ maxfkjjj 2 VðuÞg, where V(u) is the set of neighboring nodes of u).
Nodes with in-going edge(s) and no out-going edge are local leaders18 that
dominates its vicinity (see nodes f,m, and p in Fig. 1b). Such local leaders are
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Fig. 1 | Schematic illustration of the Local Search (LS) algorithm. a An example
network where digits on nodes and size of nodes indicate the degree. b The iden-
tification of local leaders based on local dominance by creating a forest of directed
acyclic graphs (DAGs) as indicated by short dashed directed edges. For each node u,
it points to any adjacent neighbor vwith kv ≥ ku and kv ¼ maxfkz jz 2 VðuÞg, where
V(u) is the set of neighboring nodes. In this example, nodes are traversed by their
lexicographical order, when node b is traversed, it points to m as
km ¼ maxfkz jz 2 VðbÞg≥ kb ; later, when m is traversed, it has no out-going link,
and som is identified as a local leader: it does not point to any of its followers and its
remaining neighbors all have smaller degrees. When there are more than one
neighbor with the same largest degree, more than one directed edge is temporarily
added, e.g., node c points to both b and m as kb ¼ km ¼ maxfkz jz 2 VðcÞg≥ kc ;
nodes d and l also have more than one outgoing link. The local leaders, which
are potential community centers, are f, m, and p (indicated by dark gray color).
c Each node randomly retains just one out-going edge shown as a short dashed
directed edge (e.g., c can point to b or m with an equal probability, similarly for
l and d). Then, for each local leader u, a local-BFS is performed to find its nearest

local leader with kv≥ku, and the shortest path length on network duv, ∀ v is
designated by lu. Here, p→ f with lp = 2, and f→m with lf = 4. In (c), short-dash
arrows and long-dash arrows correspond to pure followers (whose lu = 1) and
local leaders (whose lu≥2), respectively. Each node has at most one out-going
link (u→ v), which can go beyond direct connections. The local leader(s) with
the maximal degree has no out-going link (here node m). d The corresponding
tree structure formed by local dominance. The scale on the left is a visual aid for
calculating li between connected nodes in the DAG. e The scatter plot of ki and li
for all nodes. Community centers are of both a larger degree ki and a longer li.
f The decision graph for quantitatively determining community centers (indicated
by triangles) based on the product of rescaled degree ~ki and rescaled distance~li
(see more details in Supplementary Note 1.2). Community centers can be detected
by a visual inspection for obvious gaps or sophisticated automatic detection
methods. Here, two centers, nodes m and f, are identified. The color of nodes in
(c) and (d) represents the community partition, and community centers are high-
lighted by a darker hue of the same color.
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like rich-among-poor and are potential community centers. Thirdly, for
each local leader u, we use a local breath-first searching (LBFS) to find it a
nearest local leader vwith kv ≥ ku and record its shortest path length to node
v as lu = duv, which is larger thanone (see long-dash arrows inFig. 1c, and see
Fig. 1d for a better extracted local dominance relation, which is in a reverse
direction of arrows). The LBFSprocess stops afterfinding such a local leader
v, which is the reasonwhywe call it local BFS, so it generally searches a small
region and does not traverse the whole network. For local leader(s) with the
maximal degree, we do not perform such a LBFS, and directly assign the
maximal lu of other local leaders (see mathematical descriptions in
Methods).

After performing LBFS to all local leaders except the maximal one(s),
we can determine community centers according to degree ku and distance
along the local dominance relation lu (in the network in Fig. 1, nodes f andm
stands out as centers,whichhaveboth a large ku and lu, see Fig. 1e).Note that
for nodes except local leaders, their lu = 1. Bymultiplying normalized ku and
normalized lu, we can better quantitatively identify community centers via a
notable gap between candidates (see Fig. 1f, and details in Methods and
Supplementary Note 1). Lastly, after the identification of community cen-
ters, the group label can be assigned to its followers along the local dom-
inance relation (i.e., the reverse direction of arrows in Fig. 1c) in one
single step.

We name our framework as local search (LS) algorithm, since it only
require local information of nodes and rely on efficient LBFS processes for
local leaders, which takes up a very small fraction of the whole network (see
Supplementary Table 1). The identification of local dominance relation is
quite resilient tomissing andnoisy links.Our LS algorithm is of a linear time
complexity in terms of the number of edges (see Methods and Supple-
mentary Table 1) and is in no need of iteratively optimizing an objective
function that relies on a global null model in other state-of-the-art
methods9,26–29 or resorting to spreading dynamics30,31. In addition, our LS
algorithm is also capable of identifyingmultiscale communities structure, as
local dominance relation also provides us hierarchies between communities
via asymmetric relationship between communities centers. The strength of
our framework is demonstrated on several classical challenging synthesized
test cases and empirical network datasets with ground-truth community

labels. Finally, we also show how it provides a connection to clusters in a
metric space, and our LS algorithm outperforms current state-of-the-art
unsupervised both clustering and community detection methods when
applied to discretised vector data clouds.

As the implementation of our algorithm was done in Python, we use
theNetworkX package implementation of the Louvain algorithm, ourmain
point of comparison, as they are both of a linear time complexity, to obtain
fair comparison for running time.We also compare with a broader range of
popular community detection algorithms on partition performance, some
ofwhich are slower butmore accurate ones.OurLS algorithmstill ranksfirst
or second on the partition performance for five out of seven networks.More
details of our LS algorithm can be found in Methods and Supplemen-
tary Note 1.

Synthetic networks
Here, we use well-known benchmark networks to illustrate how the LS
method functions and in which situations it performs well. For illustration,
wemainly contrast the results obtained by the LSmethod to those obtained
by the Louvain method9, which is widely applied due to its good perfor-
mance and high efficiency. In addition, both algorithms have a linear time
complexity, and thus the comparison on performance between them are
more meaningful. We first look at a circular regular network, where all
nodes are equivalent and thus no community structure should be dis-
covered. LS correctly identifies a single community (Fig. 2a), by contrast,
modularity forces community structure to exist and finds five communities
(Fig. 2d). Let us look in detail at the reasonwhyLSfinds a single community.
First, each node will point to all its adjacent neighbors as they all have the
same degree, and since node are sequentially traversed and they will not
point to their followers, loops cannot be formed, see Supplementary Fig. 1c
and Supplementary Note 1.1.1 for a proof. After all nodes have been con-
sidered, each node will only keep one outgoing link with an equal prob-
ability, and eventually a tree structure will be formed. Because of the
homogeneity of the graph, the tree only allows the identification a single
community center and therefore of a single community. Because all nodes
are equivalent, the labeling and thus order in which they are visited, is
irrelevant. We note that in the case of a clique, an extreme case of regular

a b c
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Fig. 2 | Community partitions by the local search (LS) andLouvain algorithmson
synthesized networks with different strength of heterogeneity. The heterogeneity
increases from left to right. The color of nodes denotes the communitymembership.
a In a strict homogeneous regular network (N = 36, 〈k〉 = 4), all nodes are identical,
only one community is detected by the LS algorithm (see Supplementary Fig. 1 for
more details); In an Erdős-Rényi (ER) random network (N = 64, 〈k〉 = 4), there may
exist some communities due to randomness36, b the LS algorithm detects only a few
communities. In a Ravasz-Barabási network43 that displays stronger heterogeneity,
c the LS algorithm groups all first-level nodes and all sixteen second-level peripheral

clusters into one community, and four small communities emerge (see Supple-
mentary Fig. 4 for more details). d By contrast, the Louvain algorithm detects five
communities by optimizingmodularity in the same strictly regular network as in (a).
e And the Louvain algorithm detects a lot more communities in the same ER
network as in (b). f In the same Ravasz-Barabási network as in (c), the Louvain
algorithm partitions each second-level branching as a separate community and
misclassifies a first-level peripheral cluster into its own community, a result of
traversal order and modularity optimization process in the Louvain algorithm.
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network, themappingof local hierarchy canyield a rangeof structure froma
chain to a star structure, see Supplementary Fig. 1b for more details. In all
cases, only one center is identified. By contrast, the Louvain method would
partition a homogeneous regular network into several communities by
optimizing modularity (see Fig. 2d).

Our second application focuses on Erdős-Rényi (ER) random graphs,
which is still relatively homogeneous though not strictly homogeneous.
While in the limit of an infinite random graph no community structure
exists, in finite-size ERgraphs, fluctuationsmay create spurious community
structures11,36, as well as weak or spurious hierarchies between nodes. In this
example, the LS method detects fewer communities than the Louvain
algorithm, see Fig. 2b, e. In ER random networks, the degree distribution is
relatively restricted around its average, but the system nonetheless exhibits
fluctuations in the degrees. Large degree nodes aremore likely to connect to
each other, as the connection probability between them, kikj/2E, are among
the highest ones. When two large nodes are connected, there will be a
directed out-going link pointing from one node to the other, making one of
them a follower. Thus the LS method detects fewer communities. On the
other hand, whenwe fix the size of the network and increase the connection
probability p, the number of communities detected by the Louvain algo-
rithm also decreases but it consistently findsmore communities than the LS
method (see SupplementaryFig. 2). In addition,we are able todetect isolated
nodes as noise (see graynodes inFig. 2b), as these nodes are of a small degree
but infinite li.

We also consider an extension of the ER random graph model, the
stochastic block models (SBM) shown in Supplementary Fig. 3 and dis-
cussed in Supplementary Note 1.1.2. For random networks generated by
SBM39–41 with two blocks, when the inter-connection probability is zero,
cout = 0, the Louvain algorithm detects two communities that align with
ground truth, but this is a reflection of the resolution limit42, as when
analyzing each community (each ER graph), it may partition it into more
than ten communities (see Supplementary Fig. 2). By contrast, the LS
algorithm still detects as many community centers as when looking at each
individual random network. This result can be understood by the local
natureof the algorithm,where the structureof onedisconnectedcluster does
not affect the communities found in the other and thus LS algorithm does
not suffer from resolution limit. And when fixing the intra-connection
probability cin and increasing cout, the boundary of the two communities
becomes blurred. We find that when slightly increasing cout, the number of
community partitions given by the Louvain algorithm increases drastically
(see Supplementary Fig. 3b). By contrast, the F1-score of the LS algorithm is
relatively stable, though not too high, and outperforms Louvain when cout is
larger (see Supplementary Fig. 3).

Finally, we consider a hierarchical benchmark, the Ravasz-Barabási
network model43 with two layers, which naturally provides a model with a
hierarchy between the center andperipheral nodes. The clusteringproposed
by LSmethod groups explicitly reflects the hierarchical nature of the model
by grouping first-level nodes and all sixteen second-level peripheral clusters
into one community that centers at the original seed node, as it dominates
their neighborhood; and four small communities emerge due to the exis-
tence of four local leaders (see Fig. 2c), which have a degree larger than their
neighbors and a longer path length to the original seed node, i.e., li > 1, see
Supplementary Fig. 4c for the decision graph that identifies community
centers. The Louvain algorithm offers an alternative partitioning that
ignores the hierarchical nature of the model and finds five communities of
roughly equal size, and misclassifies a peripheral cluster as a separate small
community (see Fig. 2f). This example is interesting in that the clustering
provided by Louvain here provides a reasonable, yet alternative, answer that
ignores one aspect of the data. This reminds us that different clustering
methods rely ondifferentunderlyingmechanismsand, as oftenoccurswhen
using unsupervised methods, the outputs are rarely strictly right or wrong.
The outputs should be understood not only in terms of the data, but of the
methods as well. Still, it is worth noting that the Louvain algorithm mis-
classifies afirst-level peripheral cluster into another community (see theblue
cluster in Fig. 2f), due to the traversal order used by the algorithm and

modularity optimization process (see Supplementary Note 1.1.3 for more
details). When we further modify the network generated by the Ravasz-
Barabási model by adding a third-level branching to one of the second-level
central cluster, and add noise in the connectivity to other second-level
central clusters, the LS method still detects meaningful hierarchical struc-
ture, see Supplementary Fig. 4b and Supplementary Fig. 4d.

Detection of multiscale community structure. As partially reflected in
the decision graph of the LS algorithm for the Ravasz-Barabási network
(see Supplementary Fig. 4c, d), the reliance on local dominance of our
method to identify local leaders naturally lends itself to detect multiscale
community structure14,34,44. To illustrate this point, we generate a multi-
scale network made of two levels: four top-level communities with 400
nodes each and inter-connection probability p1 = 0.0002, each top level
community contains four second-level communities with 100 nodes each
and p2 = 0.03514,34. Each second-level community is generated by the
standard Barabási-Albert model45 with m = 7 that yields 〈k〉 = 14 (see
Fig. 3a). The LS method correctly identifies two levels of community
structure with a notable gap between first four top-level centers, which
have similar ~ki ×~li, and other potential centers, as shown in Fig. 3b. Then
taking the twelve subsequent centers, these sixteen centers together
correspond to the sixteen second-level communities, and their affiliation
within each top-level communities are correct (see the tree structure for
local leaders in Fig. 3c). As all sixteen second-level communities are
statistically equivalent, the directionality of community centers (Fig. 3c)
is determined by fluctuations in the network generating mechanism. The
partition obtained by the LS method has an F1-score of 0.99 at the top
level and of F1 = 0.56 at the second level. Misclassifications at the second
level mainly come from a relatively large inter-connection probability p2,
which blurs the boundary between communities. In comparison, the
Louvain algorithm only detects four large communities that correspond
to the top-level ones with F1-score equals 1, but it cannot detect second-
level smaller communities due to the resolution limit42. This demon-
strates the strength of the LS method on detecting smaller scale com-
munity structure.

One reason that LS works on detecting multiscale structure resides in
the fact that the average path length between nodes is governed by the
connection probability46. The distance between nodes from different
second-level communities within the same top-level community is on
average shorter than the distance between nodes from different top-level
communities, and thus the hierarchical structure is uncovered by the LS
method. Another reason is the intrinsic heterogeneity in each second-level
community.

By contrast, when keeping the average degree and inter-connection
probability (p1 and p2) the same, and replacing the second-level commu-
nities by ER random networks with p = 0.14, which also yields 〈k〉 = 14 (see
Fig. 3d), the whole network becomes more homogeneous (see Supple-
mentary Fig. 5). In this case, the LS method can still detect four top-level
communities (see Fig. 3e) but mis-identify some second-level communities
(e.g., communities c2 and d1 are missing in this example, see Fig. 3f) and
detect more smaller communities (29 second-level communities are
detected instead of 16). The mis-identification of some second-level com-
munities is due to the largest degree node u in those ground-truth com-
munities being directly connected to a node v in other communities with
kv ≥ ku, and thusu is considered as followers.This ismore common in such a
random setting, as there are more nodes with a relatively large degree
beyond the reference value (i.e., the smallest degree of all of the largest node
in each ground-truth second-level communities, see Supplementary Fig. 5
for more details). By contrast, in the scale-free case, there are fewer nodes
beyond the reference value. For example, in the randommultiscale network
in Fig. 3d, the reference value is 34, and there are 60 nodes beyond it; in
comparison, in the scale-free one, there are only 31 nodes beyond its
reference value. The homogeneitymakes the detection of such communities
harder, if this minimum value become only slightly smaller, there will be
much more nodes beyond the reference value in the random setting (see
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Supplementary Fig. 5b). Mis-affiliation, i.e., one local leader in community
b3 follows the center of d4 instead of other centers in community d, is also
partially due to a similar reason and partially due to randomness.
The discussion above also imply that the LS method would be vulnerable
to targeted failure – connecting two community centers would diminish
one center as a follower and their corresponding communitiesmerge as one
(see Supplementary Fig. 24). In addition, due to randomness, two or more
local leaders might emerge in the same second-level communities, which
will lead to split of the community (e.g., there are two local leaders in
communities c2). These would constitute cases where the LS method is not
appropriate.

Real-world benchmark networks
We now test the LS algorithm and demonstrate its strength on several
empirical benchmark networks (see Table 1) with known ground-truth
community labels, see Table 2. We chose to compare with the Louvain
algorithm in Table 2 because both algorithms are linear, making themwell-
suited for large-scale networks and facilitating a more meaningful com-
parison, and the Louvain method is the most widely used community
detection algorithm implemented in most network packages. LS is faster
thanLouvain for7of the8benchmarks.The speed advantagebecomesmore

noticeable as the networks get larger (see Table 2). For example, for the
DBLP (Digital Bibliography & Library Project) network47 with 317,080
nodes and 1,049,866 edges, our LS method takes 45 s, while Louvain
takes 256 s.

The LS method is not only faster, but also classifies better than the
Louvain algorithm measured by the F1-score for 5 out of 7 examples with
ground-truth community labels (see Supplementary Fig. 9 and Supple-
mentary Note 2 for more details and discussions on the evaluation by F1-
score, and we also make comparisons between algorithms on performance
evaluated by conductance47, see Supplementary Table 4). In Table 3, we
extend our comparison of the LS algorithm to include other popular algo-
rithms with different perspectives on community detection, some of which
are with greater accuracy albeit slower in implementation. For example, the
geodesic density gradient (GDG) algorithm48

first embeds the network into
vector space based on shortest path length between nodes and then applies
an iterative clustering algorithm, which is similar tomean-shift algorithm49,
both of which are costly in computation, to obtain partitions of commu-
nities. GDG algorithm achieves the best performance in two out of seven
networks, and has an obvious advantage over other methods on Citeseer
(see Table 3 and Supplementary Table 2 for more details). Another
important type ofmethod is inferential ones, which provides powerful tools
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Fig. 3 | Detection of multiscale community structure with different hetero-
geneity. a This network comprise four top-level communities (labeled as a, b, c, and
d) with 400 nodes each and an inter-connection probability p1 = 0.0002, each of
which further comprises four second-level communities with 100 nodes and
p2 = 0.035 (e.g., community c comprises c1, c2, c3, and c4). The second-level com-
munities are generated by the Barabási-Albert model45 withm = 7, which leads to an
average degree 〈k〉 = 14. b shows the decision graph for the LS method when ana-
lyzing the network in (a). c displays the hierarchical structure formed by the local
dominance between identified centers of each community. For better clarity, com-
munity centers are named by the community label instead of the real index of the
node, and we only show the tree structure of these centers. The height difference
indicates the li of the lower node. (d)-(f) is the same as (a)-(c), with only changing the
generation process of second-level communities to the Erdős-Rényi random net-
work with a connection probability p = 0.14, which still leads to the same average

degree 〈k〉 = 14. In such a setting, similar to stochastic block models, nodes in the
network are again relatively homogeneous. For better clarity, in (e) and (f) only top
sixteen centers are labeled and their affiliation relation are visualized, and in total, LS
detects 29 centers at the second-level for this network. For the multiscale network in
(a), the LSmethod detects four top-level communities with F1 = 0.99 and 16 second-
level communities with F1 = 0.56. For the network in d, the LS method detects four
top-level communities with F1 = 0.89 and 29 second-level communities with
F1 = 0.29. In both cases, the Louvain algorithm only obtain four communities, which
corresponds to the first-level ones, with F1 equals 1, however, it cannot detect
second-level partitions. By comparing results in (a)-(c) and in (d)-(f), we can find
that our LS algorithm works well on networks with stronger heterogeneity. Results
shown here correspond to just one realization, inmultiple realizations, as every first-
and second-level communities are equivalent, the label sequence in (b) and (e) and
the tree structure in (c) and (f) may vary but have a consistent structure.
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without arbitrariness and further advances our understanding of commu-
nity structure of networks50. Inferential algorithms, which generally rely on
SBM as generative models, can explain the inability to detect communities
in the very sparse limit51, help eliminate the resolution limit in Louvain
algorithm and detect hierarchical structure of complex networks52. Infer-
ential methods can be adapted to different types of networks ranging from

weighted networks53 to directed ones54 and hypergraphs55. However,
inferential methods are generally computationally expensive52,56. The
inferential algorithm described in Refs. 52,56 has a much better perfor-
mance than the LS on the Football network (see Supplementary Table 3),
whose degree distribution is quite homogeneous.Other algorithms typically
only attain the first position in one out of seven networks. While our LS
algorithm takes the lead in two out of seven networks and secures second
place in an additional two.We note that the best performing algorithms are
well distributed among the benchmarks, which reflects that real networks
have generally different generating mechanisms that are better captured by
some algorithm than others26,27. This suggests that achieving optimal per-
formance across all scenarios is highly improbable57, aligning with the No
Free Lunch theorem27. It is, however, interesting that LS consistently ranks
first or second in the four out of seven benchmark networks, and is overall
the best classifier, suggesting that the notions of local dominance, hierarchy
and community centers are pervasive in real networks, whose degree dis-
tributions are generally heterogeneous. It is also instructive to understand
why LS does not perform well on the Football network8,58,59. It is due to the
fact that the Football network is fairly homogeneous, and we have already
explainedwhy the LSmethod does not performwell in this situation, see the
subsection on multiscale community detection. There is also significant
connectivity between the largest degree nodes in the ground-truth com-
munities, thus some of them become direct followers to others and their

Table 3 | Comparisons with classical community detection algorithms on real networks with ground-truth community labels

Karate Football59 Polbooks Polblogs Cora Citeseers Pubmed Time Complexity

Spin glass89 0.61 0.92 0.62 0.88 0.33 0.22 0.21 NA

GN8 0.59 0.84 0.80 0.74 0.32 0.23 0.18 O(N3)

GDG48 0.91 0.60 0.75 0.66 0.29 0.63 0.19 O(dtN2)

Walktrap90 0.51 0.88 0.79 0.88 0.29 0.14 0.16 OðN2 logNÞ
Spectral23 0.62 0.54 0.70 0.89 0.32 0.25 0.46 OðN2 logNÞ
Inferential52,56 0.65 0.87 0.77 0.32 0.31 0.40 0.07 OðN2 logNÞ
Fastgreedy25 0.75 0.56 0.78 0.89 0.39 0.28 0.32 OðN logNÞ
Infomap26 0.76 0.96 0.69 0.80 0.07 0.04 0.01 OðN logNÞ
LPA30 0.88 0.79 0.69 0.91 0.22 0.11 0.18 ~O(E)

Louvain9 0.63 0.87 0.70 0.85 0.32 0.27 0.20 ~O(E)

LS 0.83 0.35 0.80 0.69 0.33 0.45 0.46 O(E)

The algorithmwith the highest F1 score is highlighted in bold, and the second highest one is highlighted by underline. Overall, our LS algorithm have a pretty good performance, it is ranked first in two out of
seven networks and ranked second in another two when compared to other popular algorithms, some of which are slower but more accurate ones. And our algorithm is the fastest one. For the GDG
algorithm, d is the dimension of embedding space, and t is the number of iterations.

Table 2 | Comparison between the LS and Louvain algorithms on networks with ground-truth community labels

N E Nc Louvain LS Δt (ms)

F1 Nc t (ms) F1 Nc t (ms)

Karate 34 78 2 0.63 4 8 0.83 2 6 2

Football59 115 613 10 0.87 10 18 0.35 6 20 –2

Polbooks 105 441 3 0.70 5 13 0.80 2 8 5

Polblogs 1490 19,090 2 0.85 9 328 0.69 3 212 116

Cora 2708 5429 7 0.32 28 380 0.33 7 139 241

Citeseers 3264 9072 6 0.27 35 384 0.45 7 131 253

PubMed 19,717 44,327 3 0.20 43 8745 0.46 8 2298 6447

DBLP 317,080 1,049,866 – – 220 256,000 – 8; 1859 45,000 211,000

Nc denotes the number of ground-truth communities in the network or identified by different methods, and F1-score is a common performance measure in machine learning between predictions and
ground-truth labels (seemore details in Supplementary Note 2), and t (ms) is the running time of the algorithmwhen implemented in Python. As there is no ground truth labels but onlymeta data for DBLP47

(see Supplementary Note 2 for more discussions), we are unable to report F1-score. As LS is able to detect multiscale structure, we report the number of communities detected with notable gaps: 8 large
communities, 1859 smaller communities. Both the Louvain and LS algorithm are of linear complexity in time, and our LS method is faster. In addition, the LS method performs better in most cases. The
algorithm with a better performance is highlighted in bold. Comparisons with a broader range of classical community detection algorithms are shown in Table 3.

Table 1 | Basic statistics of networks

N E 〈k〉 〈d〉 〈CC〉 ρ α

Karate 34 78 4.59 2.443 0.256 –0.476 1.781

Football59 115 613 10.66 2.397 0.407 0.162 –

Polbooks 105 441 8.40 2.841 0.348 –0.128 1.791

Polblogs 1222 16,717 27.36 2.747 0.226 –0.221 1.415

Cora 2485 5609 4.08 5.738 0.117 –0.055 1.645

Citeseers 2110 3668 3.48 10.257 0.171 –0.024 2.074

PubMed 19,717 44,327 4.50 2.764 0.060 –0.044 2.227

N is the number of nodes in the network, E is the number of edges, 〈k〉 is the average degree of the
network, 〈d〉 refers to the average shortest path length between all node pairs, 〈CC〉 refers to the
average clustering coefficient, ρ refers to assortativity, and α refers to the power-exponent of the
degree distribution if it can be reasonably well fitted by a power law.
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communities are merged. If a portion of links between the largest degree
nodes were removed, the partition given by the LS method would be much
closer to the ground truth.

Targeted link removal and addition can significantly change the
structure of a network and the outcomeof community detection algorithms.
The LS algorithm is not immune to that effect, as it relies on local leaders to
separate communities, therefore, intentional targeted link addition between
twocommunity centerswouldmakeoneof thema follower and lead to just a
single community, which will dramatically reduce the performance of the
classification. For example, if we connected the president and instructor in
the Zachary Karate Club network, then the LS method only yields a single
community (Supplementary Fig. 24), which is the case before the split60.
This also lends us a way to identify critical links for merging or splitting
communities61. The identification of local hierarchy is, on the other hand,
more robust against links missing or adding at random, see Supplementary
Figs. 22-23.

In addition, the number of communities detected by LS is also closer to
the ground truth, see Table 2. For example, for the Zachary Karate Club
network, Louvain detects four communities, while LS detects two, which is
consistent with reality. As usually more potential centers can be detected in
real networks, see Supplementary Fig. 6, and might correspond to mean-
ingfulmultiscale structure.As for thePolblogsnetwork,whereLSfinds three
instead of two communities indicated by current labeling, and there is
debate whether three groups should be considered as the ground truth (i.e.,
apart from liberal and conservative, there is a neutral community)62. This
partially explains why the LS does not work that well on this example. This
also reflects the importance and difficulty of obtaining ground-truth labels,
if there are any27. Although the evaluation of the classification performance
of an algorithm with a ground truth is standard practice63, establishing the
ground truth for community assignment usually require detailed survey,
which can be difficult for very large networks40,63, and is usually regarded as
distinct frommetadata available27,40. The choice(s) of the ground truth(s) is
crucial and there might be alternative ground truth that emerge from
unsupervised clustering analysis and are validated a posteriori. The notion
of alignment between ground truth and structure is indeed crucial to obtain
good clusters64. For example, in the well known Zachary Karate Club
network60, the metadata of nodes can also be their gender, age, major,
ethnicity, however,most of which are irrelevant to the community structure
when interested in understanding the split of the club27,40, but might be
relevant to understand other type of community structure. Apart from
evaluations based on ground-truth labels, various evaluation criteria purely
based on network structure (e.g., optimizing modularity, conductance, cut)
have been proposed, however, they may deviate from the real generating
process of networks and will not be suitable for all scenarios. For example,
maximizing modularity cannot generate good partitions in ecological net-
works, as herbivores in the same community will not prey on each other,
thus there are no dense connections within the same ecological community.

In this sense, if there can be some ground-truth labels, using F1-score is a
more objective evaluation.

Applications to urban systems
Our final example of real-world networks is to uncover the structure of
spatial interactions in cities. It also showcases the capacity of LS to adapt to
weighted networks, with node degree replaced by the node strength and the
least weighted shortest path, where the distance between two adjacent nodes
is the reverse of the volume of mobility flow.Many cities have or will evolve
from amonocentric to a polycentric structure65, which can be inferred from
the patterns induced in humanmobility data.We use humanmobility flow
networks derived from massive cellphone data at the cellphone tower
resolution with careful noise filtering and stay location detection66–68 for
three cities in different continents: Dakar69, Abidjan7,70, and Beijing71,72 (see
references therein and SupplementaryMaterial of Liu et al.’s work7 formore
details on obtaining themobilityflownetwork fromcellphone data). The LS
algorithm can detect both communities with strong internal interactions
and meaningful community centers, see Supplementary Fig. 8 for the
decision graph. We find that for the smaller cities Dakar and Abidjan,
communities are more spatially compact, while in the larger city, Beijing,
they are more spatially mixed, see Fig. 4. This indicates that in Beijing,
interactions are less constrained by geometric distance, whichmight be due
to a more advanced transportation infrastructure and a superlinearly
stronger and diversified interactions tendency in larger cities7,73,74. In addi-
tion, the identified community centers correspond to important interaction
spaces in cities, see Fig. 4. For example, in Beijing, the top three centers are
The China World Trade Center in Chaoyang District, the Zhongguancun
Plaza Shopping Mall in Haidian District, and Beijing Economic and
TechnologicalDevelopment Zone inDaxingDistrict. InAbidjan, LS detects
the Digital Zone, local mosques, and markets as centers. In Dakar, a uni-
versity and some mosques are detected.

Clustering vector data via the LS algorithm
Community detection and vector data clustering share many similarities,
but are often considered separately and having contrasting focus. Our use of
local leaders identified by local dominance was directly inspired by the
concept of the center of a cluster, which is characterised by a higher cen-
trality measure in its vicinity/neighborhood (e.g., density or degree) and a
relatively long distance (i.e., a large li) to the nearest object with a large
centrality. Local dominance concretely and explicitly identifies fundamental
asymmetric leader-follower relation between objects, which naturally give
rises to centers. This creates a direct link between the two viewpoints of
network science and data science. It is therefore natural to ask whether LS
would performwell, or evenbetter, than vector data clusteringmethods on a
discretised version of a data cloud.

To cluster vector data with the LS method, we first need to discretise it
into a network.Manymethods exist to perform this task, including ϵ-ball, k-

Fig. 4 | The community structure detected by our local search (LS) algorithm on
mobility flow networks in three diversified cities across continents. a Dakar in
Senegal, Africa. bAbidjan in Côte d'Ivoire, Africa. c Beijing in China, Asia. Each dot
represents a location, which corresponds to a region by Voronoi tessellation

according to cellphone towers. Communities are indicated by different colors,
and their centers are marked as stars. The decision graphs are shown in Supple-
mentary Fig. 8.
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nearest-neighbors (kNN) and its variants (such asmutual kNN, continuous
kNN), relaxed maximum spanning tree75, percolation or threshold related
methods35,76, andmore sophisticatedones77.Here,we employ the commonly
used ϵ-ball method that sets a distance threshold ϵ and connects vectors,
which become nodes, whose ϵ-balls overlap, see Fig. 5a and inset. This
process can be accelerated by using R-trees and are implemented in a time
complexity of O(N logN)74,78 (see Supplementary Note 1.4). After traver-
sing all nodes, a network encoding a geometric closeness within ϵ between
nodes is obtained, see Fig. 5b. The ϵ-ball method preserves spatially local
information, e.g., the vector density in themetric space can be interpreted as
degree in the constructed network, and coarse-grains continuous distance
between objects into discrete values. This makes the determination of
centers clearer (see Fig. 5c,d). The choice of ϵ influences greatly the structure
of the network obtained, here we chose ϵ to be near the network percolation
value to ensure a minimally connected graph79–81, more details on deter-
mining ϵ can be found in Supplementary Note 3.1.

Applying the LS algorithm on the constructed network for a series of
well-known two dimensional benchmark data (Fig. 6a, e and Supplemen-
tary Fig. 10 for more cases), yields the expected clusters (Fig. 6b, f and
Supplementary Fig. 11). By contrast, the Louvain algorithm generally
obtains more and smaller clusters in a relatively fragmented way (Fig. 6c, g
and Supplementary Fig. 13 for more examples) on the same networks. The
reason is that the Louvain algorithm overlook the transitivity of local
relations82. The state-of-the-art unsupervised clustering algorithm density
and distance based (DDB)16 applied to the original vector data yields
expected clusters in most cases, see Fig. 6d and the original work that
introducesDDB16 for other examples. This confirms the universality of local
hierarchy between objects and the analogy between our community centers
and cluster centers. However, the DDB algorithm fails in the test case83 in
Fig. 6h due to a mixture of local and global metrics in this associate rule83,
which do not affect the LSmethod (see Fig. 6f). From anetwork perspective,
certain dynamics can give rise to meaningful clusters with arbitrary shapes
in metric space (e.g., synchronization or spreading dynamics are usually
only possible along the manifold via local interactions but not through
global ones). For example, different clusters in Fig. 6e or Supplementary
Fig. 11c, g, h might correspond to groups of fireflies that are only able to
synchronize within the group rather than between groups, as their inter-
action range is usually limited. In the situations above, the distance mea-
sured by the local metric is more appropriate than the one measured by the
global metric, see a more in depth discussion in Supplementary Note 3.2.
The good performance of the LS algorithm on vector data resides in the
correct identification of the local dominance, i.e., finding the centers, from
the local metric.

In addition, we show that the LS method is robust against noisy data
in different scenarios, see Supplementary Note 4 and Supplementary

Figs. 23-24. Though less common when considering vector data, targeted
addition of edges in a network that connect two cluster centers, explicitly
brings two cluster centers closer to each other in themetric space and will
distort the space, whereas, conversely, the removal of links increases the
distances between two objects.

The advantage of building networks for high dimensional
vector data. We now show the advantage of combining the ϵ-ball dis-
cretisation and community detection methods on clustering high-
dimensional data sets. Here, we use well-known benchmark datasets with
very high dimensions: the MNIST (Modified National Institute of
Standards and Technology) of hand written digits84, and Olivetti of
human faces85, and show that our simple framework outperforms the-
state-of-the-art DDB clustering algorithm16, see Table 4. Let us consider,
for example, the Olivetti human face dataset, a challenging high
dimensional dataset with small sample size. Each cluster obtained by the
LS algorithm only contain images from a single individual, see Supple-
mentary Figs. 17-19, simply based on Euclidean distance between images
and without resorting to using complex image similarity measure.
Moreover, it obtains a higher F1-score than the DDB method. We note
that forMNIST and Olivetti datasets, the Louvain algorithm has a higher
F1-score than LS, but identifies an inappropriately large number of
clusters. The better performance of the Louvain algorithm lies in some
subtle differences from clustering results obtained by the LS method (see
comparisons between Supplementary Fig. 19a and Supplementary
Fig. 19b for the Olivetti dataset with 100 images. The Louvain algorithm
detects all images of the eighth person as one cluster, but the LS method
classifies four images of the eighth person as another cluster).

We conjecture that the conversion from vector data to a network is not
merely a translation of the data, but a fundamental information filtering
process that accentuates the prominence of local leaders and thus increases
the strength of local hierarchy, which in practice turns out to be a great
advantage of our framework for handling vector data with high dimensions.
Constructing the network via ϵ-balls is similar to a coarse-graining process:
as long as two objects are close enough, the small differences in distances
within ϵ are neglected. In addition, such a process also corresponds to
subtracting irrelevant global information and puts the focus on similarity
based on a local metric. Though there will be some information loss during
the conversion fromvectordata to topological data, purely local information
is enough to identify local dominance in the data. Not all information
embedded in the vector data needs be utilized75, sometimes too much
informationmight complicate the process. Although admitting asymmetric
relations between objects would violate certain formal metric properties
(e.g., distances are symmetric), it turns out to be an advantage for cluster
analysis (see more discussions in Supplementary Note 3).

a b c d

Fig. 5 | Conversion from vector data to a network via the ϵ-ball method and the
analogy between the community centers of networks and the cluster centers of
vector data. aAn example of data cloud and b its dicretised network representation
by (Inset) the ϵ-ball method. c The decision graph by the density and distance based
(DDB) algorithm16. d The decision graph by the local search (LS) method. Cluster
centers are data points of both a higher density ρi than its neighbors and relatively far
from other points with a larger density (i.e., a large di)

16. The density ρi of a data point
i is simply the number of nodes within a certain radius ϵ, and it is equivalent to the
degree of node i in the corresponding network (i.e., ki = ρi). The network

constructing process is a coarse-graining and discretization process, where the
absolute distance value is not preserved (e.g., in the Inset, d32 > d34 for the original
vector data, but l32 = l34 = 1 in the network). The Euclidean distance between any
data points is based on a global metric, but the topological path length between two
nodes are based on a localmetric. For example, d24 is only slightly larger than d34, but
in the network, l24 = 2 and l23 = 1 (see the Inset); though d21 ≈ 2d23 according to
global metric, node 2 and node 1 are not reachable in the network based on the local
metric. Cluster centers identified by theDDB algorithmmatches community centers
identified by the LS method, which are all marked as stars.
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Discussion
Community detection and cluster analysis are analogous as both aim to
group objects into categories based on some notion of similarity. In this
work, we develop a fast and scalable community detection method based
on the notion of a community center that echoes the commonly used
concept of a cluster center. The identification of community and cluster
structures requires a heterogeneous system: uniformly distributed data
points and strictly regular networks do not possess meaningful mesoscopic
cluster structure. Heterogeneity leads to the emergence of more important
loci in a data space, or central nodes in a network. The notion of center is
pervasive in cluster analysis, but underused in community detection. We

define community centers as local leaders that are both of a high degree,
corresponding to a high density in cluster analysis, and relatively distant
from other local leaders, corresponding to cluster separability. The nodes
belonging to each community defined by their center are identified by
basins of attraction34 based on the local dominance existing between nodes,
which indicates the asymmetric leader-follower relationship and defines a
local hierarchy. While dominance is an explicit characteristic of edges in a
directed network, it can be seen as an intrinsic hidden higher-order
directionality between nodes even in undirected networks. The resulting
local hierarchy reflects asymmetric interactions between objects inferred
from the local connectivity of nodes that then naturally defines leaders and
community affiliations, as well as hierarchies among communities. In
addition, the position of local leaders and distribution of shortest path
length lu between local leaders can be developed into some indicators for
depicting network structure. And with the concept of local leaders and
corresponding local hierarchy, automated discovery24 and evolution
dynamics of communities61 can be ensuing studies.

The local hierarchy structure is quite robust against randomnoise, and
is identified based on local information.Moreover, in contrast tomost state-
of-the-art clustering and community detection methods, the LS method
does not depend on the structure of the entire network as of most existing
methods24. We are able to detect communities in a small region and avoid
the computational burden of analysing the whole network24. In cluster
analysis, approximating similarity relations between objects by a distance
matrix actually assumes that every object is in a direct relation with all
others, which is also the case for modularity optimization algorithms that
utilize a random null model, which also assumes that each node has a
probability to interact with every other node10. In addition, community
detectionmethods also generally assume amutual relation between objects,
which is an important formal metric property and an implicit feature of an
undirected connectivity matrix. Local hierarchy implicitly violates such an
assumption, but it turns out that abandoning such a restriction gives better
flexibility to the clustering method (see Supplementary Note 3 for more
details). Finally, our LS algorithm is fast and scalable with a linear time

Table 4 |Comparisonson theclusteringperformancebetween
the LS, Louvain, and DDB algorithms for high dimensional
vector data

D N Nc LS DDB Louvain

F1 Nc F1 Nc F1 Nc

Iris 4 50 3 0.73 2 0.82 3 0.70 8

Wine 13 178 3 0.57 3 0.57 3 0.41 7

MNIST 784 1,000 10 0.32 21 0.26 (10) 0.45 247

Olivetti 10,304 100 10 0.74 14 0.64 (10) 0.78 32

Olivetti 10,304 400 40 0.59 64 0.49 (40) 0.68 112

D denotes the dimension of the dataset, N denotes the number of objects, and Nc denotes the
number of clusters from the ground-truth or identified from algorithms. The hand-written figures in
MNIST is of dimension 28 × 28 = 784 pixels; and in Olivetti, the face image is of dimension
92 × 112 = 10,304 pixels. The Olivetti dataset with N = 100 comprises the first 100 images of 10
people from the original data set. The original dataset comprises 400 images of 40 different people.
Our LS algorithm outperforms DDB in all high-dimensional and large-scale data sets except in Iris,
whose dimension is quite low. Note that as the DDB algorithm does not have a clear recognition of
the number of clusters (i.e., no clear gaps between centers in the decision graph)16 for MNIST and
Olivetti, the number of clusters identified by DDB are putative based on the ground truth (i.e.,
selecting the top ten or top forty nodes in the decision graph), which is marked in brackets. The
algorithm with the best performance is highlighted in bold.

a b c d

e f g h

Fig. 6 | Comparisons on the clustering performance between the local search (LS),
Louvain, and density and distance based (DDB) algorithms for two dimensional
benchmark vector data. a represent the network constructed from vector data using
the ϵ-ball method (see Supplementary Note 3.1 and Supplementary Fig. 10 for details
on the network constructions). b shows the result of the LS method that correctly
identify clusters that align with common consensus (see Supplementary Fig. 11 for
more cases). In addition, LS can detect noisy points (marked in gray) that are of low
degrees but long li. c shows the partitions obtained from the Louvain method, which

are more fragmented than the LS result (see Supplementary Fig. 13 for more cases).
d shows the result obtained from the DDBmethod which provides correct partitions to
most benchmark data, see the original work that introduces DDB16 for other cases.
e–h are the same as (a–d) for another vector dataset, where both a low density
manifold and a high density cluster exist. In (h), DDB algorithm fails detecting correct
clusters due to its local association rule83 being affected by a mixture of local and global
metrics. LS and Louvain methods are performed on the constructed networks shown
in (a) and (e), and the DDB algorithm is performed on the original vector data.

https://doi.org/10.1038/s42005-024-01635-4 Article

Communications Physics |           (2024) 7:170 9



complexity, which is crucial for analyzing large scale networks, and also
performs well onmost benchmarks, except the ones that do not possess the
type of heterogeneity (e.g., football network59) exploited by the LS method.

Overall, the performanceof theLSmethod is particularly good given its
simplicity. On benchmark network models, it outperforms the currently
most widely used community detection method, the Louvain modularity
optimisation algorithm. The LS method consistently ranks higher than any
other methods when the performance is averaged over several data sets, see
Table 3. We have also shown that the LS method is naturally able to detect
multiscale structure of communities in complex networks. This implies that
while not necessarily identifying the partition defined by some existing
ground truth, it finds a good approximation of it and the output can then be
used as starting point for other slower but more accurate and dedicated
community detection methods, offering a significant speed up.

Given the similarity in spirit between LS and clustering methods, we
applied LS to ϵ-ball discretised version of benchmark vector data, both low
and high dimensional. For low-dimensional data, we find it provides the
expected clusters and outperforms Louvain modularity optimisation algo-
rithm ran on the discretised data, which generally yields too many com-
munities and performs poorly. LS also outperforms DDB, a state-of-the-art
unsupervised clusteringmethod, on some challenging cases in the presence
of low-density manifolds. For high-dimensional data, LS still outperforms
DDB, but not Louvain, although on closer inspection, Louvain obtains a
better F1-score, but suffers again from providing too many communities,
outbalancing the advantage in F1-score.

We hypothesise that the discretisation step of creating a network from
vectordata acts as a topologicalfilter,which enhances thekeyproperty of the
data that makes cluster detection work: the existence of well defined cluster
centers and a clearer identification of local hierarchy. The performance of
any community detection algorithm is going to be influenced by the dis-
cretisation method used, and more work is needed to understand the
relationship between topological denoising and the performance of the
community detection algorithms, as different community detection meth-
ods might respond differently to different discretisation schemes.

Another area for future work is to adapt LS to find halo nodes residing
at the boundary of two or more communities (e.g., node d in Fig. 1), detect
overlapping communities13 potentially by producing line graphs86–88 or
clique graphs58, and identify critical link responsible for the merging or
splitting dynamics of communities61. Another point that could be improved
iswhen twoormore local leaders are equivalent onbothdegree anddistance
to a node. We currently assign it to a local leaders at random but we could
look at other options.

Finally, another possible direction for future research concerns the
definition of dominance itself. In this article, it was built on a specific
networkproperty, thedegrees of thenodes. For aweightednetwork, itwould
be appropriate to use strength rather thandegree andwewould retain all the
benefits of the LS method. Extending LS algorithm to directed networks is
worth closer investigations in the future. In directed networks, two types of
local leaders, the integrators (determined by in-degree) and the influencers
(by out-degree), might be needed, which can lead to two types of clustering.
The influenceof edge directionality should be closely examined, as influence
may propagate in the reverse direction of the directed edge. For example, on
Twitter, information oftenflows fromauser to their followers. Additionally,
directionality affects the calculation of path lengths between nodes. Apart
from using degree, dominance could also be based on other node centrality
measures but most of these require global network calculations, which
would slow the algorithm considerably. If dominance was based on non-
structural properties, such as numerical attributes for nodes already defined
in the data, then the LS approach would still work well.

Methods
The local search (LS) algorithm
Cluster analysis and community detection share many conceptual simila-
rities, but often have a contrasting focus. Cluster analysis puts emphasis on
the center of a cluster15,16, while community boundaries often play a more

predominant role in community detection37. Community centers can be
inferred from some community detection algorithm outputs, for example,
the nodes associated to the largest absolute weights of the leading eigen-
vector of the modularity matrix, or exhibiting a higher density of connec-
tions inside the communities, are deemed to be community centers, core
members or provincial hubs23,38. But centers are only a by-product of the
algorithm, rather than at their core ofmethodologies. The approach that we
proposehere is explicitly focusing oncommunity centers to identify clusters,
which is motivated by the existence of underlying asymmetries between
nodes19–21, the concept of local leaders18 in networks and borrows ideas from
density and distance based clustering algorithms on vector data16. We
hypothesise that a community center is a local leader that is comparatively of
a larger degree than its neighbors, thus dominating them, and is of a rela-
tively long shortest-path distance to other local leaders.

Our algorithm consists of four steps that we now detail. We start with
an undirected network with N nodes and E edges, for example see Fig. 1a.
For better clarity, nodes are also labeled and traversed in lexicographical
order (see Fig. 1b).

Step 1 First, we calculate the degree ku of each node u (see digits in Fig. 1a),
which is an operation of linear time complexity O(E). Our algorithm
neglects self-loops in default, but if self-loops are meaningful for
calculating degree of nodes, setting the input parameter self_loop of the
algorithm as True will increase the degree of nodes accordingly, and
nodes with self-loops will not be considered as neighbors of themselves.

Step 2 Second, we traverse each node u and point u to any adjacent node v
with kv ≥ ku and kv ¼ maxfkzjz 2 VðuÞg (i.e., v has the largest degree in
the neighborhood of u). For example, in Fig. 1b node g will point to f
instead of p as kf > kp > kg; and c temporarily points to both b and m as
kb ¼ km ¼ maxfkzjz 2 VðcÞg > kc. Note that a node cannot point to its
follower, and since nodes are traversed in lexicographical order, when
node b is traversed, it will point to m as km ¼ maxfkzjz 2 VðbÞg≥ kb.
Whenm is traversed, it will not point to any of its followers (e.g., b). This
process naturally avoids the creation of loops and ensure we only obtain
directed acyclic graphs (DAGs), see Supplementary Fig. 1 and proof in
Supplementary Note 1.1.1 for more details. If such a v does not exist, u
will not have any out-going edge and will be identified as a local leader
(see dark gray nodes f, p, and m in Fig. 1b). We denote the set of local
leaders as C.

After traversing all nodes, for nodeswithmultiple out-going links, we
randomly retain one (see only short-dash arrows in Fig. 1c for a
possible mapping). Mathematically, we have obtained a forest of
trees,where the root of each tree is a local leader, and is also apotential
community center. For most nodes, except local leaders, this process
identifies a local hierarchy (indicated by dash arrows), with an
asymmetric leader-follower relation (see short-dash arrows in
Fig. 1b). This step is completed in O(E).

Step 3 Third, to identify the upper level for local leaders along the hierarchy,
weuse a local breadth-first search (LBFS) starting fromeach local leaderu
and stop the searchwhen encountering the first local leader vwith kv ≥ ku
and assign the shortest path length on the original network duv to lu,
which is the length of the out-going link of node u. Note that lu ≥ 2 for all
local leaders, and all pure followers have lu = 1. For example, node p is a
local leader, in the second iteration of the LBFS, it encounters another
local leader f with kf > kp. We then stop the LBFS and point p to f, and
lp = dpf = 2. Similarly, f→m and dmf = 4. The out-going link of local
leaders goes beyond the direct connections in the original network (see
long-dash arrows in Fig. 1c).

When there are several local leaders that have a no smaller degree
than the local leader u in the lthu iteration, the largest one is chosen; if
multiple local leaders in this iteration have the same largest degree,
one is picked at random uniformly. For local leader(s) with the
maximal degree in the whole network, denoted asM, a subset of C,
there is no need to perform the LBFS, and we directly
assign lx2M ¼ maxu2CnMðluÞ.
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Community centers can be easily identified as local leaders with both
a large ku and a long lu (see Fig. 1e), and naturally emerges from the
rooted tree revealed by local dominance (see all dash arrows in Fig. 1c
and the explicit tree structure in Fig. 1d). We use the product of
rescaled degree ~ki and rescaled distance~li to quantitatively measure
the centerness of each node (see more details and discussions in
SupplementaryNote 1.2). Community centers can be determined via
visual inspection for obvious gaps or by, possibly, sophisticated
automated detection methods for gaps in the future (see Fig. 1f). For
example, the community centers identified by the LSmethod in Fig. 1
are nodes f andm. In the ZacharyKarateClub network, the identified
community centers correspond to the president and the instructor,
which is consistent with reality60 (see Supplementary Fig. 6).
Theoretically, this third step takes O ðjCj � jMjÞhkihliCnM� �

=
O ðjCj � jMjÞEð Þ, where 〈k〉 is the average degree of the network,
〈l〉C⧹M =∑u∈C⧹Mlu/(∣C∣− ∣M∣), and the size of the set of potential
centers ∣C∣ is usually much smaller than N (see Supplementary
Table 1). In practice, hkihliCnM is bounded to be smaller than E as it
mimics a LBFS process. As indicated by numerical results, even
ðjCj � jMjÞhkihliCnM is usually smaller than E (see Supplementary
Table 1). In addition, the LBFS process can be simultaneously
implemented for all local leaders in parallel to further speed up the
algorithm in practice.

Step 4 Finally, for all identified community centers, we remove their out-
going links, if any. Community labels are then assigned along the reverse
direction of directionality u← v from community centers. This step takes
again a linear time O(N).

Taken together, the time complexity of our LS algorithm is linear in the
number of edges: O E þ ðjCj � jMjÞhkihliCnM þ N

� � ¼ ΘðEÞ, which is
among the fastest community detection algorithms. To the best of our
knowledge, our framework provides a new perspective on community
detectionmethods. It only relies on the notion of local dominance, which is
identified solely from local information from the topology. It does not need
to iteratively optimize an objective function9,26–29 based on a global rando-
mized null model9,23,27 or resorting to iterative spreading dynamics30,31 as
other state-of-the-art algorithms. It is important to emphasise that the
communities that are uncovered by LS are not necessarily associated to a
high density of links, as in modularity optimisation, or specific patterns of
connectivity inside versus across groups, as in methods based on stochastic
block models39–41, but are instead obtained as a group of nodes that are
dominated by the same leader.

Data availability
All network and vector datasets needed to evaluate the conclusions in the
paper are publicly available and present in the paper and/or the Supple-
mentary Materials. The original cellphone datasets of Dakar and Abidjan
are accessed through the D4D challenge, and the Beijing dataset is obtained
from a Chinese telecommunication operator and the original dataset is not
publicly available.

Code availability
Computer code for the LS algorithm and code implementing the analysis
described in this paper and other information is online at https://github.
com/UrbanNet-Lab/LS_for_CommunityDetection_and_Clustering.
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