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1 Introduction

Amongst 3d N = 4 quiver gauge theories, a natural set of theories to consider is that of
affine Dynkin quivers with unitary gauge nodes. The Coulomb branches of affine ADE
Dynkin quivers are moduli spaces of instantons which can be identified with the closures of
minimal nilpotent orbits of the An, Dn, and E6,7,8 algebras. These are examples of simply-
laced quivers. The Coulomb branches of affine Dynkin quivers of BCFG-type, explored
in [1], are the closures of minimal nilpotent orbits of the Bn, Cn, F4, and G2 algebras. The
corresponding quivers are termed non-simply laced quivers.
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The concept of folding, in the sense that identical legs of simply-laced quivers are
folded into a quiver with a non-simply laced edge, has been studied recently in the context
of the Coulomb branch Hilbert series of 3d N = 4 quivers [2–5]. In particular, the non-
simply laced edge within the quiver implies that the theory has no obvious path integral
formulation. Nonetheless, the Coulomb branch Hilbert series can be readily computed via
the monopole formula [1, 6]. This allows one to study non-simply laced quivers that are
more general than affine Dynkin type quivers. One purpose of this paper is to demonstrate
that these quivers can provide new magnetic quiver constructions of known moduli spaces
and in many cases lead to new interesting moduli spaces. Other approaches to folding
include [7–10].

So far, works on non-simply laced quivers have focused solely on quivers with unitary
gauge groups. In light of the recent understanding of orthosymplectic quivers [11–17],
and the applicability of the monopole formula to framed and unframed orthosymplectic
quivers [18], one is finally able to extend this program to non-simply laced orthosymplectic
quivers.

Amongst framed/flavoured orthosymplectic quivers, one natural set to fold is that
of magnetic quivers for nilpotent orbit closures of so(2n). To be more precise, framed
orthosymplectic quivers whose Coulomb branches are height 2 nilpotent orbit closures of
so(2n) carry a natural Z2 symmetry that allows us to fold the identical legs. The Coulomb
branches of the resulting non-simply laced framed orthosymplectic quivers turn out to
be height 2 nilpotent orbit closures of sl(n). Furthermore, for framed non-simply laced
orthosymplectic quivers there exist corresponding brane configurations with D3-D5-NS5
branes in the presence of O3, O5 and ON orientifold planes.

For unframed/unflavoured orthosymplectic quivers, there is a nice set of En quivers
which are studied in detail in [15, 18]. Upon folding their identical legs, one obtains the
following key results:

• First, folding orthosymplectic quivers, whose Coulomb branches are closures of En
minimal nilpotent orbits for 4 ≤ n ≤ 8, leads to non-simply laced orthosymplec-
tic quivers, whose Coulomb branches are also closures of minimal nilpotent orbits.
Folding the E8, E7, E6, E5 ∼= D5, E4 ∼= A4 quivers, leads to non-simply laced or-
thosymplectic quivers, whose Coulomb branches are closures of minimal orbits of E7,
E6, D5, D4, D3 respectively. This can be depicted as follows:

E8 E7 E6 D5 A4 · · ·

E7 E6 D5 D4 A3 · · ·
(1.1)

The red arrows denote orthosymplectic folding. Note that the top line corresponds
to the standard exceptional sequence while the bottom line corresponds to a chain of
inclusions of associated affine Weyl groups studied in [19, 20].

• Second, each member of the En family of orthosymplectic quivers can be generalized
to an infinite sequence of quivers, as shown in [18]. These quivers are magnetic
quivers for 5d N = 1 SQCD theories. Each of these families of quivers can be folded,
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producing infinite sequences of non-simply laced orthosymplectic quivers. Some of
these families are magnetic quivers for 4d N = 2 theories.

The outline of the paper is as follows: section 2 provides a brief recap of magnetic
quivers and the monopole formula for non-simply laced orthosymplectic quivers. The
alternative method of calculating such Coulomb branches via Hall-Littlewood polynomials
and their related functions is also summarised. Thereafter, orthosymplectic quivers with
a known unitary quiver counterpart are considered in section 2.3. A comparison from
folding both types of quivers, namely the orthosymplectic as well the unitary realisation,
demonstrates that the non-simply laced orthosymplectic quiver produces results consistent
with the expectation from folding. Section 3 details the folding of framed orthosymplectic
quivers, i.e. quivers that contain flavour nodes. Section 4 investigates non-simply laced
orthosymplectic quivers whose Coulomb branches are closures of E5,6,7 minimal nilpotent
orbits. Section 4.3 presents the non-simply laced orthosymplectic quivers that are new
magnetic quiver constructions for certain 4d N = 2 theories. Having derived a new class of
magnetic quivers, section 5 details the construction of their Hasse diagrams by extending
the quiver subtraction algorithm to non-simply laced orthosymplectic quivers. Section 6
provides brane realisations for flavoured non-simply laced orthosymplectic quivers. Lastly,
section 7 concludes and provides an outlook.

2 The Coulomb branch

The notion of a magnetic quiver was recently introduced and studied in [14, 15, 21–27]. A
given hyper-Kähler moduli space X is said to have a magnetic quiver construction if there
exist finitely many quivers Qi such that

X =
⋃
i

C3d(Qi) (2.1)

holds as equality of moduli spaces, where the intersections are lower dimensional and also
admit magnetic quiver constructions. In other words, each magnetic quiver is taken as
input data for a 3d N = 4 Coulomb branch C3d(Qi) and each of them is a symplectic
singularity [28] itself; in contrast, X might be a union of hyper-Kähler cones. Note that
3d N = 4 Coulomb branches are used only as a black box to construct moduli spaces of
theories that do not need to be three dimensional. In many physically motivated examples,
X is taken as a Higgs branch of a theory with 8 supercharges in space-time dimensions
d = 3, 4, 5, 6.

It is important to note that the magnetic quiver construction is not unique, as there
are several known examples for which different magnetic quivers describe the same space
X. For example, in section 4 we consider the exceptional En families introduced in [15] or
the different representations of the minimal nilpotent orbit of E6 discussed in [18].

2.1 The monopole formula

Given a magnetic quiver, the associated Coulomb branch moduli space can be studied via
various techniques such as abelianisation [29, 30], Coulomb branch quantisation [31, 32],
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Hilbert series [6], or more mathematical approaches [33–35]. For this work, the central tool
is the monopole formula which allows one to evaluate the Coulomb branch Hilbert series
by counting dressed monopole operators. The monopole formula for simply-laced unitary
quivers and simply-laced orthosymplectic quivers was introduced in [6]. To briefly review,
for a given 3d N = 4 gauge theory with gauge group G and matter content transforming
in some representation R of G, the unrefined monopole formula takes the form

HS(t) =
∑

m∈Λ/W
P (t;m) t2∆(m)

2∆(m) =
∑
ρ∈R
|ρ(m)| − 2

∑
α∈Φ+

|α(m)|
(2.2)

with Φ+ the set of positive roots of G. The magnetic lattice Λ is the weight lattice of the
GNO dual group G∨ [36], which has Weyl groupW. The classical factor P (t,m) originates
from dressings by gauge invariant combinations of the residual massless degrees of freedom
in the monopole background labelled by m. The reader is referred to [6] for details.

For an unframed orthosymplectic quiver with gauge nodes {gi} a possible choice of
gauge group is G′ = ∏

i gi. If there is a subgroup H ⊂ G′ acting trivially on the matter
content, one may choose a different global form of the gauge group: G = G′/H. This
affects the magnetic lattice in a non-trivial way [36], as discussed in detail in [18]. In
this paper, the discrete subgroup for the unframed simply-laced orthosymplectic quiver is
always chosen to be H = Z2. The magnetic lattice Λ of G = G′/Z2 can be divided into
two parts, Λ = Λ1 + Λ2, where Λ1 ∼= Zr is the magnetic lattice of G′, and Λ2 ∼=

(
Z + 1

2

)r
,

r being the rank of G. The full Hilbert series is

HSΛ(t) = HSΛ1(t) + HSΛ2(t) . (2.3)

Besides the magnetic lattice, another ingredient for the monopole formula is the confor-
mal dimension. For non-simply laced unitary quivers, the conformal dimension is proposed
in [1]. For framed non-simply laced orthosymplectic quivers, one may propose a similar set
of amendments such that the conformal dimension is modified as summarised in figure 1
to accommodate for the non-simply laced edge.

For unframed non-simply laced orthosymplectic quivers, one needs to take into con-
sideration both the changes to the magnetic lattice due to H as well as the change to
the conformal dimension due to the non-simply laced edge. One can divide the nodes of
non-simply laced quivers long and short nodes (in the sense of the long and short nodes of
Dynkin diagrams). Denote by ΛL the magnetic lattice of the long nodes/gauge groups and
by ΛS the magnetic lattice of the short nodes/gauge groups. A vector of magnetic charges
m ∈ Λ is represented as a pair m ∈ (mL,mS) ∈ ΛL × ΛS . Let rL denote the sum of the
ranks of all long nodes and rS the sum of the ranks of all short nodes. If the non-simply
laced edge is even (i.e. with double, quadruple bond etc.), then the magnetic lattice to be
summed over is as follows:

ZrS+rL ⊕
((

Z + 1
2

)rS
× ZrL

)
. (2.4)
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∆edge = 1
2

k∑
i=1

l∑
j=1
|b m1,i −m2,j |

U(k) U(l)

∆edge = 1
2

k∑
i=1

l∑
j=1

(|b m1,i −m2,j |+ |b m1,i +m2,j |)

USp(2k) SO(2l)

b

b

USp(2l)SO(2k)

b

USp(2k) SO(2l + 1)

b

USp(2l)SO(2k + 1)

b

∆edge = 1
2

k∑
i=1

l∑
j=1

(|b m1,i −m2,j |+ |b m1,i +m2,j |)

∆edge = 1
2

k∑
i=1

l∑
j=1

(|b m1,i −m2,j |+ |b m1,i +m2,j |) + 1
2

k∑
i=1
|b m1,i|

∆edge = 1
2

k∑
i=1

l∑
j=1

(|b m1,i −m2,j |+ |b m1,i +m2,j |) + 1
2

l∑
j=1
|m2,j |

Figure 1. The contribution of the edges to the conformal dimension ∆edge is given for the two-
node quivers on the left. The magnetic charges for the left nodes are denoted by {m1,i} and for
the right node by {m2,j}. The non-simply laced edge has multiplicity b, which then appears as a
multiplicative factor for the m1,i magnetic charges. The contribution of the vector multiplets is not
affected by non-simply laced edges.

In contrast, if the non-simply laced edge is odd (i.e. with triple, quintuple bond etc.), then
the magnetic lattice is:

ZrS+rL ⊕
(
Z + 1

2

)rS+rL
. (2.5)

If the non-simply laced orthosymplectic quiver is framed, then the Hilbert series sum is
evaluated only over the integer-valued magnetic charges, because the discrete group H is
trivial, see [18].

In this paper, moduli spaces are identified and compared by Hilbert series computa-
tions. These can be computed for the Coulomb branches of magnetic quivers by alternative
methods. The central method used in this paper is the monopole formula (2.2). This yields
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Hilbert series, which can be computed exactly for small rank quivers and perturbatively to
high orders for larger rank quivers. For unitary quivers, the Hilbert series can be refined,
but there is no known prescription for obtaining the refined Hilbert series of an orthosym-
plectic quiver via the monopole formula. Nonetheless, such unrefined Hilbert series can be
compared with the Hilbert series of known moduli spaces. Furthermore, when a unitary
magnetic quiver construction is known for the same geometric space, the refined Hilbert
series can be given in the form of a highest weight generating function (HWG) [37] for
characters of the global symmetry group. In certain cases, these HWGs can be generalised
to arbitrary rank. The monopole formula results for the orthosymplectic magnetic quivers
in this paper have been tested against the unrefined Hilbert series for unitary magnetic
quivers, calculated either directly, or by expanding and unrefining their HWGs.

2.2 Hall-Littlewood computations

The relationship between the monopole formula with background charges and Hall-Little-
wood polynomials was explored in [38]. This relationship permits an alternative method of
calculating Coulomb branches that is applicable to many star shaped quivers, both unitary
and/or orthosymplectic, with a central node of type G. The approach is to identify the
Coulomb branches of the linear quiver legs as framed Slodowy slices [39], and to compose
these by summing over the weight lattice of the GNO dual G∨, while incorporating sym-
metry factors, all as described in appendix A. This method permits the exact calculation
of refined (or in some cases, partially refined) Hilbert series and HWGs, thereby providing
many consistency checks on the results herein.

2.3 Unitary vs. orthosymplectic

In this section, the folding of simply-laced orthosymplectic quivers is demonstrated on a
set of examples. These examples are chosen such that the orthosymplectic quivers have
unitary counterparts. The resulting non-simply laced quivers are analysed and are found
to be consistent with each other.

2.3.1 D4 affine Dynkin diagram

Due to the isomorphisms so(2) ∼= u(1) and sl(2) ∼= usp(2), one can construct two quivers
with equivalent Coulomb branches:

2 2

2

2 2

1 1

2

1 1

(2.6)

where white nodes with label n denote U(n) gauge groups, red nodes with label n denote
SO(n) gauge groups, and blue nodes with label 2n denote USp(2n) gauge groups. Note
that the central node has rank 2 on the left hand side and rank 1 on the right hand
side. As a reminder, for unframed unitary quivers, there is always a diagonal U(1) that
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one needs to ungauge. Whereas for the unframed orthosymplectic quiver, one chooses
H = Z2 ⊂ USp(2) × SO(2)4 as the diagonal subgroup to be ungauged. As shown in [18],
the Coulomb branch Hilbert series of both quivers are the same.

Since the two quivers have the same shape, one can fold identical legs and check if the
non-simply laced quivers reproduce the same results. Using the monopole formula, one can
verify that the following foldings reproduce the same Coulomb branch Hilbert series.

Folding two identical legs. First one folds two of the four identical legs in each quiver
such that one obtains

2

2

1

2

1

1 22
(2.7)

For non-simply laced quivers, the node where one ungauges the U(1) is important and
different nodes can yield different Coulomb branches [40]. In this paper, the choice taken
is to ungauge on a long node (ungaugings on long nodes all give the same moduli space).
The Coulomb branch of the unitary quiver is known be Oso(7)

min as it is the affine Dynkin
diagram of B3 [41]. An explicit Coulomb branch Hilbert series computation shows that
the folded orthosymplectic quiver is consistent with having the same Coulomb branch:

HSU(t) = HSOSp(t) = 1 + 13t2 + 28t4 + 13t6 + t8

(1− t2)8 (2.8)

where HSU(t) and HSOSp(t) are the Hilbert series of the unitary and orthosymplectic
quivers, respectively.

Folding three identical legs. Next, one proceeds to fold three of the identical legs:

221 1 22
(2.9)

The unitary quiver is the affine Dynkin diagram of G2 and, hence, the Coulomb branch is
Og2

min. An explicit computation of the Coulomb branch Hilbert series of the orthosymplectic
quiver

HSU(t) = HSOSp(t) = (1 + t2)(1 + 7t2 + t4)
(1− t2)6 (2.10)

confirms the equality of the moduli spaces in terms of Hilbert series.

Folding four identical legs. Finally, one folds all the identical legs and obtains the
following quivers

2 1 22
(2.11)

The unitary non-simply laced quiver is investigated in [42] and the Coulomb branch is Osl3
min.

An explicit computation of the Coulomb branch Hilbert series of the orthosymplectic quiver

HSU(t) = HSOSp(t) = 1 + 4t2 + t4

(1− t2)4 (2.12)
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shows that both magnetic quiver constructions agree in the unrefined Hilbert series.

2.3.2 T4 theory

Next, let us turn our attention to a more involved example. The theory known as T4 is
constructed by gluing together quivers whose Coulomb branches are closures of maximal
nilpotent orbits of sl(4). Due to the isomorphism sl(4) ∼= so(6), the following quivers have
equivalent moduli spaces:

1

2

3

4 3 2 1321 64 4 4 2 2422

4

4

2

2

(2.13)

Computation of the Coulomb branch Hilbert series of the orthosymplectic quiver is given
in [18, figure 39] and is consistent with the unitary counterpart.

As a first step, one can fold two of the quiver legs which yields:

4 3 2 1321 64 4 4 2 2422 (2.14)

Computation of the Coulomb branch Hilbert series of both quivers yields:

HSU(t) = HSOSp(t) =



1+21t2+68t3+341t4+1300t5+4936t6+15988t7

+50242t8+142812t9+384411t10+960772t11+2270650t12

+5038840t13+10601001t14+21083004t15+39862377t16

+71590384t17+122553812t18+199944220t19+311642452t20

+464078612t21+661421665t22+902317920t23+1179751147t24

+1478423752t25+1777451140t26+2050065624t27

+2269933494t28+2412458048t29+2462182956t30

+palindromic+···+21t58+t60


(1− t2)9 (1− t3)12 (1− t4)9 . (2.15)

As a next step, one folds all three identical legs which yields

4 463 2 1 4 2 2
(2.16)

The unitary quiver in (2.16) is a known member of the generalised rank 1 4d N = 2
sequence studied in [42]. An explicit computation of the Coulomb branch Hilbert series of
the both quivers in (2.16) yields

HSU(t) = HSOSp(t) =


1−t+10t2+23t3+67t4+190t5+525t6+1053t7

+2292t8+4167t9+7299t10+11494t11+17114t12+23080t13

+29925t14+35107t15+39221t16+40320t17

+palindromic+···+10t32−t33+t34


(1− t)(1− t2)5(1− t3)7(1− t4)5 . (2.17)

– 8 –



J
H
E
P
1
2
(
2
0
2
1
)
0
7
0

As a reminder, in all calculations in this article that involve non-simply laced unitary
quivers which lack explicit framing, the overall U(1) framing is applied on a long node,
such as the central node, in order to obtain consistent results.

The above examples reinforce the conjecture that folding orthosymplectic quivers yields
valid results, so one may proceed to fold quivers where the resulting Coulomb branches
cannot easily be determined from accidental isomorphisms.

3 Folding framed orthosymplectic quivers

As a next step, examine the folding of certain families of orthosymplectic quivers treated
in [11, 13], whose Coulomb branches are closures of nilpotent orbits. To be concrete,
the focus is placed on so-called height two orbits, which are orbits of elements x ∈ g

such that ad(x)2 6= 0 and ad(x)3 = 0 [43]. These are the lowest dimensional non-trivial
nilpotent orbits and yield a few clear candidates with the necessary symmetry for folding.
In particular, height two orbits of type D are considered.

The monopole formula for orthosymplectic quivers only returns unrefined Hilbert se-
ries [38]. However, these are often sufficient to identify known moduli spaces (such as
nilpotent orbit closures). For these, the encoding of refined Hilbert series into HWGs
is often straightforward. Indeed, for each of the orthosymplectic quivers in the follow-
ing sections, the Coulomb branches turn out to be well-known moduli spaces, for which
HWGs provide a concise description. Furthermore, as is shown below, one can find natural
projection maps between the HWGs for orthosymplectic quivers before and after folding.

3.1 Height two nilpotent orbits

Even D-type. For Oso(4n)
[22n] , the orbit is the union of two identical cones [44]. One of

these cones has the magnetic quiver:

. . .. . .

2

2n 2n−22n−2422 4 2 2

(3.1)

The refined Coulomb branch Hilbert series can be encoded as the HWG

HWG(3.1) = PE
[
n−1∑
i=1

ρ2it
2i + ρ2

2nt
2n
]
, (3.2)

where ρi for i = 1, . . . , 2n are the highest weight fugacities of so(4n). Note, the fugacity
for the ρ2n spinor is present in the expression [45]. For the second cone, the quiver is the
same as (3.1), but the other spinor ρ2n−1 is used in the HWG. The orbit is the union of
the two cones and includes both spinors (whereas the intersection contains neither).

Folding (3.1) results in the following quiver:

. . .

2n−2 4 2 22n2
(3.3)
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Explicit computation shows the Coulomb branch of (3.3) to be the moduli space Osl(2n)
[2n] .

The unitary quiver with the same Coulomb branch is well-known and takes the form:
2

n n−1n−1
. . .. . .

21 2 1

(3.4)

The Coulomb branches of these quivers share the HWG:

HWG(3.3) = HWG(3.4) = PE
[
n∑
i=1

µiµ2n−it
2i
]
, (3.5)

where µi for i = 1, . . . , 2n− 1 are the highest weight fugacities of sl(2n).
When folding quivers, one observes that the creation of a non-simply laced edge leads

to a change in the global symmetry. For unitary quivers this is obvious as the Dynkin
diagram changes from simply laced to non-simply laced. For these unitary quivers, the
action of folding also results in a mapping of the highest weight fugacities [5, 40]. As a
result, in this class of examples, the HWG of the Coulomb branch of the folded quiver can
be inferred if the HWG for the original quiver is known, see also section 6.

By studying (3.2) and (3.5) one observes that the global symmetry changes from
SO(4n) to SU(2n). Furthermore, for this family, the action of folding results in the following
mapping of highest weight monomials for even D-type:

For i = 1, . . . , n− 1 , (ρ2i)so(4n) → (µiµ2n−i)sl(2n), (3.6a)
(ρ2n−1)so(4n), (ρ2n)so(4n) → (µn)sl(2n), (3.6b)

(ρ2
2n−1)so(4n), (ρ2n−1ρ2n)so(4n), (ρ2

2n)so(4n) → (µ2
n)sl(2n). (3.6c)

One can repeat this procedure for the remaining so(4n) height 2 orbits: Oso(4n)
[22k,14n−4k],

where n ≥ k ≥ 1. These geometric spaces are given by the Coulomb branches of

. . .. . .
2 2 4

11

. . .
2k 2k 2k 2k2k + 12k + 1

4n− 4k − 1 nodes

4 2 2
. . .

2k 2k + 1 2k
(3.7)

and their HWGs are given by:

HWG(3.7) = PE
[
k∑
i=1

ρ2it
2i
]
. (3.8)

After folding of (3.7), one obtains the quiver

. . .
2k 2 22k + 1 2k + 1

. . .
2k 2k + 1 2k

1

2k

2n− 2k nodes

(3.9)
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whose Coulomb branch, after computing its Hilbert series, is found to be the closure of the
sl(2n) orbit Osl(2n)

[2k,12n−2k]. The unitary quiver with the same Coulomb branch is:

. . .. . .
121 2

1 1

. . .
k − 1 k k k k k − 1

2n− 2k + 1 nodes

(3.10)

The HWG of (3.9) is therefore:

HWG(3.9) = HWG(3.10) = PE
[
k∑
i=1

µiµ2n−it
2i
]
. (3.11)

With the absence of spinors in the HWG, one can get from (3.8) to (3.11) by the map-
ping (3.6).

The folding of a quiver whose Coulomb branch has so(4n) global symmetry into a
quiver whose Coulomb branch is sl(2n) global symmetry is not surprising, as in the k = 1
case it reduces to the following simple observation. One can see this by folding the affine
Dynkin quiver of D2n along its vertical symmetry axis

22
. . .

1

1

2 2 2 2

1

1

. . . . . .

1

1

222

2n− 3 nodes n− 1 nodes

11

. . .
2 3 2 233

4n− 5 nodes

. . .
2 3 2 23 3

. . .
2 3 2

1

2

2n− 2 nodes

(3.12)
where the diagram on the top right is the twisted affine Dynkin quiver of A(2)

2n−1,1 whose
Coulomb branch is the minimal nilpotent orbit closure of sl(2n). In this case, one observes
that folding either a unitary quiver or an orthosymplectic quiver, whose Coulomb branch
is the closure of the minimal so(4n) orbit, produces a quiver whose Coulomb branch is
the minimal orbit closure of sl(2n). The difficulty in reproducing this procedure for other
unitary quivers whose Coulomb branch are height 2 nilpotent orbits of so(4n) is that they
do not have identical legs to fold.

1We follow the labelling of Kac [46] for twisted affine algebras, as this predicts the Coulomb branch of
the balanced quiver.
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Odd D-type. For Oso(4n+2)
[22n,12] , there is a single cone. The moduli space is given by the

Coulomb branch of:

. . .. . .

2

2n 2n2n422 4 2 2

(3.13)

with the following HWG:

HWG(3.13) = PE
[
n−1∑
i=1

ρ2it
2i + ρ2nρ2n+1t

2n
]
. (3.14)

Folding the quiver (3.13) gives:

. . .
2n 2 22n2

(3.15)

The Coulomb branch of (3.15) turns out to be Osl(2n+1)
[2n,1] . The unitary quiver counterpart

with the same Coulomb branch takes the form:

. . .. . .
121 2

1 1

n n n− 1n− 1

(3.16)

The HWG of the folded quiver is:

HWG(3.15) = HWG(3.16) = PE
[
n∑
i=1

µiµ2n+1−it
2i
]
. (3.17)

By comparing (3.14) and (3.17), one observes that there is again a mapping of the highest
weight monomials of so(4n+ 2) to sl(2n+ 1):

(ρ2i)so(4n+2) → (µiµ2n+1−i)sl(2n+1) , for i = 1, . . . , n− 1 (3.18a)
(ρ2n)so(4n+2) → (µn)sl(2n+1) (3.18b)

(ρ2n+1)so(4n+2) → (µn+1)sl(2n+1) (3.18c)
(ρ2nρ2n+1)so(4n+2) → (µnµn+1)sl(2n+1) (3.18d)

for odd D-type.
As with the even D-type case, one can repeat the same folding procedure for the

remaining height 2 orbits Oso(4n+2)
[22k,14n−4k+2], for n ≥ k ≥ 1. This moduli space is given by the

Coulomb branch of

. . .. . .
2 2 4

11

. . .
2k 2k 2k 2k2k + 12k + 1

4n+ 1− 4k nodes

4 2 2
. . .

2k + 1 2k 2k + 1
(3.19)
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with the HWG being the same as (3.8). After folding of (3.19), one obtains

. . .
2k + 1 2 22k 2k

. . .
2k 2k + 1 2k

1

2k

2n+ 1− 2k nodes

(3.20)

whose Coulomb branch is the moduli space Osl(2n+1)
[2k,12n+1−2k]. The unitary quiver with the

same Coulomb branch is therefore:

. . .. . .
121 2

1 1

. . .
k − 1 k k k k k − 1

2n− 2k + 2 nodes

(3.21)

with the HWG

HWG(3.20) = HWG(3.21) = PE
[
k∑
i=1

µiµ2n+1−it
2i
]
. (3.22)

Comment. For orthosymplectic quivers whose Coulomb branch are closures of nilpotent
orbits of classical algebras, only the height 2 orbits of so(2n) have symmetric quivers that
can be folded. For orthosymplectic quivers whose Coulomb branch are closures of height 2
orbits of so(2n+1), the quivers have orthogonal gauge group(s) on one of the legs, making
the quiver asymmetric. For closures of height 2 orbits of usp(2n), the quiver legs contain
‘bad’ nodes in the sense of [47] that cause the monopole formula to diverge. Therefore, this
section provides an exhaustive list of orthosymplectic quivers that are closures of nilpotent
orbits, which can both be folded and have their Hilbert series computed with the monopole
formula.
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3.2 Coulomb branch global symmetry

For quivers composed of unitary gauge groups, it is easy to read off (in most cases2) the
algebra gglobal of the global symmetry group by studying the balance of the gauge groups.
A U(k) gauge group is balanced if the flavour from the neighboring nodes is Nf = 2k. The
balanced nodes form the Dynkin diagram of h which is a subalgebra of gglobal. In most
cases where all the gauge nodes are balanced with n nodes overbalanced, one finds that
gglobal = ∏

i hi× u(1)n which considers all balanced subset of nodes that are connected and
form Dynkin diagrams hi. If the unitary quiver is unframed, then an overall u(1) factor
needs to be removed from the global symmetry.

The same idea can be carried on for orthosymplectic quivers. In [47], the balance
conditions for (special) orthogonal and symplectic gauge groups with Nf fundamental
hypermultiplets (i.e. 2Nf half-hypermultiplets) are as follows:

SO(2k) : Nf = 2k − 1,
SO(2k + 1) : Nf = 2k,

USp(2k) : Nf = 2k + 1.
(3.23)

It has been shown in [47] that a linear chain of n balanced orthosymplectic gauge nodes gives
a global symmetry of so(n+ 1). To read this full global symmetry, it may be necessary to
add balanced USp(0) nodes, but these are omitted in the drawings as they do not contribute
to the Coulomb branch computations. The above is true regardless of the gauge groups
being O or SO, noting that USp(0) nodes should not be attached to O(2) nodes.

Building on the investigation of non-simply laced orthosymplectic quivers, the following
subsets of balanced nodes:

. . .. . . . . .

n− 1 nodes

(3.24)

. . .. . . . . .

n− 1 nodes

(3.25)

both contribute an sl(n) factor to the global symmetry. Here, red nodes are SO and blue
nodes are USp.

Presence of SO(2). As highlighted in [47], when an SO(2) gauge group is present, the
global symmetry from a chain of n balanced orthosymplectic gauge nodes is enhanced.
This is due to the accidental isomorphism SO(2) ∼= U(1). However, this can be understood
from an alternative point of view using D3-D5-NS5 brane configurations with O3 planes.

2One does observe, however, that more complicated quivers such as moduli space of k-instantons [1]
and some non-simply laced unitary quivers [48] have factors in gglobal which cannot be read off from the
balance of gauge groups. In such cases, the best way to obtain the global symmetry group is an explicit
computation of the Hilbert series to order t2 which reveals the dimension of the global symmetry group.
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As shown in [49], whenever a balanced SO(2) gauge node is present, it is implied that a
USp(0) gauge group is connected to it. Therefore, the following two quivers are identical:

. . .. . .

n− 1 nodes

2
. . .. . .

n nodes

2
=

0

(3.26)

Both quivers contribute an sl(n) factor to the global symmetry group. The quiver on the
right hand side is in a more convenient form as it allows us to apply the same rule of
reading off the global symmetry based on the number of balanced nodes. Throughout the
paper, it is implicit that whenever there is a balanced SO(2) gauge group, there is always
a balanced USp(0) gauge node connected to it.

These rules for reading off the global symmetry based on balanced of gauge groups
work for all framed non-simply laced orthosymplectic quiver. However, there can be rare
cases among unframed orthosymplectic quivers where the global symmetry is enhanced.
This is already observed in some cases for unframed simply-laced orthosymplectic in [18].
In the next section it is shown how the global symmetry of unframed non-simply laced
orthosymplectic quivers can become enhanced to exceptional en algebras.

4 Folding unframed orthosymplectic quivers

In this section, unframed quivers are considered, i.e. quivers without flavour nodes. Un-
framed orthosymplectic quivers have been investigated recently in [15, 18]. The simplest
of these theories are magnetic quivers of 5d N = 1 SQCD theories. To begin with, the
magnetic quivers corresponding to rank 1 5d SQCD theories are considered; their Coulomb
branches are closures of the minimal orbits of exceptional algebras En. Thereafter, one
focuses on the generalisation of these families of [15] and folds them into new families of
non-simply laced unframed orthosymplectic quivers. Some of these fall into the category
of star shaped quivers whose Coulomb branches can also be evaluated using the Slodowy
slice approach of appendix A.

4.1 En orbits

To begin with, consider the folding of orthosymplectic quivers whose Coulomb branches are
closures of En minimal nilpotent orbits: Oen

min for n = 4, 5, 6, 7, 8. Since the quivers are all
unframed, there is a non-trivial choice of the discrete group H ⊂ Z2 that one can ungauge.
For all the quivers in this section, the Coulomb branches are defined by the choice H = Z2,
see [18] for more details. The results are summarised in table 1 along with the identification
of the Coulomb branch. Below, some observations for the individual cases are discussed in
turn and how they are compared with folding their unitary quiver counterparts.

E8 orbit. The unitary quiver whose Coulomb branch is the closure of the minimal E8
orbit takes the form of the affine Dynkin diagram of E8. The unitary quiver does not have
any identical legs and, therefore, cannot be folded. In contrast, the orthosymplectic quiver
with the same Coulomb branch is given in the first row of table 1 and has two identical legs
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that one can fold. Folding these identical legs gives a non-simply laced quiver, see table 1,
whose Coulomb branch is the closure of the minimal E7 orbit Oe7

min.

E7 orbit. The unitary quiver whose Coulomb branch is the closure of the minimal E7
orbit takes the form of the affine Dynkin diagram of E7 and, hence, has two identical legs one
can fold. Folding them yields the non-simply laced unitary quiver whose Coulomb branch
is Oe6

min. The orthosymplectic quiver of E7 is provided in the second row of table 1 and has
two identical legs. Folding these two legs also gives the non-simply laced orthosymplectic
quiver whose Coulomb branch is Oe6

min.

E6 orbit. The unitary quiver is the affine E6 Dynkin diagram which has three identical
legs. When two of the legs are folded, the resulting Coulomb branch is Of4

min [40].3 The
orthosymplectic quiver of E6 is listed in the third row of table 1 and has only two identical
legs. Folding them results in the non-simply laced quiver whose Coulomb branch is Oe5

min
∼=

Oso(10)
min . The discrepancy is not necessarily a surprise since there are several different

embeddings of Z2 in E6.
To summarise, one reaches the surprising statement that folding orthosymplectic quiv-

ers whose Coulomb branch are closures of the minimal E8, E7, E6 nilpotent orbits gives
non-simply laced quivers whose Coulomb branches are closures of the E7, E6, E5 ∼= D5
orbits respectively.

E5 orbit. The unitary quiver is the affine D5 Dynkin diagram. Folding the pairs of
identical nodes on the two sides of the diagram produces a quiver with two non-simply
laced edges

1 1

11 2 2 1 2 2 1
(4.1)

The Coulomb branches of the quivers on the right are the minimal orbits of Oso(8)
min [42]. The

orthosymplectic quiver ofD5 is listed in the fourth row of table 1 (which is reproduced here):

1

4 2 222 4 2 21

(4.2)

One can verify that the Coulomb branch of the folded orthosymplectic quiver is also Oso(8)
min .

As a comment, (4.1) has the D5 Dynkin diagram on the left and the twisted affine
D

(2)
4 Dynkin diagram on the right [50]. This pattern generalises to any n, meaning that

the affine Dn Dynkin quiver, whose Coulomb branch is Oso(2n)
min , can be folded to the twisted

affine D(2)
n−1 Dynkin quiver, whose Coulomb branch is Oso(2n−2)

min .

3Folding all three identical legs gives the minimal nilpotent orbit of so(8) [42].
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E4 orbit. The unitary quiver is the affine A4 Dynkin diagram, which after framing does
not have identical legs attached to a pivot node, and hence cannot be folded in the common
way. The orthosymplectic quiver with the same Coulomb branch is listed in the fifth row
of table 1, which does have two identical legs that one can fold. The wiggly line denotes
a charge 2 hypermultiplet, see [15] for more details. The Coulomb branch of the folded
non-simply laced orthosymplectic quiver is Osl(4)

min .
A feature of orthosymplectic quivers whose Coulomb branches are closures of excep-

tional algebras is that they always have two identical legs one can fold. This reflection
symmetry is not always present in the unitary quiver counterparts.

4.2 ZZZ2 projection on representations

The results can be explained using representation theory. In [51], 5d N = 1 theories are
compactified on a circle with Z2 twist. First, one seeks to find a subgroup H5d of the global
symmetry group G5d of the 5d SCFT such that H5d ∼= H1×H1×H2. In other words, H5d
must contain two identical groups. Next, consider the Z2 invariant part of H1 ×H1. This
way, during the compactification, the Z2 acts diagonally and only representations invariant
under this action remain.

Consider the E8 quiver. E8 contains the following subgroup:

E8 ⊃ SO(8)A × SO(8)B . (4.3)

The adjoint representation of E8 decomposes as:

(µ8)E8 → (µ1)SO(8)A(µ1)SO(8)B + (µ2)SO(8)A + (µ2)SO(8)B

+ (µ3)SO(8)A(µ4)SO(8)B + (µ4)SO(8)A(µ3)SO(8)B
(4.4)

where (µi)E8 , (µi)A, (µi)B are the highest weight fugacities of E8, SO(8)A, and SO(8)B
respectively. The Z2 group acts on the adjoint representation as follows:

(µ2)SO(8)A + (µ2)SO(8)B −→ (µ2)SO(8)diag

(µ1)SO(8)A(µ1)SO(8)B −→ (µ2
1)SO(8)diag

(µ3)SO(8)A(µ4)SO(8)B + (µ4)SO(8)A(µ3)SO(8)B −→ (µ2
3)SO(8)diag + (µ2

4)SO(8)diag .

(4.5)

Since SO(8)diag ⊂ SU(8) ⊂ E7, the irreducible representation after the projection precisely
gives the adjoint representation for E7:

(ρ1)E7 = (κ1κ7)SU(8) + (κ4)SU(8) = (µ2)SO(8) + (µ2
1)SO(8) + (µ2

3)SO(8) + (µ2
4)SO(8) (4.6)

where ρi, κi are highest weight fugacities of E7 and SU(8) respectively.
This process is beautifully encoded in the folding procedure. When given a quiver,

the balance of the gauge nodes determines the global symmetry group.4 If one singles out
4To be more precise, it gives the algebra of the global symmetry group.
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a subset of balanced nodes, then this subquiver gives a subgroup of the global symmetry.
For the E8 quiver, one natural branching to subgroups is to identify the identical legs:

4 6 6 8422 6 2 2446

2

Balance gives SO(8)B global symmetry

Z2

2 8 6 6 4 4 2 2

Balance gives SO(8)diag global symmetry

Oe7
min:

Oe8
min:

Balance gives SO(8)A global symmetry

(4.7)

For a unitary magnetic quiver of E8, the quiver takes the form of the E8 affine Dynkin
diagram which does not have a natural SO(8)× SO(8) subgroup one can identify and fold.
This is an advantage of the En orthosymplectic quivers in general which always has a
natural Z2 symmetry one can fold.

One can repeat this procedure for the remaining En families and the result reproduce
the global symmetry of the folded quivers.

4.3 Magnetic quivers of 4d N = 2

In [42], a class of unitary magnetic quivers of 5d N = 1 SQCD has been folded to produce
general sequences whose limiting cases are 4d N = 2 rank 1 theories. In cases where
the folding involves two identical legs, this procedure produces the Higgs branches of 5d
theories compactified on a circle with a Z2 twist [51]. However, note that folding magnetic
quivers of 5d N = 1 theories does not always give rise to magnetic quivers of 4d N = 2
theories. As seen in the above subsection, some unitary magnetic quivers, which do not
have identical legs, have orthosymplectic counterparts that do have identical legs. The
orthosymplectic quivers studied here are examples like that where the unitary counterparts
(tabulated in [15, table 1]) lack this symmetry. In this section, the generalised families of
orthosymplectic quivers are considered and folded. The results are summarised in table 2.

Like the unitary quivers, one conjectures that some of the folded orthosymplectic quiv-
ers are magnetic quivers of known 4d N = 2 theories. In other words, the Coulomb branch
of these folded orthosymplectic quivers are the Higgs branch of 4d N = 2 theories. To be
concrete, focus on the rank 1 cases in table 1. After folding the E8, E7, D5 orthosymplectic
quivers, the resulting Coulomb branches are minimal nilpotent orbit closures of E7, E6,
D4 respectively. These are Higgs branches of known 4d N = 2 rank 1 theories. On the
other hand, folding the E6, A4 orthosymplectic quivers give Coulomb branches that are
minimal nilpotent orbit closures of D5, A3 respectively which are not the Higgs branches
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of known rank 1 4d theories [52]. It has been shown in [53], via anomaly matching on the
Higgs branch, that D5, A3 minimal nilpotent orbit closures (or equivalently, one-instanton
moduli spaces) are excluded as Higgs branches of rank 1 4d N = 2 theories. This shows
only a subset of the folded orthosymplectic quivers are actually magnetic quivers for 4d
N = 2 theories.

Following this argument, one can generalise each En non-simply laced orthosymplectic
quiver to infinite families as in table 2. The families obtained from folding the E8, E7 and
E5 ∼= D5 families give rise to known 4d N = 2 theories. These are all class S theories. For
E8 and E7 folded families, these are Sicilian theories with A-type punctures (A-type 6d
N = (2, 0) theories compactified on a sphere with 3 punctures) as studied in [54]. Using
the parameterisation given in table 3, the folded E8 family gives the [k+3], [k+3], [22, 1k−1]
Sicilian theory where punctures are labeled by their partition data. The folded E7 family
gives [k + 2], [k + 2], [3, 1k−1] Sicilian theory. Finally, the E5 ∼= D5 folded family is the
magnetic quiver for the 4d N = 2 SCFT of SU(k + 1) with 2k + 2 flavours.

For the remaining three families in table 3, the theories do not resemble magnetic
quivers of known 4d N = 2 theories. Nevertheless, they are magnetic quivers for 5d N = 1
theories. For the E6 folded family, the corresponding 5d theory is SU(k+ 1)±1 with 2k+ 2
flavours at infinite gauge coupling. The E4−2l folded family is a magnetic quiver of one of
the two cones of the Higgs branch of the 5d SU(k+1)± 1

2
with 2k−2l+1 flavours at infinite

gauge coupling. The E3−2l folded family is a magnetic quiver of one of the two cones of
the Higgs branch of the 5d SU(k+ 1)0 with 2k− 2l+ 1 flavours at infinite gauge coupling.

The HWGs in table 3 can be obtained by taking the Coulomb branch HWG of the
magnetic quiver before folding, see [18], and applying the projection (3.6)/(3.18), for the
global symmetries so(4n)/so(4n + 2) respectively. The HWGs of the folded quivers are
already computed in [23, 55–57].

5 Hasse diagrams

Hasse diagrams are useful tools for understanding the geometry of Higgs branches of various
supersymmetric gauge theories. In particular, for theories with 8 supercharges in 3, 4, 5, 6
dimensions, this is explored in detail in recent works [14, 15, 42, 49, 58–60]. Instead of
studying the Higgs branch of an electric theory directly, one can equivalently study the 3d
N = 4 Coulomb branch of the corresponding magnetic quiver(s). This allows one to obtain
the Hasse diagram using quiver subtraction [61]. Starting with a magnetic quiver, one can
systematically subtract quivers to find the different transverse slices and symplectic leaves
of the moduli space. The Coulomb branches of quivers one can subtract are elementary
slices. The most up to date list of such quivers can be found in [62, table 1] for unitary
quivers and in [15] for simply-laced orthosymplectic quivers. Here, the list is extended by
non-simply laced orthosymplectic quivers whose Coulomb branches are elementary slices.
These are summarised in table 4, for framed quivers giving closures of nilpotent orbits of
type A, and table 1, for unframed quivers.
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Figure 2. Hasse diagram of Osl(8)
(24) .

5.1 Maximal height 2 orbits

Quiver subtraction for orthosymplectic quivers. The rules for quiver subtraction
between unitary quivers are given in [61]. The general idea is to align two quivers and
subtract the respective gauge nodes Gi − G′i → G′′i such that rank(Gi) − rank(G′i) =
rank(G′′i ). The resulting gauge groups need to be rebalanced by adding flavours. For
orthosymplectic quivers, rules are given in [39].

From a brane perspective, subtracting orthosymplectic quivers for so(2n) orbits corre-
sponds to Kraft-Procesi transitions [49].5 It turns out that all one needs for a Kraft-Procesi
decomposition of the families of orthosymplectic quivers treated in this paper are the fol-
lowing subtraction guides [14], which apply to subtraction of special minimal nilpotent
orbits:

SO(2k)− SO(2r)→ SO(2k − 2r + 1), (5.1a)
SO(2k + 1)− SO(2r + 1)→ SO(2k − 2r + 1), (5.1b)

USp(2k)−USp(2r)→ USp(2k − 2r). (5.1c)

This means that one can subtract minimal nilpotent orbit closures of type an, dn, e6,7,8.
To begin with, focus on a framed orthosymplectic quiver explored in section 3. Tak-

ing (3.3) with n = 4, one obtains the Hasse diagram shown in figure 2. The quivers on the
5For general orthosymplectic quivers, while the rules for electric quiver subtractions are straightforward,

there are many complications when dealing with magnetic quivers, such as the choice of SO/O gauge groups,
and shifts between SO(odd) vs. SO(even) gauge nodes to obtain nodes of the desired dimensions and rank,
all of which make the recipe for subtraction quite involved.
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Figure 3. Hasse diagram for Osl(7)
(23,1).

right have Coulomb branches that are closures of the symplectic leaves denoted by . The
quivers on the left are the subtracted quivers, where the labeling an−1 means the Coulomb
branch is the closure of the minimal nilpotent orbit of sl(n). The result is consistent with
the Hasse diagram of the Osl(8)

(24) [63]. Considering (3.15), instead, for the case n = 3, the
Hasse diagram is shown in figure 3. This is the Hasse diagram for Osl(7)

(23,1) [63].

5.2 General families

Now, one performs quiver subtraction to obtain Hasse diagrams for the general families
tabulated in table 2. The only difference here is that the orthosymplectic quiver is un-
framed. The first non-simply laced quiver one subtracts are those in table 1 whose Coulomb
branches are also closures of minimal nilpotent orbits. The subtraction rules for unframed
orthosymplectic magnetic quivers are incomplete. However, the unframed orthosymplectic
quivers (before folding) are studied in [14, 15, 18, 25] where the Hasse diagrams are ob-
tained through transitions on brane webs. By observing those transitions, one realises that
the rules for subtracting the nodes for these families are the same as (5.1). The resulting
Hasse diagrams are again what one expects through quiver subtraction on their unitary
quiver counterparts. Below, the Hasse diagram is drawn for one example from each of the
families as the general Hasse diagram is already known from the unitary quivers and is
given in [59].

The examples for k = 3 are shown in figures 4, 5, 6, 7, 8, 9. In fact, for the entire E4−2l
and E3−2l families (l ≥ 1), the Coulomb branch of the first quiver to subtract is always
a Al = C2/Zl+1 Kleinian singularity given by a U(1) with l + 1 charge 2 hypermultiplets.
This identification follows from the rules of quiver subtraction established in [39, 59, 61].

We remark that the moduli spaces for the folded E6 and E5 families (third and fourth
rows in table 3) coincide with the classical Higgs branches of SQCD theories, specifically

– 25 –



J
H
E
P
1
2
(
2
0
2
1
)
0
7
0

10122 10

45 5 4 5 4 5

23 3 2 3 2 3

{1}

2 4

2 3

2 2

2 2

1

6 6 4 4 2 288

682 6 2 244 1

23 3 2 3 2 3 2 2

1

23 3 2 3 2 3 2 3 2 2

1

e7

a9

a11

Figure 4. Hasse diagram of the folded E8 family for k = 3.
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Figure 5. Hasse diagram of the folded E7 family for k = 3.
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Figure 6. Hasse diagram of the folded E6 family for k = 3.
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Figure 8. Hasse diagram of the folded E4−2l family for k = 3 and l = 1.

SU(k+ 1) gauge theories with respectively 2k+ 3 and 2k+ 2 fundamental hypermultiplets.
Therefore these can be realized as hyper-Kähler quotients.

6 Brane configurations

Inspired by the results above, one can study the respective brane configurations that give
rise to the non-simply laced orthosymplectic quivers. This section focuses only on the
framed orthosymplectic quivers of section 3. The quiver gauge theories are 3d N = 4
effective field theories living on D3 branes that are stretched between 5-branes in the
presence of orientifold planes.

To begin with, consider the magnetic quiver in figure 10, whose Coulomb branch is
the next-to-minimal nilpotent orbit of sl(2n). The brane configuration is presented on the
right. By inserting O3 planes, one produces an orthosymplectic quiver that is the minimal
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Figure 9. Hasse diagram of the folded E3−2l family for k = 3 and l = 1.

nilpotent orbit of so(2n). One can insert an O5+ plane in the centre in combination
with the presence of the O3 planes.6 An ON+ plane then sits at the intersection of the
two orientifolds [64]. The proposal is that the resulting brane configuration is the folded
orthosymplectic quiver whose Coulomb branch is the minimal nilpotent orbit of sl(n),
which is expected as the gauge theory on 2k D3 branes between two NS5 branes in the
presence of this intersection of orientifolds is U(k) [65, 66]. This shows the insertion of O3
and O5 branes is a commutative process.

Similarly, one can start with the sl(2n) unitary quiver and insert an O5+ plane in
the middle. This creates a non-simply laced unitary quiver [1] whose Coulomb branch is
the next-to-minimal orbit of usp(2n). Inserting O3 planes after that reproduces the same
folded orthosymplectic quiver as above.

6.1 Generalisation of height two quivers

The above procedure can be generalised by starting with a unitary quiver whose Coulomb
branch is the closure of a general height 2 sl(2n) nilpotent orbit.

n even. For the maximal height 2 orbit of sl(2n) the partition is (2n). Adding O3 planes
to the brane configuration produces the orthosymplectic quiver in (3.1) whose Coulomb
branch is (one of the two identical cones) of the (2n) orbit of so(2n). Adding O5 planes
then yield the folded orthosymplectic quiver (3.3) whose Coulomb branch is the

(
2n2
)
orbit

of sl(n). This process is demonstrated in figure 11.
The remaining height 2 orbits of sl(2n) are identified by the partition (2k+1, 12n−4k−2)

with n > 2k. Adding an orientifold produces the orthosymplectic quiver in (3.7) whose
Coulomb branch is the closure of (22k, 12n−4k) orbit of so(2n). Adding an O5+ plane

6One can also insert O5− plane which will give a B-type non-simply laced orthosymplectic quiver. Such
quivers will be studied in detail somewhere else.

– 28 –



J
H
E
P
1
2
(
2
0
2
1
)
0
7
0

1 2 2 2 2 2 2 2 1

1 12

10

2 2 2 2 1

1O(2)

USp(10)

2 2 3 2 3 2 2

1 1USp(2)

SO(10)

2 3 2 2

11

5

O5+

O5+

O3+

O3+

Figure 10. The commutative diamond represents the construction of the non-simply laced or-
thosymplectic quiver. Vertical lines depict D5 branes, circles with crosses NS5 branes, and horizon-
tal lines D3 branes. The vertical green line depicts an O5+ plane, the horizontal dotted line an O3+

plane, the horizontal dashed line an Õ3+ plane, and the orange circle with a cross an ON+ plane.
Electric (left) and magnetic (below) quivers for the brane systems are provided. The magnetic
quivers are most conveniently read after suitable Hanany-Witten transitions. The O5+ insertion
on the left is the brane realisation of what is called folding in [5].

reproduces (3.9) whose Coulomb branch is the closure of (2k, 1n−2k) orbit of sl(n). This
process is demonstrated in figure 12.

n odd. For sl(2n) and n odd, height 2 orbits are identified by the partition (22k+1, 12n−4k−2)
for n ≥ 2k+1. Putting O3 planes reproduces (3.13) for n = 2k+1 and (3.19) for n > 2k+1
whose Coulomb branches are closures of (2n−1, 12) and (22k−1, 12n−4k+2) nilpotent orbits of
so(2n) respectively. Adding an O5+ plane gives the folded orthosymplectic quiver in (3.15)
and (3.20) whose Coulomb branches are the closure of the

(
2n−1

2 , 1
)
and (2k, 1n−2k) orbit

of sl(n) respectively. This process is demonstrated in figure 13.

6.2 Kraft-Procesi transitions

In section 5, the different phases of a quiver theory are studied via the Hasse diagram.
The phase diagram can be explicitly derived via Kraft-Procesi transitions [49] in a brane
configuration. For concreteness, consider the brane configuration at the top of figure 14,
which displays a Higgs branch phase of the D3-D5-NS5 system. The corresponding mag-
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Figure 11. The even n case. The Coulomb branch of the top quiver is the sl(2n) nilpotent orbit
closure with partition (2n). With the addition of O3+ planes, the following orthosymplectic quiver
is the so(2n) nilpotent orbit closure with partition (2n). Finally, adding O5+ planes, the resulting
non-simply laced orthosymplectic quiver is obtained. This quiver has a unitary counterpart on the
right whose Coulomb branch is the sl(n) nilpotent orbit closure of partition

(
2 n

2
)
.

netic quiver for this Higgs branch is displayed on the left and describes the closure of the
maximal height 2 orbit of sl(6). A Kraft-Procesi transition is realised by moving a full
D3 brane onto the O3 plane such that the D3 can split on the NS5 branes. The D3 seg-
ment, which is solely suspended between NS5 branes, gives rise to an electric theory that
characterises the KP transition via its Higgs branch. In other words, this is the transverse
slice and the associated magnetic quiver is depicted next to the arrow in figure 14. Moving
this D3 brane segment along the NS5 branes implies that this modulus has left the Higgs
branch and entered the Coulomb branch. The remaining brane configuration, displayed
at the centre of figure 14, has an associated magnetic quiver which accounts for the sym-
plectic leaf below the top. The next KP transition proceeds as before, segments of full D3
branes are aligned and moved onto the O3 plane such that the resulting D3 can split on the
NS5 brane. The Higgs branch of the electric theory characterises the transverse slice and
figure 14 displays the associated magnetic quiver. After moving this D3 onto the Coulomb
branch, the remaining parts of the Hasse diagram are obtained by repeating KP transition
until all D3 branes are moved onto the Coulomb branch. Since there are no Higgs branch
moduli left, the magnetic quiver is trivial. This is the trivial symplectic leaf of the Hasse
diagram.

The Kraft-Procesi transitions are almost identical to those in [49] and, therefore, are
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4 2 2
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Figure 12. The even n case. The Coulomb branch of the top quiver is the sl(2n) nilpotent
orbit closure with partition (22k+1, 12n−4k−2). With the addition of O3+ planes, the following
orthosymplectic quiver is the so(2n) nilpotent orbit closure with partition (22k, 12n−4k). Finally,
adding O5+ planes, the resulting non-simply laced orthosymplectic quiver is obtained. This quiver
has a unitary counterpart on the right whose Coulomb branch is the sl(n) nilpotent orbit closure
of partition (2k, 1n−2k).
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Figure 13. The odd n case. The Coulomb branch of the top quiver is the sl(2n) nilpotent orbit
closure with partition (22k+1, 12n−4k−2). With the addition of O3+ planes, the following orthosym-
plectic quiver is the so(2n) nilpotent orbit closure with partition (22k−1, 12n−4k+2). Finally, adding
O5+ planes, the resulting non-simply laced orthosymplectic quiver is obtained. This quiver has
a unitary counterpart on the right whose Coulomb branch is the sl(n) nilpotent orbit closure of
partition (2k, 1n−2k).

only shown for one example. The only complication is that the presence of both O3 and
O5 planes fixes the ON plane.

7 Conclusion and outlook

In this article, the folding of orthosymplectic quivers, both framed and unframed, has been
studied. In the case of framed orthosymplectic quivers, whose Coulomb branches are so(2n)
nilpotent orbit closures of height 2, folding gives non-simply laced quivers whose Coulomb
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1
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1

2
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1

{1}

a1

a3

a5

Figure 14. Deriving the Hasse diagram via quiver subtraction and Kraft-Procesi transitions.
The left-hand side details the quiver subtraction algorithm; while the right-hand side shows the
corresponding Kraft-Procesi transitions in the brane configurations. The notation for the branes
and O3 planes follows [49]. The branes colored in magenta correspond to the subtracted figures on
the left side.
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Type J ′ J J∨ Dynkin Labels of J ′
Standard Gr

∨ Gr Gr
∨ [n1, . . . , nr]

Twisted AIodd A2r−1 Dr Dr [n1, . . . ,M,A,M, . . . , n1]
Twisted AIIodd A2r−1 Cr Br [n1, . . . , nr−1, nr, nr−1, . . . , n1]
Twisted Aeven A2r Br Cr [n1, . . . , nr, nr, . . . , n1]
Twisted D Dr+1 Br Cr [n1, . . . , nr, nr]

Table 5. Types of Twisted Puncture. The maps express the Dynkin labels [n′] of J ′ in terms of
the Dynkin labels [n] of J∨. Here M ≡ Min[nr−1, nr] and A ≡ Abs[nr−1 − nr]. The notation for
twisted Aodd punctures is adapted from [71, 72].

branches are sl(n) nilpotent orbit closures of height 2. Amongst unframed orthosymplectic
quivers, the magnetic quivers of the 5d En families discussed in [15] have been treated.
The Coulomb branches of the folded quivers have known unitary quiver counterparts, and
in some cases are magnetic quivers for known 5d N = 1 or 4d N = 2 theories. The
brane systems studied alternatively allow for Õ5+ and O5− orientifold planes, giving rise
to orthosymplectic quivers of B and D type. We leave the study of these quivers for
future work. It would furthermore be interesting to study five-brane webs including O5
and O7+ orientifold planes, which are expected to yield the unframed non-simply laced
orthosymplectic magnetic quivers studied in this work.
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A Hall Littlewood polynomials and star shaped quivers

We can calculate the Coulomb branch Hilbert series of many 3d N = 4 unframed unitary
and/or orthosymplectic star shaped quivers Q(J), that are characterised by a central node
with gauge group J , by gluing resolved Slodowy slices. The procedure depends upon being
able to identify the linear quivers that form the legs of the star shaped quiver as Slodowy
slices; these may be transverse to orbits in the GNO dual group J∨, or in a twist related
simply laced dual J ′, as discussed later, see table 5. This correspondence between linear
quivers and Slodowy slices draws on the Barbasch-Vogan map and related dualities, as
elaborated in [39, 67]. The pairings for low rank Classical groups are tabulated in [67], and
can in principle be extended to higher rank.

Recall that, for any Lie group G, nilpotent orbits are labeled by homomorphisms
ρ : SU(2) → G, which correspond to partitions. The Slodowy slice SGN ,ρ transverse to
the closure of the nilpotent orbit Oρ defines a decomposition G → F (ρ) ⊗ SU(2), where
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F (ρ) is the centralizer of the image of ρ in G. This partition ρ thus determines a fugacity
map x→ (y, t), where the x and y are Cartan subalgebra (CSA) fugacities for G and the
subgroup F (ρ) ⊆ G, respectively, and t is a CSA fugacity for the SU(2). This fugacity map
is unique up to Weyl group transformations. The Slodowy slice transforms under F (ρ).

The Hilbert series for a Slodowy slice can be found from the branching of the adjoint
representation of G under ρ:

χG[adjoint](x) =
⊕

[n],[m]
an,m

(
χ

SU(2)
[n] ⊗ χF[m](y)

)
, (A.1)

where the an,m are branching coefficients. The HS is obtained from (A.1) by (i) replacing
the SU(2) characters by highest weight fugacities [37], χSU(2)

[n] → tn, (ii) symmetrising the
representations of F (ρ) under a grading by t2, and (iii) taking a quotient by the Casimirs
of G. This leads to the refined and unrefined HS:

g
SGN ,ρ
HS (y, t) = PE

 ⊕
[n],[m]

an,m χF[m](y)tn+2 −
r∑
i=1

t2di

 ,
g
SGN ,ρ
HS (1, t) = PE

[∑
n

ant
n+2 −

r∑
i=1

t2di

]
,

(A.2)

where the di are the degrees of the Casimirs of G. Further details on the construction of
slices can be found in [67].

Developing the methods of [38], we now introduce resolved Slodowy slices, SGN ,ρ,[n],
which carry background charges [n] parameterised by the Dynkin labels of G, as described
in [39, appendix B]. These are related to uncharged slices (which effectively carry singlet
charges) by a quotient of Hall Littlewood polynomials [68] under the fugacity map for ρ:

g
SGN ,ρ,[n]
HS (y, t) ≡ g

SGN ,ρ
HS (y, t)

HLG[n](x, t)
HLG[0](x, t)

∣∣∣∣∣
ρ: x→(y,t)

. (A.3)

The above considerations are quite general and apply to any Lie group G.
Returning to our star shaped quiver Q(J), let us assume that we can identify its k legs

with a set of Slodowy slices SJ∨N ,ρ(i), where i ∈ {1, . . . , k}. The partitions ρ(i) determine
fugacity maps x→ (y(i), t). Given such a set of slices, we can apply charges [n] to these
slices and carry out gluing [38] by summation over the weight lattice of J∨. We obtain the
following Hilbert series:

g
Q(J)
HS (y(1), . . . ,y(k), t) =

∑
[n]∈ΓJ∨/W∨

P J
∨

[n] t
2∆[[n]]︸ ︷︷ ︸

central term

k∏
i=1

Tρ(i),[n](J). (A.4)

Here, the symmetry factors P J∨[n] match the P (t;m) terms that appear in the monopole
formula (2.2), being related by the map between the magnetic weight lattice charges m
in the orthogonal basis of J∨, and the weight lattice charges [n] in the Dynkin label or
ω-basis [69, 70]. The term ∆[[n]] equals the conformal dimension contribution ∆vec(m),

– 35 –



J
H
E
P
1
2
(
2
0
2
1
)
0
7
0

as in figure 1.7 Each leg, described by the remaining terms, corresponds to the Coulomb
branch of a theory of type T (J) carrying external charges, expressed as a Slodowy slice:

Tρ(i),[n](J) = t−∆[[n]] g
SJ∨N ,ρ(i),[n]
HS (y(i), t)︸ ︷︷ ︸

slices

. (A.5)

The Hilbert series gQ(J)
HS transforms in the product group ⊗

i
F (ρ(i)) (before possible symme-

try enhancement) and matches that of the Coulomb branch of the star shaped quiver Q(J).

Selection rule. Not every collection of slices yields a well formed Hilbert series wherein
all the fields (other than the singlet at its origin) have positive conformal dimension,
∀n 6= [0] : ∆ [[n]] > 0. The selection rule can be formulated in terms of the weights asso-
ciated with each slice by the partitions ρ(i) and their contribution to the overall charges
carried by t. Thus, each fugacity map x→ (y(i), t) incorporates a weight map ω(i) that
assigns R-charges to the CSA fugacities x, viz ω(i) : {x1, . . . , xr} → {tω1(i), . . . , tωr(i)} [67].
Collecting terms that contribute to conformal dimension (via exponents of t) from (A.4)
and (A.5) we find a selection rule that requires:

ω(Q) ≡ −2 ω(reg.) +
k∑
i=1

(ω(reg.)− ω(i)) >
strict

0, (A.6)

where ω(reg.) is the weight map associated with the zero dimensional regular slice, and
the inequality requires that all the entries of the weight vector ω(Q) should be greater
than zero.

For example, consider the quiver with E7 global symmetry in table 2. We can read
from [18, figure 25] that this comprises slices to orbits with D-partitions ρ = (16), (16) and
(3, 13). Using the nilpotent orbit data in [41, appendix B], we find that these correspond to
weights [0, 0, 0], [0, 0, 0] and [2, 1, 1], and that the weight map for the regular slice is [4, 3, 3].
We obtain,

ω(Q) = −2[4, 3, 3] + 2([4, 3, 3]− [0, 0, 0]) + ([4, 3, 3]− [2, 1, 1])
= [2, 2, 2].

(A.7)

This is strictly greater than [0, 0, 0], so ω(Q) is the weight vector of a good quiver.

Integer and fractional integer lattices. The regular summation over resolved slices
in (A.4) is carried out over the entire weight or Dynkin label lattice [n] ∈ ΓJ∨/W∨ of the
GNO dual group J∨ of the central quiver node. This corresponds to the combination of
integer and half integer lattices as in [18]. When J∨ is special orthogonal, the summation
can be restricted to correspond to the integer lattice by the simple expedient of restricting
the summation over the weight lattice to exclude irreps from spinor lattices, i.e. to exclude
those [n] where the sum of spinor Dynkin labels is odd.

7Alternatively, ∆[[n]] can be found directly, either from the weight map [41] associated to the nilcone of
J∨, as ∆[[n]] = −[n] ·ω(N ), or from the Cartan matrix A∨ and Weyl vector 1, as ∆[[n]] = −2[n] ·A∨−1 ·1.
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Non-simply laced fixtures. The above formulae (A.4) to (A.6) can be extended to
calculate refined Coulomb branch Hilbert series from quivers with one or more non-simply
laced legs by the expedient of applying a multiple [m(i)n] of the Dynkin label charges [n]
to each leg, according to the multiplicity m(i) of the non-simply laced link i in the quiver
diagram [68]. Thus, (A.5) becomes:

Tρ(i),[m(i)n](J) = t−∆[[m(i)n]] g
SJ∨N ,ρ(i),[m(i)n]
HS (y(i), t), (A.8)

and the selection rule (A.6) is modified to reflect the higher Dynkin label charges on the
non-simply laced quiver legs:

ω(Q) ≡ −2 ω(reg.) +
k∑
i=1

m(i) (ω(reg.)− ω(i)) >
strict

0. (A.9)

In a sense, the folding of m magnetic quiver legs Tρ,[n](J) corresponds to the creation of a
single leg Tρ,[mn](J) carrying charges in the m-th symmetrisation of the charges carried by
the original quiver leg.

Twisted fixtures. The foregoing applies to magnetic quivers for standard fixtures, where
all the slices are transverse to orbits from the same symmetry group J∨. Quivers can also
be constructed for “twisted” fixtures, where some of the punctures are represented by
slices from a different symmetry group J ′ (being always simply laced and generally of
different rank), which are “twisted” to fit the weight lattice of the J∨ symmetry group.
Compatibility requirements between the lattices of J∨ and J ′ mean that only certain pairs
of groups can be related by such twists.

To accommodate twisted quivers, equations (A.4) and (A.5) require modification. We
set the terms for a twisted puncture to contain a conformal dimension contribution and
slice drawn from J ′:

Tρ(i),[n′](J ′) = t−∆′[[n′]] g
SJ′N ,ρ(i),[n′]
HS (y(i), t). (A.10)

1. We identify the partition ρ(i) from amongst the orbits of J ′, based on the quiver
diagram, so that the resolved slices SJ ′N ,ρ(i),[n′] belong to the twisted group.

2. We also need to identify the “twisted” map [n] → [n′] between the Dynkin labels
of J∨ and those of J ′, and use this to express the ∆′[[n′]] contribution to conformal
dimension in terms of [n].

Various types of twist are encountered when dealing with mixed unitary and orthosym-
plectic quivers. These are tabulated in table 5, along with the maps between the Dynkin
labels of J ′ and J∨ that are necessary in order to carry out the summation over the J∨
lattice.

The twisted A2r−1 fixtures analysed in sections 2.3 and 4 contain a J ′ = A2r−1 linear
quiver affixed to a star shaped quiver with J = Cr and J∨ = Br. For example, consider the
quiver in table 1 whose Coulomb branch is the minimal orbit of E6. We can read from [18,
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table 20] that this comprises two slices to orbits with the B-partitions ρ = (15) and a slice
to the orbit with A3 partition (3, 1). Using the nilpotent orbit data in [41, appendix B], we
find these correspond to B2 weights [0, 0] and A3 weights [2, 2, 2], respectively. The weight
map for the regular slice of B2 is [4, 3] and that for A3 is [3, 4, 3]. So,

ω(Q) = −2[4, 3] + 2([4, 3]− [0, 0])︸ ︷︷ ︸
Dynkin Labels [n1,n2]

+ ([3, 4, 3]− [2, 2, 2])︸ ︷︷ ︸
Dynkin Labels [n1,n2,n1]

= [1, 2, 1]︸ ︷︷ ︸
Dynkin Labels [n1,n2,n1]

= [2, 2]︸ ︷︷ ︸
Dynkin Labels [n1,n2]

.

(A.11)

Application of the selection rule shows ω(Q) is strictly positive and therefore the weight
vector is that of a good star shaped quiver. The summation is carried out over the B2
Dynkin label lattice [n1, n2]. Only A3 slices with Dynkin labels of the form [n1, n2, n1]
contribute to the summation.

Alternatively, consider the quiver in table 1 whose Coulomb branch is the minimal
orbit of D5. This comprises two slices to orbits with the D-partitions ρ = (14) and a slice
to the orbit with A3 partition (3, 1). Using the nilpotent orbit data in appendix B of [41],
we find these correspond to D2 weights [0, 0] and A3 weights [2, 2, 2], respectively. The
weight map for the regular slice of D2 is [1, 1] and that for A3 is [3, 4, 3]. So,

ω(Q) = −2[1, 1] + 2([1, 1]− [0, 0])︸ ︷︷ ︸
Dynkin Labels [n1,n2]

+ ([3, 4, 3]− [2, 2, 2])︸ ︷︷ ︸
Dynkin Labels [M,A,M ]

= [1, 2, 1]︸ ︷︷ ︸
Dynkin Labels [M,A,M ]

.
(A.12)

The contribution to conformal dimension from ω(Q) is positive for [n1, n2] 6= [0, 0], and
so application of the selection rule shows that the weight vector is that of a good star
shaped quiver. The summation is carried out over the D2 weight lattice [n1, n2]. Only A3
slices with Dynkin labels of the form [M,A,M ] are involved, where M = Min[n1, n2] and
A = Abs[n1 − n2].

It is clearly possible to construct fixtures that combine features of twists, non-simply
laced legs and/or sub-lattices. Further discussion of such fixtures is left for future work.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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