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Chapter 1
Introduction

A rapidly emerging trend in machine learning is the consolidation of the field around
a limited set of methods tailored towards scalability, versatility, and simplicity. The
surge of sequence models is one of the most prominent architectural shifts that has
been driven as a result of these priorities.

The growth in popularity of these models — alongside the realisation that larger
models tend to exhibit better performance on tasks, as well as entirely new capabilities
— has led to massive investment in systems to support training at scale. These easy-to-
use and extensible toolkits for sequence models enabled rapid experimentation across
the machine learning research community and has given rise to new instantiations of
sequence models that extended beyond language and into domains like vision, audio,
graph structured data, and tabular data.

Alongside the investment in systems and infrastructure, there has been an invest-
ment in methods for the collection and curation of large-scale datasets of sequence
data. A similar observation of scale positively influencing performance on tasks and
capabilities has been made in terms of the scale and cleanliness of data collected.

Key to realising the progress of recent years has been the pursuit of answering
two questions:

1. How do we scale up our models?

2. How do we scale up our data?

This thesis contributes new methods for scaling sequence models as well as their
data, and pursues their application on domains outside of the common webtext setting.
It includes the following eight works, four of which have been published previously:

o Chapter B — Learning Sparse Networks Using Targeted Dropout
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o Chapter H — Training Neural Networks in Low-Rank Subspaces
e Chapter E — SliceOut: An Efficient Dropout Alternative

e Chapter E — Asynchronous Reversible Component Networks

e Chapter ﬁ — Interlocking Backpropagation (JMLR, 2022)

e Chapter E — Inter-example Attention for Transformers Applied to Tabular Data
(NewrIPS, 2021)

e Chapter E — Prioritized training on points that are learnable, worth learning,
and not yet learned (ICML, 2022)

o Chapter @ — Disease Variant Prediction with Deep Generative Models of Evo-
lutionary Data (Nature, 2021)

The chapters are structured so that we begin by introducing methods focused on
increasing the efficiency of training and serving to support scaling models (Chapters

), and we close with methods focused on data efficiency and new data domains
to support scaling data (Chapters EE) Most chapters_are entirely distinct and
introduce independent techniques, however Chapters Bpand were written in sequence
and the former inspired the development of the latter, which is discussed in the
conclusion of the former and introduction of the latter.

The intent of this body of work is to accelerate the pace of compelling and coherent
artificial intelligence by providing a collection of methods that can be exploited to
enable faster and more effective scaling of both model and data.



Chapter 2
Background

In this chapter, I will give a brief tour of how the Transformer (Vaswani et all, 2017D)
came to be and why the present-day preoccupation of the field has turned towards
large models and unsupervised learning — setting the stage for the contributions of
this thesis and motivating focus on advancing methods in modelling and data in the
sequence learning regime.

Many commonly used modalities of data are naturally sequential in nature. Lan-
guage, audio, video, and financial data all have sequential structure as a consequence
of their temporality. However, up until fairly recently, the sequential structure of
this data would most often be discarded and models would simply learn to perform
tasks based on features that neglect item ordering.

These models — referred to as “bag-of-words” models because of all the words in
a sequence being tossed into a bad and shaken up, losing their ordering — had been a
difficult baseline to beat. Their simplicity and speed lent themselves extremely well to
production scenarios with low latency tolerances, and so, as alternative methods that
did incorporate temporal information arose they had to prove significant gains in task
performance to justify the increase in computational cost associated with modelling
these temporal dependencies.

In a domain such as language — where the placement or misplacement of a word
can fundamentally alter the meaning of a sentence — bag-of-words models inevitably
were not able to compete with modelling techniques that accounted for temporal de-
pendence. The first category of neural network to incorporate temporal dependence
and win popularity in the field were Recurrent Neural Networks (RNNs), and the
most popular architecture within this category is the Long Short-Term Memory unit
(LSTM) (Hochreiter & Schmidhuber, 1997). LSTMs set new records on many lan-
guage tasks including classification and modelling, and established themselves as the
standard model for language, audio, and time series data.



Despite these promising results, LSTMs had significant limitations that hindered
their use and utility. First, LSTMs were tedious to train; they were sensitive to hy-
perparameters such as learning rate and initialisation scale and exhibited significant
training instability; models would frequently diverge during training if parameters
weren’t properly chosen, or wouldn’t train due to the vanishing gradients problem
caused by the deep compute graphs of backpropagation through time. Second, the
architecture cannot be naively parallelised across the length of an input sequence,
instead processing each item in the sequence one-by-one, in order. Third, the ar-
chitecture lacks a mechanism for directly referencing prior elements of a sequence,
instead relying on an internal memory that the model must learn to utilise. While
methods arose that sought to alleviate each of these limitations, their adoption was
inconsistent and/or inadequate to fully resolve the friction of using LSTMs.

In late 2016, a series of papers by Nal Kalchbrenner and Aaron van den Oord, et
al. thrust fully autoregressive models into the spotlight. Autoregressive models in
this context refer to the class of neural network architectures which, at each point
in a sequence, give the model direct access to all previous elements, i.e. modelling
sequences by modelling the terms in the chain rule expansion of the sequence p(X) =
p(Xo)p(X1|Xg) - - (XNl Xpnrq...., Xg). WaveNet (van den Oord et all, 2016a),
ByteNet (Kalchbrenner et al), 2016a), and PixelCNN (van den Oord et al), 2016b)
introduced methods for efficiently training autoregressive models in the domains of
audio, language, and vision respectively.

A key innovation was the efficient implementation of a fully parallel decoding
mechanism that combined teacher-forced decoding with masking to ensure full paral-
lelisability without risking the model learning to cheat at the task by referencing the
teacher-forcing targets. Teacher-forced autoregressive decoding is when the model is
given access to the ground-truth target sequence Y and instead of conditioning the
generation of each element on the previously predicted elements, the model conditions
on the ground-truth sequence itself. That is, instead of modelling conditioned on the
model’s own predictions

xo ~ p(Xop)
x; ~ p(X1|zop)

N ~ p(XN|m09 ) wal)
we model conditioned on the target sequence yg, ..., YN
zp ~ p(Xo)

x; ~ p(X1|yo)

IN ~ p(Xleo, ceey nyl)'

This removes any dependencies between the samples and allows all to be executed in
parallel.



In January of 2017, I joined Google Brain as an intern to work with Lukasz Kaiser.
Lukasz had been closely following the progress of Nal and Aaron’s projects and was
eager to build better software frameworks to support the training of autoregressive
models. In collaboration with Lukasz and many others, Tensor2Tensor (Vaswani
et al|, 2018) was written to be a domain-agnostic distributed neural network training
framework incorporating the latest methods for improving model performance and
optimisation stability.

Early on in the development of Tensor2Tensor, Lukasz and I were joined by col-
leagues Jakob Uszkoreit, Noam Shazeer, Ashish Vaswani, Niki Parmar, and Llion
Jones who had begun exploring autoregressive attention models for text. Progress
over the next three months resulted in the development of the Transformer model ar-
chitecture and the publication of Attention Is All You Need (Vaswani et al., 2017h).

The Transformer architecture features a simple stack of identically structured
layers; each layer is composed of an attention block followed by a depth-1 MLP,
both wrapped in residual connections. The model is trained using teacher-forcing
with autoregressive masking on the attention matrix, allowing the model to perform
decoding fully-parallel in the sequence dimension during training.

Soon after the Transformer architecture had been released, its results in transla-
tion drew enough interest from the community to spur experimentation applying the
architecture across a range of NLP problems including language modelling and repre-
sentation learning. The two most well-known Transformer training methods are GPT
(Radford et al), 2019a) and BERT (Devlin et al|, 2018). GPT models are trained us-
ing a left-to-right autoregressive language modelling objective and are typically used
to generate compelling language in production applications like assisted copywriting,
summarisation, and code generation. BERT models are trained to predict masked
inputs with no autoregressive constraints and are typically used to learn represen-
tations of language for use in downstream ML systems such as classifiers or search
applications.

2.1 The scaling project

The original “big” Transformer models (intended for natural language translation) had
approximately two-hundred million parameters and were trained on a single machine
with eight Nvidia P100 GPUs for a few days. With the benefit of hindsight, this paltry
deployment of compute highlights the limited support for model-based parallelism
that existed at the time of the Transformer’s development.

Not long after the model’s release, Lukasz and Noam set about applying the
Transformer to language modelling (Liu et al,, 2018a) and proposed the decoder-only
Transformer variant that would become the backbone of the GPT class of models.
Around the same time, engineers within Google began collaboration with a team from



OpenAl to support their development of the first GPT. Noam assisted the OpenAl
team in developing a training framework for large-scale models — back-boned by Mesh
Tensorflow (Shazeer et all, 2018), a library for width-wise model parallelism developed
by Noam for distributing a neural network across a large number of accelerators.

The result of this scaling, GPT (Radford et al., 2018), posited that unsupervised
generative pretraining may allow the model to learn desirable “skills” from the data
that enable the model to better solve downstream tasks. A hypothesis partially
confirmed in the paper by exploring zero-shot performance of the pretrained model;
and overwhelmingly confirmed by the follow-ups GPT-2 (Radford et al., 2019a) and
GPT-3 (Brown et al), 2020a) which scaled to a maximum of 175B parameters — one
thousand times larger than the original “big” Transformer model. This model scaling
effort is the focus of Chapters -B.

In the years since GPT-3, the generality and power of these models has led to a
wealth of applications and a surge of interest from industry and academia in contin-
uing the scaling project and realising the full potential of large scale models trained
on massive corpuses of web-scraped unsupervised data. The next section discusses
the importance of this data.

2.2 Data’s neglect

While model scaling has been heavily pursued and communicated by large industrial
players, the web-scraped data these models are trained on have been scarcely discussed
publicly. Despite the lack of attention, the quality and scale of data can have a
dramatic impact on the quality of the trained model.

Web-scraped data is riddled with noise, redundancy, and toxicity. These patholo-
gies present a challenge for models as they are compromised by noise that corrupts
training gradients, redundancy that biases the model towards phrases that are rarely
uttered outside of the web context, and toxicity that makes models unsafe to deploy
in many scenarios.

Recent work (Hoffmann et al., 2022) has shown that most large models trained
to date have been severely under-trained in terms of observed data. While most
organisations were focussed on scaling models in terms of parameters to maximise
performance, they neglected the impact of scaling data alongside scaling the model.
These new observations spur a focus on data and the importance of its cleanliness,
abundance, and diversity. The importance of data is the focus and motivation for
Chapters @



Chapter 3

Learning Sparse Networks
Using Targeted Dropout

Serving models with billions of parameters can incur significant cost due to the amount
of accelerator memory necessary to hold the models. Sparse modelling techniques
can substantially alleviate these memory burdens, however, they’re often extremely
complicated techniques that require significant modifications to the model and it’s
training. In this work, we present a regularisation scheme that is trivial to implement
and is competitive with state of the art sparsity inducing techniques.

The following work is an excerpt from Gomez et al| (2019) and has received nu-
merous citations since release. This is work done in collaboration with Ivan Zhang,
Siddhartha Rao Kamalakara, Divyam Madaan, Kevin Swersky, Yarin Gal, and Ge-
offrey Hinton. In this project I was the source of the idea for a simpler pruning
technique, led experiment design and execution, and supervised the experimental
contribution of the rest of the team.

Neural networks are a powerful class of models that achieve the state-of-the-art
on a wide range of tasks such as object recognition, speech recognition, and machine
translation. One reason for their success is that they are extremely flexible models
because they have a large number of learnable parameters. However, this flexibility
can lead to overfitting, and can unnecessarily increase the computational and storage
requirements of the network.

There has been a large amount of work on developing strategies to compress
neural networks. One intuitive strategy is sparsification: removing weights or entire
units from the network. Sparsity can be encouraged during learning by the use of
sparsity-inducing regularisers, like L' or L penalties. It can also be imposed by
post hoc pruning, where a full-sized network is trained, and then sparsified according
to some pruning strategy. Ideally, given some measurement of task performance, we
would prune the weights or units that provide the least amount of benefit to the



task. Finding the optimal set is, in general, a difficult combinatorial problem, and
even a greedy strategy would require an unrealistic number of task evaluations, as
there are often millions of parameters. Common pruning strategies therefore focus
on fast approximations, such as removing weights with the smallest magnitude Han
et al| (2015b), or ranking the weights by the sensitivity of the task performance with
respect to the weights, and then removing the least-sensitive ones LeCun et al, (1990).
The hope is that these approximations correlate well with task performance, so that
pruning results in a highly compressed network while causing little negative impact
to task performance, however this may not always be the case.

Our_approach is based on the observation that dropout regularisation (Hinton
et al, 2012; Srivastava et al., 2014b) itself enforces sparsity tolerance during training,
by sparsifying the network with each forward pass. This encourages the network to
learn a representation that is robust to a particular form of post hoc sparsification —
in this case, where a random set of units is removed. OQur hypothesis is that if we plan
to do explicit post hoc sparsification, then we can do better by specifically applying
dropout to the set of units that we a priori believe are the least useful. We call this
approach targeted dropout. The idea is to rank weights or units according to some
fast, approximate measure of importance (like magnitude), and then apply dropout
primarily to those elements deemed unimportant. Similar to the observation with
regular dropout, we show that this encourages the network to learn a representation
where the importance of weights or units more closely aligns with our approximation.
In other words, the network learns to be robust to our choice of post hoc pruning
strategy.

The advantage of targeted dropout as compared to other approaches is that it
makes networks extremely robust to the post hoc pruning strategy of choice, gives
intimate control over the desired sparsity patterns, and is easy to implement, consist-
ing of a two-line change for neural network frameworks such as Tensorflow (Abadi
et al., 2015) or PyTorch (Paszke et al| 2017). The method achieves impressive spar-
sity rates on a wide range of architectures and datasets; notably 99% sparsity on the
ResNet-32 architecture for a less than 4% drop in test set accuracy on CIFAR-10.

3.1 Background

In order to present targeted dropout, we first briefly introduce some notation, and
review the concepts of dropout and magnitude-based pruning.

3.1.1 Notation

Assume we are dealing with a particular network architecture. We will use 6 € ©
to denote the vector of parameters of a neural network drawn from candidate set O,



with |0| giving the number of parameters. 29 denotes the list of weight matrices in a
neural network parameterised by 8, accordingly, we will denote W € (29 as a weight
matrix that connects one layer to another in the network. We will only consider
weights, ignoring biases for convenience, and note that biases are not removed during
pruning. For brevity, we will use the notation wo, = W. , to denote the weights
connecting the layer below to the ot! output unit (i.e. the ot? column of the weight
matrix), N¢o1(W) to denote the number of columns in W, and Nyow (W) to denote
the number of rows. Each column corresponds to a hidden unit, or feature map in the
case of convolutional layers. Note that flattening and concatenating all of the weight
matrices in 29 would recover 6.

3.1.2 Dropout

Our work uses the two most popular Bernoulli dropout techniques, Hinton et al.’s
unit dropout (Hinton et all, 2012; Srivastava et al), 2014h) and Wan et al.’s weight
dropout (dropconnect) (Wan et al), 2013). For a fully-connected layer with input
tensor X, weight matrix W, output tensor Y, and mask M ~ Bernoulli(1 — «) we
define both techniques below:

Unit dropout (Hinton et all, 2012; Srivastava et al), 2014b):
Y= (X®MW

Unit dropout randomly drops units (often referred to as neurons) at each training
step to reduce dependence between units and prevent overfitting.

Weight dropout (Wan et al/, 2013):
Y = X(W @ M)

Weight dropout randomly drops individual weights in the weight matrices at each
training step. Intuitively, this is dropping connections between layers, forcing the
network to adapt to a different connectivity at each training step.

3.1.3 Magnitude-based pruning

A popular class of pruning strategies are those characterised as magnitude-based prun-
ing strategies. These strategies treat the top-k largest magnitude weights as impor-
tant. We use argmax-k to return the top-k elements (units or weights) out of all
elements being considered.

Unit pruning (Molchanov et al|, 2016; Frankle & Carbin, 2018): considers the
units (column-vectors) of weight matrices under the L*-norm.



wo, if wo € argmax-k |[|wjl|2
s
wW(o) = 1<G< Ny (W) 1 <0< Neot(W), W € Q9

0, otherwise
(3.1)

Weight pruning (Han et all, 2015b; Molchanov et al., 2016): considers the entries
of each feature vector under the L!-norm. Note that the top-k is with respect to the
other weights within the same feature vector.

Wio, if Wi, € argmax-k [Wj,|
W, . W) W
W(0) = ISJSN:()W(W) 1 < i< Nrow(W), 1 < 0 < Neol(W), € Q (32)

0, otherwise

While weight pruning tends to preserve more of the task performance under coarser
prunings (Han et all, 2015a); Ullrich et all, 2017; Frankle & Carbin, 2018), unit pruning
allows for considerably greater computational savings (Wen et al,, 2016; Louizos et al.,,
2017). In particular, weight pruned networks can be implemented using sparse linear
algebra operations, which offer speedups only under sufficiently sparse conditions;
while unit pruned networks execute standard linear algebra ops on lower dimensional
tensors, which tends to be a much faster option for given a fixed sparsity rate.

3.2 Targeted Dropout

Consider a neural network parameterized by 8, and our importance criterion (defined
above in Equations (E) and (@)) W(6). We hope to find optimal parameters 0*
such that our loss £(W(0%*)) is low, and at the same time [|[W(6%)||g < k, i.e. we
wish to keep only the k weights of highest magnitude in the network. A deterministic
pruning implementation would select the bottom |8|— k elements and drop them out.
However, we would like for low-valued elements to be able to increase their value if
they become important during training. Therefore, we introduce stochasticity into
the process using a targeting proportion ~ and a drop probability . The targeting
proportion means that we select the bottom ~|6| weights as candidates for dropout,
and of those we drop the elements independently with drop rate «. This implies
that the expected number of units to keep during each round of targeted dropout
is (1 -~ - a)|8|. As we will see below, the result is a reduction in the important
subnetwork’s dependency on the unimportant subnetwork, thereby reducing the per-
formance degradation as a result of pruning at the conclusion of training,.
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3.2.1 Dependence Between the Important and Unimportant
Subnetworks

The goal of targeted dropout is to reduce the dependence of the important subnetwork
on its complement. A commonly used intuition behind dropout is the prevention of
coadaptation between units; that is, when dropout is applied to a unit, the remaining
network can no longer depend on that unit’s contribution to the function and must
learn to propagate that unit’s information through a more reliable channel. An alter-
native description asserts that dropout maximizes the mutual information between
units in the same layer, thereby decreasing the impact of losing a unit Srivastava
et al, (2014b). Similar to our approach, dropout can be used to guide properties of
the representation. For example, nested dropout (Rippel et al., 2014) has been shown
to impose ‘hierarchy’ among units depending on the particular drop rate associated
with each unit. Dropout itself can also be interpreted as a Bayesian approximation
(Gal, 2016).

A more relevant intuition into the effect of targeted dropout in our specific pruning
scenario can be obtained from an illustrative case where the important subnetwork is
completely separated from the unimportant one. Suppose a network was composed of
two non-overlapping subnetworks, each able to produce the correct output by itself,
with the network output given as the average of both subnetwork outputs. If our
importance criterion designated the first subnetwork as important, and the second
subnetwork as unimportant (more specifically, it has lower weight magnitude), then
adding noise to the weights of the unimportant subnetwork (i.e. applying dropout)
means that with non-zero probability we will corrupt the network output. Since the
important subnetwork is already able to predict the output correctly, to reduce the
loss we must therefore reduce the weight magnitude of the unimportant subnetwork
output layer towards zero, in effect “killing” that subnetwork, and reinforcing the
separation between the important subnetwork and the unimportant one.

These interpretations make clear why dropout should be considered a natural
tool for application in pruning. We can empirically confirm targeted dropout’s effect
on weight dependence by comparing a network trained with and without targeted
dropout and inspecting the Hessian and gradient to determine the dependence of the
network on the weights/units to be pruned. As in LeCun et al. (1990), we can estimate

the effect of pruning weights by considering the second degree Taylor expansion of
change in loss, AE = |E(0— d) — E(0)|:

AE = |-VoETd+12d" Hd+ O(||d||®)] (3.3)

Where d; = 6; if 8; € W(0) (the weights to be removed) and 0 otherwise. V& are
the gradients of the loss, and H is the Hessian. Note that at the end of training, if we
have found a critical point 8%, then V& (6*) = 0, leaving only the Hessian term. In
our experiments we empirically confirm that targeted dropout reduces the dependence
between the important and unimportant subnetworks by an order of magnitude (See
Fig. B.1, and Section B.4.1 for more details).
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3.3 Related Work

The pruning and sparsification of neural networks has been studied for nearly three
decades and has seen a substantial increase in interest due to their implementation
on resource limited devices such as mobile phones and ASICs. Early work such
as optimal brain damage (LeCun et al., 1990) and optimal brain surgeon (Hassibi &
Stork, 1993), as well as more recent efforts (Molchanov et al), 2016; Theis et al/, 2018),
use a second order Taylor expansion of the loss around the weights trained to a local
minimum to glean strategies for selecting the order in which to prune parameters.
Han et al| (20154) combine weight quantisation with pruning and achieve impressive
network compression results, reducing the spatial cost of networks drastically. Dong
et al. (2017) improve the efficiency of the optimal brain surgeon procedure by making
an independence assumption between layers. Wen et al| (2016) propose using Group
Lasso (Yuan & Lin, 2006) on convolutional filters and are able to remove up to 6
layers from a ResNet-20 network for a 1% increase in error.

A great deal of effort has been put towards developing improved pruning heuristics
and sparsifying regularizers (LeCun et all, 1990; Hassibi & Stork, 1993; Han et al.,
20154; Babaeizadeh et al., 2016; Molchanov et al., 2016; Dong et al., 2017; Louizos
et al,, 2017, Huang et al), 2018a; Theis et al., 2018). These are generally comprised
of two components: the first is a regularisation scheme incorporated into training to
make the important subnetworks easily identifiable to a post hoc pruning strategy;
the second is a particular post hoc pruning strategy which operates on a pre-trained
network and strips away the unimportant subnetwork.

The two works most relevant to our own are L° regularisation (Louizos et all,
2017) and variational dropout (Molchanov et al., 2017). Louizos et al. (2017) use an
adaptation of concrete dropout (Gal et al), 2017) on the weights of a network and
regularise the drop rates in order to sparsify the network. Similarly, Molchanov et al.
(2017) apply variational dropout (Kingma et al|, 2015) to the weights of a network
and note that the prior implicitly sparsifies the parameters by preferring large drop
rates. In addition to our methods being more effective at shrinking the size of the
important subnetwork, targeted dropout uses two intuitive hyperparameters, the tar-
geting proportion ~ and the drop rate o, and directly controls sparsity throughout
training (i.e., attains a predetermined sparsity threshold). In comparison, Louizos
et al| (2017) uses the Hard-Concrete distribution which adds three hyperparameters
and doubles the number of trainable parameters by introducing a unique gating pa-
rameter for each model parameter, which determines the Concrete dropout rate; while
Molchanov et al| (2016) adds two hyperparameters and doubles the number of train-
able parameters. In our experiments we also compare against L' regularization (Han
et al), 2015b) which is intended to drive unimportant weights towards zero.

Another dropout-based pruning mechanism is that of Wang et al, (2017), where
a procedure is used to adapt dropout rates towards zero and one (similar to Louizos
et al) (2017) and (Molchanov et al), 2017)). We recommend Gale et al| (2019)’s
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rigorous analysis of recently proposed pruning procedures for a complete picture of
the efficacy of recent neural network pruning algorithms; in particular, it challenges
some of the recent claims suggesting pruning algorithms perform about as well as
random pruning procedures (Crowley et al., 2018; Liu et al,, 2018b).

Targeted dropout itself is reminiscent of nested dropout (Rippel et al), 2014) which
applies a structured form of dropout: a chain structure is imposed on units, and
children are deterministically dropped whenever their parent is dropped. In effect,
each child unit gets a progressively higher marginal drop rate, imposing a hierarchy
across the units; similar to both meProp (Sun et al., 2017) and excitation dropout
(Zunino et all, 2018). Rippel et al| (2014) demonstrate the effect using an autoencoder
where nested dropout is applied to the code; the result is a model where one can trade
off reconstruction accuracy with compute by dropping lower priority elements of the
code. Standout (Ba & Frey, 2013) is another similar variant of dropout; in standout,
the activation value of a unit determines the drop rate, where high activations values
lead to a higher keep probability and vice versa.

The Lottery Ticket Hypothesis of Frankle & Carbin (2018) demonstrates the ex-
istence of a subnetwork that — in isolation, with the rest of the network pruned away
— both dictates the function found by gradient descent, and can be trained to the
same level of task performance with, or without, the remaining network. In our no-
tation, a prediction of this “winning lottery ticket” is WW(0); and the effectiveness
of our method suggests that one can reduce the size of the winning lottery ticket by
regularising the network.

3.4 Experiments

Our experiments were performed using the original ResNet (He et all, 2016b), Wide
ResNet (Zagoruyko & Komodakis, 2016), and Transformer (Vaswani et al), 2017b) ar-
chitectures; applied to the CIAFR-10 (Krizhevsky & Hinton, 2009), ImageNet (Rus-
sakovsky et al., 2015), and WMT English-German Translation datasets. For each
baseline experiment we verify our networks reach the reported accuracy on the appro-
priate test set; we report the test accuracy at differing prune percentages and compare
different regularisation strategies. In addition, we compare our targeted dropout to
standard dropout where the expected number of dropped weights is matched between
the two techniques (i.e. the drop rate of standard dropout runs is set to 7 - «, the
proportion of weights to target times the dropout rate). We focus on pruning base-
lines and do not compare against the baseline of training a smaller model as this
has already been shown to dramatically under-perform pruned networks (Molchanov
et al), 2016).

For our pruning procedure, we perform the greedy layer-wise magnitude-base prun-

ing described in Section m to all weight matrices except those leading to the logits.
In our experiments we compare targeted dropout against the following competitive

13



schemes:

L' Regularization (Han et al), 2015b): Complexity cost @ = ||@||1 is added to
the cost function. The hope being that this term would drive unimportant weights to

zero. In our table we denote this loss by L[13 where 3 is the cost-balancing coefficient

applied to the complexity term.

L? Regularization (Louizos et al,, 2017): Louizos et al, apply an augmentation
of Concrete Dropout (Gal et all, 2017), called Hard-Concrete Dropout, to the param-
eters of a neural network. The mask applied to the weights follows a Hard-Concrete
distribution where each weight is associated with a gating parameter that determines
the drop rate. The use of the Concrete distribution allows for a differentiable approx-
imation to the L9 cost, so we may directly minimise it alongside our task objective.
When sparisfying these networks to a desired sparsity rate, we prune according to the
learned keep probabilities (o (log(a)) from (Louizos et al), 2017)), dropping those
weights with lowest keep probabilities first.

Variational Dropout (Kingma et al,, 2015; Molchanov et al), 2017): Similar
to the technique used for L0 regularisation, Molchanov et al. (2017) apply Gaussian
dropout with trainable drop rates to the weights of the network and interprets the
model as a variational posterior with a particular prior. The authors note that the
variational lower bound used in training favors higher drop probabilities and experi-
mentally confirm that networks trained in this way do indeed sparsify.

Smallify (Leclerc et al|, 2018): Leclerc et al| use trainable gates on weights/units
and regularise gates towards zero using L' regularisation. Crucial to the technique is
the online pruning condition: Smallify keeps a moving variance of the sign of the gates,
and a weight /unit’s associated gate is set to zero (effectively pruning that weight/unit)
when this variance exceeds a certain threshold. This technique has been shown to
be extremely effective at reaching high prune rates on VGG networks (Simonyan &
Zisserman, 2014).

Specifically, we compare the following techniques:

dropout: Standard weight or unit dropout applied at a rate of c.
«

targeted: Targeted dropout (the weight variant in ‘a)’ tables, and unit variant in
oY
‘b)’ tables) applied to the v - 100% lowest magnitude weights at a rate

of a.

variational: Variational dropout (Kingma et al., 2015; Molchanov et al., 2017) applied
with a cost coefficient of 0.01/50, 000.

Loﬁ: L9 regularisation (Louizos et al), 2017) applied with a cost coefficient of
/50, 000.

L%;: L! regularisation (Han et al., 2015b) applied with a cost coefficient of 3.
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Figure 3.1: A comparison between a network without dropout (top) and with targeted
dropout (bottom) of the matrix formed by 07 ® H® 0. The weights are ordered such that
the last 75% are the weights with the lowest magnitude (those we intend to prune). The
sum of the elements of the lower right hand corner approximates the change in error after
pruning (Eqn. (@)) Note the stark difference between the two networks, with targeted
dropout concentrating its dependence on the top left corner, leading to a much smaller error
change after pruning (given in Table B.1).

Table 3.1: Comparison of the change in loss (|AE| of Equation (@)) for dense networks.

Regularisation | |AE| | Unpruned Accuracy | Pruned Accuracy

0.120698 38.11% 26.13%
0.0145907 40.09% 40.14%

None
Targeted Dropout

smallify: Smallify SwitchLayers (Leclerc et al., 2018) applied with a cost coefficient
A
of A, exponential moving average decay of 0.9, and a variance threshold

of 0.5.

3.4.1 Analysing the Important Subnetwork

In order to analyze the effects of targeted dropout we construct a toy experiment
with small dense networks to analyse properties of the network’s dependence on its
weights. The model we consider is a single hidden layer densely connected network
with ten units and ReLU activations (Nair & Hinton, 2010). We train two of these
networks on CIFAR-10; the first unregularised, and the second with targeted dropout
applied to the v = 75% lowest-magnitude weights at a rate of @« = 50%. The
networks are both trained for 200 epochs at a learning rate of 0.001 using stochastic
gradient descent without momentum.

We then compute the gradient and Hessian over the test set in order to estimate
the change in error from Equation @ (see Table B.1). In addition, we compute the
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Table 3.2: ResNet-32 model accuracies on CIFAR-10 at differing pruning percentages
and under different regularisation schemes. The top table depicts results using the weight
pruning strategy, while the bottom table depicts the results of unit pruning (see Sec. 5.1.3‘)

Weight Dropout/Pruning

dropout targeted targeted targeted targeted variational L}Ll L3.1
a=0.25 «a=0.5,y=0.5 «a=0.33,y=0.75 «=0.66,y=0.75 «a=0.75,y=0.90
%) 0%
45 10%
S
g
3, 40%
2 o
0
g 0%
S 80%
90% 15.16 21.08 12.55
Unit Dropout/Pruning
none dropout targeted targeted targeted targeted variational L(l)_01 L8.01
a=0.25 a=0.5,y=0.5 «=0.33,y=0.75 «=0.66,y=0.75 «=0.90,y=0.75
& 0%
8 10%
g 20% 25.05
8 30% 13.47
a 40% | 3540 10.02
o 50% 1263 9.97
g 60% 10.65 9.99 1211  9.46
E 70% 11.70  10.01 19.36 11.81 10.02
~ 80% 9.99 9.95 10.63 10.87 28.99 34.18 9.56 14.73 14.88
90% 9.85 9.98 9.30 10.29 9.97 10.04 10.41 10.22  9.98

Hessian-weight product matrix formed by typical element [OT O H® 0] = 0;H;0;
as an estimate of weight correlations and network dependence (see Figure B.1)). This
matrix is an important visualisation tool since summing the entries associated with
weights you intend to delete corresponds to computing the second term in Equa-
tion (B.1) — this becomes the dominant term towards the end of training, at which
time the gradient is approximately zero.

Figure @ makes clear the dramatic effects of targeted dropout regularisation on
the network. In the Figure, we reorder the rows and columns of the matrices so
that the first 25% of the matrix rows/columns correspond to the 25% of weights we
identify as the important subnetwork (i.e. highest magnitude weights), and the latter
75% are the weights in the unimportant subnetwork (i.e. lowest magnitude weights).
The network trained with targeted dropout relies nearly exclusively on the 25% of
weights with the largest magnitude at the end of training. Whereas, the network
trained without regularisation relies on a much larger portion of the weights and has
numerous dependencies in the parameters marked for pruning.
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Table 3.3: ResNet-102 model accuracies on ImageNet. Accuracies are top-1, single crop
on 224 by 224 pixel images.

Weight Unit
Dropout /Pruning Dropout/Pruning

none targeted 2

10-5 none  targeted L} 001
a=0.5,y=0.5

a=0.5,v=0.5

o 0%

%0 10%

§ 20%

S 30% 0.4 33.0 0.4

S 40% 0.1 6.4 0.2

o 50% 0.1 0.6 0.1

g 60% 0.1 0.2 0.1

8 7% 0.7 14.8 17.6 0.1 0.1 0.1
80% 0.2 0.4 14 0.1 0.1 0.1
90% 0.1 0.1 0.4 0.1 0.1 0.1

3.4.2 ResNet

We test the performance of targeted dropout on Residual Networks (ResNets) (He
et al., 2016a) applied to the CIFAR-10 dataset, to which we apply basic input augmen-
tation in the form of random crops, random horizontal flipping, and standardisation.
This architectural structure has become ubiquitous in computer vision, and is gaining
popularity in the domains of language (Kalchbrenner et al., 2016b), and audio (Van
Den Oord et all, 2016). Our baseline model reaches over 93% final accuracy after 256
epochs, which matches previously reported results for ResNet-32 (He et all, 2016a).

Our weight pruning experiments demonstrate that standard dropout schemes are
comparatively weak compared to their targeted counterparts; standard dropout per-
forms worse than our no-regularisation baseline. We find that a higher targeted
dropout rate applied to a larger portion of the weights results in the network match-
ing unregularised performance with only 40% of the parameters.

Variational dropout seems to improve things marginally over the unregularised
baseline in both weight and unit pruning scenarios, but was still outperformed by
targeted dropout. L° regularisation was fairly insensitive to its complexity term coef-
ficient; we searched over a range of 3 € [1076, 10'] and found that values above 1071
failed to converge, while values beneath 10~4 tended to show no signs of regularisa-
tion. Similarly to variational dropout, L? regularisation does not prescribe a method
for achieving a specific prune percentage in a network, and so, an extensive hyperpa-
rameter search becomes a requirement in order to find values that result in the desired
sparsity. As a compromise, we search over the range mentioned above and select the
setting most competitive with targeted dropout; next, we applied magnitude-based
pruning to the estimates provided in Equation 13 of Louizos et al, (2017). Unfor-
tunately, LY regularisation seems to force the model away from conforming to our
assumption of importance being described by parameter magnitude.
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In Table @ we present the results of pruning ResNet-102 trained on ImageNet.
We observe similar behaviour to ResNet applied to CIFAR-10, although it’s clear that
the task utilises much more of the network’s capacity, rendering it far more sensitive
to pruning relative to CIFAR-10.

3.4.3 Wide ResNet

In order to ensure fair comparison against the L0 regularisation baseline, we adapt
the authors own codebase” to support targeted dropout, and compare the network’s
robustness to sparsification under the provided L° implementation and targeted
dropout. In Table we observe that L0 regularisation fails to truly sparsify the
network, but has a strong regularising effect on the accuracy of the network (confirm-
ing the claims of Louizos et al)). This further verifies the observations made above,
showing that LO regularisation fails to sparsify the ResNet architecture.

Unit Dropout/Pruning

none targeted L(l)o,6
a=0.33,y=0.75
& 0%
8 10%
g 20%
8 30%
8, 0%
o 50%
g 60%
a 70% 10.00 10.00
80% 10.00 16.94 10.00
90% 10.00 10.43 10.00

Table 3.4: Wide ResNet (Zagoruyko & Komodakis, 2016) model classification accuracy on
CIFAR-10 test set at differing prune percentages.

3.4.4 Transformer

The Transformer network architecture (Vaswani et al., 2017b) represents the state-of-
the-art on a variety of NLP tasks. In order to evaluate the general applicability of
our method we measure the Transformer’s robustness to weight-level pruning without
regularisation, and compare this against two settings of targeted dropout applied to
the network.

The Transformer architecture consists of stacked multi-head attention layers and
feed-forward (densely connected) layers, both of which we target for sparsification;

lthe original L9 PyTorch code can be found at: github.com/AMLab-Amsterdam/L0_
regularization
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Weight Dropout/Pruning Weight Dropout/Pruning

none targeted targeted none targeted targeted
o a=3y=4% a=iy=7; ® a=3y=% a=37=1p
S0 0% 2601 26,52 25.32 & 0%
8 10% 2605 2644 25.32 8 1%
o 20% 2590 2648 25.19 g 20%
O 30% 2591  26.30 25.27 S 30%
a 40% 2581  26.20 24.97 8« 40%
© 50% 2508  26.03 24.93 o 50%
g 60% 23.31  25.62 24.27 g 60%
o T0% 889 2407 22.41 S 70%
g% 024 12.39 1057 P 50%  25.80
90% 001  0.07 0.64 90% 6.90 2164 27.02
(a) Transformer model uncased BLEU score. (b) Transformer model per-token accuracy.

Table 3.5: Evaluation of the Transformer Network under varying sparsity rates on the
WMT newstest2014 EN-DE test set.

within the multihead attention layers, each head of each input has a unique linear
transformation applied to it, which are the weight matrices we target for sparsification.

Table details the results of pruning the Transformer architecture applied to
the WMT newstest2014 English-German (EN-DE). Free of any regularisation, the
Transformer seems to be fairly robust to pruning, but with targeted dropout we are
able to increase the BLEU score by 15 at 70% sparsity, and 12 at 80% sparsity; further
confirming target dropout’s applicability to a range of architectures and datasets.

3.4.5 Scheduling the Targeting Proportion

Upon evaluation of weight-level Smallify (Leclerc et al., 2018) we found that, with
tuning, we were able to out-perform targeted dropout at very high pruning percent-
ages (see Table @) One might expect that a sparsification scheme like Smallify —
which allows for differing prune rates between layers — would be more flexible and
better suited to finding optimal pruning masks; however, we show that a variant of
targeted dropout we call ramping targeted dropout is capable of similar high rate prun-
ing. Moreover, ramping targeted dropout preserves the primary benefit of targeted
dropout: fine control over sparsity rates.

Ramping targeted dropout simply anneals the targeting rate ~ from zero, to the
specified final ~ throughout the course of training. For our ResNet experiments, we
anneal from zero to 95% of ~ over the first forty-nine epochs, and then from 95% of
~ to 100% of ~ over the subsequent forty-nine. In a similar fashion, we ramp « from
0% to 100% linearly over the first ninety-eight steps.

Using ramping targeted dropout we are able to achieve sparsity of 99% in a
ResNet32 with accuracy 87.03% on the CIFAR-10 datatset; while the best Small-
ify run achieved intrinsic sparsity of 98.8% at convergence with accuracy 88.13%,
when we perform pruning to enforce equal pruning rates in all weight matrices, the

19



Weight Dropout/Pruning

smallify ramp targ
A=0.00001 «=0.99,7=0.99

ramp targ
a=0.99,7=0.99

targeted smallify
a=0.66,v=0.75 A=0.00001

98.5%
98.6%
98.7%
98.8%
98.9%
99.0%
99.1%
99.2%
99.3%
99.4% 16.55

0%
10%
20%
30%
40%
50%
60%
0%
80%
90%

90%
91%
92%
93%
94%
95%
96%
97%
98%
99%

prune percentage

Unit Dropout/Pruning

targeted smallify ramp targ
a=0.66,y=0.75 A=0.0001 «=0.99,7=0.90

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

prune percentage

Table 3.6: Comparing Smallify to targeted dropout and ramping targeted dropout. Ex-
periments on CTIFAR10 using ResNet32.

network degrades rapidly (see Table @)

3.4.6 Fixed Filter Sparsity

We also propose a variation of Ramping targeted dropout (Section ), where
each layer is assigned a - such that only a fixed number of weights are non-zero
by the end of training (for example, three parameter per filter). We refer to this
as Xtreme dropout. ResNet32 when trained with Xtreme-3 (3 weights per filter are
non-zero) was able to achieve an accuracy of 84.7% on the CIFAR-10 datatset at
a sparsity level of 99.6% while Xtreme-4 was able to achieve 87.06% accuracy at
a sparsity level of 99.47%. An interesting observation of Xtreme pruning is that
when trained on ResNetl8, it achieves 82% accuracy at a sparsity level of 99.8%.
When translated to the number of parameters, it has only 29,760 non-zero parameters
(includes BatchNorm) which is less than the number of parameters in a network
consisting of a single dense layer with 10 output units.
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3.5 Exploring Recent Discussions and Concerns

A line of work (Crowley et al), 2018; Liu et al., 2018b) has suggested that post hoc
pruning with fine-tuning is not as effective as it could be. They propose using the
sparsity patterns derived from a pruned model to define a smaller network (where the
remaining, unpruned weights are reinitialised randomly) which is then trained from
scratch, yielding better final task performance than fine-tuning the pruned model’s
weights.

A similar question arose in our own work as we pondered how early in the training
procedure the important subnetwork could be decided. In the ideal case, the impor-
tant subnetwork would be arbitrary and we could blindly select any subnetwork at
the beginning of training, delete the remaining network, and recover similar accuracy
to a much more complicated pruning strategy. While in the worst case, the impor-
tant subnetwork would be predestined, and would remain difficult to identify until
the very end of training.

While Crowley et al| (2018); Liu et al) (2018b) rely on sparsity patterns derived
from pruned models, in this paper we are concerned with pruning schemes that achieve
sparsity in a single execution of the training procedure; and so, in order to evaluate
the more general claim that training smaller networks from scratch can match (or
even out-perform) pruning, we compare the following two methods:

e Random-pruning: Before training, prune away a random subnetwork.

o Targeted Dropout (Ramping TD): Apply ramping targeted dropout through-
out the course of training.

The results of our experiment are displayed in Table @ It is clear that — although
Crowley et al| (2018); Liu et al| (2018b)’s results show that knowing a good sparsity
pattern in advance allows you to achieve competitive results with pruning — simply
training a smaller subnetwork chosen at random does not compete with a strong
regularisation scheme used over the course of training. Similar observations that
contradict the conclusions of Crowley et all (2018); Liu et al, (2018b) have been
made in both Frankle et al| (2019a) and Gale et al. (2019).

3.6 Conclusion

We propose targeted dropout as a simple and effective regularisation tool for training
neural networks that are robust to post hoc pruning. Among the primary benefits
of targeted dropout are the simplicity of implementation, intuitive hyperparameters,
and fine-grained control over sparsity - both during training and inference. Targeted
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Prune % Prune %

Type 5% %  90% 99% Type 5% 8% 90% 95%
Random-prune 92.58 92.32 90.66 80.86 Random-prune 90.50 88.52 84.98 79.09
Ramping TD 93.29 92.72 92.51 88.80 Ramping TD 90.84 88.59 86.45 80.65

(a) Comparison of weight-level pruning meth- (b) Comparison of unit-level pruning meth-
ods using ResNet-32 trained on CIFAR-10. ods using ResNet-32 trained on CIFAR-10.

Prune %
Type 75% 85% 90% 95%

Random-prune  48.98 (0.62) 45.58 (1.25) 40.50 (2.03) 31.44 (1.64)
Ramping TD  52.64 (0.61) 49.20 (0.10) 45.03 (0.83) 30.15 (1.72)

(c) Comparison of unit-level pruning methods using VGG-16 trained
on CIFAR-100. Results are the average of five independent training
runs followed by one standard deviation reported in brackets.

Table 3.7: Comparison between random pruning at the beginning of training and reg-

ularising with targeted dropout throughout the course of training, followed by post hoc
pruning.

dropout performs well across a range of network architectures and tasks, demonstrat-
ing is broad applicability. Importantly, like Rippel et al, (2014), we show how dropout
can be used as a tool to encode prior structural assumptions into neural networks.
This perspective opens the door for many interesting applications and extensions.
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Chapter 4

Optimising Neural Networks
in Low-rank Subspaces

The standard building block of a neural network is a vector-matrix multiplication
between an intermediate representation and a weight matrix, followed by an activa-
tion function. One straight-forward approach to reducing both the memory and the
compute requirements of a neural network would be to factorise the weight matrix
and truncate its spectrum to be low-rank. If such a reduction in rank does not limit
the expressiveness of the neural network to the extent that it learns a worse solution,
then the method could provide both memory and compute benefits. However, in prac-
tice it’s generally observed that optimising low-rank factorisations of neural networks
leads to inferior models that under-perform their full-rank equivalents. In the follow-
ing work we explore whether this degradation in performance is due to the network’s
reduced complexity, or whether it is the result of poor transfer of hyperparameters
from the full-rank to low-rank setting.

The following is an excerpt from Kamalakara et al| (2022). This is work done
in collaboration with Siddhartha Rao Kamalakara, Acyr Locatelli, Bharat Venkitesh,
Jimmy Ba, and Yarin Gal. In this project I was the source of the idea for the method,
led experiment design, and supervised the project alongside Jimmy Ba and Yarin Gal.

Recent developments in_training very large vision and language models Brown
et al| (2020a); Fedus et al. (2021); Dosovitskiy et al) (2020) have led to an increasing
need for efficient training paradigms. Low rank matrix factorisation of layers in a
deep neural network can offer significant training speedups (up to 2x) and consumes
less memory when compared to its unfactorised counterpart. Matrix factorisation has
been studied extensively in the context of linear networks and their applications to
matrix sensing and matrix completion problems. In deep neural networks, the effects
of factorised layers on optimisation are non-trivial. Hence, prior work in this space
predominantly focused on low-rank training with additional training objectives, or
involved computing factorised approximations post-training. There has been limited
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prior work that focused on training dynamics for low rank deep neural networks.

Our contributions: we examine the recent developments in training low rank
networks and question existing beliefs about why techniques like singular value de-
composition (SVD) based initialisation and modified Lo regularisation are effective.
We start with SVD based initialisation techniques which have been found to be effec-
tive in both low-rank and sparsity literature Lee et al) (2019b). We look to random
matrix theory to formally define the distribution of singular values at initialisation
in modern neural networks and challenge prior assumptions on their importance. We
reveal novel empirical insights about the dynamics of singular values during training
of an Lo regularised network and present a hypothesis about why Lo regularisation
on the re-composed matrix works better than Lo regularisation on its factors. We
also investigate currently held beliefs about effective step size and its correlation with
performance. Moreover, we analyse and present experiments with pre-training as
a strategy to train better performing low-rank networks. We present a wide array
of experiments to support our arguments and to demonstrate the effectiveness and
practicality of training low-rank neural networks.

38 - "(\ —— Baseline
=%~ Spectral
37 A Spectral Ones

Perplexity

100 150 200 250 300 350
TPU hours
Figure 4.1: TPU Compute hours vs Performance of GPT-2 on LM1B as the model is

scaled up. Each point on the line corresponds to a different model size starting from 1024
hidden dimensions (on the top left) to 2560 (in the bottom right) with increments of 256.

4.1 Related Work

Most works in the low rank space that focus on efficiency and speedups looked at post-
hoc approximation of trained networks. Yu et al| (2017) took an SVD free approach
to reconstruct feature maps by minimising an objective that imposes sparse low rank
structure. Jaderberg et al| (2014) also considered a trained network upon which a
low rank structure is imposed through filter and data reconstruction objectives. Tai
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et al| (2016) focused on low rank training of CNNs from scratch; they proposed a hor-
izontal and vertical filter decomposition of a convolutional kernel and reproject into
orthogonal vectors at every step. One of the reasons why many related works have
focused on post-training low rank approximations is that training dynamics of neural
networks are poorly understood. To resolve this to an extent, many recent works have
attempted to understand the implicit bias of gradient descent (GD) in matrix factori-
sation in both linear and non-linear networks. Arora et al. (2019) investigated the
behaviour of GD in deep linear networks and found that as the depth of factorisation
increases, GD tends to find low rank solutions. They also present evidence for the hy-
pothesis that the language of norms such as nuclear norm, Frobenius norm, etc, may
not be enough to describe the behaviour of GD. Martin & Mahoney (2018) presented
an empirical analysis of commonly used architectures and characterised the dynamics
of GD in deep non-linear networks in terms of Empirical Spectral Distributions (ESD)
and phases of training. They define a set of rank measures, which we use in our work
to analyse low rank training juxtaposed with analysis on unfactored training. Wang
et al, (2021) used low rank training with unfactorised pretraining in the context of
efficient communication in a distributed setting. Khodak et al. (2021) proposed a low
rank training procedure by investigating initialisation and regularisation in factorised
layers. They analysed SVD based initialisation (Spectral Initialisation) and proper-
ties of Lo regularisation which we study independently in our work. They conjecture
that there is an interplay between normalisation and weight decay and formalise this
behaviour through factorised update equations.

4.2 Low Rank Training

4.2.1 Factorisation

In all our experiments and analyses, we factorise a weight matrix W at each layer
into two components U and V such that W = UvT.

We focus on a factorisation depth of 2, taking into consideration memory-speedup
tradeoffs: As the depth of factorisation at each layer increases, more activations need
to be stored in-memory for backpropagation. A depth of two provides speedups across
all our experiments while ensuring minimal activation memory overhead.

Consider the difference between the vanilla gradient descent update (unfactorised)
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Wit1 = Wi—aV W and the update performed in the factorised setting:

Wipr = U1 Vi,
Wir1 = (Us—aVU)(Vi-aV V)T
Wit1 = Wi—a(V WtVtV;r + UtUtTV Wy)
v, ’ (4.1)
+ VW, W,V W,

Khodak et al| (2021) extend the update equation above to normalised layers. Most
modern architectures rely on normalisation layers to train networks that generalise
well. This includes BatchNorm in ResNets and LayerNorm in Transformers. We refer
the reader to Khodak et al| (2021) for a more detailed discussion on the type and
role of normalisation in factorised layers and use their formulation of the normalised
update equation, which is given by

R ) o . T .
W41 = Wt — —Z(Imn — WtWt )vec(Vt)
Wi (4.2)

where V; is V; with gradients taken with respect to the normalised weight matrix
W= % and w = vec( W).

We see that gradient descent in the factorised setting does not perfectly align
with the vanilla gradient descent update. In the subsequent sections, we empirically
explore and work to overcome the implicit biases of this factorised update so that we
can make low rank training an effective and efficient training method.

4.2.2 Spectral Initialisation

Khodak et al. (2021) investigated the usefulness of spectral initialisation in low rank
formulations of deep learning architectures and proposed a few hypotheses for why it
seems to improve optimisation. We use the same truncated SVD initialisation scheme,
which is as follows

SVDT(W) - AU:TE'[‘V:—!;, (4.3)
U= U:r\/ Er;
V= i/:'r\/ Er,

where W is a matrix of shape N X M, U of shape N X r, V of shape M X r, X is the
diagonal matrix of singular values and r is the rank we choose for the factorisation.
We note that U and V are rectangular matrices unless specified otherwise.
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Khodak et al (2021) analysed SVD based initialisation in the context of the
update equation and make an incorrect assumption for why this initialization is
effective: That Uy Ua_ = Vy VS_ = Y,. In the low rank context, U and V are
rectangular matrices obtained from truncated SVD which makes U and V column-
wise orthogonal matrices. Therefore, we point out that UU" and VV' cannot be
equal to ¥, and VW, V, V;r + U U;I_V W, terms in the equation @ cannot be
simplified.

We believe that spectral initialisation works for reasons other than the ones stated
in prior work. In section #.3.1, we present an ablation experiment that hints at why
this initialisation scheme performs better.

4.2.3 L2 Regularisation

Many architectures rely on Lo regularisation for better generalisation. The straight-
forward approach to impose Lo regularisation in a factorised network is to apply the
Frobenius norm penalty to the factors U and V — that is, %(H U|| %1 + || V|| %1) Srebro
& Shraibman (2005) showed that this penalty actually minimises the nuclear norm
of the recomposed matrix U vT.

To address this, Khodak et al. (2021) propose penalising the Frobenius norm of
the recomposed matrix UVT, which they refer to as, Frobenius decay. They argue
that Frobenius decay helps in keeping the effective step size high through out train-

ing where effective step size is the term i VZIF in equation #.2. We show, through an
F

ablations study, that effective step size is an inadequate argument to justify the effec-
tiveness of Frobenius decay over Lo regularization. We point out that the dynamics
of low-rank training with Lo regularisation cannot be understood by only considering
the normalised update equation 4.2. This ignores the n\ ~ O (n?) terms arising
from Frobenius norm penalty which have a non-trivial impact on the optimisation.
We find that the effectiveness of Frobenius decay over Lo regularisation can be better
explained by examining the effective rank of the network. We use the rank measure
proposed in Martin & Mahoney (2018) which defines effective rank as the nuclear
ovr|

oV,
op

norm divided by the operator norm i.e

4.2.4 Pre-training

The initial stages of training are widely believed to be important for good performance
in neural networks Achille et al| (2017) Frankle et al| (2019b). This motivates us to
explore training for a fraction of the total training steps in the unfactorised space
before switching to low rank substitutions of these unfactorised layers. We apply the
truncated SVD scheme descibed in equation @ to the partially trained weights to
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obtain the factors of the layer. Section describes the impact of pre-training on
performance across our vision and language experiments and analyses the nature of
the solutions found with pre-training when compared to solutions found by low rank
networks trained from scratch Evci et al| (2019) Frankle et al. (2019c).

4.3 Experiments and Results

We conduct extensive experiments on both vision and language models. For vision
models, we use a Wide-ResNet-28 on CIFAR-100 and a ResNet-50 on the ImageNet
dataset. For the language modelling task, we conduct experiments on one million word
benchmark dataset (LM1B) Chelba et al) (2013b) and use the GPT-2 Radford et al.
(2019a) architecture. Details on our complete experimental setup can be found in the
supplementary material. In the following sections, we compare different initialisation
schemes and study the effects of applying Lo regularisation to the factors U, V and
UV in normalised neural networks. Finally, we demonstrate the effectiveness of —
and analyse the nature of solutions found by — pre-training.

4.3.1 Initialisation

We show that spectral initialisation offers commensurate performance when compared
to traditional initialisation schemes. Then, we show empirically that the singular
values do not play a major role in improving performance and that it is the direction of
the singular vectors that matters. This finding is in contrast with prior beliefs Khodak
et al) (2021) about the role of singular values in retaining the scale of initialisation. We
establish this by setting the singular values to ones in equation #1.3. Tables @, , ﬁ
compare the results across initialisation schemes on CIFAR100, ImageNet and LM1B
respectively. We observe that spectral ones leads to a better accuracy on CIFAR-100,
lower perplexity on LM1B and a commensurate performance on ImageNet. While we
offer no concrete explanation for why discarding the singular values is beneficial to
optimization, one relevant note is that in regular neural networks, it is important to
initialize all neurons with a similar magnitude; in spectral initialization, the columns
of U and rows of V are being scaled by values that can differ dramatically, potentially
hampering optimization behaviour. We leave a proper analysis of the subject to future
work.

4.3.2 Lo Regularisation

We investigate the effective step size hypothesis by training two networks, one with

learning rate 1 and the other with g So, the effective step size of these networks
is —L - and ——L— respectively, based on equation @ If the hypothesis that a
| Wil 2| Wil
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Model Dataset Frobenius decay Lo

WRN CIFAR-100 39.87 16.4
ResNet-50 | ImageNet 68.72 58.00
Transformer LM1B 206.93 205.70

Table 4.1: Effective rank measures for different models

higher effective step size leads to better performance were true, we should see that
halving the effective step size should lead to a lower performance but we find that g
leads to models that are atleast as good as models trained with learning rate 7.

Tables @, @ and @ compare the impact of effective step size on performance
across CIFAR-100, ImageNet and LM1B respectively. Analysing the evolution of sin-
gular values in networks trained with Lo regularisation and Frobenius decay revealed
that singular values are disproportionately affected in the case of Lo regularisation.
We observed a "rich get richer, poor get poorer” phenomenon in Lo regularised net-

[T,
1ovril,,
disproportionate increase in the operator norm of each layer. We report the averaged
(across layers) effective rank at the end of training for our experiments in Table @

works which caused the effective rank of the network to drop because of the

4.3.3 Pre-training

We investigate pre-training networks for a fraction of the total training steps and
observe that this leads to significantly improved performance in our language model
experiments shown in Figure 4.1. We pre-train in the unfactorised space for 40,000
steps and continue training in the factorised space for 200,000 steps. We combine
pre-training with the techniques aforementioned wviz Frobenius decay and resumin
with decompositions obtained from Spectral and Spectral ones as described in #.2.4.
We find that pre-training does not offer improved performance compared to low-rank
network trained from scratch in our vision experiments as shown in Tables and
Furthermore, we notice that the solutions found with pre-training are closer
in the parameter space to their corresponding baseline (unfactorised) models. We
demonstrate this by performing linear interpolation between pre-training and baseline
weights by using the following equation: 8 = (1—1t)0y + (t)0; for t € [0.0, 1.0] with
increments of 0.1 where t is the interpolation coefficient, 8y is the parameter from the
baseline model and 60; is the parameter from the low rank model with pre-training,.

4.3.4 Experiment Details

For the language modelling task, we conduct our experiments on one million word
benchmark dataset (LM1B) (Chelba et al), 2013b) and use the following set up: input
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Figure 4.2: Comparison of interpolation of low rank and pretrained networks for LM

sequence length is fixed at 256 and 1152 tokens for training and evaluation respectively
and the vocab size is limited to 32K subwords and train all the models to 240K
steps. We implemented transformer language model on Tensorflow and run all our
experiments on cloud TPUs. To have better savings on compute and memory we
combine the query, key value generation into one weight matrix. For each transformer
layer, we decompose three matrix operations; Q,K,V generation and the two fully
connected layers. We skip factorising the output projection layer and the combiner
layer that combines the outputs of attention (this is a square matrix and we see
memory and compute benefit only for very small ranks). For all transformer runs, we
choose a rank of 62.5% and half its baseline learning rate. For pre-training, we train
unfactored for 40K steps then switch to low rank factorised training for the remaining
200K steps and halving the learning rate.

For the image classification task, we conduct experiments with CIFAR-100 and
ImageNet. For CIFAR-100 we use the standard training/test split with a simple
augmentation scheme — Random Crop and Horizontal Flips. We train a WideResNet-
28 (Zagoruyko & Komodakis, 2016) for 200 epochs with SGD with momentum (0.9)
and a batch size of 128. For regularisation, we a weight decay coefficient of 5e-4 and no
dropout. For the low rank training runs, we factorised every convolutional layer other
than the first according to our factorisation scheme describe above and the chosen
rank. For ImageNet experiments, we use a standard ResNet-50 architecture and train
on a TPU v2-8 with a per-core batch size of 128 and follow the same hyperparameters
and learning rate schedule described in He et al. (2016D).
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Rank Initialisation | Accuracy
Baseline (N/A) He 81.08
He 77.94
0.1 spectral 79.84
spectral ones 79.07
He 80.37
0.2 spectral 81.35
spectral ones 81.27
He 80.87
0.3 spectral 81.53
spectral ones 81.61

Table 4.2: Initialization results of Wide Resnets on Cifar-100

Rank Initialisation | Top-1 | Top-5
Baseline (N/A) He 76.39 | 93.21
He 75.26 | 92.56

0.3 spectral 75.77 | 92.87
spectral ones | 75.71 | 92.82

He 75.97 | 92.84

0.5 spectral 76.13 | 93.09
spectral ones | 75.98 | 92.97

Table 4.3: Initialization results of ResNet on Image Net

Rank Initialisation | Perplexity
Baseline (N/A) He 37.67
He 39.6
0.62 spectral 38.78
spectral ones 38.47

Table 4.4: Initialization results of Transformers on LM1B

| Rank | Regularisation | Ir scaling | Accuracy |

0.5 73.12

0 L2 1.0 72.59
. . 0.5 79.84
Frobenius Decay 1.0 79.79

0.5 78.22

0 L2 1.0 77.56
. Frobenius Decay 0-5 s
1.0 81.61
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| Rank | Regularization | Ir scaling | Top-1 | Top-5 |

12 0.5 75.11 | 92.42

0.3 1.0 74.9 92.24
Frobenius Decay 0.5 75.22 | 92.49

1.0 75.77 | 92.87

12 0.5 75.04 | 92.36

0.5 1.0 74.83 | 92.25
Frobenius Decay 0.5 75.97 | 92.85

1.0 76.13 | 93.09

Table 4.6: Comparison between Frobenius Decay and L2 regularisation on Imagenet

| Rank | Regularisation | Ir scaling | Perplexity |

0.5 38.87

0.6 L2 1.0 39.01
‘ Frobenius Decay 0.5 38.78
1.0 39.2

Table 4.7: Comparison between Frobenius Decay and L2 regularisation on LM1B

| Rank | Pre-training Epochs | Accuracy |

0 81.35
15 81.33
30 81.56
0.2 40 81.53
50 81.39
75 81.53
0 81.53
15 81.73
30 81.51
0.3 40 81.67
90 82.0
75 81.44

Table 4.8: Pre-training results for Wide ResNets on CIFAR-100
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| Rank | # Pretrain epochs | Top-1 | Top-5 |

5 76.07 | 92.88
10 75.96 | 93.04
15 76.12 | 92.96
20 76.08 | 92.94
0.5 25 76.15 | 93.00
30 76.05 92.9
35 76.24 | 93.06
40 76.21 | 93.09
45 76.29 | 93.12

Table 4.9: Pre-training results for ResNet50 on ImageNet
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Chapter 5

Improving Training
Efficiency Using SliceOut

Dropout is a widely utilised regularisation strategy that stochastically zeros (drops) di-
mensions of intermediary activations. By zero-ing dimensions, the subsequent vector-
matrix multiplication between the activation and the subsequent layer’s weight will
result in many redundant FLOPs where the activation’s dimension is zero. SliceOut
seeks to save these wasted FLOPs by changing the distribution of dropped activations
so that they are always contiguously arranged. This way, a simple slice operation can
be used to eliminate the dropped dimension; saving both compute and memory during
training.

The following is an excerpt from Notin et al. (2020) and is under review with the
Journal of Machine Learning Research. This is work done in collaboration with Pascal
Notin, Joanna Yoo, and Yarin Gal. In this project I was the source of the idea for
a fast dropout variant using slice operations, led experiment design, and supervised
the experimentation.

The success of deep learning over the past two decades has relied heavily on algo-
rithmic and hardware innovations to support ever increasing computational workloads.
While several methods have been recently introduced to achieve step-improvements
in efficacy at inference time (e.g., quantisation, pruning), translating these benefits to
training as been a more challenging endeavour given the impact they may have on the
training dynamics. When dealing with a fixed compute budget, the ability to train the
same models more rapidly supports shorter research iteration cycles, more extensive
hyperparameter or architecture searches, or a reduction in the required energy con-
sumption and the corresponding carbon footprint. In applications that require regular
model re-training (e.g., active learning, continual learning), faster training translates
into more regular updates and subsequently stronger task performance with the same
resources.
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Test Acc. versus Train time - ImageNet Test Acc. versus Train time - CIFAR100
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Figure 5.1: Compute efficacy frontiers: Leveraging SliceOut allows to achieve a more
desirable compute efficacy frontier for EfficientNets on Imagenet (left) and Wide ResNets
on CIFARI100 (right). Each curve represents the test accuracy Vs required training time
(relative to train time of the larger net) for networks trained with SliceOut (blue curves)
and without (black curves). See detailed results in tables .2 and .

In this work, we introduce an architecture-agnostic method to train neural net-
works faster without compromising on final test accuracy, thereby achieving a more
desirable compute efficacy frontier (see Fig. p.1).

Our proposed method, SliceOut (§), draws inspiration from dropout (Hinton
et all, 2012; Srivastava et al., 2014a), a regularisation technique widely used in large
neural networks. We show that the scheme can be used as an alternative to stan-
dard dropout that simultaneously preserves its regularisation benefits while achieving
speedups and memory gains at train time. More generally, we demonstrate it can
be also leveraged to achieve training speedups in architectures where no dropout was
used in the first place.

SliceOut introduces structure to dropout by slicing contiguous memory segments,
i.e., selecting a contiguous range of neighboring neurons and slicing feature tensors
or weight matrices row/column-wise (Fig. p.3c), as opposed to selecting neurons uni-
formly at random. From the computational perspective, this strategy takes advantage
of GPU memory layout as the operation requires a single access to contiguous mem-
ory. From the memory perspective, the zero units, that would physically remain in
memory with standard dropout, are removed from memory overhead by the slicing
operation. This implies a smaller memory footprint for weight gradients and activa-
tions throughout the network, and also results in matrix multiplications with smaller
tensors compared to standard dropout. This in turn allows us to fit larger models in
memory than would otherwise be possible, or conversely, to train a model of similar
size with fewer computing resources. The relative simplicity of the approach as a
constrained-form of dropout facilitates its implementation across architectures and
deep-learning frameworks. Lastly, SliceOut helps prevent some of the issues that
standard dropout has when applied to CNNs (§5.2.4 and Fig. @)

Our experiments are carried in three settings (5@): the first consists of relatively
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small neural networks applied to MNIST and FashionMNIST, to illustrate the benefits
of the approach in a simple setting; the second is Wide ResNets applied to CIFAR-
10/100 and EfficientNets applied to CIFAR-10/100 and ImageNet, demonstrating
significant memory and speedup gains due to the large reduction in ops on the high
dimensional feature vectors of CNNs; and the final setting is language modelling
with Transformers applied to LM1B, demonstrating the applicability of our method
beyond vision tasks. In all our settings we find that SliceOut performs comparatively
(or out-performs) standard dropout in terms of test accuracy, while achieving memory
and compute savings of 10-40%, depending on the model architecture and dropout
rate considered.

Our contributions are as follows:

e We introduce SliceOut, a general-purpose scheme to train neural networks faster
without impacting final test accuracy

o We derive various sampling and normalisation schemes for the method which
preserve (exactly or approximately) the first and second moments of the layers’
output, allowing for efficient deterministic approximations at inference time

e We implement this new scheme across a diverse set of network architectures -
from regular MLPs, to Wide ResNets, EfficientNets and Transformers

o We quantify the relative speedups and memory gains between the different
dropout schemes across experimental setups, demonstrating practical gains with
SOTA models with minimal to no impact on test accuracy

5.1 Background

5.1.1 Compute efficacy frontiers

In the past few years we have observed an unprecedented race to training ever larger
neural networks via massive compute resources with the ultimate objective to squeeze
in the most parameters possible for a fixed amount of compute — the latest example
being the GPT-3 model with a total of 175 billion parameters (Brown et al), 20201).
Significant progress has also been made towards the ability to train large deep net-
works very rapidly — with several teams competing to train high accuracy models on
ImageNet in a few minutes (Jia et all, 2018; Goyal et all, 2017). McCandlish et al.
(2018) investigate the relationship between compute resources and total training time
to achieve a fixed test accuracy, and observe Pareto frontiers connecting the two, for
example by training a model to solve the Atari Breakout game.

The aforementioned examples demonstrate the intricate relationships between
amount of compute available, overall training duration, and final test accuracy. A
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Figure 5.2: The purpose of developing efficiency in ML is pushing forward the compute
efficacy frontier: the frontier describing the best model one can obtain using a given amount
of compute.

convenient way to conceptualise these relationships and describe the objective of
progress in ML efficiency is to consider the compute efficacy frontier. The compute
efficacy frontier defines the utility of a given amount of compute; that is, given X
accelerators operating for Y hours, the frontier describes the best performing model
one can obtain (See Figure 5.2). In our work, we introduce a method that pushes the
frontier forward by reducing the compute while preserving the task performance. We
show that this method is effective across model architectures and across task domains.
Importantly, we show that even in highly efficient and optimised settings — like Effi-
cientNet models for ImageNet (Figure @) — our method has a dramatic impact on
compute efficacy.

5.1.2 Related dropout variants

Standard dropout randomly “turns off” at train time the neurons of a given layer
and, implicitly, the weights connected to them. This prevents co-adaptation between
neurons (Srivastava et all, 2014a), and empirically results in improved generalisa-
tion across a wide range of architectures and tasks (Labach et al,, 2019). Standard
dropout may also be interpreted as sampling a “thinned” architecture from an ex-
ponential number of related networks (2d if the layer width is d) during training,
and approximately ensembling these architectures at test time through first-moment
propagation (Gal & Ghahramani, 2015).

Since the seminal dropout paper (Hinton et al., 2012), many alternative dropout
schemes have been proposed to improve the efficiency of the technique across a wide
range of different neural network architectures. We review the most relevant ap-
proaches related to our work.
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Standard dropout. At each training step, the activations from neurons at a
layer where dropout is applied are zeroed out with a probability p — the dropout
probability for that layer — with the forward and backward passes being then per-
formed as usual (Fig. a). During testing, all units of the original architecture
are kept to perform the forward pass. Because a fraction p of units are dropped
during training, activations need to be renormalised to preserve the expected value of
pre-activations of subsequent layers between train and test, preserving the first and
second moments of the layer’s output. This normalisation may be performed at test
time (“weight scaling inference rule”, Goodfellow et al| (2016)), or during training
(“inverted dropout”). The latter is the most popular approach used nowadays and
consists of dividing each neuron at a layer where dropout is applied by the probability
of it being kept (i.e., divided by (1 — p)).

Controlled dropout. Controlled dropout (ByungSoo Ko et all, 2017; Ko et al,
2017) was suggested to speed up the training of fully connected networks based on
the observation that storing zeroed activations throughout the forward and backward
pass leads to computational inefficiencies. The authors propose to keep a random
subset of rows or columns of the activation tensors by performing a set of ‘gather’
operations (gather ops) on the corresponding network weights (Fig. @) The gather
ops select specific weight rows/columns, and allocate new memory into which these
rows/columns are copied, so that subsequent multiplications in the forward and back-
ward passes involve smaller tensors. Although this approach helps avoid unnecessary
multiplications, the gather ops’ memory allocations introduce significant overhead.
More specifically, the GPU needs to perform a quadratic number of reads and writes
in order to create the required reduced tensors. This is not only slow to perform, but
also results in duplicating the gathered weight tensors data in memory (Table @)

DropBlock & SpatialDropout. Convolutional neural networks require a dif-
ferent scheme than standard dropout to perform effective regularisation (Tompson
et al|, 2014; He et all, 2015). This is both due to the strong correlations between adja-
cent pixels present in natural images (and preserved in subsequent feature maps) and
the fact convolution kernels operate on nearby pixels. Consequently, when a given
pixel is zeroed out, information can still propagate through neighboring pixels as if
no dropout had been applied. Several schemes have been proposed to circumvent this
limitation, for example by zeroing out contiguous regions of the feature maps (Ghiasi
et al,, 2018) or zeroing out entire convolution filters (Tompson et al., 2014).

Further parallels may be drawn between SliceOut and Nested Dropout (Rippel
et al.,, 2014), in which coherent nested sets of hidden units are dropped in order to
learn ordered representations, and with DropEdge (Rong et al|, 2019), in which a
certain number of edges are removed from the input graph at each training epoch.
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Figure 5.3: Representation of the effective weight dropout masks for different dropout
schemes in a fully connected network. a) Standard dropout: entire rows/columns are
set to zero (in practice we typically zero out the output tensor as opposed to the weight) b)
Controlled dropout: similar to standard dropout, except non-zero weights are gathered
and reallocated in new memory. c¢) SliceOut: structured weight dropout keeps contiguous
set of rows/columns of weight tensors in-place.

5.2 SliceOut

SliceOut is a structured weight dropout scheme aimed at speeding up computations
and reducing cached memory footprint, while preserving the regularisation benefits
of standard dropout. We first convert the dropout rate into an expected number of
nodes that should be kept at a layer where SliceOut is applied, i.e. the “slice width”.
During training, we uniformly sample the starting index of the slice (restricting to a
subset of eligible positions), then “slice” (see next paragraph) the relevant rows and
columns of the weights and biases that precede / follow the layer(s) where SliceOut
is applied (Fig. ﬁ We then perform the forward and backward passes with the
sliced weights and biases, updating the corresponding slice(s) of the original weight
matrices in-place. We repeat this end-to-end process, sampling different slices at each
step, until convergence (Algorithm [17). At test time, we use the full network without
dropping any weights or biases, similar to standard dropout.

5.2.1 The slice op

Slicing is a fast and memory efficient operation: it selects the tensor elements of
interest with a single memory access, and performs tensor operations with the logical
tensors in-place (Harris et al., 2020; Paszke et all, 2019). The slice operation (slice
op) only changes the logical view into the memory, but not the physical memory.
When a GPU matmul or conv kernel (both GPU functions) is called, it only sees the
weights within that view, and does its operation with those weights without having
to move anything in memory. SliceOut enjoys speed-ups from performing forward
and backward passes with smaller tensors; Furthermore, as we now need only keep
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Table 5.1: Comparison of memory usage & No. of basic operations for different
dropout schemes with b the batch size, n & m the No. of neurons in the input & output
layers resp. & p the dropout probability applied to both input and output layers (with
0<p<1). SliceOut benefits from the same computation savings as Controlled dropout,
without the memory reallocation overhead.

Metric ‘ Standard dropout Controlled dropout SliceOut

No. extra read/writes
to manipulate weights
Extra memory usage
due to weight copy
No. basic operations
for weight multiply
Size of output
activations tensor

— O((1—p)? * n* m) 0(1)

- (1-p)2xnxm —

O(b * nx m) O(1-p)2*xnsmxb) O((1-p)?*n*msxb)

m* b (L-p)xm=xb (L—-p)*m=x*b

the smaller sliced activation tensors in memory to perform the backward pass at train
time, we save on activation storage.

At test time we use the full network, and therefore there is no difference in memory
usage to a network trained with standard dropout. However, the memory bottleneck
for large networks is typically at train time since we are required to store intermediate
activations to compute gradients on the backward pass.

5.2.2 Normalisation

After applying dropout, it is necessary to re-normalise activations in order to preserve
the moments of their distributions and avoid the network outputs exploding or col-
lapsing to zeros. We experimented with different approaches to normalise activations
after dropout, and describe here the two that lead to the best results in experimental
settings:

o Flow normalisation: We divide activations by the expected proportion of
nodes kept at that layer during training (i.e., the ratio of the slice width to the
full layer width). Intuitively, this helps keep constant the expected values of
pre-activations at subsequent layers.

o Probabilistic normalisation: We divide each node by the probability of this
specific node being kept during training. This helps ensure that, on average
during training, the activations stemming from this particular node are equal
to what they would be at test time.

These two normalisations coincide in the standard dropout case, where the ex-
pected proportion of nodes kept at a given layer is exactly equal to the probability
of each node to be kept during training. This is not the case in SliceOut, as we
impose constraints on eligible slices during sampling to avoid memory re-allocations
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and keep the size of tensors constant throughout training: nodes around the edges
are less likely to be selected at a given training step.

5.2.3 Regularisation and ensembling

While standard dropout samples a “thinned” network from an exponential number
of possible ﬂrchitectures, SliceOut samples from a linear or quadratic number of ar-
chitectures.® As a result SliceOut can be seen as a milder regularisation scheme (for
a fixed dropout probability value). We observe in several experimental settings that,
beyond a certain dropout probability threshold, the performance drops more sharply
in standard dropout than in SliceOut. This increased stability makes SliceOut less
sensitive to the chosen dropout probability, enabling higher drop rates.

Algorithm 1 Slice dropout algorithm - Simple FFN with L hidden layers

Let W, with I € [1 — L], be the weights tensor of the I** hidden layer
Let f;(.) be the non-linearity applied at the I*" layer
for training step < 1 to T do
Sample mini-batch (z, y)
for layer; < 1 to L do
Sample slice: Slice; = (start;, endy)
end for
for layer; <+— 1 to L do
Slice weights:
Wi stice = Wil(start;, end;), (start;_1, end;_1)] > where (starty, endp) selects the full

input
end for
Perform forward pass with sliced weights:
for layer; <— 1 to L do

x < fi(norm(W;_gjce - x)) > where norm(.) is the activation normalisation applied
post dropout
end for
Perform backward pass with sliced weights
end for

5.2.4 SliceOut and CNNs

Our SliceOut schemes for CNNs (Fig. draw inspiration from the prior dropout
schemes tailored to CNNs discussed in §p.1 (Tompson et all, 2014; Ghiasi et al., 2018):

e Channel-SliceOut: slicing contiguous sets of channels for a given convolution
kernel

11f SliceOut is applied at only one layer, we only take slices row-wise of the corresponding weight
vector (and column-wise of the subsequent weight vector), thereby sampling from a linear number
of architectures. If SliceOut is applied at two consecutive layers, we slice the second weight matrix
row and column wise, thereby sampling from a quadratic number of architectures (Appendix ?7).
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o Patch-SliceOut: slicing contiguous 2D chunks of the input activation tensors,
and then performing the convolution

Channel-SliceOut builds on the SpatialDropout scheme (Tompson et al), 2014),
with the critical difference that we directly slice the convolution kernels instead of
zeroing out feature maps of the output activation tensor. This results in smaller
output tensors and helps avoiding performing tensor operations for which the outcome
will be ultimately be set to zero. Patch-SliceOut_can be seen as performing the
complement operation to what is done in Cutout (DeVries & Taylor, 2017) (on the
input image), or more generally in DropBlock (Ghiasi et al), 2018), where units in
a contiguous region of a feature map are dropped together, except that we slice out
zeros instead of carrying them around.

[ unchanged voxel [] Zeroed voxel [l Sliced out voxel

Featuremap Featuremap ¥
width (W) . *
x
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a) SpatialDropout b) Channel SliceOut c) Patch SliceOut

Output tensor size=HxW xD Output tensor size =H xW x (p x D) Output tensor size = (p?x HxW)x D

Figure 5.4: Comparison of the feature tensor of a convolution layer where different dropout
schemes are applied

a) SpatialDropout: randomly sets entire convolution channels to zero. b) Channel
SliceOut randomly selects a contiguous set of convolution channels, resulting in a more
compact feature tensor (other channels are never allocated in memory) c¢) Patch Slice-

Out: selects a contiguous block of the input tensor across feature maps, then performs the
convolution.

5.2.5 SliceOut and Transformers

Attention Mechanism Feed-Forward Network

matmul

softmax

k linear J k linear ) L linear ) |
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inputs

inputs

Figure 5.5: Transformer architecture with SliceOut

42



Transformers (Vaswani et al., 2017¢) represent the state of the art across a host
of natural language benchmarks and have seen adoption across academia and indus-
try. One short-coming of the architecture is the considerable memory requirements
demanded by the model architecture since Transformers tend to improve their perfor-
mance dramatically with the number of parameters they are given. This observation
has lead to several strategies to construct larger and better models (a quick overview
of the Transformer architecture is given in Fig. 5.5).

SliceOut represents a complementary technique to the standard model-scaling
measures taken in the literature (e.g., distributed data and model-parallelism, memory
efficiency-focused optimisers (Shazeer & Stern, 2018)) and can be used in conjunction
with them.

In our implementation of SliceOut in Transformers we do not normalise the queries
and keys as in §p.2.9. Instead, we modify the temperature value (o) used in the
attention weights:

w, ft QKT
= softmax | ——
attn \/a
In a Transformer « is generally set to the dimensionality of the vectors in the queries
and keys, but in our case, SliceOut changes the dimensionality of those vectors during
training, and so we adjust @ to be the new dimensionality of these vector after
SliceOut. We do still perform normalisation (§5.2.2) on the values and within the
feed-forward networks (Fig. p.5; Note: In the figure, normalisation is denoted “scale”
while “norm” refers to layer normalisation, as in the original Transformer paper).

Since there is a dot product taken between each of the queries and keys, it is nec-
essary that the sliced out indices of those vectors are aligned. That is, SliceOut slices
out some contiguous set of elements from a query vector Qgliced = (Gis - - - » Ag+d); it
is, of course, extremely important than these indices are the same for the sliced keys
Kgliced = (ki - -+, kgyq). Similarly, when slicing weight matrices we must ensure
that the slices made along the leading dimension align with the slices applied to the
incoming activation vector. See the orange lines in Fig. for a pictorial description
of indices that must be aligned.

5.3 Experimental results

We quantify the benefits of SliceOut across several neural network architectures
and application domains: fully connected networks on MNIST and FashionMNIST
datasets (§), Wide ResNets on the CIFAR-10 and CIFAR-100 datasets (§,
EfficientNets on CIFAR-10/100 and ImageNet ( ), and Transformers on the LM1B
dataset (§p.3.4). For each experiment, we train the different networks until conver-
gence, measure speedups based on the train time per epoch, and memory gains via
the maximum GPU memory managed by the caching allocator at each epoch.
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Figure 5.6: FashionMNIST - We achieve 30% memory savings (a.) and 15% training
speedups (b.) from replacing standard dropout with SliceOut in a simple fully connected
network with 3 hidden layers, converging slightly faster and to a higher test accuracy value
(c., here for dropout rate = 0.5, although similar trends were observed for any dropout rate
< 0.5). Results were averaged over 4 independent runs

5.3.1 Fully connected networks

This first set of experiments is performed in a simpler setting aimed at studying the
properties of our method with fully connected networks on the MNIST (Lecun et al.,
1998) and FashionMNIST (Xiao et al), 2017) datasets.

In the FashionMNIST experiments, we observe not only speedups (up to 15%)
and cached GPU memory savings (up to 30%) with SliceOut, we also converge faster
and to a higher test accuracy value (Fig. 5.6) when typical dropout rates are applied
(i.e., p < 0.5). The highest test accuracy obtained with SliceOut across all hyperpa-
rameter settings tested was 90.0 £ 0.03 % (obtained with p = 0.1), while the highest
with standard dropout (also for p = 0.1) was 89.6 &+ 0.08 % (no dropout lead to a
test accuracy similar to the latter)

In the MNIST experiments, we observe similar speedups and memory gains from
SliceOut, although there was no statistically significant difference in terms of top test
accuracy.

Across both experiments, controlled dropout was converging to similar test accu-
racy values, but was systematically slower and less memory efficient than SliceOut.

5.3.2 Wide ResNets

Wide ResNets (Zagoruyko & Komodakis, 2016) are a variant of the original ResNet
architecture that achieve higher test accuracy by simultaneously reducing the depth
of the network and increasing the number of convolution filters in each residual block.
The architecture strings together several “Wide-dropout” blocks, progressively in-
creasing the number of channels and reducing the height & width of the activation
tensors. Standard dropout is used critically in each residual block between the two
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3x3 convolutions, to prevent potential overfitting resulting from the channel widen-
ing.

We remove the standard dropout layer in the original “Wide-dropout” block and
experiment with our two SliceOut schemes for CNNs (see Fig. and architecture
diagram on Fig. p.7):

o Channel-SliceOut: we apply SliceOut on the first 3x3 convolution across all
residual blocks. It is critical to ensure that we operate on the same slice at the
subsequent convolution layer, and the batch norm in-between;

e Patch-SliceOut: we apply Patch-SliceOut on the input tensor to the first 3x3
convolution, across all blocks.

For both schemes, performing the normalisation after the second batch norm and
right before the final projection convolution (“delayed normalisation”, Fig. @) helps
further increase test accuracy. We observe higher performance when using the Prob-
abilistic normalisation scheme over the Flow normalisation (§), and for Channel-
SliceOut over Patch-SliceOut.

When using SliceOut across a range of Wide Resnet architectures on CIFAR-
10/100 (Table. 5.2), we obtain training speedups of up to 35% and memory gains of
up to 25% with no impact on test accuracy. This translates into a superior compute
efficiency frontier (Fig. El!) For example, we are able to train a 46x12 architecture
with SliceOut as fast as a 40x10 architecture without SliceOut, and achieve a higher
test accuracy as a result.

Table 5.2: Wide ResNets results. Training time & Max cached GPU memory are
respectively the relative train time speedups per epoch for a network trained with SliceOut
Vs standard dropout, and the maximum cached GPU memory during training. Results
are averaged over 5 independent runs. Reported baseline values (standard dropout) are
obtained via an hyperparameter search over dropout rates and selecting the value yielding
the highest test accuracy. SliceOut results are obtained with a 0.5 rate, Channel-SliceOut
and Probabilistic normalisation.

Dataset Architecture Test accuracy Test accuracy Training  Max cached
Standard dropout SliceOut speedups memory gains
CIFAR-10 28x6 96.1% 96.0% -25% -21%
34x8 96.2% 96.2% -26% -21%
40x10 96.3% 96.2% -30% -20%
46x12 96.4% 96.2% -29% -25%
52x14 96.4% 96.2% -32% -22%
CIFAR-100 28x6 79.9% 79.8% -24% -21%
34x8 80.9% 80.7% -26% -21%
40x10 81.3% 81.2% -28% -20%
46x12 81.5% 81.4% -30% -25%
52x14 81.6% 81.5% -34% -22%
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Figure 5.7: Wide ResNet residual block and EfficientNets MBConv block with
SliceOut. The selected slices for the items in orange need to be aligned for a given for-
ward /backward pass.

5.3.3 EfficientNets

EfficientNets (Tan & Le, 2019) achieve state of the art performance on several vision
datasets including ImageNet (Russakovsky et al), 2014), while being more compute
efficient than prior architectures at test time. The purpose of our EfficientNets ex-
periments is two-fold: first, we demonstrate the scalability and generalisability of the
SliceOut scheme to larger datasets and more complex architectures; second, we show
that SliceOut can also be thought of as a method to accelerate model training, even
when dropout is not used in the original architecture. In EfficientNets, dropout is
not used in any of the mobileE inverted bottleneck (MBConv) blocks that form the
backbone of the architecture. ® We use Channel-SliceOut to operate on the “expand
convolution” (Fig. @) of the first three stages of MBConv blocks, as this is where
the largest tensors are created. Similar to what we observed with Wide ResNets, “de-
layed normalisation” (right before the final “projection” convolution) leads to higher
test accuracy. We hypothesize that normalising earlier in the block leads to worse
performance as it perturbs the statistics computed at train time for a given slice by
the intermediate Batch normalisation layers. Since we add SliceOut in parts of the
network where no regularization is needed, we turn off SliceOut in the last 10% of
training epochs to bridge a potential gap in test accuracy with the original architec-
ture.

2Standard dropout is applied on the last fully connected layer of the network, but using SliceOut
there would not result in meaningful speedups.
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In CIFAR-10/100 experiments, we fine-tune EfficientNet models pre-trained on
ImageNet without SliceOut (following the same experimental setup as in Tan & Le
(2019); Kornblith et al| (2018)). We observe speedups of over 20% when using Slice-
Out, with comparable test accuracy to performing the fine tuning without SliceOut.
This demonstrates that SliceOut can be used to achieve speedups when fine tuning
networks that were pre-trained without. In ImageNet experiments, we train the net-
works from scratch and observe speedups of up to 20% with SliceOut with similar
test accuracy (Table p.3), resulting in a more desirable compute efficiency frontier
(Fig. p.1). We train a B2 architecture with SliceOut (0.4) as fast as a B1 architecture
but with higher test accuracy (79.8% Vs 78.8%).

Table 5.3: EfficientNet results - ImageNet. Training time is the relative % of train
time per epoch for a network trained with SliceOut Vs standard B3 architecture trained on
the same dataset without SliceOut. ImageNet results are obtained by training from scratch.

SliceOut Test accuracy Training time savings
(rel. to B3 baseline)
rate BO B1 B2 B3 BO B1 B2 B3

None 1% 187% 79.7% 80.6% | -68% -50% -39% 0%
0.3 77.2% 78.8% 79.8% 81.0% |-70% -55% -46% -12%
04 76.8% 78.8% 79.8% 80.7% |-12% -57% -47% -18%
0.5 76.4% 785% 79.4% 80.7% | -2% -58% -52% -20%

5.3.4 Transformers

Table 5.4: Transformer results. We observe speedups and memory gains of ~ 10%
when using SliceOut, despite the fact in Transformers the performance is dominated by
looking up embedding vectors. Although Transformers are typically under-parametrised for
language modeling on LM1B, SliceOut is a more effective form of regularization compared
to standard dropout or controlled dropout.

Width Dropout | Dropout Controlled | SliceOut Training Max cached

rate Perplexity Perplexity | Perplexity time memory
1024 0.0 31.7 - - - -
0.3 45.1 45.7 33.7 -8% -9%
2048 0.0 28.1 - - - -
0.3 88.6 53.1 28.1 -11% -10%

In our experiments, we evaluate a vanilla Transformer language model on the
popular “One Billion Word Benchmark” (Chelba et al), 2013a). Similar to what we
do our EfficientNets experiments, we also perform a final fine tuning without SliceOut
for the last 10% epochs. Our results are shown in Table @ Given the complexity
of language modeling on the LM1B dataset, we observe that test set perplexity is
reduced across the board as we increase model width. In the larger width setting,
we obtain identical perplexity with SliceOut as for models trained without (standard
dropout is always detrimental to performance ), while reducing memory overhead by
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~ 10% and reducing steptime by ~ 10%. Speedups are more modest in comparison
to CNNs, and this is primarily due to the fact that, in Transformers, a significant
portion of steptime is spent looking up embedding vectors and computing logits over
a vocabulary of more than 32,000 elements. Similarly, much of the Transformer’s
memory is spent on storing the parameters, which SliceOut does not reduce.
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Chapter 6

ARC Networks

The following is work done in collaboration with Joost van Amersfoort, Lewis Smith,
and Yarin Gal. In this project I was the source of the method, led experiment design
and oversaw execution, and supervised the project alongside Yarin Gal.

One of the most significant issues with depth-wise parallel training — that is,
training a neural network by distributing contiguous groups of its layers across a set
of accelerators — is the gradient locking problem, where the earlier components must
sit idle after performing their forward pass while they wait for a gradient to arrive
from the latter components of the network. There is a much more complete analysis
of is effect in Chapter [i.

In order to prevent the gradient locking problem, we need to divide our model into
sub-components that are each optimised locally — i.e components that can perform a
parameter update given only an input x; and a target y, without waiting for a global
error signal to propagate backwards from the top layer.

In standard deep learning, we have data X, Y, and we attempt to fit a function
that predicts the output from the input, ¥ = f(z), by minimising some loss metric
on the output of the model, L(¥, y). Our model is a composition of simple functions
f= (f1 o f2...fn), and we optimise the parameters 6; of each component by moving
them in the direction of the gradient of the loss as a function of the global output,
09, L(¥, y)- This leads to the gradient locking problem — as discussed above, in order
to compute the gradient 9y, L(¥, y) using the chain rule, we need to wait until we have
computed the gradient of the layer above. In order to avoid the locking problem, we
need to have that each component f; can update its parameters with only access to its
input x;, output x;11 = f;(«;), and the global target y. The most obvious way to do
this is to use a simple, local auxiliary mapping to the target #; = softmax(h;(xjy1))
at each layer, and update each layer greedily based on this local learning signal as
though each layer were the final one; that is, to update the parameters according to
09,L(Y;, y) Belilovsky et al. (2019a). This is essentially the same as one would do
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in supervised greedy pre-training except we intend to learn all of these components
simultaneously in parallel.

The drawbacks of this approach are obvious — while this scheme meets our compu-
tational requirements, the updates to the functions are no longer acting to minimise
the global loss, but a local, greedy heuristic instead. There is a risk that each compo-
nent will settle down into a sub-optimal solution. In the next section, we discuss the
problems inherent in asynchronous greedy learning schemes, and our architectural
decisions to mitigate these problems.

Table 6.1: Standard ResNet-inspired networks on CIFAR-10. Each network has only three
components — one for each block of the ResNet architecture. Global is an end-to-end baseline
with no asynchrony.

| Acc. (global) Acc. (local)

AC (ResNet32) 93.60% 90.59%
ARC (RevNet38) |  93.56% 92.21%

An ARC Network (Asynchronous Reversible Component Network) matches the
description given above with the subtle variation that each component function f; is
constrained to be a reversible function:

1) _ D) 4 2
R e A
oy =z +G(z)

(6.1)

We can then describe an ARC Network using a directed graph of ARCs, along which
activations flow — but not gradients.

We can enforce reversibility of a single ARC f; by using a reversible ResNet block
as the function f;, ensuring that f; cannot discard information about its input. For
each ARC, an in-feed queue continuously streams batches of data through the ARC.
As soon as the outputs have been computed they are communicated to the in-feed
queues of adjacent downstream ARCs. Each in-feed queue is a last-in first-out cyclic
queue — the replay of previous batches unlocks the forward synchrony imposed by the
dependency of each ARC on its predecessor (Belilovsky et al| (2019a) discuss this in
detail).

In the following sections we justify the introduction of this reversible network

structure and — more generally — explore the pathologies that emerge in the local
learning setting and offer techniques for mitigating them.
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Figure 6.1: A comparison of simple toy
networks to demonstrate the importance of
information preservation. Three deep com-
ponent networks trained on MNIST. Ex-
tremely thin layers and local losses demon-
strate the importance of information prop-
agation throughout the network. The re-
ported error rate is of the final component
of each network. The dashed lines measure
training set error; solid lines, test set error.
X axis is epoch, Y axis is error rate.
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Figure 6.2: We compare five 18-
component networks trained on CIFAR:
One ARC Network trained with dropout
at a rate of 50% applied to the first com-
ponent’s outputs; A second ARC Network
trained with a larger auxiliary network
composed of two stride two convolutions be-
fore the global average; A third ARC Net-
work trained with both the larger auxiliary
network and dropout; One non-reversible
component network trained without any

additions; And another non-reversible com-
ponent network trained with the same
larger auxiliary as above.

6.1 The Importance of Information Propagation

A core insight of our work is identifying and resolving a failure mode of component
networks:

When gradient communication between components is cut, later components lose the
ability to request specific features of the input data from their predecessors, leading to
permanent and potentially catastrophic loss of information.

Here we demonstrate this phenomenon quantitatively. Our solution is to architec-
turally enforce the preservation of information by using reversible components which
architecturally enforce the preservation of all information in the input, except when
we explicitly choose to impose structured information loss by applying pooling opera-
tions. A simple demonstration of this effect is presented in Figure 6.1, we train three
extremely simple component networks on MNIST: an MLP, a ResNet, and a RevNet.
The main body (excluding the auxiliary layer leading to the logits) of each of the
networks has ten weight matrices. To constrain the flow of information, each layer
has only six neurons and every layer is treated as its own component. The networks
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(b) Two accuracy curves depicting negligible
improvement between components of a network
when the problem of identity collapse is not ad-
dressed. Contrast to consistent upwards trend
in performance and converged accuracy given
in Figure using our methods tackling the
problem of identity collapse.

jective are present (e.g weight decay can begin
to crush the later ARCs to identity functions).

Figure 6.3: Plots showing common indicators of the problem of identity collapse when
models are under-regularised, trained on CIFAR10.

are all trained for fifty epochs using stochastic gradient descent with learning rate
1073 and momentum 0.9.

The result shows the importance of information propagation; an MLP fails to
exceed 80% accuracy, which grossly under-performs a simple linear classifier on the
dataset, meaning crucial information about the input digit has been lost. The ResNet
— whose residual function consists of a single ReLLU-activated densely connected layer
— is able to carry information much further (as was pointed out by Behrmann et al.
(2018), a residual network is invertible if its residual function is a contraction) and,
consequently, vastly outperforms the simple MLP. The RevNet — whose function
preserves all information after the first densely connected layer — out-performs both
of these architectures and demonstrates a much more stable learning curve.

6.2 The Problem of Identity Collapse

The second major failure mode of training component networks is the problem of
identity collapse, where a component falls into the local optimum of a simple identity
function. The component fails to improve on the previous component, resulting in
wasted compute cycles. The problem is particularly difficult to overcome as the
scenario described next is easily encountered by a sufficiently complex component
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with enough capacity to memorise the training setE].

The problem of identity collapse:

e Component one is an under-regularised network.

o Component one is rapidly optimised to a solution that generalises poorly (as a
consequence of the component’s reqularisation). Component one has nearly zero
training set error.

o Component two receives as input activations that — when near-identity is learned
— result in zero error on the training set. This eliminates any gradient signal
for the component, and settles the component into the same solution as its
predecessor; that is, a solution that generalises as poorly as the first component.

This is obviously a catastrophic failure for optimisation, resulting in large compo-
nent networks that generalise as well as the small, poorly-generalising first component.
Moreover, the very class of architectures that have come to dominate across data do-
mains — residual networks — are at the most extreme risk of exhibiting this behaviour.
A residual network can learn the identity simply by suppressing the parameters of
the residual functions.

Overcoming this problem begins by studying the change in learning dynamics
that arise in the component network setting. Each component effectively constructs
a brand new dataset for the next component to be trained on, and as a consequence,
optimisation dynamics on each of these new tasks may — and empirically, do — differ
drastically from the original task.

In Figure @ we plot the norm of the gradient and the accuracies of eighteen-
component networks that are not reqularised to avoid the problem of identity collapse.
The plot shows that the gradient drastically changes scale after the first component,
even after only a handful of epochs spent training. The right plot shows how both the
ARC and AC network have their accuracy dominated by the first few components in
this situation, and the remaining component learn a solution very close to the identity
thereafter.

Another consequence of this drastic change in gradient scale is the amplified effects
of weight decay. Components after the first suffer from having their parameters
rapidly driven towards zero; resulting in near identity. To prevent this, we find that
removing weight decay in all but the first component mitigates the issue — although
we acknowledge that weight decay plays an often crucial element of optimisation and
future work will need to address how best to reintroduce the method and decide its
scaling relative to the cross-entropy.

INote that Zhang et al, (2016) demonstrate even a modestly sized neural network is capable of
this.
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We find that regularisation explicitly intended to disrupt a component’s ability to
simply learn the identity can have a fairly dramatic effect. For instance, during train
time we apply a single dropout layer to the activations passed forwards from the first
component and observe a much more natural progression of task performance form
one component to the next (see Figure ) The hypothesis being that by disrupting
the activations of the first component, subsequent components are forced to learn
solution strategies beyond the identity. Tableq@ (‘local’) summarises the effects of
regularisation on the identity collapse problem, reporting best model performance for
AC nets vs ARC nets.

6.3 Reversibility and Downsampling

In practice, using fully reversible networks presents something of a problem. A re-
versible transformation clearly cannot reduce the dimensionality of its input, which
precludes us from using spatial pooling operations like max pooling, average pooling,
or strided convolutions — which are all common in practical network designs. These
operations are valuable because they reduce the size of the activation map which
needs to be stored, reducing computational cost, but also because they enforce a kind
of prior knowledge — that at a certain level, fine grained spatial details are not rele-
vant to the task at hand. We find in practice that adding pooling-blocks drastically
improves the performance of networks that otherwise consist entirely of reversible
components (pooling is applied at components 6 and 12 for all models in Figures E
and for a fair comparison). Why do we find that this information loss is beneficial,
yet using reversible transformations improves performance?

We hypothesise that this is because spatial pooling operations are structured in-
formation loss — when designing the model, we know a priori that we want our final
model to be insensitive to small translations of image components, which we achieve
by using convolutions followed by pooling operations (Bruna & Mallat, 2013). How-
ever, by using reversible components, we still prevent the loss of any information
other than the very specific kinds of information loss imposed by the design of our
network, so the network is not free to throw away any other information about the
input which might be encouraged by the local loss.

6.4 Conclusion

While the results of introducing reversibility and regularisation certainly do dra-
matically improve performance of the local learning setting, they do not completely
erase the performance gap relative to global learning (Table p.1). This lingering delta
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in performance between the two methods motivates the follow Chapter, where we
introduce an alternative to local learning that allows for a continuous ablation be-
tween the local and global learning settings — enabling the user to choose the tradeoff
between optimisation quality and efficiency.
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Chapter 7
Interlocking Backpropagation

Local learning aims to optimise neural networks by computing parameter updates
from multiple losses distributed throughout the network’s computation graph. Gener-
ally, parameter updates will only incorporate the gradient received from their nearest
loss, meaning they will not need to wait for all components of the neural network to
be computed before being applied. This leads to theoretically faster step times as
the method is amenable to taking advantage of pipeline parallelism across multiple
accelerators. Below I explore the setting of local learning and discuss its limitations
and introduce a method for overcoming some of them while preserving theoretical
efficiency benefits.

The following is an excerpt from Gomez et al] (2022) and is published in The
Journal of Machine Learning Research. This is work done in collaboration with
Oscar Key, Kuba Perlin, Stephen Gou, Nick Frosst, Jeff Dean, and Yarin Gal. In this
project I was the source of the method, led experiment design and oversaw execution,
and supervised the project alongside Yarin Gal.

Modern state-of-the-art language models require billions of parameters. These
models are often too large to fit in the memory of a single accelerator, and so the
training computation must be distributed across multiple accelerator devices. Train-
ing such large models can be accomplished by partitioning the model across several
accelerators and communicating the activations and gradients between them. Train-
ing such a model in the naive way incurs significant inefficiencies, as each accelerator
must wait for all downstream accelerators to compute their forwards and backwards
passes before it can begin computation of its own backwards pass. This optimisation
setting is referred to as ‘global learning’, as there is a single global objective that must
be evaluated in order to compute updates to the parameters.

An idealised model-parallel optimisation setting would be one where each accel-
erator need only push data to the next, never waiting for any returning gradient.
In order to facilitate this, each accelerator’s portion of the model must be able to
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compute weight updates with which to train itself, without access to any information
from downstream accelerators. This idealised setting is referred to as ‘local learning’
and has seen an uptick in recent interest (Lowe et all, 2019; Belilovsky et al., 20191).
However, there remain core limitations to the proposed methods, principal among
them: the degradation in modelling performance relative to global learning.

In this work we attempt to improve the efficiency of distributed model training
by exploring strategies that strike a middle-ground between local and global learning
via backpropagation. We train large scale neural networks with auxiliary classifica-
tion layers throughout the network. We then explore various training regimes by
restricting the gradient flow from each of these classification heads. We refer to these
strategies as interlocking backpropagation. We find that interlocking backpropaga-
tion is significantly more compute efficient than the standard global backpropagation
approach, yet it achieves similar test accuracy. In some cases it even outperforms the
global baseline. Our work presents the following contributions:

o We explore modelling limitations of local optimisation.

o We propose a class of optimisation algorithms that aim to preserve much of
the compute efficiency of local training, while significantly improving modelling
performance.

o We provide a generic, open-source framework for the study of optimisation of
locally trained networks. This is available at
https://github.com/oscarkey/interlocking-backprop.

7.1 Methods

A neural network can be described as a composition of a series of smaller functions;
for example f = fgo- -0 f2 0 f;. When the parameterization of the network exceeds
the limit of a single hardware accelerator, contiguous groups of these functions can
be placed on individual accelerators. Each of these contiguous groups is referred to
as a module. The communication between these modules can be costly and so one
could attempt to speed up the learning process by performing local learning on each
module.

Consider a network composed of three modules of two layers each:

f=TFfez0fc0fc;
where, fc, = f2 o f1, parameterized by 0., = (62, 01)
fes = fa 0 f3, parameterized by 6., = (04, 63)
fes = f6 © f5, parameterized by 0., = (6g, 05)
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Figure 7.1: Depiction of the flow of activations and gradients through interlocking back-
propagation for different optimization strategies. Activation flows are shown in black and
gradients are shown in red. One extreme is 1-wise optimization, where there is no gradient
communication between modules. The other extreme is end-to-end optimization, where
gradients flow through all modules from a global loss function at the top of the network.
The 2-wise and 3-wise strategies, as introduced in this paper, strike a middle ground. In
2-wise, gradients flow from an auxiliary network attached to each module, through the local
module, and travel one module boundary before stopping. Similarly, 3-wise has gradients
travel through two module boundaries before stopping.

We consider several possible approaches for training this model, which differ in
the amount of communication between modules. One extreme, involving the most
communication, is end-to-end training. Here we compute the loss based on the output
of the final module, f¢;, and propagate the loss backwards through each module to
update their parameters. This approach is depicted in the bottom row of Figure
This approach achieves identical accuracy to if the model was in a single module
on a single accelerator, however the communication between modules during the
backwards pass leads to inefficiencies. If we consider the first module in the model,
having completed its forward pass it must sit idle while it waits for the modules above
it to complete their forward and backward passes, before it receives the gradient signal
and can perform its own backwards pass.

The other extreme, requiring the least communication, is local training. This is
shown in the first row of Figure [7.1. In this setting we augment each module with a
local loss function, L, :

L (2, y) = L(Ye,(2), y)
where, e, () = hep(fe,, 0+« 0 fe;(x))-

Here z is the training input to the model, y is the target, and £ is a standard
loss function, such as the cross-entropy loss. We call h, the auxiliary network for
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Figure 7.2: (top) Four training steps of different distributed optimisation strategies. 2-
wise and 3-wise interlocking backpropagation, as introduced in this paper, are far cheaper
than end-to-end in terms of total optimisation time, and offer a natural trade off between
speed and optimization performance. (bottom) Table comparing the scaling of time per
batch for different optimization strategies applied to A accelerators. Hogwild achieves its
optimal time per batch when run long enough to fill its pipeline, which is not illustrated
above.

module k. It produces predictions for the task directly from the outputs of the kth
module. During training, we update the parameters of both the main and auxiliary
networks of the kth module based only on gradients from L.,. This means that
during the backwards pass no communication is required between modules. Thus,
the only communication necessary between the hardware accelerators holding each
module is to propagate the activations during the forward pass. This strategy avoids
accelerators idling during the backward pass, while they wait to receive gradients
from subsequent accelerators.

While local training is time efficient, without backwards communication between
modules it fails to match end-to-end in test accuracy. In this work we address this
problem by introducing new intermediate strategies between end-to-end and local
training, where we allow varying amounts of communication between modules . We
refer to this family of strategies as n-wise interlocking backpropagation. Figure
illustrates 2-wise and 3-wise. Here the parameters in module k are updated using
gradients from L, (N-1)? which have been propagated backwards through the in-
termediate modules. When N is set to 1, this is equivalent to local optimisation
(Belilovsky et al., 2019b) (i.e 1-wise); when N is set to the number of modules, this
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Figure 7.3: Depiction of the problem of stale gradients in Hogwild-style training. The
0;s denote the parameters for the corresponding accelerator’s module at step i. (*) During
the forward pass of the fourth batch of data, the first module computes its activations
using the parameters 0 (left arrow); however, during the fourth batch’s backwards pass
the first module has already had it’s parameters updated 3 times to 63 (right arrow). This
mismatch between the weights used to compute the activations and those used to compute
the gradient can disrupt optimisation dramatically (see Appendix Table 2).

is equivalent to global optimisation (i.e end-to-end) with inception-net style auxil-
iary losses. By selecting IN, we can specify the trade-off between performance and
accuracy to match our application.

During n-wise testing we only make predictions using the output of the final mod-
ule, and this is what we use to compute test accuracy. An alternative approach would
be to ensemble the predictions of the auxiliary network at each module. However,
experimentally we find that this does not significantly increase performance, likely
due to the modules being highly correlated, and in some cases earlier modules having
much lower accuracy than later ones (see Appendix A).

The step times of these strategies are visualised in Figure . It shows that 2-wise
and 3-wise are substantially faster than end-to-end training, yet in the next section
we show that they can recover much of the performance on both image classification
and Transformer language modelling tasks.

7.2 'Training Speed of Interlocking Backpropaga-
tion

Interlocking backpropagation allows shorter training step times than end-to-end learn-
ing, as the gradients do not need to pass through the entire network. The step time
can be controlled and reduced dramatically by lowering the N parameter of n-wise.

In interlocking backpropagation, multiple batches may be processed simultane-
ously by different modules of the network, making it another instantiation of pipeline
parallelism, such as that achieved by GPipe (Huang et al,, 2018b). In fact, inter-
locking backpropagation is orthogonal to the micro-batching done in GPipe, which
splits a batch of data into smaller micro-batches that are fed through the model one-
by-one similar to Hogwild (Recht et al|, 011), however, during the backward pass,
instead of immediately applying the gradients from each micro-batch, the gradients
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are accumulated and only applied after all micro-batches have been included. This
method can mitigate the gradient locking problem, but as the number of accelerators
increase the micro-batch size will decrease and compute utilization will be negatively
effected. Combining both GPipe-style parallelism with interlocking backpropagation
yields additional benefits, as discussed below.

To understand the timing characteristics of n-wise in more detail, we propose a
general algebraic model of time per batch for synchronous model-distributed learning.
Our model abstracts local learning, end-to-end learning, GPipe, and interlocking back-
propagation. Those training paradigms — and combinations thereof — are captured
by the following three parameters:

e A — the number of sequential accelerators (modules).

e M — the number of micro-batches per mini-batch. M = 1 corresponds to not
applying micro-batching.

e N — the n-wise parameter, in the range [1, A]. N =1 and N = A correspond
to local learning and end-to-end learning, respectively.

As we are modelling a synchronous setting, we split the time domain into segments
of equal duration. A grid with rows corresponding to accelerators, and columns
corresponding to time slots, can be used to illustrate the processing done by the
different learning strategies. An example timing diagram, with no micro-batching, is
shown in Figureg@.

We denote the micro-batch processing cost ¢(M), which is defined as the duration
of a single time slot. This model makes the simplifying assumption that a forward
and backward pass are the same duration.

The time per mini-batch (equivalently, per one gradient update) can then be
derived as:

for M >2,A <2N-1)
for M >2,A>2N-1)
for M = 2)
for M = 1)

(24+A—N)- Me(M) +2(2N-A—-1) - ¢(M)
(N+1) - Me(M)

(N +1) - Me(M)

2N - Mc(M)

T(A, M, N) =

N N N TN

For end-to-end learning (N = A), the formula degenerates to T(A, M) = 2(M+
A —1) - ¢(M). Note that for n-wise with N < 1 + A/2, the time per batch is
completely independent of the total number of modules of the network. Thus the
timing benefits of n-wise are most pronounced for big models, distributed across a
large number of accelerators. Details of the model derivation, micro-batching timing
diagrams, and fit of the cqg, c; parameters to experimental timing data, are presented
in Appendix ?7.

The micro-batch cost model ¢(M) := ¢g + ¢1/ M yields a good fit to our exper-
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Figure 7.4: Modelled time per batch speed-up for n-wise, compared to end-to-end with
GPipe, for varying numbers of accelerators. The optimal number of micro-batches is as-
sumed at each point of the plot. Micro-batch cost ¢(M) = 0.025s + 1.279s/ M, tuned to
our Transformer experiments, is used.

imental data. This formula accounts for both a constant overhead present for each
micro-batch (e.g. waiting times in inter-accelerator communication) and a processing
time proportional to the number of examples in a micro-batch. For that cost function,
the benefits of micro-batching are maximised at M o +/A for end-to-end learning,
while M = 2 is optimal for n-wise (assuming N < 1 + A/2).

For optimal choices of M, and the cost function parameters (cg = 0.025s, c; =
1.279s) tuned to results of our Transformer experiments, the model predicts a 50%
speed-up of time per batch (compared to end-to-end) for 2-wise at 15 or more accel-
erators (see Figure [7.4).

7.3 Information Flow in Interlocking Backpropaga-
tion

Unlike local training, in n-wise interlocking backpropagation the gradient from the
loss at the final layer affects all the parameters of the network, it just does so indirectly.
With 2-wise, module 2 optimises for both its local loss, and the loss of module 3. The
module 3 optimises its loss and the loss of module 4, and so on until the final loss.
As a result, there is indirect communication from modules at the head of the model
to previous modules.

Consider a network with n modules trained using 2-wise:

f=Jen, 0 0f¢
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Each auxiliary network approximates the composition all of the modules above it:

hckzfcno---ofck_H

For training to work effectively this approximation should be as close as possible, so
that the gradient computed from L, encourages f, to learn a representation which
is useful for the modules above.

In 1-wise training, several factors discourage hc,, from being a good approximation
of the remainder of the modules. As h, has much lower capacity than the rest of
the network in the modules above, it may encourage f¢, to greedily learn a simpler
representation which is more amenable to immediately computing the logits, rather
than feeding into the subsequent modules. This simpler representation may throw
away information which the subsequent modules could use to achieve higher test
accuracy.

In 2-wise training we hope that the communication between modules will allow
lower modules to learn a representation that is useful for the modules above. We argue
that this could happen by starting at the head and walking down the model. The
penultimate module f,, , is updated using gradients which have propagated from the
true loss at the head of the network and through f¢,,. Thus, f., ; will learn the most
useful representation for f., ,, rather than learning a representation which improves
the performance of h¢, ;. Now we examine the updates of the f., ,. This module
is updated with gradients that propagate from L., ;, and so depend on h., ;. If
he¢, , is a close approximation to f¢,, then these gradients will push f, , towards
a function which outputs a useful representation for both f., , and f.,. As h¢,
and fc, both have the same inputs and targets we hope that h., ; should become a
close approximation to f¢,, as close as possible given the limited capacity of k¢, ;.
Thus, fc,_, should learn a useful representation for f., , and f.,. We can continue
to extend this reasoning down the model.

7.4 Experiments

Here we present results of experiments in both the image and language domains.
We compare our n-wise strategies to both extremes of local learning and end-to-end
training.

7.4.1 Validation of Approach Using a Small Convolutional
Network

We investigate the behaviour of our method when training a small convolutional net-
work on the CIFAR-10 dataset (Krizhevsky & Hinton, 2009). We consider models
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Figure 7.5: (left) Test accuracy of small convolutional models on CIFAR-10, comparing
across depth and training method. (right) Comparison demonstrating that simply doubling
the size of modules trained locally does not recover the full benefits of 2-wise training. In
both cases the error bars show one standard deviation over four random seeds.

of 3 to 10 convolutional layers. Each module of the model contains a single convo-
lutional layer and batch norm, with the final two modules also containing max pool
layers. The auxiliary networks used for the local losses are comprised of a single
linear layer. Appendix B gives full details of the experiment configuration. We train
the model using several approaches: end-to-end, 1-wise, 2-wise, 3-wise and 4-wise.
Figure shows how the different approaches to training / as we increase the num-
ber of modules in each model. Unsurprisingly we see that end-to-end optimisation
results in the best test accuracy, and local optimisation results in the worst. We
note that pair-wise interlocking backpropagation training provides a clear improve-
ment over training with only the local loss. For models with 6 or less modules, we
find that n-wise training achieves comparable accuracy as end-to-end training within
standard deviation. This shows that intermediate strategies between local and global
optimization provide a good alternative to both, maintaining much of the test accu-
racy of global optimization, while drastically decreasing training time. This increased
performance however degrades as we increase the number of modules. These results
imply that this strategy will be most effective with networks with a small number of
modules. While this is only a toy setup, these improvements are also seen when we
examine ResNets and Transformer networks later in the paper. This confirms that
n-wise interlocking backpropagation training allows the user to trade-off some test
accuracy for a significant boost in efficiency when compared to end-to-end.

In order to understand the interplay between the number and size of the modules
in the network and the optimisation strategy, we compare our 2-wise training scheme
to an alternative approach with similar time complexity in Figure @ (right). This
approach, labelled “1-wise (double size)”, is equivalent to performing 1-wise training,
but with adjacent pairs of modules merged to give half the number of modules, each of
which is twice the size. As merging modules is not possible in practice — each module
would be large enough to fill an entire accelerator — we could implement this method
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end-to-end 1-wise 2-wise 3-wise

CIFAR-10 ResNet-32 95.20 (0.11) 94.20 (0.09) 95.05 (0.09) 95.42 (0.06)
CIFAR-100 ResNet-32 76.71 (0.14) 75.02 (0.09) 78.09 (0.13) 77.84 (0.04)
ImageNet  ResNet-50 75.60 72.05 74.45 76.27

Table 7.1: Accuracy of ResNet-32 and ResNet-50. For CIFAR we give the accuracy on the
test set, for ImageNet we give the accuracy on the validation set. One standard error over
three seeds is given in brackets for CIFAR. Bold indicates the best performing strategy.

by grouping modules into blocking pairs. We are interested in a comparison with
this method because it is similar to 2-wise, except there is no possible communication
between modules which are not directly adjacent. With 2-wise we hope that the fact
that the pairs of modules are overlapping will allow indirect communication further
down the model than the adjacent module that the gradients are passed to. Figure

shows that this approach performs better than 1-wise, but not as well as 2-wise, which
may suggest that this additional communication is in fact taking place in 2-wise.

7.4.2 Image Domain Results Using ResNet Models

Having investigated our method in a toy setting, in this section we demonstrate that
it continues to lead to improved performance with a more realistic model architecture.
In particular, we consider ResNets (He et al., 2016h) on CIFAR-10, CIFAR-100, and
ImageNet (Deng et al., 2009). While a ResNet is usually sufficiently small to fit on a
single accelerator, these results suggest that our method would work with significantly
larger vision models which require multiple accelerators. In the next section we
consider a language model, a Transformer, which is is too large to fit on a single
accelerator.

Table l’ﬂ compares the performance of different training schemes for a ResNet-32
and ResNet-50. In both cases the model is split into four modules as follows. Re-
ferring to He et al| (2016a, Table 1), for the ResNet-50 the first module contains
the layers labeled ‘convl’ and ‘conv2_x’, the second module contains ‘conv3_ x’, the
third ‘conv4_x’, and the forth ‘convb_x’ and the output layers. The ResNet-32 is
split similarly. For the auxiliary classification network we use two convolutional layers
with batch norm, global average pooling and a single linear layer. The full experi-
ment configuration is given in Appendix B. These results show that n-wise training
substantially closes the performance gap between local and end-to-end training. The
results also show that 3-wise training does not consistently offer better performance
than 2-wise training which, given the results in Section j, is what we would expect
for a model with only 4 modules.

In fact we see that for both CIFAR-10 and CIFAR-100, interlocking backpropaga-
tion outperforms end-to-end training. This is a surprising finding, as one would expect
that a model in which all features were trained to optimize the single global loss would
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Figure 7.6: Test accuracy of each auxiliary classifiation head from a ResNet-50 model
trained on ImageNet, trained with 1-wise (left) and 2-wise (right). 1-wise training leads to
each module attempting to solve the entire problem on its own; this causes earlier modules
to out-perform 2-wise, but ultimately, the final performance of 2-wise’s more incremental
solution strategy is better than 1-wise’s.

outperform a model in which modules were optimised for local losses. Our results in-
dicate that 2-wise training of large scale neural networks could outperform training
equivalent models with end-to-end backpropagation. This surprising result may be
explained by the success of Inception Nets (Szegedy et all, 2015), which found that
adding auxiliary classification losses into the model improved training performance,
leading to state of the art results at the time they were first published. We have
argued that interlocking backpropagation may be able to propagate information from
the top level loss to the initial layers. Inception Nets showed that auxiliary losses
improved performance on CIFAR-10. The success of interlocking backpropagation in
this setting may be understood as the consequence of these two findings.

We also use these ResNet experiments to further investigate the behaviour of
each module in the network. Figure shows the test accuracy of the outputs of
the auxiliary network of each module in a network trained using 1-wise, compared
against a network trained using 2-wise. Examining the accuracy of the model trained
using 1-wise, we can see that the accuracy of module 2 is close to the accuracy of the
overall model. This suggests that the model is encountering information loss, as later
layers are unable to improve on the representations learned by earlier layers. The
lower modules of the model learn a representation which is suited for the low capacity
auxiliary network to map to the logits, throwing away useful information which the
subsequent modules could otherwise use to improve accuracy further. In contrast, if
we examine the 2-wise performance we notice that the training accuracy increases
more gradually with each module, indicating that that this training regime is able to
make use of the additional modules to improve performance.
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Figure 7.7: (left) Comparison of test perplexity of Transformer models across depth and
training method. Models are run for a fized number of steps. 2-wise recovers a large amount
of lost model performance in local training. (right) Comparison of training step time (in
seconds) of Transformer-based models across depth and training method.

7.4.3 Language Domain Results Using Transformer Models

Finally we investigated the performance of our method for training Transformer based
models on language modelling tasks. The architecture we used largely follows the de-
coder only Transformer described in OpenAI’s GPT-2 model (Radford et al/, 2019b),
with the addition of the auxiliary classification networks used for calculating the local
losses. See Appendix B.3 for auxiliary network and training details. In these exper-
iments each module is made out of 6 Transformer blocks. We run experiments with
networks comprised of 3 to 6 modules. Each module was trained on a v3-8 TPU. We
trained and evaluated the models with the One Billion Word Benchmark for Language
Modelling (Chelba et al., 2013b). Each Transformer block module has a dimension-
ality of 1024. We train with a max sequence length of 128, and a batch size of 1024.
For the experiments in Figure [1.7, we train for one epoch with the Adam optimiser;
for the experiments in Figure we train for 192 hours (eight days). We measure
the performance of the models using perplexity, for which a lower value indicates
better performance. Figure shows the test set perplexity of models trained with
1-wise, 2-wise interlocking, 3-wise interlocking and, end-to-end backpropagation. We
can see that, unsurprisingly, end-to-end greatly outperforms 1-wise training and the
gap between them widens as we increase the size of the model. Interlocking backprop-
agation is able to make up much of the gap between 1-wise and end-to-end, but unlike
our observations with CIFAR-10 and CIFAR-100, there is still a test perplexity gap
between interlocking and end-to-end backpropagation for a fixed number of training
steps.

In this real world setting we are able to substantially decrease the training time of
these large models. The time per step for models of this size varies considerably based
on the optimisation strategy used. Figure [7.7 visualises the test set perplexity and the
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Figure 7.8: While Figure @-(left) may suggest that end-to-end training always out-
performs local training, it is important to keep in mind that this is still in the ‘fixed steps’
perspective; i.e we fix the number of steps each model is allowed to take and ignore the fact
that running times may differ wildly. This figure exemplifies the importance of considering
the ‘fixed time’ perspective: (left) depicts the training curves of 1-wise, 2-wise, and end-
to-end in a ‘per time’ perspective; (right) depicts the same training curves in a ‘per step’
perspective. The difference between these two perspectives is quite extreme — from the ‘per
step’ perspective, end-to-end training is best at any given point; however, when a ‘per time’
perspective is considered, the local learning strategies are best at any given point. Given
a fixed time constraint, the logical decision to obtain the best possible model is to opt for
a local learning strategy. The eval perplexities are measured at the end of each 8-day-long
training.

train step time for models of various sizes trained with end-to-end, 1-wise, and 2-wise
interlocking backpropagation. 2-wise interlocking backpropagation requires less than
half the training step time of standard end-to-end training, to achieve similar test
perplexity for models with 4 modules.

Figure @ demonstrates the importance of considering a ‘fixed time’ perspective
of training. Instead of fixing the number of optimiser steps, we fix the total elapsed
training time to a set number of hours. The result is that methods which take
gradient steps quicker will see many more weight updates relative to methods that
are slower. When running for a fixed amount of time, the performance of interlocking
backpropagation improves dramatically relative to end-to-end methods.
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Chapter 8
Tabular Transformers

The primary means by which large language models’ data is collected is via large-scale
web scraping of text data. A limitation of the current sequence modelling regime is
that there isn’t an obvious formatting for modelling tabular data which is pervasive
on the web. In this work we present an architectural change and learning rule that
lets Transformers model tabular data.

The following work is an excerpt from Kossen et al, (2021) and is published in
the 35th Conference on Neural Information Processing Systems. This is work done
in collaboration with Jannik Kossen, Neil Band, Clare Lyle, Thomas Rainforth, and
Yarin Gal. In this project I supervised the experimental design, in particular, the
training strategies and data preparation, and I cosupervised the project with Yarin
Gal and Thomas Rainforth.

From CNNs (LeCun et all, 1998b) to Transformers (Vaswani et al, 2017a), most
of supervised deep learning relies on parametric modeling: models learn parameters 0
from a set of training data Dirain = {(1, Y1), -, (Tn, Yp)} to maximize training
likelihoods p(y | x; @) mapping from features * € X to target values y € Y. At
test time, they then make a prediction p(y* | =*;0) that depends only on those
parameters 6 and the test input x*. That is, parametric models do not consider
direct dependencies between datapoints.

This paper challenges parametric modeling as the dominant paradigm in deep
learning. Based on the same end-to-end learning motivations that underpin deep
learning itself, we consider giving models the additional flexibility of using training
data directly when making predictions p(y* | *, Dirain; 0).

Concretely, we introduce Non-Parametric Transformers (NPTs): a general
deep learning architecture that takes the entire dataset as input and predicts by
explicitly learning interactions between datapoints (Fig. @) NPTs leverage both
parametric and non-parametric predictive mechanisms, with the use of end-to-end
training allowing the model to naturally learn from the data how to balance the two.
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Namely, instead of just learning predictive functions from the features to the targets
of independent datapoints, NPTs can also learn to reason about general relationships
between inputs. We show that these models learn to look 