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We present a high-resolution, densely sampled data set of wild bird songs collected over multiple years
from a single population of great tits, Parus major, in the U.K. The data set includes over 1100 000 in-
dividual acoustic units from 109 963 richly annotated songs, sung by more than 400 individual birds, and
provides unprecedented detail on the vocal behaviour of wild birds. Here, we describe the data collection
and processing procedures and provide a summary of the data. We also discuss potential research
questions that can be addressed using this data set, including behavioural repeatability and stability,
links between vocal performance and reproductive success, the timing of song production, syntactic
organization of song production and song learning in the wild. We have made the data set and associated
software tools publicly available with the aim that other researchers can benefit from this resource and
use it to further our understanding of bird vocal behaviour in the wild.

© 2024 The Authors. Published by Elsevier Ltd on behalf of The Association for the Study of Animal
Behaviour. This is an open access article under the CC BY license (http://creativecommons.org/licenses/

by/4.0/).
Despite a long history of scientific interest from disciplines as
diverse as behavioural ecology, neurobiology and physiology, there
is still much to learn regarding the evolution and function of animal
vocalizations. Ongoing research covers a wide range of topics,
including speech recognition and language evolution in humans,
animal welfare and even fish vocal communication. The study of
animal vocalizations offers valuable insights into the intricacies of
social interactions and reproductive strategies. They frequently
convey crucial information about an individual's condition and
identity (Lehmann & Seufert, 2017; Linhart et al., 2019), the cohe-
sion of social groups and the structure of social hierarchies (Bell
et al., 2010; Engesser & Manser, 2022; Radford & Ridley, 2007).
Additionally, animal vocalizations play a substantial role in the
formation of social bonds, the selection of mates and the provision
of parental care (Behr & von Helversen, 2004; Gerhardt, 1991;
Pitcher et al., 2010; Roulin, 2001).

For those interested in social learning and cultural evolution,
animal vocalizations, particularly those of birds, have long been a
focus of research. This interest dates back at least to the pioneering
work of Marler and Thorpe with chaffinches, Fringilla coelebs, and
Merino Recalde).
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white-crowned sparrows, Zonotrichia leucophrys (Marler, 1952;
Marler & Tamura, 1962, 1964; Thorpe, 1958), which paved the way
for what continues to be a thriving field today (seeMets& Brainard,
2019; Riebel et al., 2015; Williams & Lachlan, 2021; Youngblood &
Lahti, 2022). In addition, and from a more mechanistic point of
view, they offer a window into the physiological and neural
mechanisms underlying vocal production and perception, as well
as the consolidation of memories and motor coordination, to name
but a few (Davenport & Jarvis, 2023).

Beyond their fundamental scientific importance, animal vocal-
izations have practical applications in various fields. For example,
there is increasing recognition of their potential as a noninvasive
tool for monitoring populations. By analysing entire soundscapes,
researchers can gather crucial information about population dy-
namics, species distribution and the presence of rare or elusive
species (Kahl et al., 2021; Sethi et al., 2020; Sugai et al., 2019).
However, despite the growing interest in animal vocalizations and
their potential applications, publicly available data from wild
populations are still scarce, with the xeno-canto community sci-
ence project as a prominent exception, focusing primarily on sparse
recordings of most of the world's bird species rather than dense
sampling of populations within the same species. This can severely
limit researchers' ability to ask questions that require large data
sets to answer, such as those about social learning, vocal
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development, large-scale cultural diversity and the syntactic
structure of animal vocalizations (Aplin, 2019; Kollmorgen et al.,
2020; Lachlan et al., 2018; Sainburg et al., 2019). Indeed, while
controlled laboratory settings allow researchers to track vocal
development and production in minute detail, it is much harder to
obtain finely grained data from animals in their natural habitats.
The process of collecting such data can be very demanding and
requires significant time, technical expertise and resources: this
includes both data collection itself and the subsequent processing
of acoustic data files.

A second limitation arises after data have been collected, due to
(1) researchers' understandable focus on specific, often narrowly
defined questions, (2) practical constraints and (3) scientific cul-
tural norms that have not encouraged data sharing. Combined,
these factors often lead to a tendency of not publishing or only
partially publishing the data collected during research. This lack of
data sharing can hinder scientific progress and makes it difficult to
reproduce research findings (Jenkins et al., 2023; Powers &
Hampton, 2019; Reichman et al., 2011; Wilkinson et al., 2016);
hence, we argue that there is great intrinsic value in publishing fully
curated acoustic data sets. If this practice becomes widespread, it
will allow scientists to explore a broader range of research ques-
tions, improve reproducibility and facilitate the validation of find-
ings across different studies and populations (Hersh et al., 2023;
Powers & Hampton, 2019).

In line with this perspective, we present a comprehensive data
set of wild birdsongs recorded from a single population of great
tits, Parus major, in Wytham Woods, Oxford, U.K. We collected
21 283 h of continuous recordings across 703 nesting sites over
three spring seasons, which resulted in the annotation of over
1100 000 notes or acoustic units from more than 100 000 songs
(see below for definitions of these terms), sung by approximately
400 different male great tits. Among these birds, we have detailed
information on the identity and life history of 242 individuals,
including 50 that were recorded in multiple years. This informa-
tion includes the time and location of breeding attempts, clutch
size, number of fledglings, age of the bird and basic morphological
traits. For birds born in the population (106, or 43% of the total),
we also include details such as birthplace, postnatal dispersal
distance, mother and social father.

To complement the song recordings, we have prepared
extensive metadata for each of the more than 100 000 songs. This
includes details such as the onset and offset times of each note
within the song, a song type label and the time of recording. We
also provide the time of the first song at dawn. Finally, we
augment the data set by providing embeddings of each song,
which are vector representations derived from a deep metric
learning model specifically trained on this data set. These can be
used to identify individuals and in tasks that require similarity
judgements.

Great tit song has been the subject of extensive research activity
(see, for example, Lambrechts & Dhondt, 1990; Lind et al., 1996;
Ritschard et al., 2012; Rivera-Gutierrez, Matthysen et al., 2010,
Rivera-Gutierrez, Pinxten et al., 2010; Rivera-Gutierrez et al., 2012;
Rivera-Gutierrez et al., 2011; Slagsvold, Sætre, & Dale, 1994).
Research conducted within the Wytham Woods population, in
particular, has given rise to many influential ideas and insights into
bird singing behaviour. These include investigations into neighbour
interactions, song matching and the connection between song
repertoires and reproductive success (McGregor & Krebs, 1989;
McGregor et al., 1981; Mcgregor et al., 1983), the dynamics of song
learning from neighbouring individuals and the acquisition of
distinct song types (McGregor & Krebs, 1982, 1989), as well as the
role of song repertoires in maintaining territories and reducing
listener habituation (Krebs, 1976; Krebs et al., 1978), the functions
Please cite this article in press as: Merino Recalde, N., et al., A densely
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of dawn song (Kacelnik & Krebs, 1983; Mace, 1987), and the influ-
ence of spatial factors and movement on song culture (Fayet et al.,
2014). We hope that this data set, which is, to the best of our
knowledge, the largest publicly available collection of birdsongs
from a single wild population, will contribute to that effort by
providing valuable insights into a range of scientific questions,
including behavioural repeatability and stability, links between
vocal performance and reproductive success, the timing of song
production, the syntactic organization of song production and song
learning in the wild.

What follows is a detailed description of the data collection and
curation process and the resulting data set, together with some
discussion around potential uses of data presented in this format.

DATA COLLECTION

Study System and Fieldwork

Great tits are small, short-lived birds (average reproductive life
span: 1.9 years) that sing acoustically simple yet highly diverse
songs. During the breeding season, from March to June, Great tit
pairs are socially monogamous and defend territories around
their nests (Hinde, 1952). In Wytham Woods (51�46 N, 1�20 W), a
population of these birds has been the focus of a long-term study
since 1947 (Lack, 1964). Wytham Woods is a seminatural pre-
dominantly deciduous woodland that spans an area of approxi-
mately 385 ha and is surrounded by farmland. Most great tits in
this population breed in nestboxes with known locations (seemap
in Fig. 1a), and the majority of individuals are marked with a
unique British Trust for Ornithology (BTO) metal leg ring as nes-
tlings or adults.

We collected data from late March to mid-May during the
breeding seasons of 2020, 2021 and 2022. Every year, fieldworkers
checked each of the 1018 nestboxes at least once a week before and
during the egg-laying period, which typically lasts 1e14 days
(Perrins, 1965), and recorded the identities of breeding males and
females, the dates of clutch initiation and egg hatching, clutch size,
and fledgling number and condition under standardized protocols.
We found thefirst egg date byassuming that one egg is laid every day
andcountingback fromthedayof observation. In caseswherewedid
not observe the chicks on the day of hatching, the actual hatching
date was determined by assessing the weight of the heaviest chicks
and extrapolating their age from established growth curves.

To record the vocalizations of male great tits, we took advantage
of their behaviour during the reproductive period, when they
engage in continuous singing near their nests at dawn before and
during egg laying (Mace, 1987). Collectively, this vocal display is
referred to as the dawn chorus and has been demonstrated to yield
a reliable estimation of the song repertoire of individuals when
recorded in full (Rivera-Gutierrez et al., 2012; Van Duyse et al.,
2005). As soon as we suspected that a pair of great tits were us-
ing a nestbox based on nest-lining materials, egg size if present or
other signs of activity, we deployed an autonomous sound recorder
nearby. These recorders were placed on the trunk of the same tree
or on a nearby tree, between 1 and 2 m above the ground and no
more than 5 m away, depending on tree availability. We aimed to
keep the recorder in a consistent position and orientation. The
microphone pointed upwards and slightly away from the nestbox,
in the same direction as the entrance hole. The birds sang close to
the recorder and moved around. (We were not able to collect data
on the bird's distance to the recorder, but the mean distance to the
nestbox was 10 m in a different population studied by Halfwerk
et al., 2012, which matches our anecdotal observations.) Although
changes in amplitude due to distance and directionality impacted
song selection, we did not observe any systematic bias.
sampled and richly annotated acoustic data set from a wild bird
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Figure 1. Visual summary of the Wytham Great Tit Song Data set. (a) Map of the study site and sample locations. (b) Total sample sizes for each bird and year. (c) Distribution of
repertoire sizes. (d) Distribution of song lengths. Note that the number of individual birds is given as 454 but is not known exactly.
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Ethical Note

All work involving birds was subject to review by the University
of Oxford, Department of Zoology, Animal Welfare and Ethical Re-
view Board (approval number: APA/1/5/ZOO/NASPA/Sheldon/Tit-
BreedingEcology). Data collection adhered to local guidelines for
the use of animals in research and all birds were caught, tagged and
ringed by BTO licence holders.

Recording Equipment and Schedule

We used 60 (30 in 2020) AudioMoth recorders (Hill et al., 2019),
which were housed in waterproof, custom-built enclosures.
Recording began approximately 1 h before sunrise (0536-0400 UTC
during the recording period) and consisted of seven consecutive
60 min recordings with a sample rate of 48 kHz, and a depth of 16-
bit. To sample asmany birds as possible, we left each recorder in the
same location for at least 3 consecutive days before moving it to a
different nestbox. We relocated 20 recorders (10 in 2020) every day
throughout the recording period.

DATA PROCESSING AND ANNOTATION

We processed and annotated the recordings using custom
software and scripts written in Python 3 (van Rossum, 1995), using
the open-source package pykanto (Merino Recalde, 2023b). These
are available from github.com/nilomr/great-tit-hits-setup (Merino
Recalde, 2023a). Fig. 2c shows a graphic illustration of the pro-
cess. See also the Appendix for a note on the terminology used for
different parts of the songs.

Song Segmentation

We inspected spectrograms for each raw recording and selected
songs based on a simple criterion: that its notes were clearly distinct
from background noise and other bird vocalizations.We chose entire
songswhere itwaspossible;where itwasnot,we selected the longest
contiguous segment possible. This process was carried out manually
using the open-source software SonicVisualiser (Cannamet al., 2010)
bydrawingboxesbounding songs in the timeand frequencydomains.

Assigning Song Bouts to Individuals

Due to the automated recording process, there is a possibility
that some of the recorded songs near a particular nestbox may not
originate from the focal bird. To minimize the chance of false
positives, we discarded recordings with more than one vocalizing
bird if one was not distinctly louder than the rest during the seg-
mentation process. Additionally, we discarded all songs with a
maximum amplitude below � 16 dB, calculated as 20 log10

�
A
A0

�
,

with A ¼ 5000 and A0 ¼ 32 767 (the maximum value for 16-bit
digital audio). This specific threshold was derived from observa-
tions indicating that when simultaneous recordings captured
neighbouring birds, an amplitude cutoff greater than 4000
consistently differentiated the focal bird from its closest neigh-
bours. Note that these are not calibrated values and are, therefore,
relative to the recording equipment and settings we used, as well as
other factors like sound directionality and vegetation cover.

Spectrogramming

For most operations beyond this point, we used normalized,
band-passed and log-scaled mel spectrogram representations of
each of the songs (sampling rate ¼ 22 050, window length ¼ 1024,
Please cite this article in press as: Merino Recalde, N., et al., A densely
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hop length ¼ 128, mel bins ¼ 224; see the repository nilomr/great-
tit-hits-setup for full details on the process).

Note Segmentation

We segmented the resulting song selections into their constitu-
ent notes using a custom dynamic threshold algorithm imple-
mented in pykanto (Merino Recalde, 2023b), based on the work of
Sainburg et al. (2019). Briefly, the algorithm finds minima in the
spectral envelopeof a spectrogram,which are considered silences; if
the length of the signal between theseminima exceeds a maximum
note duration, a new local minimum is defined that divides the
signal into two shorter segments. This is repeated until multiple
notes are defined or there are no local minima below a maximum
amplitude threshold. Then, segments below a minimum note
duration threshold are discarded. To make the algorithm more
robust to noise, the spectrogram is subject to morphological trans-
formations and de-echoing before amplitude information is
extracted. The de-echoing algorithm implemented in pykanto is
based on that in Luscinia (Lachlan, 2016), andworks by subtracting a
delayed version of the spectrogram from itself. We determined
minimum and maximum note length ranges by manually seg-
menting a small, random subset of songs (N ¼ 30).

Note that the automated segmentation process is susceptible to
various factors that can influence its accuracy. These include back-
ground noise, significant variation in amplitude between notes,
attenuation caused by vegetation, changes in the direction of sound
production and even variations in performance where some notes
may bemuch quieter. As a result, the algorithmmay fail to detect or
incorrectly delimit certain notes. Despite this, we estimate that
approximately 96%of thenotes are correctly segmented (0.037 error
rate based on a random subset of N ¼ 1048 notes that were checked
manually). Still, dependingon specific goals,we recommendmanual
verification of note segmentation if complete accuracy is crucial.

Song Type Annotation

We annotated each song type in the data set using a semi-
supervised approach implemented in pykanto. The process involved
several steps to ensure accurate classification. First, we generated
average unit spectrograms for each song by taking the mean of the
centred and padded spectrograms of its units or notes, which pro-
vided a concise representation of the temporal and spectral charac-
teristics of the syllable within it. Next, we performed nonlinear
dimensionality reduction using UMAP (McInnes et al., 2018) and a
cluster search using HDBSCAN (McInnes et al., 2017) for each bird in
thedata set. See Sainburg andHedley (2020) and Thomas et al. (2021)
for similar approaches. This strategy, while useful, often leads to
spurious outcomes. For instance, it may separate renditions of the
same song type if variation in performance or background noise ex-
ists, or if certain song elements are sometimes attenuated. Such
variation could bemisinterpreted as distinct song types, leading to an
overestimation of repertoire size. To address this, we used the inter-
active app in pykanto to review and split or combine clusters as
necessary foreachbird. It isworthmentioning that thisprocesswould
be significantly more challenging in species with highly variable
songs: our approach benefited from the great tits' relatively limited
repertoires (one to fewer than 15 song types in our population) and
their tendency to produce stable and stereotyped songs.

Calculating Song Embeddings

Comparing animal vocalizations poses a significant challenge for
researchers. Traditionally, two approaches have been used: visual
comparisons of spectrograms and, more recently, measurement of
sampled and richly annotated acoustic data set from a wild bird
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Figure 2. A brief visual summary of the data collection and analysis pipeline used to prepare the Wytham Great Tit Song Data set. (a) Data collection in the field. (b) The ter-
minology used to describe the various hierarchical levels at which we can describe the great tit's singing. (c) Computational pipeline. (d) Main outputs included as part of the data
set.
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handpicked acoustic features (Goffinet et al., 2021). However, these
methods have limitations when dealing with noise, variations in
performance and changes in syntax (where compositional syntax is
not relevant). For instance, if a songwith the sequence ‘tea-cher, tea-
cher’ is recorded as ‘cher-tea, cher’, it might bewrongly perceived as
highly dissimilar, despite being the same song (see Stowell, 2021;
Zandberg et al., 2022) for a good overview of these issues). Addi-
tionally, thesemethods often fail to capture high-level features such
as the syntactic relationships between notes and other complex
spectrotemporal characteristics that cannot be easily characterized
by an orthogonal combination of simple acoustic features.

Unfortunately, we cannot rely on the birds' perceptual judg-
ments due to the lack of hard to obtain experimental data (although
recent studies, such as Morfi et al., 2021; Zandberg et al., 2022, have
explored this avenue). This can be an issue where the focus of
research is behavioural interactions or the social functions of song.
At the same time, for monitoring or individual identification pur-
poses, fully mimicking the bird's perceptual space may not be ideal:
the performance of metric learning or classification algorithms
trained for narrow purposes can surpass the organism's abilities, as
exemplified by facial recognition in humans (Lu & Tang, 2014).
Here, our goal was to define a similarity space based on the
inherent variation in the data and the only categorical labels that
we know are perceptually and behaviourally significant: song types
sung by individual birds. Given that great tits can recognize each
other based on their vocalizations (Lind et al., 1996), we aimed to
define a similarity space that facilitates similarity-based research
and captures some of the song characteristics that birds themselves
might attend to when distinguishing individuals. To do this, we
took advantage of recent advances in the fields of deep learning and
computer vision and used a data-driven approach. Below is a
simple narrative description of the process. For further details, see
the dedicated repository nilomr/open-metric-learning and the
OML library (Shabanov, 2023).

Metric learning with a vision transformer
Rather than focusing on classification, we aimed to develop

semantically meaningful embeddings. To achieve this, we used a
Vision Transformer (ViT) model as a feature extractor in
a (Euclidean) metric learning task. These models, inspired by the
success of transformers in natural language processing applica-
tions, process images by splitting them into patches, treating them
as tokens similar to words in a natural language (Dosovitskiy et al.,
2021; Raghu et al., 2022). In this case, we used the ViT-S/16 ar-
chitecture (21.7 M parameters), pretrained on ImageNet using the
DINO method (self-distillation with no labels; Caron et al., 2021).

Model training
During the training phase, we fine-tuned the ViT model using

the great tit song data set. To optimize the performance of the
model, we used Triplet loss, a loss function that ensures that the
projection of a positive sample, which belongs to the same class as
the anchor point, is closer to the anchor's projection than that of a
negative sample, which belongs to a different class, by at least a
specified margin (Hermans et al., 2017; Hoffer & Ailon, 2018). This
loss function enables embedding points of the same class to form
clusters without collapsing into a single point, which allows us to
also explore differences within song types. While training the
model we mined hard triplets, where the negative sample is closer
to the anchor than the positive, and used the Adam optimizer with
a fixed learning rate of 1� 10�5.

Handling data imbalance and batch generation
The distribution of song sample sizes per individual in the great

tit data set approximately follows a power law, resulting in a
Please cite this article in press as: Merino Recalde, N., et al., A densely
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significant data imbalance. Although the use of triplet loss already
addresses this issue to some extent (Thakur et al., 2019), we adopt a
random subsampling strategy where classes with more than 100
samples are reduced to 100 for computational efficiency, classes
with fewer than 15 samples are excluded to allow a large enough
query/gallery split for validation, and we ensure fair representation
during training using a balanced sampler (Hermans et al., 2017).
Our batch generation strategy involves uniformly sampling P song
types without replacement and sampling K spectrograms for each
song type, with replication as necessary. This guarantees that all
labels are selected at least once in each epoch.

Train-time data augmentation
To enhance model robustness and prevent overfitting, we apply

various train-time data augmentation techniques (Mumuni &
Mumuni, 2022; Perez & Wang, 2017; Shorten & Khoshgoftaar,
2019). These include random cropping in the time domain, drop-
ping out parts of the spectrogram, adding Gaussian and multipli-
cative noise, equalization, sharpening, changes to brightness and
contrast, blurring, and slight shifting in both time and frequency
domains. The latter augmentations are applied within the typical
variation in performance observed in the great tit vocalizations.

Results
Our trained model shows very good performance, achieving a

mean average precision at 5 (mAP@5) of 0.98 and a cumulative
matching characteristic at 1 (CMC@1) of 0.98. This indicates that in
approximately 98% of the queries made to the similarity space, the
returned candidate song type by a bird is the correct one. Errors
primarily stemmed from instances where songs of the same type
sung by the same bird appeared more than once in the data set,
which happened if a bird survived to the next year. Given that the
model was trained on almost 2000 classes, this means that there is
enough individual information contained in each song type to
distinguish between birds with high confidence, which has
important implications for both the study of individuality and
population monitoring. See Fig. 3 for a visual representation of the
embedding space and nearest-neighbour queries.

DATA RECORDS AND DESCRIPTION

Table A1 contains a summary of the files included with the data
set. Detailed data documentation, including variable descriptions,
can be found online at nilomr.github.io/great-tit-hits.

The data set provides a comprehensive view of the populations'
natural dawn singing behaviour over three spring seasons. It doc-
uments changes in individual performance, the appearance and
disappearance of birds, and with them their songs, and highlights
just how much behavioural variation there is along every dimen-
sion of what could at first seem a relatively simple trait. Table 1
presents some simple summary statistics and Fig. 1 provides a vi-
sual overview of the data set.

Even though most birds in the data set are 1- or 2-year-olds
recorded within a single year (which can be attributed to high
turnover rates in the population given low annual survival), the
data set includes valuable data on much older individuals,
including a 7-year-old. Among the recorded birds, some display
metronome-like regularity in their performance, while others have
highly variable or unusual songs, due to learning from allospecific
vocalizations, or even issues with their vocal apparatus. You can
find some interactive examples at nilomr.github.io/great-tit-hits.
The longest song recorded is approximately 20 times longer than
the shortest song (and, coincidentally, was sung by one of the
largest great tits ever recorded in the Wytham population). The
median number of songs per song type and per bird in the data set
sampled and richly annotated acoustic data set from a wild bird
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Figure 3. Measuring similarity is a very hard problem, in large part because there is often no objective way to compare the performance of different methods. Here, we took a data-
based approach by training a Vision Transformer (ViT) model as a feature extractor in a Euclidean metric learning task. The resulting embedding space allows us to judge whether
two songs are very similar, and to reidentify birds. (a) PCA projection of the feature vectors: two orthogonal linear components do not capture much of the high-level distinguishing
features. (b) This figure shows a UMAP projection of the 384-dimensional vectors for each song in the data set into 2D, which leads to an arbitrary but useful visualization where
tight clusters of points correspond to song types in the repertoire of individual birds. They are coloured by how densely occupied that region of space is in the high-dimensional
space, based on k ¼ 30 neighbours from other song types. (c) A k-nearest-neighbour search returns the closest matches for a query vector (highlighted).
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is 31, with a significant number of birds having a much larger count,
reaching into the thousands. Additionally, the median repertoire
size per bird is four distinct song types, although some birds per-
formed as many as 13 distinct song types.

Known Biases and Problems

Working with third-party data sets can be challenging, perhaps
particularly so in the study of behaviour in natural populations. The
familiarity that fieldworkers inevitably develop with the study
system and the data is difficult to replace, and, as a result, there is a
risk of unintentionally overlooking important sources of bias and
variability. We have compiled a list of some key considerations,
Table 1
Brief description of the data set and sample sizes

Description Value

Number of segmented notes 1 161 033
Number of songs 109 963
Mean repertoire size 4.24
SD repertoire size 1.98
Median repertoire size 4
Number of unique classes 1 930
Mean class size 56.98
SD class size 68.35
Median class size 31
Number of nest sites recorded 706
Number of nest sites with data 454
Number of unique birds with known ID 242
Number of times each bird was recorded 192 (1 year),

42 (2 years), 8 (3 years)

Please cite this article in press as: Merino Recalde, N., et al., A densely
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which, while not exhaustive, can serve as a starting point for
identifying and addressing biases when testing hypotheses, esti-
mating parameters or evaluating findings from the data. These is-
sues can be broadly classified into two groups: those around bird
and song type labelling, which can be partially addressed, and those
that are inherent in the data or how they were collected.
Individual and song identification
One factor that can be partially addressed is that the birds

recorded in our data set are not a random subset of the population;
they are those that establish territories and begin the breeding
process. In turn, birds that are subsequently identified are more
likely to be those whose chicks hatch and survive for at least 6 days,
when the first identification attempt is made. This may skew the
distribution of certain behaviours within the data set or lead to
endogenous selection bias (Elwert & Winship, 2014). One way to
quantify the extent to which the subset of identified birds is
representative of the entire breeding population would be to
compare the distribution of the trait of interest in both groups. See,
for example, Kidd et al. (2015), who found that females in nests that
fail early in our population are more likely to be immigrant birds
breeding in poor-quality areas.

Another issue to consider is that birds may attempt to breed
again in the same nestbox or elsewhere after a failed attempt. This,
coupled with a failure to identify the male associated with those
attempts, means that it is conceivable (although likely very rare)
that songs from the same bird could appear in the same year twice,
leading to pseudoreplication. Similarly, unidentified birds present
in the data set for multiple years could contribute to this problem.
sampled and richly annotated acoustic data set from a wild bird
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One potential way to address these issues is by using song em-
beddings for identification based on similarity and assigning
dummy IDs to birds believed to be the same individual. At least, this
should be modelled to assess the sensitivity of any results to
varying degrees of pseudoreplication from this source.

Finally, a few songs might have been mislabelled before model
training, as it is not feasible to manually check such a large data set.
However, the model-based embeddings can help identify any
mislabelled songs: theywill be clear outliers within their respective
classes, thanks to the relatively discrete nature of great tit
repertoires.
Figure 4. Days get longer as the spring progresses and male great tits track the advancing su
before the morning breaks. This figure also shows (z-axis) how song activity peaks alongside
egg.

Please cite this article in press as: Merino Recalde, N., et al., A densely
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Unequal samples, songs and calls, and female song
As is common in many complex systems, the interaction of the

many processes involved in both song production and sampling
results in a heavy-tailed frequency distribution of sample sizes. This
variation stems from various sources, including characteristics
inherent to the study system, such as individual differences in
singing activity and temporal fluctuations throughout the spring
season. The sampling process introduces further variation, through
factors like equipment malfunctions causing small gaps in the data,
variation in recording dates relative to peak activity, and the impact
of rain and hail on singing activity and recording quality. We cannot
nrise times with great precision, so that they always begin singing, on average, 25 min
egg laying: males sing the most in the morning right before their partner lays the first

sampled and richly annotated acoustic data set from a wild bird
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assume these processes to be completely independent of each
other. Therefore, when analysing song output or repertoire size, it is
important to explicitly specify the assumed causal relationship
between factors such as individual characteristics, sampling prob-
ability and the outcome measure.

Another important aspect to consider is that, while we have said
that the data set consists of songs, the demarcation between songs
and calls is not entirely straightforward. Some vocalizations that
would typically be classified as calls, due to their acoustically
simpler, shorter and possibly more stereotyped nature, are actually
used as part of the dawn vocal behaviour. These vocalizations are
repeated in a manner that creates an impression of functional
equivalence to songs. While we have followed criteria similar to
other studies (Baker et al., 1986; Fayet et al., 2014; Krebs et al., 1978;
Rivera-Gutierrez, Matthysen et al., 2010) to maintain consistency,
we believe that this phenomenonwarrants further attention. These
calls were not segmented and thus are not included in the data set,
but we are happy to provide soundscape recordings to anyone
interested in exploring this aspect further.

Finally, although female song in birds has received relatively
little historical attention (see Langmore, 2020; Odom & Benedict,
2018; Riebel et al., 2005 for further discussion), female great tits
also sing (see a brief treatment in Gompertz, 1961; Hinde, 1952).
The vast majority of songs in the data set belong to the dawn song, a
behaviour exclusively performed by the male prior to the female
leaving the nest (a pattern observed in blue tits, Cyanistes caeruleus,
as well, as documented by Sierro et al., 2022). Females, on the other
hand, vocalize within the nest, but these vocalizations differ from
songs (Gorissen & Eens, 2004, 2005) and were not typically
detectable by our recording devices. Nevertheless, Hinde (1952)
suggested that in the absence of males, females may be more in-
clined to engage in territorial behaviour that involves singing rather
than just producing calls. If that is the case, it is possible that our
data set contains some isolated instances of female song.
USES AND SUGGESTIONS

The data set we are presenting contains detailed information
about the vocal behaviour and life of wild birds, providing valuable
opportunities for investigating a wide range of research questions.
In this section, we suggest several research areas that can be
explored using this data set and provide references to relevant
studies in the literature.
Behavioural Repeatability and Stability Across Multiple Scales

Researchers can use the data set to examine the repeatability
and stability of song production and song characteristics across
different temporal and spatial scales. This includes studying con-
sistency in vocal behaviour within individuals over time and across
different contexts, and its links to age (Rivera-Gutierrez et al., 2012;
Zipple et al., 2019) and reproductive fitness (Sierro et al., 2023).
Links Between Vocal Performance or Diversity and Reproductive
Success

Our data can be used to explore the relationships between vocal
performance metrics, such as song complexity or vocal diversity,
and individual breeding success on a data set that is much larger
than what is typical in the field (Beecher et al., 2020; Crates et al.,
2021; Hiebert et al., 1989; Hutfluss et al., 2022; McGregor et al.,
1981).
Please cite this article in press as: Merino Recalde, N., et al., A densely
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Spatial and Temporal Properties of Acoustic Communities

The data set enables investigations into the spatial properties of
acoustic communities, including the distribution of singing in-
dividuals within a given habitat and across time. This can provide
valuable insights into the spatial dynamics of communication
networks and acoustic interaction among neighbour birds.
Timing and Volume of Song Production

Researchers can use the data set to analyse the temporal pat-
terns and timing of song production in great tits. This might involve
studying diurnal variation, seasonal trends and the influence of
environmental factors on the timing and abundance of vocal
behaviour. As an example, Fig. 4 provides an overview of key
temporal shifts in dawn singing behaviour: male birds sing more
during the fertile period of the female, and their activity closely
tracks advancing sunrise times.
The Syntactic Organization of Song Production

The data set captures song activity over entire dawn song pe-
riods, across days, and even years for many individuals. This would
allow researchers to investigate the set of rules that govern the
arrangement of song elements and transitions within the vocal
repertoire of wild great tits, in terms of short- and long-distance
dependencies and other properties of their sequential dynamics
(Hedley et al., 2018; Lachlan et al., 2010; Sainburg et al., 2019;
Searcy et al., 2022).
Song Learning in the Wild

While this data set does not directly provide evidence of song
learning, researchers can use song similarity and proximity in time
and space to infer cultural transmission processes. This allows for
the exploration of the influence of spatial and social factors on song
learning (James et al., 2020; Lachlan & Slater, 2003; Nelson &
Poesel, 2014; Peters & Nowicki, 2017; Wheelwright et al., 2008).
Conclusion

With over 1100 000 annotated notes and acoustic units from
more than 100 000 songs, collected over three spring seasons, we
hope that this data set will offer valuable insights into bird vocal
behaviour and song culture. The data set is enriched with detailed
metadata such as note onset and offset times, song type labels and
embeddings derived from a deep metric learning model, as well as
identity and life history information for the birds, which makes it
useful for a wide range of research purposes. By sharing this
comprehensive data set, we also aim to help promote data sharing
and scientific collaboration.
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Data Availability

The complete Wytham Great Tit Song Data Set and its metadata
are available at 10.17605/OSF.IO/N8AC9 (Merino Recalde, 2023c).
The code to train the deep metric learning model can be found at
nilomr/open-metric-learning See the data set website for docu-
mentation and more information. All input and output data files
use open data formats and are under a CC-BY-4.0 licence. The
scripts and software used to create this data set are available under
the MIT licence from GitHub nilomr/great-tit-hits-setup and
archived at Zenodo (Merino Recalde, 2023a). This means that you
may share, copy and redistribute the data and code in any medium
or format; adapt, remix, transform and build upon it for any pur-
pose, even commercially, as long as you give appropriate credit,
provide a link to the licence and indicate if changes weremade. You
may do so in any reasonable manner, but not in any way that
suggests the authors endorse you or your use.
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Appendix

There is no consistent terminology used to describe the various
hierarchical levels of a bird's vocal production. For clarity, we adopt
Table A1
Short description of the files included in the data set

Description

109 963 raw song files with their corresponding metadata
Model-based feature vectors, with 109 963 samples and 384 dimensions
A main derived data set including information on broods, adult bird life history traits,
Morphological measurements for birds captured and retrapped in the study area. Incl
Information on the location and characteristics of nestboxes in Wytham Woods, along

For detailed documentation see ‘Docs’ at https://nilomr.github.io/great-tit-hits/.

Please cite this article in press as: Merino Recalde, N., et al., A densely
population, Animal Behaviour (2024), https://doi.org/10.1016/j.anbehav.2
the terminology outlined in Thompson et al. (1994); see also Fig. 2b
for a graphical explanation.

The fundamental temporal unit is referred to as a note. Notes
are represented by continuous traces on the sound spectrogram
and are separated by silences. Moving up the hierarchy, syllables
are sequences of one or more notes that are always repeated in
the same order. Beyond syllables, we have songs, which consist
of clusters of the same type of syllables punctuated by longer
pauses, often in the order of seconds. Lastly, song bouts are
uninterrupted performances of songs of the same type. Great tits
tend to sing the same song type repeatedly before transitioning
to a different type. They continue this pattern until they stop
singing altogether, often after having performed their entire song
repertoire.
nesting locations and acoustic recordings
udes information on species, age, sex, weight and various other traits
with a map of the site
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