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Abstract. One of the salient features of Industry 4.0 is that machines
and other actors involved in the manufacturing process provide Indus-
trial APIs that allow to inquire their status. In order to provide resilience,
the manufacturing process should be able to automatically adapt to new
conditions, considering new actors for the fulfillment of the manufac-
turing goals. As a single manufacturing process may include several of
these actors, and their interfaces are often complex, this task cannot be
easily accomplished in a completely manual way. In this work, we focus
on the orchestration of Industrial APIs using Markov Decision Processes
(MDPs). We present a tool implementing stochastic composition of pro-
cesses and we demonstrate it in an Industry 4.0 scenario.

Keywords: industrial API · smart manufacturing · service
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1 Introduction

The term Industry 4.0 refers to the emergence and diffusion of new technolo-
gies which allow the development of fully automatized production processes [16]. 
Smart manufacturing is nowadays a term highly used in conjunction with the 
concept of Industry 4.0; it aims at improving the manufacturing processes in 
order to increase productivity and quality, make workers’ lives easier, and define 
new business opportunities. This is enabled by leveraging on innovative tech-
niques like Artificial Intelligence (AI), big data analytics and Process Mining 
(PM). The adoption of such techniques enables the advent of AI-augmented 
Business Process Management Systems (ABPMSs), an emerging class of process-
aware information systems [9]. Such a trend has made it possible to create new 
opportunities for interoperability, modularity, distributed processing, and inte-
gration in real-time with other systems for industrial processes.

One of the main characteristics of Industry 4.0 is that actors involved in the 
manufacturing process (e.g., machines, humans) provide Application Program-

M. Favorito—The author’s views are his own, and they do not reflect those of his 
employer.

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-34674-3_14&domain=pdf
http://orcid.org/0000-0001-9680-7658
http://orcid.org/0000-0001-9566-3576
http://orcid.org/0000-0001-9216-8502
http://orcid.org/0000-0002-9730-8882
http://orcid.org/0000-0003-3349-7861
http://orcid.org/0000-0001-7250-8979


AIDA: A Tool for Resiliency in Smart Manufacturing 113

Fig. 1. Architecture of AIDA tool

ming Interfaces (APIs) which allow to collect their status [4] and to operate on
them. The term status here does not only encompass the current situation of
the actor, but also information resulting from the application of diagnostic, pre-
dictive and prescriptive analytics models. A single manufacturing process may
include tens of different actors along the supply chain [2] which may suddenly
fail or provides bad performance. At any moment, in order to provide resilience,
a manufacturing process should be able to automatically adapt to new condi-
tions, considering new actors for the fulfillment of the manufacturing goals. This
task cannot be done manually when actors span multiple organizations possibly
separated from both the geographical and organizational points of view.

In this paper, we propose a tool that generates a plan for a manufacturing
process. Manufacturing actors are depicted as services (Industrial APIs) that
reflect their behaviors. Particularly, we employ the generalization of the service
composition approach in a stochastic setting [3], in which the services have an
unpredictable behavior and are subject to wear. In our tool, instead of rep-
resenting the manufacturing process as a target stochastic service, we use the
well-known formalism declare, widely used in the Business Process Manage-
ment literature. Another important contribution that we provide is to achieve
an optimal solution for the orchestration by solving a probabilistic planning
problem formalized as Lexicographic Markov Decision Process (LMDP), which
permits to take into account not only the breaking probability of a machine but
also a scenario of multiple objectives. In this way, we are able to autonomously
obtain a production planning which is adaptive, as it changes every time that
the manufacturing of a new product or batch is started, and context-aware, as it
depends on the current status of involved actors. Our tool is implemented in a
software prototype, which will be showcased in a scenario concerning an electric
motor manufacturing process derived from a real industrial project.

2 Tool Architecture

Figure 1 depicts the architecture of our tool AIDA - Adaptive InDustrial APIs1.
We implement a service-oriented approach for industrial manufacturing to

enable the interoperability between the actors. Particularly, we model each actor
involved in the manufacturing process as a service, thus creating a service-based
supply chain consisting of a composition of services (representing actors). Such
1 Aida is also the name of a famous opera by Verdi, somehow inspired by the making

of Suez Canal: undoubtedly an example of smart manufacturing for the time being.
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services realized as Industrial APIs, represent the physical actors describing their
functionalities (or tasks). Additionally, they allow to monitor the behavior and
status information of the actors and allow to invoke commands.

We define the actors as stochastic services modeled as Markov Decision Pro-
cesses (MDPs) [17]. An MDP is a discrete-time stochastic control process con-
taining (i) a set Σ of states which represent the status of the service, (ii) a set
A of actions i.e., the set of tasks that the service can perform, (iii) a transition
function P that returns for every state s and action a a distribution over the
next state i.e., the probability of the service to end in a certain status performing
a certain task, (iv) a reward function R that specifies the reward when transi-
tioning from state s to state s′ by executing action a, and (v) a discount factor
λ ∈ (0, 1) which determines how important future rewards are to the current
state. If λ = 0, the service is “myopic” in being concerned only with maximiz-
ing immediate rewards. As λ reaches 1, the method becomes more “farsighted”,
more strongly considering future rewards.

Particularly we are interested in LMDPs (Lexicographic MDP) [22] in which
the reward function is a vector of reward functions. This vector is formed by two
objectives: the cost and the quality of the product; and our goal is to minimize
the former and maximize the latter. An optimal solution to an LMDP is a policy
ρ∗ which assigns an action to each state and maximizes the expected cumulative
reward, i.e., the sum of discounted rewards when starting at state s and choosing
actions based on ρ following a lexicographic preference.

We describe the behavior of each actor as a state machine with a probabilistic
behavior represented as an MDP and maintained by the corresponding Industrial
API. The latter contains the set of transitions (states, actions, probabilities and
costs) that an actor is able to perform and the information relative to the initial,
final and current state. Each actor may include a rich set of states (i.e., Ready,
Configuration, Executing, Broken, Repairing) and actions or only a sub-
set. Different actors can offer the same operation. As a consequence, an actor
chosen for a specific process instance could be discarded for the later instance.
The Industrial APIs expose endpoints to retrieve their information which are
combined to construct a community of stochastic services, i.e., a stochastic sys-
tem service. Intuitively, the stochastic system service status includes the current
status of all the composing services, and a specific action performed on the sys-
tem service changes only one component of the current state, corresponding to
the service selected to execute that action.

Among others, we define the manufacturing process specification as declare
constraints, i.e., ltlf formula ϕ [8] over the set of propositions P that specifies
the allowed traces of the process. We allow the potential production process
engineer to specify the process (in a canvas as in Fig. 2) via the design GUI.
Note that the collection of services representing the actors can perform actions
in P and, moreover, to make our model richer we allow services to execute a
broader set of actions. Moreover, we put each ltlf formula in conjunction in
order to compute the equivalent deterministic finite automaton (dfa) (made by
Lydia tool [6]), i.e., target dfa.
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Given both the stochastic system service and the target dfa, we compute
the composition LMDP as a function that contains: all the states of the target
dfa and the stochastic system service, all the actions of the services, the prob-
ability of ending in a certain system state performing an action, and the vector
of reward functions formed by the objectives that we want to consider in our
application. In practice, it consists of a cartesian product operation of both the
system and target services. According to a specific target (manufacturing goal),
it computes all the possible executions of the manufacturing process, i.e., by
combining together the specifications of all the actors (stochastic services) and
the goal, it identifies all the possible status of the actors at any step.

We extract the optimal policy of the composition LMDP by executing the
Lexicographic Value Iteration (LVI) Algorithm [22]. Such a policy contains the
specification of the optimal actions (and related services) to execute from each
possible state in order to reach the final goal.

The enactor acts as a middleware that interfaces with the Industrial APIs
in order to check whether the current status and the transition functions have
changed (for instance because of the wearing out during the execution). We
distinguish two different resilience scenarios. On the one hand, when only the
status of an actor changes, the controller is able to choose the next action to
be performed by checking the result of the optimal policy from the new state
formed. On the other hand, when both the status and the transition function
of an actor change, the controller re-computes the optimal policy from an up-
to-date composition LMDP which includes the latest condition of the service.
Through the Industrial APIs, the enactor calls the services identified in the
optimal policy computed by the controller.

3 Demonstrating the AIDA Tool

A freely available tool2 has been implemented. The tool can be configured to
prioritize either cost or quality. This is particularly helpful in a real industrial
context, as a company may prefer to reduce costs (e.g., for timing or pecuniary
reasons) or, on the contrary, to maximize quality. Noticeably, the decision of
the priority can be possibly seen as a customer decision in the case of so called
mass-customization.

To demonstrate the proposed tool, we use the manufacturing process of an
electric motor which is depicted in Fig. 2 using the declare formalism [15].
For the sake of brevity, we focus on the main aspects of the process, but the
formalization can be easily extended to cover the process much more in detail.

The main components of an electric motor are the stator, the rotor and,
in the case of alternate current motors with direct current power, an inverter.
These three components are built or retrieved in any order and then eventu-
ally assembled to build a motor (alternate succession constraint). After the
motor is assembled, a Running In test must be performed (alternate succes-
sion constraint), and, optionally (alternate precedence constraint), at most one
2 See sources at https://github.com/luusi/AIDA.

https://github.com/luusi/AIDA
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(not coexistence constraint) between an Electric Test and a full Static Test (the
latter comprises the former). In addition, optionally (alternate precedence con-
straint), the motor can be painted. The process depicts the manufacturing tasks
involved in a production of a single motor.

Fig. 2. The electric motor manufacturing process represented using declare.

We want to find a plan that fulfills the manufacturing process, selecting appro-
priate actors for the actions considering the cost and quality impact of choices.

The repository contains a Python script that reproduces the case study. The
script shows how the goal is achieved also in case of malfunctioning and/or
exceptions raised by the Industrial APIs. For each of the services we have several
instances, each showing a specific wear and reward vector. In the following, we
will describe a possible execution obtained by manually choosing the values
of wear and reward vectors. In a real application scenario, choices are made
accordingly to the real conditions as reported by each actor digital twin.

The example manufacturing process specification allows the three
Build/Retrieve actions to be executed in any order. As an example, the first
Build Retrieve Stator action may be executed first, and the tool may decide to
choose Stator Builder service to execute the action in case the warehouse
machine is more costly.

Particularly interesting is the case when an actor shows a significantly high
wear. For example, the execution of the Build Retrieve Rotor action, can be
performed, in the proposed demo, by two different machines Rotor Builder 1

and Rotor Builder 2, or by the Rotor Warehouse service. If the first two
machines have a higher probability to end in a Broken state, the optimal policy
will prefer the Rotor Warehouse Service, because it has no possibility to
break. Since the Build Retrieve Inverter can be performed only by the Inverter
Warehouse service, in this case the choice of the tool is immediate.

At this point, the Assemble Motor action can be performed. Here, the con-
troller may prefer to use the Assembler Machine 1 instead of using the
Assembler Machine 2, even if they have the same cost, if the first machine
has a higher quality reward.

Concerning the Painting action, we suppose it is offered by a machine and
by a human, and we may assume that the human is more economic but gives a
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lower quality compared to a machine. In this case, the controller would prefer
using Painter Human service because it has a lower economic cost than the
Painter Machine. Finally, for the Smart Tester action, the controller may
prefer to use Smart Tester 2 if it has a lower economic cost than Smart

Tester 1.
Noticeably, we have defined a tool that computes not only the right action

according to several constraints but is also very resilient. Suppose that some
machines end in the Broken state; the controller may decide to restore, for
example, the Stator Builder Service rather than directly using the Stator

Warehouse which could perform the same action at a much higher cost.

4 Related Works

The tool that we implement proposes a plan for smart manufacturing that is
resilient. Resilience concerns the ability of a system to cope with unplanned
situations in order to keep carrying out its mission. The research on resilient
systems is extensively studied [23,24] mainly at a conceptual level, and contin-
uously improved especially at design time [13]. In AIDA, we ensure resilience at
run time as, when a service during its job breaks down and/or starts to have a
high cost and a low quality level, we take into account all these aspects and the
controller is able to adapt the plan avoiding possible not convenient services. The
composition is possible thanks to the use of the Industrial APIs representing the
manufacturing actors which provide lots of features like accessing the selected
services [12], enabling quick integration [10] and monitoring their behaviour [19].

The implemented approach is influenced by previous works on automated
service composition. Authors in [3], for example, propose a solution for the ser-
vice composition in stochastic settings, defining the non-deterministic behavior
of the target service. The authors though do not capture the non-deterministic
behaviors of the available services, and do not take into account the rewards of
using a certain service.

The problem we addressed also belongs to the area of decision-theoretic plan-
ning applied to manufacturing. Such a topic is part of the greater problem of AI
planning. Different approaches are employed in planning problems, i.e., classical
planning, dealing with deterministic contexts, and decision-theoretic planning,
facing with non-deterministic and stochastic scenarios. Multiple works can be
found in the literature employing classical planning techniques [14,21], however
they do not take into account the stochasticity of manufacturing. The litera-
ture presents limited research on the application of MDPs in the manufacturing
domain. Authors in [11] propose an MDP-based self-adaptive Automated Guided
Vehicles (AGVs) control model that avoids collisions efficiently. The work [5]
presents a hierarchical MDP approach for adaptive multi-scale prognostics and
health management, maximizing the expected gain. Authors in [1] use an MDP
for finding an optimal cost-effective maintenance decision based on the condition
revealed at the time of inspection on a single diesel engine.

The proposed tool represents an evolution of what presented in [7]. In the
original work though, the target process is represented using a state machine,



118 G. De Giacomo et al.

thus not allowing for the flexibility which is typical of certain manufacturing pro-
cesses. In addition, the modeling formalism does not allow for multiple objectives.
The paper represents a useful reference anyway to deepen some of the concepts
behing the AIDA tool.

Another important aspect in manufacturing environments is the maintenance
efficiency, where asset maintenance and repair significantly contribute to opera-
tion and support costs. In real systems, maintenance is complicated making it
necessary to use many optimization criteria. The majority of research works do
not adopt a data-driven approach to decision-making, and thus they are limited
to specific problems and domains [18,20]. That is why mathematical optimiza-
tion and rule-based systems are the most common categories of methods.

5 Concluding Remarks

In this work, we proposed a tool implementing a stochastic service composition
approach with ltlf goals, where composing services have a stochastic behavior
and are modeled as MDPs. The goal is to obtain an optimal policy with respect
to a set of reward measures expressed as a vector with priorities. In particular,
we have realized a demo showing how such a tool can be helpful in an industrial
manufacturing context where declare models a manufacturing process, while
the availability of Industrial APIs enables the collection of information of the
involved actors. Especially, rewards and probabilities associated with each service
can be continuously updated by applying, for instance, predictive maintenance
algorithms to monitor the status of the different involved actors, thus allowing
at each repetition of the process to choose the most suitable actors to perform
actions. This makes the process resilient to failures and optimal with respect to
defined reward measures. In our demo tool, we adopt a simulator mimicking the
evolution of the single actors (services) from the point of view of rewards and
failure probabilities, showing how changes influence proposed execution traces.
This paper impacts anyway application scenarios other than Industry 4.0, being
applicable in any context where actors can be modeled as services. Finally, in
this paper, we do not consider data; adding data introduces new challenges, as
specific traces of the process, legal from the point of view of the control flow,
might be not doable in practice. Future works include considering conditions
expressed on service or process data.

Acknowledgements. This work is partially funded by the ERC project WhiteMech
(no. 834228), the PRIN project RIPER (no. 20203FFYLK), the Electrospindle 4.0
project (funded by MISE, Italy, no. F/160038/01-04/X41). This study was carried out
within the PE1 - FAIR (Future Artificial Intelligence Research) and PE11 - MICS
(Made in Italy - Circular and Sustainable) - European Union Next-Generation-EU
(Piano Nazionale di Ripresa e Resilienza - PNRR). The work of Flavia Monti is sup-
ported by the MISE agreement on “Promozione del progetto della Scuola europea
di industrial engineering and management e il sostegno di progetti innovativi di for-
mazione in industrial engineering e management di impresa”.



AIDA: A Tool for Resiliency in Smart Manufacturing 119

References

1. Amari, S.V., McLaughlin, L., Pham, H.: Cost-effective condition-based mainte-
nance using Markov decision processes. In: RAMS, pp. 464–469. IEEE (2006)

2. Bicocchi, N., Cabri, G., Mandreoli, F., Mecella, M.: Dynamic digital factories for
agile supply chains: an architectural approach. J. Ind. Inf. Integr. 15, 111–121
(2019)

3. Brafman, R.I., De Giacomo, G., Mecella, M., Sardina, S.: Service composition in
stochastic settings. In: Esposito, F., Basili, R., Ferilli, S., Lisi, F. (eds.) AIxIA
2017. ecture Notes in Computer Science, vol. 10640, pp. 159–171. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-70169-1 12

4. Catarci, T., Firmani, D., Leotta, F., Mandreoli, F., Mecella, M., Sapio, F.: A
conceptual architecture and model for smart manufacturing relying on service-
based digital twins. In: IEEE ICWS, pp. 229–236 (2019)

5. Choo, B.Y., Adams, S.C., Weiss, B.A., Marvel, J.A., Beling, P.A.: Adaptive multi-
scale prognostics and health management for smart manufacturing systems. Int.
J. Prognostics Health Manage. 7 (2016)

6. De Giacomo, G., Favorito, M.: Compositional approach to translate LTLf/LDLf
into deterministic finite automata. In: ICAPS, pp. 122–130. AAAI Press (2021)

7. De Giacomo, G., Favorito, M., Leotta, F., Mecella, M., Silo, L.: Digital twins
composition in smart manufacturing via Markov decision processes. Comput. Ind.
149, 103916 (2023)

8. De Giacomo, G., Vardi, M.Y.: Linear temporal logic and linear dynamic logic on
finite traces. In: IJCAI, pp. 854–860. ACM (2013)

9. Dumas, M., et al.: AI-augmented business process management systems: a research
manifesto. ACM Trans. Manage. Inf. Syst. 14(1), 1–19 (2023)

10. Han, H., Trimi, S.: Towards a data science platform for improving SME collab-
oration through Industry 4.0 technologies. Technol. Forecast. Soc. Change 174,
121242 (2022)

11. Hu, H., Jia, X., Liu, K., Sun, B.: Self-adaptive traffic control model with behavior
trees and reinforcement learning for AGV in industry 4.0. IEEE Trans. Ind. Inf.
17(12), 7968–7979 (2021)

12. Liu, Z., et al.: The architectural design and implementation of a digital platform
for industry 4.0 SME collaboration. Comput. Ind. 138, 103623 (2022)

13. Marrella, A., Mecella, M., Pernici, B., Plebani, P.: A design-time data-centric matu-
rity model for assessing resilience in multi-party business processes. Inf. Syst. 86,
62–78 (2019)

14. Marrella, A., Mecella, M., Sardina, S.: SmartPM: an adaptive process management
system through situation calculus, IndiGolog, and classical planning. In: KR (2014)

15. Pesic, M., Schonenberg, H., Van der Aalst, W.M.: Declare: Full support for loosely-
structured processes. In: EDOC, pp. 287–287. IEEE (2007)

16. Popkova, E.G., Ragulina, Y.V., Bogoviz, A.V. (eds.): Industry 4.0: Industrial Rev-
olution of the 21st Century. SSDC, vol. 169. Springer, Cham (2019). https://doi.
org/10.1007/978-3-319-94310-7

17. Puterman, M.L.: Markov Decision Processes. Wiley, Hoboken (1994)
18. Rocchetta, R., Bellani, L., Compare, M., Zio, E., Patelli, E.: A reinforcement learn-

ing framework for optimal operation and maintenance of power grids. Appl. Energy
241, 291–301 (2019)

19. Sahal, R., Breslin, J.G., Ali, M.I.: Big data and stream processing platforms for
Industry 4.0 requirements mapping for a predictive maintenance use case. J. Manuf.
Syst. 54, 138–151 (2020)

https://doi.org/10.1007/978-3-319-70169-1_12
https://doi.org/10.1007/978-3-319-94310-7
https://doi.org/10.1007/978-3-319-94310-7


120 G. De Giacomo et al.

20. Terkaj, W., Tolio, T., Urgo, M.: A virtual factory approach for in situ simulation to
support production and maintenance planning. CIRP Ann. 64(1), 451–454 (2015)

21. Wally, B., et al.: Leveraging iterative plan refinement for reactive smart manufac-
turing systems. IEEE Trans. Autom. Sci. Eng. 18, 230–243 (2020)

22. Wray, K.H., Zilberstein, S., Mouaddib, A.I.: Multi-objective MDPs with condi-
tional lexicographic reward preferences. In: AAAI (2015)

23. Zahoransky, R.M., Brenig, C., Koslowski, T.: Towards a process-centered resilience
framework. In: ARES, pp. 266–273. IEEE (2015)

24. Zahoransky, R.M., Koslowski, T., Accorsi, R.: Toward resilience assessment in busi-
ness process architectures. In: Bondavalli, A., Ceccarelli, A., Ortmeier, F. (eds.)
SAFECOMP 2014. LNCS, vol. 8696, pp. 360–370. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-10557-4 39

https://doi.org/10.1007/978-3-319-10557-4_39
https://doi.org/10.1007/978-3-319-10557-4_39

	AIDA: A Tool for Resiliency in Smart Manufacturing
	1 Introduction
	2 Tool Architecture
	3 Demonstrating the AIDA Tool
	4 Related Works
	5 Concluding Remarks
	References




