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transitions are possible and which are not, but the probability
distribution amongst the possible transitions is unknown.

To address the issue of which strategies should the system
employ under these conditions, we draw inspiration from the
non-stochastic setting. In this setting, one similarly asks “what
should the system do when it has little information about the
exact environment in which it operates?” The standard answer
is to take a worst-case view and employ a strategy that achieves
its goal against all environments [4], [5] (in the stochastic
setting one possible analogue of the worst-case view is to
achieve the goal with optimal probability in each stochastic
domain in D). However, the more ignorant the system is
about its environment, the more unreasonable it is to expect
that such a strategy exists. A more refined answer draws on
a basic principle from Decision Theory: the system should
not use a strategy that is dominated by another [6]. In other
words, it should not employ a strategy if there is another which
does at least as well in all environments and better in some
environments. This and related dominance notions have been
studied for synthesis and game-solving in the non-stochastic
setting, e.g., [7], [8], [9], [10], [11], [12], [13]. Motivated
by this, we introduce a dominance order between strategies
operating in stochastic domains which says that σ1 < σ2 if in
every domain in D, the probability that the goal is achieved
using σ1 is at least as large as when using σ2. We call a
strategy that is maximal in this order “stochastic best-effort”.

We provide local characterizations of the dominance order
and of maximality in terms of a three-valued abstraction of the
probability of achieving the goal at a history. To reason about
this abstraction we make use of properties of the Lebesgue
measure, including a version of the Lebesgue Density Theorem
for our probability spaces. We then use the characterization
of maximality to prove the surprising result that stochastic
best-effort strategies exist for every Borel goal. We conclude
with addressing the algorithmic problem of finding a stochastic
best-effort strategy for the important special case that goals
are specified in linear temporal logic, and the domains are
bounded and have finitely-generated support (but need not
be Markovian). We completely address the computational
complexity and show an upper bound (obtained using the
characterization of maximality), and a matching lower bound.

We note that we have tried to provide proofs that assume as
little as possible about the reader’s knowledge. Nonetheless,

Abstract—We study reactive systems with Borel goals operating 
in a possibly non-Markovian stochastic environment. Moreover, 
the specific environment is not known, only its support is, i.e., at 
each step one knows which transitions are possible and which are 
impossible, but the probability distribution amongst the possible 
transitions is unknown. We consider system strategies that are 
maximal in the dominance order, i.e., no other strategy achieves 
the goal with at least the same probability in all environments, 
and with a higher probability in some environment. We call 
such strategies ”stochastic best-effort”. We prove the very general 
result that stochastic best-effort strategies exist for any Borel 
goal. We do this by providing local characterizations in terms 
of a three-valued abstraction of the probability of achieving the 
goal at a history. The correctness of the characterization is shown 
using a version of the Lebesgue Density Theorem from geometric 
measure theory. On the more practical side, we consider goals 
given in linear temporal logic. We establish the computational 
complexity of synthesizing a stochastic best-effort strategy, and 
show that it is not harder than synthesizing an optimal strategy 
in a domain with fixed known probabilities.

I. INTRODUCTION

Synthesis is the problem of producing a reactive system, i.e., 
one that operates in a dynamic environment, from a temporal 
specification [1]. This is often modeled by having, at each
time step, the system take an action and the environment 
respond by changing the state. In the stochastic setting, the 
environment’s choice at each time step is governed by some 
probability distribution over states. When quality stochastic 
information can be obtained, and the probability distribution 
for a given state and action does not change over time, an
effective approach is to model the environment as a Markov 
Decision Process and to use algorithms that find optimal
strategies [2], [3]. However, what if very little is known about 
the exact probabilities? What if the probabilities change over
time? What sort of system strategies are appropriate?

We study the fundamental general case that environments 
can be modeled by a set D of finite-state non-Markovian
stochastic domains that share the same support. Intuitively, 
the system is ignorant about which particular domain in D
it is operating in. By “non-Markovian” we mean that the
probability distributions may depend on the entire history of
the interaction of the system and its environment, not only
on the last state and action. By domains sharing the “same
support” we mean that for every history it is known which



the paper unavoidably assumes that the reader is familiar with
basic concepts of topology, measure theory, and the Lebesgue
measure.

II. PRELIMINARIES

A. Notation

A set or sequence is countable if it is finite or countably
infinite. Countable sequences may be written (x0, x1, · · · ) or
x0x1 · · · . The start of the sequence is x0. If h is a finite
sequence then last(h) denotes its last element, and |h| denotes
its length. If h is a prefix of h′ we say that h′ extends h; if,
in addition, h 6= h′, then we say that h is a proper prefix of
h′ and that h′ is a proper extension of h. The empty sequence
is denoted ε. For a finite set X , let Dbn(X) denote the set
of distributions over X , i.e., functions d : X → [0, 1] such
that

∑
x∈X d(x) = 1. The support of d is the set sup(d) of

elements x ∈ X such that d(x) > 0.

B. States, Actions, Plays, Histories

Let St be a finite set of states and Act a finite set of
actions. Elements of Ω := (St · Act)ω are called infinite
paths. Elements of FinPaths := (St · Act)∗ · St are called
finite paths. If π = (s0, a0, s1, a1, · · · , sn−1, an−1, sn) then
we write πi = (s0, a0, s1, a1, · · · , si) for its prefix that ends
in si (0 ≤ i ≤ n). Similarly, if π = (s0, a0, s1, a1, · · · ) is an
infinite path, we write πi for its prefix that ends in si (0 ≤ i).

C. Stochastic domains

A stochastic domain, or simply domain, is a tuple D =
(St ,Act , ι,Pr) where
• ι ∈ St is the initial state, and
• Pr : FinPaths × Act → Dbn(St) is the transition

function that associates to each finite path x, each action
a ∈ Act , and each state s ∈ St , the probability
Pr(x, a)(s) of a transition from x to s when action a
is selected.

In other words, a domain is a transition system with
finitely many states, every action available at every state, and
transitions are probabilistic and may depend on the entire
sequence of states and actions seen so far, and not just on
the current state and action. In particular, stochastic domains
are not Markovian, e.g., the probability of s when doing action
a from a state s′ may depend on the past states and actions.

The support function of D is the function

∆ : {ε} ∪ (FinPaths ×Act)→ 2St

defined by (i) ∆(ε) = {ι}, and (ii) for x ∈ FinPaths ,
s ∈ ∆(x, a) iff s ∈ sup(Pr(x, a)). An infinite
path π = (s0, a0, s1, a1, · · · ) (resp. finite path π =
(s0, a0, s1, a1, · · · , sn)) is called a play (resp. history) if it
satisfies that ∆(ε) = {s0} and si+1 ∈ ∆(πi, ai) for every i
(resp. i < n). Note that plays and histories only depend on the
support ∆, and not on the particular values of the non-zero
probabilities. Intuitively, plays and histories are paths that start
at the initial state, and use non-zero probability transitions at

every step. We will typically denote a history by the letter h.
The set of histories is denoted Hist .

A domain D is Markovian if Pr(h, a) only depends on
last(h) and a, i.e., last(h) = last(h′) implies that Pr(h, a) =
Pr(h′, a). We say that D has Markovian support if ∆(h, a)
only depends on last(h) and a, i.e., last(h) = last(h′) implies
that ∆(h, a) = ∆(h′, a). In this case, we may write the
support function as ∆ : {ε}∪ (St ×Act)→ 2St . Observe that
every Markovian domain has a Markovian support, but that
the converse may or may not be true. In the rest of the paper
we assume a fixed support ∆, and will usually not mention it.

D. Strategies, split points, shifts

A strategy is a function σ : Hist → Act that assigns an
action to every history.1 A strategy is finite-state (aka finite-
memory) if it can be represented as a finite-state input/output
automaton that, on reading h ∈ Hist , outputs the action σ(h).

An play π = (s0, a0, s1, a1, · · · ) (resp. history π =
(s0, a0, s1, a1, · · · , sn)) is consistent with a strategy σ if
σ(πi) = ai for every i (resp. for every i < n). In this case we
will also say that π is a σ-play (resp. σ-history).

A history h is a split point of strategies σ1, σ2 if σ1(h) 6=
σ2(h) but σ1(h′) = σ2(h′) for all histories h′ that are proper
prefixes of h.

For strategies σ1, σ2 and a history h, define the shift of σ1

by σ2 at h, denoted σ
.
= σ1[h ← σ2], to be the following

strategy: for a history h′, let σ(h′)
.
= σ2(h′) if h′ extends h,

and let σ(h′)
.
= σ1(h′) otherwise. I.e., σ does what σ2 does

from h (including) onwards, and elsewhere does what σ1 does.

E. Borel Space

Let x be a finite prefix of an infinite path. Define Cx ⊆ Ω
to consist of all infinite paths ω ∈ Ω such that x is a prefix of
ω. The sets Cx are called cones. For technical convenience,
the empty set ∅ is also considered to be a cone. Notice that if
Cx∩Cy 6= ∅ then either x is a prefix of y, or y is a prefix of x,
and so Cx ⊆ Cy or Cy ⊆ Cx, and so Cx∩Cy ∈ {Cx, Cy}. In
other words, the intersection of two non-disjoint cones is equal
to one of them. The cones form a basis for a topological space
(Ω, τ), i.e., X ∈ τ iff X is a union of cones. The sets in τ
are called open. It is worth noting that this topological space
is metrizable, i.e., its topology is induced by the following
definition of distance d in Ω: d(ω1, ω2) = 2−k where k is
the length of the longest common prefix of ω1, ω2.2 Let B
be the smallest Sigma-algebra (i.e., family of subsets of Ω
closed under countable union and complement) containing τ .
This gives the Borel space (Ω,B). Borel sets in Ω will also
be called goals.

For a strategy σ, define Ωσ ⊆ Ω to consist of all plays
consistent with σ. The induced topological space (resp. Borel
space) is the pair (Ωσ, τσ) (resp. (Ωσ,Bσ)), where τσ (resp.
Bσ) consists of sets of the form A ∩ Ωσ where A ∈ τ (resp.
A ∈ B). For every finite prefix x of a play in Ωσ , the cone

1Strategies are sometimes called ”schedulers”, e.g., [3], [2].
2In fact, this distance is an ultrametric, it satisfies the following strengthen-

ing of the triangle inequality, i.e., d(ω1, ω2) ≤ max(d(ω1, ω3), d(ω3, ω2)).
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Fig. 1: Single-action stochastic domain for simulating a random walk
on Z where p ∈ (0, 1) is the probability of going left.

Cx in Ωσ is thus the set of all plays in Ωσ that extend x.
Note that the notation is overloaded, i.e., Cx is in the induced
topology Ωσ , and thus also depends on σ. Nonetheless, this
should not cause confusion since σ will always be clear from
the context. As is conventional, we may simply write Ωσ for
this topological (resp. Borel) space. For X ∈ τσ (resp. X ∈
Bσ) we say that X is open in Ωσ (resp. Borel in Ωσ). If Ωσ is
understood from the context, we may write ¬X as a shorthand
for Ωσ \X .

III. PROBABILITY SPACES INDUCED BY STRATEGIES

To assign probabilities to Borel sets in a domain we need to
fix a strategy (in other words, we need to pick a single action
at every point). A stochastic domain D = (St ,Act , ι,Pr) and
a strategy σ induce a probability measure µD,σ : Bσ → [0, 1],
i.e., µD,σ is countably additive3 and µD,σ(Ωσ) = 1. This is
done in the standard way, as follows. Define µD,σ as satisfying
that µD,σ(Cι) = 1 and µD,σ(Chas|Cha) = Pr(h, a)(s) for
a = σ(h), and µD,σ(Cha|Ch) = 1 for a = σ(h), and
extend this uniquely to the Borel sets by Carathéodory’s
Extension Theorem. The tuple (Ωσ,Bσ, µD,σ) is called a
probability space, although we may simply refer to it as Ωσ .
We call µD,σ(X) the probability or measure of X (in Ωσ). If
µD,σ(X) = 1 we may say that X holds almost-surely.

Remark 1. Note that given h = (s0, a0, · · · , sn), the proba-
bility of a cone Ch ⊆ Ωσ is equal to

∏
0≤i<n Pr(hi, ai)(si+1),

and is thus completely determined by the domain D (indepen-
dently of σ). Consequently, µD,σ(Ch) = µD,σ′(Ch) for every
strategy σ′ with which h is consistent.

Example 1 (Random Walk). Let Dp be the domain pictured
in Fig. 1 with St = {l, w, r},Act = {a}, initial state w, and
parameter p ∈ (0, 1). Note that Dp and Dq have the same
support for p, q ∈ (0, 1). Let G consist of all traces that have
some prefix with more occurrences of l than of r. The set G is
Borel (in fact, it is an open set).4 Since there is a single action,
there is a single strategy σ. Observe that a trace is in G iff
it represents a one-dimensional random walk on the integers
that starts at 1 and visits 0. Thus, µDp,σ(G) = 1 if p ≥ 1/2,
and 0 < µDp,σ(G) < 1 otherwise [14].

The following is a list of some basic properties of probabil-
ity measures that we use implicitly. For Borel sets Ai ⊆ Ωσ:

3This means that µ(∪Ai) =
∑
i µ(Ai) for every countable sequence

(Ai)i of pairwise disjoint Borel sets.
4G is not omega-regular since, intuitively, one needs to remember the

difference between the number of ls and rs, which requires infinite memory
(formally, this can be proved using a standard pumping argument).

• Monotonicity: A1 ⊆ A2 implies µD,σ(A1) ≤ µD,σ(A2).
• Law of total probability: µD,σ(A1) = µD,σ(A1 ∩ A2) +
µD,σ(A1 \A2).

• Law of conditional probability: µD,σ(A1 ∩ A2) =
µD,σ(A1|A2)µD,σ(A2).

• Subadditivity: µD,σ(∪Ai) ≤
∑
i µD,σ(Ai) where (Ai)i

is countable.

A countable sequence (Ui)i of cones in Ωσ such that A ⊆
∪iUi is called a cone-covering of A. The (Lebesgue) outer
measure is the function µ∗D,σ defined for A ⊆ Ωσ by µ∗D,σ

.
=

inf{
∑
i µD,σ(Ui)} where the infimum is taken over all cone-

coverings (Ui)i of A. Note that this is well-defined since Ωσ
itself is a cone, and thus the inf ranges over a non-empty set.

The following lemma states the basic property that the
outer measure of every Borel set is equal to its measure (i.e.,
probability). A proof in a more general setting can be found
in [15].

Lemma 1. If A is Borel in Ωσ then µD,σ(A) = µ∗D,σ(A).

We now state and prove two useful lemmas concerning our
probability spaces.

The following lemma states that, in a given stochastic
domain, the set of plays consistent with two strategies have
the same measure in their respective probability spaces.

Lemma 2. For a domain D, a Borel set G, and two strategies
σ1, σ2, if T ⊆ Ω is the set of plays consistent with both σ1 and
σ2, then T is Borel in Ω and µD,σ1

(T ∩G) = µD,σ2
(T ∩G).

Proof. First, if T ∩G = ∅ the lemma clearly holds, so we can
assume that T ∩G 6= ∅. Note that Ωσ is Borel in Ω: indeed,
the set of plays consistent with a strategy σ is the countable
intersection ∩nHn, where Hn is the union of all the cones Ch
of histories h of length n consistent with σ. Hence, T is the
intersection of two Borel sets, and thus also a Borel set.

To prove the equality of measures, we assume w.l.o.g. that
the cone-coverings (Ui)i of a set A in Lemma 1 satisfy that
Ui ∩ A 6= ∅ for every i (indeed, discarding cones that cover
nothing will not change the coverage, and only reduce the sum
of measures). Take a cone-covering (Ui)i in Ωσ1 of T ∩G s.t.
Ui ∩ (T ∩ G) 6= ∅ for every i. Since Ui is a cone in Ωσ1

,
there is a history h consistent with σ1 such that Ui is the
set of all plays in Ωσ1

that extend h. Note that h is also
consistent with σ2 (since h is a prefix of some play in T ), and
define Vi to be the set of all plays in Ωσ2 extending h. Recall
that (c.f. Remark 1) µD,σ1(Ui) = µD,σ2(Vi), and obtain that∑
i µD,σ1

(Ui) =
∑
i µD,σ2

(Vi). Observe that (Vi)i is a cone-
covering of T ∩ G in Ωσ2

. It follows that µ∗D,σ1
(T ∩ G) ≥

µ∗D,σ2
(T ∩ G). By symmetry, the converse is also true, and

thus µ∗D,σ1
(T ∩G) = µ∗D,σ2

(T ∩G). The lemma now follows
from Lemma 1.

The next lemma says that, in a given domain, probabilities
conditioned on a cone only depend on distributions inside it:

Lemma 3. Fix a domain D = (St ,Act , ι,Pr), a strategy σ,
a σ-history h, and a Borel set G. The measure µD,σ(G|Ch)



only depends on the distributions Pr(h′,−) where h′ properly
extends h.

Proof. Write µ for µD,σ. Let (Ui)i be a cone-covering of
G ∩ Ch. Let Vi = Ui ∩ Ch and note the following: Vi ⊆ Ch,
G ∩ Ch ⊆ ∪iVi and Vi is a cone (being the intersection
of cones). Thus, (Vi)i is a cone-covering of G ∩ Ch, and∑
i µ(Vi) ≤

∑
i µ(Ui) since Vi ⊆ Ui for every i. Thus, by

Lemma 1, µ(G ∩ Ch) = inf{
∑
i µ(Vi)} where the infimum

is taken over all cone-coverings (Vi)i of G ∩ Ch such that
each Vi ⊆ Ch. Given (Vi)i, let νi ∈ (0, 1] be such that
µ(Vi) = µ(Ch) × νi. That is, if h = (s0, a0, · · · , sm) and
Vi = Cx where x = (s0, a0, · · · , sn) for m ≤ n, then ν1 = 1
if m = n, and νi =

∏
m≤k<n Pr(hk, ak)(sk+1) if m < n. So,

µ(G|Ch) = µ(G ∩ Ch)/µ(Ch) = inf{
∑
i µ(Vi)}/µ(Ch) =

inf{
∑
i µ(Ch)νi}/µ(Ch) = inf{

∑
i νi}. Note that νi only

depends on Pr(h′,−) for certain histories h′ that properly
extend h.

We now state the Lebesgue Density Theorem (LDT). This
theorem has its origins in the field of real analysis, and
extensions of it to domains other than the real line or Euclidean
spaces (as is our case) are usually found in the literature
of geometric measure theory. A proof of it applying to our
probability spaces can be found in the Appendix, or in [16]
where it is given for the Cantor space.5

Fix a domain D, a strategy σ, and a goal G. For ω ∈ Ωσ ,
let Cω[0,n) be the cone Ch where h is the prefix of ω of length
n ≥ 1. The density of G in D,σ at ω is defined as

lim
n→∞

µD,σ(G|Cω[0,n))

if this limit exists (if the limit does not exist, we say that the
density is undefined). Let Λ(G) be the set of plays ω ∈ G
such that the density of G in D,σ at ω is equal to 1.

Theorem 1 (Lebesgue Density Theorem). Fix a domain D,
a strategy σ, and a goal G. Then µD,σ(G \ Λ(G)) = 0 (and
thus µD,σ(G) = µD,σ(Λ(G))).

We immediately get the following useful corollary.

Corollary 1. Fix a domain D, a strategy σ, a σ-history h,
and a goal G. If µD,σ(G|Ch) > 0 then there exists a σ-play
ω extending h s.t. the density of G in D,σ at ω is equal to 1.

IV. STOCHASTIC BEST-EFFORT STRATEGIES

The ignorance that the system has about its stochastic
environment is modeled as a set of ”similar” domains.

Definition 1. For i = 0, 1, consider domains Di =
(St i,Act i, ιi,Pr i), say with support functions ∆i. Call the
domains similar if they have the same set of states St0 = St1,
the same set of actions Act0 = Act1, the same initial state
ι0 = ι1, and the same support function ∆0 = ∆1.

In particular, in similar domains only the values of the non-
zero probabilities may be different. For instance, if D has

5Not to be confused with the related, but different, Cantor set.

Markovian support, then every domain E similar to D also
has Markovian support (but E need not be Markovian).

To define strategies that are Stochastic Best-Effort (SBE),
we first define the ”dominance” relation that says what it
means for one strategy to do as least as well as another.

Definition 2 (Dominance). Let D be a set of similar domains,
and let G be a goal.
(1) Define σ1 <D,G σ2 to mean that µD,σ1

(G) ≥ µD,σ2
(G)

for every D ∈ D. In this case we say that σ1 dominates
σ2 wrt D, G.

(2) Define σ1 �D,G σ2 to mean that σ1 <D,G σ2 and, in
addition, µD,σ1

(G) > µD,σ2
(G) for some D ∈ D. In

this case we say that σ1 strictly dominates σ2 wrt D, G.

If D, G are understood from the context, we may drop them
from the subscripts. Intuitively, σ1 dominates σ2 means that
σ1 does at least as well as σ2 in achieving the goal G in
every domain in D, and it strictly dominates if it does strictly
better in at least one domain D. The relation < is a pre-order
(reflexive, transitive) and � is a strict partial order (irreflexive,
transitive) on the set of strategies. We say that σ1, σ2 are
incomparable (wrt <) if neither dominates the other.

Definition 3 (SBE). Fix a set D of similar domains, and let
G be a goal. A strategy σ is maximal (wrt <D,G) if there
is no σ′ such that σ′ �D,G σ. Maximal strategies are called
stochastic best-effort wrt D, G, or SBE for short.

Intuitively, if σ is not maximal, say σ′ strictly dominates it,
then a player that uses σ is not doing its “best” to achieve the
goal since it could use σ′ instead. Conversely, if σ is maximal,
then there is no other strategy that would do “better” (although
there may be other maximal strategies that are incomparable
to σ).

V. CHARACTERIZATION OF DOMINANCE AND SBE

In this section we provide a characterization of dominance
(Theorem 3), which in turn provides a useful characterization
of SBE strategies (Theorem 4). The characterizations are in
terms of a three-valued abstraction of the conditional proba-
bility µD,σ(G|Ch) for histories h consistent with the strategy
σ. The characterizations are crucial for proving results in the
rest of the paper, and we believe are of independent interest.

Definition 4. [17] For a domain D, a goal G, a strategy σ,
and a σ-history h, define

valD,G(σ, h) :=


winning if µD,σ(G|Ch) = 1

pending if 0 < µD,σ(G|Ch) < 1

losing if µD,σ(G|Ch) = 0

We call valD,G(σ, h) the value of σ at h or just the value of
h or just the value when D,G, σ and h are clear from the
context.

Intuitively, winning means that σ almost-surely achieves the
goal from h, losing that it almost-surely does not, and pending
otherwise. We order the values as follows: losing < pending <



winning. When D, G are given, we will use the following
shorthand. Given a strategy σ and a σ-history h:

min(h, σ)
.
= min
D∈D

valD,G(h, σ)

max(h, σ)
.
= max
D∈D

valD,G(h, σ)

For example, max(h, σ) = losing means that for every
domain D ∈ D the value of σ at h is losing, and min(h, σ) =
winning means that for every domain D ∈ D the value of σ
at h is winning. Also min(h, σ1) ≥ max(h, σ2) means that
the best value that σ2 achieves across all domains is no better
than the worst value that σ1 achieves across all domains.

A. Characterization of the dominance order

On the way to the desired characterization we will provide
two intermediate, slightly weaker, characterizations.

To give the first characterization, we introduce the concept
of an amplification of a domain along a history.

Definition 5 (Amplification). Given ε ∈ (0, 1), a domain D =
(St ,Act , ι,PrD), and a history h = s0, a0, · · · , sn, we call
E = (St ,Act , ι,PrE) an (h, ε)-amplification of D if it is
similar to D and satisfies:
(1)

∏
i<n PrE(si, ai)(si+1) ≥ ε;

(2) PrE(x, a) = PrD(x, a) for every action a and every
history x such that xa is not a proper prefix of h.

Intuitively, A (h, ε)-amplification is a domain E derived
from D by modifying the transition function only for proper
prefixes of h, and in a way that makes µD,σ(Ch) ≥ ε for every
strategy σ which h is consistent with.

The following lemma is an easy consequence of the fact
that a domain and an amplification of it have almost identical
transition functions.

Lemma 4. If E is an (h, ε)-amplification of D, then for every
goal G and every strategy σ, we have that µD,σ(G|Cx) =
µE,σ(G|Cx) for every σ-history x such that xσ(x) is not a
proper prefix of h.

Proof. Let PrD (resp. PrE) denote the transition function of
domain D (resp. E). We consider two cases. The case that x
is not a proper prefix of h is immediate from item 2 of the
definition of amplification (Definition 5) and Lemma 3. For
the case that x is a proper prefix of h, but xσ(x) is not, let
s1, · · · , sk be the states in the support of PrE(x, σ(x)). Then

µE,σ(G|Cx) =
∑
i

µE,σ(G|Cxσ(x)si)PrE(x, σ(x))(si)

=
∑
i

µD,σ(G|Cxσ(x)si)PrE(x, σ(x))(si)

=
∑
i

µD,σ(G|Cxσ(x)si)PrD(x, σ(x))(si)

= µD,σ(G|Cx)

The first equality is by the definition of conditional prob-
ability. The second equality is since the σ-history xσ(x)si is
not a proper prefix of h and using the previous case. The third

equality is by item 2 of Definition 5 and our assumption that
xσ(x) is not a proper prefix of h. The fourth equality is by
definition of conditional probability and the fact that PrE and
PrD have the same support since D and E are similar.

We can now give one direction of the first characterization.
In words, it says that if σ1 < σ2 then for every split point
h and every domain D the value of σ1 is no worse than the
value of σ2, and both these values cannot be pending. Its proof
uses the Lebesgue Density Theorem (Theorem 1).

Lemma 5. Let D be the set of all domains similar to a
fixed domain, let G be a goal, and let σ1, σ2 be such that
σ1 <D,G σ2. Then for every split point h and every D ∈ D,
the following two conditions hold:

(1) valD,G(h, σ1) ≥ valD,G(h, σ2);
(2) both values above cannot be pending.

Proof. Suppose that for some domain D ∈ D and split point
h at least one of the two conditions fail. Then valD,G(h, σ2)
is not losing and valD,G(h, σ1) is not winning. In order to
conclude that it is not the case that σ1 <D,G σ2, we will find
a domain E ∈ D such that µE,σ2

(G) > µE,σ1
(G). Intuitively,

E should boost the probability that σ2 satisfies G beyond that
of σ1. We will do this by choosing E to be an amplification of
D along an extension h′ of h so that µE,σ2

(Ch′) is large (due
to amplification), µE,σ2

(G|Ch′) is large (due to the LDT),
which will mean that µE,σ2

(G) is large. The tricky part is to
ensure that while doing this the probability of σ1 satisfying G,
which also changes in this process, does not grow too much.

Let α .
= µD,σ1(G|Ch), and note that 0 ≤ α < 1 since

valD,G(h, σ1) is not winning. Since valD,G(h, σ2) is not
losing, apply Corollary 1 to get a σ2-play ω extending h such
that the density of G in D,σ2 at ω is 1. Hence, we can pick
a history h′, that extends h and is a prefix of ω, such that
β

.
= µD,σ2

(G|Ch′) ≥
√
α′ where α′

.
= (α + 1)/2. Let E

be an (h′,
√
α′)-amplification of D. Note that µE,σ2

(G) ≥
µE,σ2(G|Ch′)µE,σ2(Ch′) ≥ β

√
α′ ≥ α′, where the second

inequality is by Lemma 4. Since h is a split point of σ1, σ2,
Lemma 4 also tells us that α = µE,σ1

(G|Ch). Also, item
1 of the definition of amplification (Definition 5) means that
µE,σ1

(Ch) ≥
√
α′. Thus:

µE,σ1(G)

= µE,σ1(G|Ch)µE,σ1(Ch) + µE,σ1(G|¬Ch)µE,σ1(¬Ch)

≤ αµE,σ1(Ch) + 1(1− µE,σ1(Ch))

≤ α+ (1−
√
α′)

< α+ (1− α′) = (α+ 1)− (α+ 1)/2 = α′

where the last inequality is because α′ ∈ (0, 1). Overall,
µE,σ2

(G) > µE,σ1
(G), as promised.

We are now ready to give our first characterization of
dominance:

Theorem 2. Let D be the set of all domains similar to a fixed
domain, let G be a goal, and let σ1, σ2 be two strategies. Then,



σ1 <D,G σ2 iff for every split point h and every D ∈ D, the
following two conditions hold:
(1) valD,G(h, σ1) ≥ valD,G(h, σ2).
(2) both values cannot be pending.

Also, σ1 �D,G σ2 iff, in addition, there is a split point h and
a domain D ∈ D such that valD,G(h, σ1) > valD,G(h, σ2).

Proof. The ⇒ of direction for < is by Lemma 5. We now
prove the ⇐ direction for <. Consider a domain D ∈ D.
We will show that µD,σ1

(G) ≥ µD,σ2
(G). Let T be the set

of plays consistent both with σ1 and σ2. By the fact that
µD,σi(G) = µD,σi(G\T )+µD,σi(G∩T ) and by Lemma 2 it
is sufficient to show that µD,σ1(G\T ) ≥ µD,σ2(G\T ). Now,
µD,σi(G \ T ) =

∑
h µD,σi(G ∩ Ch) where the sum is over

all split points h of σ1, σ2. But notice that the two assumed
conditions of the Theorem give us that µD,σ1

(G|Ch) ≥
µD,σ2(G|Ch), and so µD,σ1(G ∩ Ch) ≥ µD,σ2(G ∩ Ch).

The statement for � follows from that for <. Indeed, if
σ1 < σ2, then σ1 � σ2 iff σ2 6< σ1; in other words, iff
there is some split point h and domain D such that either the
first condition fails, i.e., valD,G(h, σ2) < valD,G(h, σ1) or the
second condition fails. However, the second condition cannot
fail since we assumed that σ1 < σ2.

We now give a second characterization of dominance which
does not compare values one domain at a time (as Theorem 2
does), but rather over all domains at once (for a given history).
In words, it will say that σ1 < σ2 means that the worst value
that σ1 achieves (across all domains) is no worse than the
best value that σ2 achieves (across all domains). In order to
do that, we will combine different domains using the following
definition.

Definition 6 (Shift). Given two similar domains Ei =
(St ,Act , ι,Pr i), a history h, and an action a, let D =
(St ,Act , ι,Pr) be the similar domain where Pr(h′, a′) is
defined as follows: for every action a′ and history h′,
• Pr(h′, a′) = Pr1(h′, a′) if ha is a prefix of h′,
• Pr(h′, a′) = Pr2(h′, a′), otherwise.

We call D the shift of E2 by E1 at history h and action a.

Intuitively, the shift domain D looks like E2, except that
following action a from h it looks like E1. This means that
if two strategies σ1, σ2 split at h, and if D is the shift of E2

by E1 at h and action σ1(h), then by Lemma 3, σi achieves
the same value at h in D as it does in Ei (i = 1, 2).

Proposition 1. Let D be the set of all domains similar to a
fixed domain, let G be goal, and let σ1, σ2 be two strategies.
Then, σ1 <D,G σ2 iff for every split point h, the following two
conditions hold:

(I) min(h, σ1) ≥ max(h, σ2)
(II) this min and max are not both pending.
Also, σ1 �D,G σ2 iff, in addition, there is a split point h, such
that max(h, σ1) > min(h, σ2).

Proof. Fix a split point h. We will show that both conditions
(I) and (II) hold iff both conditions (1) and (2) in Theorem 2
hold.

Suppose (I) and (II) hold. Consider a domain E ∈ D. Then:

valE,G(h, σ1) ≥ min(h, σ1) ≥ max(h, σ2) ≥ valE,G(h, σ2),

which implies that both conditions (1) and (2) hold.
For the converse, suppose that either (I) or (II) fail. We

will find a domain D ∈ D such that either (1) or (2)
fail. Let E1, E2 ∈ D be domains that witness the min
and max respectively, i.e., valE1,G(h, σ1) = min(h, σ1) and
valE2,G(h, σ2) = max(h, σ2). Say Ei = (St ,Act , ι,Pr i).
Let D be the shift of E2 by E1 at history h and ac-
tion σ1(h). Note that D ∈ D (it is similar to, e.g.,
E1), and by Lemma 3, valD,G(h, σ1) = valE1,G(h, σ1)
and valD,G(h, σ2) = valE2,G(h, σ2). If (I) fails then
valD,G(h, σ1) < valD,G(h, σ2) and so (1) fails. If (II) fails
then valD,G(h, σ1) = valD,G(h, σ2) = pending, and so (2)
fails.

To see the statement for �D,G, suppose that σ1 <D,G σ2.
Then σ1 �D,G σ2 iff it is not the case that σ2 <D,G σ1 iff
there is some split point h such that either (I) fails, i.e., it
is not the case that min(h, σ2) ≥ max(h, σ1), which is the
stated condition, or (II) fails.

We now rule out (II) failing, i.e., there is no split point
h such that max(h, σ1) and min(h, σ2) are pending. Similar
to above, let E1 witness max(h, σ1) and let E2 witness
min(h, σ2), and let D be as before. Then valD,G(h, σ1) =
valD,G(h, σ2) = pending, which contradicts Lemma 5.

Proposition 1 yields our final characterization of dominance.

Theorem 3 (Characterization of the dominance order). Let D
be the set of all domains similar to a fixed domain, let G be
a goal, and let σ1, σ2 be two strategies. Then σ1 < σ2 iff for
every split point h, either
(1) min(h, σ1) = winning,
(2) max(h, σ2) = losing.

Also, σ1 � σ2 iff, in addition, for some split point h, either
(A) min(h, σ1) = winning and min(h, σ2) 6= winning;
(B) max(h, σ2) = losing and max(h, σ1) 6= losing.

Proof. Suppose condition (1) or condition (2) of this Theorem
hold for h, then clearly (I) and (II) of Proposition 1 hold
for h. Conversely, suppose both (1) and (2) fail for h. Then
min(h, σ1) is either losing or pending, and max(h, σ2) is
either winning or pending. If (I) holds, then both values must
be pending, which means (II) doesn’t hold.

To see the characterization of �D,G holds, suppose
σ1 <D,G σ2. So we have, for every split point h, by (I)
and (II), that max(h, σ1) ≥ min(h, σ1) ≥ max(h, σ2) ≥
min(h, σ2), and min(h, σ1),max(h, σ2) are not both pending.

Suppose for some split point h, (A) holds or (B) holds. In
the first case max(h, σ1) is winning and min(h, σ2) is either
pending or losing, and in the second case max(h, σ1) is either
pending or winning and min(h, σ2) is losing. In either case,
max(h, σ1) > min(h, σ2), thus σ1 �D,G σ2 by Proposition 1.

Conversely, suppose σ1 �D,G σ2. By Proposition 1, there
is a split point h such that (*) max(h, σ1) > min(h, σ2). We
will show that either (A) holds or (B) holds. There are three



cases depending on the value min(h, σ1). First, if min(h, σ1)
is winning, then max(h, σ1) is winning, and by (*) we have
min(h, σ2) is not winning, and so (A) holds. Second, if
min(h, σ1) is losing, then max(h, σ2) is losing, and by (*) we
have that max(h, σ1) is not losing, and so (B) holds. Third, if
min(h, σ1) is pending, then since max(h, σ2) is not pending,
we must have that max(h, σ2) is losing, and so min(h, σ2)
is losing, and so by (*), max(h, σ1) is not losing, and so (B)
holds.

B. Characterization of SBE strategies

Theorem 3 allows us to characterize SBE as those strategies
σ that, at every σ-history, win almost surely in every domain,
if this is possible by any strategy at all, and otherwise do not
lose almost surely in every domain, if this is possible by any
strategy at all.

Theorem 4 (Characterization of SBE strategies). Let D be the
set of all domains similar to a fixed domain, and let G be a
goal. A strategy σ is SBE wrt D, G iff for every σ-history h:

(i) If there exists σ′ such that min(h, σ′) = winning then
min(h, σ) = winning;

(ii) If there exists σ′ such that max(h, σ′) 6= losing then
max(h, σ) 6= losing;

Proof. Suppose σ is not SBE. Then there is some σ′ �D,G σ.
By Theorem 3, there is a split point h such that (A) or (B)
holds. If (A) holds then (i) fails, and if (B) holds then (ii) fails.

Conversely, suppose σ fails the characterization, i.e., there
is some σ-history h such that either (i) fails or (ii) fails. We
will show σ is not maximal.

Suppose (i) fails, and let σ′ be the stated strategy such that
valD,G(h, σ′) is winning for every D ∈ D, and let E ∈ D
be the domain such that valD,G(h, σ) is not winning. In
particular: µD,σ′(G|Ch) ≥ µD,σ(G|Ch) for every D ∈ D,
and µE,σ′(G|Ch) > µE,σ(G|Ch). Let σ2 = σ[h ← σ′], i.e.,
the shift of σ by σ′ at h (defined in Section II-D). We claim
that σ2 �D,G σ. Intuitively this is because σ2 is the same as σ
except after following h it achieves the goal with probability
1 (as σ′ does) instead of with probability < 1 (as σ does).
Formally, for every domain D:

µD,σ2
(G)

= µD,σ2
(G|Ch)µD,σ2

(Ch) + µD,σ2
(G|¬Ch)µD,σ2

(¬Ch)

= µD,σ′(G|Ch)µD,σ(Ch) + µD,σ(G|¬Ch)µD,σ(¬Ch)

≥ µD,σ(G|Ch)µD,σ(Ch) + µD,σ(G|¬Ch)µD,σ(¬Ch)

= µD,σ(G),

and the inequality is strict for D = E. The second equality
follows from Lemma 3.

The case (ii) is similar. Suppose (ii) fails. Then valD,G(h, σ)
is losing for every domain D, and let σ′ be the strategy such
that valD,G(h, σ′) is not losing for some E ∈ D. In particular
µE,σ′(G|Ch) > µE,σ(G|Ch). Let σ2 = σ[h ← σ′], i.e., the
shift of σ by σ′ at h. Then, by the same calculation as before,
we have that σ2 �D,G σ.

VI. EXISTENCE

In this section we use the characterization of SBE (Theo-
rem 4) to prove that SBE strategies exist in quite a general
setting. We begin with the following observation that a winning
or losing value of a history is inherited by the histories that
extend it.

Lemma 6. For a domain D, a goal G, a strategy σ, and
a σ-history h: if valD,G(h, σ) ∈ {winning, losing} then for
every σ-history h′ extending h we have that valD,G(h, σ) =
valD,G(h′, σ).

Proof. We will prove the case valD,G(h, σ) = losing. The
other case follows by observing that for every σ-history w
we have that valD,G(w, σ) = winning iff valD,Ω\G(w, σ) =
losing, and applying the first case to Ω \G. Assume then that
µD,σ(G|Ch) = 0, and by contradiction that µD,σ(G|Ch′) > 0.
Recall that µD,σ(G|Ch′) = µD,σ(G ∩ Ch′)/µD,σ(Ch′), and
thus µD,σ(G ∩ Ch′) > 0. Since h′ extends h we have that
G ∩ Ch′ ⊆ G ∩ Ch, hence µD,σ(G ∩ Ch) > 0. Conclude
that µD,σ(G ∩ Ch)/µD,σ(Ch) = µD,σ(G|Ch) > 0, which is
a contradiction.

The following theorem states that SBE strategies exist for
every Borel goal.

Theorem 5. Let D be the set of all domains similar to a
fixed domain, and let G be a Borel set. Then there exists a
stochastic best-effort strategy wrt D, G.

Proof. Fix D, G as in the statement of the theorem, and write
� for �D,G.

To define σ, we define a sequence of strategies,
σ0, σ1, σ2, · · · that eventually stabilizes on each history, i.e.,
for every h there exists m such that σm(h) = σm+1(h) =
σm+2(h) = · · · . We then define σ as the point-wise limit
of this sequence, i.e., σ(h) := limi σi(h). The sequence
is constructed as follows (note that the construction makes
possibly many arbitrary choices, so it is not unique).

Fix an ordering on St ∪ Act , and note that this induces a
length-lexicographic ordering on histories. Start with all histo-
ries unmarked, and with σ0 being an arbitrary strategy. At the
start of round i ≥ 0, consider the smallest unmarked history
h in the length-lexicographic order. Mark h as stabilized, and
define σi+1, the strategy resulting from round i, as follows:

(L1) If min(h, σi) < winning, but min(h, σ′) = winning for
some σ′, then let σi+1 = σi[h← σ′];

(L2) otherwise, if max(h, σi) = losing, but max(h, σ′) >
losing for some σ′, then let σi+1 = σi[h← σ′];

(L3) otherwise, let σi+1 = σi.
Finally, if min(h, σi+1) = winning or max(h, σi+1) = losing
then: (L4) mark all the proper extensions of h as stabilized.

We now prove that σ is SBE. Assume, for a contradiction,
that there is some strategy σ′ � σ. By Theorem 3, we know
that for some split point h of σ, σ′, either:
(A) min(h, σ′) is winning and min(h, σ) is not winning; or
(B) max(h, σ) is losing and max(h, σ′) is not losing.



Let i be the round in the construction of σ where h was
marked as stabilized. We consider two cases depending on
whether or not (L4) was invoked at round i.

First, suppose that (L4) was invoked at round i, and let h′

be the history considered at this round. Note that h′ is a (not
necessarily proper) prefix of h. Since all extensions of h′ are
marked as stabilized in round i, we know that σi+1 and σ
agree on h′ and all its extensions, and thus have the same
value at h′ in all domains. Since (L4) was invoked, either
min(h′, σ) = min(h′, σi+1) = winning or max(h′, σ) =
max(h′, σi+1) = losing. The option min(h′, σ) = winning
implies, by Lemma 6, that min(h, σ) = winning, which con-
tradicts both (A) and (B); whereas the option max(h′, σi+1) =
losing also leads to a contradiction since our assumption that
either (A) or (B) hold implies that max(h, σ′) 6= losing, which
would have ensured (by (L1) and (L2)) that max(h′, σi+1) 6=
losing.

Second, suppose that (L4) was not invoked at round i. Then,
in particular, h was the history considered at this round. We
claim that (A) does not hold. Indeed, if min(h, σ′) = winning,
then by (L1) also min(h, σi+1) = winning, which would have
invoked (L4). We are left with the case that (B) holds, i.e., that:
(†) max(h, σ) = losing and max(h, σ′) 6= losing. The last fact
implies, by (L1) and (L2), that also max(h, σi+1) 6= losing.
Intuitively, this means that the value of h deteriorated in the
limit σ compared to when it was marked. We complete the
proof by showing that this is not possible due to the greedy
nature of the construction.

We first find a split point w of σ, σi+1 such that: (‡) w
extends h and min(w, σi+1) 6= losing. To do this, observe
that since max(h, σi+1) 6= losing and max(h, σ) = losing,
we have that µD,σi+1(G|Ch) > 0 for some D ∈ D, and
µD,σ(G|Ch) = 0 for all D ∈ D. Hence, together with
Definition 2, we get that σi+1 �D,F σ, where F is a new goal
consisting of all traces in G that extend h. By Theorem 2,
there is some split point w of σi+1, σ and some domain
D ∈ D, where valD,F (w, σi+1) > valD,F (w, σ). Note that
this implies, in particular, that µD,σi+1(F ) > 0 and thus w
extends h and µD,σi+1

(G) > 0, so w satisfies ‡.
Let k > i be the smallest round in which a prefix (not

necessarily proper) x of w was considered and (L3) not
invoked (i.e., a shift in (L1) or (L2) was done). Such a k
exists because, being a split point, σi+1(w) 6= σ(w), so k is
bounded from above by the number of the round in which w
was marked as stabilized. The minimality of k implies that
from round i + 1 up to the start of round k no shift was
invoked on any prefix of w (and thus on any prefix of x),
so σi+1 and σk agree on x and all of its extensions. Hence,
min(x, σi+1) = min(x, σk). Observe that ‡ and Lemma 6
imply that min(x, σi+1) 6= losing, so it must be that the shift
at round k was done in (L1). Hence, min(x, σk+1) = winning,
and (L4) was invoked at the end of round k making σ
and σk+1 agree on x and all its extensions, and thus also
min(x, σ) = winning. Observe that since x and h are both
prefixes of w, and x was considered at a later round than h,
it must be that x extends h. Alas, this is a contradiction since

then † and Lemma 6 yield that max(x, σ) = losing.

VII. COMPLEXITY OF FINDING SBE STRATEGIES FOR
LINEAR-TEMPORAL GOALS

While in the previous section we showed existence of
SBE strategies, in this section we study the computational
complexity of the problem of finding such strategies. We
thus need to consider finite representations of D and G. We
focus on the important special case where G is given by a
formula of linear-temporal logic, and D is a set of domains that
share the same Markovian (resp. finitely generated) support
function. Additionally we require D to be a set of bounded
domains, where a domain D is bounded if there is some
ε > 0 such that Pr(h, a)(s) ≥ ε for all h, a and s such that
s ∈ sup(Pr(h, a)); technically, boundedness guarantees that
fair traces have probability 1 (cf [4]).

Before we get to the upper and lower bounds, we make the
following important observation. Note that Theorem 5, which
states that SBE strategies exist for all Borel goals, does not
apply to the set of all bounded domains that are similar to
some fixed domain. However, it turns out that the proof of
that Theorem can easily be generalized to this setting. Indeed,
the only place in the proof where we took advantage of the
fact that we started with the set of all domains similar to some
fixed domain is in Lemma 5 where we picked an amplification
domain and in Proposition 1 where we picked a domain using
a shift. We say that D is closed under amplification if for
every D ∈ D and every h, ε there is some (h, ε)-amplification
of D in D. We say that D is closed under shift if for every
E1, E2 ∈ D and every history h and action a, the shift of E2

by E1 at h and a is in D. Thus, we get that if D is a set of
similar domains that is closed under amplification and shift,
and G is a Borel set, then there exists a stochastic best-effort
strategy wrt D, G. Note that the set of all bounded domains D
that are similar to some fixed D is closed under amplification
and shift. This yields:

Corollary 2. Let D be the set of bounded domains that are
similar to a fixed domain D, and let G be a goal. Then:

1) There exists a stochastic best-effort strategy wrt D, G.
2) A strategy σ is SBE wrt D, G iff for every σ-history h:

(i) If there exists σ′ such that min(h, σ′) = winning then
min(h, σ) = winning;

(ii) If there exists σ′ such that max(h, σ′) 6= losing then
max(h, σ) 6= losing;

Remark 2. In general, some closure properties on D are
necessary for SBE strategies to exist. To see this, consider
a set of domains D that consists of a single domain D (note
that D is obviously not closed under shifts and amplifications).
Then, a strategy σ is SBE wrt D, G iff σ is optimal for D.
However, it is well-known that optimal strategies do not need
to exist, e.g., [17] exhibits a domain D that has Markovian
support (but is non-Markovian), and a reachability goal G, for
which there is no optimal strategy.



We now recall the definition of linear-time temporal logic.
The formulas of LTL over a finite set AP of atoms are defined
by the following BNF (where p ∈ AP ):

ϕ ::=p |ϕ ∨ ϕ |¬ϕ |Xϕ |ϕUϕ.

We use the usual abbreviations including the following: Fϕ .
=

trueUϕ, Gϕ .
= ¬F¬ϕ. A trace τ is an infinite sequence of

valuations of the atoms, i.e., τ ∈ (2AP )ω . For n ≥ 0, write
τn for the valuation at position n. Given τ , n, and ϕ, the
satisfaction relation (τ, n) |= ϕ, stating that ϕ holds at step n
of the sequence τ , is defined as follows:
• (τ, n) |= p iff p ∈ τn;
• (τ, n) |= ϕ1 ∨ ϕ2 iff (τ, n) |= ϕ1 or (τ, n) |= ϕ2;
• (τ, n) |= ¬ϕ iff (τ, n) |= ϕ does not hold;
• (τ, n) |= Xϕ iff (τ, n+ 1) |= ϕ; and
• (τ, n) |= ϕ1 Uϕ2 iff there exists m with n ≤ m such that:

(τ,m) |= ϕ2 and (τ, j) |= ϕ1 for all j with n ≤ j < m.
If τ, 0 |= ψ we write τ |= ψ and say that τ satisfies ψ and
that τ is a model of ψ.

We treat LTL formulas ϕ as goals. To do this, we in-
troduce a labeling function λ : St ∪ Act → 2AP . If
π = (s0, a0, s1, a1, · · · ) is an infinite path (or a finite path
that ends in an action), define the trace λ(π) as (λ(s0) ∪
λ(a0), λ(s1)∪λ(a1), · · · ). If π is an infinite path, we say that
π satisfies ϕ iff λ(π) |= ϕ. Let [ϕ]λ ⊆ Ω denote the set of
infinite paths that satisfy ϕ. We remark that [ϕ]λ is Borel (this
follows from the more general fact that [ϕ]λ is omega-regular
and thus Borel [18]). We may write valD,ϕ(−,−) instead of
the more correct valD,[ϕ]λ(−,−).

In the rest of this section we establish matching upper
and lower bounds for the computational complexity of the
following.

Definition 7. The following problem is called SBE synthesis
for LTL goals and bounded domains with Markovian support:
Given a Markovian domain D, a labeling function λ, and an
LTL formula ϕ, find a finite-state strategy that is stochastic
best-effort wrt D, [ϕ]λ where D is the set of all bounded
domains that are similar to D.

Although Corollary 2 only guarantees the existence of a
SBE strategy, the algorithm in Section VII-A will show that
there exists a finite-state one. Thus, the SBE synthesis problem
is a search problem that always has a solution.

A. Upper bound

We establish a 2EXPTIME-upper bound for the problem in
Definition 7.

Theorem 6. The SBE synthesis problem for LTL goals and
bounded domains with Markovian support can be solved in
2EXPTIME.

Proof. We use the following from [17]. For a domain D, an
LTL formula ϕ, and a labeling λ, let G = [ϕ]λ and consider
the following property: (†D) for every σ-history h,

valD,G(σ, h) = max
h is a σ′-history

valD,G(σ′, h)

In words, (†D) means that for every σ-history h and every
strategy σ′, the value of σ at h is at least the value of σ′ at h.
That paper also proves that if D is any set of similar domains,
all of which are bounded and have Markovian support, then
there exists a finite-state strategy σ that satisfies (†)D for every
D ∈ D, and one such strategy can be computed in 2EXPTIME
(from the common Markovian support function St × Act →
2St , the formula ϕ, and the labeling λ).6

We now prove our result. Take an instance D,λ, ϕ of the
SBE synthesis problem. Let D be the set of all bounded
domains similar to the Markovian domain D. Observe that
a strategy satisfying (†)D for every D ∈ D satisfies the
conditions in our characterization of SBE (Corollary 2), and
thus is SBE wrt D, G.

Remark 3. Let (†)D denote that (†)D holds for all D ∈ D.
The work in [17] calls a strategy SBE if it satisfies (†)D. In
contrast, this work calls a strategy SBE if it is maximal in
the dominance order (Definition 3). Unfortunately, these two
definitions do not always coincide7: while for every Borel
goal a strategy satisfying (†)D also satisfies the conditions
in Theorem 4, and is thus maximal in the dominance order
(i.e., it is also SBE by Definition 3), the reverse is not
true. In other words, (†)D cannot, in general, be taken as a
characterization of maximal strategies in the dominance order.
Indeed, whereas Theorem 5 shows that maximal strategies
always exist, strategies satisfying (†)D may not exist for
goals that are not omega-regular, as the following example
demonstrates.

Example 2. Consider the domains in Figure 2 with p ∈ (0, 1).
There are two types of strategies: σ0 does action a on the first
move, and σ1 does action b in the first move (after the first
move it does not matter whether a or b is chosen). Define the
goal G to consist of all traces that have some prefix with more
occurrences of l0 than of r0 or more occurrences of l1 than of
r1. Note that G is Borel (it is open), but not omega-regular.

Observe that a trace is in the goal iff it represents a one-
dimensional random walk that starts at 1 and reaches 0. If in
a random walk the probability of going left is p ∈ (0, 1), then
the probability the goal is satisfied is equal to 1 if p ≥ 1/2 and
is not equal to 1, but is positive, if p < 1/2 (as in Example 1).

Let D0 (resp. D1) be the domain obtained by taking p =
3/4 (resp. p = 1/4). Observe that, for i ∈ {0, 1}, we have
that µDi,σi(G) = 1, and 0 < µDi,σ1−i(G) < 1. It follows

6Technically, the domains in [17] and our domains are not exactly the same.
The former uses a specific representation of states and actions: the state set is
of the form 2F for some finite set F of Boolean variables, and the action set
is of the form 2A for some finite set A of Boolean variables, and the atoms of
the formula are over F ∪A (and thus there is no need for a labeling function).
It is not hard to suitably encode our stochastic domains in this representation.
Alternatively, the techniques in [17] do not rely on this special representation,
and apply just as well to our representation of stochastic domains.

7The reason we use the term SBE in Definition 3 despite the potential
confusion with [17] is two-fold. First, we see the work in [17] as a preliminary
step in the road to this work; Second, [17] only considers omega-regular goals,
and for these the two definitions of SBE coincide (if one further restricts to
finite-state strategies). Thus, there is in fact only a small room for confusion.
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Fig. 2: Stochastic domain for simulating two random walks

that in Di there is a strategy with value winning at the history
h = s, but neither σ0 nor σ1 achieve value winning on both
domains. So, taking D to be the set of all domains (resp.
bounded domains) similar to, say, D1, we see that there is no
strategy that satisfies (†)D.

B. Lower bound

We establish a matching 2EXPTIME lower-bound. We first
recall the following decision problem:

Theorem 7. [3] The following problem is 2EXPTIME-hard:
Given a Markovian stochastic domain D, a labeling function
λ, and an LTL formula ϕ, decide if there exists a strategy σ
that wins almost surely, i.e., such that µD,σ([ϕ]λ) = 1.8

We will use the fact that deterministic complexity classes
are closed under complementation, i.e., if C ⊆ 2{0,1}

∗
is a

deterministic complexity class, and L ∈ C, then also Lc =
{0, 1}∗ \ L ∈ C. Moreover, if H is hard for C then so is
Hc. Indeed, for L ∈ C, also Lc ∈ C, and so there is a Karp
reduction of Lc to H , i.e., a PTIME-function f : {0, 1}∗ →
{0, 1}∗ such that x ∈ Lc iff f(x) ∈ H . Note that f is also a
Karp reduction of L to Hc.

We now state and prove our promised lower bound:

Theorem 8. The SBE synthesis problem for LTL goals and
bounded domains with Markovian support is 2EXPTIME-hard.

Proof. Let L be a 2EXPTIME (decision) problem. We will
show how to reduce L to the SBE synthesis problem.9 Let

8Actually, [3] states the dual problem, i.e., decide if every strategy wins al-
most surely. Their proof reduces from the membership problem for alternating
EXPSPACE Turing machines. It transforms such a TM T and input word x
into a Markovian domain D, a labeling function λ, and an LTL formula ϕ such
that the T rejects x iff there exists a strategy σ such that µD,σ([ϕ]λ) > 0.
However, in a footnote, they remark that D,λ, ϕ has the following additional
property: there exists a strategy σ such that µD,σ([ϕ]λ) > 0 iff there exists a
strategy σ′ such that µD,σ′ ([ϕ]λ) = 1. Thus, their reduction also establishes
the 2EXPTIME-hardness of the present problem.

9The reduction we use is a Cook reduction since we will be reducing from
a decision problem to a search problem that always has a solution, which
makes Karp and Levin reductions inappropriate. Our Cook reduction will
have a Levin flavor as it calls the oracle only once.

H be the decision problem in Theorem 7. Then Hc is also
2EXPTIME-hard. So, there exists a Karp reduction f+ from
L to H , and a Karp reduction f− from L to Hc. For every
input x to L, and b ∈ {−,+}, let f b(x) = (Db, λb, ϕb) and
Db = (Stb,Actb, ιb,Pr b). Then (*): x ∈ L iff there is a
strategy σ such that µD+,σ([ϕ+]λ+) = 1 iff there is no strategy
σ such that µD−,σ([ϕ−]λ−) = 1.

From this, we construct a Markovian stochastic domain D =
(St ,Act , ι,Pr), a labeling function λ, and an LTL formula
ϕ. We may assume, without loss of generality, that St+,St−

are disjoint, and Act+,Act− are disjoint. Let ι, sink be new
states, and let plus,minus be new actions. Define D,λ, ϕ as
follows:
• St = St+ ∪ St− ∪ {ι, sink};
• Act = Act+ ∪Act− ∪ {plus,minus};
• The initial state is ι.
• The labeling function λ : St ∪ Act → 2AP∪{plus,minus}

is defined as follows: for x ∈ Stb ∪ Actb define λ(x) =
λb(x), and for x ∈ {plus,minus} define λ(x) = {x},
and for x ∈ {ι, sink} define λ(x) = ∅.

• Before giving the probability function, we give the sup-
port function ∆ : St × Act → 2St . We set ∆(ι, plus) =
{ι+} and ∆(ι,minus) = {ι−}. For s ∈ Stb, a ∈ Actb

define ∆(s, a) = ∆b(s, a). In all other cases, ∆(·, ·) =
{sink}.

• Now, define the probability as the uniform distribution,
i.e., for s ∈ St , a ∈ Act , if |∆(s, a)| = N then define
Pr(s, a)(s′) = 1/N for every s′ ∈ ∆(s, a). Clearly D is
Markovian.

• Finally, define the formula ϕ as

(G¬sink) ∧ (plus → Xϕ+) ∧ (minus → Xϕ−).

In words, the initial state of D transitions on action plus
(resp. minus) with probability 1 to the initial state of D+

(resp. D−). Since in our formalism every action must be
available from every state, we introduce a sink state to catch
all other transitions. The goal ϕ says that the sink is never
reached, and if the first action is plus then the formula ϕ+

should hold from the second state onwards, and if the first
action is minus then the formula ϕ− should hold from the
second state onwards.

The reduction then calls the oracle to the SBE problem with
this data (D,λ, ϕ) which returns a finite-state strategy, call it
σx, that is SBE wrt D, [ϕ]λ where D is the set of all bounded
domains similar to D. The reduction then looks at the first
action of σx. If it is plus then it returns ”x ∈ L”, and if it is
minus then it returns ”x 6∈ L”.

We now argue that the reduction is correct. To do this, we
will first argue that µD′,σx([ϕ]λ) = 1 for all D′ ∈ D.

Claim 1: There exists a strategy δ such that µD,δ([ϕ]λ) = 1,
i.e., valD,[ϕ]λ(δ, ι) = winning. The claim follows from (*).
Indeed, if x ∈ L then there is a strategy σ that satisfies ϕ+ in
D+ with probability 1, and thus the strategy δ that first does
action plus and then follows σ satisfies ϕ with probability 1.
On the other hand, if x 6∈ L then a symmetric argument holds
with D− replacing D+ and minus replacing plus .



Moreover, optimal strategies for LTL goals can be taken to
be finite-state [4]; thus, we can assume that δ is a finite-state.

Now, [17] proved that given similar bounded domains with
Markovian support D1, D2, an LTL formula ψ, a labeling
function λ, and a finite-state strategy σ, the following holds for
every σ-history h (and thus for the history h = ι in particular):

valD1,[ψλ](σ, h) = valD2,[ψλ](σ, h).

From this and Claim 1, we can immediately conclude that
for µD′,δ([ϕ]λ) = 1 for every D′ ∈ D. Thus δ is SBE wrt
D, [ϕ]λ, since it cannot be strictly dominated, and so every
SBE strategy has this property, in particular σx does. Thus we
have shown that µD′,σx([ϕ]λ) = 1 for all D′ ∈ D.

Finally, we show that if the first action of σx is plus then
x ∈ L, and if it is minus then x 6∈ L (note that it cannot be
any other action since this would violate ϕ with probability
1). We show just the plus case (the minus case is symmetric).
If the first action of σx is plus , then the strategy σ in D+ that
copies what σx does after it does plus has the property that
µD+,σ([ϕ+]λ+) = 1. Thus by (*), x ∈ L.

Putting the upper and lower bounds together, we get:

Theorem 9. The SBE synthesis problem for LTL goals and
bounded domains with Markovian support is 2EXPTIME-
complete.

C. Finitely-generated support

Theorem 9 is easily generalized to the setting of finitely-
generated support, as follows. A stochastic domain D =
(St ,Act , ι,Pr) has finitely-generated support if there exists
a finite-state machine M = (Q, qI , τ,Γ) where Q is a finite
set of states, q0 ∈ Q is the initial state, τ : Q×St → Q is the
transition function, and Γ : Q× St ×Act → 2St is the output
function, such that the following holds. If h = s0, a0, · · · , sn
is a history, and q0, q1, · · · , qn+1, which we call the run of
M on h, is determined by q0 = qI and qi+1 = τ(qi, si),
then ∆(h, a) = Γ(qn+1, sn, a). We say that the machine M
generates the support ∆.

Theorem 10. The following problem is 2EXPTIME-complete:
given a domain D with finitely-generated support, a labeling
function λ, and an LTL formula ϕ, find a finite-state strategy
that is stochastic best-effort wrt D, [ϕ]λ where D is the set of
all bounded domains that are similar to D.

Proof. For the lower-bound use Theorem 8 and the fact that
a Markovian support is finitely generated (i.e., by a machine
with |Q| = 1).

For the upper bound, we first establish some facts about a
simple product construction. Let D be a domain whose support
is generated by M , and let λ be a labeling function. Define
the product domain (St ′,Act ′, ι′,Pr ′) with support ∆′, and
labeling λ′, as follows:
• St ′ = Q× St ;
• Act ′ = Act ;
• ι′ = (qI , ι);

• ∆′(h′, a) = Γ(τ(q, s), s, a) where last(h′) = (q, s) (note
that ∆′ is Markovian since it only depends on last(h′));

• define the probability Pr ′(h′, a) for h′ =
((q0, s0), a0, (q1, s1), a1, · · · , (qn, sn)) to be Pr(h, a)
where h = (s0, a0, · · · , sn);

• λ′(q, s) = λ(s) and λ′(a) = λ(a).
Call this domain M × D. Every history h in D determines
a history h′ in M ×D by ”adding” the run of M on h, and
conversely, every history h′ in M ×D determines a history h
in D by ”removing” the run of M on h. This correspondence
extends to plays π, π′, strategies σ, σ′, and sample spaces
Ωσ,Ωσ′ . Also: (*) µD,σ([ϕ]λ) = µM×D,σ′([ϕ]λ′) (because
this fact is true of corresponding cones, i.e., µD,σ(Ch) =
µM×D,σ′(Ch′) by the definition of Pr ′). Finally, σ′ is finite
state iff σ is finite-state.

Now, for the upper bound, we are given D,λ, ϕ where the
support of D is finitely-generated, say by M . Let D′ be the set
of all bounded domains that are similar to M ×D. Apply the
2EXPTIME algorithm in Theorem 6 to a Markovian domain
from D′, with the labeling λ′, and the formula ϕ, to produce
a finite-state strategy σ′ that is SBE wrt D′, [ϕ]λ′ . Then the
finite-state strategy σ is SBE wrt D, [ϕ]λ. Indeed, if δ �D,[ϕ]λ

σ then by (*) also δ′ �D′,[ϕ]λ σ′, contradicting that σ′ is
maximal.

VIII. RELATED WORK

In the non-stochastic setting maximal strategies in the
dominance order have been studied in the synthesis commu-
nity, where they are sometimes called “admissible” or “best
effort” [7], [8], [9], [10], [11], [12], [13]. A common approach
to transfer techniques from the non-stochastic setting to the
stochastic setting is to capture the effects of stochasticity by
some form of fairness, e.g., [19], [20], [21], [22]. This was
the approach taken in [17]. Unfortunately, that work does not
extend beyond omega-regular conditions (Remark 3), which
are low in the Borel hierarchy, and it is unclear if it can handle
strategies that are not finite-state. Thus, in order to fully handle
omega-regular conditions in particular, and the entire Borel
hierarchy in general, we took a different approach, i.e., the
use of geometric measure theory and the Lebesgue Density
Theorem.

While [17] proposes a preliminary notion of SBE, the
main differences are: it defines its notion of SBE ’locally’,
in terms of the value of histories, and does not consider any
dominance order or notion of maximality; it only considers
omega-regular goals while we consider all Borel goals; and
it only considers domains with Markovian support while we
consider domains with arbitrary support. Finally, the definition
and proof techniques there are tailored to the special case they
consider. In particular, strategies satisfying their definition may
not even exist for non omega-regular goals (see Remark 3 for
more details).

Uncertainty in the stochastic setting — usually but not
exclusively studied in the context of Markov chains — has
been modeled by constraining the probability distributions,
e.g., [23] assigns each transition a set of allowed probabilities,



and [24] restricts the probabilities by arithmetic constraints.
Many later works constrain the probabilities to lie in given
intervals and studied algorithmic properties, e.g., [25], [26],
[27], [28]: Goals are typically omega-regular, and strategies
should provide worst-case guarantees and may not always
exist (e.g., for an LTL formula ϕ and number p ∈ [0, 1],
that the probability is at least p of satisfying ϕ in every
specified domain). In comparison, we consider the general case
of not-necessarily Markovian domains where the system has
complete ignorance about the values of non-zero probabilities.
Our work introduces and studies the dominance order on
strategies, as well as the maximal strategies in this order which
we show always exist not only for omega-regular goals but for
all Borel goals.

IX. CONCLUSION AND FUTURE WORK

Ruling out dominated strategies is a classic rationality
principle in Decision Theory [6]. We may formulate our
problem as a type of decision problem as follows. Consider
the tree-unwinding of a finite edge-labeled graph from a start
vertex, where each edge is labeled by an action of the agent
(this unwinding corresponds to the support function in this
paper). The agent’s goal is given as a set of infinite paths
through the tree. The agent’s strategies are deterministic, i.e.,
functions from states to actions. A possible environment is
a function from state/action pairs to probability distributions
over the immediate-successor states in the tree. The agent does
not know which environment it will face. If the agent fixes
a strategy then every environment becomes an (infinite-state)
Markov chain, and one can take the agent’s payoff to be the
probability that G is satisfied in this Markov chain. Stochastic
best-effort strategies are those that are not dominated in this
order. This formulation suggests one might be able to exploit
Decision Theory or even Game Theory (for a multi-player
variant) and obtain a rich theory of synthesis under the sort
of uncertainty/ignorance studied in this paper.

To prove existence of SBE we used properties of the
Lebesgue measure, notably the Lebesgue Density Theorem
adapted to our probability spaces. In more restricted settings
one does not need such machinery. For instance, consider
the setting that D consists of all bounded domains that are
similar to some Markovian domain D and the goal G is
omega-regular. In this setting, our characterization theorem can
be proven for finite-state strategies using standard automata-
theoretic techniques, such as those used in [17]. However, even
in this restricted setting we do not see how such techniques
can handle all strategies and not just finite-state ones. One
direction may be to try and handle other finitely-representable
strategies, e.g., pushdown strategies, using automata-theoretic
techniques.
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APPENDIX

For convenience, we include a proof of the Lebesgue
Density Theorem that is tailored for our spaces and is perhaps
more accessible than most proofs in the literature.

Proof of Theorem 1 (Lebesgue Density Theorem). Write
µ(−) as shorthand for µD,σ(−). First, observe that if xn ≤ 1
for all n, then lim infn→∞ xn = 1 iff limn→∞ xn exists and
is equal to 1.10 Thus, the density of G in D,σ at ω is 1 iff
lim infi→∞ µ(G|Cω[0,i)) = 1. For n ≥ 1, define

Sn
.
= {ω ∈ G : lim inf

i→∞
µ(G|Cω[0,i)) < (n− 1)/n}.

Note that ∪nSn consists of the plays in G whose density is
not equal to 1. We will show that µ(Sn) = 0 for every n.
The result then follows since µ(G \ X) = µ(G ∩ (∪Sn)) ≤
µ(∪Sn) ≤

∑
n µ(Sn) = 0 (recall from the statement of the

Theorem being proved that X stands for the plays in G whose
density is equal to 1).

We first show that each Sn is a Borel set. Note that if (xi)i
is a sequence of numbers, lim inf xi < B iff there exists k ∈ N
and infinitely many i such that xi+1/k < B.11 Thus, ω ∈ Sn
iff ω ∈ G and there exists k ∈ N such that for every M ∈ N
there exists i ≥M such that µ(G|Cω[0,i))+1/k < (n−1)/n.
Thus, for every k, i ∈ N define the set Uk,i to be the set of
traces ω such that µ(G|Cω[0,i)) + 1/k < (n − 1)/n. Note
that Uk,i is a union of cones (i.e., Ch where |h| = i and
µ(G|Ch) + 1/k < (n− 1)/n), and

Sn = G ∩ (∪k∈N ∩M∈N ∪i≥MUk,i),

and thus Sn is Borel (recall that by our assumption G is a
goal, i.e., a Borel set).

Next, we show that µ(Sn) = 0 for all n. We introduce some
helpful terminology. A cone-covering (Ui)i of Y is called:
• disjoint if Ui ∩ Uj = ∅ for every i 6= j.
• n-tight if µ(∪iUi) < µ(Y )n/(n− 1).
• n-sparse if µ(Y |Ui) < (n− 1)/n for every i.
Suppose, towards a contradiction, that µ(Sn) > 0 for some

n. We now find a disjoint n-tight n-sparse covering of Sn.
By Lemma 1, there exists an n-tight cone-covering (Ui)i of
Sn. By definition of cover, every ω ∈ Sn is in some Ui. By
definition of Sn, we can take a cone Bω ⊆ Ui containing
ω such that µ(Sn|Bω) < (n − 1)/n. Then (Bω)ω∈Sn is
cone-covering of Sn which is n-sparse and n-tight since
∪ω∈SnBω ⊆ ∪iUi. However, it need not be disjoint. So,
refine it by first removing repetitions, and then simultaneously

10Indeed: use the definition of limit, i.e., if the liminf is equal to the limsup
then the limit exists and is this common value; conversely, use the fact that
the liminf is at most the limsup, which itself is at most 1 by the assumption.

11Indeed: if the right-hand side holds then there is some k and infinitely
many i such that infm≥i xm < B−1/k, and thus lim inf xi ≤ B−1/k <
B; if the right-hand side does not hold, then for every k there exists m such
that for every i ≥ m we have xi ≥ B − 1/k, and thus for every k there is
an m such that infi≥m xi ≥ B − 1/k, and thus for every k we have that
lim inf xi ≥ B − 1/k, and thus lim inf xi ≥ B.



removing every cone that is a subset of some other cone in
the sequence. This results in a disjoint n-sparse n-tight cone-
covering (Vi)i of Sn (it is n-tight by monotonicity of µ).
Disjointness means that µ(∪iVi) =

∑
i µ(Vi) (by countable

additivity). Putting this together:

µ(Sn) = µ(Sn ∩ (∪iVi)) = µ(∪i(Sn ∩ Vi))

≤
∑
i

µ(Sn ∩ Vi) =
∑
i

µ(Sn|Vi)µ(Vi)

< ((n− 1)/n)
∑
i

µ(Vi)

= ((n− 1)/n)µ(∪iVi) < µ(Sn)

which is impossible since the inequality is strict.
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