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Abstract

Quantum supermaps are transformations of quantum processes, and have found many

applications in quantum foundations and quantum information theory in the past two

decades, particularly in the study of causality. Whilst the concept of a supermap is a

simple and intuitive one, the current state-of-the-art formalisations of supermaps can-

not be applied to arbitrary Hilbert spaces or Operational Probabilistic Theories (OPTs).

We review the standard approaches to defining supermaps in quantum theory, wherever

possible highlighting the background compositional principles at play using diagrammatic

languages and referring to their algebraic formalisation in the field of category theory. The

core argument of this thesis is that a more principled and general approach to defining

quantum supermaps exists, using a definition of locally-applicable transformation, which

can be applied to any symmetric monoidal category. As a consequence this approach can

be applied to all quantum processes on general quantum degrees of freedom and to all

transformations in OPTs. We identify key compositional features for entire theories of su-

permaps and show that the supermaps of those theories are always operationally described

by locally-applicable transformations. Two tests for a good construction of supermaps on

symmetric monoidal categories are identified, recovery of standard physicists definitions

for quantum supermaps when applied to categories of standard quantum processes, and ex-

istence of key compositional features. By the end of the thesis we find a way to strengthen

locally-applicable transformations to construct the theory of polyslots, which passes both

tests. Applications of this new general framework for the study of quantum causality and

quantum information theory are identified as future potential research directions.
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Hoffreumon, Stefano Gogioso, Benôıt Valiron, Ognyan Oreshkov, Philip Taranto, Nicola

Pinzani, Mario Román, Peter Selinger, Vilasini Venkatesh, Cole Comfort, and Alastair

Abbott. In particular I would like to thank Mio Murao for an invitation to visit the

University of Tokyo, and John Selby for an invitation to visit the University of Gdansk.

Thanks to the organisers of QPL, ACT, Causal Worlds, and QISS, for giving me a chance

to meet many of the above people, and to see many new places.

With regards to the financial aspect of the PhD, I am grateful to the Engineering

and Physical Sciences Research Council for funding this PhD through grant number

EP/L015242/1. Part of this work was also supported by the Hong Kong Research Grant

2



Council through the Senior Research Fellowship Scheme SRFS2021-7S02 and General Re-

search Fund 17307719.

Thanks to Sam Staton and Simon Perdrix, for agreeing to be examiners for this thesis.

The viva and the subsequent corrections have for sure improved the clarity of this final

version.

I would also like to thank the administrative and technology departments here at

Oxford. In particular for your help with paperwork, providing of an office space and

computer, and the processing of funds without which this project wouldn’t have been

possible. Thank you also to those involved in the organisation of the centre for doctoral

training in delivering quantum technologies at UCL. Thank you also to those who help

Exeter college to run, the porters, the cooks, the waiting staff, and the administrators,

you helped to build a hub which could be enjoyed by all of us who joined the college.

Outside of the academic setting, thanks to James for sharing three happy years in the

slug house, and special thanks to whoever built the switch that kept us slugless. Thanks

to Hlér, Augustin, and Nick, for your companionship during these years, both in and out

of the office. Finally, thank you to my parents, and my grandparents too, Alan, Jane, Pat,

and Mike, who have been a constant source of support during the PhD.

3



Preface

The content of this thesis is mostly based on four publications produced under the su-

pervision of Giulio Chiribella, along with a manuscript in preparation based on section

4.5.

• M Wilson, G Chiribella: Causality in higher order process theories [1].

• M Wilson, G Chiribella: A Mathematical Framework for Transformations of Physical

Processes [2].

• M Wilson, G Chiribella, A Kissinger: Quantum Supermaps are Characterized by

Locality [3].

• M Wilson, G Chiribella: Free Polycategories for Unitary Supermaps of Arbitrary

Dimension [4].

All major results presented in this thesis were produced by me, with the exception of

Lemma 8 of Chapter 5 which was proven by Aleks Kissinger, and Lemma 9 of Chapter

5 which was proven collaboratively by Giulio Chiribella and myself. Other publications

produced during the period of the PhD which did not make it to here, due to space-time

constraints, are the following:

• G Chiribella, M Wilson, HF Chau: Quantum and classical data transmission through

completely depolarizing channels in a superposition of cyclic orders [5].

• M Wilson, G Chiribella: A Diagrammatic Approach to Information Transmission in

Generalised Switches [6].

• M Wilson, A Vanrietvelde, M Karvonnen: Composable constraints [7].

• P Arrighi, A Durbec, M Wilson: Quantum networks theory [8]

• O Higgott, M Wilson, J Hefford, J Dborin, F Hanif, S Burton, DE Browne: Optimal

local unitary encoding circuits for the surface code [9].

• H Kristjánsson, G Chiribella, S Salek, D Ebler, M Wilson: Resource theories of

communication [10].

4



• J Hefford, V Wang, M Wilson: Categories of Semantic Concepts [11].

With publications [6] and [9] partially completed beforehand.

5



To Stuart Knox, for getting me hooked on the conceptual stuff.

6



Chapter 1

Introduction

This thesis is an attempt to give an abstract model for a simple picture of a box with

some holes, the kind of box drawn here in white

S

A1

A′
1

A′
2

A2

B

B′

ϕ2

ϕ1

,

into which more normal looking boxes drawn in pink can be inserted. Variants of this

picture have been formalised in quantum foundations and quantum information theory

many times in the last two decades [12–19]. This is likely because at its heart it represents

a simple concept, a higher-order transformation which can be applied to standard trans-

formations. We will adopt the naming convention of the first formalisation of higher-order

transformations in quantum theory, calling them supermaps [12].

The representation of quantum transformations between physical degrees of freedom,

as boxes between wires, has its roots in two fields of research. The first is the study of

quantum computation, where quantum circuit diagrams [20] are regularly used to represent

quantum transformations and their composition rules in time-like and space-like directions.

The second is the study of category theory [21], and specifically monoidal category theory;

a meta-theory consisting of the entire class of theories which can be represented in terms

of boxes, wires, and their composition to form flowchart-like diagrams [22–24].

So, why does the notion of a transformation of a transformation keep on appearing in

foundational physics? Broadly, in quantum information theory interventions by agents are

regularly represented by transformations [18, 19, 25–27]. Contexts within which interven-

tions occur, such as circuit boards or spacetimes, can then be considered as things which
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can be applied to interventions to return either new transformations [12] or probability

distributions [18].

The least abstract examples of supermaps are those constructed by puncturing holes

into quantum circuit diagrams [13,15,28,29] as in the following picture:

V

U

W

.

There are, however, more general supermaps than circuits-with-holes, those which model

indefinite causal structures [17, 18, 30–43]. Examples of such supermaps which have re-

ceived a great deal of attention are switches [14,17], which are controlled combinations of

open circuit diagrams

|a⟩ ⊗

1

V

U

W

2

+ |b⟩ ⊗

1

V ′

U ′

W ′

2

.

The development of the theory of quantum switches and more general supermaps with

indefinite causal structures has motivated a variety of research projects in which quantum

causal structures are used as a resource for transformations between devices [10, 44–48].

As a consequence of the introduction of this new perspective on information processing,

new protocols have been been formulated and discovered in quantum information theory

[17, 49–72], quantum communication [5, 6, 68, 73–92], quantum metrology [93–95], and

quantum thermodynamics [96–100].

In terms of the interventional perspective, supermaps have been re-axiomatised twice

as process tensors [19, 101, 102] and process matrices [18, 103, 104]. In the process tensor

framework, the notion of transformation of transformation is used to model non-Markovian

(I.E non-memoryless) processes in quantum theory. Treating the fundamental object of

study as the process, rather than the state, allows the bypass of the tension between the

non-locality of pure states and the notion of Markovianity [19]. In the process matrix

framework the notion of transformation of transformation is used to define the general

possible ways to send events, modelled by non-deterministic interventions, to probabilities
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[18]. A key application of this viewpoint has been the development of theory-independent

measures of indefinite causality in terms of ideas such as causal inequality violation or

use of causal witnesses [35, 105–117], a generalisation of tests for non-locality in terms of

Bell-inequality violation.

Another independent area of research in which the simplest forms of supermaps,

circuits with open holes, have been appearing is in the emerging field of applied cate-

gory theory [118]. In this context open diagrams have been formalised for all monoidal

categories, using the theory of profunctor-optics [28, 29, 119–121]. This approach has

been used to model aspects of bidirectional data accessors in functional programming

languages [122], compositional game theory [123], financial trading protocols [124], and

Markov processes [125].

In all of the above formalisations of supermaps, at least one of two core issues is present:

• In the field of quantum information theory: the definitions are black-box but cannot

be formulated on general symmetric monoidal categories [12–17,19,126–130].

• In the field of applied category theory: the definitions can be applied to all symmetric

monoidal categories but are not black-box, instead only giving models for open circuit

diagrams [28, 29,119–121,131].

The aim of this thesis is to resolve these issues and at the same time organise the study of

supermaps, by establishing some general principles for theories of supermaps and estab-

lishing a unifying general construction for black-box supermaps on arbitrary symmetric

monoidal categories. This is a concrete goal, which we are motivated to work towards for

a variety of independent reasons:

• Aesthetics: To understand the motivating picture of a supermap seems only to re-

quire understanding of the notion of a multi-partite process. However, our current

mathematical formalisation of supermaps seems to require us to know other math-

ematical features specific to finite-dimensional quantum theory, such as compact

closure of categories [126, 132, 133], or existence of a Choi-Jamiolkowski isomor-

phism [12–18,127,134,135]. Furthermore, in each of these cases linearity is assumed.

None of those mathematical features seem to be needed to understand the intuitive

concept of a supermap, so the fact that these features seem to be needed is at the

very least a surprise. One motivation of the work of this thesis is to establish more

well-motivated principles for supermaps which imply linearity and representation in

terms of compact closure.

• General Quantum Degrees of Freedom: As noted in the previous bullet point, the

current definition methods for quantum supermaps typically require specific aspects

9



of finite-dimensional quantum theory. Extensions to definitions of supermaps on

separable Hilbert spaces exist [16, 136], however the generality of these definition

methods and their composability is left unclear. For Hilbert spaces which are non-

seperable there has yet to be even a proposal for a suitable definition of supermap.

By defining a framework for supermaps on general monoidal categories, we will have

solved this problem by constructing a framework for supermaps on arbitrary Hilbert

spaces as a special case. A key application in this direction will be the generalisation

of the study of indefinite causal structures on arbitrary Hilbert spaces, and the study

of devices on arbitrary quantum degrees of freedom as resources.

• Operational Probabilistic Theories: Another key aspect of the past two decades of

quantum foundations has been the study of post-quantum correlations in opera-

tional probabilistic theories (OPTs) [137–141] and a variety of related frameworks

for studying broad classes of physical theories such as categorical probabilistic the-

ories [142, 143] and effectus theories [144]. The study of such a broader class of

theories has provided a wealth of new insights into the structure of fundemental

physics, giving a way to study the consequences of stronger-than-quantum corre-

lations [140, 141, 145–176], and to reconstruct quantum theory and classical theory

in a more principled way [137, 177–184]. Without a framework for supermaps on

OPTs and their variants we are without an organised way to study post-quantum

correlations between causal structures, or a way to reconstruct higher-order quantum

theory in an analogous way.

• Flowcharts Outside of Physics: As we have discussed, in recent years the study of

the special class of supermaps given by circuits-with-holes has received attention

within applied category theory. It is as-yet unclear whether black-box pictures such

as the motivating picture of supermaps will become of interest in this area, however,

it is our expectation that the concept of supermap once formalised could allow new

protocols to be imagined and phrased in applied category theory, as was the case

in the fields of quantum information theory and quantum foundations. Indeed, for

any monoidal category enriched in convex spaces [185], one can easily imagine the

notion of a convex combination of open circuits, and so a convex combination of

compositional structures.

Encouraged by these motivations, we set out to develop a compositional framework

for supermaps by finding suitable axioms for the behaviour of individual supermaps, and

for entire theories of supermaps. We will use both of these perspectives to reason about

supermaps on theories of processes and recover the physicists’ definitions of supermaps
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when applied to the categories of interest in quantum foundations and quantum informa-

tion theory.

The attitude of this thesis is that of the process-theoretic approach [186–189] and

operational probabilistic approach [137] to quantum theory. The language of category

theory [21] is used here, as a map or a reference - a way to communicate the kinds of

compositional structures being used. However, some of the subtle concerns of category

theory are barely grappled with. More concretely, we do not in general concern ourselves

with issues of non-strictness and coherence in monoidal categories [21]. For the non-

categorically initiated, this means that for instance we choose to not worry about the

difference between the following two sets built from Cartesian products

(A×B)× C ̸= A× (B × C).

We choose to treat them the same and represent them both diagrammatically using string-

diagrams [190]. This is a choice made without hesitation within the quantum information

community [20,22], but at odds with some of the primary concerns of the category theory

community [21]. There are many aspects of this thesis which would benefit in the future

from being studied without dropping concerns of coherence and strictness, this is outside of

the scope of the thesis and would have so far probably hindered a more rapid development

of a framework for supermaps in process-theoretic and operational probabilistic contexts.

1.1 Content of the Thesis

Here we give an outline of the content of the thesis and the main original contributions of

the author. We begin with a brief summary and then give a more detailed outline. First,

relevant concepts and applications in the theory of quantum supermaps [12–17, 126] are

introduced, compositional features of supermaps are highlighted throughout this introduc-

tion, using the language of category theory [21] where appropriate. Next, we follow the

first contributions [1, 2] in which we identify some additional as-yet unobserved composi-

tional features of supermaps. The existence of certain structural supermaps is identified

with property of enrichment [191], and some consequences for the notion of causality

in higher-order quantum theories are studied. We then follow the contribution of [3],

our main conceptual proposal, by defining and developing the theory of locally-applicable

transformations on general symmetric monoidal categories. We motivate such transfor-

mations from direct intuition, and show that they indeed always enrich the category from

which they were constructed. We then see that locally-applicable transformations can be

formally justified from a top-down approach, by building on enrichment to define some

general axioms for theories of supermaps and then showing that morphisms in such a

theory can always be used to construct locally-applicable transformations. In the main
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technical contribution of the thesis we show that locally-applicable transformations on

quantum channels are exactly quantum superchannels, proving that black-box supermaps

can be generalised to arbitrary symmetric monoidal categories. We then take a step back,

and follow [4] noting that local-applicable transformations do not recover the standard

notion of supermap on the unitaries, and cannot be given a polycategorical composition

rule. We find that a stronger notion of local-applicability can be defined which solves both

of these problems. The associated theory of polyslots we construct is black-box, recovers

standard definitions of supermaps on both the quantum channels and the unitaries, has a

polycategorical composition rule, and has sequential and parallel composition supermaps.

Having established a working theory of supermaps for all symmetric monoidal categories,

we then conclude by discussing the potential future research directions which could be

developed by building from this point.

Here is a breakdown of the chapters covering the above in more detail.

Chapter 2 In this chapter, enough quantum information theory is introduced to present

an adapted version of the original formalisations of quantum supermaps [12–17,126]. Each

compositional feature of quantum transformations and quantum supermaps that we would

later like to reference is introduced along the way using the language of category-theory.

In particular, we introduce:

• Categories: As theories of processes with sequential composition [21].

• Monoidal Categories: As theories of multi-input multi-output processes with sequen-

tial and parallel composition [21].

• Multicategories: As theories of multi-input processes with composition along one-

wire-at-a-time [192,193].

• Polycategories: As theories of multi-input multi-output processes with composition

along one-wire-at-a-time [194–197].

In passing we define the polycategory of superunitaries, which is not to the author’s

knowledge explicitly written down anywhere in the literature. A conceptual contribution

made here is to explain the relevance of polycategorical composition rules for superchannels

and superunitaries in terms of the forbidding of the creation of time-loops. We also review

iterated theories in which transformations of supermaps are studied.

Chapter 3 Here we present some core features of [2] and [1], making our first claim on

the expected properties of theories of supermaps - the existence of sequential and paral-

lel composition supermaps. We note that this requirement can be technically formalised
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using enriched category theory [191] and then examine the philosophical and technical

consequences of this observation, focusing on the case in which the enriching multicate-

gory of supermaps is representable by a monoidal product. We give a proof that faithful

linked self-enriched enriched monoidal categories are closed monoidal categories, which in

intuitive terms shows that currying can be treated as a derived concept for more basic

principles for supermaps [2]. We then study causality in such theories of supermaps, dis-

covering that no-signalling conditions in closed monoidal categories can be derived from

basic restrictions on the strength of correlations on bipartite states of a theory [1].

Chapter 4 In this chapter we outline the core proposal of [3], to model supermaps

using locally-applicable transformations. We then establish some basic features of locally-

applicable transformations:

• Locally-applicable transformations on a monoidal category define a multicategory

which enriches the symmetric monoidal category they act on.

• Locally-applicable transformations are broad enough to model indefinite causal struc-

tures on arbitrary quantum systems.

• Locally-applicable transformations can be defined on constrained spaces of transfor-

mations.

We then build on the top-down approach of chapter 3, and combine the expected proper-

ties of enrichment and polycategorical structure with some additional reasonable laws for

theories of supermaps. We discover that any such theory can be mapped into the theory

of locally-applicable transformations.

Chapter 5 Here we present the main technical result of [3], by showing that quan-

tum superchannels are exactly the locally-applicable transformations on the symmetric

monoidal category of quantum channels.

• We show an equivalence between locally-applicable transformations on compact

closed categories and morphisms of a compact closed category.

• We use this to motivate a more complex proof that locally-applicable transformations

on quantum channels are exactly the quantum superchannels. We show this holds

for supermaps on a large class of constrained spaces, including those defined by the

satisfaction of signalling constraints.

• We show that this characterisation can be repackaged as the claim that the space

of quantum superchannels is simply the space of natural transformations between

some well-chosen functors.
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Consequently, we show that superchannels are reconstructable from a simple, reasonable,

theory-independent categorical principle.

Chapter 6 Here we present the key results of [4], showing how to freely construct a

theory of supermaps as defined in chapter 4 over any monoidal category.

• We give a construction pslot[−] which sends each symmetric monoidal category C

to a polycategory pslot[C] of supermaps on C.

• We show that this construction recovers general superchannels and superunitaries.

Concretely, taking U and QC to be the symmetric monoidal categories of unitaries

and quantum channels, we prove that pslot[U] is the polycategory of superunitaries

and that pslot[QC] is the polycategory of quantum superchannels.

These results can be summarised by saying that pslot[−] is a construction for theories of

supermaps on symmetric monoidal categories, which can be used to reconstruct the stan-

dard physicists definitions of supermaps when applied to the relevant symmetric monoidal

categories.

Chapter 7 In the final chapter we summarise the results of the thesis and then discuss

the future work that could stem from these results. In particular we discuss what has

yet to be developed - a formalisation of super-supermaps, tensor products, compositional

types, and concrete applications to quantum information processing. We suggest some

future research directions in the study of infinite-dimensional quantum causal structures

and infinite-dimensional quantum information processing, and discuss a broader perspec-

tive on the potential applications of phrasing local-applicability in terms of families of

functions. Finally, we discuss a need for a meta-theory of theories of supermaps based on

adaptation of the axioms of theories of supermaps, in particular the need for a theory of

structure preserving maps between theories of supermaps, so that particular theories can

be characterised by universal properties in the spirit of [198].
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Chapter 2

Quantum Information Theory and
Quantum Supermaps

In this chapter we are going to take a whistle-stop tour through some aspects of quantum

theory. In particular, we will discuss those aspects which are relevant to the study of

supermaps and causal structures in quantum information theory. Throughout the tour,

we take care to stop and identify compositional features which are present, and the names

which category theorists use to describe them. To remain as readable as possible to quan-

tum information theorists, we do not prioritise formality of our introduction of categorical

structures, and we use diagrammatic presentations at every possible turn.

2.1 Pure Quantum Theory

Let us begin at the start, with the most easy to introduce form of quantum theory - finite-

dimensional pure quantum theory [199,200]. We from now on assume finite-dimensionality

throughout the thesis unless we explicitly state otherwise. In finite-dimensional quantum

theory, physical degrees of freedom are modelled as having values given by elements of

Hilbert spaces. The possible values of degrees of freedom are typically referred to as states

of the system. We will often choose to use bra-ket notation for elements of Hilbert spaces,

representing elements of a Hilbert space H by |ϕ⟩ and representing the inner product (ϕ, ψ)

of the Hilbert space by ⟨ψ| |ϕ⟩. We will consider the dynamics of pure-quantum theory to

be described by unitary linear maps.

The most fine-grained form of measurement outcome of a degree of freedom is given

by choosing some element of an orthonormal basis {|a⟩} for its associated Hilbert space.

The probability P (a : ψ) to measure state |ψ⟩ to be in state |a⟩ is then given by P (a :

ψ) = | ⟨a| |ψ⟩ |2. In this thesis we will focus less on the probabilistic structure of quantum

theory and more on its compositional structure.
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2.1.1 Sequential Composition Rules

Given a linear map L : H1 → H2 and another linear map L′ : H2 → H3 then those linear

maps can be composed, as functions, to produce a new linear map L′ ◦L : H1 → H3. The

same is true of unitary linear maps since both linearity and unitarity are preserved under

function composition. This, and the fact that the identity function is a linear map, can be

packaged into the statements that linear maps and unitary linear maps between Hilbert

spaces form categories [21]. We will introduce the language of category theory throughout

this chapter, however, we will not be concerned with some subtleties in category theory

concerning coherences, or the differences between classes and sets.

Ignoring issues of size, a category is a set of objects A,B, . . . with for each pair A,B

a set C(A,B) of morphisms. When considering an element f ∈ C(A,B) we will refer

to it as a morphism of type A → B when the background category within which the

morphism lives is clear from context. A category is furthermore equipped with, for each

triple (A,B,C) of objects a composition function ◦ABC : C(A,B)×C(B,C) → C(A,B)

satisfying two key properties. Firstly it is associative, meaning that f ◦ (g ◦h) = (f ◦g)◦h.

Note that we have dropped the object indeces of ◦ABC , and we will do so whenver the labels

are either irrelevant or clear from context. Second, there is a unit morphism iA : A → A

for each object A such that for all f : A→ B then f ◦ i = f = i ◦ f , where we have again

immediately adopted the convention of dropping object labels for i.

Diagrammatically, a morphism f : A → B may be written as a box labelled f with

input wire A and output wire B [201]. In terms of this notation, the sequential composition

operation can be represented by plugging the output wire of one box into the input wire

of the other box as in the following diagram:

g

f

.

This notation has the convenient property that it absorbs the structural equations of a

category. There is no graphical difference for instance between the diagram representing

(f ◦ g) ◦ h and the diagram representing f ◦ (g ◦ h). Representing the identity by a bare

wire, there is also no graphical difference between the diagrams representing f ◦ i , f , and

i ◦ f .

A morphism f : A→ B is called an isomorphism if there exists some f−1 : B → A such

that f ◦ f−1 = iB and f−1 ◦ f = iA. If every morphism of a category is an isomorphism

then it is called a groupoid. We say that C is a subcategory of D denoted C ⊆ D if every

object of C is an object of D, every morphism A→ B in C is a morphism A→ B in D,
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and finally identities and composition of C are the same as those in D. Let us now see

our first example of a category, one on top of which many other examples are constructed.

Example 1. The prototypical category is Set [21]. The objects of Set are given by sets

and the morphisms are given by functions. Function composition is associative and there

is an identity function.

Many categories are constructed by imposing structure on objects and structure preser-

vation on functions - this is the case for the category of linear maps between Hilbert spaces.

Example 2. The linear maps between finite dimensional Hilbert spaces form a category

FHilb [202], with objects given by Hilbert spaces, and morphisms A→ B given by linear

maps of the same type. Sequential composition is given by function composition, and the

identity is given by the identity function, which is indeed always linear. All unitary linear

maps give examples of isomorphisms, where in particular U−1 = U † with U † the Hermitian

adjoint. The unitaries in-fact form a subcategory U ⊆ FHilb of the category of linear

maps, and since every unitary is an isomorphism with unitary-inverse this subcategory is

a groupoid.

There are some general constructions which build new categories from old ones, one of

the most useful is the construction of the reversed or opposite version of any category [21].

Example 3 (Opposite Category). For any category C one can construct the opposite

category Cop which has the same objects as C and has for each morphism f ∈ C(A,B)

a corresponding morphism fop ∈ Cop(B,A). Composition fop ◦ gop is defined as (g ◦ f)op

and identity is given by iop.

Some of those general constructions use many input categories to construct new cate-

gories. For instance, the notion of cartesian product of sets can be generalised to a notion

of cartesian product of categories [21].

Example 4 (Product Category). Given any pair C,D of categories one can construct

the product category C × D with objects given by pairs (c, d) of objects and morphisms

(c, d) → (c′, d′) given by pairs (f, g) with f ∈ C(c, c′) and g ∈ D(d, d′). Composition is

inherited from C and D by defining (f, g) ◦ (f ′, g′) := (f ◦ f ′, g ◦ g′). Identities are given

by (i, i).

Finally, all of the categories can together be used to construct a more abstract category,

where the objects are categories and the morphisms between categories are a new kind of

structure-preserving map referred to as a functor. A functor F : C→ D from category C

to category D is an assignment of an object FA to each object A along with for each pair

A,B a function FAB : C(A,B) → D(FA,FB) which preserves composition in the sense
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that F(f ◦ g) = F(f) ◦F(g) and F(i) = i. Note that again, as soon as the context is clear

we dropped object indices for F , we will from now on choose to drop these kinds of labels

wherever they appear without comment. Diagrammatically the action of a functor on a

morphism can be represented by surrounding the morphism with a larger box [203]. The

defining equations for functors are then representable diagrammatically by box-merging

and deletion from wires in the following way:

g

f
F

F
=

f
F

g

F
= .

It turns out that functors can be composed and so define an even more abstract kind of

category, the category of categories!

Example 5. The category Cat has as objects the categories and as morphisms from C

to D the functors of the same type. It is easy enough to check that the composition rule

F ◦Cat G(f) = F(G(f)) returns a new functor, and that in terms of this composition rule

there is an identity functor IC : C→ C given by the identity function on objects and the

identity function on morphisms.

As a final step into the many layers of the categorical onion, even transformations

between functors can be defined, to make a category in which the functors are the objects.

Letting F ,G : C→ D be functors, a natural transformation η : F ⇒ G is for every object

A a morphism ηA : FA→ GA such that for every f : A→ B then ηB ◦ F(f) = G(f) ◦ ηA.

Diagrammatically natural transformations are the kinds of things which can be pulled

through functor boxes in the following way:

f
F

ηB

=

f

G

ηA

.

Natural transformations can also be composed, leading to the construction of a category

of natural transformations between functors.

Example 6. The category Cat(C,D) has as objects the functors from C to D and as

morphisms the natural transformations between functors. Composition of natural trans-

formations η : F ⇒ G and µ : G ⇒ H is given by (µ ◦ η)A = µFA ◦ F(ηA). That this

composition is associative and returns a natural transformation is easily verified using

functor box notation.
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Note that these transformations of functors can be understood as transformations of

transformations, these are words not dissimilar to those used to describe supermaps in

the introductory chapter. Indeed, we will discover in this thesis that the most commonly

studied class of quantum supermaps is no more and no less than the set of natural trans-

formations between some carefully chosen functors. We will occasionally refer to some

categories as being equivalent, what is encoded by equivalence of two categories C ∼= D is

a pair of functors C↔ D which are inverse to eachother1.

2.1.2 Parallel Composition Rules

There are two key ways of joining Hilbert spaces together to form larger composite Hilbert

spaces, the tensor product ⊗ and the direct sum ⊕ [202]. Given a pair of Hilbert spaces

H,K their tensor product H ⊗ K is given by the set of pairs of elements of H and K

separately, up to equivalence by shuffling around scalars and multilinearity. For instance

an element (h, λk) is taken to be equal to the element (λh, k). In either case the element

(h, λk) = (λh, k) is typically notated by λh⊗ k. Furthermore, the elements h⊗ k+ h′ ⊗ k
and (h+h′)⊗k are identified. Given a pair of Hilbert spaces H,K their direct sum H⊕K
is given again by the set of pairs (h, k), this time denoted as h⊕ k. However, equivalence

by shuffling of scalars is not enforced, but a stronger notion of linearity is instead imposed.

Precisely, h ⊕ k + h′ ⊕ k′ is defined to be equal to (h + h′) ⊕ (k + k′). Tensor products

and direct sums come with quite distinct physical interpretations, a decomposition H =

H1⊗H2 represents recognition of two independent degrees of freedom of a system, whereas

a decomposition of the form H = H1 ⊕H2 represents a partition of the possible values a

degree of freedom may take into two distinct classes. To see the stark distinction between

the two consider the difference between C ⊗ C and C ⊕ C. The former represents a pair

of systems with essentially one potential value for their degrees of freedom, consequently

their composite system is a new degree of freedom with only one value, given by the

unique available value for each subsystem. On the other hand the latter expression C⊕C

represents two possible values assigned to a single degree of freedom. In short C⊗ C ∼= C

whereas C⊕ C ̸∼= C.

Each of these ways of joining together Hilbert spaces gives a way to join together

linear maps on those Hilbert spaces. First, given linear maps Li : Hi → Ki one can define

L1 ⊗L2 : H1 ⊗H2 → K1 ⊗K2 by L1 ⊗L2(v1 ⊗ v2) = L1(v1)⊗L2(v2). For the direct sum

one can define L1 ⊕ L2(v1 ⊕ v2) = L1(v1)⊕ L2(v2). One can check both that

(L′
1 ⊗ L′

2) ◦ (L1 ⊗ L2) = (L′
1 ◦ L1)⊗ (L′

2 ◦ L2),

1By inverse here we really mean inverse up-to natural isomorphism [21].
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and furthermore that

(L′
1 ⊕ L′

2) ◦ (L1 ⊕ L2) = (L′
1 ◦ L1)⊕ (L′

2 ◦ L2).

Each of these laws is respectively referred to as an interchange law, a key feature of

monoidal categories [21] used to model the abstract notion of parallel composition.

Somewhat formally, a monoidal category is a category equipped with a functor ⊗ :

C×C→ C and object I along with some natural isomorphisms I⊗ (−) ∼= I(−) ∼= (−)⊗I
and ((−⊗−)⊗−) ∼= (−⊗ (−⊗−)) which satisfy additional laws called coherences which

can be found in [21, 202]. Functorality of (− ⊗ −) encodes the interchange law since

functorality precisely says that

(f ⊗ g) ◦ (f ′ ⊗ g′) = (f ◦ f ′)⊗ (g ◦ g′).

In other words given (f, g) and (f ′, g′) one can either find their tensor products and then

compose, or first compose in C×C and afterwards compute the tensor product. Second, a

notion of empty space is given by the unit object I, the existence of a natural isomorphism

I⊗A ∼= A says that whenever I is placed next-to another object, it may as well be ignored.

Throughout this thesis we are going to represent monoidal categories with string dia-

grams [24, 201], representing parallel composition by placing boxes next-to-each-other in

the following way

gf .

Note that the picture used to represent (f ⊗ g)⊗h will be exactly the same as that which

is used to represent f ⊗ (g⊗h). In contrast to the case for sequential composition, this di-

agrammatic representation therefore appears to encode slightly more than the equivalence

up-to isomorphism of (f ⊗ g)⊗ h and f ⊗ (g ⊗ h). In general, this is justified since every

monoidal category is equivalent in a formal sense to a strict monoidal category [204,205],

one in which the (A⊗B)⊗C = A⊗ (B⊗C) and I⊗A = A = A⊗I. To simplify a variety

of definitions, proofs, and discussions throughout the thesis, we choose to work entirely

in terms of strict monoidal categories and their associated diagrammatic language. When

it is convenient for us, usually when we need to save space, we will take advantage of

strictness by notating A⊗B as AB and (A⊗B)⊗ C = A⊗ (B ⊗ C) as ABC.

Example 7. The linear maps define a monoidal category with monoidal product given by

the tensor product of vector spaces and tensor product of linear maps. The unit is given

by the Hilbert space C of complex scalars. Indeed for any other Hilbert space H it is true

that there exists isomorphisms C⊗H ∼= H ∼= H ⊗C. Associativity isomorphisms can also

be defined and shown to satisfy the required coherence conditions. For a fuller discussion

of these subtleties see [202].
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Example 8. The linear maps define a monoidal category with monoidal product given

by the direct sum of vector spaces and direct sum of linear maps. The unit is given by

the {0} Hilbert space. Indeed for any other Hilbert space H it is true that there exists

isomorphisms {0} ⊕ H ∼= H ∼= H ⊕ {0}. Associativity isomorphisms can also be defined

and shown to satisfy the required coherence conditions. For a fuller discussion of these

subtleties see [202].

Linear maps also have an additional feature, the existence of a linear map βA,B :

A⊗ B → B ⊗ A which is an isomorphism which swaps states, meaning that βA,B(a, b) =

(b, a). This behaviour can be modelled in categorical language as naturality of βA,B, which

formally entails that βA′,B′ ◦(f⊗g) = g⊗f ◦βA,B. Monoidal categories equipped with such

natural transformations also satisfying braiding laws such as (iA ⊗ βB,C) ◦ (βA,B ⊗ iC) =

βA,B⊗C , and invertibility laws βA,B ◦ βB,A = iA⊗B, are referred to as symmetric monoidal

categories [206]. Diagrammatically, a symmetric monoidal category is one in which wires

can be passed across each-other in the following way [201]:

.

The braiding laws for symmetric monoidal categories are then absorbed diagrammatically

by

∼= .

In the process-theoretic approach to physics, in which the transformations are treated

as the fundamental objects of study, one might worry that there is no way to speak about

states, however, in monoidal categories the empty space unit object I comes to the rescue.

States a ∈ H of Hilbert spaces are in one-to-one correspondence with the linear maps

of type |a⟩ : C → H, this is in-fact the core principle of bra-ket notation, which allows

us to think of the inner product as a composition of linear maps. In monoidal category

theory, this is a very general feature, it is common to see such a correspondence whenever

categories are defined as having sets with structure and morphisms as functions which

preserve that structure. In string diagrams the unit I can be safely omitted from all

drawings, so that if we define states on A of a monoidal category C as the elements of

C(I, A) then we can draw states as boxes which only have outputs as follows

ρ

.
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We will sometimes refer to the opposite notion of effect too, an effect onA is a morphism

of type σ : A→ I and can be drawn as a morphism which only has an input

σ

.

Finally, the notions of functor and monoidal category can be combined to define

monoidal functors [21]. A (strong) monoidal functor between monoidal categories is a

functor equipped with some well behaved natural isomorphisms between the functors

F(−⊗ =) and F(−) ⊗ F(=) which allow to phrase up-to-isomorphism the requirement

of preservation of parallel composition by F(f ⊗ g) = F(f) ⊗ F(g). For the details the

reader is directed to [21], for now let us just introduce the graphical language of functor

boxes between monoidal categories [203]. The key point modulo details concerning iso-

morphisms and equalities [203] is that one can merge boxes vertically as before, but now

also horizontally, to represent F(f)⊗F(g) = F(f ⊗ g) in the following way:

F
f

F
g = f

F
g .

Functors between symmetric monoidal categories can also be defined, being those which

preserve swap morphisms, meaning F(βA,B) = β′A,B up-to isomorphism [21]. Sub-monoidal

categories, monoidal natural transformations, and equivalences of monoidal categories,

along with their symmetric variants, are all then defined analogously to their counterparts

for standard categories [21].

2.1.3 Perfectly Correlated States

A key conceptual feature of pure quantum theory is the existence of perfectly correlated

states, in this context referred to as entangled states [199]. The existence of a perfectly

correlated state can be modelled by the notion of compact closure [207, 208]. A compact

closed category is a monoidal category equipped with for each object A a dual object A∗

and a pair (∪A : I → A ⊗ A∗,∩A : A∗ ⊗ A → I) of morphisms such that (iA ⊗ ∩A) ◦
(∪A⊗ iA) = iA. For subtleties and details see [202]. Diagrammatically, we represent these

states and effects by bent wires and write the defining equation for compact closure as

wire bending [201]

= .

Note that in this equation we have neglected to write associators and unitors, imagining our

monoidal category to be strict. The diagrammatic language for compact closed categories

models the perfect correlations between spatial locations using a bent identity wire between

those locations.
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Example 9. The linear maps form a compact closed category with A∗ given by the dual

Hilbert space to A and with ∪A :
∑

i |i⟩ ⊗ |i⟩
∗ and ∩A := ∪†A (up to a swap). In other

words, it is perfect entanglement in the category of linear maps with makes it compact

closed.

Another compact closed category of interest in the study of classical information pro-

cessing, is the category of positive valued matrices.

Example 10. The category MatR+ [126] has objects given by natural numbers and mor-

phisms given by matrices with elements given by positive real numbers. Composition is

given by standard matrix composition, and the identity matrix is a morphism since all of

its entries are positive. Parallel composition is given by the standard tensor product for

matrices, the unit object is given by the number 1. From this we can deduce that states are

given by column vectors and effects are given by row vectors, with compact closure given

by (1, 0, 0, 1) in its column and row forms.

The existence of compact closure also gives an equivalence between the states of a

category and the morphisms of a category, there is a natural isomorphism C(A,B) ∼=
C(I, A∗ ⊗B) given diagrammatically by

f

A

B

←→ f

A

BA∗

.

As a result, when compact closure is present, it gives an easy shortcut to defining su-

permaps, by finding a place where processes appear as states.

2.2 Mixed Quantum Theory

To incorporate mixtures into quantum theory, quantum information theory instead models

states of a Hilbert space A using the set of density matrices on A, that is, particular positive

linear operators [199]. Let us see how such a representation arises. First, consider some

ensemble {(pi, ψi)} of states, each occuring ψi with some probability pi. The probability

of measurement outcome a for such an ensemble P (a, {(pi, ψi)}) ought to be given by
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∑
i piP (a, ψi). Consequently, we can see that for any ensemble we require

P (a, {(pi, ψi)}) =
∑
i

piP (a, ψi) (2.1)

=
∑
i

pi| ⟨a| |ψ⟩i |
2 (2.2)

=
∑
i

pi ⟨a| |ψi⟩ ⟨ψi| |a⟩ (2.3)

= ⟨a|
∑
i

pi |ψi⟩ ⟨ψi| |a⟩ (2.4)

= ⟨a| ρ |a⟩ . (2.5)

Here, the linear map ρ : H → H is given by ρ(ϕ) =
∑

i pi |ψi⟩ ⟨ψi| |ϕ⟩ and as a result of

being of this form is a density matrix, that is, a positive semi-definite Hermitian operator

of trace 1.

Let us now consider the definition of transformations in mixed quantum theory. We

will adopt the notation L(A,A′) for the Hilbert space of linear operators between Hilbert

spaces A and A′, and further adopt the compressed notation L(A) := L(A,A). The set

st(A) of density matrices on a Hilbert space A is a subset st(A) ⊆ L(A) of the set of linear

operators on A, this property can be used to define transformations of quantum states.

The transformations of quantum information theory are typically taken to be those

linear maps which, when applied locally to states, preserve the space of states. This local-

applicability was first phrased as complete-positivity [199], and requires the assumption of

linearity before it can be formulated. To formally express the meaning of local application

of a linear map, we will review some useful properties of finite-dimensional Hilbert spaces.

First, a key isomorphism is the following2:

uAA′BB′ : L(A,A′)⊗ L(B,B′) ∼= L(A⊗B,A′ ⊗B′).

For the compacted notation this entails that there exists an isomorphism uAB : L(A) ⊗
L(B) ∼= L(A⊗B). Using this isomorphism and assuming that transformations of quantum

theory should be linear maps, local-application of some linear map E : L(A) → L(A′) to

some ρ ∈ st(A ⊗X) is given by the linear map (E ⊗u I)(ρ) with (E ⊗u I) defined by the

following composition

L(A)⊗ L(X) L(B)⊗ L(X)

L(A⊗X) L(B ⊗X)

u−1
ax

(E⊗ui)

ubx

E⊗i

. (2.6)

2This isomorphism works explicitly by taking (uAA′BB′(
∑

ij ai⊗bj))(ϕ) :=
∑

ij((ai⊗bj)(ϕ)) and taking

u−1
AA′BB′(m) =

∑
ijkl(⟨i| ⊗ ⟨j|)m(|k⟩ ⊗ |l⟩)(|i⟩ ⟨k|)⊗ (|j⟩ ⟨l|).
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The standard definition of transformation of type E : A → A′ in quantum information

theory is taken to that of a linear map E : L(A)→ L(A′) which completely preserves the

quantum states [199]. Formally, complete-preservation is the requirement that whenever

ρ ∈ st(A⊗X) then (E ⊗u I)(ρ) ∈ st(B ⊗X).

If we were not concerned with normalisation of probabilities, we could have defined

st(A) to be the space of positive operators, in which case transformations as defined above

would be the completely positive maps. The completely positive maps form a compact

closed category, again compact closure is given by the existence of the Bell-state or more

generally perfect entanglement. When st(A) is defined to be the space of normalised

density matrices, what is returned is the space of completely positive trace preserving

maps, also referred to in the literature as quantum channels.

2.2.1 Composition of Quantum Transformations

The transformations of quantum theory can be composed in sequence or in parallel [22,

199]. Given any quantum transformations E : A → A′ and N : B → B′ one can define

(E ⊗u N ) : A⊗B → A′ ⊗B′ through the following composition of linear maps3:

L(A)⊗ L(B) L(A′)⊗ L(B′)

L(A⊗B) L(A′ ⊗B′)

u−1
ab

(E⊗uN )

ua′b′

E⊗N

. (2.7)

The sequential composition E ◦ N is given simply by sequential composition of E and N
as functions. All together this is the majority of the data required to state that quantum

transformations define monoidal categories, we will refer to the monoidal category of

completely positive maps as CP and the monoidal category of quantum channels as QC.

In this thesis we interpret the quantum channels as the deterministic transformations of

quantum theory [137], and we treat the completely positive maps as a reasonably well-

behaved background theory which we will use to construct a variety of other kinds of

transformations.

The quantum channels have an additional property, for each object A there is one and

only one morphism of type A→ I called the trace [137,199,209]. A monoidal category with

a unique morphism of type A→ I for each object A is typically referred to in the quantum

foundations literature as a causal category [209]. In the wider literature of category theory,

such categories are referred to as affine monoidal, or semi-cartesian categories [198, 210].

We will commonly refer to this unique effect using the ground symbol

.

3This composition rule works whenever the state sets are closed under swaps in the sense that (βAB ⊗
i) ◦ u−1

ABCst(A⊗B ⊗ C) ⊆ st(B ⊗A⊗ C)
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Example 11. The category Stoch ⊆ MatR+ of matrices in which every column sums

to 1 is called the category of stochastic matrices [126]. The stochastic matrices represent

finite-dimensional classical channels, and inherit their monoidal structure from MatR+.

There is one and only one effect (1, . . . , 1) on each object with each column summing to

one, since each effect is a row vector.

This completes our review of the standard transformations of quantum theory, we will

now move on to more recent and elaborate notions in recent developments in quantum

information theory and quantum foundations.

2.3 Supermaps

We will now return to the motivating picture for this thesis, the picture of a supermap [12],

a box with holes. For now to simplify the presentation we will begin with single-input

supermaps, and in section 2.4 return to multi-input supermaps. The intuitive picture of

the action of such a supermap is the following

S ϕ ,

and the most commonly studied setting is that in which the pink box represents a quantum

channel. When applied to quantum channels, supermaps will be referred to as superchan-

nels.

The key piece of mathematical technology needed to formally define superchannels

is similar to that which is used to define transformations of states in standard quan-

tum information theory. Usually, the definition of supermap is phrased using the Choi-

Jamiolkowski isomorphism [134] for completely positive maps, a special case of compact

closure. Rather than introducing the Choi-Jamiolkowski isomorphism, we will find it more

convenient to phrase the definition in terms of the explicit isomorphisms for linear maps

between finite-dimensional Hilbert spaces that we have already used to define standard

transformations. First, note that the space QC(A,A′) of quantum channels is a subset

QC(A,A′) ⊆ L(L(A),L(A′)) of the set of linear maps. Second, given any linear map

S : L(L(A),L(A′))→ L(L(B),L(B′)) one can define its local-application S⊗u I(E) on an

element E ∈ QC(A⊗X,A′⊗X ′) ⊆ L(L(A⊗X),L(A′⊗X ′)) by the following composition
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of isomorphisms:

L(L(A),L(A′))⊗ L(L(X),L(X ′)) L(L(B),L(B′))⊗ L(L(X),L(X ′))

L(L(A)⊗ L(X),L(A′)⊗ L(X ′)) L(L(B)⊗ L(X),L(B′)⊗ L(X ′))

L(L(A⊗X),L(A′ ⊗X ′)) L(L(B ⊗X),L(B′ ⊗X ′))

u−1

LALA
′
LXLX′

uLBLB′LXLX′

S⊗i

(S⊗ui)

L(u−1
BX ,uB′X′ )L(uAX ,u−1

A′X′ )

. (2.8)

Where in writing L(f, g) for linear maps f, g we mean the linear map L(M,N)→ L(M ′, N ′)

given by L(f, g)(h) = g ◦ h ◦ f . We will call S a superchannel if for every E ∈ QC(A ⊗
X,A′ ⊗X ′) then (S ⊗u i)(E) ∈ QC(B ⊗X,B′ ⊗X ′). One can take analogous routes to

defining the supermaps on general completely positive maps, or to defining supermaps on

unitary channels, which we will call superunitaries. In the literature, supermaps on some

set of transformations such as the unitaries are typically equivalently defined to be those

superchannels which furthermore preserve those transformations [26, 211]. Rather than

taking the care to introduce each definition of supermap algebraically, in all its detail and

original subtlety, we now move on to a more structural and diagrammatic approach.

2.3.1 Diagrammatic Representation and Minor Generalisation of Su-
permaps

The definition of a supermap can be written in diagrammatic form, using the compact

closure of the categories of completely positive maps and linear maps. In doing so, su-

permaps can be written in a way which generalises them to all monoidal categories which

are subcategories of compact closed categories. Let us now outline this approach, a mor-

phism

S

B∗B′

A∗ A′

,

of a compact closed category can informally interpreted as a diagram with a hole by

bending wires [126]

S

B

B′

A

A′ .

This observation, leads to an adaptation of the approach of [126, 132] as written down

in [3] which does not reference some additional notions used there such as causality and

closure. These are instead replaced by an abstraction of complete-preservation [12].
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Definition 1. Let C ⊆ D be an inclusion of a symmetric monoidal category C into

a compact closed category D. A D-supermap on C of type S : [A,A′] → [B,B′] is a

morphism in D of type S : A∗ ⊗A′ → B∗ ⊗B′ such that for every ϕ ∈ C(A⊗X,A′ ⊗X ′)

then

S

B

B′

ϕ

X

X ′

∈ C(B ⊗X,B′ ⊗X ′).

We will sometimes as a shorthand represent this expression simply as (S⊗i)(ϕ1, . . . , ϕn),

recalling the interpretation of supermaps as transformations which can be applied to

ϕ1 . . . ϕn. Throughout this thesis, whenever it seems convenient to distinguish between

boxes being used to represent standard transformations and boxes being used to repre-

sent supermaps, we will shade the boxes to be interpreted as standard transformations

in pink. Briefly, this definition approach for supermaps can be phrased as saying that D

is raw-material category from which we can make holes using compact closure. Of those

holes in D, the good ones for C ⊆ D are the ones which preserve morphisms of C when

applied locally. It is easy enough to check that D-supermaps on C form a category, given

S : [A,A′] → [B,B′] and T : [B,B′] → [C,C ′] then the composition S ◦D T returns a

supermap of type [A,A′] → [C,C ′]. This category can furthermore be made monoidal

and symmetric using the symmetric monoidal structure of D. We can now write down a

variety of theories of supermaps using this approach.

Definition 2. We define the following theories of supermaps:

• The quantum superchannels [12] of type [A,A′]→ [B,B′] are the CP-supermaps on

QC of the same type 4.

• The superunitaries [211] of type [A,A′]→ [B,B′] are the FHilb-supermaps on U of

the same type 5.

• The classical superchannels [16, 126, 213] are the Mat[R+]-supermaps on Stoch of

the same type 6.

Each of these classes of supermaps satisfies a key structural theorem.

4Note that we have made our life easier by assuming complete positivity, this complete positivity is
derivable for supermaps by noting that when applied to the swap, every superchannel returns a quantum
channel and so a completely positive map.

5One can see that any superunitary defined in this way gives a superchannel by stinespring dilation,
and that any standard definition superchannel which preserves unitaries is the double [22, 212] of some
linear map by [53].

6What we refer to here as a classical superchannel is what is referred to in [126] as a second-order causal
process in the category MatR+ .
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Theorem 1. Every quantum superchannel, superunitary, and classical superchannel of

type S : [A,A′] → [B,B′] decomposes as S(E) = Sf ◦ (i ⊗ E) ◦ Sp with Sf , Sp quantum

channels, unitaries, and stochastic matrices respectively.

Each of these theorems is a consequence of a key theorem on decomposition of quantum

transformations, that semi-causal processes decompose as semi-localisable processes [214,

215]. The first case can be seen in [12], the second is given in [53], and the third is given

in [126].

Note that in the literature, some attention is also given to the unitarily-extendible

superchannels [104], meaning those which are constructed up-to dilation from superuni-

taries.

2.4 Multi-Input Supermaps:

One motivation for the study of quantum supermaps was the study of quantum and

more generally indefinite causal structures [14, 18]. The supermaps used to model such

structures are those which are often interpreted as having multiple independent inputs as

in the following intuitive picture

S

A1

A′
1

A′
2

A2

B

B′

ϕ2

ϕ1

.

We will now define multi-input supermaps, again making direct use of compact closure.

Definition 3. Let C ⊆ D be an inclusion of a symmetric monoidal category C into a

compact closed category D, a morphism

S

B∗B′

A∗
1 A′

1A∗
n A′

n

. . . . . .
,

in D is a D-supermap on C of type

S :
n

×
i=1

[Ai, A
′
i]→ [B,B′]
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if and only if for every family ϕi ∈×n
i=1C(AiXi, A

′
iX

′
i) then

S

B′

. . .

B

ϕ1

X1

X ′
1

ϕn

. . .
X ′

n

X ′
n

. . .

. . .

. . .
∈ C(B

n⊗
i=1

Xi, B
′

n⊗
j=1

X ′
j).

We define the multi-input superchannels, superunitaries, quantum channels, and clas-

sical superchannels using the same inclusions as for for the single input case. The super-

channels as we define them here are equivalent to the supermaps on the product channels

as defined in [14] and to the process matrices of [18] as proven in [211]. The superunitaires

defined here are equivalent to the quantum superchannels which preserve unitaries [26,211].

2.4.1 Many-To-One Composition Rules

The multi-input supermaps appear to exist outside of the standard categorical language

introduced so far, by acting on lists of objects rather than individual objects. These

supermaps can correspondingly most naturally be composed in a many-to-one way by

nesting as in the following intuitive diagram

S

. . .

T 1

. . .

Tm

. . . ,

Formally, this nesting rule is given by

S

. . . . . .

T1
. . . . . .

Tn
. . . . . .

. . .

. . . . . . . . .. . . . . . . . .

.

Such a many-to-one compositional theory is referred to in the categorical literature as a

multicategory [192,193], a generalisation of the notion of category to the setting in which

morphisms are allowed to have multiple inputs.
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Definition 4. A multicategory M is a specification of objects A,B, . . . and for every

(possible empty) list of objects A = A1 . . . An and object B a set of morphisms M(A,B). A

multicategory comes equipped with for each non-empty B, composition functions7 ◦A(i)BC :

M(B,C) ×|B|
i=1 M(Ai, Bi) → M(A1 . . . An, C) written ◦(f, g1, . . . , gN ) := f ◦ (g1, . . . , gN )8

and for each object A a specific morphism i ∈ M(A,A). These morphisms are required

to satisfy the following laws, which model associativity, interchange, and unitality for the

identity:

• Unit below f ◦ (i, . . . , i) = f .

• Unit above i ◦ (f) = f .

• Associativity f ◦ (g1 ◦ (h11, . . . , h1m1), . . . , gn ◦ (hn1, . . . , hnmn)) = ((f ◦ (g1, . . . , gn)) ◦
(h11 . . . hnmn).

Diagrammatically, morphisms of a multicategory can be depicted as:

f

A

B

=
f

A1 An

B

,

with composition f ◦ (g1, . . . , gn) depicted as:

f

C

g1

A1

B1

gn

An

Bn ,

and with the unitality and associativity laws meaning that unambiguous meaning can be

given to diagrams such as:

f

g1

h11 h1m1

gn

hn1 hnmn

.

There are alternative ways to axiomatise multicategories, such as the so-called ◦i defini-

tion [193]. In this approach composition is defined along one wire at a time using functions

7We use the symbol |B| to represent the length of the list B.
8Note that we immediately drop indeces on composition symbols whenever the meaning is clear.
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of the form ◦X : M(BXC, Y )×M(A,X)→M(BAC, Y ) depicted in the following way:

f

B

Y

X C

◦X gi

A

X

=

f

B

Y

C

gi

A

.

Associativity is then split into two laws, one which concerns sequential composition giving

unambiguous meaning to diagrams such as:

f

g

h

,

and one which mimics the interchange law for monoidal categories:

f

g

h
=

f

h

g
.

One may note that multicategories look like they have some restricted subset of the

properties of monoidal categories, and indeed, every monoidal category defines a multi-

category.

Example 12. Every (symmetric) monoidal category can be used to construct a (symmet-

ric) multicategory by taking

MC(A1 . . . An, B) := C(A1 ⊗ · · · ⊗An, B).

The morphisms • → B from the empty list • in MC are taken to be the morphisms of type

I → B in C. An explicit example of a multicategory which arises from this construction is

the multicategory of multilinear maps, which is what remains when the monoidal structure

of the linear maps is forgotten

Of course, our motivation for introducing multicategories is to study supermaps.

Example 13. The D-supermaps on C form a multicategory. We will not prove this here,

since we will in section 2.8.1 find that the D-supermaps form polycategories, from which

the formation of a multicategorical structure would immediately follow.
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Multicategories can also be equipped with a notion of symmetry analogous to symmetry

for monoidal categories [193]. This allows us safely swap wires diagrammatically as in the

following picture9:

f

.

Such swaps can be composed just as for symmetric monoidal categories, to form arbitrary

permutations. Such swaps are also required to be compatible with multicategory compo-

sition, mimicking the naturality law for swaps in symmetric monoidal categories10. The

multicategory of D-supermaps on C is made symmetric by defining swaps of wires using

pairs of associated swaps from the symmetric monoidal structure of D, composability and

naturality are consequently directly inherited.

Multifunctors between multicategories are defined in a completely analogous way to

functors between categories. A multifunctor F : M → N assigns each object A to an

object FA of N and sends morphisms of type A1 . . . An → B to morphisms of type

FA1 . . .FAn → FB [217]. Multifunctors can then be drawn using functor boxes, with

functorality again given by box-merging. Similarly to the case for functors, sub-multicategories,

natural transformations between multifunctors, and equivalences of multicategories can

then be defined just as for standard categories.

Examples of Supermaps: The most natural examples of D-supermaps are the combs,

circuits into-which holes have been punctured [13]. In terms of our diagrammatic repre-

sentation they can be drawn intuitively on the left and formally on the right as

c2

c1

c3

≈
c2

c1

c3

.

9The statement of symmetry is more subtle in the multicategorical setting, since each morphism of a
multicategory has at most one output, the action of swapping wires is not a morphism. Instead, one can
construct a category σM with objects given by lists of objects of the multicategory, and morphisms given
by permutations. A notion of permutation of wires which compose analogously to the composition of swaps
in a monoidal category is then modelled by giving each permutation of lists an action via equipment of
M(A1 . . . An, B) to a functor into Set.

10This compatibility of multicategory composition with an action by permutations is referred to as an
equivariance law [216].
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The most commonly studied example of a supermap in quantum foundations is the

quantum switch, a superposition of combs [14]. Here we will introduce the switch as a

superunitary, which will make it easier write down. There is an analogous superchannel

which represents the quantum switch, indeed as a simple consequence of Stinespring’s

dilation theorem [218] every superunitary can be used to construct a superchannel using

the embedding of linear maps into completely positive maps [199] known in diagrammatic

quantum theory as doubling [22]. Forgetting the supermap properties for a second, the

key idea of the quantum switch is that it models a two-input function on processes, which

uses a control qubit to decide the order in which those processes are applied

qSwitch(U1, U2) = |0⟩ ⟨0| ⊗ U1 ◦ U2 + |1⟩ ⟨1| ⊗ U2 ◦ U1.

Without inserting unitaries into the entries of the function then, the switch can intuitively

be thought of as representing a pair of holes (−)a and (−)b which are in an indefinite order

qSwitch((−)b, (−)a) ≈
b

a

0

0

+
b

a1

1

.

As an FHilb-supermap, the switch is modelled by the linear map qSwitch : [A,A][A,A]→
[C2 ⊗A,C2 ⊗A] with11

qSwitch :=
00

+
11

.

Indeed, then

qSwitch

C2

A

U1 U2

C2

A

=
0

0

U1

U2

+
1

1

U1

U2

.

From now on we will draw intuitive representations whenever the translation to a

formal representation is clear. A main goal of this thesis, will be to be able to find formal

representations of such intuitive pictures which do not rely on the existence of embedding

into a compact closed category to be phrased. Now that we have discussed what supermaps

are, and seen some key examples of supermaps, it is time to discuss in more detail what

they are good for.

11The following diagrammatic expression is given formal meaning by interpretation of diagrams in the
category FHilb, with + representing the standard addition rule for linear maps between Hilbert spaces.
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2.5 Supermaps in Action

By converting quantum channels into quantum channels, supermaps allow us to study the

ways in which devices can be transformed into each-other, and ultimately be treated as

resources [10, 45, 46, 48, 66, 219]. Furthermore we will find that supermaps can be used

to study indefinite causal structures [14, 18], and that together these applications can be

combined to develop the study of causal structure as resource for information-theoretic

protocols.

2.5.1 One-Shot Discrimination of Unitaries

We begin with a simple example of a computational protocol which can be phrased in

terms of supermaps. Let us imagine that one is promised that a pair of unitaries will be

provided, and that they will either perfectly commute or perfectly anti-commute meaning

that either U1U2 = U2U1 or U1U2 = −U2U1. One can show that with a single use of the

quantum switch, one can determine with certainty between these two cases [51]. Indeed,

consider that on unitaries the action of the quantum switch with control fixed to the |+⟩
state is given by

qSwitch(U1, U2)+ := qSwitch(U1, U2) ◦ (|+⟩⊗ i) =
1√
2
|0⟩⊗U1U2 +

1√
2
|1⟩⊗U2U1, (2.9)

in the commuting case then qSwitch+(U1, U2) = 1√
2
(|0⟩ + |1⟩) ⊗ U1U2 = |+⟩ ⊗ U1U2

and in the anti-commuting case then qSwitch+(U1, U2) = 1√
2
(|0⟩ − |1⟩) ⊗ U1U2 = |−⟩ ⊗

U1U2. The outcome of measurement of the auxiliary qubit in the {|+⟩ , |−⟩} basis is then

guaranteed by the commutation or anti-commutation property of the input unitaries. It

can be shown that a one-shot protocol to perfectly distinguish these cases does not exist

for supermaps which are not quantum superpositions of causal structures, and that this

result holds also for quantum channels in terms of commutation properties between their

Kraus decompositions [51]. As such, this protocol involving the manipulation of devices,

shows that there is a distinction between the tasks which are possible with or without the

resource of quantum causal structure.

Inspired by this protocol, another is proposed in [55] and phrased in terms of com-

munication complexity, which removes the need for promised inputs whilst demonstrating

exponential advantages for quantum switches over causally ordered supermaps.

2.5.2 Capacity Activation

In quantum information theory, for the purposes of communication between parties A,B

represented by Hilbert spaces, the canonical useless quantum channel is the completely
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depolarising channel D : st(A)→ st(B) defined formally by

D(ρ) =
Tr[ρ]

dim(B)

dim(B)∑
i=1

|i⟩ ⟨i| = The Maximally Mixed State. (2.10)

It is easy to intuitively see why such a channel is considered as useless for communication,

since the output of the channel in-fact does not depend on the input of that channel.

Formally the completely depolarising channel has a classical and quantum communica-

tion capacity of 0 [220]. However, it can be shown that coherently controlled usage of

depolarising channels does allow for the transmission of information through the output

channel [73]. For instance, whilst the sequential composition of two depolarising chan-

nels in either order recovers another useless depolarising channel, it can be shown that

the quantum combination of those two compositional orders does in-fact produce a new

channel which has a non-zero capacity for the transmission of information. Concretely

qSwitch+(D,D)(ρ) =
1

2

∑
i,j∈{0,1}

[
δij
I

d
+ (1− δij)

ρ

d2

]
⊗ |i⟩ ⟨j| , (2.11)

Where qSwitch represents the doubling [22] of qSwitch to define its action not just on

unitaries but on all quantum channels. Whilst the output ofD(ρ) has no dependence on the

input ρ the output of the quantum switch of depolarising channels on ρ does still depend

on ρ. This phenomenon has been termed Causal Activation of classical communication

capacity, and has been generalised to more elaborate effects involving a variety of protocols.

First, whilst the above channel has classical capacity it does not have quantum capacity,

there have been shown to be quantum channels with 0 classical capacity which after

application of the quantum switch return a new channel with perfect quantum capacity

[74]. Causal activation effects have further been studied in the N -input setting [5, 6, 76,

79,80] where in fact it has been shown that with enough 0-capacity depolarising channels

a channel with quantum capacity can be constructed [5] using superpositions of cyclic

permutations of circuits with holes.

For some of the above effects, similar results can be achieved using superpositions of

channels [86], or superpositions of trajectories through quantum channels [75], which can

be formalised as supermaps on vacuum-extended channels [10]. In formal terms there

are even plenty of supermaps which activate capacity by simply discarding their input

channels and then producing cleaner ones, leading to significant subtleties in the study of

resources in the capacity-activation setting, a discussion and resolution of these subtleties

can be found in [10]. A comprehensive review of capacity activation phenomena can be

found in [82]. The activation of capacity by quantum channels has further inspired a

family of protocols concerned with the rate of cooling in thermodynamical systems, where

again cyclic permutations are found to produce the greatest advantages [97].

36



2.5.3 Correlations Between Causal Structures

Supermaps can be used to study the quantum correlations between parties often referred

to as laboratories, here the idea is to treat each hole of a supermap as a place where

an event might occur with some probability [18]. In this context, where supermaps are

instead often referred to as process matrices, the main stated goal is to define and analyse

causal-inequalities [18, 106, 108, 109, 112, 115, 221, 222] for non-causal models of spacetime

structures.

Let us now outline the process matrix axiomatisation for supermaps, which is more

focussed on the probabilistic structure of quantum theory [18], equivalence to supermaps

was folklore until a recent formal proof of [211]. First, the in the process-matrix approach

a general notion of probabilistic event in quantum information theory is modelled using

elements of quantum instruments. A quantum instrument is a twice-parameterised family

{Ebi } of completely positive trace non-increasing maps, where fixing the lower parameter

as some pre-chosen experimental setting, the upper parameter represents a series of poten-

tial measurement outcomes each one corresponding to the occurrence of some completely

positive trace non-increasing map Eai . Given a pair of events in separate non-interacting

laboratories, one can ask the question of their joint probability of having occurred. In gen-

eral this probability will depend their connectivity and so on the spacetime environment

which surrounds those events. It is this spacetime environment which is modelled using

quantum supermaps.

In short, every supermap of type S : [A,A′][B,B′] → [C,C] is called a process matrix

and represents the most general possible way to sensibly extract probabilities from events

in unconnected laboratories. Probabilities are explicitly extracted from supermaps by

defining P (Eai ,N b
k ) := S(Eai ,N b

k ) where the isomorphism between linear maps of type

C → C and elements of C has been used after application of the supermap to generate

a number. Usually, in this context, an isomorphic object is the one referred to as the

process matrix. This isomorphic object is the positive state which can be constructed

from the supermap by applying the supermap to swap morphisms and then using the

Choi-Jamiolkowski isomorphism [134].

We mentioned in the introduction that in this process matrix viewpoint, the key ap-

plication is the generalisation from Bell-inequalities to Causal-Inequalities. In analogy

with the field of device-independent verification of non-locality, causal inequalities de-

fine a way to study device-independent verification of the existence of indefinite causal

structures [18,106,108,109,112,115,221,222].

There are states which mathematically satisfy a theory-dependent/quantum-specific

notion of entanglement, and yet, cannot cause probabilistic measurement outcomes outside

of those which can be created by genuinely local states. It turns out the quantum switch
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suffers a similar fate, whilst being clearly causally indefinite, the quantum switch cannot be

used to break any device-independent causal inequality. In general, there is no two-input

superunitary which can be used to break causal inequalities [222]12, however, there is a two-

input superchannel termed the OCB-process which can be used to break causal inequalities

[18]. Whereas the switch has been proposed to be implementable experimentally in terms

of photonic setups [14] or quantum spacetime metrics [223], the causal-inequality violating

supermaps such as the OCB process have yet to be given physical interpretation. One

way to rule out such processes in a top-down way is to require unitarity or purifiability of

supermaps, with the OCB-process does not satisfy [104].

It turns out however, that there are three-input quantum superchannels, three-input

classical superchannels, and three-input superunitaries which can be used to break causal

inequalities [213]. The key to such processes is that rather than using any particularly

quantum causal structure, they make use of cycles which are carefully constructed so

that they manage to avoid creating genuine time-travel paradoxes [211,224]. It turns out

that a large potentially exhaustive class of superunitaries, including all of those currently

known to break causal inequalities, can be proven to be consistent using one structural

theorem [211]. This final structural theorem is built on the phrasing of sectorial constraints

for linear maps [225], one of the topics of the next section in which we introduce a few key

classes of constraints in quantum information theory.

2.6 Constraints

In this section we are going to take a short detour into the formalisation of constraints of

quantum processes. Whilst a natural notion of a constraint on a process with respect to

some decomposition, is preservation of decompositional structure, we will be interested in a

more elaborate notion of specification of the distribution of structure. Two particular kinds

of decompositions of objects which it is natural to consider in quantum theory are those

given in terms of the two monoidal products ⊗ and ⊕. A flexible enough mathematical

notion for the encoding of constraints with respect to ⊗ and ⊕ will be that of a relation,

a kind of generalisation of functions which allows for one-to-many values.

Concretely, a relation τ : X → Y between sets X and Y is a function of the form

τ : X × Y → {0, 1}. Typically we will say that τ relates x to y if τ(x, y) = 1, and we will

accordingly use the shorthand x ∼τ y. Relations can be composed to define a category,

given τ : X → Y and λ : Y → Z then λ ◦ τ : X → Z is defined by

λ ◦ τ(x, z) = 1 ⇐⇒ ∃y ∈ Y : τ(x, y) = 1 ∧ τ(y, z) = 1.

12A significant recent development is the combination of causality with locality to construct a device
independent inequality which is broken by the switch [112], another significant recent development is
the device independent framework for verification of indefinite causal order in analogy with the study of
contextuality in quantum theory [35].
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Relations can also be composed in parallel in two ways to form two monoidal categories.

First, the relations form a monoidal category with monoidal product on objects X ⊗ Y
given by the Cartesian product X × Y of sets. Given R1 : X1 → Y1 and R2 : X2 → Y2

then the monoidal product (R1 ⊗R2) : X1 ×X2 → Y1 × Y2 is given by

(R1 ⊗R2)((x1, x2), (y1, y2)) := 1 ⇐⇒ R1(x1, y1) = 1 and R2(x2, y2) = 1.

The unit object is given by the singleton set {•} since {•} ×X ∼= X ∼= X × {•} Second,

the relations form another monoidal category with monoidal product X ⊕ Y given by the

disjoint union X∪Y of sets. On morphisms the monoidal product (R1⊕R2) of R : X1 → Y1

and R2 : X2 → Y2 is given by

(R1 ⊕R2)(x, y) := 1 ⇐⇒ (x, y) ∈ X1 × Y1 and R1(x, y) = 1

or (x, y) ∈ X2 × Y2 and R2(x, y) = 1

The unit object is given by the empty set ∅ since ∅∪X = X = X∪∅. One may wonder why

we choose to match the notations of monoidal products of relations and linear maps in the

way we have. We do so to highlight that in each case⊕ is a special kind of monoidal product

given by the categorical notion of coproduct and that in each case ⊗ is the kind of monoidal

product with respect to which each category is compact closed. Indeed, the relations form

a compact closed category with X∗ = X and with ∪X(•, (x, x′)) = 1 ⇐⇒ x = x′ and

∩X((x, x′), •) = 1 ⇐⇒ x = x′. Again it is the existence of perfectly correlated states and

effects which make Rel compact closed. In short, relations give a general way to specify

connection between various elements of sets, this generality makes them suitable for the

specification of distribution of structure by quantum transformations.

2.6.1 Signalling Constraints

The constraints given by signalling relations specify which input systems of a global process

are permitted to send information to each output system. These constraints are of broad

interest in quantum information and quantum foundations [14,126,214,215,226,227]. The

interest in signalling relations at least in part comes from the motivation of embedding

global processes into spacetimes. Imagine for instance, that the inputs and outputs of a

process are assigned points within a spacetime, from a physical perspective the light-cone

structure of that spacetime will guarantee that the transformation cannot transmit infor-

mation from some points to others. This imposed structure from a spacetime configuration

of inputs and outputs can then be encoded a by no-influence relations between those input
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and output objects of the process:

−→ .

One can instead choose to work the the complement of no-influence relations, which we

will call signalling relations, such relations specify systems which are allowed to influence

each-other:

.

The absence of an arrow correspondingly indicates no-influence, we choose this representa-

tion because whilst it is easy to check that no-influence arrows cannot be safely composed,

these orange allowed-influence arrows can be safely be composed [7].

We now outline how to specify the mathematical condition on the transformation

which is encoded by this relation. Informally, signalling constraints in quantum theory

can be encoded by choosing a relation τ on an input and output partition of spaces into

tensor products, which specifies the ways in which a process is permitted to distribute

information. Letting A = ⊗iAi and B = ⊗Bk, a quantum channel can be said to satisfy

the constraint encoded by the relation τ : [Ai]→ [Bk] if for each Ai there exists a channel

D such that for every state ρA then

TrτAi(E(ρA)) = D(TrAi)(ρA), (2.12)

where τ(A) denotes the image of τ on A. A key structural theorem on signalling constraints

is the following.

Theorem 2 (Causal Decomposition for Quantum Channels). Let E : A ⊗ B → A′ ⊗ B′

satisfy the one-way signalling relation (↚)A
′B′

AB : [AA′]→ [BB′] given by

(↚)A
′B′

AB = ,

then E correspondingly decomposes as [214,215,226]:

E =
1

2
.
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This theorem tells us that no-faster-than light communication enforces locality of oper-

ations, and allows us to confidently study causal structures using compositional structures.

Subtleties do however appear, when the tripartite and general N -partite cases are stud-

ied [227].

2.6.2 Sectorial Constraints

Some of the previously mentioned subtleties on decompositions of transformations satis-

fying signalling relations, can be addressed by considering sectorial constraints [225,227].

Sectorial constraints are used to encode the fact that a given linear map is forbidden from

sending some elements of orthogonal subspaces of its domain to some elements of orthog-

onal subspaces of its codomain. We will often refer to orthogonal subspaces of a Hilbert

space as sectors of that Hilbert space. As an example, consider the following figure

⊕A1

f

A

B

⊕A2 A3

⊕B1 ⊕B2 B3 ⊕ B4

:
, (2.13)

here the intended encoded sectorial constraints correspond to the absence of links between

some sectors. For instance, the absence of links from A1 to B2, B3 and B4 means that, for

a f following these constraints, then f(A1) ⊆ B1. A convenient way to formalise sectorial

constraints is in terms of relations and the orthogonal projectors πi : A→ A which project

onto subspace Ai and corresponding orthogonal projectors σk : B → B which project onto

subspace Bk.

Given a relation, and families of orthogonal projectors, one may say that f : A → B

satisfies the sectorial constraint τ : [A1 . . . An]→ [B1 . . . Bm] if∑
ik

τki σkfπi = f

where τki is the matrix which takes values in {0, 1} with τki = 1 if and only if τ relates Ai to

Bk. A key feature of sectorial constraints is that they are composable [225]. If f : A→ B

satisfies sectorial constraint τ : [Ai] → [Bj ] and g : B → C satisfies sectorial constraint

λ : [Bj ] → [Ck] then g ◦ f satisfies the sectorial constraint λ ◦ τ given by composition of

relations. It turns out that in fact the formalisation of sectorial and signalling constraints,

and their compositionally are given by applying a single construction for relational con-

straints on causal categories, to the causal categories of linear maps with the direct sum

and quantum channels with the tensor product respectively [7].
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2.7 Constraints in Action

Here we will review a few places in the literature on quantum information theory and

foundations where constrained sets of processes appear, focussing mainly on those of the

above form, given by sectorial or signalling relations.

2.7.1 Supermaps on Non-Simple Types

Originally, what we call multi-input supermaps were actually formalised as acting not just

on sequences of processes but instead on all global processes which satisfy non-signalling

constraints [17]. Essential to defining supermaps on restricted sets, is the possibility to

define the set of extended processes with respect to those restricted sets. Consider some

subset K ⊆ QC(A,A′), then the dilation extension dextX,X′(K) of K can be defined by

taking dextX,X′(K) to be the set of all ϕ ∈ QC(A⊗X,A′⊗X ′) such that for any ρ then

Φ

ρ

∈ K.

So, dextX,X′(K) represents all processes which are only ever dilations of processes in

K. In terms of these extensions we will define the supermaps of type K → M with

K ⊆ QC(A,A′) and M ⊆ QC(B,B′) by adapting the diagrammatic approach 13 14.

Definition 5. A completely positive map S : A∗ ⊗ A′ → B∗ ⊗ B is a CP-supermap on

QC of type

S : K →M

if and only if for every family ϕ ∈ dextX,X′(K) then

S

B

B′

ϕ

X

X ′

∈ dextX,X′(M).

A natural example of a CP-supermap is the sequential composition supermap:

S◦← : (↚)AA
AA → QC(A,A)

13Here we avoid stating the definition of supermaps on constrained sets for general symmetric monoidal
subcategories of compact closed categories, we do this to avoid interrupting the flow at this stage. For a
definition of supermaps on dilation extensions in general symmetric monoidal categories see section 4.4.

14We chose to assume complete positivity from the beginning here, this is a natural choice for normal
sets as defined in Chapter 5, since the swap is in the dilation extension of any such set. For more general
sets, the right definition of supermap is less clear, and suggests a general categorical framework may be
needed for comparing different constructions of supermaps.

42



which wires together an output of a biparitite channel to an input of that bipartite channel

in the following way:

S◦←(E(−)) :=
∑
jk

i⊗ ⟨j| E(|j⟩ ⟨k| ⊗ −)i⊗ |k⟩ .

This sequential composition supermap earns its title for the following reason, when the

channel E(−) separates as E1(−)⊗ E2(−) then

S◦←(E(ρ)) :=
∑
jk

i⊗ ⟨j| E(|j⟩ ⟨k| ⊗ −)i⊗ |k⟩

=
∑
jk

i⊗ ⟨j| (E1(|j⟩ ⟨k|)⊗ E1(ρ))i⊗ |k⟩

=
∑
jk

E1(|j⟩ ⟨k|) ⟨j| E2(ρ) |k⟩

=
∑
jk

E1(|j⟩ ⟨j| E2(ρ) |k⟩ ⟨k|)

=E1(E2(ρ)).

Naturally, there is the alternative supermap S◦→ which also composes its inputs, but in

the opposite direction.

2.7.2 Characterisation of Supermaps on Independent Parties

Just as one can define the one-way non-signalling channels by (↚)A
′B′

AB one can define the

neither-way signalling channels (↮)A
′B′

AB , more commonly referred to as the non-signalling

channels. For every multi-input supermap S : [A1, A
′
1] . . . [An, A

′
n] → [B,B′] there exists

a unique supermap Ŝ : (↮)
A′1...An.′

A1...An
→ [B,B′] which does the same as S when acting

on any non-signalling channels constructed from a list of independent processes [17, 126,

127]. In short, the supermaps give a way to characterise the non-signalling channels via

a universal property, and the non-signalling channels correspondingly provide a notion of

tensor product space for multi-input supermaps.

2.7.3 Characterisation of Circuits-With-Holes

We saw that on the space of one-way signalling processes (↚)A
′B′

AB there is a sequential

composition map, which can be interpreted as a special example of a comb. The one-way

signalling channels can in fact be used to characterise the combs, a completely positive

map S defines a supermap on the space of one-way signalling processes if and only if it

decomposes as a circuit with holes [13,15,126,127].
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2.7.4 Causal Decompositions

Whilst we have seen that every one-way signalling process comes with a decomposition

into local operations which guarantees the satisfaction of the one-way signalling constraint,

the same cannot be said for the following more complex signalling relation:

.

For this relation, on unitaries, there does not always exist a decomposition into a circuit

of unitaries which guarantees satisfaction of this signalling constraint and unitarity [227].

This issue can be resolved however, if one instead works with a generalisation of the

quantum circuit formalism to include sectorial constraints, this generalisation of quantum

circuits is referred to as routed quantum circuits [225]. In routed quantum circuits, rela-

tions are overlayed on top of linear maps. This kind of overlaying is possible because of

the composability of sectorial constraints, the fact that if f satisfies τ and g satisfies λ

then f ◦ g satisfies τ ◦ λ.

2.7.5 Constructing Consistent Circuits for Indefinite Causal Structure

The consistent overlaying of linear maps with sectorial constraints can be used to recon-

struct all known examples of superunitaries from a single concrete method for constructing

supermaps of spaces equipped with sectorial constraints [211]. In this method, by checking

the fine-grained causal structure induced by the decompositions of wires into both kinds

of monoidal product, the validity of cycles created by compact closure in diagrams can be

used to verify whether the diagram in-fact specifies a valid supermap or not. The causal

structure of such supermaps can also be studied [228], leading to a more subtle analysis

of the notion of indefinite causal order in quantum switches.

2.8 The Caus[C] Construction

As we discovered, multiple-input supermaps are quite naturally modelled as morphisms

within a multicategory, a kind of stripped-down monoidal category. We will now see more

explicitly that in special cases relevant to classical and quantum information theory, one

can do better and actually consider the kinds of sets which supermaps act on as the kinds of

spaces which can be pieced together, analogously to the way in which Hilbert spaces can be

pieced together using tensor products or direct sums. Using the language of [127], we will
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refer to theories of quantum supermaps in which spaces can be pieced together as higher-

order quantum theories. We will review the most categorically phrased approach to higher-

order quantum theories, in which the Caus[C] construction is defined [126, 132]. This

construction represents the state of the art in the compositional modelling of supermaps,

being equipped with monoidal products (plural) and even types representing spaces of

N -input combs, and general super-supermaps, the kinds of transformations that can be

applied to supermaps.

Whilst the Caus[C] construction represents the current state of the art, being simple,

efficient, and providing a variety of ways to piece together spaces, we believe it is far

from representing the complete picture for compositional modelling and construction of

supermaps. This is for the simple reason that it makes use of categorical notions of

causality and compact closure, which prevent us from applying the construction to unitary

quantum theory, infinite-dimensional quantum theory, general operational probabilistic

theories, and any other monoidal category in applied category theory which does not

embed into a suitable compact closed category. Therefore, to develop a framework for

supermaps on general monoidal categories, general operational physical theories, and even

general aspects of quantum physics, we are going to need to move away from the Caus[C]

construction. Nonetheless, the Caus[C] construction achieves a lot with the additional

assumptions it relies on, and we can use it the develop a blueprint, identifying the key

features it has which we would like to see from a more complete compositional framework

for supermaps and causality.

We will now review the Caus[C] construction in more detail, the story begins with

a raw-material precausal category C, meaning a compact closed category satisfying a

few basic additional axioms. Examples of such categories are the the category CP of

completely positive maps and the category MatR+ of positive-valued matrices. Using such

a category C one can identify properties of flatness and closure for subsets c ⊆ C(I, A) of

sets C(I, A) of states which allow those subsets to be composed in a variety of convenient

ways. In the category Caus[C], objects are then taken to be these closed and flat states,

and morphisms f : c → d are defined to simply be those such that for every ρ ∈ c then

f ◦ ρ ∈ cB. We will often use the language of [127] and refer to such morphisms as

admissible morphisms from c to d.

A crucial feature of the Caus[C] construction which allows it to work so efficiently,

is that it does not focus on complete-preservation directly. Compact closure is used in

an identical way to the diagrammatic definition of supermap we provided, with one key

difference, admissibility of morphisms does not reference extension by a tensor product. No

condition is directly required of S⊗u i as in the standard approach to defining supermaps,

instead closure of sets when present implies an equivalence between admissibility of S and
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admissibility of each S⊗u i. As a consequence of this inherited complete-admissibility, the

category Caus[C] can be equipped with two monoidal products c ⊗ d and c ⊠ d. When

C is taken to be the pre-causal category CP of completely positive maps, for any Hilbert

space A the set of normalised density matrices cA is flat and closed. Furthermore, for any

two Hilbert spaces A,B the subset up-to natural isomorphism QC(A,B) ⊆ CP(I, A∗⊗B)

is closed and flat. The equivalence between admissibility and complete-admissibility for

closed flat sets can be captured by the following lemma.

Lemma 1. Let K and M be closed flat subsets of the closed flat set of quantum channels,

the morphisms of Caus[C](K,M) are the supermaps of type K →M .

Proof. First let us show that morphisms in Caus[C] give quantum supermaps, up to

natural isomorphisms given by applying cups and caps one can show that for any closed

set K then dextX,X′(K) = K ⊠QC(X,X ′). Since ⊠ is a monoidal product of Caus[C]

then for every S : K →M in Caus[C] one can construct S⊠iQC(X,X′) : K⊠QC(X,X ′)→
M⊠QC(X,X ′). This confirms by the admissibility requirement for morphisms of Caus[C]

that for any ϕ ∈ dextX,X′(K) = K⊠QC(X,X ′) then S⊠iQC(X,X′)(ϕ) ∈M⊠QC(X,X ′) =

dextX,X′(M). Up to cups and caps this is exactly the defining requirement for quantum

supermaps of type K → M . To show that all quantum supermaps give morphisms in

Caus[C] note that the admissibility requirement for morphisms of Caus[C] is implied by

taking X and X ′ in the defining requirement for quantum supermaps to be the unit object

I.

Using the same methods, morphisms in Caus[C] of type

QC(A1, A
′
1)⊗ · · · ⊗QC(An, A

′
n)→ QC(B,B′),

can be seen to be the superchannels of type [A1, A
′
1] . . . [An, A

′
n] → [B,B′], meaning that

the multicategorical structure of the multi-input quantum superchannels arises from for-

getting the monoidal structure of part of the Caus[C] construction. However, there is

more on the compositionality of multi-input supermaps which can be deduced from this

observation.

2.8.1 Polycategorical Composition Rules

The tensor product ⊠ of Caus[C] gives complete-admissibility by the following handy

result QC(A,A′)⊠QC(B,B′) ∼= QC(A⊗B,A′⊗B′) [126]. As a consequence of this, the

morphisms in Caus[C] of type

QC(A1, A
′
1)⊗ · · · ⊗QC(An, A

′
n)→ QC(B1, B

′
1) ⊠ · · ·⊠QC(Bm, B

′
m),
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are equivalent to the superchannels of type [A1, A
′
1] . . . [An, A

′
n] → [B1 . . . Bm, B

′
1 . . . B

′
m].

Together, the two monoidal products ⊗ and ⊠ form what is referred to in the literature as

a linearly distributive structure [229]. Just as monoidal structures can be used to define

multicategorical structures, linearly distributive structures can always be used to define

polycategorical structures [194, 229]. Whereas multicategories allow only single-outputs,

morphisms in polycategories are defined to have multiple inputs and multiple outputs.

We will write f : A → B to denote a morphism from a list A = A1 . . . An of objects to

another list B = B1 . . . Bm of objects.

Monoidal categories also model morphisms with multiple inputs and multiple out-

puts, and so one may wonder, what is the difference between a monoidal category and a

polycategory? The answer is simple, and of crucial relevance to the compositionality of

supermaps, when working with polycategories we can only compose along one wire at a

time. We will also require the possibility to permute or swap wires, meaning that we are

really going to be working with symmetric polycategories [195, 197, 216]. For a presenta-

tion of polycategories without symmetries/permutations of wires the reader is pointed to

the definition of planar polycategories of [194,229,230].

Definition 6. A symmetric polycategory P is a collection of objects A,B, . . . , for each

pair of lists A and B a collection P(A,B) of morphisms depicted:

f

A

B

= f

A1 An

B1 Bm

, (2.14)

and for each pair f : A→ BXC, g : DXE → F of morphisms a new composed morphism

g ◦X f : DAE → BFC depicted:

g

D E

F

X

◦X f

B C

A

X

=

f

B C

A

g

D E

F

. (2.15)

Symmetry (needed even to express associativity laws) is required in the form of a func-

torial action by permutations, meaning for each morphism f : A → B and each pair of

permutations σ : [n] → [n] and ρ : [m] → [m] a new morphism denoted ρ(f)σ such that

ρ′(ρ(f)σ)σ′ = (ρ ◦ ρ′)(f)(σ′ ◦ σ)15. This gives a way to give meaning to the swapping of

wires on the top or the bottom of any morphism.

15Strictly, we must be more careful about permutations considering only those from the category σP of
permutations of lists of objects of P (referred to in the literature as isomorphisms [216]). In this category
objects are taken to be lists of objects of P and morphisms σ : A → A′ are taken to be those permutations
σ : ||A|| → ||A|| = ||A′|| such that for each i ∈ ||A|| then A′i = Aσ−1(i). Functorial action then strictly
means the exstention of the specification of sets P(A,B) to a functor P(−. =) : σop

P × σP → Set.
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For each object X there is an identity morphism iX ∈ P(X,X) and composition is

subject to associativity and identity laws written f◦X iX = f , iX◦Xf = f and (f◦Xg)◦Y h =

f ◦X (g ◦Y h) each directly absorbed in their graphical presentations, alongside:

• Interchange 1 written f ◦X (g ◦Y h) = (g ◦Y (f ◦X h))ρ:

h

f

g

B C DG L

F KAEH

=

h

B C

f

F

g

KA

D

E

G

H

L

.

• Interchange 2 written (f ◦X g) ◦Y h = σ((f ◦Y h) ◦X g) and depicted graphically as:

f

g

h

B C DG K

F KAEH

=

f

B C

g

F

h

KA

D

E

G

H

K

.

• Equivariance with respect to permutations written (σfρ) ◦X (λgτ) = α(f ◦X g)β

with the permutations α, β chosen such the equation is well typed. This packages a

variety of graphical equivalences into one equation, most notably encoding analogues

of naturality for the swaps of symmetric monoidal categories such as

g

f

B C

D

F

A E

Y

=

g

f

B C

D

F

A E

Y

,

and further:

f

g

B

CD

F

A

E

Y

=

f

g

B

CD

F

A

E

Y

.
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As with multicategories, polycategories look like monoidal categories with a few less

properties, this observation is formalised by the following examples [229].

Example 14. Every symmetric monoidal category C defines a symmetric polycategory

PC by

PC(A1 . . . An, B1 . . . Bm) := C(A1 ⊗ · · · ⊗An, B1 ⊗ · · · ⊗Bm),

and more generally every symmetric linearly distributive category C defines a symmetric

polycategory by

PC(A1 . . . An, B1 . . . Bm) := C(A1 ⊗ · · · ⊗An, B1 ⊠ · · ·⊠Bm).

Using the linear-distributivity of the Caus[C] construction, this example tells us for

free that the superchannels of type [A1, A
′
1] . . . [An, A

′
n] → [B1 . . . Bm, B

′
1 . . . B

′
m] form a

polycategory. Let us now see why it is natural to expect abstract multi-input multi-

output supermaps to form polycategories. Whilst polycategorical structure allows us to

give meaning to the informal picture

ϕ

TS

(2.16)

with the following formal diagram

TS

ϕ

, (2.17)

there is in general no way to create the following pathological intuitive picture in which

a bipartite swap morphism is inserted into two halves of the same sequential composition

supermap

S
.
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To model the above intuitive diagram would require us to be able to compose along more

than one wire at a time

S

Cycle

SWAP

,

which is outside of the class of diagrams which can be constructed using polycategorical

composition. As another more elaborate example, consider the following banned compo-

sition rule:

ϕ

TS
ψ

, (2.18)

in the intuitive picture this formal composition would represent the following intuitive

diagram

TS

ψ

Cycle

ϕ . (2.19)

Composition along more than one wire at-a-time as above again allows for the construction

of a time-loop as observed in [231], this can be seen by considering sequential composition

supermaps with swap morphisms as inputs

TS

. (2.20)

Note, that the pathology of multi-wire composition for supermaps on symmetric monoidal

categories appears to be a consequence of the existence of sequential composition su-

permaps, this existence is a property which we will consider to be fundamental to theories

of supermaps throughout this thesis.
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Having seen that polycategorical composition is a rather natural consequence of the

intuitive picture drawn to motivate the definition of supermaps, one would expect that

good models for supermaps are polycategories. Indeed, for any monoidal subcategory

C ⊆ D of a compact closed category D, the D-supermaps on C of definition 1 form a

symmetric polycategory.

Theorem 3. For any symmetric monoidal subcategory C ⊆ D of a compact closed cat-

egory D a symmetric polycategory Dsup[C] can be defined with objects given by pairs

[A,A′] of objects of C and morphisms of type

S :
n

×
i=1

[Ai, A
′
i]→

m

×
j=1

[Bj , B
′
j ]

given by the D-supermaps of type

S :
n

×
i=1

[Ai, A
′
i]→ [

m⊗
i=1

Bi,
m⊗
j=1

Bj ].

The composition rule is given by taking:

D E

F

M

T

F F ′

D D′E E′M M ′

◦M

B C

A

M

S

A A′

B B′C C ′M M ′

to be

T

F F ′

D D′E E′

S

A A′

B B′C C ′

where we have chosen to represent possibly empty lists of wires with doubled wires and

underlined objects.

Proof. Given in Appendix B

As a result we can immediately see that the superunitaries define a symmetric polycat-

egory, without taking the scenic route through quantum information theory and the theory
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of superchannels along the way. We will refer to this polycategory as Su := FHilbsup[U],

and we will refer to the polycategory of superchannels as QSc := CPsup[QC]. Since the

monoidal category of sets and functions is a monoidal subcategory of the compact closed

category of relations, the construction can immediately be used to return a polycategory

Relsup[Set] of super-functions. Yet another pair of polycategorical models for supermaps

were recently introduced to model circuits into-which holes have been punctured in arbi-

trary monoidal categories [29]. These models either treat circuits with holes extensionally

in-terms of the functions they can be used to perform, or intensionally in terms of explicit

description of the architecture of the circuit up to equivalence by a categorical notion of

sliding of boxes given by taking coends over profunctors [232].

Finally, functors between polycategories can be defined analogously to those for cate-

gories, monoidal categories and multicategories [229, 233]. A functor F : P→ Q between

polycategories sends objects of C to objects of D and similarly for morphisms. Again

such functors can be represented by drawing boxes around morphisms, with functorality

given again by box-merging. Sub-polycategories, natural transformations of polyfunctors

and equivalences between polycategories can then be defined analogously to those for

categories, monoidal categories and multicategories [229].

We will now return to the Caus[C] construction, examining the way in which it pro-

vides a model for super-supermaps and their iterations.

2.8.2 Self-Contained Higher-Order Theories

There is another method for piecing together objects of the Caus[C] construction which

builds higher-order objects c ⇒ d from lower-order objects c and d. This method is the

right one for studying supermaps, meaning that it can be used to construct QC(A,B)

from the Hilbert spaces A and B. More precisely, letting cA and cB be the closed flat sets

of normalised density matrices on A and B respectively, the closed flat set cA ⇒ cB is

isomorphic to the set QC(A,B) of quantum channels [126].

This outlined method for constructing higher-order objects can be used to construct

super-supermaps. Indeed, first since the set of morphisms of type QC(A,A′)→ QC(B,B′)

in Caus[CP] is the set of superchannels of type [A,A′] → [B,B′]. Using the same con-

struction which we originally applied to sets of density matrices we can now construct

the closed flat set QC(A,A′)⇒ QC(B,B′) of superchannels. Using sets of this kind, the

Caus[C] construction already comes with specified morphisms of type

(QC(A,A′)⇒ QC(B,B′)) −→ (QC(C,C ′)⇒ QC(D,D′)).

Transformations of this type can be understood as super-supermaps, transformations ap-

plied to the space of supermaps, and naturally this procedure can be iterated. In the
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background, the property being used here to iterate the notion of supermap is that of

closed monoidal structure [234] of the category Caus[C].

A closed monoidal category is a category which supports currying, the existence of

an object [A,B] for each pair of objects A,B which represents the set of morphisms of

type [A,B] in the sense that C(C, [A,B]) ∼= C(A ⊗ C,B). This currying isomorphism

is an abstraction of a key property of set-like categories, which makes them suitable for

functional programming. The precise definition of a closed monoidal category can be

rephrased in a diagrammatically more friendly way. A closed structure on a monoidal

category C is an assignment of an object [A,B] to each pair A,B of objects in C along

with a morphism ϵ[A,B] : A⊗ [A,B]→ B denoted

A
B

,

such that for every morphism f : (A ⊗ C) → B there exists a unique morphism f̄ : C →
[A,B] satisfying

f̄

A
B

= f . (2.21)

When a category is closed monoidal it indeed has a notion of transformation of trans-

formation, reminiscent of that of the theory of supermaps. In more detail, for each A,A′

and B,B′ one can consider morphisms in C of type [A,A′] → [B,B′] to be transforma-

tions of morphisms of type A → A′ to morphisms of type B → B′. Since there is an

isomorphism C(A,A′) ∼= C(I, [A,A′]) then each S : [A,A′]→ [B,B′] can be used to define

a higher-order function S′ : C(A,A′)→ C(B,B′) up to isomorphism by Ŝ′(ϕ) := S ◦ ϕ̂.

The higher-order functions constructed from closed monoidal categories are not nec-

essarily analogous to supermaps. For any morphism S : [A,A′] → [B,B′] of a closed

monoidal category whilst one can consider the result of applying S to part of some bipar-

tite state by S ⊗ I : [A,A′] ⊗ [X,X ′] → [B,B′] ⊗ [X,X ′]. It is not true however, that

in general that there is an isomorphism of type [A,A′] ⊗ [X,X ′] ∼= [A ⊗X,A′ ⊗X ′] and

so one cannot consider the local-application of S to party of every bipartite morphism

ϕ : A⊗X → A′ ⊗X ′. In-fact, in the Caus[C] construction it is the other tensor product

⊠ which can be used to construct the local-application of S to all bipartite processes.

The keen eyed might notice that whilst the isomorphisms C(C, [A,B]) ∼= C(A⊗C,B)

of closed monoidal categories are sufficient to give the isomorphisms of type C(I, [A,B]) ∼=
C(A,B) needed to support iterated higher-order transformations, it is not clear that they
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are necessary. In this thesis we will show that under enough reasonable conditions on

theories of supermaps, the existence of general currying isomorphisms is actually derivable

from the latter restricted and more obviously well-motivated kind.

The prototypical example of a closed monoidal category is again the category of func-

tions between sets.

Example 15. The category of sets is closed monoidal with [A,B] := Set(A,B).

Many of the categories we have introduced are closed as a consequence of being compact

closed.

Example 16. Any compact closed category is a closed monoidal category with hom objects

given by [A,B] := A∗ ⊗ B and with evaluation morphisms eA,B : A ⊗ A∗ ⊗ B → B given

by ∩A ⊗ iB.

Whilst any precausal category C is compact closed, the category Caus[C] is not com-

pact closed, however, it is indeed closed.

Example 17. The category Caus[C] is closed monoidal with [cA, cB] := cA ⇒ cB.

The existence of the second tensor product of Caus[C] can in-fact be deduced from

observing a little extra structure on top of closed monoidal structure. The category re-

sulting from the Caus[C] construction is not only closed monoidal but in fact satisfies

a stronger property of ∗-autonomy [235]. A ∗-autonomous category is a closed monoidal

category such that the canonical map dA : A→ [[A, I], I] uniquely defined by

d

=A

I
[A, I]
I

,

is an isomorphism for every object A.

When ∗-autonomy is present it gives a second tensor product for free, built from ⊗ and

[−,=] by A⊠B := (A∗⊗B∗)∗ where for any object A then A∗ := [A, I]. Interpreting A∗ as

the dual of A one may consider ∗-autonomous categories to be those in which every object

is equivalent to its double dual. Note that we chose to represent the tensor by ⊠, indeed

this is how ⊠ as previously introduced is constructed in [126]. The linearly distributive,

and so polycategorical, structure of Caus[C] also follows from this ∗-autonomy property,

suggesting to us that the suitability of polycategories for supermaps may still hold at even

higher-orders.

Compact closed categories give a trivial example of ∗-autonomous categories.

Example 18. Every compact closed category is a ∗-autonomous category.
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A less trivial example, is the one of most interest to us, Caus[C].

Example 19. The category Caus[C] is a ∗-autonomous category. Indeed the fact that

for each object dA : A ∼= [[A, I], I] follows from closure of the sets which define objects of

Caus[C].

The Caus[C] construction and its OPT-based analogue “higher-order quantum the-

ory” (HOQT) [127] have both recently been adapted to include a greater variety of type

constructors [128, 132, 135], leading to the formulation of higher-order quantum transfor-

mations and their composition rules as models of various adaptations of linear logic such

as BV-logic [126, 132, 135]. A key future goal outside of the scope of this thesis is to

develop analogous models of higher-order quantum theories over any symmetric monoidal

category.

2.9 Summary

We have reviewed the construction of supermaps and some of their compositional proper-

ties using the language of category theory where possible. The current state-of-the-art con-

structions of supermaps however requires some very specific features of finite-dimensional

quantum theory such as compact closure [126]. In this thesis we view this as a problem,

the concept of supermap as the kind of transformation that can be applied to transforma-

tions seems like one which does not require the notion of a compact closed category to be

understood.

Indeed, the goal of this thesis is to develop a construction of supermaps on top of any

symmetric monoidal category. In doing so we will have generalised supermaps to infinite-

dimensional quantum theory and to arbitrary operational probabilistic theories [137]. The

key tests of suitability of our constructions will be recovery of the standard physicists

definitions of supermaps when applied to the quantum channels and the unitaries. We

will also use some compositional features of theories of supermaps identified here and

throughout the thesis as benchmarks for good constructions.
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Chapter 3

Sequential and Parallel
Composition Supermaps

In this chapter we begin to ask the question, what kinds of features should we expect from

a theory of supermaps? By identifying key features of features of supermaps we could

hope to in the future:

• Contribute to the generalisation of resource theories to theories of supermaps, by

establishing features which should be present in sub-theories [10,44–46,48,219].

• Define structure-preserving maps between theories of higher order processes, and so

develop a suitable mathematical language for their comparison, including possibly

characterising specific theories by universal properties as has been done for fragments

of standard quantum theory in [198].

• Connect the study of supermaps to other areas of computer science and applied

category theory.

• Use these features as a sanity check for proposed definitions or constructions of

supermaps.

The first key feature which we extract from the motivating examples of theories of

supermaps, is that there are supermaps which plug processes together, in sequence or in

parallel. It turns out that this requirement can be modelled in categorical language using

the definition of an enriched symmetric monoidal category. We will give a brief definition

here of an enriched symmetric monoidal category in terms of string diagrams, assuming

as we do throughout that our underlying category C is strict monoidal to make our lives

easier. Any reader interested in the concise categorical definition of enriched monoidal

categories is referred to [191] or the appendix of [2]. Each of those works with monoidal
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categories enriched in symmetric monoidal categories, for enrichment in symmetric mul-

ticategories the reader is referred to [236]12. To explain how it is that the formal string

diagrams represent our informal intuitions about theories of supermaps, we will after each

main axiom write formal diagrams to the left and their information interpretations on the

right.

Definition 7. A P-smc C is a strict symmetric monoidal category C and a symmetric

multicategory P which has

• For each A,B of C an object [A,B] of P and a bijection θ : C(A,B) ∼= P(I, [A,B]):

θ(f)

[A,B]

≈ f

A

B

. (3.1)

• For each [A,B] and [B,C] a morphism in P which allows to plug their underlying

processes together:

⃝ : [A,B][B,C]→ [A,C]

represented formally on the left as a string diagram in P and informally on the right

to show intuitively its action on the underlying category C:

◦

[A,B] [B,C]

[A,C]

≈

◦

A

C

A

B

B

C
. (3.2)

Associativity and unitality of the sequential composition process in P is represented

by:

◦

◦ =
◦

◦
◦

θ(i)

= = ◦

θ(i)

, (3.3)

and the requirement that it actually implements sequential composition for C, is

enforced by:

◦

θ(f)θ(g)

=

θ(f ◦ g)

. (3.4)

1Concretely we write down strict symmetric monoidal categories enriched in symmetric multicategories,
which at the level of string diagrams can be seen as what remains when the monoidal structure of P is
forgotten for any commutative monoid in the symmetric monoidal category PCat of P-categories [191].

2For a P-symmetric monoidal category without strictness, the string diagrammatic definition for P a
symmetric multicategory can be constructed by finding the analogous string diagrammatic representation
for any symmetric pseudomonoid [237] in the symmetric monoidal 2-category PCat [191].
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• For each A,A′, B,B′ a parallel composition process in P of type

⊗ABA′B′ : [A,A′][B,B′]→ [A⊗B,A′ ⊗B′]

which can be represented formally and intuitively respectively by:

⊗

[A,A′] [B,B′]

[A⊗B,A′ ⊗B′]

≈

⊗

A B

B′A′

A′ B′

BA
. (3.5)

The following conditions are required, guaranteeing that ⊗ABA′B′ really does behave

like a parallel composition process:

⊗

⊗ =
⊗

⊗
⊗

θ(iI)

= = ⊗

θ(iI)

, (3.6)

◦

⊗
θ(βA′B′)

=

◦

⊗
θ(βAB)

(3.7)

⊗

θ(f)θ(g)

=

θ(f ⊗ g)

(3.8)

These equations represent, associativity of parallel composition, parallel composition

with empty space having no effect, compatibility with symmetric structure, and fi-

nally that the morphism indeed implements the parallel composition of processes,

respectively.

Lastly the condition:

=
◦

⊗ ⊗

⊗

◦ ◦ , (3.9)

is required, which represents the interchange law between sequential and parallel composi-

tion.
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We will from now on adopt the notational convention of dropping θ whenever its

presence is clear from context3. We will also adopt the notation

θ(i) =: ◦ ,

to emphasise the special status of θ(i) as the state which witnesses unitality.

As seen by the above description, a P-smc C consists of all the data needed to say that

P has morphisms which perform sequential and parallel composition of morphisms in C.

We will assume that the existence of sequential and parallel composition supermaps should

be seen as a structural feature of a theory P of supermaps. This conceptual assumption

can now be encoded as a mathematical one:

Supermaps enrich the category they act on.

Such an interpretation of enrichment, has indeed been used before in [238], for the purposes

of developing quantum programming languages. For the reader interested in understanding

the core story of the thesis, this point is the only one of this chapter which will be referenced

in future chapters. The remainder of this chapter is concerned with examining how much

one can infer from the assumption of enrichment, in particular from combining it with

other principles to recover key aspects of higher order quantum theory.

3.0.1 Review of the Properties of Monoidal Enriched Categories

In this section we outline some features of enriched monoidal categories which we will

regularly reference in the remainder of this chapter. The first is the existence of partial

insertion maps and the second is the existence of natural usage functions. We will also

occasionally refer to the functor [−,=] : Cop ×C→ P defined by:

[f, g] :=
◦

f g

.

3.0.2 Partial Insertion

The partial insertion morphism ∆ : [A,X][Y ⊗X,Z]→ [Y ⊗A,Z] takes a valid sub-input

of a process and inserts a pre-processing there, leaving the rest of the inputs unchanged.

Formally it is defined by:

∆
=

◦

⊗

◦

, (3.10)

3It is not so standard in enriched category theory to even work with an isomorphism, this is likely a
result of the fact that enriched categories are usually used to define standard categories equipped with
structure. When thinking about supermaps it is more natural to think of P and C as seperate theories
which are related by enrichment of one into the other.
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up to unitors and associators, where⊗ : [Y, Y ][A,X]→ [Y A, Y X] and ◦ : [Y A, Y X][Y X,Z]→
[Y A,Z]. The partial insertion can be intuitively be understood as representing the follow-

ing picture:

∆ ≈
Z

Y

∆
X

A X

Y A

Z

. (3.11)

For A = I, then ∆ satisfies:

∆

◦

=
◦

⊗
◦

◦

=
◦

⊗
◦

◦

=
◦

⊗

◦

◦

⊗

◦

(3.12)

=
⊗

◦

◦

◦

◦

◦

=
◦

⊗ . (3.13)

Intuitively the above represents the equality between

∆

◦

, (3.14)

and

⊗

◦

. (3.15)
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3.0.3 Usage Transformations

The usage transformation is a particular natural transformation θ : P(−, [A,−]) =⇒
P([I, A]−, [I,−]), a family of functions θBX given by for each S : X → [A,B] taking

θBX(S) to be:

◦

S

[I, A]

[I,B]

X

. (3.16)

Intuitively, θ places S into one of the two holes of a sequential composition supermap:

◦

X
A

[I,B]

S

=θ(S)

.

Naturally, one might expect that when two distinct processes are used, then they remain

distinct; mathematically this is the requirement of injectivity of the function θ. We will use

the word faithful to describe this property when present, which says that two higher order

processes S, T : X → [A,B] should only be distinguishable if they are distinguishable

when their outputs are applied to the space of states on A. Concretely, we say that a

P-smc C is faithful, if for all I, A,B the composition process ⃝IAB satisfies4

S

[A,B]

̸= T

[A,B]

=⇒ ◦

S

[I, A]

[I,B]

̸= ◦

T

[I, A]

[I,B]

. (3.17)

4This requirement can be encoded in categorical language, A P-smc C is faithful if and only if the
usage transformation

θ : P(−, [A,−]) =⇒ P([I, A]−, [I,−])

is a monomorphism in the functor category Cat(Pop ×C,Set).
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3.0.4 Examples

Theories of D-supermaps on C always define a faithful enriched monoidal category. Indeed,

isomorphism between morphisms of C and states of Dsup[C] is given by:

f

A

B

←→ f

A

BA∗

.

Then, for each A,B,C one can define the sequential composition supermap by:

A∗ B∗ B C

A∗ C

. (3.18)

and for each A,B,A′, B′ one can define a parallel composition supermap by:

A∗ B∗ A′ B′

A∗ B∗ A′ B′

. (3.19)

The various laws required, such as the interchange law, just follow from uses of the inter-

change law in D and compact closure of D. faithfulness is immediate since the defining

premise gives

I∗ B

I∗ C

S

X∗ X

=

I∗ B

I∗ C

T

X∗ X

(3.20)

which implies

B

C

S

X∗ X

=

B

C

T

X∗ X

(3.21)

and so applying cups on the left-hand side of both diagrams gives

B∗ C

S

X∗ X

=

B∗ C

T

X∗ X

. (3.22)
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While the D-supermaps on C faithfully enrich C, a bare-minimum requirement for the D-

supermaps on C to be a legitimate theory of supermaps, the Caus gives a more elaborate

example of faithful enrichment. Precisely, one can easily construct a faithful Caus[C]-smc

Caus[C], a signature of the fact that Caus[C] is self-contained, meaning that it has all

of its own supermaps. The faithful enrichment structure of Caus[C] in fact follows from

its closed monoidal structure as outlined in theorem 4 of the following section, where we

will find that under some additional reasonable background assumptions the idea of self-

containment is equivalent to the existence of currying and so of closed monoidal structure.

3.1 Currying from Self-Containment

So far we have considered features of one theory P which is a theory of supermaps on an-

other theory C. In this section we consider the features of the more elaborate construction

of higher-order quantum theories (HOQTs) [126–128, 132, 135], where maps, supermaps,

and super-supermaps etc all live in the same theory. A key feature of higher-order quantum

theory was the property of currying; in this section we will see that currying in HOQTs

can be seen as a simple consequence of combining the assumption of enrichment with a

few extra axioms:

• All processes in C have higher order representations in C (Self-enrichment).

• There is an equivalence A ∼= [I, A] between A and the higher order system [I, A]

representing the states of A (linking).

• The usage transformation is faithful.

Conceptually, the first condition models the idea of maps, supermaps, and super-supermaps

etc all living in the same theory. We model this with the notion of a C-smc C. Note a

subtlety here, we assume that the symmetric multicategory structure of C doing the en-

riching is that which would be freely constructed from the symmetric monoidal structure

being enriched. The second condition is captured by the following:

Definition 8. A Linked Monoidal Category is a C-smc C equipped with a monoidal

natural isomorphism ηA : A→ [I, A]5.

Here monoidal naturality imposes the following for η:

η η

⊗
=

η
.

5The functor [i,=] : C → P constructed by fixing the left-input of [−,=] as i is monoidal when P
is monoidal, with natural isomorphism given by the parallel composition supermap [2]. For the general
definition of monoidal functor and monoidal natural transformation see [21].
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We furthermore say that a linked monoidal category C is faithful if it is faithful as a C-

smc C. Intuitively, linked categories have enough structure to define canonical evaluation

morphisms (the structural feature of closed symmetric monoidal categories), mixed-order

morphisms of type ϵAB : A⊗ [A,B]→ B which apply processes to lower order objects, by

using link-morphisms and sequential composition morphisms:

◦
BA

B

A

B

ηA

η−1
B

A

Lower − order Higher − order

Links

In the above diagram, the available inputs are the bottom wire A and the dotted process

input of type [A,B], the output wire is the top wire of type B.

Lemma 2. Every linked faithful category C is a closed symmetric monoidal category.

Proof. We begin by showing that the above two bullet points give a closed symmetric

monoidal structure. Let the three bullet points be true for C; then to each pair A,B ∈ C

assign the candidate for evaluation

A
B

:= ◦

η−1

η

. (3.23)

Since every ◦ is completely injective by assumption, so is every ϵ. Since η : A → [I, A] is

a natural isomorphism, for any f ∈ C(A,B) there exists a morphism f̂ such that

f̂

A
B

= ◦

η−1

η

f̂

= [I, f ]

η−1

η

= f . (3.24)

One can apply the isomorphism η to the partial insertion operation to generate a partial
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insertion using a lower level type Y as opposed to the higher level type [I, Y ]

η

∆

Y

[X ⊗ Y,Z]

[X,Z]

. (3.25)

This partial insertion operation can be used to construct the curried version of any process

f from its static version f̂ , since

∆

f̂η

A
B

=
◦

η−1

η ∆

η f̂

=
◦

η−1

η η

f̂⊗ =
◦

η−1

f̂η
= f . (3.26)

It follows that for every process f its curried version exists, this completes the proof.

A more well-known property of closed symmetric monoidal categories, is that they

are always self-enriched. They are also linked and faithful, meaning that linked faithful

monoidal categories are exactly closed symmetric monoidal categories. A proof of this

converse direction minus linking, is a standard result of enriched category theory [239].

Theorem 4. There is a one-to-one correspondence between linked faithful monoidal cat-

egories and closed symmetric monoidal categories.

Proof. We give the sketch here for completeness. Let C be a closed symmetric monoidal

category, then there exist sequential and parallel composition morphisms defined as ad-

juncts to circuits of evaluation morphisms. Concretely the definition of closed symmetric

monoidal category enforces that there must exist processes ⊗ and ◦ satisfying

=

◦

B
C

A
B

A
C

=

⊗

A
A′

B
B′

A⊗B
A′ ⊗B′

, (3.27)

which satisfy the coherence conditions for a symmetric monoidal category. The uniqueness

property for closed symmetric monoidal categories lifts to faithful usage for each sequential

composition maps. Finally, a monoidal natural isomorphism A ∼= [I, A] for the induced
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functor [I,−] must be constructed. Indeed, η of ϵ[I,A] is an isomorphism and a natural

transformation of the right type in any closed symmetric monoidal category. Taking η as

the inverse, it is immediately also natural, and can be checked to be monoidal using the

following steps:

η η

⊗

I ⊗ I
A′ ⊗B′

=

η η

I
A′

I
B′

= =
η

I
A′ ⊗B′

, (3.28)

followed by using the uniqueness condition for satisfaction of the defining currying equation

for closed symmetric monoidal categories.

3.2 Causality in Higher-Order Quantum Theory

We have seen that from minimal assumptions one should expect closed symmetric monoidal

structure from any construction analogous to higher-order quantum theory of a full higher-

order theory over a symmetric monoidal category C. In this section, following [1], we see

which other properties of categories of the form Caus[C] can be reconstructed by adding

a few additional physics-inspired principles. We will generally refer to categories of this

form as higher-order causal categories (HOCCs).

3.2.1 Causality and determinism

To formulate causality in a closed symmetric monoidal category, it is convenient to first

define the notion of determinism. We model deterministic theories as those with only

a single identity scalar. This generalises affine monoidal categories which have a unique

scalar and further a unique effect for each object.

Definition 9 (Deterministic process theory). A symmetric monoidal category C is deter-

ministic if it contains only one scalar, that is, if |C(I, I)| = 1. The unique scalar in a

deterministic theory is denoted by 1.

It is easy enough to check that all HOCCs are deterministic. We now specify the

objects of a symmetric monoidal category which are causal.

Definition 10 (Causal object). An object A is causal if it has only one effect, that is, if

|C(A, I)| = 1. A symmetric monoidal category C is causal if all the objects A ∈ o(C) are

causal.
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Note that every causal category is automatically deterministic. We conclude the section

by showing that, if C is deterministic, a simple sufficient condition for an object to be causal

is that it has “enough states,” in the following sense:

Definition 11 (Enough states). An object A has enough states if for every object X and

for every pair of processes f, g : A→ X,

f = g ⇐⇒ ∀ρ ∈ C(I, A) : f ◦ ρ = g ◦ ρ. (3.29)

In any deterministic closed symmetric monoidal category if an object A has enough

states then it must be causal, i.e. there can be only one effect A → I. Any two effects

e1, e2 ∈ C(A, I) satisfy the condition e1 ◦ ρ = 1 = e2 ◦ ρ for every state ρ ∈ C(I, A), and

therefore the “enough states” condition implies e1 = e2.

3.2.2 The no-signalling tensor product

An important insight of [126] is that the tensor product in a higher order causal category

does not allow for signalling between tensor factors of process types between causal objects.

More specifically, in [126] it was shown that for any first-order objects A,B,A′, B′ of a

HOCC the type [A,A′]⊗ [B,B′] represents the space of non-signalling channels, for which

the output A′ has no dependence on the input B and the output B′ has no dependence on

the input A. This notion can be expressed in the language of closed symmetric monoidal

categories whenever each of A,B,A′, B′ is causal: a state f : I → [A,A′]⊗[B,B′] represents

a non-signalling channel if there exists a morphism fB : B → B′ satisfying:

f

A
A′

B
B′

A

A′ B′

B

= fB , (3.30)

and similarly for discarding B′. In this section we ask whether this property can be derived

from additional operational principles on closed symmetric monoidal categories. Indeed,

we will find that a simple principle on the kind of correlations which can be formed is

sufficient. Intuitively, if a joint state of objects X and Y is interpreted as representing

correlations between the states of X and Y , it should not be possible to correlate any

auxiliary object X with a single-state object Y . This intuition motivates the following

definition:
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Definition 12 (No correlation with a single-state object). A symmetric monoidal category

theory C has no correlations with single-state objects if, for any object Y with |C(I, Y )| = 1

and any object X ∈ o(C), every state ρ : I → X ⊗Y is of the product form ρ = ρ′⊗π with

ρ′ ∈ C(I,X) and π ∈ C(I, Y ):

X Y=

ρ′ πρ

X Y . (3.31)

The above condition is satisfied by all HOCCs as defined in [126]:

Theorem 5. Every HOCC has no correlations with single-state objects.

Proof. A minor generalisation of lemma 6.1 of [126], given for completeness in Appendix

F.

The condition of “no correlation with single-state objects” was crucial to proving that

[A,A′]⊗[B,B′] represents a non-signalling channel in [126]. In that context, the statement

followed from a specific decomposition of supermaps, as open circuits of causal processes.

Here, instead, we take the “no correlation with single-state objects” as a basic operational

condition.

We now show that, if there is no correlation with single-state objects, then the tensor

product has a no-signalling property. For a given process, we define a generalisation of

no-influence conditions, which allows for the existence of many discarding effects:

Definition 13 (Non-signalling process). A process m : A → A′ ⊗ X in a deterministic

symmetric monoidal category is non-signalling from A to X if for every effect πA′ : A′ → I

there exists an effect πA : A→ I and a state ρ : I → X such that

m
=

πA′

ρ

πA

X
A′

A A

X

(3.32)

The definition expresses the idea that when A′ is discarded (in any way) no signal may

reach X from A. Note that, in principle, the definition still allows for a notion of signalling

from A′ to X, because in general the state f ′ of X could depend on the effect πA′ used

for discarding. Note, however, that signalling from A′ to X is not possible if system A′ is

causal, because in that case the effect πA′ is unique. In the following, we will restrict our

attention to the case where both systems A′ and A are causal. We allow for many effects

because HOCCs are not causal: for instance on the object [A,B] there are many effects,

68



since there are many supermaps of type [A,B] → [I, I] given by pre-composition with a

state ρ : I → A and post-composition with an effect σ : B → I.

Theorem 6 (Non-signalling processes). Let C be a deterministic closed symmetric monoidal

category with no correlations with single-state objects, A,A′ be two causal objects in C, and
X ∈ o(C) be an arbitrary object. Then, for every state f : I → X ⊗ [A,A′] the process m

defined by:

m

X

A

A′

=

f

A
A′

X

A

A′

[A,A′]
(3.33)

is non-signalling from A to X.

Proof. As in [126], the core of the proof is the “no correlation with single-state objects”

property. In the proof, this property is applied to the object [A, I], which is a single-

state object because C(I, [A, I]) ∼= C(I ⊗ A, I) ∼= C(A, I) =⇒ |C(I, [A, I])| = 1. The

discarding effect can as a result be pulled through the entire process

f

A
A′

=

f

A
A′

A
I

ˆ =

f

◦

A
I

ˆ

(3.34)

The composition of f̂ with the unique discarding effect on A′ at the bottom of the diagram

gives a state of type [A, I] ⊗X, and so “no-correlation with single-state objects” implies

that such a state separates as the unique discarding state on [A, I] and a state f ′ on X:

f

◦

A
I

ˆ

=

f ′

A
I

ˆ

=

f ′

(3.35)

The above immediately entails the fact that states of type f : I → [A,A′] ⊗ [B,B′]

represent non-signalling channels (when A,A′, B,B′ are causal) in the sense of [126], since
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for such a state f ,

f

A
A′

B
B′

A

A′ B′

B

=
f̂A

A
A′

A′

A B

=
fA

BA

A′

. (3.36)

The broad takeaway is that it is the causality of an object A that prevents it from signalling

to another object that it is in parallel with.

3.2.3 A Stronger No-Signalling Property from Double Duals

We conclude by showing that a strengthening of this no-signalling property is satisfied

by HOCCs. Previously we saw that in a deterministic theory with no correlations with

single-state objects, the states of type (A ⇒ A′) ⊗X represent processes which are non-

signalling from A to X whenever A and A′ are causal objects. We now show that, in the

presence of an additional notion of equivalence to double duals, this no-signalling property

can be strengthened: the tensor product (A ⇒ A′) ⊗ X is no-signalling from the whole

system (A⇒ A′) to X.

Definition 14. An object Y in a deterministic symmetric monoidal category C has no-

signalling states if for every object X and every bipartite state m : I → Y ⊗X there exists

a state m′ : I → X such that for every Π : Y → I

m

Y =

Π
X

m′

X
(3.37)

In other words an object Y has no-signalling states if the choice of effect for discarding

object Y in a bipartite object X ⊗ Y does not affect the marginal state of system X. To

reconstruct this feature of HOQT and general HOCCs we will need to lean on another

feature, that they are not just closed symmetric monoidal, but also ∗-autonomous [235].

In short, they are equipped with isomorphisms of the form [[A, I], I] ∼= A for every object

A.

Definition 15 (Equivalence of double duals). An object A in a closed symmetric monoidal

category C is canonically equivalent to its double dual if dA : A → [[A, I], I] is an

isomorphism.
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Such an isomorphism forces states on A to be nothing other than the effects on effects

for A, as is the case in finite dimensional quantum systems. Given two systems A and

B that are canonically equivalent to their double duals, it is natural to ask whether

equivalence is preserved by the binary operations (− ⊗ =) and [−,=], in the following

sense:

Definition 16 (Preservation of equivalence of double duals). A binary operation ⊙ :

o(C) × o(C) → o(C) preserves equivalence of double duals if dA⊙B is an isomorphism

whenever dA and dB are isomorphisms.

We can show that the preservation of equivalence by the tensor product (−⊗ =) is

enough to guarantee preservation of the equivalence by the higher order composition [−,=].

Theorem 7 (Lifting canonical isomorphisms). For every closed symmetric monoidal cat-

egory C, if (−⊗−) preserves equivalence of double duals then [−,=] preserves equivalence

of double duals.

Proof. Given in the appendix.

Double duals, when present, for particular objects, entail stronger no-signalling prop-

erties for those objects.

Theorem 8. Let C be a deterministic closed symmetric monoidal category with no corre-

lations with single-state objects. If

• ⊗ preserves equivalence with double duals, and

• A and A′ are causal and canonically equivalent to their double duals,

then the object (A⇒ A′) has no-signalling states.

Proof. Given in the appendix.

The theorem shows that, no matter which supermap is applied on the system A⇒ A′,

and no matter the way a system is discarded, the state of any other system in parallel will

be unaffected. Indeed, for every pair of processes S : [A,A′] → Y and T : [A,A′] → Z,

and every pair of effects e : Y → I and k : Z → I, one has

m

=
S

m

T

e k

Y Z

X X[A,A′][A,A′]
(3.38)
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In other words, the choice of a supermap on system [A,A′] cannot signal to any other

system X. This can be seen as a generalised causality condition for monoidal categories

of supermaps.

3.3 Summary

In this section we began to consider the kinds of features that we should expect from theo-

ries of supermaps, and from fully iterated theories of supermaps analogous to higher-order

quantum theories and higher-order causal categories. We motivated enriched monoidal

categories and closed symmetric monoidal categories as models for each of these kinds of

theories, from simple reasonable principles. We then found that some causality features of

higher-order causal categories can be deduced by imposing some simple additional axioms

onto closed symmetric monoidal categories. In the remainder of this thesis we will turn our

focus back to simple theories of supermaps without the iteration of higher-order quantum

theory. We will try to construct theories of supermaps which recover the standard physi-

cist’s definitions and which further have the expected feature of enrichment when applied

to any symmetric monoidal category. Construction of theories of iterated supermaps over

any symmetric monoidal category with the more elaborate features of self-enrichment and

closed symmetric monoidal structure are beyond the scope of the thesis and suggested in

the conclusion as a promising avenue for future research.
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Chapter 4

Minimal Behaviour Law for
Supermaps: Local Applicability

So far we have developed to key intuitions about the concept of a supermap. We think

that theories of supermaps should enrich the structure of the category they act on, and

we think that the theory of supermaps on the quantum channels should be the the theory

of quantum superchannels. In this chapter, we develop a concrete construction Lot[C], of

a theory of supermaps over any monoidal category, which is satisfactory with respect to

these key intuitions for theories of supermaps.

• When applied to any symmetric monoidal category produces a theory which enriches

the symmetric monoidal structure of that category

• When applied to the symmetric monoidal category of quantum channels, returns the

quantum superchannels

The definition we use is concise, easy to interpret, and we will argue it is clearly a bare-

minimum requirement for any theory of supermaps. It is surprising in some way that such

an approach is possible, since it means that we will be able to show that the linearity

of quantum supermaps is in fact a consequence of purely compositional principles. It is

worth stressing that this essentially reverses the story of the definition of supermaps. The

usual approach is to take what we call the complete-preservation route as outlined in the

introductory material [12, 14,127]:

• Assume linearity of functions S : QC(A,A′)→ QC(B,B′).

• Use the (compact closure of) the tensor product of linear maps to define the local-

application ̂S ⊗ iQC(X,X′) of S

• Require complete-preservation of desired input transformations ̂S ⊗ iT (X,X′) : QC(A⊗
X,A′ ⊗X ′)→ QC(B ⊗X,B′ ⊗X ′) by this constructed local-application of S
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As we have seen, essentially what is being used here is the compact closed structure of the

category of linear maps. For general OPTs or Hilbert spaces, without compact closure,

such an approach is not available to us. Instead as promised we will reverse the order of

proceedings:

• First define a theory-independent notion of local-applicability

• Then show that representation of locally-applicable functions by a linear map S,

satisfying complete-preservation, is always possible

As we outlined in the introductory material, standard quantum channels are currently

axiomatised in terms of assumption of linearity and complete-preservation [220], so the

results of this section suggest that in the future the same kind of script flipping could be

applied to the axiomatisation of standard quantum processes.

4.1 Locally-Applicable Transformations

In this section we find some bare minimum behaviour laws for quantum supermaps which

can be stated with respect to any symmetric monoidal category. Before defining locally-

applicable transformations on morphisms of a monoidal category, let us warm up by ex-

amining an analogy. The analogous idea we consider, is that morphisms on a monodial

category always define locally-applicable transformations on states of that monoidal cat-

egory. Let us begin by considering any morphism A→ A′ in a monoidal category

A

f

A′

,

now imagine that there is some auxiliary system X present, formally using the monodial

product the morphism f : A→ A′ can be extended to a morphism f⊗ i : A⊗X → A′⊗X ′

A

f

X

A′ X

.

Crucial to the interpretation of locality in f ⊗ idX is that f ⊗ idX commutes with all

actions on X, this follows in this case by the interchange law for monoidal categories
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(f ⊗ idX′) ◦ (idA ⊗ g) = (idA′ ⊗ g) ◦ (f ⊗ idX):

A

f

X

A′ X ′

g
=

A

f

X

A′ X ′

g

.

In other words, a general monoidal category gives a collection of morphisms, all of which

can be viewed as being locally-applicable, in an informal sense.

A consequence of this local-applicability is the possibility to construct from f a family

of functions on states l(f)X : C(I, A ⊗ X) → C(I, A′ ⊗ X) which exhibit the local-

applicability of f . Explicitly, by using tensor extensions with the identity the function

l(f)X(ρAX) := (f ⊗ idX)(ρAX) can be defined for each X. The abstract functions l(f)X

which represent the action of f on states indeed inherit a notion of local-applicability from

f . The functions l(f)X can be seen to leave the environment system X untouched in the

sense that the action of any g on X commutes with the application of the function l(f)X .

The above sentence is captured in formal terms by the equation l(f)X′(idA ⊗ g(ρAX)) =

(idA′ ⊗ g)(lX(ρAX)) which is guaranteed to hold for any g : X → X ′ since

l(f)X′(idA ⊗ g(ρAX)) =(f ⊗ idX′) ◦ (idA ⊗ g)(ρAX)

=(idA′ ⊗ g) ◦ (f ⊗ idX)(ρAX)

=(idA′ ⊗ g)(lX(ρAX)).

We now give an axiom which re-characterises quantum supermaps by generalising this

concept of local-applicability of functions on states to local-applicability of functions on

processes. The only instances of locally-applicable transformations on quantum chan-

nels will turn out to be those which are simulated by the standard-definition quantum

superchannels of [240]. We split the motivations for the definition of locally-applicable

transformation into three consecutive principles.

Principle 1: Supermaps are Functions on Processes The kind of picture usually

drawn with the aim of capturing diagrammatically the concept of a supermap from the

space of processes C(A,A′) to the space of processes C(B,B′) is some variation of the

following

S ϕ .
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As such our first step to characterising supermaps of type C(A,A′) → C(B,B′) is to

consider functions of the same type C(A,A′)→ C(B,B′).

Principle 2: Supermaps Can be Extended to Functions on All Bipartite Pro-

cesses When we say that we wish for the map S : C(A,A′) → C(B,B′) to be locally-

applicable, we mean that we wish to formalise the following picture:

S ϕ

X

X ′

.

The next step toward such a formalisation is to specify for each X,X ′ the action of S

when applied to the A,A′ part of any morphism ϕ ∈ C(A⊗X,A′⊗X ′). Consequently we

say that a locally-applicable transformation must be equipped with a family of extended

functions SXX′ : C(A ⊗ X,A′ ⊗ X ′) −→ C(B ⊗ X,B′ ⊗ X ′) for every X,X ′. We now

will need to find a way to enforce these extensions behave as if they are applied locally.

For readability we will from now on notate the action of such a family of functions in the

following way

SX,X′(ϕ) := SX,X′ ϕ

X

X ′

X ′

X

.

where the dotted lines express the idea that the wires they connect are to be interpreted

as auxiliary systems.

Principle 3: Supermaps Commute With Actions on Their Extensions A key

feature of a local operation is commutation with operations applied to auxiliary spaces, we

generalise this notion of locality to input-output operations, informally we aim to capture

the equivalence of the following two pictures:

S ϕ

g

f

= S ϕ

g

f

,
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Definition 17 (locally-applicable transformations). A locally-applicable transformation of

type S : [A,A′] −→ [B,B′] on a symmetric monoidal category C is a family of functions

SXX′ : C(A ⊗X,A′ ⊗X ′) −→ C(B ⊗X,B′ ⊗X ′) such that for every g : Y ′ ⊗ Z → X ′,

f : X → Y ⊗ Z, and ϕ : A⊗ Y → A′ ⊗ Y ′ then1

SXX′ ϕ

g

f

= SY Y ′ ϕ

g

f

.

The same diagrammatic rules have been used for similar purposes in category theory

and quantum foundations before. In the former case these rules are some of those required

for generalised traces over monoidal categories. In the second case these rules are some

of those used to formalise models of time-travel in quantum, theory, where such time-

travel operators were even referred to as superoperators. A first compositional principle

of supermaps, is that being kinds of transformations, they ought to be composable.

Definition 18 (The category of locally-applicable transformations). On any monoidal

category C a new category Lot1[C] can be defined with objects given by pairs of the form

[A,A′] and morphisms of type [A,A′]→ [B,B′] given by locally-applicable transformations

of the same type. The identity morphism i[A,A′] : [A,A′] → [A,A′] is given by the family

of identity functions i
[A,A′]
X,X′ := iC(AX,A′X′). Composition is given diagrammatically by

S ϕT

or algebraically by (S ◦Lot T )X,X′ := SX,X′ ◦Set TX,X′. Associativity and identity for

composition are inherited from associativity and identity for composition in the category

Set.

1As discussed in section 5.2, this condition implies that the SXX′ form a natural transformation,
meaning that we could in standard categorical language have asked for a family of functions natural in X
and X ′.
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Note that one must check the proposed composition does indeed returns a new locally-

applicable transformation, this is easily seen either diagrammatically or algebraically. This

category has a few other properties reminiscent of the category of single-input supermaps.

There is a functor [−,=] : Cop ×C → Lot1[C] given on objects by [A,A′] and given on

morphisms f : B → A and g : A′ → B′ by the morphism

[f, g] : [A,A′]→ [B,B′] (4.1)

[f, g]X,X′ :: ϕ 7→ (g ⊗ iX′) ◦ ϕ ◦ (f ⊗ iX) (4.2)

Functorality follows since

([f, g] ◦ [f ′, g′])X,X′(ϕ) =[f, g]X,X′([f
′, g′]X,X′(ϕ))

=(g′ ⊗ iX′) ◦ (g ⊗ iX′) ◦ ϕ ◦ (f ⊗ iX) ◦ (f ′ ⊗ iX)

=[g′ ◦ g, f ◦ f ′]X,X′(ϕ)

Note that the switched order of composition between g′ ◦g and f ◦f ′ is captured by taking

the first domain to be Cop rather than C.

4.2 Multi-Party Case

Let us now extend the definition of locally-applicable transformation to that which can be

applied not to a single process, but instead to an entire list of processes. In short, we now

try to give a bare-minimum behaviour law for any model of the following picture

S

A1

A′
1

A′
2

A2

B

B′

ϕ2

ϕ1

.

Clearly this picture represents at the very least a function of type

S : C(A1, A
′
1)×C(A2, A

′
2)→ C(B,B′),

and similarly one can easily imagine a generalisation to N -input supermaps of type

[A1, A
′
1] . . . [An, A

′
n]→ [B,B′] which at the very least define functions of type

n

×
i=1

C(Ai, A
′
i)→ C(B,B′).
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As before, we see that any model of this picture should be able to tell us the functional

behaviour when applied to part of each of a pair of morphisms. This observation leads us

to consider at the least a family of functions of type

S
X′1...X

′
n

X1...Xn
: C(A1X1, A

′
1X

′
1)×C(A2X2, A

′
2X

′
2)→ C(CX1X2, C

′X ′
1X

′
2),

or more generally we expect that N -input supermaps should at least give us families of

functions of type

S
X′1...X

′
n

X1...Xn
:

n

×
i=1

C(AiXi, A
′
iX

′
i)→ C(B

n⊗
i=1

Xi, B
′

n⊗
j=1

X ′
j).

Note that when we deal with multiple-input functions we will use bottom indices for inputs

auxiliary wires and upper indices for output auxiliary wires when we need to save space.

Now, we need to again express locality, the idea that each of these functions does not

actually have any effect on the auxiliary systems labelled as Xi, X
′
i. We do not take the

care to write locality explicitly except using a semi-formal graphical notation which will be

sufficient to understand and reason about the imposed law. Let us denote the application

of component S
X′1...X

′
n

X1...Xn
of a family of functions of the above type again in terms of a

function-box notation by:

S . . .

B

B′

ϕ1 ϕn

X1 X ′
1

X ′
nX ′

1

,

in terms of this picture the required behaviour law for multi-input supermaps is easily

stated.

Definition 19. A locally-applicable transformation of type [A1, A
′
1] . . . [An, A

′
n]→ [B,B′]

is a family of functions

S
X′1...X

′
n

X1...Xn
:

n

×
i=1

C(AiXi, A
′
iX

′
i)→ C(B

n⊗
i=1

Xi, B
′

n⊗
j=1

X ′
j)
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satisfying2:

S
X ′

1

X1

. . .

B

B′

ϕ1

g1

f1

X ′
n

Xn

ϕn

gn

fn

=

S
Y ′
1

Y1

. . .

B

B′

ϕ1

g1

f1

Y ′
n

Yn

ϕn

gn

fn

.

There are two notes on this definition which may be obscured by the diagrammatic

notation. First, we draw wires as running over the top of S on the right-hand side, to give

unambigous meaning to this requires symmetry of the monoidal category C. The second

note builds on the first, an alternative way to define the multiparty locally-applicable

transformations is inductively, requiring that the induced functions given by applying

S to all but the right-most hole returns a locally-applicable transformation of the sin-

gle input type, and requiring that filling in only the right-most hole returns an N − 1

locally-applicable transformation after pre and post composition with βX1...XN−1,XN
and

βXN ,X′1...X
′
N−1

respectively.

We saw in the preliminary material that supermaps form a multicategory by nest-

ing of boxes. The multi-input locally-applicable transformations can be used to form a

multicategory in the same way.

Definition 20. The symmetric multicategory Lot[C] has as objects pairs [A,A′] and

as morphisms [A1, A
′
1] . . . [An, A

′
n] → [B,B′] the locally-applicable transformations of the

same type. Composition of S : [B1, B
′
1] . . . [Bn, B

′
n] → [C,C ′] with a family of morphisms

T i : [Ai
1, A

i
1
′] . . . [Ai

ni
, Ai

ni

′]→ [Bi, Bi′] is given by the following

S
X1

1
′ ⊗ · · · ⊗X1

n
′

X1

. . .

B

B′

T 1
X1

1
′

X1
1

. . .

B1

B1′

X1
n
′

X1
n

X1
1 ⊗ · · · ⊗X1

n

ϕ11 ϕ1n

Xm
1

′ ⊗ · · · ⊗Xm
n

′

Tm
Xm

1
′

Xm
1

. . .

Bm

Bm′

Xm
n

′

Xm
n

Xm
1 ⊗ · · · ⊗Xm

n

ϕm1 ϕmn .

Morphisms of type • → [A,A′] are given by morphisms of type C(A,A′) and composition

of S : [A1, A
′
1] . . . [An, A

′
n]→ [B,B′] and ϕ : • → [Ai, A

′
i] is given by inserting ϕ into hole

2As discussed for single-input supermaps, in section 5.2 we’ll show that this condition implies that the
SXX′ form a natural transformation, meaning that we could in standard categorical language have asked
for a family of functions natural in X1 . . . Xn and X ′1 . . . X

′
n.
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i of S. The action for general permutations of an input list is generated by the action for

the swap3 σik of elements i, k the list by taking each

S : [A,A′] . . . [Ai, A
′
i] . . . [Ak, A

′
k] . . . [An, A

′
n]→ [B,B′]

to

σik(S) : [A,A′] . . . [Ak, A
′
k] . . . [Ai, A

′
i] . . . [An, A

′
n]→ [B,B′]

with

σik(S) . . .

B

B′

ϕ1 ϕn

X1 Xn

X ′
nX ′

1

. . .ϕk

Xk

X ′
k

ϕi

Xi

X ′
i

. . .

:= S . . .

B

B′

ϕ1 ϕn

X1 Xn

X ′
nX ′

1

. . .ϕi

Xi

X ′
i

ϕk

Xk

X ′
k

. . .

A more familiar although less illuminating algebraic presentation of the same compo-

sition rule can be given in the following way:

S ◦ (T 1 . . . Tn)
X1

1
′...Xn

nm
′

X1
1 ...X

n
nm

:= S
X1

1
′...X1

n1
′,...,Xm

1
′...Xm

nm
′

X1
1 ...X

1
n1

,...,Xm
1 ...Xm

nm

◦Set ×m
k=1T

Xk
1
′,...,Xk

nk
′

Xk
1 ,...,X

k
nk

.

with composition with morphisms from the empty list given by

(S ◦ ϕ)
X′1...X

′
i−1X

′
i+1...X

′
n

X1...Xi−1Xi+1...Xn
(−, . . . ,−) := S

X′1...X
′
n

X1...Xn
(−, . . . , ϕ, . . . ,−)

Associativity and interchange laws for multicategory composition are inherited from Set.

3Each permutation can be decomposed into a sequence of swaps, that the action generated by applying
the associated actions for some decomposition into swaps is well-formed and functorial follows from the
defining rules for the swaps which make C symmetric monoidal and the swaps which make Set monoidal.
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Definition 21. The Lot[C]-smc C can be defined by taking the sequential composition

supermap ⃝ABC : [A,B][B,C]→ [A,C] to be

◦

A

C

ϕ1 ϕ2

A

B

B

C
=

ϕ1

ϕ2

A

C

and taking the parallel composition supermap of type
⊗

AA′BB′ : [A,A′][B,B′]→ [AB,A′B′]

to be

⊗

A

A′

ϕ1 ϕ2 :=

A

A′

B

B′

ϕ1 ϕ2

A

B′

B

B′

B

A′

.

The isomorphism C(A,A′) ∼= Lot[C](•, [A,A′]) is in this case an equality. It is then

immediate that ⃝ABC ◦Lot[C] (ϕ1, ϕ2) = ϕ2 ◦Cϕ1 and similarly for the parallel composition

supermap.

One must check the required laws for these specified morphisms to give enrichment.
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As an example let us explicitly prove the enriched interchange law, since

ϕ1

X1

ϕ2

X2

X ′
1X

′
2

ϕ3

X3

ϕ4

X4

X ′
3X

′
4

=

ϕ1 ϕ3

X ′
1 X ′

3

X1 X ′
3

ϕ2 ϕ4

X ′
2 X ′

4

X2 X ′
4

,

it follows that

⊗
◦ ◦

X′1X
′
2X
′
3X
′
4

X1X2X3X4

(ϕ1, ϕ2, ϕ3, ϕ4) =

◦

⊗ ⊗

X′1X
′
2X
′
3X
′
4

X1X2X3X4

(ϕ1, ϕ2, ϕ3, ϕ4).

Note that the Lot[C]-smc C is furthermore faithful, as defined in the previous chapter.

Lemma 3. The Lot[C]-smc C is faithful.

Proof. This follows by finding a pair of inputs for each to (⃝IAB◦(i, S))
X′1X

′
2

X1X2
for each X,X ′

and ϕ which returns SX,X′(ϕ). Then it follows that ⃝IAB ◦ (i, S) ̸= ⃝IAB ◦ (i, T ) =⇒
S ̸= T . The correct choice of input is most easily seen graphically, by noting that

◦

C

S ϕ

= S ϕ .
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In conclusion, a theory of families of functions which represent the basic expected

operational behaviour of supermaps, can be defined on any symmetric monoidal category

and provides a model of the expected features of theories of supermaps given in the previous

chapter.,

4.3 Examples

Here we examine a series of examples of locally-applicable transformations, of the single-

input and multi-input kind. Let us begin with combs [13] on general monoidal categories

as defined in [29,48].

Example 20 (Combs). For every symmetric monoidal category C and pair of morphisms

a : A→ E ⊗B and b : E ⊗ A′ → B′ one can define a locally-applicable transformation of

type [A,A′]→ [B,B′] by

S

ϕ := ϕ

a

b

.

Indeed, note that:

SXX′ ϕ

g

f

= ϕ

a

b

g

f

= ϕ

a

b

g

f

= SY Y ′ ϕ

g

f

.

We from now on refer to such a locally-applicable transformation by comb[a, b] and

its components by comb[a, b]X,X′ , such combs form a subcategory of Lot[C] which is

isomorphic as a category to comb[C] as defined in [29].

Example 21. Let C be a symmetric monoidal category, the locally-applicable transforma-

tion comb[c1 . . . cn+1] of type comb[c1 . . . cn+1] : [A1, A
′
1] . . . [An, A

′
n]→ [B,B′] is the family
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of functions given by

ϕ1

c2

c1

ϕ2

c3

ϕn

cn

cn+1

.

For a compact closed category D with C ⊆ D the notions of D-supermap and D-comb

on C are equivalent. Through this equivalence, D-supermaps always give examples of

locally-applicable transformations.

Lemma 4. Let D be a compact closed category and C be a symmetric monoidal category,

there is a one-to-one correspondence between the D-combs on C and the D-supermaps on

C.

Proof. Let S be a D-comb on C then one can construct

S

B∗B′

A∗ A′

:=

S

=

a

b

,

which indeed is a D-supermap since

S

ϕ =

a

b

ϕ

= ϕ

a

b

.
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Instead let S be a D-supermap then one can construct the locally-applicable transforma-

tion

F(S)X,X′ :=

S

ϕ

b

a

.

These two constructions are furthermore inverse to each-other. This assignment is also a

functor meaning in concrete terms that F preserves composition and identities.

For the same reasons, every D-supermap on C of type [A1, A
′
1] . . . [An, A

′
n] → [B,B′]

can be used to define a locally-applicable transformation of the same type. This assignment

commutes with multicategory composition, meaning that it is a multifunctor. We will

denote this multifunctor as FD,C : Dsup[C]→ Lot[C].

Now we have a general theory-neutral definition, we can look for examples which are

not D-supermaps for some compact closed category D.

Definition 22. The category Hilb has objects given by Hilbert spaces and morphisms

given by bounded linear operators [202].

Note that we do not require the Hilbert spaces to be finite dimensional or even separable

here. The category Hilb is a symmetric dagger monoidal category and furthermore, one

can show that it is enriched in the category of commutative monoids, meaning concretely

that sequential composition, parallel composition, and daggers commute with sums. We

refer to the symmetric monoidal subcategory of unitaries between general Hilbert spaces

as UHilb ⊆ Hilb.

Example 22 (The Quantum Switch for Arbitrary Hilbert Spaces). We call any pair of

morphisms {π0, π1} in UHilb such that πi ◦ πj = δij a control. The quantum switch

on UHilb with control {π0, π1} is defined as the locally-applicable transformation of type

Switch : [A,A][A,A]→ [Q⊗A,Q⊗A] given by:

qSwitch

ϕ1

Q

Q A

A

ϕ2

X1 X2

X ′
1 X ′

2

=

A

A

X1

X ′
1 X ′

2

X2

ϕ2

ϕ1

Q

Q

π0 +

A

A

X1

X ′
1 X ′

2

X2

ϕ2

ϕ1

Q

Q

π1 (4.3)

Orthogonality of π0 and π1 and compatibility between daggers and sums implies unitarity

of this linear map, local-applicability follows by compatibility of sequential composition and

parallel composition with sums.
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Example 23 (Convex Switch). Let us now consider the symmetric monoidal category QO

of quantum operations [241]. between arbitrary Hilbert spaces. In this category morphisms

f, g : A → B can be combined using convex combinations pf + (1 − p)g : A → B where

p ∈ [0, 1]. Using this structure we can construct a generalisation of the convex switch,

choosing one order of composition with the probability p and the other with probability

(1− p)

cSwitch

ϕ1

A

A

ϕ2

X1 X2

X ′
1 X ′

2

= p

A

A

X1

X ′
1 X ′

2

X2

ϕ2

ϕ1

+ (1− p)

A

A

ϕ2

ϕ1

X1

X ′
1 X ′

2

X2

.

To see that this convex switch satisfies local-applicability, note that sequential and parallel

composition commute with convex combinations.

For our next example we will introduce functor box notation for weak symmetric

monoidal functors, the interested reader may read the details of [188, 242–244] for more

details, however what we will need to iunderstand to follow the thesis is quite minimal.

Whilst F(f) will be notated as before, for a weak monoidal functor, functorality is only-

up-to ismorphism so that we may write:

g

f
F

F

∼=
f

F

g

,

where ∼= is such that f ∼= g and f ′ ∼= g′ implies f ◦ g ∼= f ′ ◦ g′ and simillarly for parallel

composition. We will say that a functor is 2-faithful if

F(f) ∼= F(g) =⇒ f = g

The above allows us to generalise D-representable supermaps to a setting which allows us

to use compact closure when defining superunitaries on separable Hilbert spaces.

Lemma 5. Let C be a symmetric monoidal 2-category with trivial 2-morphisms and D

be a symmetric monoidal 2-category with a weak 2-faithful symmetric monoidal 2-functor

F : C → D. Any comb[a, b] with a, b ∈ D such that for all ϕ ∈ C(AX,A′X ′) there
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exists ψ ∈ C(BX,B′X ′) such that F(ψ) ∼= comb[a, b]GXGX′(ϕ) defines a locally-applicable

transformation by taking SX,X′(ϕ) to be the unique ψ s.t G(ψ) = comb[a, b](ϕ). Here

uniqueness follows since F is 2-faithful. Such a locally-applicable transformation is termed

a G representable supermap on C of type [A,A′]→ [B,B′].

Proof. Note that

F

SXX′ ϕ

g

f

∼=

F

a

b

ϕ

g

f

∼= ϕ

a

b

g

f

=

SY Y ′

ϕ

g

f

and so

F

SXX′ ϕ

g

f

∼=

F

SY Y ′

ϕ

g

f
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which by 2-faithful-ness of F gives

SXX′ ϕ

g

f

= SY Y ′ ϕ

g

f

.

This gives a way to construct and represent examples of supermaps on the category

sepU ⊆ sepHilb of unitaries between separable Hilbert spaces by using the embedding

of the category sepHilb of bounded linear maps between separable Hilbert spaces into

the category ∗Hilb of non-standard Hilbert spaces [242].

Example 24. There is a 2-faithful weak symmetric monoidal 2-functor G : sepU →
∗Hilb given by composition of the embedding sepU ⊆ sepHilb and the truncation func-

tor trunc[−]w : sepHilb → ∗Hilb [242]. The induced supermaps are then termed

trunc[−] representable supermaps on C.

One can straight-forwardly generalise the above construction to define G-representable

supermaps with multiple inputs, and so in particular define trunc[−] representable su-

permaps on sepU with multiple inputs.

4.4 Locally-Applicable Transformations Between Constrained
Sets

As seen in the preliminary material, supermaps are also often defined on subsets of sets

of channels [17], let us now generalise the dilation extensions of subsets so that they can

be formulated in any symmetric monoidal category4.

Definition 23. For each K ⊆ C(A,A′) and pair (X,X ′) the dilation extension by X,X ′

denoted dextX,X′(K) is the subset of C(A⊗X,A′ ⊗X ′) given by:

Φ ∈ dextX,X′(K) ⇐⇒ ∀ρ, σ : Φ

σ

ρ

∈ K.

4Note that the definition we give of dilation extension trivialises when categories have no states and
effects, such as the category of unitaries. In such a category a more general notion of extension set is more
suitable as outlined in [3].
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Note that for the example K = C(A,A′) then the extension dextX,X′(K) returns the

entire set of bipartite morphisms C(A ⊗ X,A′ ⊗ X ′). For a causal symmetric monoidal

category the extended set can be rephrased in the following way:

ϕ ∈ dextX,X′ [K] ⇐⇒ ∀ρ : Φ

ρ

∈ K,

which is the form used in the preliminary material and in [14, 17] to define extensions to

subsets of quantum channels. Whenever a subset K ⊆ QC(A,A′) is closed under convex

combinations then it follows that dExtX,X′(K) is closed under convex combinations, we

will from now on rephrase the statement that a set K be closed under convex combinations

as simply the statement that K be convex.

We will now define locally-applicable transformations on dilation extensions of subsets

of processes.

Definition 24 (locally-applicable transformations). A locally-applicable transformation

of type S : K −→ M on a symmetric monoidal category C is a family of functions

SXX′ : dextX,X′(K)→ dextX,X′(M) such that for every g : Y ′⊗Z → X ′, f : X → Y ⊗Z,
and ϕ : A⊗X → A′ ⊗X ′ then

SXX′ ϕ

g

f

= SY Y ′ ϕ

g

f

.

Naturally, this definition can be extended to the multi-party setting using the exact

same diagrams as before.

Definition 25. A locally-applicable transformation of type K1 . . .Kn −→ M is a family

of functions

S
X′1...X

′
n

X1...Xn
:

n

×
i=1

dextXi,X′i
(Ki) −→ dext⊗n

i=1 Xi,
⊗n

j=1 X
′
j
(M)
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satisfying:

S
X ′

1

X1

. . .

B

B′

ϕ1

g1

f1

X ′
n

Xn

ϕn

gn

fn

=

S
Y ′
1

Y1

. . .

B

B′

ϕ1

g1

f1

Y ′
n

Yn

ϕn

gn

fn

.

As for the case of unconstrained types, we can construct examples using embeddings

into compact closed categories.

Definition 26. Let C ⊆ D be an inclusion of a symmetric monoidal category C into a

compact closed category D and let K ⊆ C(A,A′) and M ⊆ C(B,B′) . A D-supermap on

C of type S : K → M is a morphism in D of type S : A∗ ⊗ A′ → B∗ ⊗ B′ such that for

every ϕ ∈ dextX,X′(K) then

S

B

B′

ϕ

X

X ′

∈ dextX,X′(M).

Again this definition can be generalised to the multi-input case.

Definition 27. Let C ⊆ D be an inclusion of a symmetric monoidal category C into a

compact closed category D. A D-supermap on C of type S : K1 . . .Kn →M is a morphism

S

B∗B′

A∗
1 A′

1A∗
n A′

n

. . . . . .
,

in D such that for every family ϕ(i) ∈×n
i=1 dextXi,X′i

(Ki) then

S

B′

. . .

B

ϕ1

X1

X ′
1

ϕn

. . .
X ′

n

X ′
n

. . .

. . .

. . .
∈ dext⊗

i=1n Xi,
⊗n

i=1 X
′
i
(M).
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For any inclusion C ⊆ D of a symmetric monoidal category into a compact closed

category, every D-supermap on C of type K → M can used to construct a locally-

applicable transformations of the same type, using the same method as for the case of

locally-applicable transformations between unconstrained types. Note that when C = QC

and D = CP this definition of D-supermap on C of type K →M is the previously defined

notion of a CP-supermap on QC of type K →M , which we will often refer to as simply

a quantum supermap of type K → M . This entire discussion naturally extends to the

multi-input setting.

4.5 Locally-applicable transformations from axioms for the-
ories of supermaps

So far we have established three key concepts in the study of supermaps on symmetric

monoidal categories. Two of those concepts have been phrased in terms of the prop-

erties of entire compositional theories of supermaps, the final concept has instead been

phrased in terms of the expected properties of individual supermaps with respect to the

compositionality of the theory they act on:

• Theories of supermaps ought to define polycategories.

• Theories of supermaps ought to have sequential and parallel composition supermaps.

• The operational behaviour of a supermap ought to be described by a locally-applicable

transformation.

We have seen that if we take supermaps to be locally-applicable transformations then

there are indeed always sequential and parallel composition supermaps. Furthermore, in

the next chapter we will see that locally-applicable transformations can be strengthened

to define polyslots, which can be equipped with a polycategorical composition rule. In this

section we work in the opposite direction, we will recover the local-applicability of indi-

vidual supermaps from axioms on the behaviour of entire categories of supermaps. More

concretely, we will show that any theory which satisfies the first two bullet points along

with a few extra conditions can always be mapped into to the multicategory of locally-

applicable transformations. We will split our required axioms for theories of supermaps

into two parts, with the first axiom collecting together the previous two bullet points.

Axiom 1. A theory of supermaps is a P-smc C with P a symmetric polycategory.

When we ask for a P-smc C with P a symmetric polycategory, we mean more carefully

that we ask for a M[P]-smc C as defined in 3 with P a symmetric polycategory and M[P]

the symmetric multicategory freely constructed from the symmetric polycategory P by
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only keeping morphisms with output lists of length 1. In the second axiom we note that

so far our constructions of supermaps with have treated multiple-output lists such as

[B1, B
′
1] . . . [Bm, B

′
m] as equivalent to single composite output types such as [B1, B

′
1] ⊠

· · · ⊠ [Bm, B
′
m] := [B1 ⊗ · · · ⊗ Bm, B

′
1 ⊗ · · · ⊗ Bm]. This equivalence, when formalised is

the requirement that the outputs of a polycategory of supermaps should have a cotensor

[216, 229] given by ⊠, or more precisely that the outputs of a polycategory should be

representable.

Axiom 2. The outputs of the theory of supermaps are representable by a cotensor com-

patible with composition in C. Concretely for each tuple X1 . . . Xn of objects of P there is

an object X1 ⊠ · · ·⊠Xn and morphism π : X1 ⊠ · · ·⊠Xn → X1 . . . Xn such that for every

S : Θ → X1 . . . Xn there exists a unique morphism S⊠ : Θ → X1 ⊠ · · · ⊠ Xn such that

π ◦ S⊠ = S. We will refer to the morphisms ⊠ exhibiting representability as cotensors [],

and will diagrammatically represent cotensors with black dots. The defining equation of

the cotensor can then be written as:

S =
S⊠

.

Furthermore, every well-typed composition of such dots is required to be equal, such a

requirement can be phrased diagrammatically as an associativity or spider law:

= .

We also require these splitting maps to play nicely with the enriched symmetric monoidal

structure of C, meaning that [A,A′] ⊠ [B,B′] = [A ⊗ B,A′ ⊗ B′] along with three com-

patibility laws. The first law required says that the order of putting systems together with

enriching maps and splitting them apart with representability maps does not matter:

⊗

[AB,A′B′] [C,C ′]

[A,A′] [BC,B′C ′]

=

⊗

[AB,A′B′] [C,C ′]

[A,A′] [BC,B′C ′]

.
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The second law says that pre and post composition on morphisms of C can be performed

before or after splitting using representability maps:

◦

⊗ ⊗

[A,B] [A′, B′] [BB′, CC ′] [C,D] [C ′, D′]

[A,D] [A′, D′]

=

◦ ◦

[A,B] [A′, B′] [BB′, CC ′] [C,D] [C ′, D′]

[A,D] [A′, D′]

.

Finally, a third law requires that swapping of two halves of a bipartite process can be

performed before or after splitting:

=
[βBA.βA′B′ ]

.

These laws say that for all intents and purposes, π does nothing except to let us

examine subsystems. Note that when states are inserted into the point-free naturality

law, we recover the following:

[f ⊗ f ′, g ⊗ g′]

=
[f, g] [f ′, g′]

.

Note furthermore that the braid law implies the following more elaborate result for braids.

[X1, X
′
1] [Xn, X

′
n] [Y, Y ′]

=

[βX1...Xn,Y , βX′
1...X

′
n,Y ′ ]

[X1, X
′
1] [Xn, X

′
n] [Y, Y ′]

Indeed, this is true by assumption for n = 1 and can be proven for general n by induction.

Imagine that the property were true for some n, then when checking the property for n+1
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we find that

[X1, X
′
1] [Xn, X

′
n] [Y, Y ′][Xn+1, X

′
n+1]

=

[X1, X
′
1] [Xn, X

′
n] [Y, Y ′][Xn+1, X

′
n+1]

[βX1...Xn,Y , βX′
1...X

′
n,Y ′ ]

,

which after using naturality and associativity gives

=

[X1, X
′
1] [Xn, X

′
n] [Y, Y ′]

[βX1...Xn,Y ⊗ iXn+1 , βX′
1...X

′
n,Y ′ ⊗ iX′

n+1
]

[Xn+1, X
′
n+1]

=

[X1, X
′
1] [Xn, X

′
n] [Y, Y ′]

[βX1...Xn,Y ⊗ iXn+1 , βX′
1...X

′
n,Y ′ ⊗ iX′

n+1
]

[Xn+1, X
′
n+1]

.

Next, using the property for n = 1 along with naturality and rules for the composition of

swap morphisms in C gives

=

[X1, X
′
1] [Xn, X

′
n] [Y, Y ′]

[βX1...Xn,Y ⊗ iXn+1 , βX′
1...X

′
n,Y ′ ⊗ iX′

n+1
]

[Xn+1, X
′
n+1]

[βY,Xn+1βX′
n+1,Y

′ ]
=

[X1, X
′
1] [Xn, X

′
n] [Y, Y ′]

[βX1...Xn+1,Y , βX′
1...X

′
n+1,Y

′ ]

[Xn+1, X
′
n+1]

which by associativity gives the required form

=

[X1, X
′
1] [Y, Y ′]

[βX1...Xn+1,Y , βX′
1...X

′
n+1,Y

′ ]

[Xn+1, X
′
n+1]

.
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Note that as a consequence of these property we can also see that

[X1, X
′
1] [Xn, X

′
n] [Y, Y ′][B,B′]

=

[B,B′] [X1, X
′
1] [Xn, X

′
n] [Y, Y ′]

[iB ⊗ βX1...Xn,Y , iB′ ⊗ βX′
1...X

′
n,Y ′ ]

One may wonder why we do not analogously ask for representability of the inputs of

P by tensors. Such a property would be convenient, however, there are good reasons

to omit this form of representability. First, our simple example of D-supermaps on C

on simple types, is representable in its output structure but not in its input structure.

This is because supermaps outputs [A,A′][B,B′] are representable by another simple type

[A⊗B,A′ ⊗B′]. Inputs, on the other hand, we expect would be representable not on the

space of all bipartite maps but just some abstraction of the non-signalling ones. So, without

working with supermaps on constrained spaces, we would not expect to see representability

for inputs. This issue also arises in [121], in which circuits with holes are observed to be

promonoidal [245] rather than fully monoidal.

We will now introduce an additional diagrammatic function-box style notation which

will make it easier for us to work with polycategories satisfying our two axioms, which we

will tentatively refer to as theories of supermaps. The key idea is to write the inverse of

the isomorphism given by representability diagrammatically as a merging map:

ϕ

,

with the defining diagramamtic condition being that merging and then splitting does

nothing as follows:

ϕ

=

ϕ

.
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It is likely, that such diagrams are related to, or more easily represented by, proof nets for

linearly distributive categories [246]. There are a few key diagrammatic laws which can

then be directly inferred, and which will be used in the main theorem of this section, we

will collect them together now to streamline the presentation of this theorem. First of all,

since

ϕ

⊗

f

=

ϕ

⊗

f

=

ϕ

⊗

f

,

then by the Frobenius law

ϕ

⊗

f

=

ϕ

⊗

f

,

and so

ϕ

⊗

f

=

ϕ

⊗

f

.
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The next rule, shows that black dots can be merged in the following sense:

ϕ

=

ϕ

.

Indeed, this property follows immediately from the fact that

ϕ

=

ϕ

=

ϕ

.

Using similar techniques, one can derive a naturality property for function-box dots

ϕ

[f ⊗ f ′, g ⊗ g′]

=
[f ′, g′]

ϕ

[f, g]
,

and furthermore one can derive a symmetry law for function-box dots:

ϕ

=

[βBA, βA′B′ ]

ϕ

.

The generalisation of this law which we proved for splitting maps, is also inherited to the
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corresponding function-box dots to give

[B,B′] [X1, X
′
1] [Xn, X

′
n] [Y, Y ′]

ϕ

=

[B,B′] [X1, X
′
1] [Xn, X

′
n] [Y, Y ′]

[iB ⊗ βX1...Xn,Y , iB′ ⊗ βX′
1...X

′
n,Y ′ ]

ϕ

.

Using these diagrammatic notations will greatly simplify the presentation of our main

result, where we will see that in any theory of supermaps, the morphisms of type [A,A′]→
[B,B′] define locally-applicable transformations of the same type. No theorem, on the

soundness for even string diagrams for symmetric polycategories prior to introduction of

functions boxes for representability, is known to the author. As a result, the proofs and

calculations of this chapter can only be seen as efficient instructions for constructing more

elaborate algebraic proofs.

To phrase the main result of this section we will define P[−,=] to be the sub-polycategory

of P with only objects of the form [A,A′].

Theorem 9 (Theories of Supermaps Define Theories of Locally-Applicable Transfor-

mations). For every P-smc C which is a theory of supermaps, there is a multifunctor

F : P[−,=] → Lot[C].

Proof. On objects we take F [A,A′] = [A,A′] and on morphisms we take

F(S : [A1, A
′
1] . . . [An, A

′
n]→ [B,B′])E1...En,E′1...E

′
n
(ϕ1, . . . , ϕn)

to be given by:

ϕ1 ϕn

S

,
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where we use cotensors to split each ϕi ∈ P(•, [AiEi, A
′
iE

′
i]) into a state with two outputs

of type P(•, [Ai, A
′
i][Ei, E

′
i]) so that we can apply S to the [Ai, A

′
i] part.

We now check the result is indeed a locally-applicable transformation of the same type,

to do so we check commutation with all combs by separately checking commutation with

sequential and parallel compositions5. We give the proof for one-input supermaps for

simplicity, the multi-input case can then be proven by induction. In the single-input case,

we have for the dragging law

ϕ1

S

⊗

◦

=

⊗

ϕ1

S
◦ =

ϕ1

S

⊗

◦

.

For the sliding law we have

ϕ1

S

[i⊗ f, i⊗ g]

=
[f, g]

ϕ1

S =

ϕ1

S

[i⊗ f, i⊗ g]

.

Let us now verify the multi-input case by induction, assume that the hypothesis is true

for the N -input case, now consider the N + 1 input case. A family of functions is an

N+1-input locally-applicable transformation if filling in the first N entries gives an N = 1

input locally-applicable transformation and filling in the last entry gives an N -input locally

applicable transformation (up to applying swaps). Indeed, for the former case see that

5See the proof of theorem 14 for a fuller discussion of sliding and dragging rules.
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since

ϕ1 ψ

S

ϕN

=

ϕ1

ψ

S

ϕN

,

we can use representability to recover the required form

ψ

T

=

ψ

T
,

and so filling in the first N -inputs gives a 1-input locally applicable transformation. For
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the latter case

ϕ1 ψ

[iB ⊗ βX1...XN ,XN+1 , iB′ ⊗ βX′
1...X

′
N

,X′
N+1

]

S

ϕN

=

ϕ1 ψ

S

ϕN

,

which by the interchange law can be rewritten as

ϕ1

ψ

S

ϕN

=

ϕ1

T

ϕN

.
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After using the merging rule this gives

ϕ1

T

ϕN

,

and so filling input N+1 gives up to swaps an N -input locally applicable transformation by

assumption of the induction hypothesis, completing the proof. Multifunctorality follows

from the key diagrammatic rule for representability, merging then splitting returns the

identity.

4.6 Summary

In this section we defined locally-applicable transformations, families of functions satisfying

a simple set of axioms for describing the action of a supermap on part of a bipartite process.

The locally-applicable transformations on C furthermore form a faithful multicategory

which enriches C, and so provides a candidate theory of supermaps with the basic features

we identified as key in the previous chapter. It’s not clear in general that locally-applicable

transformations can be used to construct theories of supermaps, meaning enrichments into

polycategories with a few extra axioms, however, we discovered that theories of supermaps

always can be mapped into the theory of locally-applicable transformations. For now

though, there is another way to confirm whether Lot[C] is a good model for supermaps

on C, apply it to cases of interest and see if it recovers the original physicists’ definitions.

This will be the topic of the next chapter, and the main technical contribution of the

thesis.
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Chapter 5

Quantum Superchannels are
Characterized by
Local-Applicability

We have now established a minimal requirement for supermaps, they must define locally-

applicable transformations. In this chapter we find that locally-applicable transformations

on the monoidal category of quantum channels are in a one-to-one correspondence with

the quantum superchannels. In other words, we find that this minimum behaviour law is

all that is needed to reconstruct the most commonly used notion of supermap.

Before we begin, let us see the crux of the proof in a simplified form. The crux is

in-fact rather trivial, every locally-applicable transformation on the completely positive

maps is representable by a completely positive map, because the completely positive maps

are compact closed. The key technical difficulties in this section will be concerned with

showing that every locally-applicable transformation on the quantum channels can be

uniquely extended to a locally applicable transformation on the completely positive maps.

Theorem 10. Locally-applicable transformations on a compact closed category C of type

[A,A′]→ [B,B′] are in one-to-one correspondence with the morphisms in C of type A∗ ⊗
A→ B∗ ⊗B.

Proof. The key trick is to apply the locally-applicable transformation to the swap, to

convert the intuitive functional wires into genuine wires of C:

S

B∗B′

A∗ A′

:=

S

,
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thereby sending each locally-applicable transformation to a morphism of C. We also know

that every morphism of C can be sent to a locally applicable transformation on C, but we

do not yet know if these two mappings are inverse to each-other. We confirm that they

are, indeed by local-applicability:

S

ϕ

=

S

ϕ

,

which by compact closure gives

S

ϕ .

This theorem extends to multi-party locally-applicable transformations by induction.

Theorem 11. Let C be a compact closed category, there is a one-to-one correspondence

Lot[C]([A1, A
′
1] . . . [An, A

′
n], [B,B′]) ∼= C(A∗

1 ⊗A′
1 . . . A

∗
n ⊗A′

n, B
∗ ⊗B′)

So, we can see two pieces of a puzzle coming together, locally-applicable transforma-

tions on compact closed categories internalise, and the quantum channels embed into a

compact closed category of completely positive maps. Our goal will be to put these pieces

together, showing that every locally-applicable transformation on quantum channels ex-

tends to the completely positive maps in a unique way, so that we can then use the above

observations on the internalisation of locally-applicable transformations on compact closed

categories.
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5.1 Characterisation of Superchannels

In this section we prove that the principle of local-applicability is sufficient to characterise

quantum supermaps. Concretely we show that for any locally-applicable transformation S

on QC of type K →M with K,M satisfying two additional properties, there exists a CP-

supermap SQ of type K →M which implements it. Formal meaning of implementation is

given by existence of some SQ such that S = FCP,QC(SQ) where FCP,QC is the embedding

from CP-supermaps into locally-applicable transformations previously defined in the proof

of lemma 4.

To show the characterisation of locally-applicable transformations as quantum su-

permaps we will need to establish a few preliminary lemmas on the kinds of sets of channels

for which our characterisation will work.

Definition 28. A set K ⊆ QC(A,A′) is termed normal if for every effects d : A→ I and

state ρ : I → A then the process ρ ◦ d : A→ A′ is in K.

The reason that such sets are of importance to us is that the swap morphism is guar-

anteed to be within the dilation extension.

Lemma 6. Let K ⊆ QC(A,A′) be a normal set, then SWAPA,A′ ∈ dextA′,A(K).

Proof. Every process of QC(A,A′) given by applying a state and effect to half of the swap

channel, is a discard-prepare channel.

We will also make use of the notion of convexity, we say that a subset K ⊆ QC(A,A′)

is convex if for every f, g ∈ K and p ∈ [0, 1] then pf + (1− p)g ∈ K.

Definition 29 (Control). A set K has control if for every pair ϕ0, ϕ1 ∈ dextX,X′(K)

there exists Φ ∈ dextX⊗Y,X′⊗Y ′(S) and a pair of states ρ0, ρ1 such that:

=ϕ

ρi

ϕi .

The existence of control is equivalent to asking for closure under convex combinations.

Lemma 7. A set K ⊆ QC(A,A′) has control if and only if it is convex.

Proof. We begin by showing that whenever K is convex it has control. Note that whenever

K is convex then dextX,X′(K) is convex for every choice of X and X ′. Now choose a pair

of states ρ0, ρ1 ∈ QC(I, Y ) on an object Y which are distinguishable in the sense that

there exist effects e0, e1 ∈ CP(Y, I) satisfying ei◦ρj = δij and then construct the following

process Φ

ϕ := ϕ0 e0 + ϕ1 e1 .

106



Certainly by inserting ρ0, ρ1 into the rightmost wire of the above process the channels

ϕ0, ϕ1 are recovered, what remains is to show that Φ is in dextX,X′(K). Indeed consider

checking the reduction of Φ given by applying an arbitrary state and effect of QC to its

auxiliary wires, given that QC is causal this is given by:

ϕ0 e0

ρ

+ ϕ1 e1

ρ

for some ρ. Now note that each of the post-selected states is a normalised state multiplied

by a probability, indeed defining:

p(ei|ρ) :=
ei

ρ
and ρ|i :=

1
ei

ρ

×
ei

ρ

then

ei

ρ
=

ei

ρ
× 1

ei

ρ

×
ei

ρ
= p(ei|ρ)× ρ|i

where the p(ei|ρ) are probabilities since

p(e0|ρ) + p(e1|ρ) =
e0

ρ
+

e1

ρ
= 1.

Note that each ρ|i is a normalised density matrix since

Tr[ρ|i] =
1
ei

ρ

×
ei

ρ
= 1.

Since ϕ0, ϕ1 are elements of dextX,X′(K) it then follows from the above that the reduction

of Φ is a convex combination of elements of K, explicitly the application of arbitrary state

and effect to Φ returns:

p(e0|ρ) ϕ0

ρ|0

+ p(e1|ρ) ϕ1

ρ|1

where p(e0|ρ) + p(e1|ρ) = 1. We now check the converse, that when K has control it

is convex. Indeed, for any ϕ0, ϕ1 ∈ K choose their control operation Φ ∈ dextY,I(K).

Consider an arbitrary convex combination pϕ0 + (1 − p)ϕ1, this combination is given by

inserting σ := pρ0 + (1 − p)ρ1 into the wire Y of Φ. Since Φ is in dextY,I then insertion

of σ into Φ must return an element of K and so it follows that the convex combination

pϕ0 + (1− p)ϕ1 is an element of K.
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Lemma 8 (Convex linearity). Let K,M be convex, then every locally-applicable transfor-

mation of type S : K →M on QC preserves convex combinations.

Proof. Consider a pair ϕi ∈ dextX,X′(K) of channels, since K is convex it has control,

there exists ϕ ∈ dextX,X′(K) such that

=ϕ

ρi

ϕi ,

and so an arbitrary convex combination pϕ0 + (1− p)ϕ1 can be written as

pϕ0 + (1− p)ϕ1 = ϕ

ρp

,

with ρp := pρ0 + (1 − p)ρ1. Writing p0 = p and p1 = (1 − p), then SX,X′(p0ϕ0 + p1ϕ1) is

given using naturality by:

SXX′

pϕo + (1− p)ϕ1 =

SXX′

ϕ

ρp

=

SXY,X′

ϕ

ρp

.

Rewriting ρ in terms of ρ0, ρ1 gives

=

SXY,X′

ϕ

ρ0

po +

SXY,X′

ϕ

ρ1

p1 ,

then using naturality again

=

SX,X′

ϕ

ρ0

p0 +

SX,X′

ϕ

ρ1

p1 ,

108



and finally using the definition of control recovers the result

=

SXX′

ϕop0 +

SXX′

ϕ1p1 = p0SX,X′(ϕ0)+p1SX,X′(ϕ1).

From this point follows a technical lemma, intuitively concerned with the existence of

a unique extension of each SXX′ to action on all completely positive maps. We will use

the notation CP≤(X ′, I) for the set of all σ ∈ CP(X ′, I) such that

− σ ∈ CP(X ′, I).

Lemma 9 (Extension to Completely Positive maps). Let K,M be convex, for any locally-

applicable transformation of type S : K →M and pair of triples (ρ1, ϕ1, σ1) ∈ QC(I,X)×
K(X,X ′)×CP≥(X ′, I), (ρ2, ϕ2, σ2) ∈ QC(I, Y )×K(Y, Y ′)×CP≥(Y ′, I) such that

ϕ2

ρ2

σ2

= ϕ1

ρ1

σ1

then

SY Y ′

ϕ2

ρ2

σ2

=

SXX′

ϕ1

ρ1

σ1

.

Proof. Let

ϕ2

ρ2

σ2

= ϕ1

ρ1

σ1

.

Consider some Hilbert space Q of dimension at least 2 so that there exists two orthogonal

states |a⟩ , |b⟩ ∈ Q, then define the process Σ1 : X ′ → Q by

Σ1 =
σ1

a

+


σ1

b

−

 .
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A process Σ2 : Y ′ → Q can be defined similarly as

Σ2 =
σ2

a

+


σ2

b

−

 .

Note that both Σ,Σ′ are trace preserving and so are members of QC, meaning that they

can be slid along dotted wires. We now consider the result of applying them to ϕ1, ϕ2:

ϕi

ρi

Σi

=
ϕi

ρi

a

σi

+
ϕi

ρi

b

−
ϕi

ρi

b

σi

,

this in turn implies that

ϕ1

ρ1

Σ1

− ϕ2

ρ2

Σ2

=
ϕ1

ρ1

b

−
ϕ2

ρ2

b

,

and so that

1

2
ϕ1

ρ1

Σ1

+
1

2 ϕ2

ρ2

b

=
1

2 ϕ1

ρ1

b

+
1

2
ϕ2

ρ2

Σ2

.

By convex linearity of each SZZ′ we can then conclude that

1

2

SIQ

ϕ1

ρ1

Σ1

+
1

2 ϕ2

ρ2

b

SIQ

is equal to

1

2 ϕ1

ρ1

b

SIQ

+
1

2

SIQ

ϕ2

ρ2

Σ2

,
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and so that

SIQ

ϕ1

ρ1

Σ1

−

SIQ

ϕ2

ρ2

Σ2

, (5.1)

is equal to

ϕ1

ρ1

b

SIQ

−
ϕ2

ρ2

b

SIQ

. (5.2)

We will make use of the above to show that the following expression:

SIX′

ϕ1

ρ1

σ1

−

SIY ′

ϕ2

ρ2

σ2

is 0. Indeed by definition of Σ1 and Σ2 the above expression is equal to

SIX′

ϕ1

ρ1

a

Σ1

−

SIY ′

ϕ2

ρ2

a

Σ2

,
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and since Σ1,Σ2 are quantum channels they can be pulled through dotted lines

=

SIQ

ϕ1

ρ1

Σ1

a

−

SIQ

ϕ2

ρ2

Σ2

a

after which we make use of the equality of expressions 5.1 and 5.2:

=
ϕ1

ρ1

b

SIQ

a

−
ϕ2

ρ2

b

SIQ

a

.

Finally, since the preparation b : I → X ′ is a quantum channel, it can be pulled back

through dotted wires, after which orthogonality implies that the difference has to be 0:

=
ϕ1

ρ1

SII

a

b

−
ϕ2

ρ2

SII

a

b

= 0.

Since the difference is 0 then it follows that

SIX′

ϕ1

ρ1

σ1

=

SIY ′

ϕ2

ρ2

σ2

. (5.3)

We can now consider the bottom side which is easier to reason with. Since every ρ ∈
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QC(I,X) we can write

SY Y ′

ϕ2

ρ2

σ2

=

SIY ′

ϕ2

ρ2

σ2

which by using equation 5.3 is equal to

SIX′

ϕ1

ρ1

σ1

=

SXX′

ϕ1

ρ1

σ1

.

The above is the key to our result, we now are ready to construct a candidate quantum

supermap for simulating the action of our locally-applicable transformation SX,X′ by tensor

extension with identities on X,X ′. To do so we apply our locally-applicable transformation

S to the swap-morphism, the intuition being that the swap gives a way to noiselessly

extract information about the input behaviour of a higher order map, by converting its

input into a pair of lower-order objects.

Theorem 12 (Re-characterisation of supermaps). Let K,M be normal convex subsets of

channels of QC, there is a one-to-one correspondence between quantum supermaps of type

K →M and locally-applicable transformations of the same type.

Proof. Given a locally-applicable transformation S of type K → M on QC with K ⊆
QC(A,A′) and M ⊆ QC(B,B′) we define SQ : A∗ ⊗A′ → B∗ ⊗B′ by:

S

B∗B′

A∗ A′

:=

S

.
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In other words we apply S to the swap in QC and then embed into CP so that we may

apply caps and cups, note that normality of K,M is required here to ensure that the

swap lives within their dilation extensions. We now consider the application of arbitrary

states and effects ρ, σ in CP to the auxiliary wires with ρ a normalised state and σ a

sub-normalised effect in CP≥(X ′, I). First a direct use of local applicability gives us

S

ϕ

σ

ρ

=

S

ϕ

σ

ρ

1
d2

1
d2

d4

,

after-which using lemma 9 we can say that

S

ϕ

σ

ρ

1
d2

1
d2

d4

=

S

ϕ

ρ

σ

d4

1
d4

.

Since this is true for all ρ ∈ QC(I,X), σ ∈ CP≤(X ′, I) it is true for all ρ ∈ CP(I,X) and
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σ ∈ CP(X ′, I), from here it follows that:

S

ϕ

=

S

ϕ ,

where we have made use of the local well-pointedness of CP which follows from combining

its well-pointedness and compact closure as in [126]. To conclude, there indeed exists a

quantum supermap of type SQ : K → M, such that FCP(SQ) = S where FCP is the

embedding of lemma 4 from CP-supermaps on QC into locally-applicable transformations

on QC.

Let us now turn our attention to the multi-party case. Rather than going from the

beginning we can work inductively by noting that any multi-input locally-applicable trans-

formation defines a single-input locally-applicable transformation when all but one of its

variables are fixed.

Corollary 1. let K1, . . . ,Kn,M be convex sets of morphisms of QC, there is a one-to-

one correspondence between CP-supermaps of type K1 . . .Kn → M and locally-applicable

transformations of the same type.

Proof. That CP-supermaps still give locally-applicable transformations follows from mul-

tiple uses of the interchange law for symmetric monoidal categories. What remains is to

prove that every locally-applicable transformation is implemented by a CP-supermap. Up

to braiding the family of functions given by

S((−)ψ2 . . . ψn)X1,X′1
(ψ1) := S(ψ1 . . . ψn)X1...Xn,X′1...X

′
n

is a locally-applicable transformation with one-input, consequently we can use our main
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theorem to show that

S . . .

B

B′

ϕ1 ϕn

is equal to

S . . .

B

B′

ϕ1

ϕn

.

Repeating this step for each consecutive input from 2 to n returns

S . . .

B

B′

ϕ1 ϕn

X1 X ′
1

X ′
nX ′

1

,

which completes the proof.

5.1.1 Characterisation of Classical Supermaps

We will now see that the basic structural features of the category of quantum channels

which we used to characterise the locally-applicable transformations, are also present in

the category of classical quantum channels, or stochastic matrices.

Lemma 10. A subset K ∈ Stoch(A,A′) is convex if and only if it has control

Proof. All that was required to construct the proof was the existence of an object Y with

a pair of distinguishable states in the sense that ei ◦ ρj = δij and the possibility to take

positive sums. Sums are taken care of by Mat[R+] and Y may be taken to be 2. Indeed

one can define ρi : 1 → 2 by taking the kth component of the column vector ρi to be δik

and similarly for the effects ej : 2→ 1.
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Theorem 13. For K,M convex in Stoch there is a one-to-one correspondence between the

Mat[R+]-supermaps of type K →M on Stoch and the locally-applicable transformations

of type K →M on Stoch.

Proof. The proof is a direct copy of the proof for convex subsets of quantum channels. Let

us briefly outline the required commonalities between Stoch and QC and between CP

and Mat[R+] needed to get the proof to work. First, the equivalent between convexity

and control implies convexity of locally-applicable transformations. Second, Mat[R+]

embeds into Mat[R] so that subtractions can be defined, and that for every effect σ ∈
Mat[R+](A, I) there exists λ ∈ R+ and σ′ ∈Mat such that λσ + σ′ is in Stoch. Finally,

Mat[R+] is compact closed and well-pointed.

5.2 Quantum Supermaps are Natural Transformations

In this section we will show that the space of quantum superchannels corresponds to one

of the most fundamental categorical concepts, they are the space natural transformations

between well-chosen functors. In the preliminary material we introduced the hom-functor

C(−,=) : Cop × C → Set. When C is a monoidal category, the hom-functor can be

generalised to a functor of type

C(A⊗−, A′⊗ =) : Cop ×C −→ Set,

which assigns to each (X,X ′) the object C(A ⊗ X,A′ ⊗ X ′) and to each morphism f :

Y → X and each morphism g : X ′ → Y ′ the function

C(A⊗ f,A′ ⊗ g) : C(A⊗X,A′ ⊗X ′)→ C(A⊗ Y,A′ ⊗ Y ′)

C(A⊗ f,A′ ⊗ g) :: ϕ 7→ (i⊗ g) ◦ ϕ ◦ (i⊗ f).

This functor can be further generalised to a functor dext(K)(−,=), which we now define.

Definition 30 (Extension functor). For every K ⊆ C(A,A′) in a symmetric monoidal

category C one can define a functor dext(K)(−,=) : Cop ×C→ Set given by

• dext(K)(X,X ′) := dextX,X′(K)

• dext(K)(f, g) : dextX,X′(K)→ dextY,Y ′(K) defined by

dext(K)(f, g)(ϕ) := Φ

f

g
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The functor C(A⊗−, A′⊗ =) can be defined as the special case given by dext(C(A,A′)).

dext is well defined, whenever ϕ ∈ dextX,X′(S) then dext(S)(f, g)(ϕ) ∈ dextY,Y ′(S) since

for each f, g and ρ, σ then

σ

ρ

Φ

f

g

= Φ

σ′

ρ′

∈ K

since ϕ ∈ dextX,X′(K). Furthermore the assignment dext(S)(f, g) is functorial since

dext(S)(f ′, g′)(dext(S)(f, g)(ϕ)) = Φ

f

g

g′

f ′

= dext(S)(f ◦ f ′, g′ ◦ g)(ϕ)

Theorem 14 (Quantum Superchannels are Equivalent to Natural Transformations).

There is a one-to-one correspondence between quantum supermaps of type [A,A′]→ [B,B′]

and natural transformations of type C(A⊗−, A′⊗ =)→ C(B ⊗−, B′⊗ =).

Proof. The definition of locally-applicable transformation can be split into two separate

parts which we will call sliding

SXX′ ϕ

g

f

= SY Y ′ ϕ

g

f

,

and dragging

SX,X′

Φ ψ =

SXY,X′Y ′

Φ ψ .
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In the monoidal category of quantum channels, sliding implies dragging, this is because

for all causal ρ assuming sliding gives:

SIXY,X′Y ′

Φ

ρ

ψ =

SX,Y ′X′

Φ ψ

ρ

=

SXX′

Φ

ψ

ρ

=

SXX′

Φ
ψ

ρ

Together these entail box-dragging since quantum theory has enough causal states [126].

We will now show that a natural transformation of type S : C(A ⊗ −, A′ ⊗ =) −→
C(B⊗−, B′⊗ =) is exactly a family of functions which satisfies sliding. Indeed, a natural

transformation S : C(A⊗−, A′⊗ =) −→ C(B⊗−, B′⊗ =) will be any family of functions

SXX′ making the following diagram commute for all f, g:

C(A⊗X,A′ ⊗X ′) C(B ⊗X,B′ ⊗X ′)

C(A⊗ Y,A′ ⊗ Y ′) C(B ⊗ Y,B′ ⊗ Y ′)

SXX′

C(A⊗f,A′⊗g) C(B⊗f,B′⊗g)

SY Y ′

In other words such that SY,Y ′ ◦C(B⊗f,B′⊗g) = C(B⊗f,B′⊗g)◦SX,X′ . Evaluated on

processes ϕ, this condition reads SY,Y ′(C(B⊗f,B′⊗g)(ϕ)) = C(B⊗f,B′⊗g)(SX,X′(ϕ)),

which unpacking the definition of C(B ⊗ f,B′ ⊗ g) is precisely the sliding rule.

This observation extends to general subsets, so that a locally-applicable transforma-

tion of type S : K → M in QC is exactly a natural transformation of type SX,X′ :

dextX,X′(K)→ dextX,X′(M). Locally applicable transformations of type K1 . . .Kn →M

on QC can similarly be phrased as natural transformations of type

n

×
i=1

dext−i,=i(K
i) −→ dext⊗n

i=1 −i,···
⊗n

j=1=i
(M)

where for any F : C1 → C2 and G : D1 → D2 the product functor F × G : C1 ×D1 →
C2 ×D2 is defined by (F × G)(c, d) = (F(c),G(d)) and similarly on morphisms.
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5.3 Summary

A construction Lot[−] exists which:

• Is motivated in terms of an easy to argue bare-minimum requirement for supermaps.

• Always has sequential and parallel composition supermaps.

• Sends the symmetric monoidal category QC of quantum channels to the superchan-

nels.

In short, it appears that supermaps have been generalised to all symmetric monoidal

categories.

However, some pesky questions rear their heads. First, can locally-applicable transfor-

mations be given multiple outputs and a polycategorical composition rule, as the super-

channels and superunitaries can, and as is suggested by the intuitive picture of a supermap?

Second, what happens when Lot[−] is applied to the category of unitaries, do we recover

the superunitaries? It turns out the answer to both questions is no, and so, the story is

not over yet.
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Chapter 6

How to Construct Theories of
Black-Box Supermaps

Throughout this thesis we have considered two kinds of goals for definitions of supermaps

as outlined in the following bullet points.

• Goal 1: When applied to symmetric monoidal categories of interest in quantum

theory, they recover the standard-usage quantum supermaps [17] for those categories

• Goal 2: When applied to any symmetric monoidal category, they can be equipped

with some key compositional structures

For the first goal, we would like our theories to recover the superchannels when applied to

the quantum channels, and recover the superunitaries when applied to the unitaries. For

the second goal, we would like to see polycategorical and enriched structures. Previously,

we made some progress towards these goals using locally-applicable transformations. We

found that the construction Lot[−] sends each symmetric monoidal category C to a sym-

metric multicategory which enriches C. We also found that when applied to the symmetric

monoidal category QC of quantum channels then Lot[QC] returns the superchannels.

In this chapter we will begin by arguing that to make further progress we need to

adapt locally-applicable transformations to define polyslots on symmetric monoidal cate-

gories. We will begin by identifying some problematic locally-applicable transformations

on the symmetric monoidal category of unitaries, and then move on to defining polyslots

and their polycategorical composition rules, finishing by proving characterisation of the

superunitaries.

6.1 Locally-applicable Transformations which are not Supe-
runitaries

Here we are going to write down two locally-applicable transformations on the unitaries

which cannot be constructed from superunitaries and prevent us from constructing a
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polycategorical composition rule which satisfies the interchange law. Our first example is

one which applies a trace [247] to unitaries conditional on their decompositional structure.

Definition 31. The locally-applicable transformation Sloop : [A,A] → [A,A] on the sym-

metric monoidal category U is defined by taking Sloop
XX′(ϕ) to be

:= ϕ

A X

X ′A

if ∃ unitaries R,L s.t ϕ =

L

R

(6.1)

:= ϕ if else (6.2)

Our second example is one which applies a post-processing conditional on the same

decompositional structure.

Definition 32. The locally-applicable transformation SV : [A,A] → [A,A] on the sym-

metric monoidal category U is defined by taking SV
XX′(ϕ) to be

:=

V

ϕ if ∃ unitaries R,L s.t ϕ =

L

R

(6.3)

:= ϕ if else (6.4)

As we suggested in the introduction, these locally-applicable transformations are not

superunitaries, formally we mean that they are not in the image of the functor FU :

uQS→ Lot[U] which assigns a locally-applicable transformation to each superunitary.

Lemma 11. Let S : [A,A]→ [A,A] be a quantum superunitary such that

Sloop
XX′

A

A

ϕ

X

X ′

=

S

ϕ ,

then A ∼= I.
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Proof. Assuming the premise of the lemma, consider an arbitrary object A and its asso-

ciated identity morphism idA, then:

=

Sloop

=

S

=

S

(6.5)

=

Sloop

= (6.6)

The loop in fHilb is the dimension d of the Hilbert space, which gives a contradiction

unless dA = 1 [22]. Consequently, A ∼= C.

Lemma 12. Let S : [A,A]→ [A,A] be a quantum superunitary such that

SV
XX′

B

B′

ϕ

X

X ′

=

S

ϕ ,

then V = idA.

Proof. This follows from the same sequence of steps used to prove lemma 11.

Let us now consider the issue with trying to construct a polycategorical composition

rule. The issue is a failure of interchange law and can be seen even when considering

single-input maps, in which case the issue is really one of trying to construct a monoidal

category of single-input locally-applicable transformations.

Intuitively we imagine that given access to a bipartite process ϕ : A⊗B → A′⊗B′, one

could imagine applying some supermap S⊠T which represents acting with S : [A1, A
′
1]→

[A2, A
′
2] on the left hand side and with T : [B1, B

′
1]→ [B2, B

′
2] on the right hand side:

S
ϕ

T .
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To see the approximate issues concerning the interchange law for composition of locally-

applicable transformations, imagine defining the application on the right hand side for T

by

ϕ

TXX′

X

X

X

X

= ϕ

TXX′

.

One could hope to give meaning to the picture representing some notion of (id ⊗ SV ) ◦
(Sloop ⊗ id) by

Sloop
ϕ

SV

∼=

Sloop

ϕ

SV

Analogously we can write what we would hope to be the diagram representing (Sloop ⊗
id) ◦ (id⊗ SV ):

Sloop

ϕ
SV

∼=

SV

ϕ

Sloop

In a monoidal category these two terms would need to be the same, however, for the

specific locally-applicable transformations SV and Sloop we can see that this will not be

the case. Consider the action of each term on the swap morphism, the first order of
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composition gives

Sloop

SV

=

SV

= ,

whereas the second order of composition gives:

SV

Sloop

=

Sloop

V

= V .

In short, the locally-applicable transformations on U which are not superunitaries are

those which break the interchange law.

6.2 Solution: Slots

We now strengthen the construction of locally-applicable transformations over monoidal

categories, to do so we will need to introduce some new diagrammatic notation:

T

:=

T

. (6.7)

We will now define Strongly LOcally-applicable Transformations, for short slots, as those

locally-applicable transformations which are so local that they commute with any locally-

applicable transformations applied to auxiliary wires.
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Definition 33. A slot of type S : [A1, A
′
1]→ [A2, A

′
2] is a locally-applicable transformation

of the same type such that for every locally-applicable transformation T : [B1, B
′
1] →

[B2, B
′
2] and ϕ ∈ C(A1 ⊗B1 ⊗X,A′

1 ⊗B′
1 ⊗X ′) then:

SB1X,B′1X
′

TA2X,A′2X
′

ϕ =

SB2X,B′2X
′

TA1X,A′1X
′

ϕ . (6.8)

Thinking of slots in this way makes it clear that they form a monoidal category with tensor

product [A,A′] ⊠ [B,B′] = [A⊗B,A′ ⊗B′].

So in intuitive terms, slots are those functions that are so local, that they commute

not only with combs but with all other functions which commute with combs. A more-

categorical way to think of slots is as the central morphisms of the pre-monoidal category

of locally-applicable transformations [248]1.

6.3 The Multi-Input Case: Polyslots

We now consider a multi-party generalisation of slots to polyslots. The key idea is that

each individual component of a polyslot acts as a slot. We will use the notation ∥A∥
to denote the set of natural numbers {1 . . . |A|} with |A| the length of list A. In the

diagrammatic representation of locally-applicable transformations, we will use the symbol

X to denote the monoidal product of the elements of a list X of objects of C whenever the

meaning is clear from context. Using these notations, we will use a shorthand for families

of functions of type

S
X′1...X

′
∥A∥

X1...X∥A∥
: ×
i∈∥A∥

C(Ai ⊗Xi, A
′
i ⊗X ′

i) −→ C(B
⊗
i∈∥A∥

Xi, B
′
⊗
j∈∥A∥

X ′
j),

1The author is grateful to James Hefford for this observation.
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by moving freely between the following diagrammatic representations of the same family:

S

XiB

B′

ϕi

X ′
i

∼=
S

Xi≤kB

B′

ϕi≤k

X ′
i≤k

Xi>k

ϕi>k

X ′
i>k

(6.9)

∼=
S

Xi<kB

B′

ϕi<k

X ′
k

Xk

ϕk

X ′
i<k

Xi>k

ϕi>k

X ′
i>k

. (6.10)

In terms of this compacted notation, we can very cleanly define polsylots.

Definition 34 (Polyslots). Let A be a list with each element of the form Ai = [Ai, A
′
i]

for some objects Ai, A
′
i of C. A poly-slot of type S : A → [B,B′] is a locally-applicable

transformation of type A→ [B,B′] such that for every k and every element

ϕ(i) ∈ ×
i∈ ∥A∥

k

C(Ai ⊗Xi, A
′
i ⊗X ′

i),

then the family of functions given by

Ŝ(ϕ(i))

Xi<kB

B′ X ′
k

Xk

ϕk

X ′
i<k

Xi>k

X ′
i>k

:=

S

Xi<k

. . .

B

B′

ϕi<k

X ′
k

Xk

ϕk . . .

X ′
i<k

Xi>k

ϕi>k

X ′
i>k

, (6.11)

is a slot of type

[Ak, A
′
k]→ [B

⊗
i∈ ∥A∥

k

Xi, B
′
⊗

j∈ ∥A∥
k

X ′
j ]. (6.12)

By defining polyslots as functions which behave locally as slots, we guarantee that they

will satisfy the required associativity/interchange laws for polycategories.

Theorem 15. The polyslots on C define a symmetric polycategory pslot[C] with:
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• Objects given by pairs [A,A′] with A,A′ objects of C.

• Morphisms of type S : A → B given by polyslots of type S : [A1, A
′
1] . . . [An, A

′
n] →

[B1 ⊗ · · · ⊗Bm, B
′
1 ⊗ · · · ⊗B′

m].

• Composition T ◦M S of S : A → BMC and T : DME → F given by taking

T ◦M S(d(i), a(j), e(k)) to be

T

. . .

F

F ′

. . . e(i)

Xe
i

Xe
i
′

d(i)

Xd
i

Xd
i
′

S

a(i)

B′

B

M

M ′

C

C ′

Xa
i

Xa
i
′

. (6.13)

Proof. Given in Appendix B.

Theorem 16. The polyslot construction pslot[C] returns a theory of supermaps

Proof. The sequential and parallel composition locally-applicable transformations intro-

duced to see Lot[C] as an enrichment of C can easily seen to be polyslots. Defining

[A,A′] ⊠ [B,B′] := [A ⊗ B,A′ ⊗ B′] the cotensor polyslots ⊠ : [A,A′] ⊠ [B,B′] →
[A,A′][B,B′] which turn the outputs of the polycategory representable are given by defin-

ing each ⊠X,X′ : C(A⊗B⊗X,A′⊗B′⊗X ′)→ C(A⊗B⊗X,A′⊗B′⊗X ′) to be the identity

function. By virtue of being the identity, unique representability of each multiple output

morphism by the cotensor and compatibility with the symmetric monoidal enrichment of

C are immediate.

Taking a step back here, what we appear to have done is to take a generalisation

of polycategories in which the interchange law is not assumed to hold, and have then

simply forced the interchange law. This is yet again reminiscent of taking the centre of a

pre-monoidal category. Such a notion has been generalised to taking the centre of a pre-

multicategory [249], and it is likely that the polycategory of polyslots arises from taking

the centre of some further generalised notion of pre-polycategory.
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6.3.1 Single-Party-Representable Supermaps

Just as a polyslot is one which behaves as a slot at each input, we can define a sub-theory

of single-party representable maps meaning those which behave as a comb at each input2.

Note, that we do not require the entire higher-order process to be a circuit with many

holes, instead we are requiring that when all but one input is filled-in, what remains is

a circuit with a single hole. It turns out that by the decomposition theorem for single-

party superchannels and superunitaries [12] that this construction will also be sufficient

to reconstruct the superchannels and superunitaries. We however prefer to focus on the

polyslots, since they do not assume apriori such a decomposition into combs, and are

strictly more general, instead purely being phrased in terms of strength of locality.

Definition 35. A single-party representable supermap of type

S : [A1, A
′
1] . . . [AN , A

′
N ]→ [B,B′]

is a family of functions

SX1...XN ,X′1...X
′
N

: ×
l∈ ∥A∥

k

C(Al ⊗Xl, A
′
l ⊗X ′

l)→ C(B
⊗
i∈ ∥A∥

k

Xi, B
′
1

⊗
j∈ ∥A∥

k

X ′
j)

such that for every k and every element

ϕ(i) ∈ ×
i∈ ∥A∥

k

C(Ai ⊗Xi, A
′
i ⊗X ′

i),

there exists S(ϕ(i))
u and S(ϕ(i))

d satisfying

SX1...XN ,X1...X′N
(ϕ1 . . . ρi . . . ϕN ) = ρk

B′

B

X ′
i<k X ′

k X
′
i>k

Xi<k Xk Xi>k

S(ϕ(i))
u

S(ϕ(i))
d

.

Lemma 13. Single-party representable supermaps of type S : [A1, A
′
1] . . . [AN , A

′
N ] →

[B,B′] are locally-applicable transformations of the same type.

2The author is grateful to Augustin Vanrietvelde for this observation
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Proof. Note that

S

Xi<k

. . .

B

B′

ϕi<k

X ′
k

Xk

. . .

X ′
i<k

Xi>k

ϕi>k

X ′
i>k

ρk

gk

fk

= ρk

S(ϕ(i))
u

S(ϕ(i))
d

B′

B

X ′
i<kX

′
kX

′
i>k

Xi<kXkXi>k

gk

fk

,

and so using the interchange law for symmetric monoidal categories we find:

= ρk

S(ϕ(i))
u

S(ϕ(i))
d

B′

B

X ′
i<k

X ′
i

X ′
i>k

Xi<k

Xk

Xi>k

gk

fk

=

S

Xi<k

. . .

B

B′

ϕi<k

X ′
k

Xk

ρk . . .

X ′
i<k

Xi>k

ϕi>k

X ′
i>k

gk

fk

.

Going through the same steps for every k completes the proof.

Lemma 14. The single-party representable supermaps are polyslots.

Proof. By re-ordering the wires in the defining equation for S to be a single-party repre-

sentable supermap,

S

Xi<k

. . .

B

B′

ϕi<k

X ′
k

Xk

ϕk . . .

X ′
i<k

Xi>k

ϕi>k

X ′
i>k

= ϕk

B′

B

X ′
i<k X ′

kX ′
i>k

Xi<k XkXi>k

S(ϕ(i))
u

S(ϕ(i))
d

(6.14)

we see that S is a polyslot since every comb is a slot.
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Corollary 2. The single-party representable supermaps on C define a polycategory srep[C].

Proof. Since single-party representable supermaps are polyslots, all we need to check is

that they are preserved under polyslot composition, which follows from the observation

that combs are closed under composition. This construction in-fact returns a theory of

supermaps, with enrichment and representability inherited from the polyslots.

6.4 Examples of Polyslots

The slot and polyslot conditions work for constructing well-behaved composition rules for

supermaps, but one might worry that they rule out some supermaps of interest. Here we

check that polyslots include the generalisations of the convex switch to infinite dimensional

stochastic matrices and the quantum switch to arbitrary Hilbert spaces.

Example 25. The generalisation of the convex switch [17] to the category of quantum

operations is a polyslot since its action (with ϕ1 fixed) on ϕ2 can be written as a comb:

cSwitch

ϕ1

A

A

ϕ2

X1 X2

X ′
1 X ′

2

=

X1A

cSwitch(ϕ1)
d

ϕ2

X2

X ′
2X1A

cSwitch(ϕ1)
u

, (6.15)

where defining C to be any 2-dimensional Hilbert space, and 0, 1 to be any orthonormal

basis for C, then:

C

X1A

X1 A

cSwitch(ϕ1)
d =

C

X1

0

A

X1 A

+

C

X1

1

A

X1 A

ϕ1 , (6.16)

and

C

X1A

X1 A

cSwitch(ϕ1)
u =

C

X1

0

A

X1 A

ϕ1 +

C

X1

1

A

X1 A

. (6.17)

and similarly for the action on ϕ1. This definition naturally extends to N-party convex

switches of type [A,A] . . . [A,A]→ [A,A].
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Example 26. The generalisation of the quantum switch [17, 136] to arbitrary Hilbert

spaces is a polyslot since its action (with ϕ1 fixed) on ϕ2 can be written as a comb:

qSwitch

ϕ1

Q

Q A

A

ϕ2

X1 X2

X ′
1 X ′

2

=

Q X1A

Switch(ϕ1)
d

ϕ2

X2

X ′
2Q X1A

qSwitch(ϕ1)
u

, (6.18)

where

Q

Q X1A

X1 A

qSwitch(ϕ1)
d =

Q

Q X1

π0

A

X1 A

+

Q

Q X1

π1

A

X1 A

ϕ1 , (6.19)

and

Q

Q X1A

X1 A

qSwitch(ϕ1)
u =

Q

Q X1

π0

A

X1 A

ϕ1 +

Q

Q X1

π1

A

X1 A

. (6.20)

and similarly for the action on ϕ1. This definition naturally extends to N-party switches

of type [A,A] . . . [A,A]→ [Q⊗A,Q⊗A].

Note that both of these examples are furthermore single-party representable, in-fact,

it was this that we proved to check that these maps are polyslots.

6.5 Characterisation of the Superunitaries by Strong Local-
Applicability

In this final section, we show that our most general free-construction of a theory of su-

permaps over monoidal categories exactly recovers the standard physics approach to defin-

ing supermaps [12, 17]. More concretely, we show that the polyslots on the unitaries are

exactly the superunitaries, and, we use the characterisation theorem of section 5 to check

that the polyslots on the quantum channels are still the superchannels. We begin with

some basic lemmas, writing C ⊆⊗ D to express the condition that C be a symmetric

monoidal sub-category of D.

Lemma 15. Let C ⊆⊗ D with C a groupoid and D compact closed, every slot of type

S : [A1, A
′
1] → [A2, A

′
2] on C preserves no-pathing shapes. Explicitly, for every f, g then
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there exists f ′, g′ such that

g

f

S

=

g′

f ′

. (6.21)

Proof. Assuming the converse, we begin by noting that any SV acts trivially on the right-

hand side of such a process:

g

f

S

=

S

SV

g

f

, (6.22)

then using commutativity of S with any SV with V ̸= id

=

S

SV

g

f

=

V

g

f

S

. (6.23)

Using the fact that every morphism in C is an isomorphism:

=⇒ = V , (6.24)

after which applying cups and caps gives V = id, a contradiction.

This property allows us to establish a theorem, on the internalisation of polyslots.
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Theorem 17. Let C be a groupoid and D a compact closed category with C ⊆⊗ D. Every

polyslot on C is implementable by a D-supermap on C.

Proof. We begin by considering single-input slots, to each slot we can assign a D-supermap

by

Ŝ

A∗ A
′

B∗ B
′

:=

S

, (6.25)

and then generalize to multiple inputs by induction. Consider

S

ϕ1

=

ϕ1

S

, (6.26)

and note that since S preserves no-pathing shapes, application of Sloop would recover the

application of a cup/cap and generation of identity wire

=
ϕ1

S

=
ϕ

S

Sloop

,

(6.27)
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since by assumption S is a slot, it commutes with Sloop giving:

=
ϕ1

S

Sloop

(6.28)

which after unpacking the definition of Sloop gives:

=
ϕ1

S

, (6.29)

finally using compact closure and local-applicability gives

= ϕ1

S

= ϕ1

S

. (6.30)

This argument can be extended to multiple input polyslots by induction, assuming repre-

sentation by D-supermaps for N -parties then consider the natural candidate D-supermap
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for N + 1 parties

S

. . .
, (6.31)

we will consider its action on some family ϕ(i) of morphisms

S

. . .

ϕ1ϕN+1 ϕN

. (6.32)

Filling in the first entry of a polyslot with N + 1 inputs returns a polyslot with N inputs,

so using the induction hypothesis:

=

S

. . .

ϕN+1

ϕN ϕ1

. (6.33)

Furthermore filling in entries 1 to N of an N + 1 input polyslot returns a slot on the final

(N + 1)th entry, for which representation was verified in the initial stage of this proof.
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Consequently we reach

=

S

. . .ϕN ϕ1ϕN+1 , (6.34)

which completes the proof.

The assignment of a D-supermap to each polyslot derived above, is in fact a (bijective

on objects) faithful3 functor of symmetric polycategories, meaning that it is an assignment

which commutes with the composition rules of polycategories. With reference to this, we

can rephrase theorem 17 as the statement that pslot[C] ⊆poly Dsup[C]4. In this thesis we

are most concerned with the one-to-one correspondence, that this assignment commutes

with composition is a neat bonus.

Theorem 18. Polyslots on the unitaries are in one-to-one correspondence with superuni-

taries, and polyslots on the quantum channels are in one-to-one correspondence with the

superchannels.

Proof. Beginning with the equivalence between superchannels and polyslots on quantum

channels, recall that there is a mapping which sends every locally applicable transformation

on quantum channels to a superchannel, and consequently every slot can be mapped to a

superchannel. To show that in turn every superchannel defines a slot, note that since every

locally-applicable transformation on quantum channels is constructed by a superchannel

as shown in chapter 5, all locally-applicable transformations on the quantum channels are

slots with interchange law inherited from the interchange law for the monoidal category

of completely positive maps [212,241,250].

For the equivalence between superunitaries and polyslots on the category of unitaries,

recall that every single-input superunitary decomposes as

S

B

B′

ϕ

X

X ′

= ϕ

B′

B

X ′

X

Su

Sd

(6.35)

3Faithful means injective on morphisms here, and should not be confused with the notion of faithful
enrichment of Chapter 3.

4Faithful functors give a more categorically well-behaved generalisation of the notion of sub-category.
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where Su and Sd are unitaries ∈ U [53]. A useful consequence of this result is the following

one for multiparty superunitaries. Every superunitary of type [A1, A
′
1] . . . [An, A

′
n] →

[B,B′] satisfies:

S

B′

B

ϕ1

X1

X ′
1

ϕn

X ′
n

Xn

. . .. . . ϕi

X ′
i

Xi

=

B′

B

X ′
i<k X ′

k X
′
i>k

Xi<k Xk Xi>k

S(ϕ(i))
u

S(ϕ(i))
d

ϕk (6.36)

Where the S(ϕ(i))
u and S(ϕ(i))

u are unitaries which do not depend on ϕk. This can be

shown by noting that fixing all but ϕi, the resulting map S(ϕ1, . . . ϕi−1(−)ϕi+1 . . . ϕN )

defines up to braiding a single-input superunitary, so by theorem 17 must decompose as

a comb. Any family of functions which decomposes at the single party-level as a comb

defines a polyslot, since combs commute with all locally-applicable transformations.

In informal terms, polyslots on unitaries are superunitaries, and polyslots on chan-

nels are superchannels. The assignments which exhibit the one-to-one correspondence

are again given by bijective on objects invertible polyfunctors, meaning that the above

correspondences can be phrased as an equivalence of polycategories. The polycategory

pslot[U] is equivalent to Su and the polycategory pslot[QC] is equivalent to QSc.

Note that by the comb decomposition theorem for single-input superchannels and

superunitaries it is also the case that srep[QC] = QSc and srep[U] = Su. However, the

construction pslot[−] is more closely aligned to the spirit of the definition of supermaps,

in which comb decomposition is treated as a theorem to be proven not an assumption to

be made.

6.6 Summary

We have found that there are a variety of constructions of theories of supermaps available.

Over any monoidal category we can write the following constructions

srep[C] ⊆ pslot[C]

The first assumes that when all-but-one input is filled, what remains is a comb, and the

second construction assumes a strong-enough notion of locality to force the interchange

law for polycategorical composition. Both constructions recover the physicists’ definitions

of general black-box supermaps [12,17] via our main theorems which state that pslot[U] =

Su and pslot[QC] = QSc.
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Chapter 7

Summary, Outlook, and
Conclusion

In this thesis we have tried to build a general framework for supermaps. To finish, let

us summarise the concrete results of the thesis and discuss a variety of future potential

research directions.

7.1 Summary of Results

The key piece of mathematics which we have used to define supermaps on any theory of

processes, is the notion of a locally-applicable transformation on a symmetric monoidal

category. In our main theorem, proven in chapter 5, we discovered that locally-applicable

transformations on the symmetric monoidal category of quantum channels are exactly

the quantum superchannels. We then gave a general abstract definition for theories of

supermaps, and demonstrated that supermaps of such theories can always be used to

construct locally-applicable transformations. Finally, we strengthened locally-applicable

transformations to polyslots, which give a polycategory of candidate supermaps over any

symmetric monoidal category, and which recover both the superchannels and the supe-

runitaires when applied to the quantum channels and unitaries respectively. In short, we

have developed a clear idea of what theories of supermaps are and how to construct them.

7.2 Outlook

Let’s now consider the possible future directions which would build on the results of this

thesis. A common theme amongst these future directions, is that this new compositional

framework for supermaps will allow us to phrase questions that we had not previously

been able to phrase, even though those question would intuitively had made sense.

Characterisation of Locally-Applicable Transformations in Infinite Dimensions

Since we now have definitions of categorical supermaps in terms of either locally-applicable
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transformations or slots. In finite dimensions, single-input supermaps decompose as combs

[12,53], an immediate question then is whether our definitions of supermaps on arbitrary

Hilbert spaces have the same property. First, for the case of mixed quantum theory, we

would suggest the following conjecture.

Conjecture 1. The locally applicable transformations on the monoidal category QO of

quantum operations of type [A,A′]→ [B,B′] are combs

Second, for the case of unitaries, we saw that we should in general use a stronger notion

of locality, leading us to conjecture as follows.

Conjecture 2. The slots on the the monoidal category of (infinite dimensional) unitaries

of type [A,A′]→ [B,B′] are combs

Proving these conjectures may involve use of functional analysis or may be provable

using the graphical methods of categorical quantum mechanics. More generally, any ques-

tion which has been asked of quantum supermaps on finite dimensional Hilbert spaces can

now be asked of our definition of supermaps on arbitrary Hilbert spaces, meaning the a

wide variety of new research projects can now begin from this point. On the applied side

the are questions of capacity activation and advantages of quantum causal structures for

computation which are specific to infinite dimensional or continuous variable settings. On

the theoretical side there are questions of the characterisation of supermaps on semi-causal

channels as multi-inupt combs [13,15,53].

Resource Theories of Higher-Order Transformations The standard approach to

resource theories in quantum theory, is to take composition to be free, in the sense that

two resources are equivalent if they can be reached by arbitrary iterated compositions

of free transformations [48, 251]. The more composition rules that are available then, to

more coarse grained the equivalences of resources should become. Whilst in standard

quantum theory it is generally accepted that the key composition rules are sequential and

parallel composition, as we have seen the story of the compositionally of supermaps is

more subtle. By writing a general definition of theory of supermaps we have essentially

defined for free what the most natural notion of composition is for supermaps, and so we

will have established a notion of resource theory and sub-theory of supermaps.

Meta-Theory for Supermaps Now that we have written down some rules for theories

of supermaps, we could try to construct a meta-theory Sup of theories of supermaps, anal-

ogous to the meta-category Cat with objects given by categories [21]. In Sup we should

expect to see objects as theories of supermaps and will need to define structure preserving
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maps, and even higher morphisms between structure preserving maps, analogous to func-

tors and natural transformations. If we can construct such a meta-theory, we can really

begin to organise the variety of potential supermap definitions using category theory. A

key question for instance, is whether one can show that combs or optics, the simplest form

of supermaps are correspondingly the smallest theory. It is likely for instance that one

could show that open circuits appear via some kind of universal construction in Sup just

as the quantum channels appear as universal within the category MonCat of monoidal

categories [198].

Type Theory for General Supermaps Other frameworks for supermaps either lim-

ited to circuits-with-holes [121] or limited to categories with additional properties such

as compact closure [126–128,132,135], are equipped with tensor products and other more

elaborate type constructors. So far our construction returns a polycategory without input

tensors, one could either hope to get more general tensors by including general exten-

sion sets as objects analogously to [126], or instead by looking for promonoidal tensors as

in [121].

Reconstruction of All of Higher Order Quantum Theory So far our framework

has been used to define and reconstruct theories of supermaps. However, higher order

quantum theory [127, 135] and the Caus[C] construction [126, 132] return super-super

maps and their iterations. A key question is whether the approach of this thesis can be

developed further to develop complete higher-order physical theories over any monoidal

category or operational probabilistic theory. This approach is likely to come with many

challenging subtleties, coming form the fact that the super-supermaps will have to be de-

fined as locally-applicable transformations on symmetric polycategories rather that sym-

metric monoidal categories. Furthermore such a step would appear to have to work layer-

by-layer and probably require some form of taking a categorical limit [21] to return a single

infinitely iterated theory as an end product.

Local-Applicability in Other Contexts One of the surprises of the characterisation

of superchannels by local-applicability, is that this abstract notion of local-applicability

was strong enough to imply linearity. This suggests a new approach to defining stan-

dard quantum transformations is tenable, in which transformations are defined first as

being locally-applicable functions on quantum states, and later proven to be the unitary

or completely positive trace preserving maps. This would essentially be a flip in per-

spective in comparison to the standard approach of assuming linearity and then imposing

complete-preservation [199, 220]. If successful, such a research direction would establish
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local-applicability as the key formal, and purely physically motivated, principle for defining

quantum dynamics.

Post-Quantum Causal Structures The development of a framework for supermaps

on arbitrary monoidal categories gives us a framework for supermaps on all operational

probabilistic theories [137], including those without any assumption of finite dimension-

ality. Immediate questions then can be asked, on the relationship between post-quantum

features of physical theories and features of their associated super theories. Concretely

one may wonder whether theories with stronger than quantum correlations or interference

patterns are compatible with some form of post-quantum causal structures.

Sound and Complete Diagrammatic Languages for Supermaps In chapter 4 we

modelled the intuitive picture of a supermap using locally-applicable transformations, and

we introduced a function-box notation to avoid writing algebra and to keep the formal

mathematics that we write looking as similar as possible to the pictures we were trying to

model. We played a similar game when we defined theories of supermaps, using an as yet-

unformalised diagrammatic language for categories enriched in symmetric polycategories.

In each case we so far can only claim that the diagrammatic calculations we wrote down

were shorthand, an efficient way of explaining to the reader how it is that they would

reconstruct an algebraic argument for themselves, if they wanted to. However, much of

the power of the categorical quantum mechanics program [22,202,208] has come from the

proof of a variety of soundness and completeness results [252–266].

Firstly, soundness results ensure that manipulations of diagrams are not just recipes

but in fact are themselves the formal calculations. Consequently, two key soundness results

which are needed to formalise our calculations are soundness of the string diagrams we used

to represent symmetric polycategories, and soundness of function boxes for representation

of locally-applicable transformations.

Whilst the soundness of the diagrams we used in this paper, while as yet unformalised,

is a fairly natural expectation, there is a more speculative proposal for diagrammatic

reasoning which is less clearly viable. This proposal is to flip the story of this thesis

on its head, by taking the intuitive pictures which we wished to model, and seeing if

they can be made into a sound diagrammatic language for whatever to most appropriate

notion of theory of supermaps turns out to be. We could conjecture for instance that

the intuitive pictures we have been drawing can be used to give a sound diagrammatic

language for symmetric monoidal categories enriched into symmetric polycategories with

cotensors compatible with enrichment. Such a result if formalisable would justify on formal

grounds the regular use of similar intuitive pictures throughout the quantum literature on

supermaps.
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Past soundness there is the even more powerful concept of completeness of diagram-

matic languages for algebraic theories, stating not only that everything proved diagram-

matically is valid but furthermore that everything provable algebraically is provable dia-

grammatically. It seems conceivable that the intuitive pictures drawn for supermaps could

even be complete for some appropriate variant of theories of supermaps as defined in chap-

ter 4. Even further, representation of supermaps such as the quantum switch using formal

diagrammatic languages is a hot topic in recent quantum foundations, one new approach

could be the combination of a general diagrammatic language for theories of supermaps

with specific aspects of diagrammatic languages for quantum theory such as the PBS [261]

or ZX [266] calculi.

Characterisation of Routed Supermaps A key class of supermaps on constrained

spaces used to construct supermaps of simpler types, are the supermaps on spaces equipped

with sectorial constraints. An immediate open question is whether local-applicaiblity

is a strong enough requirement to recover such supermaps, crucially they escape our

characterisation theorem since whilst they are causal they are not in general normal.

A characterisation here would probably require more subtle use of the controlled swap

gate introduced in [228].

Consistent Circuits for Indefinite Causal Structures in Infinite Dimensions

Now that we have a stable generalisation of supermaps to infinite dimensional quantum

theory, a key question is whether the construction of all explicitly known unitary su-

permaps from routed supermaps [211] could now be generalised to infinite dimensions.

If successful such an approach would establish categorical methods as not only useful

for defining supermaps but also useful as a tool for constructing interesting examples of

supermaps such as those which break causal inequalities [18,213].

7.3 Final words

In this thesis, we developed a process-theoretic approach to the study of supermaps.

Whilst the language of category theory was used here, the tools of classical category

theory generally were not, we used category theory as a map or filing system rather than

using it for solving open problems in the study of supermaps.

Whilst some success was found in characterising supermaps using minimal mathemat-

ical assumptions, it appears as described in the outlook that we have only really scratched

the surface. Indeed, we don’t have tensor products, we don’t know how the framework

actually behaves in infinite dimensions, we don’t know how to cope with super-supermaps.

Furthermore, we don’t know how to characterise our definitions in terms of more familiar
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mathematical languages in all but the cases in which supermaps have already been de-

fined. In short, we are still just at the beginning of the development of a compositional

framework for general higher-order transformations.

Given the variety of applications that have been found in the field of applied category

theory, from putting other intuitive flowchart-like pictures into formal mathematics, one

may wonder what other applications could come from our formalisation. We don’t know

where else to find researchers who would like to use the idea of a black-box supermap yet,

in whichever monoidal categories their field cares about the most. Hopefully we will find

them soon, and that they will find that this formalisation, and whatever comes from the

next chapter of this story, works in some way for them too.
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[53] Wataru Yokojima, Marco Túlio Quintino, Akihito Soeda, and Mio Murao. Con-

sequences of preserving reversibility in quantum superchannels. Quantum, 5:441,

2021.
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[172] Borivoje Dakić, Tomasz Paterek, and Časlav Brukner. Density cubes and higher-

order interference theories. New Journal of Physics, 16(2):023028, 2014.

[173] Paulo J. Cavalcanti, John H. Selby, Jamie Sikora, Thomas D. Galley, and Ana Belén

Sainz. Post-quantum steering is a stronger-than-quantum resource for information

processing. npj Quantum Information, 8(1), 2022.

[174] Paulo J Cavalcanti, John H Selby, Jamie Sikora, and Ana Belén Sainz. Decompos-

ing all multipartite non-signalling channels via quasiprobabilistic mixtures of local

channels in generalised probabilistic theories. Journal of Physics A: Mathematical

and Theoretical, 55(40):404001, 2022.

[175] James Hefford and Stefano Gogioso. CPM categories for galois extensions. Electronic

Proceedings in Theoretical Computer Science, 343:165–192, 2021.

158



[176] Ciarán M. Lee and John H. Selby. A no-go theorem for theories that decohere to

quantum mechanics. Proceedings of the Royal Society A: Mathematical, Physical

and Engineering Sciences, 474(2214):20170732, 2018.

[177] John H. Selby, Carlo Maria Scandolo, and Bob Coecke. Reconstructing quantum

theory from diagrammatic postulates. Quantum, 5:445, 2021.

[178] Lucien Hardy. Reformulating and Reconstructing Quantum Theory. arXiv preprint,

1104.2066, 2011.

[179] Sean Tull. A Categorical Reconstruction of Quantum Theory. Logical Methods in

Computer Science, Volume 16, Issue 1, 2020.

[180] Kenji Nakahira. Derivation of quantum theory with superselection rules. Physical

Review A, 101(2), 2020.

[181] Giulio Chiribella, Giacomo Mauro D’Ariano, and Paolo Perinotti. Quantum theory,

namely the pure and reversible theory of information. Entropy, 14(10):1877–1893,

2012.

[182] John van de Wetering. An effect-theoretic reconstruction of quantum theory. Com-

positionality, 1:1, 2019.

[183] Ding Jia. Quantum theories from principles without assuming a definite causal

structure. Physical Review A, 98(3), 2018.
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Composition rules for quantum processes: a no-go theorem. New J. Phys. 21 012001,

2019.

[232] Fosco Loregian. Coend calculus. arXiv preprint, 1501.02503, 2015.

[233] C. A. Pastro. Sigma pi-polycategories, additive linear logic, and process semantics.

arXiv preprint, math/0312422, 2004.

162



[234] Joachim Lambek. Deductive systems and categories - I. Syntactic Calculus and

Residuated Categories. Mathematical Systems Theory, 2(4):287–318, 1968.

[235] Michael Barr. star-Autonomous categories, volume 752. Springer, 2006.

[236] Tom Leinster. Generalized enrichment for categories and multicategories, 1999.

[237] Gillian Kelly and Ross Street. Review of the elements of 2-categories. 1974.

[238] Mathys Rennela and Sam Staton. Classical Control and Quantum Circuits in En-

riched Category Theory. Electronic Notes in Theoretical Computer Science, 336:257–

279, 2018.

[239] Emily Riehl and Dominic Verity. Elements of infinity-category theory. Cambridge

Studies in Advanced Mathematics, 2022.

[240] Giulio Chiribella, Giacomo M. D’Ariano, and Paolo Perinotti. Transforming quan-

tum operations: Quantum supermaps. EPL (Europhysics Letters), 83(3):30004,

2008.

[241] Bob Coecke and Chris Heunen. Pictures of complete positivity in arbitrary dimen-

sion. Information and Computation, 250:50–58, 2016.

[242] Stefano Gogioso and Fabrizio Genovese. Infinite-dimensional categorical quan-

tum mechanics. Electronic Proceedings in Theoretical Computer Science, EPTCS,

236:51–69, 2017.

[243] Stefano Gogioso and Fabrizio Genovese. Towards quantum field theory in categor-

ical quantum mechanics. Electronic Proceedings in Theoretical Computer Science,

EPTCS, 266:349–366, 2018.

[244] Stefano Gogioso and Fabrizio Genovese. Quantum field theory in categorical quan-

tum mechanics. Electronic Proceedings in Theoretical Computer Science, EPTCS,

287:163–177, 2019.

[245] Brian Day. On closed categories of functors. 10.1007/bfb0060438, 1970.

[246] J. Robin B. Cockett and Robert A. G. Seely. Linearly distributive functors. Journal

of Pure and Applied Algebra, 143:155–203, 1999.

[247] Andre Joyal and Dominic Verity. Traced monoidal categories. Math. Proc. Gamb.

Phil. Soc, 119:447–451, 2021.

[248] John Power and Edmund Robinson. Premonoidal categories and notions of compu-

tation. Mathematical Structures in Computer Science, 7(5):453–468, 1997.

163



[249] Sam Staton and Paul Blain Levy. Universal properties of impure programming

languages. In ACM-SIGACT Symposium on Principles of Programming Languages,

2013.

[250] Bob Coecke. Axiomatic Description of Mixed States From Selinger’s CPM-

construction. Electronic Notes in Theoretical Computer Science, 210(C):3–13, 2008.

[251] Eric Chitambar and Gilad Gour. Quantum resource theories. Reviews of Modern

Physics, 91(2):025001, 2019.

[252] Miriam Backens. The ZX-calculus is complete for stabilizer quantum mechanics.

New Journal of Physics, 16(9):093021, 2014.

[253] Miriam Backens and Aleks Kissinger. ZH: A complete graphical calculus for quantum

computations involving classical non-linearity. Electronic Proceedings in Theoretical

Computer Science, 287:23–42, 2019.

[254] Quanlong Wang. Completeness of the ZX-calculus. PhD thesis, Oxford University,

2018.

[255] Titouan Carette, Dominic Horsman, and Simon Perdrix. SZX-Calculus: Scalable

Graphical Quantum Reasoning. In 44th International Symposium on Mathematical

Foundations of Computer Science (MFCS 2019), volume 138 of Leibniz International

Proceedings in Informatics (LIPIcs), pages 55:1–55:15, 2019.

[256] Alexandre Clément, Nicolas Heurtel, Shane Mansfield, Simon Perdrix, and Benôıt
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Appendix A

Proofs of Properties of Closed
Monoidal Categories

In this section we prove some theorems of chapter 3, in which causality is studied in the

context of general closed symmetric monoidal categories.

A.1 HOCCs have no correlations with single-state objects

The notations and terminologies used here are taken from [126].

Theorem 19. Every HOCC is a closed symmetric monoidal category which has no cor-

relations with single-state objects

Proof. A general state on X⊗Y is a member of the set (CX ×CY )∗∗ where CX is the set

of states on X, CY is the set of states on CY and C∗ is the set of effects which normalise

elements on C, i.e. ∀ρ ∈ c : π ◦ ρ = 1. Let Y be a single-state object, since Y is flat its

unique state must be a scalar multiple of the maximally mixed state.

α (A.1)

Since CX is flat it follows that a scalar multiple of the discard process exists inside C∗
X .

µ ∈ C∗
X (A.2)

The elements of the set (CX × CY )∗ are up to process-state duality the processes M in

the underlying category such that,

α

M

ρ

= 1∀ρ ∈ CX (A.3)

Note that any first-order causal process Ψ

α

Ψ

ρ

= 1∀ρ ∈ CX

µ
α Ψ

ρ

=
µ

ρ

µ = (A.4)
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which entails that µ
αΨ ∈ (CX ×CY )∗. In turn since {µαΨ | Ψ causal } ⊆ (CX ×CY )∗ then

it follows that (CX × CY )∗∗ ⊆ {µαΨ | Ψ causal }∗. For any w ∈ {µαΨ | Ψ causal }∗ it is

immediate that µ
αw ∈ {Ψ | Ψ causal }∗ which in turn implies the following decompositions,

X Y=

ρ′ πw

X Y
µ
α

X Y=

ρ′ πw

X Y
=⇒ 1

µ α
(A.5)

By assumption the usage of an effect of the form Y → I (which will be normalised by the

right hand side of the composition) on w produces a state on X. This in turn confirms

that the left hand side of the decomposition is indeed a state of X, and so any w ∈
(CX × CY )∗∗ ⊆ {µαΨ | Ψ causal }∗ must decompose as the unique state of Y in parallel

with a state of X.

A.2 The existence of canonical processes of closed symmet-
ric monoidal categories

In this section we prove the existence of two key structural morphisms in any closed

symmetric monoidal category.

Theorem 20. The following hold in any closed symmetric monoidal category C:

• For each object A there exists a unique dualiser dA satisfying

d

=A

I
[A, I]
I

(A.6)

• For each triple A,B,C there exists a unique static currying ϕABC satisfying

ϕ

=
C ⊗A
BA

B

C

[A,B]
(A.7)

Proof. Each proof follows by one or more applications of the existence of the curried

version of any process, guaranteed by the closed monoidal structure of C. Since C is

closed monoidal we know that for every morphism f : (A⊗C)→ B there exists a unique

morphism f̄ : C → [A,B] such that

ϵ

[A,B]

A

B

f̄

C

=
f

A

B

C

(A.8)
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taking f the right hand side of the condition we wish for dA to satisfy:

d

=A

I
[A, I]
I

(A.9)

we see that da can be taken to be the currying of the right hand side, the existence and

uniqueness of such a dA are guaranteed by the defining condition of a closed monoidal

category. Finally the defining condition for ϕ:

ϕ

=
C ⊗A
BA

B

C

[A,B]
(A.10)

is again precisely the condition that ϕ be the currying of the morphism on the right-hand

side of the condition. That such a ϕ exists and is unique is then again immediately implied

by the closed monoidal structure of C.

A.3 Lifting isomorphism with double dual

In this section we will use the notation [f, g] to mean the supermap which pre-composes

with f and post-composes with g, the formal definition of [f, g] is given in Appendix A.

We will furthermore regularly use the notations [A, g] and [f,B] as shorthand for [idA, g]

and [f, idB] respectively.

Theorem 21 (Lifted double duals). Let C be any closed symmetric monoidal category,

if ⊗ preserves equivalence with double duals then [−,=] preserves equivalence with double

duals.

Proof. We first give a sketch proof, outlining the sequence of internal isomorphisms used

to show that [[A,B], I]I] ∼= [A,B], we then expand on this demonstrating that the above

isomorphism is actually witnessed by dA⇒B. Firstly assuming dA and dB are isomorphisms

then d[B,I] is an isomorphism since the contravariant functor [−, I] preserves isomorphisms.

Furthermore since ⊗ preserves equivalence with double duals

A⊗ [B, I] ∼= [[A⊗ [B, I], I]I] (A.11)

Again using that dB is an isomorphism gives

[A,B] ∼= [A, [[B, I], I]] ∼= [A⊗ [B, I], I] (A.12)
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again since the contravariant functor [−, I] preserves isomorphisms this implies,

[[A,B], I]⇒ I ∼= [[[A⊗ (B, I]), I], I], I] (A.13)

the right hand side can be simplified using the first point on ⊗.

[[A,B], I], I] ∼= [A⊗ [B, I], I] ∼= [A,B] (A.14)

So there indeed exists an isomorphism of the form required, to move beyond a sketch

proof it must be shown that this isomorphism is in fact d[A,B]. Using ϕ and the invertible

(by assumption) canonical morphism d : B → [[B, I], I] in its static form d̂B : I →
[B, [[B, I], I]] an invertible morphism m can be built.

d̂B

◦
mAB :=

ϕA,[B,I],I

◦

m−1
AB :=

ϕ−1
A,[B,I],Iˆd−1

B

[A⊗ [B, I], I] [A,B]

[A,B] [A⊗ [B, I], I]

(A.15)

d[A,B] can be expressed in terms of m and d[A⊗[B,I],I] in the following way,

d[A,B]

[m−1
AB , I], I]

mAB

= dA⊗[B,I],I] (A.16)

Where since m is an isomorphism [m, I] and [[m, I], I] are isomorphisms too.

[mAB , I]

[m−1
AB , I]

◦

ˆmAB

◦

ˆm−1
AB

=

◦

◦
=

ˆmAB

ˆm−1
AB

◦

◦

= = (A.17)

The proofs of the identities used above can be found in Appendix A. The proof that d[A,B]
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decomposes as above is then given as follows.

[[m−1
AB , I], I]

mAB

dA⊗[B,I],I]

=

ˆm−1
AB ⇒ I

mAB

dA⊗[B,I],I]

=
◦

[m−1
AB , I]

mAB

dA⊗[B,I],I]

=

[m−1
AB , I]

mAB

=

ˆm−1
AB

mAB

◦

=
m−1

AB

mAB

= =

d[A,B]

[A,B], I]
I

[A⊗ [B, I], I]
I

[A,B]
I

[A,B], I]
I

[A⊗ [B, I], I], I]
I

[A,B], I]
I

A⊗ [B, I], I]
I

[A,B]
I

(A.18)

By assumptions dA and dB are isomorphisms, so [dB, id] is an isomorphism. It can be

shown that [dB, id] is always the the right inverse of d[B,I] since first by expanding the

definition of [dB, I]

[dA, I] =

d[A,I]

=

d[A,I]

=

dA d[A,I]

◦

d[A,I]
d̂A

d̂A

A

I
[[A, I], I]

I

A

[[A, I], I]

I
A

I

[[A, I], I]

(A.19)

and then using the definition of any canonical morphism dX twice.

=

dA

=
dA

=

[A, I]
I

[A, I]
I

A

I

= A

I (A.20)

Since [dB, id] is an isomorphism and [dB, id] is a right inverse for d[B,I], it follows that

d[B,I] must be an isomorphism. Since ⊗ preserves isomorphism with double dual dA⊗[B,I]
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must be an isomorphism and by the same reasoning as for B it follows that d[A⊗[B,I],I] is

an isomorphism. This completes the proof that every part of the given decomposition of

d[A,B] is then an isomorphism, entailing that d[A,B] itself must also be an isomorphism.

A.4 Wires with no-signalling states

Theorem 22. Let C be a deterministic closed symmetric monoidal category with no cor-

relations with single-state objects, then if

• ⊗ preserves equivalence with double duals

• A and A′ each have enough states and are canonically equivalent to their double duals

then the object [A,A′] has no-signalling states.

Proof. We first show that every effect Π : [A,A′] → I can be written as an application

of a discard effect and an insertion of a state. This is a consequence of the isomorphism

A⊗ [A′, I] ∼= [A,A′]⇒ I constructed by the following morphisms.

αAA′ =

dA⊗[A′,I]

[ϕ−1
A,[A′I],I , I]

[[id, dA′ ], id]

(A.21)

Indeed one can show the following identity

= ◦

A

I

αAA′

[A,A′]
I

(A.22)

Using the general formula

=

[f, g]

ĝf̂

◦

ĝ

f̂

≡

g

f

≡ A′
B

A

A′

A′
B

A

B′

A

B′

B

B′

(A.23)
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twice.

αAA′

= =

[i, dA]

=

[i, dA]

[A,A′]
I

[A,A′]
I

dA⊗[A′,I]

ϕ−1
A,[A′,I],I , I]

[id, dA′ ], id]

[A, [A′, I], I]]
I

[A⊗ [A′, I], I]
I

dA⊗[A′,I]

ϕ−1
A,[A′,I],I , I] dA⊗[A′,I]

ϕ−1
A,A′⇒I,I

(A.24)

Then using the defining property of d,

=

[A′, I]

=

[i, dA]

[A⊗ [A′, I], I]
I

dA⊗[A′,I]

ϕ−1
A,[A′,I],I

A

I

[i, dA]

ϕ−1
A,[A′,I],I

[A′, I] A

I

[i, dA]

ϕ−1
A,[A′,I],I (A.25)

and the natural isomorphism ϕ,

ˆdA′

◦

[A′, I]
I

A

I

= A

[[A′, I], I]

[A′, I]
I

[i, dA]

= (A.26)

and the defining identity of the sequential composition supermap twice we reach

= =

dA′

=A

A′
◦

A

I

A

A′

[A′, I]
I

A′
I

(A.27)

172



With this identity in mind we note that for every effect Π : [A,A′]→ I

f

=

f

[A,A′]

[A,A′]
I

[A,A′], I]

=

f
αA,A′

[A,A′]
I

αA,A′

Π

Π̂

Π̂

(A.28)

we then use the property of no correlations with single-state objects on the state high-

lighted on the bottom left,

αA,A′

Π̂

=

ρ

A[A′, I]

A[A′, I]

ˆ

(A.29)

to reach

f

◦

[A,A′]

A

I

=

f

αA,A′

[A,A′]
I

=

ρ

ρ

ˆ
ˆ

f

[A,A′]

Π

(A.30)

This time we use no correlations with single-state objects on the bipartite state highlighted

on the bottom right,

f

◦

[A,A′]

ˆ

=

f ′ ˆ

[A, I]X

[A, I]X

(A.31)

this finally entails that there exists some state f ′ such that for every effect Π.

= =

A

I

f

f ′

f ′

ρˆ

Π

(A.32)
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which is precisely the statement that [A,A′] has no-signalling states.
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Appendix B

Polycategories of Supermaps

In this appendix, we show that supermap definitions using compact closed categories,

and supermap definitions using polyslots, both return symmetric polycategories [194,197].

Within the main text we have also shown that both theories enrich the symmetric monoidal

categories they act one, and each theory could furthermore be seen as a model of theories

of supermaps as defined in chapter 6 by noting that in both cases underlying identity

morphisms and famillies of identity functions appear as polymorphisms of type [A1⊗· · ·⊗
An, A

′
1 ⊗ · · · ⊗ A′

n] → [A1, A
′
1] . . . [An, A

′
n]. Let us here be more explicit about symmetric

polycategories, following [216]. A symmetric polycategory P is a collection of objects

A,B, . . . and for each pair of lists A and B a collection P(A,B) of morphisms with:

• A functorial action by permutations, meaning for morphism f : A → B and each

pair of permutations σ : [n]→ [n] and ρ : [m]→ [m] a new morphism denoted ρ(f)σ

such that ρ′(ρ(f)σ)σ′ = (ρ ◦ ρ′)(f)(σ′ ◦ σ).

• For each pair f : A→ BXC, g : DXE → F of morphisms a new composed morphism

g ◦X f : DAE → BFC.

• For each object A and identity morphism iA : A→ A.

Composition is subject to associativity and identity laws alongside:

• Interchange 1:

h

f

g

B C DG L

F KAEH

=

h

B C

f

F

g

KA

D

E

G

H

L

.
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• Interchange 2:

f

g

h

B C DG K

F KAEH

=

f

B C

g

F

h

KA

D

E

G

H

K

.

• Equivariance with respect to permutations:

f

B C

A

g

D E

F

λ

ρ

τ

σ

=

f

B C

A

g

D E

F

α

β

,

It will help us to be more precise about the last equivariance requirement, which can be

written explicitly as (σgρ) ◦X (λfτ) = λX→AσiB(−)iC (g ◦X f)τiD(−)iEρX→σ(A) where for

instance σiB(−)iC means iB⊗σ⊗iC
and ρX→A represents ρ in which the role of X is replaced

by the entire list A. By functorality, when equivariance with respect to τ and σ for ρ and

λ set to the identity is known, what remains to be checked is the equivariance law with

τ and σ set to the identity. Note that equivariance with respect to swaps can be used to

deduce equivariance for general λ and ρ by decomposing λ and ρ into swaps and using

functorality.

We will now prove that the minor diagrammatic generalisation of supermaps built from

compact closed categories and the general definition of polyslots, both return symmetric

polycategories. For the former case, equivariance and interchange are not the main issue,

proving that the composed morphism is a supermap presents the main difficulty. In the

latter case, proving that the composition of two polyslots is a polyslot becomes easy,

whereas equivariance and interchange become less clear.
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B.1 Polycategory of D-supermaps

We will find that when dealing with listed data naive diagrammatic representations become

cumbersome, so for readability, we adopt a convention analogous to the convention used

for genuine lists in multi/polycategories, choosing for instance to represent the diagram

S

B′

. . .

B

ϕ1

X1

X ′
1

ϕn

. . .
X ′

n

X ′
n

. . .

. . .

. . .

with the following compacted notation:

S

B

B′

ϕ
i

X

X ′

Such a language is not formalised but is used to convey the essence of proofs, with the

unpacking of details left to the interested reader with access to larger pieces of paper.

Lemma 16. A symmetric polycategory Psup[C] can be defined with objects given by pairs

[A,A′] of objects of C and morphisms of type S : Γ → ∆ given by the D-supermaps of

type S : Γ→ ∆ with:

• Composition rule given by taking:

D E

F

M

T

F F ′

D D′E E′M M ′

◦M

B C

A

M

S

A A′

B B′C C ′M M ′
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to be

T

F F ′

D D′E E′

S

A A′

B B′C C ′

.

• Action by permutations generated by:

A CM1

S

A CBM1 M2

D FN1

M2 B

N2 E

A′ C ′B′M ′
1 M ′

2

D FEN1 N2 D′ F ′E′N ′
1 N ′

2

=

A CM1

S

A CBM1M2

D FN1

M2B

N2E

A′ C ′B′M ′
1M ′

2

D FE N1N2 D′ F ′E′N ′
1N ′

2

.

Proof. The action σ(−)ρ by some general permutation σ on inputs or outputs is given

by finding a decomposition of σ in terms of swaps and then generating the action for σ

by repeated application of the actions of the associated swaps as defined above. Such a

decomposition always exists and is well formed by the defining equations for the symmetry

of D. Functorality is inherited from the symmetry of D. This composition rule returns a

new D-supermap since the application of T ◦M S can be written

T

F ′

S

B′ C ′

d

Xd

X ′
d

ϕ
i

Xe

X ′
e

ϕ
i

Xa

X ′
a

F F C
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which by the interchange law for symmetric monoidal categories can be converted to

T

F ′

S

B′ C ′

d

Xd

X ′
d

ϕ
i

Xe

X ′
e

ϕ
i

Xa

X ′
a

B F C

where since S is a D-supermap we can replace the action of S by a new morphism S′(a)

of C to give

T

F ′

S′(a)

B′ C ′

d

Xd

X ′
d

ϕ
i

Xe

X ′
e

Xa

X ′
a

B F C

what remains is the actions of T on a series of channels with B,C considered as extensions

of the morphism S′(a), consequently, the entire global diagram is a morphism of C. The

required associativity, interchange, and equivalence laws are inherited directly from the

interchange laws and symmetry of the symmetric monoidal structure of D.

It is noted in the main text that composition along multiple wires ought not to be

allowed, so as to avoid the creation of time-loops, this point can be made at a more

technical level now an explicit definition of supermap has been given. A simple example

demonstrates why two-wire composition rules are in general forbidden. Since C is a
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symmetric monoidal category, for any C ⊆ D with D compact closed then there exists a

D-supermap of type S : [A,A][A,A]→ [A,A] which performs sequential composition:

A1 A2

B

S

B B′

A1 A′
1A2 A′

2

=

A1 A2

B

B B′

A1 A′
1A2 A′

2

This is indeed a supermap since for all ϕ1, ϕ2 then:

S

ϕ1 ϕ2

=

ϕ1 ϕn

=

ϕ1

ϕ2

which since C is a symmetric monoidal category must be in C. Next note that there exists

a D-supermap of type ϕ : ∅ → [A,A][A,A] given by:

A1 A′
1A2 A′

2

A1 A2

Indeed note that it is a supermap since the following

=

is a member of C given that C is symmetric monoidal. However, if we were to try to

compose ϕ and S along both of their output/input wires, to give meaning to the following
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diagram

A1 A′
1A2 A′

2

A1 A2

B

B B′

A1 A′
1A2 A′

2

then a loop would be formed:

=

There is no guarantee that this re-normalisation by a scalar preserves membership of

C, indeed in the study of quantum causal structure such loops are often interpreted as

time-loops, and in the category U we find that such a re-normalisation does not preserve

membership of U. In the above sense we can see that the natural emergence of a poly-

categorical semantics can be understood as a compositional semantics which prevents the

forming of time-loops.

B.2 Polycategory of polyslots

To prove the following results algebraically is possible but extremely unreadable due to

the need to keep track of symmetries, for readability we prefer to present our proofs in

diagrammatic shorthand.

Theorem 23. The polyslots on C define a polycategory pslot[C] with:

• Objects given by pairs [A,A′] with A,A′ objects of C.

• Poly-morphisms of type S : [A1, A
′
1] . . . [An, A

′
n] → [B1, B

′
1] . . . [Bm, B

′
m] given by

polyslots of type S : [A1, A
′
1] . . . [An, A

′
n]→ [B1 ⊗ · · · ⊗Bm, B

′
1 ⊗ · · · ⊗B′

m].
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• Composition T ◦M S of S : A → BMC and S : DME → F given by taking

T ◦M S(d(i), a(j), e(k)) to be

T

. . .

F

F ′

. . . e(i)

Xe
i

Xe
i
′

d(i)

Xd
i

Xd
i
′

S

a(i)

B′

B

M

M ′

C

C ′

Xa
i

Xa
i
′

.

• Action by permutations generated by taking

A CM1

D FN1

M2 B

N2 E

S

Xa

. . .

D

D′

a

X ′
m2

m2

X ′
a

Xm2

. . .

Xb

. . .b

X ′
m1

m1

X ′
b

Xm1

. . .

Xc

c

X ′
c

E

E′

F

F ′

N2

N2

N1

N1

to be

A CM1

D FN1

M2B

N2E

S

Xa

. . .

D

D′

a

X ′
m2

m2

X ′
a

Xm2

. . .

Xb

. . .b

X ′
m1

m1

X ′
b

Xm1

. . .

Xc

c

X ′
c

E

E′

F

F ′

N2

N2

N1

N1

.
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Proof. As was the case for Dsup[C] the composed action for a general permutation can

be given by composing the actions for any decomposition of σ into swaps. That this

assignment to general permutations is well-formed and functorial for outputs follows from

the symmetry of C, for inputs instead this follows from both the symmetry of C and

the symmetry of Set which was used the flip the order of intputs to S. Associativity is

inherited from Set. The locally-applicable transformation given by choosing the identity

function for each extension is indeed a slot, and acts as the identity in pslot[C]. The

composition of two polyslots returns a polyslot, filling in all but one of the d(i) returns a

slot up-to braids since S(a(j)) is a morphism of C, filling in all but one of the e(i) returns

a slot up-to braids for the same reason. Filling in all but one of the a(i), S acts as a slot

as does T , and the sequential composition of two slots is a slot.

We now check the interchange laws for composition, the most involved one to prove

being the following:

S

T

Q

B C DG L

F KAEH

=

S

B C

T

F

Q

KA

D

E

G

H

L

.

Consider

S

B C

T

F

Q

KA

D

E

G

H

L

Xh

. . .h

X ′
h

. . .

Xa

. . .a

X ′
a

. . .

Xk

k

X ′
kB C DG L

B C DG L Xe

e

X ′
e

Xf

f

X ′
f

,
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applying the symmetric action gives:

S

B C

T

F

Q

KA

D

E

G

H

L

. . .

Xa

. . .a

X ′
a

. . .

Xk

k

X ′
kB C DG L

B C DG L Xe

e

X ′
e

Xh

. . .h

X ′
h

Xf

f

X ′
f

,

using the composition rule gives:

S

B C
T

F

Q

KA

D

E

G

H

L

a k
e

h f

Xa XkB C DG L XeXh Xf

X ′
a X ′

kB C DG L X ′
eX ′

h X ′
f

,
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or equivalently using the definition of slot induced by a polyslot :

S

B C

Q

KA

D

H

L

a kh

Xa XkB C DG L XeXh Xf

X ′
a X ′

kB C DG L X ′
eX ′

h X ′
f

T̂ (e(ie)d(id))

,

where Z = B ⊗ C ⊗ L ⊗ D ⊗ Xh ⊗ Xa ⊗ Xk and similarly for Z ′. We then use the

composition rule again to give:

Q

KH

S(a) kh

Xa XkB C DG L XeXh Xf

X ′
a X ′

kB C DG L X ′
eX ′

h X ′
f

T̂ (e(ie)d(id))

,
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which after converting into slot form gives:

S(a)

Xa XkB C DG L XeXh Xf

X ′
a X ′

kB C DG L X ′
eX ′

h X ′
f

T̂ (e(ie)d(id)) Q(hihkik) .

Using a series of swaps to set up the defining condition for slots gives:

S(a)

Xa XkB C DG L XeXh Xf

X ′
a X ′

kB C DG L X ′
eX ′

h X ′
f

T̂ (e(ie)d(id)) Q(hihkik)

,
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after-which the slot equation can finally be used to return:

S(a)

Xa XkB C DG L XeXh Xf

X ′
a X ′

kB C DG L X ′
eX ′

h X ′
f

T̂ (e(ie)d(id))

Q(hihkik)

.

Unpacking the definition of T̂ gives:

S(aia) fe

Xa XkB C DG L XeXh Xf

X ′
a X ′

kB C DG L X ′
eX ′

h X ′
f

T

G

FE

Q̂(hihkik)
,
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re-packaging the composition between T and S gives

a fe

Xa XkB C DG L XeXh Xf

X ′
a X ′

kB C DG L X ′
eX ′

h X ′
f

S

T

B C DG

FAE

Q̂(hihkik)

,

after-which unpacking the definition of Q̂ gives

a f
h

e k

Xa XkB C DG L XeXh Xf

X ′
a X ′

kB C DG L X ′
eX ′

h X ′
f

S

T

Q

B C DG

K

F

K

AE

H

,
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and finally repackaging the composition rule completes the proof:

Xh

. . .h

X ′
h

. . .

Xa

. . .a

X ′
a

. . .

Xk

k

X ′
kB C DG L

B C DG L Xe

e

X ′
e

Xf

f

X ′
f

S

T

Q

B C DG L

F KAEH

.

The other interchange law which needs to be checked:

S

T

Q

B C DG K

F KAEH

=

S

B C

T

F

Q

KA

D

E

G

H

K

,

is more straightforward. We begin by considering the latter term:

Xh

. . .h

X ′
h

. . .

Xa

. . .a

X ′
a

. . .

Xk

k

X ′
kB C DG L

B C DG L Xe

e

X ′
e

Xf

f

X ′
f

S

B C

T

F

Q

KA

D

E

G

H

L

,
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and then use the definition of the symmetric action:

Xh

. . .h

X ′
h

. . .

Xa

. . .a

X ′
a

. . .

Xk

k

X ′
kB C DG L

B C DG L Xe

e

X ′
e

Xf

f

X ′
f

S

B C

T

F

Q

KA

D

E

G

H

L

,

then we use the definition of composition along T :

Xh

. . .h

X ′
h

. . .

Xa

. . .a

X ′
a

. . .

Xk

k

X ′
kB C DG L

B C DG L Xe

X ′
e

Xf

f

X ′
f

S

B C

F

Q

KA

D

H

T (e) ,
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and then use the definition of composition along Q:

Xh

. . .h

X ′
h

. . .

Xa

. . .a

X ′
a

. . .

Xk

k

X ′
kB C DG L

B C DG L Xe

X ′
e

Xf

X ′
f

S

C

KAH

T (e) Q(f) ,

then using the definition of composition along T :

Xh

. . .h

X ′
h

. . .

Xa

. . .a

X ′
a

. . .

Xk

k

X ′
kB C DG L

B C DG L Xe

X ′
e

Xf

X ′
f

S

C

T

KAE

G

H

L

e Q(f) ,
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and finally the using the definition of composition along Q gives the result:

Xh

. . .h

X ′
h

. . .

Xa

. . .a

X ′
a

. . .

Xk

k

X ′
kB C DG L

B C DG L Xe

e

X ′
e

Xf

f

X ′
f

S

B C

T

F

Q

KA

D

E

G

H

L

.

Finally, we check equivariance with respect to permutations. Given the functorial action

by permutations, the checking of equivariance can be performed piece-wise by checking on

swaps and then concluding general equivariance by functorality. This means that to check

equivariance we will just need to establish that:

S

T

B C

D

F

A E

Y

=

S

T

B C

D

F

A E

Y

,

and further that:

S

T

B

CD

F

A

E

Y

=

S

T

B

CD

F

A

E

Y

,

along with the horizontal reflection of each of these laws. Let us show how to prove the
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first, with the proof of the rest given by the same methods. To begin, consider:

Xa

. . .a

X ′
a

. . .

Xe

c

X ′
e

Xd

d

X ′
d

S

T

B

CD

F

A

E

Y

B FE

B FE

. . .

Xy

y

X ′
y

,

using the polsylot composition rule gives:

. . .

E′

. . . c

X ′
c

a

X ′
a

T

d

B′

M

M ′

F ′ X ′
d

. . . y

X ′
y

E XcXaB F XdXy

S

B

CA Y X
,
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then using the action under a swap for S gives:

. . .

E′

. . . c

X ′
c

a

X ′
a

T

d

B′

M

F ′ X ′
d

. . . y

X ′
y

E XcXaB F XdXy

S

B

CA YX
,

untangling the polyslot composition rule then gives:

. . .

E′

. . . c

X ′
c

a

X ′
aB′ F ′ X ′

d

. . . y

X ′
y

E XcXaB F XdXy

d

S

T

B

CD

F

A

E

Y

,

which using the action under a swap completes the proof:

. . .

E′

. . . c

X ′
c

a

X ′
aB′ F ′ X ′

y

. . . d

X ′
d

E XcXaB F Xy Xd

y

S

T

B

CD

F

A

E

Y

.
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