
Nonparametric Involutive Markov Chain Monte Carlo:
a MCMC algorithm for universal probabilistic

programming
Carol Mak

Magdalen College
University of Oxford

A thesis submitted for the degree of
Doctor of Philosophy

Trinity 2022

Abstract
Probabilistic programming, the idea to write probabilistic models as computer pro-

grams, has proven to be a powerful tool for statistical analysis thanks to the computation
power of built-in inference algorithms. Developing suitable inference algorithms that
work for arbitrary programs in a Turing-complete probabilistic programming language
(PPL) has become increasingly important. This thesis presents the Nonparametric
Involutive Markov chain Monte Carlo (NP-iMCMC) framework for the construction of
MCMC inference machines for nonparametric models that can be expressed in Turing-
complete PPLs. Relying on the tree representable structure of probabilistic programs,
the NP-iMCMC algorithm automates the trans-dimensional movement in the sampling
process and only requires the specification of proposal distributions and mappings on
fixed dimensional spaces which are provided by inferences like the popular Hamiltonian
Monte Carlo (HMC). We gave a theoretical justification for the NP-iMCMC algorithm
and put NP-iMCMC into action by introducing the Nonparametric HMC (NP-HMC)
algorithm, a nonparametric variant of the HMC sampler. This NP-HMC sampler works
out-of-the-box and can be applied to virtually all useful probabilistic models. We further
improved NP-HMC by applying the techniques specified for NP-iMCMC to construct
irreversible extensions that have shown significant performance improvements against
other existing inference methods.

Nonparametric Involutive Markov Chain Monte
Carlo: a MCMC algorithm for universal

probabilistic programming

Carol Mak
Magdalen College

University of Oxford

A thesis submitted for the degree of

Doctor of Philosophy

Trinity 2022

Acknowledgements

First and foremost, I would like to thank my supervisor, Luke Ong, whose guidance,
encouragement, and support have been instrumental throughout my doctoral journey.
Your supervision has shaped not just this thesis but also my academic career.

I am grateful to my thesis examiners, Hongseok Yang and Arnaud Doucet, for their
expertise and constructive feedback that have enriched the quality of this work.

I am indebted to University of Oxford and Croucher Foundation for providing financial
support for this research. This funding has enabled me to freely pursue my intellectual
ideas, and grow and become an independent researcher.

My heartfelt gratitude go to my colleagues and mentors at Department of Computer
Science, Magdalen College, St Catherine’s College, whose research discussions have
been invaluable, in particular Gavin Lowe, Thomas Mattinson, Angus Taylor, Toby
Cathcart Burn, Mario Alvarez Picallo, Dominik Wagner, Rolf Morel, Hugo Paquet,
Fabian Zaiser and Maria Nicoleta Craciun.

I extend my appreciation to the staff of the Department of Computer Science, whose
administrative assistance, technical support, and resources have been indispensable in
the completion of this thesis.

I am deeply grateful to my friends for their encouragement which have sustained
me through the highs and lows of this doctoral journey, including the Oxford Catholic
Chaplaincy chaplains and residents, members of the Newman Society: the University of
Oxford Catholic Society, the 11am and 9pm Mass Choristers, the Oxford Leg Student
Cross pilgrims, and all those participated in the God in the Quad discussion group.

I would like to thank my family for their unwavering belief in me, their patience,
and their unconditional love and support.

Lastly, I dedicate this thesis to God, whose loving mercy continue to inspire and
motivate me every day.

Abstract

Probabilistic programming, the idea to write probabilistic models as computer programs,
has proven to be a powerful tool for statistical analysis thanks to the computation power
of built-in inference algorithms. Developing suitable inference algorithms that work
for arbitrary programs in a Turing-complete probabilistic programming language (PPL)
has become increasingly important. This thesis presents the Nonparametric Involutive
Markov chain Monte Carlo (NP-iMCMC) framework for the construction of MCMC
inference machines for nonparametric models that can be expressed in Turing-complete
PPLs. Relying on the tree representable structure of probabilistic programs, the NP-
iMCMC algorithm automates the trans-dimensional movement in the sampling process
and only requires the specification of proposal distributions and mappings on fixed
dimensional spaces which are provided by inferences like the popular Hamiltonian
Monte Carlo (HMC). We gave a theoretical justification for the NP-iMCMC algorithm
and put NP-iMCMC into action by introducing the Nonparametric HMC (NP-HMC)
algorithm, a nonparametric variant of the HMC sampler. This NP-HMC sampler works
out-of-the-box and can be applied to virtually all useful probabilistic models. We further
improved NP-HMC by applying the techniques specified for NP-iMCMC to construct
irreversible extensions that have shown significant performance improvements against
other existing inference methods.

Contents

List of Figures xi

1 Introduction 1

2 A Brief Introduction to Measure Theory 5
2.1 Measurable space . 5
2.2 Measurable function . 8
2.3 Measure . 9

2.3.1 Pushforward measure . 12
2.3.2 Product measure . 13

2.4 Integration . 14
2.4.1 Definition . 14
2.4.2 Integration by substitution . 15
2.4.3 Radon-Nikodym Derivative . 16
2.4.4 Commutativity of Integrals . 17
2.4.5 Kernel . 18

3 Probabilistic Programming for Bayesian Inference 19
3.1 Bayesian Machine Learning . 19

3.1.1 Bayesian Framework . 19
3.1.2 Challenges of Bayesian Machine Learning 21

3.2 Statistical PCF . 21
3.2.1 Syntax . 21
3.2.2 SPCF for Bayesian Inference . 25

3.3 Properties of SPCF . 25
3.3.1 Operational Semantics . 26
3.3.2 Tree Representable Functions . 29
3.3.3 Almost Sure Termination and Integrability 31

3.4 Other Probabilistic Programming Languages 32

vii

viii Contents

4 Markov Chain Monte Carlo 35
4.1 An Introduction to Markov Chains Monte Carlo 35
4.2 Involutive MCMC Algorithms . 39

4.2.1 Correctness of iMCMC Algorithm 40
4.2.2 Pseudocode of iMCMC Algorithm 40
4.2.3 Unified View of MCMC Algorithms 41

4.3 Techniques on iMCMC Algorithms . 42
4.3.1 State-dependent iMCMC Mixture 42
4.3.2 Direction iMCMC Algorithm . 43
4.3.3 Persistent iMCMC Algorithm . 45

4.4 Case Study: Hamiltonian Monte Carlo 48
4.4.1 The Hamiltonian Monte Carlo Algorithm 48
4.4.2 Discontinuous Hamiltonian Monte Carlo 51
4.4.3 Irreversible HMC Algorithms . 52

4.5 Case Study: Reversible Jump MCMC . 59
4.5.1 The Reversible Jump MCMC Algorithm 59
4.5.2 Instances and Generalisations of RJMCMC 61
4.5.3 Automating RJMCMC . 61

4.6 Approximate Inferences for Probabilistic Programming 61
4.6.1 Importance Sampling . 61
4.6.2 Particle Methods . 62
4.6.3 Optimisation Methods . 63
4.6.4 Lightweight Metropolis-Hastings 63
4.6.5 Divide, Conquer and Combine 64
4.6.6 MCMC Methods . 64

5 Nonparametric Involutive MCMC 65
5.1 The Challenge MCMC Samplers Face . 66
5.2 State Spaces . 67

5.2.1 Entropy Space . 67
5.2.2 Parameter Space . 68
5.2.3 Auxiliary Space . 69
5.2.4 State Space . 69

5.3 Inputs of the NP-iMCMC Algorithm . 69
5.3.1 Target Density Function . 70
5.3.2 Auxiliary kernels . 70
5.3.3 Involutions . 70

5.4 The NP-iMCMC Algorithm . 71
5.4.1 Movement Between Samples of Varying Dimensions 72

Contents ix

5.4.2 Pseudocode of NP-iMCMC Algorithm 73
5.4.3 Nonparametric Metropolis-Hastings 74

5.5 Techniques on NP-iMCMC Algorithms 76
5.5.1 State-dependent NP-iMCMC Mixture 76
5.5.2 Direction NP-iMCMC Algorithm 79
5.5.3 Persistent NP-iMCMC Algorithm 81

5.6 Related Work . 83

6 Correctness of Nonparametric Involutive MCMC 85
6.1 Almost Sure Termination . 86
6.2 Invariant State Distribution . 88

6.2.1 State Distribution . 88
6.2.2 Equivalent Program . 91
6.2.3 Invariant Distribution . 91

6.3 Marginalised Markov Chains . 98

7 Nonparametric Hamiltonian Monte Carlo 103
7.1 Motivation . 103
7.2 Slice function . 104

7.2.1 Example (HMC) . 105
7.3 Multiple Step NP-iMCMC . 105

7.3.1 The Multiple Step NP-iMCMC Algorithm 106
7.3.2 Pseudocode of Multiple Step NP-iMCMC Algorithm 107
7.3.3 Correctness of Multiple Step NP-iMCMC Algorithm 107
7.3.4 Techniques on Multiple Step NP-iMCMC 109

7.4 Nonparametric Hamiltonian Monte Carlo 116
7.4.1 Nonparametric HMC . 116
7.4.2 Nonparametric Discontinuous HMC (NP-DHMC) 118
7.4.3 Generalised NP-DHMC . 120
7.4.4 Look Ahead NP-HMC . 122

7.5 Experiments . 124
7.5.1 Geometric distribution . 124
7.5.2 Random walk . 126
7.5.3 Infinite Gaussian mixture model 126
7.5.4 Dirichlet process mixture model 127

8 Conclusion 129
8.1 Summary . 129
8.2 Evaluation . 130
8.3 Future Direction . 132

x Contents

Appendices

Bibliography 135

List of Figures

3.1 Densities of the prior and posterior of p 20
3.2 Syntax of SPCF, where r, q, p ∈ R, a, b ∈ 2, x, y, z ∈ V , and f, g, h ∈ F . . 22
3.3 Small-step reduction of SPCF, where r, q, p ∈ R, a, b ∈ 2, c ∈ R ∪ 2,

x, y, z ∈ V , and f, g, h ∈ F . 27
3.4 Program tree and program . 30

4.1 Directed graph of the transition kernel ι 36
4.2 Directed graph of the transition kernel described in Ex. 26 45
4.3 Directed graph of the transition kernel described in Ex. 27 47
4.4 Result of Φ(x,v, u,T) for varying u ∈ [0,1]. 58

7.1 Geometric distribution: Length of traces of the persistent NP-DHMC
algorithm with corruption parameter α = 0.1. 125

7.2 Random walk example: ESS in terms of number of samples, computed
from 10 runs. Each run: 103 samples with L = 5 leapfrog steps of size
ϵ = 0.1 with corruption parameter α ∈ {0.1,0.5} and look-aheadK ∈ {1,2}.125

7.3 Gaussian mixture with Poisson prior: LPPD in terms of number of sam-
ples, averaged over 10 runs. The shaded area is one standard deviation.
Each run: 103 samples with L = 25 leapfrog steps of size ϵ = 0.05 with
corruption parameter α = 0.5 and look-ahead K ∈ {1,2}. 126

7.4 Gaussian mixture with Poisson prior: Length of traces. 127
7.5 Dirichlet process mixture: LPPD in terms of number of samples, aver-

aged over 10 runs. The shaded area is one standard deviation. Each run:
150 samples with L = 20 leapfrog steps of size ϵ = 0.05, with corruption
parameter α = 0.5 and look-ahead K ∈ {1,2}. 128

xi

xii

Dominus illuminatio mea.

— Psalm 26

1
Introduction

The inclusion of randomness in programming languages dates back to the earliest
version of FORTRAN (Backus et al., 1957). Kozen in (Kozen, 1979) presented the
foundation of such language which proves to be a versatile and elegant system for the
study of probabilistic complexity compared to low-level models such as decision trees,
Turing machines, directed graphs and finite automata. This line of research was further
explored in the early 2000s (Ramsey and Pfeffer, 2002; Park et al., 2005). However,
these languages lack the ability to record observations, which limits their applicability
towards statistical analysis.

Goodman et al. in (Goodman et al., 2008) designed Church, a so-called universal
probabilistic programming language (PPL) which is a Turing-complete functional lan-
guage augmented with two probabilistic operators, mimicking the probabilities in Bayes’
Law. Typically, randomness is introduced in a universal PPL via a command called
sampling and denoted as sample(D) . Intuitively, sample(D) returns a randomly drawn
sample from the distribution denoted by D . In statistical analysis, it is typically used
to describe the prior knowledge of a task. In addition, the authors introduced the idea
of scoring: it gives the samplings results so far a score which reflects how likely they
are to have happened. It is usually called scoring, sometimes known as soft constraints,
and denoted as score(c) . Scoring is a powerful feature in statistical analysis as it
allows users to input the likelihood of the observed data to the program. With these
two new constructs, probabilistic models can be described as computer programs. For
example, nonparametric models like the infinite Gaussian mixture model (iGMM) can
be expressed using branching and recursion in universal PPL.

1

2 1. Introduction

The introduction of universal probabilistic programming led to an explosive develop-
ment of many practical probabilistic languages, such as Anglican (Wood et al., 2014),
Venture (Mansinghka et al., 2014), Web PPL (Goodman and Stuhlmüller, 2014), Hakaru
(Narayanan and Shan, 2020), Pyro (Bingham et al., 2019), Turing (Ge et al., 2018),
Gen (Cusumano-Towner et al., 2019), Stan (Gelman et al., 2015), Infer.NET (Minka
et al., 2018) and PyMC (Salvatier et al., 2016); and the study of probability theory in
programming languages (Staton, 2017; Borgström et al., 2016; Culpepper and Cobb,
2017; Wand et al., 2018; Vákár et al., 2019; Heunen et al., 2017; Ścibior et al., 2017;
Staton et al., 2016; Ehrhard et al., 2014, 2018, 2015; Danos and Ehrhard, 2011; Mak
et al., 2021a; Zhou et al., 2019).

Typically in a practical probabilistic language, after a model is defined as a computer
program, the computation of the posterior is then carried out by some back-end inference
engines. A common example of these back-end engines is the Markov Chain Monte
Carlo (MCMC) inference method, where the posterior is simulated via a Markov chain of
samples. Unfortunately, popular black-box inference algorithms like Hamiltonian Monte
Carlo (HMC) (Neal, 2011) cannot always be applied to models defined as probabilistic
programs since it has a finite dimensional state space. Other existing inference algorithms
designed for nonparametric models are either not reliable (LMH (Wingate et al., 2011),
RMH, particle Gibbs etc) or require a high-level customisation (RJMCMC (Green, 1995)).

The purpose of this thesis is to (1) simplify the design process of inference algorithms
for probabilistic programming and (2) construct a concrete inference algorithm that has
an adequate trade-off amongst reliability, efficiency, applicability, adaptability, simplicity
of implementation, easiness to extend, and automation.

We first understand probabilistic programming by discussing the Statistical Program-
ming Computable Functions (SPCF), a probabilistic variant of the infamous functional
PCF language invented by Scott in 1969 (Plotkin, 1977; Scott, 1993), where all com-
putable probabilistic models can be specified. We give a simple small-step reduction
system for SPCF programs and importantly identify a key characteristic of the densities,
namely that they must be tree representable. We then study the recently suggested
involutive Markov Chain Monte Carlo (iMCMC) framework (Neklyudov et al., 2020),
which can describe many existing MCMC algorithms (MH, HMC, Gibbs) and the list
of tricks that can be applied to iMCMC.

The main contribution of this thesis is the Nonparametric Involutive Markov chain
Monte Carlo (NP-iMCMC) algorithm, a general framework to design MCMC algorithms
for nonparametric probabilistic models specified in the SPCF language. Relying on
the tree representable structure of their density functions, the NP-iMCMC algorithm
automates the trans-dimensional movement in the sampling process and only requires

1. Introduction 3

the specification of proposal distributions and mappings on fixed dimensional spaces
which are provided by iMCMC methods like HMC. As SPCF can specify all computable
probabilistic models, NP-iMCMC is applicable to virtually all useful probabilistic models.
Furthermore, techniques identified for iMCMC can also be applied on the NP-iMCMC
sampler to facilitates powerful extensions. With some minor assumptions, we justify
the NP-iMCMC algorithm and prove that the generated Markov chain preserves the
distribution of the given SPCF program.

After that, we put NP-iMCMC into action and design the Nonparametric HMC (NP-
HMC) algorithm, a nonparametric variant of the HMC algorithm. Furthermore, we
improve NP-HMC by applying the techniques specified for NP-iMCMC and form the
Nonparametric Discontinuous HMC (NP-DHMC), NP-Generalised DHMC and NP-Look
Ahead DHMC. These inferences work out-of-the-box and thanks to (Mak et al., 2021a)
can be applied to many useful probabilistic models. We justify them empirically by
comparing them with other existing inference methods.

Outline We first study the SPCF language and show that it can be represented by
a class of tree representable function in Chapter 3. After that in Chapter 4, we learn
about a few prominent MCMC methods to sample from a probabilistic model using the
recently suggested iMCMC framework. We then introduce the Nonparametric iMCMC
(NP-iMCMC) method in Chapter 5 which can be seen as a generalisation of the iMCMC
algorithm for nonparametric models described by tree representable functions. We further
develop the system by considering some techniques that can be applied to NP-iMCMC
to improve flexibility and form irreversible chains. After that, we show that under mild
conditions, these algorithms are correct in Chapter 6. Last by not least, in Chapter 7
we form a nonparametric variant of HMC using the NP-iMCMC framework, develop
some variants and run experiments on them.

4

Judica me, Deus, et discerne causam meam de gente non
sancta, ab homine iniquo et doloso erue me.

— Psalm 42:1

2
A Brief Introduction to Measure Theory

This chapter provides the essential mathematical foundations on which this thesis is
based, and outlines conventions that will be used throughout this thesis. We start with
a gentle introduction to basic measure theory, which will equip us with the necessary
tools and techniques to explore the research questions and key concepts in the rest of this
thesis. Whenever appropriate, we show how these measure theoretical definitions can
be applied to probability theory. Readers familiar with measurable spaces, measurable
functions, measures, and integration can start with Chapter 3 and refer back to clarify
notations and conventions as needed. For more details on the propositions and theorems,
we direct interested readers to the excellent account in (Williams, 1991), from which
much of this section is borrowed.

2.1 Measurable space

A measurable space specifies a set S and a collection ΣS of subsets of S called the
σ-algebra, containing S and is closed under complementation and countable unions.
In a probabilistic programming language, every sampler has an associated measurable
space (S,ΣS). The set S contains all possible outcomes of the sampler, and the σ-
algebra ΣS contains all events the sampler can describe. Hence each event is a subset
of possible outcomes. The definition of σ-algebra insists that the set of all possible
outcome is an event and the complement and countable union of events are also events.
Formally, it is defined as follows.

Definition 1. A measurable space is a pair (S,ΣS) containing a set S and a σ-algebra
ΣS on S, i.e. ΣS is a collection of subsets of S satisfying

5

6 2.1. Measurable space

• S ∈ ΣS;

• A ∈ ΣS implies Ac ∶= S ∖A ∈ ΣS; and

• for all n ∈ N, An ∈ ΣS implies ⋃
n∈N

An ∈ ΣS .

We denote elements in the σ-algebra ΣS as measurable sets on S.

Example 1. Let S be a set.

(1) The set containing the empty set ∅ and S is a σ-algebra on S. We call it the trivial
σ-algebra on S.

(2) The power set ℘(S) of S, which contains all subsets of S, is a σ-algebra on S. We
call ℘(S) the discrete σ-algebra.

(3) Let C be a collection of subsets in S. The σ-algebra σ(C) generated by C is the
smallest σ-algebra which consists of every set in C. Formally, it is the intersection
of all σ-algebra containing C.

Example 2. The σ-algebra B ∶= σ({(r, q) ∣ r, q ∈ R}) generated by the set of all open
intervals in the Euclidean space R is called the Borel σ-algebra. This is an important
example and includes all subsets of Reals of interest to this thesis. Note that the Borel
σ-algebra on R is not the same as the discrete σ-algebra, i.e. it does not contain all subsets
of R. Unless otherwise specified, the Euclidean space R is always equipped with the
Borel σ-algebra B, and we call (R,B) the Borel measurable space.

Example 3. The normal sampler normal in a typical probabilistic programming language
randomly draws a value in the Borel measurable space (R,B). Similarly the Boolean
sampler coin draws from the measurable space 2 ∶= {T,F} with the discrete σ-algebra
Σ2 ∶= ℘(2).

In probabilistic programming, samplers are used as building blocks in the specifi-
cation of probabilistic models. This thesis studies probabilistic models that are non-
parametric — models where the number of random variables are not determined a
priori. An example of nonparametric models is the geometric distribution which returns
the number of Bernoulli trials needed to get one success as the number of Bernoulli
trials is not determined. Nonparametric models can be specified by probabilistic pro-
grams with an unbounded number of calls to sample using recursion. For instance
the geometric distribution with parameter p = 0.5 can be described by the program
count = 1; while coin: count += 1; return count .

2. A Brief Introduction to Measure Theory 7

We now present the measurable space that describes such programs. First we look at
those spaces that describe programs with multiple sample calls such as coin; coin , then
we move to those that allow us to describe programs with an uncertain number of sample
calls such as if coin: coin;coin else: coin . Using these measurable spaces, we
construct the list measurable space that can describe programs with an unbounded
number of sample calls.

Definition 2. Let (S1,ΣS1) and (S2,ΣS2) be measurable spaces. The product mea-
surable space is the Cartesian product S1 × S2 equipped with the product σ-algebra
ΣS1×S2 ∶= σ({A1 ×A2 ∣ A1 ∈ ΣS1 ,A2 ∈ ΣS2}) generated by the set of all Cartesian prod-
ucts of measurable sets on S1 and S2.

Proposition 1. The product of n copies of the Borel measurable space (R,B) coincides
with the measurable space on the n-dimensional Euclidean space Rn equipped with the
Borel σ-algebra Bn generated by all open sets in Rn.

Remark 1. For ease of reference, we denote (Sn,ΣSn) to be the product measurable
space of n copies of (S,ΣS).

Example 4. The product measurable space 22 equipped with the product σ-algebra Σ22 ∶=

σ({A ×B ∣ A,B ∈ ℘(2)}) can describe the probabilistic program coin; coin . For in-
stance, the event of ‘first flipping true’ is described by the measurable set {(T,T), (T,F)}
and the event of ‘flipping both true and false’ is described by the measurable set {(T,F),
(F,T)}.

Definition 3. Let (S1,ΣS1) and (S2,ΣS2) be measurable spaces. The union measurable
space is the union S1 ∪ S2 equipped with the union σ-algebra ΣS1∪S2 ∶= σ(ΣS1 ∪ΣS2)

generated by the union of the σ-algebra of S1 and S2.

Example 5. The union measurable space 23 ∪ 22 equipped with the union σ-algebra
Σ23∪22 allows us to describe the probabilistic program if coin: coin;coin else: coin ,
which either performs three coin flips or two depending on the result of the first coin flip.

Definition 4. The list measurable space of a measurable space (S,ΣS) describes all
finite lists that contain elements in S and is constructed by taking the (countable) union
of the n product measurable space (Sn,ΣSn) over n ∈ N. This gives us a measurable
space with set ⋃

n∈N
Sn and σ-algebra generated by the union of ΣSn , namely σ(⋃

n∈N
ΣSn).

It is easy to check that measurable set takes the form ⋃
n∈N

An for An ∈ ΣSn . We use the

list notation to describe elements in the list measurable space, e.g. [], [s1, . . . , sn] for
s1, . . . , sn ∈ S.

8 2.2. Measurable function

Example 6. Consider the list measurable space (⋃
n∈N

2n, σ(⋃
n∈N

Σ2n)) of the Boolean

measurable space. This can be used to describe probabilistic programs with an unbounded
number of calls to the Boolean sampler coin . For instance, the list of samples drawn
in a particular run of the probabilistic program count = 1; while coin: count += 1;

return count are elements in ⋃
n∈N

2n.

Definition 5. Let (S,ΣS) be a measurable space and S′ a subset of S. The sub-
measurable space consists of the set S′ and the sub-σ-algebra ΣS′ ∶= {A ∩ S′ ∣ A ∈ ΣS}.

It is easy to check that the sub-σ-algebra is indeed a σ-algebra.

2.2 Measurable function

After defining measurable spaces, we can now present measurable functions, which are
functions between measurable spaces. A measurable function fromS1 toS2 can be viewed
as a variable that takes different values in S2 depending on the random outcome in S1.

Definition 6. Let (S1,ΣS1) and (S2,ΣS2) be measurable spaces. A map X ∶ S1 → S2

is a measurable function if the inverse image of any measurable set in its codomain is
measurable in its domain, i.e.

A ∈ ΣS2 ⇒ X−1(A) ∶= {s ∈ S1 ∣X(s) ∈ A} ∈ ΣS1 .

Example 7. We look at some notable measurable and non-measurable functions.

• All functions from a measurable space with a discrete σ-algebra is measurable.

• Let R be equipped with the Borel σ-algebra. Then, all continuous functions with
the type R→ R are measurable.

• Not all measurable functions with the type R → R are continuous. For instance,
the characteristic function 1Q ∶ R → R of the set Q of rational numbers is not
continuous but is measurable.

• Not all functions with the type R→ R are measurable. Let A be a non-measurable
subset in R. Then, the characteristic function 1A of A is not measurable.

We can form more sophisticated measurable functions as they are closed under
composition and product.

Proposition 2. Let (S1,ΣS1), (S2,ΣS2), (S3,ΣS3) and (S4,ΣS4) be measurable spaces.

2. A Brief Introduction to Measure Theory 9

(i) If X ∶ S1 → S2 and Y ∶ S2 → S3 are measurable functions, then so is their
composite Y ○X ∶ S1 → S3 defined as (Y ○X)(s) ∶= Y (X(s))

(ii) If X ∶ S1 → S2 and Y ∶ S3 → S4 are measurable functions, then so is their product
X × Y ∶ S1 × S3 → S2 × S4 defined as (X × Y)(s1, s3) ∶= (X(s1), Y (s3))

A key observation (Kozen, 1979) in the development of probabilistic programming
is that given a list of samples drawn in a particular execution of a probabilistic program,
the program ceases to be probabilistic. Instead we can run the probabilistic program
like any deterministic program.

Example 8. Consider the probabilistic program count = 1; while coin: count += 1;

return count . Take the list [T,T,F], which lies in the list measurable space of the
Boolean measurable space (2,Σ2), the program can be executed determinedly by taking
the first unused value in the list for each coin flip and returning 2 . The function from
the list measurable space⋃

n
2n to the union R ∪ {�} of the Borel measurable space and

the singleton {�} that returns different values in R (or � if the given list does not match
the structure of the program such as [T,F,T]) depending on given list of random coin
flips is measurable.

2.3 Measure

Measure theory gets exciting when we start assigning a non-negative Real number to
every measurable set, giving it a ‘weight’. The function which defines such assignment
is called a measure.

Definition 7. A function µS ∶ ΣS → [0,∞] is a measure on the measurable space (S,ΣS)

if it is countably additive, i.e.

• µS(∅) = 0, and

• for any countable sequence of disjoint measurable sets {An}n∈N on S, µS(⋃
n∈N

An) =

∑
n∈N

µS(An).

A measure space is a tripe (S,ΣS, µS) where (S,ΣS) is a measurable space and µS is a
measure.

For ease of reference, we often drop the subscript in the measure when the measurable
space is unambiguous. We now give some simple properties of measure which are direct
consequences of the definition.

10 2.3. Measure

Proposition 3. Let (S,ΣS, µS) be a measure space. The measure µS always satisfy the
followings. Let A,B,An be measurable sets for all n ∈ N.

• (Additive) A ∩B = ∅ implies that µS(A ∪B) = µS(A) + µS(B).

• (Monotone) A ⊆ B implies that µS(A) ≤ µS(B).

• (Countably subadditive) µS(⋃
n∈N

An) ≤ ∑
n∈N

µS(An).

Let µ1 and µ2 be measures on (S,ΣS). Then, there exists a unique measure µ1 + µ2

such that (µ1 + µ2)(A) ∶= µ1(A) + µ2(A) for all measurable sets A.

The (value) measure of a probabilistic program takes a measurable set of returned
values, i.e. an event, and gives the “likelihood” of such event according to the program.
For instance, the value measure of the probabilistic program count = 1; while coin:

count += 1; return count takes a subsetA in N and returns∑
k∈A
(1/2)k, which coincides

with the geometric distribution with p = 0.5.
What makes probabilistic programming different from randomized programming is

its ability to give a score to the current execution. In other words, one can (artificially)
change the weight of a particular execution in a probabilistic program. This proves to
be very useful in Bayesian inference (as we will see in Chapter 3).

For now, we consider scoring to be a way to multiply the current likelihood with a
non-negative Real number. For example, say we observe that the count in the above
program must be larger than three. We can add this piece of information to the program
by assigning a zero score to the runs with count less than or equals to three. Putting
it together, we get the following program.� �

count = 1;
while coin:
count += 1;

if count <= 3:
score(0);

return count� �
This program will now have a value measure given by

A↦

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

∑
k∈A
(1/2)k if k > 3

0 otherwise.

An important remark is that the value measure of a probabilistic program does not nec-
essarily “sum to one”. But it does fall under one of the following four classes of measures.

Definition 8. Let (S,ΣS, µS) be a measure space.

2. A Brief Introduction to Measure Theory 11

• The measure µS is a probability measure if µS(S) = 1. A measure space with a
probability measure is called a probability space.

• The measure µS is finite if µS(S) <∞.

• The measure µS is σ-finite if there is a countable cover1 {An}n∈N of measurable
sets on S where µS(An) <∞ for all n ∈ N.

• The measure µS is s-finite if there is a countable sequence {µn}n∈N of finite
measures on S such that µS = ∑

n∈N
µn.

We have the following chain of inclusions for measures:

probability measures ⊂ finite measures ⊂ σ-finite measures ⊂ s-finite measures

In the following example, we show that these inclusions are strict.

Example 9. We consider some common measures that will be used throughout this
thesis. Let (S,ΣS) be a measurable space.

• Take an element s ∈ S. The Dirac measure δs(A) in s is defined to be the
characteristic function 1{s}(A) on the singleton set {s}. It is easy to see that the
Dirac measure is a probability measure.

• The counting measure on S is set to be

µ(A) ∶=

⎧⎪⎪
⎨
⎪⎪⎩

∣A∣ if A is finite
∞ otherwise

for measurable set A ∈ ΣS

where ∣A∣ returns the number of elements in the measurable set A, if it is finite.
Given different measurable spaces, the counting measure has different types. For
instance, on the finite space {1, . . . , n} with the discrete σ-algebra, the counting
measure is finite; whereas on the countably finite space N (with the discrete σ-
algebra), it is no longer finite but σ-finite. On the Borel measurable space (R,B),
the counting measure is not even σ-finite. This is because any countable cover of
R must contain an uncountable (and infinite) subset of R.

• Fix s ∈ S. Consider the measure µ that sums over a countable number of Dirac
measure in s, i.e. µ = ∑

n∈N
δs. By construction, µ is s-finite. But it is not σ-finite,

because all countable covers for S must contain a measurable set A consisting of s
which has infinite measure.

1A cover of a set S is a collection C of subsets of S such that S =⋃C.

12 2.3. Measure

Example 10. Here are some probabilistic programs with different types of value mea-
sures.

• Probability measures: return 3 (Dirac measure in three), return coin (Boolean
measure), return normal + normal (Sum of two Gaussian measures).

• Finite measures: score(2); return 3 (Point measure in three with weight two),
if coin: score(1); else: score(0) (Half measure on T and zero on F).

• σ-finite measures: x = normal; score(1/pdfnormal(x)); return x (Lebesgue
measure on R) where pdfnormal is a primitive that returns the probability density
of the Gaussian measure.

• S-finite measures: x = normal; score(1/pdfnormal(x)); return 0 (Point mea-
sure in zero with infinite weight).

Undoubtedly, the most important measure on the Borel measurable space is the
Lebesgue measure. It captures the idea of length and is used extensively in measure
theory. The justification of its existence and uniqueness is outside of the scope of this
thesis and we point interested readers to (Williams, 1991).

Theorem 1. There exists a unique measure Leb on the Borel measurable space (R,B)
such that for any r, q ∈ R where r < q, Leb((r, q)) = q − r.

With the countable cover {(n,n + 1] ∣ n ∈ Z} of the Euclidean space R, we see that
Lebesgue measure is σ-finite.

In a measure-theoretical context, a statement is “true enough” if the set on which it
does not hold is “neglectable”. We define these terms formally as follows.

Definition 9. Let (S,ΣS, µS) be a measure space. A measurable set A is said to be
µS-null (or simply null) if µS(A) = 0. A statement about S is true almost everywhere
(a.e.) if the statement can be written as a measurable function statement ∶ S → 2 and the
set {s ∈ S ∣ statement(s) = F} is is µS-null.

2.3.1 Pushforward measure

Up till now, we have considered measures that are directly constructed by assigning
weights to each measurable set. Another way of defining measures is to use mea-
surable functions.

2. A Brief Introduction to Measure Theory 13

Definition 10. Let (S1,ΣS1) and (S2,ΣS2) be measurable spaces. Given a measurable
function X from S1 to S2 and measure µS1 on S1, The pushforward measure X∗µS1

of µS1 along X is a measure on S2 given by X∗µS1 ∶= µS1 ○X
−1. Note that since X is

measurable, its inverse X−1 ∶ ΣS2 → ΣS1 is well-defined.

Essentially the pushforward measure X∗µS1 transforms a measurable set A in S2 to
one in S1 via X−1 and computes the measure of that set according to µS1 . It is routine
to show that the pushforward measure is indeed a measure.

Example 11 (Marginal measure). Let µ be a measure on the n-product measurable space
(∏

n
i=1 Si,Σ∏n

i=1 Si
). The k-th marginal measure of µ is the pushforward measure πk∗µ

of µ along the projection πk ∶∏
n
i=1 Si → Sk which returns the k-th component. Note that

for any measurable set A in Sk,

πk∗µ(A) = µ(S1 × ⋅ ⋅ ⋅ × Sk−1 ×A × Sk+1 × ⋅ ⋅ ⋅ × Sn).

Remark 2. In general, measures on a product measurable space are not uniquely deter-
mined by its marginals.

We end this subsection with a proposition that links s-finite and σ-finite measures
using pushforward.

Proposition 4 ((Staton, 2017), Proposition 7). A measure is s-finite if and only if it is a
pushforward of a σ-finite measure.

2.3.2 Product measure

Similar to measurable spaces and functions, we can form more sophisticated measures
as they are closed under product.

Proposition 5. Let (Si,ΣSi
, µSi
) be measure spaces where µSi

are σ-finite measures for
all i = 1, . . . , n. There exists a unique measure ∏n

i=1 µSi
on the n product measurable

space (∏n
i=1 Si,∏

n
i=1 ΣSi

) such that for all Ai ∈ ΣSi
,

(
n

∏
i=1
µSi
)(A1 × ⋅ ⋅ ⋅ ×An) = µS1(A1) × ⋅ ⋅ ⋅ × µSn(An).

∏
n
i=1 µSi

is called the product measure on∏n
i=1 Si.

Remark 3. The product measure for general measures is not unique. See (Vákár and Ong,
2018) for a discussion on the product of s-finite measures, which are not unique.

14 2.4. Integration

Remark 4. In contrast to general measures on a product measurable space (see Rem. 2),
the k-th marginal measures of a product measure∏n

i=1 µSi
is given by µSk

and the product
measure is uniquely determined by its marginals.

Example 12. The Lebesgue measure Lebn on the n-dimensional Euclidean measurable
space (Rn,Bn) is defined to be the product of n copies of the Lebesgue measure Leb.

2.4 Integration

In this section, we will state the key definitions and properties of integration and discuss
how integration is used in measure theory.

2.4.1 Definition

We discuss the existence and definition of integrals on three classes of measurable
functions. The first class is the set of simple functions, which are finite sums of
scaled characteristic functions on measurable sets. Simple functions are like “step
functions” where each “step” has a “width” determined by a measurable set and “height”
determined by a scalar.

Definition 11. Let (S,ΣS, µS) be a measure space. The integral of a non-negative

simple function f ∶ S → [−∞,∞] where f =
n

∑
k=1

ak ⋅ 1Ak
for some n ≥ 1 where ak ∈ R

and Ak ∈ ΣS , w.r.t. µS is defined to be

∫
S
f(s) µS(ds) ∶=

n

∑
k=1

ak ⋅ µS(Ak).

If we see simple functions as step functions, then the integral of a simple function
is simply the sum of the “width” of each step, w.r.t. the measure µS , times the “height”
given by the scalar ak.

Now the integral of non-negative measurable function can be defined as the supremum
of the integrals of simple functions that is smaller than it.

Definition 12. Let (S,ΣS, µS) be a measure space. The integral of a non-negative
measurable function f ∶ S → [−∞,∞] w.r.t. µS is defined to be

∫
S
f(s) µS(ds) ∶= sup{∫

S
g(s) µS(ds) ∣ g is a simple function such that 0 ≤ g ≤ f}.

This definition matches the intuition that the integral of a non-negative measurable
function is the area under the function. Finally we extend the above definition to all
measurable functions.

2. A Brief Introduction to Measure Theory 15

Definition 13. Let (S,ΣS, µS) be a measure space. A measurable function f ∶ S →
[−∞,∞] is integrable if ∫

S
∣f(s)∣ µS(ds) < ∞. If so, the integral of f w.r.t. µS is

defined to be

∫
S
f(s) µS(ds) ∶= ∫

S
max {f(s),0} µS(ds) − ∫

S
max {−f(s),0} µS(ds).

Remark 5. We have considered integral of measurable function f ∶ S → [−∞,∞] over
the whole measurable space S. The definition can easily be extended to integration over
some measurable set A as ∫

A
f(s) µS(ds) ∶= ∫

S
1A(s) ⋅ f(s) µS(ds)

Example 13. The integral of Real-valued measurable functions on (R,B) w.r.t. the
Lebesgue measure Leb is called the Lebesgue integral.

Now we state the most important result in integration theory.

Theorem 2 (Monotone Convergence Theorem (MCT)). Let (S,ΣS, µS) be a measure
space. If fn ∶ S → [−∞,∞] is a countable sequence of non-negative measurable
functions, then

∫
S

∞
∑
n=1

fn(s) µS(ds) =
∞
∑
n=1
∫

S
fn(s) µS(ds).

MCT allows us to define the integral of a measurable function f by considering the
limit of the integrals of a countable sequence of measurable functions that tends towards f .

2.4.2 Integration by substitution

Integration by substitution (also called change of variables) is a technique where variables
in an integral are changed to simplify the integration. We will use this technique in
proving invariance of MCMC inferences in Chapter 4.

Theorem 3 ((Fremlin, 2010), Theorem 24D). Let U be an open set in Rn and g ∶ U → Rn

be an injective (i.e. one-to-one) differentiable function. Let f ∶ g(U)→ R be a measurable
function. Then, f is integrable if and only if (f ○ g) ⋅ ∣det∇g∣ is integrable on U , where
det∇g is the Jacobian determinant of g. In which case,

∫
g(U)

f(r) Lebn
(dr) = ∫

U
(f ○ g)(q) ⋅ ∣det∇g(q)∣ Lebn

(dq).

Remark 6. If g is measurable and is volume preserving, i.e. g∗Lebn
= Lebn, then the

Jacobian determinant of g is always equal to one. Hence, the integration by substitution
can be simplified to

∫
g(U)

f(r) Lebn
(dr) = ∫

U
(f ○ g)(q) Lebn

(dq).

16 2.4. Integration

2.4.3 Radon-Nikodym Derivative

An important observation in integration theory is that integrals define measures. Let
(S,ΣS, µ) be a measure space and f ∶ S → [−∞,∞] be a positive integrable function.
Then, we can define a measure ν ∶ ΣS → [0,∞)

ν(A) ∶= ∫
A
f(s) µ(ds) for measurable set A ∈ ΣS.

Applying MCT (Thm. 2), it is routine to check that ν is indeed a measure.
It is natural to ask if we can reverse engineer this method. In other words, can we

construct the integrable function f from measures µ and ν on S?
The Radon-Nikodym Theorem tells us that such is possible if µ and ν are σ-finite

and ν is absolutely continuous with respect to µ, i.e. every µ-null measurable set is
also ν-null. We denote this relation as ν ≪ µ.

Remark 7. It is easy to see that the relation≪ is reflective and transitive but not symmetric.

Theorem 4 (Radon-Nikodym Theorem). Let µ and ν be σ-finite measures on a measur-
able space (S,ΣS). If ν is absolutely continuous with respect to µ (ν ≪ µ), then there is
a measurable function f ∶ S → [0,∞] where

ν(A) = ∫
A
f(s) µ(ds) for all A ∈ ΣS.

This measurable function is often referred to as the Radon-Nikodym derivative.

Remark 8. The Radon-Nikodym Theorem can be extended to s-finite measures with
some additional condition as discussed in (Vákár and Ong, 2018). Let µ and ν be s-finite
measures on the measurable space (S,ΣS). Say a measurable set A is a µ-0-∞ set if
ν(A ∩B) = 0 or∞ for all B ∈ ΣS . Then, the Radon-Nikodym Theorem holds for µ and
ν if ν ≪ µ and every µ-0-∞ set is also a ν-0-∞ set.

In probabilistic models, it is often more natural to consider the probability of a single
outcome instead of an event. The probability density function (pdf) of a probability
measure ν coincides with the Radon-Nikodym derivative of ν w.r.t. the measure µ.

Example 14. We list some common probability measures and their probability density
functions (pdfs) w.r.t. the Lebesgue measure (for continuous distributions) and the
counting measure (for discrete distributions).

• The uniform measure U(a, b) with endpoints a and b such that a ≤ b has pdf
1[a,b](x) for x ∈ R.

2. A Brief Introduction to Measure Theory 17

• The Gaussian measure N (m,v) with mean m and variance v has pdf 1√
2vπ

exp (− (x−m)2
2v) for x ∈ R.

• The Bernoulli measure Bern(p) with probability p ∈ [0,1] has pdf2 p ⋅ 1{T}(a) +

(1 − p) ⋅ 1{F}(a) for a ∈ 2.

• The geometric measure Geo(p) with probability p ∈ (0,1] has pdf (1 − p)np for

n ∈ N.

• The Dirac measure δs in s ∈ S has pdf 1{s}(x) for x ∈ S.

2.4.4 Commutativity of Integrals

In proving the invariance result for MCMC inferences, we reply on the Fubini/Tonelli

Theorem which tells us that integrals on a product space can be rearranged as long

as all measures are σ-finite.

Theorem 5 (Fubini/Tonelli Theorem). Let (S1,ΣS1 , µS1) and (S2,ΣS2 , µS2) be measure

spaces where µS1 and µS2 are σ-finite. If f ∶ S1 × S2 → [0,∞) is an integrable function,

then

∫
S1×S2

f(s1, s2) µS1×S2(d(s1, s2)) = ∫
S1
∫

S2
f(s1, s2) µS2(ds2) µS1(ds1)

= ∫
S2
∫

S1
f(s1, s2) µS1(ds1) µS2(ds2).

Recall in Prop. 5 we have only given the existence of the product measure. With

the above theorem, we can define the product measure.

Definition 14. Let (S1,ΣS1 , µS1) and (S2,ΣS2 , µS2) be measure spaces where µS1 and

µS2 are σ-finite measures. The unique product measure µS1 × µS2 on the product

measurable space (S1 × S2,ΣS1×S2) is defined as

(µS1 × µS2)(A) ∶= ∫
S1
µS2({s2 ∈ S2 ∣ (s1, s2) ∈ A}) µS1(ds1)

= ∫
S2
µS1({s1 ∈ S1 ∣ (s1, s2) ∈ A}) µS2(ds2).

2For ease of reference, we do not make a distinction between probability mass functions on discrete
distributions and probability density functions on continuous distributions.

18 2.4. Integration

2.4.5 Kernel

Last but not least, we present kernels which are functions that connect each element in
the measurable space to a measure. Kernels are useful in describing stochastic processes,
and will be used to define MCMC inferences in Chapter 4.

Definition 15. Let (S1,ΣS1) and (S2,ΣS2) be measurable spaces. A kernel k from S1

to S2, denoted as k ∶ S1 ↝ S2 is a function k ∶ S1 ×ΣS2 → [0,∞) where

• for any s ∈ S1, the map k(s, ⋅) ∶ ΣS2 → [0,∞) is a measure; and

• for any A ∈ ΣS2 , the map k(⋅,A) ∶ S1 → [0,∞) is a measurable function.

A probability kernel k is a kernel where k(s, ⋅) ∶ ΣS2 → [0,∞) is a probability measure
for all s ∈ S1.

Example 15. Let (S,ΣS) be a measurable space. Then, the map k(s,A) ∶= δs(A) is a
kernel that returns a Dirac measure on the input s.

Integration allows us to form composition of kernels.

Definition 16. Let (S1,ΣS1), (S2,ΣS2) and (S3,ΣS3) be measurable spaces. The
composition of kernel k1 ∶ S1 ↝ S2 and kernel k2 ∶ S2 ↝ S3 is defined as (k2○k1)(s,A) ∶=

∫
S2
k2(s

′,A) k1(s,ds′) for all s ∈ S1 and A ∈ ΣS3 .

Remark 9. The integral in the above definition of the composition of kernels is well-
defined as by definition k2(⋅,A) is a non-negative measurable function and k1(s, ⋅) is a
measure for all s ∈ S1 and A ∈ ΣS3 .

Example 16. We often treat a probability kernel k ∶ S ↝ S as a stochastic step where
k(s,A) represents the probability of reachingA from the point s. Hence, the composition
of n number of k, commonly written as kn represents the application of n stochastic
steps, and kn(s,A) returns the probability of reachingA in n steps starting at s. Formally
for all s ∈ S and A ∈ ΣS , we have

k0(s,A) ∶= [s ∈ A]

kn+1(s,A) ∶= (kn ○ k)(s,A).

Quia tu es, Deus, fortitudo mea, quare me repulisti? et
quare tristis incedo, dum affligit me inimicus?

— Psalm 42:2

3
Probabilistic Programming for Bayesian

Inference

In this chapter, we study probabilistic programming, a programming paradigm in which
Bayesian inference, an approach to infer properties of a probabilistic model from data,
can be applied in a flexible and expressive manner. To aid our discussion, we present the
Statistical Programming Computable Functions (SPCF), a Turing-complete language that
supports discrete and continuous sampling and scoring. SPCF can be seen as the founda-
tional core of many practical universal probabilistic programming languages including
Church (Goodman et al., 2008), Anglican (Wood et al., 2014), Venture (Mansinghka
et al., 2014), Hakaru (Narayanan and Shan, 2020), Pyro (Bingham et al., 2019), Turing
(Ge et al., 2018), and Gen (Cusumano-Towner et al., 2019). We explore the properties of
SPCF, setting the stage for the central contribution of this thesis—the design of Markov
chain Monte Carlo inference algorithms for probabilistic programming.

3.1 Bayesian Machine Learning

Machine Learning studies methods which ‘learn’ from previously observed data in order
to improve the performance of the task at hand. The Bayesian approach for Machine
Learning represents our degree of belief by assigning probabilities to each uncertainties
and updating them using the observations via Bayes’ Law.

3.1.1 Bayesian Framework

Given a task and some observed data, the first step in Bayesian Machine Learning is to
specify a probabilistic model describing the task with random variables that represent

19

20 3.1. Bayesian Machine Learning

0 0.5 1

0.9
1

1.1
1.2

p

pr
ob

ab
ili

ty
Density of the prior of p

0 0.5 1
0

0.5
1

1.5

p

pr
ob

ab
ili

ty

Density of the posterior of p

Figure 3.1: Densities of the prior and posterior of p

uncertainties in the model. A probability distribution is then assigned to each random
variable, representing our prior belief on these uncertainties (before seeing the data).
The product of these distributions is called the prior distribution. Note that the prior
distribution on the random variables give the probability of a range of models that can
describe our task. Give the observed data, we compute how likely the data are generated
from each of these models and update the distribution. The updated distribution on the
random variables is called the posterior distribution. This process of computing the
posterior distribution is called Bayesian inferencing as it utilises the Bayes’ Law.

For example, Bayesian inference can be used to model the bias of an unfair coin. The
Bernoulli distribution with parameter p is a suitable probabilistic model for an unfair
coin with the unknown random variable p ∈ [0,1] as the uncertainty. Suppose we believe
the bias could be any value from 0 to 1. Then, our prior belief on p is the standard
uniform distribution U(0,1). To update the probabilistic model, say tail, head and head
are observed from the last three tosses. We compute how likely these tosses might be
generated from the Bernoulli distribution with p, namely (1 − p)p2, and multiply it to
the density 1[0,1](p) of the uniform distribution for p ∈ [0,1]. The resulting posterior
distribution on p then has density

1[0,1](p) ⋅
(1 − p)p2

∫

1

0
(1 − p)p2 Leb(dp)

= 1[0,1](p) ⋅
(1 − p)p2

1/3 − 1/4 = 1[0,1](p) ⋅ 12(1 − p)p2

where the denominator ∫
1

0
(1 − p)p2 Leb(dp) is the normalising constant. Fig. 3.1 gives

the densities of the prior and posterior distributions of p. We see that after observing
three tosses, the posterior gives a better presentation of the unfair coin. It makes sense
that p can neither be 0 nor 1 as both tail and head are observed. Moreover the right skew
of the density shows us that it is more likely the next toss will be a head.

3. Probabilistic Programming for Bayesian Inference 21

3.1.2 Challenges of Bayesian Machine Learning

Though Bayesian inference provides a simple yet compelling framework for Machine
Learning, it is not always straightforward to execute. The probabilistic model needs to be
defined; the prior distributions on the unknown parameters specified; and the posterior
distribution computed. These are no easy tasks.

Given a prior and probabilistic model, the posterior is uniquely defined but finding
the exact posterior can be computationally intractable on a probabilistic model with
many parameters. Hence approximate methods like Markov chain Monte Carlo and
variational inference are used instead to estimate the posterior distribution. We discuss
these algorithms in Chapter 4.

By contrast, specifying the probabilistic model and prior distribution are naturally
subjective (Neal, 1998) and require domain expertise in the given task. This thesis leaves
the discussion of model and prior construction to domain experts, and instead studies
probabilistic programming as a tool for specifying probabilistic models.

3.2 Statistical PCF

The idea behind universal probabilistic programming (Goodman et al., 2008) is to express
probabilistic models in a Turing-complete functional language. For our discussion,
we present the Statistical Programming Computable Functions (SPCF), a probabilistic
extension of the call-by-value Turing-complete PCF (Scott, 1993; Sieber, 1990) with Real
and Boolean ground types. SPCF distils the main concepts of probabilistic programming,
making it easy to study the properties of probabilistic programming.

Our SPCF can be seen as adding a discrete sampler to the language given in (Vákár
et al., 2019; Mak et al., 2021a) or a simply-typed variant of the language given in
(Borgström et al., 2016).

3.2.1 Syntax

Types, terms and the typing system of SPCF are presented in Fig. 3.2. Following the
convention, we assume there is a countable sequence V of variables with meta-variables
x, y, z and a set F of primitive functions with meta-variables f, g, h. The set of all terms
is denoted as Λ with meta-variables M,N,L, the set of free variables of a term M is
denoted as FV(M) and the set of all closed terms (also called programs) is denoted as Λ0.
In the interest of readability, we use pseudocode in the style of Python (e.g. Ex. 17)
to express SPCF terms.

22 3.2. Statistical PCF

Types (typically denoted σ, τ) and terms (typically M,N,L):

σ, τ ∶∶= R ∣ B ∣ σ⇒ τ

M,N,L ∶∶= y ∣ r ∣ a (Variables and constants)
∣ λy.M ∣MN (Higher-order)
∣ f(M1, . . . ,Mℓ) (Primitive functions)
∣ if(L,M,N) ∣ YM (Branching and recursion)
∣ normal ∣ coin ∣ score(M) (Probabilistic)

Typing system:

y ∈ V

Γ ∪ {y ∶ σ} ⊢ y ∶ σ
r ∈ R

Γ ⊢ r ∶ R
a ∈ 2

Γ ⊢ a ∶ B

Γ ∪ {y ∶ σ} ⊢M ∶ τ
Γ ⊢ λy.M ∶ σ⇒ τ

Γ ⊢M ∶ σ⇒ τ Γ ⊢ N ∶ σ
Γ ⊢MN ∶ τ

{Γ ⊢Mi ∶ R}n
i=0 {Γ ⊢ Nj ∶ B}ℓ

j=n+1 f ∶ Rn × 2ℓ−n ⇀ G

Γ ⊢ f(M1, . . . ,Mn,Nn+1, . . . ,Nℓ) ∶

⎧⎪⎪
⎨
⎪⎪⎩

R if G = R

B if G = 2

Γ ⊢ L ∶ B Γ ⊢M ∶ σ Γ ⊢ N ∶ σ
Γ ⊢ if(L,M,N) ∶ σ

Γ ⊢M ∶ (σ⇒ τ)⇒ (σ⇒ τ)

Γ ⊢ YM ∶ σ⇒ τ

Γ ⊢ normal ∶ R Γ ⊢ coin ∶ B
Γ ⊢M ∶ R

Γ ⊢ score(M) ∶ R

Figure 3.2: Syntax of SPCF, where r, q, p ∈ R, a, b ∈ 2, x, y, z ∈ V , and f, g, h ∈ F .

Remark 10 (Church Encodings). Similar to PCF, we can represent pairs and lists in SPCF
using Church encoding as follows:

Pair(σ, τ) ∶= σ → τ → (σ → τ → R)→ R List(σ) ∶= (σ → R→ R)→ R→ R

⟨M,N⟩ ≡ λz.zM N [M1, . . . ,Mℓ] ≡ λfx.f M1(f M2 . . . (f Mℓ x))

Moreover standard primitives on pairs and lists, such as proj , len , append and sum ,
can be defined easily.

SPCF enriched PCF with

(i) sampling constructs (normal and coin) introducing randomness;

3. Probabilistic Programming for Bayesian Inference 23

(ii) scoring construct score(M) enabling Bayesian inference; and

(iii) a set F of primitive functions, extending the expressiveness of the language.

Primitive Functions Like (Staton et al., 2016; Staton, 2017), all partial measurable
functions of type Rn × 2ℓ−n ⇀ R or Rn × 2ℓ−n ⇀ 2 for some ℓ ≥ n ∈ N, are assumed
to be primitives F in SPCF. Examples include addition +, division /, comparison <,
equality =, cumulative distribution functions (cdf) and probability density functions
(pdf) of distributions.

Continuous Sampler The continuous sampler normal (or normal) of our SPCF
language draws from the standard Gaussian distribution N with mean 0 and variance
1, unlike (Culpepper and Cobb, 2017; Wand et al., 2018; Ehrhard et al., 2018; Vákár
et al., 2019; Mak et al., 2021a) whose continuous sampler draws from the standard
uniform distribution U(0,1). For our purposes, it is more convenient to include a sampler
that that can draw any Real number like the standard normal distribution because many
inference algorithms have a Real-valued target density, e.g. Hamiltonian Monte Carlo.
The following example shows that our choice of sampler does not restrict nor extend
our language as long as suitable primitives are present.

Example 17. Distributions specified in SPCF using only the continuous sampler normal .

(i) Let cdfnormal be the cumulative distribution function (cdf) of the standard normal
distribution. Then, the uniform distribution U(a, b) with endpoints a and b can be
described as def uniform(a,b): return a + cdfnormal(normal)*(b-a) .

(ii) Say f is a function where f(p) gives the inverse cumulative density of a distribu-
tion at p . Then this distribution can be described as f[uniform/p] . For instance,
the inverse cdf of the exponential distribution (with rate 1) is f(p) ∶= − ln(1 − p)
and hence -ln(1-uniform) describes the exponential distribution in SPCF.

(iii) Following (Devroye, 1986), the (discrete) Poisson distribution can be specified
using the standard uniform distribution� �

def poisson(rate):
x = 0; p = exp(-rate); s = p
while s < uniform:
x += 1; p *= rate/x; s += p

return x� �

24 3.2. Statistical PCF

Discrete Sampler Like (Danos and Ehrhard, 2011; Ścibior et al., 2017), we choose the
fair coin coin as our discrete sampler for its simplicity. Again, this is not limiting as many
sophisticated discrete distributions can be expressed using the discrete sampler coin.

Example 18. Distributions specified in SPCF using the discrete sample coin .

(i) The Bernoulli distribution with probability p ∈ [0,1]∩D, where D ∶= { n
2m ∣ n,m ∈ N}

is the set of all Dyadic numbers, can be specified by� �
def bernoulli(p):
if p == 0: return False
elif p == 1: return True
elif p < 0.5:
if coin: bernoulli(2*p) else: return False

else:
if coin: return True else: bernoulli(2*(p-0.5))� �

(ii) The geometric distribution with rate p ∈ [0,1] ∩D can be specified by� �
def geometric(p):
count = 0;
while bernoulli(1-p):
count += 1;

return count� �
(iii) The binomial distribution with n ∈ N trails and probability p ∈ [0,1] ∩ D can be

specified by sum([1 for i in range(n)if bernoulli(p)]) .

Remark 11 (Multiple Samplers). Though many practical PPLs support both continuous
and discrete distributions, most purified languages only study one or the other, (Staton,
2017; Ścibior et al., 2017; Zhou et al., 2019) being the exceptions. As shown in Ex. 17,
one can describe discrete distributions using a continuous sampler. However, some
inference algorithms (e.g. Mixed HMC (Zhou, 2020)) apply special treatment to discrete
variables. For this reason, we include both samplers in SPCF.

Example 19. With recursion, it is easy to express nonparametric models in SPCF. For
instance, the random walk experiment can be describe by� �

position = normal; while position < 0: position += normal; position� �
The step size is normally distributed and importantly the number of steps is unbounded.

3. Probabilistic Programming for Bayesian Inference 25

3.2.2 SPCF for Bayesian Inference

SPCF shines when it specifies probabilistic models for Bayesian inference. Recall
Bayesian inference is the process of updating a probabilistic model using the likelihood of
the observed data. This can be achieved by the scoring construct score(M) (or score(c)),
which multiplies the weight of the current execution with the Real number denoted by M .

Coin toss Consider the coin toss example discussed in Sec. 3.1.1. The task is to
infer the bias p of an unfair coin using the result of three toss (tail, head and head). The
probabilistic model is the Bernoulli distribution parametrised with a uniformly distributed
random variable p. To update the model, we input the “score” of each toss to the program
by running score(1-p); score(p); score(p) . Putting them together, the following
pseudocode describes the Bayesian inference on the unfair coin.� �

p = uniform; # prior of the bias of the unfair coin
score(1-p); score(p); score(p) # observe THH upon three tosses
return p # posterior� �

Random walk example A typical nonparametric model is the one-sided random walk
described in (Mak et al., 2021a). The story is as follows. Starting from a random location
in [0,3], Alice passes her destination at 0 by repeatedly walking forwards or backwards
of a distance of at most one. Say the total distance travelled is nosily measured to be 1.1,
where is Alice’s starting point? This can be described by the following pseudocode.� �

start = uniform(0,3) # prior of the starting point
position = start; distance = 0
while position > 0:
step = uniform(-1,1)
position += step
distance += abs(step)

score(pdfnormal(1.1,0.1)(distance)) # observe a total distance of 1.1
return start # posterior� �

3.3 Properties of SPCF

The simplicity of the SPCF syntax allows us to more readily discuss the theoretical
properties of probabilistic programming. Here we present an operational semantics
of SPCF which gives meaning to a probabilistic program by reducing it to some val-
ues. We use this reduction system to show that all closed SPCF terms have a tree
representable density function, an important assumption of the inference algorithms
we will discuss in Chapter 5.

26 3.3. Properties of SPCF

3.3.1 Operational Semantics

Operational semantics studies the evaluation of programs. In a probabilistic context,
this is typically done by first identifying the source of randomness, which we call the
trace space, and then defining a reduction system that specifies how terms are evaluated.
By analysing all execution paths of a particular SPCF term, a (value) measure can be
defined as the operational semantics of the term.

Trace Space Randomness in probabilistic programming is introduced by the samplers,
hence the sample space (Ω,ΣΩ, µΩ) of SPCF is the union of the Real measure space
(R,B,N) and boolean measure space (2,℘(2), µ2). Formally it is the union measurable
space Ω ∶= R ∪ 2 with the union σ-algebra ΣΩ ∶= σ(B ∪ ℘(2)) and the measure µΩ(V ∪

W) ∶= N (V) + µ2(W) where V ∈ B and W ∈ ℘(2).
A trace is a record of the values sampled in the course of an execution of a SPCF

term. Hence, the trace space (T,ΣT, µT) is the union of sample spaces of varying
dimensions. Formally it is the list measurable space T ∶= ⋃

n∈N
Ωn with σ-algebra ΣT ∶=

{⋃
n∈N

Un ∣ Un ∈ ΣΩn} and measure µT(⋃
n∈N

Un) ∶= ∑
n∈N

µΩn(Un). We write traces as lists,

e.g. [−0.2,T,T,3.1,F] and [].

Remark 12. Another way of recording the sampled value in the course of an execution
of a SPCF term is to have separate records for the values of the continuous and discrete
samples. In this case, the trace space becomes ⋃

n∈N
Rn × ⋃

m∈N
2m. We find separating the

continuous and discrete samples inconvenient for our inference algorithm as the trace
alone cannot tell us the type of samples (discrete or continuous) drawn in the course of
an execution of a probabilistic program. Hence follow the more conventional definition
of trace space.

Small-step Reduction Fig. 3.3 gives a rewrite system of configurations, which are
triples of the form ⟨M,w, t⟩ where M is a closed SPCF term, w > 0 is a weight, and
t ∈ T is a trace. This is the so-called small-step reduction, which tells us how closed
SPCF terms are evaluated. This rewrite system can be seen as a typed variant of the
small-step sampling-based operational semantics in (Borgström et al., 2016).

In the rule for normal, a random value r ∈ R is generated and recorded in the trace,
while the weight remains unchanged: even though the program samples from a normal
distribution, the weight does not factor in Gaussian densities as they are already accounted
for by the trace measure µT. Similarly, in the rule for coin, a random boolean a ∈ 2 is
sampled and recorded in the trace with an unchanged weight. In the rule for score(r),

3. Probabilistic Programming for Bayesian Inference 27

Values (typically denoted V), redexes (typically R) and evaluation contexts (typically
E):

V ∶∶= r ∣ a ∣ λy.M

R ∶∶= f(c1, . . . , cℓ) ∣ (λy.M)V ∣ if(a,M,N) ∣ Y(λy.M)
∣ normal ∣ coin ∣ score(r)

E ∶∶= [] ∣ EM ∣ (λy.M)E ∣ if(E,M,N) ∣ f(c1, . . . , ci−1,E,Mi+1, . . . ,Mℓ) ∣ YE
∣ score(E)

Redex contractions:

⟨f(c1, . . . , cℓ),w, t⟩Ð→

⎧⎪⎪
⎨
⎪⎪⎩

⟨f(c1, . . . , cℓ),w, t⟩ if (c1, . . . , cℓ) ∈ Dom(f),
fail otherwise

⟨(λy.M)V,w, t⟩Ð→ ⟨M[V /y],w, t⟩

⟨if(a,M,N),w, t⟩Ð→

⎧⎪⎪
⎨
⎪⎪⎩

⟨M,w, t⟩ if a,
⟨N,w, t⟩ otherwise

⟨Y(λy.M),w, t⟩Ð→ ⟨λz.M[Y(λy.M)/y] z,w, t⟩ (for fresh variable z)
⟨normal,w, t⟩Ð→ ⟨r,w, t ++ [r]⟩ (for some r ∈ R)
⟨coin,w, t⟩Ð→ ⟨a,w, t ++ [a]⟩ (for some a ∈ 2)

⟨score(r),w, t⟩Ð→
⎧⎪⎪
⎨
⎪⎪⎩

⟨r, r ⋅w, t⟩ if r > 0,
fail otherwise.

Evaluation contexts:

⟨R,w, t⟩Ð→ ⟨∆,w′, t′⟩
⟨E[R],w, t⟩Ð→ ⟨E[∆],w′, t′⟩

⟨R,w, t⟩Ð→ fail
⟨E[R],w, t⟩Ð→ fail

Figure 3.3: Small-step reduction of SPCF, where r, q, p ∈ R, a, b ∈ 2, c ∈ R ∪ 2, x, y, z ∈ V , and
f, g, h ∈ F .

the current weight is multiplied by r ∈ R: typically this reflects the likelihood of the
current execution given some observed data. Similar to (Borgström et al., 2016) we
reduce terms which cannot be reduced in a reasonable way (i.e. scoring with non-positive
constants or evaluating functions outside their domain) to fail.

We write Ð→+ for the transitive closure and Ð→∗ for the reflexive and transitive
closure of the small-step reduction. It is easy to see that every closed SPCF term can
either be uniquely expressed in the form E[R] or is a value V . Hence all closed SPCF
terms can either be evaluated via the small-step reduction or is a value. We say a
closed SPCF term M terminates in the value V and weight w with the trace specified
by t if ⟨M,1, []⟩ Ð→∗ ⟨V,w, t⟩.

28 3.3. Properties of SPCF

Value and Weight Functions With the small-step reduction system, we can now
describe the behaviour of a SPCF term given a particular trace t ∈ T, namely whether
it terminates and if so, in which value and what weight it terminates. These can be
specified by the value and weight functions of a term.

First, we construct a measurable space on the set Λ of terms. Following (Borgström
et al., 2016), we view the set Λ of all SPCF terms as ⋃

n,m∈N
(SKn,m×Rn×2m)where SKn,m

is the set of SPCF terms with exactly n Real-valued and m boolean-valued placeholders,
which are holes for missing Real or boolean values. The measurable space of terms
is equipped with the σ-algebra ΣΛ generated by all open sets in the countable disjoint
union topology of the product topology of the discrete topology on SKn,m, the standard
topology on Rn and the discrete topology on 2m. Similarly the subspace Λ0

v of closed
values inherits the Borel algebra on Λ.

Given a trace, the value function valueM ∶ T→ Λ0
v ∪ {�} of a closed SPCF term M

returns the value the program M reduces to if it terminates; otherwise �; and the weight
function weightM ∶ T → [0,∞) of M returns the final weight of the corresponding
execution of M if it terminates; otherwise zero. Formally:

valueM(t) ∶=

⎧⎪⎪
⎨
⎪⎪⎩

V if ⟨M,1, []⟩Ð→∗ ⟨V,w, t⟩
� otherwise.

weightM(t) ∶=

⎧⎪⎪
⎨
⎪⎪⎩

w if ⟨M,1, []⟩Ð→∗ ⟨V,w, t⟩
0 otherwise.

It follows readily from (Borgström et al., 2016) that the functions valueM and weightM

are measurable. With the value and weight functions, the value measure ⟨⟨M⟩⟩ of the
closed SPCF term M on Λ0

v is defined as

⟨⟨M⟩⟩ ∶ ΣΛ0
v
Ð→ [0,∞)

U z→ ∫
valueM

−1(U)
weightM dµT

Remark 13. A trace is in the support of the weight function if and only if the value function
returns a (closed) value when given this trace. i.e. Supp(weightM) = valueM

−1
(Λ0) for

all closed SPCF term M .

The value and weight functions give the behaviour of a SPCF term. In particular,
the weight function defined here is the density of the target distribution to which an
inference algorithm typically samples from. Hence, we now study the properties of
the weight function.

3. Probabilistic Programming for Bayesian Inference 29

Remark 14. In this work, we call this the “weight function” when considering semantics
following (Culpepper and Cobb, 2017; Vákár et al., 2019; Mak et al., 2021a), and use
the notion “density” when referring it in an inference algorithm similar to (Zhou et al.,
2019, 2020; Cusumano-Towner et al., 2020).

3.3.2 Tree Representable Functions

Notice that not every function of type T→ [0,∞) makes sense as a weight function of
a SPCF term. Consider the program in Listing 3.1. It executes successfully with the
trace [T,0.5,F]. This immediately tells us that upon sampling T and 0.5, the program
must sample at least one extra value, moreover this third sample must be a boolean. In
other words, the program does not terminate with a trace specified by any proper prefix
of [T,0.5,F] such as [T,0.5], nor any traces of the form [T,0.5, r] for r ∈ R.

Formally, we call a measurable function w ∶ T → [0,∞) that satisfies

• the prefix property if whenever t ∈ Supp(w) then for all k < ∣t∣, we have t1...k /∈

Supp(w); and

• the type property if whenever t ∈ Supp(w) then for all k < ∣t∣ and for all t ∈
Ω ∖Type(tk+1)1 we have t1...k ++ [t] ++ t′ /∈ Supp(w) for any t′ ∈ T

tree representable (TR) because any such function can be represented as a (possibly)
infinite but finitely branching tree, which we call program tree.

A program tree is an undirected graph where any two nodes are connected by exactly
one path, consisting of four types of nodes:

• Real node (represented by a circle) denotes a random variable in R;

• boolean node (represented by a square) denotes a random variable in 2;

• decision node (represented by a triangle) determines which one of the two paths
the program will take given the values of the Real and boolean nodes before it;

• leaf node (represented by a star) gives the value of the applying the tree repre-
sentable function w to the list of values given by the Real and boolean nodes from
the root.

1The type Type(t) of a sample t ∈ Ω is R if t ∈ R and is 2 if t ∈ 2.

30 3.3. Properties of SPCF

Listing (3.1) Pseudocode for Counting� �
count = 0;
while coin: count += normal;
return count� �

t1

[t1] ∈ Supp(w)

1 t2

[t1, t2] ∈ Supp(w)

0 t3

[t1, t2, t3] ∈ Supp(w)

1 ⋮

yes no

yes no

yes no

Figure 3.4: Program tree and program

Every Real and boolean nodes in the program tree must be followed by a decision node
determining whether the list [t1, . . . , tn] of random values given by the path from the
root to this decision node is in the support. Moreover, the right child of every decision
node must be a leaf node returning the value of of w([t1, . . . , tn]).

For instance, Fig. 3.4 gives the program tree of the program in Listing 3.1 with
weight function

w ∶ T→ [0,∞)

w(t) ∶=

⎧⎪⎪
⎨
⎪⎪⎩

1 if t = [T, r1, . . . ,T, rn,F]
0 otherwise.

The following proposition ties SPCF terms and TR functions together.

Proposition 6. Every closed SPCF term has a tree representable weight function.

Proof. Assume M is a closed SPCF term and t ∈ Supp(weightM). Then, there must
exists such run ⟨M,1, []⟩ Ð→∗ ⟨V,w, t⟩ for some value V and weight w > 0. Assume
∣t∣ > 0. (Otherwise, the prefix and type properties hold trivially.)

Assume for contradiction that the prefix property does not hold and there is some
k < ∣t∣, value V ′ and weight w′ > 0 where ⟨M,1, []⟩ Ð→∗ ⟨V ′,w′, t1...k⟩. Since t1...k

is a proper prefix of t and the small-step reduction Ð→ is deterministic, we must have
⟨M,1, []⟩Ð→∗ ⟨V ′,w′, t1...k⟩Ð→+ ⟨V,w, t⟩, which contradicts the fact that V ′ is a value.

Consider the type property and some k < ∣t∣. WLOG assume tk+1 ∈ R. Then we must
have

⟨M,1, []⟩Ð→∗ ⟨E[normal],w′, t1...k⟩Ð→ ⟨E[tk+1],w′, t1...k+1⟩Ð→∗ ⟨V,w, t⟩.

3. Probabilistic Programming for Bayesian Inference 31

For any a ∈ 2 and t′ ∈ T, ⟨E[normal],w′, t1...k⟩ /Ð→ ⟨E[a],w′, t1...k ++ [a]⟩. Hence
t1...k ++ [a] ++ t′ /∈ Supp(w).

We will see in Chapter 5 how TR functions are instrumental in the design of the
inference algorithm.

3.3.3 Almost Sure Termination and Integrability

Since SPCF is Turing-complete, terms can diverge or specify a non-normalisable distri-
bution. Hence, we restrict our class of SPCF terms to those that terminate almost
surely and are integrable.

We say a SPCF term M terminates almost surely if M is closed and µT({t ∈ T ∣

for some V,w, ⟨M,1, []⟩ Ð→∗ ⟨V,w, t⟩}) = 1.
The set of traces which a closed SPCF term M terminates on, i.e. {t ∈ T ∣ for some

V,w, ⟨M,1, []⟩Ð→∗ ⟨V,w, t⟩}, can be understood as the support Supp(weightM) of its
weight function or, as discussed in Rem. 13, the traces for which the value function
returns a value, i.e. valueM

−1
(Λ0

v). Hence, M almost surely terminates if and only if
µT(Supp(weightM)) = µT(valueM

−1
(Λ0

v)) = 1.
The following proposition is used to prove the correctness proof.

Proposition 7. The value measure ⟨⟨M⟩⟩ of a closed almost surely terminating SPCF
term M which does not contain score(−) as a subterm is probabilistic.

Proof. Let M be such a term and let A be the set of traces which M terminates on,
i.e. A = {t ∈ T ∣ for some V,w, ⟨M,1, []⟩Ð→∗ ⟨V,w, t⟩}. By assumption, µT(A) = 1.
Since score(−) is not a subterm in M , ⟨M,1, []⟩ Ð→∗ ⟨V,w, t⟩ implies w = 1. So, the
weight function is 1A, and the value measure of M of all values must be ⟨⟨M⟩⟩(Λ0

v) =

∫
valueM

−1(Λ0
v)

weightM dµT = ∫
A

weightM dµT = ∫
A

1 dµT = µT(A) = 1.

We say a SPCF term M is integrable if M is closed and its value measure is finite,
i.e. ⟨⟨M⟩⟩(Λ0

v) < ∞;

Proposition 8. Integrable term gives integrable weight function.

Proof. Let M be an integrable SPCF term. Then,

⟨⟨M⟩⟩(Λ0
v) = ∫

valueM
−1(Λ0

v)
weightM dµT <∞.

Hence ∫
T

weightM dµT <∞.

32 3.4. Other Probabilistic Programming Languages

Example 20. The following SPCF terms show that almost sure termination and integra-
bility specify two distinct classes of SPCF terms.

(i) Consider the term M1 defined as count = 0; while coin: count += 1;

return score(2**count) . It almost surely terminates since it only diverges on the
infinite trace [T,T, . . .] which has zero probability. However, it is not integrable
as the value measure applied to all closed values

⟨⟨M1⟩⟩(Λ0
v) = ∫

valueM1
−1(Λ0

v)
weightM1 dµT = ∫

{[T,...,T,F]}
weightM1 dµT

=
∞
∑
n=0
∫
{[T]∗n++[F]}

weightM1 dµ2n =
∞
∑
n=0
(
1
2)

n+1 ⋅ 2n

=
∞
∑
n=0

1
2

is infinite.

(ii) Consider the term M2 defined as if coin: Y (lambda x:x)0 else: 1 . Since
it reduces to the diverging term Y (lambda x:x)0 with non-zero probability, it
does not terminate almost surely. However, it is integrable, since ⟨⟨M2⟩⟩(Λ0

v) =

∫
{[F]}

weightM2 dµT =
1
2 <∞.

(iii) Consider the term M3 defined as if(coin,M1,M2). It neither terminates almost
surely nor integrable, since M1 is not integrable and M2 is not almost surely
terminating.

(iv) All terms considered previously in Ex. 17 to 19 are both almost surely terminating
and integrable.

3.4 Other Probabilistic Programming Languages

Various programming paradigms have been studied with probabilistic programming in-
cluding

• first-order (Staton, 2017; Zhou et al., 2019) and higher-order (Borgström et al.,
2016; Culpepper and Cobb, 2017; Wand et al., 2018; Vákár et al., 2019; Heunen
et al., 2017; Staton et al., 2016; Ehrhard et al., 2018; Mak et al., 2021a; Danos and
Ehrhard, 2011; Ścibior et al., 2017; Ehrhard et al., 2014) terms;

• simply-typed (Staton et al., 2016; Staton, 2017; Culpepper and Cobb, 2017; Ehrhard
et al., 2018; Mak et al., 2021a; Danos and Ehrhard, 2011; Zhou et al., 2019; Ehrhard
et al., 2014), inductively-typed (Vákár et al., 2019; Ścibior et al., 2017) and untyped
(Borgström et al., 2016; Wand et al., 2018) systems;

3. Probabilistic Programming for Bayesian Inference 33

• call-by-value (Borgström et al., 2016; Culpepper and Cobb, 2017; Staton, 2017;
Ścibior et al., 2017; Wand et al., 2018; Staton et al., 2016; Vákár et al., 2019; Mak
et al., 2021a; Zhou et al., 2019) and call-by-name (Ehrhard et al., 2014, 2018;
Danos and Ehrhard, 2011) sampling; and

• recursion (Borgström et al., 2016; Wand et al., 2018; Ehrhard et al., 2015, 2014,
2018; Vákár et al., 2019; Mak et al., 2021a; Danos and Ehrhard, 2011; Ścibior
et al., 2017).

The probabilistic constructs these languages support include

• discrete sampler(s) (Danos and Ehrhard, 2011; Ehrhard et al., 2014),

• continuous sampler(s) (Vákár et al., 2019; Mak et al., 2021a; Culpepper and Cobb,
2017; Wand et al., 2018; Ehrhard et al., 2018; Borgström et al., 2016; Staton et al.,
2016),

• both discrete and continuous samplers (Zhou et al., 2019; Staton, 2017; Ścibior
et al., 2017), and

• scoring (Borgström et al., 2016; Staton et al., 2016; Staton, 2017; Vákár et al.,
2019; Culpepper and Cobb, 2017; Wand et al., 2018; Mak et al., 2021a; Ścibior
et al., 2017; Zhou et al., 2019).

An important class of these probabilistic programming languages are those extended
from the simply-typed Turing-complete Programming Computable Functions (PCF)
invented by Scott in 1969 (Plotkin, 1977; Scott, 1993). Examples include the Probabilistic
PCF (Ehrhard et al., 2014, 2018), an extension of PCF with a random number sampler
and Statistical PCF (Vákár et al., 2019; Mak et al., 2021a), an extension of PCF with
a continuous sampler and a scoring construct.

Operational semantics There are two main styles of operational semantics in the
literature, each gives a different view of the evaluation of probabilistic programs. The
sampling-based operational semantics first considered in (Kozen, 1979) associates each
probabilistic program with a (deterministic) function from the space of randomness to
the value space. It has been used to study the contextual equivalence of probabilistic
programs (Wand et al., 2018; Culpepper and Cobb, 2017), their differentiability properties
(Mak et al., 2021a) and to design inference algorithms (Zhou et al., 2019). Contrasting
to sampling-based semantics, distribution-based operational semantics interprets every
step in the evaluation of a program as a measure directly. It has been used to study full
abstraction of probabilistic PCF (Ehrhard et al., 2014) and adequacy of statistical PCF
(Vákár et al., 2019). Both styles give the same value measure (Borgström et al., 2016).

34 3.4. Other Probabilistic Programming Languages

Denotational semantics We can also reason about probabilistic programs by assigning
each type and term to an mathematical object. This is the denotational approach. First-
order probabilistic languages such as those considered by (Gordon et al., 2014; Staton,
2017; Staton et al., 2016) interpret types as measurable spaces and term as measurable
kernels using the probability monad (Giry, 1982) on the category Meas of measurable
spaces and measurable functions. Moreover, (Staton, 2017) describes probabilistic
programs as s-finite kernels and shows that they are commutative. Since the category
Meas of measurable spaces is not Cartesian closed (Aumann, 1961), various models
have been developed for higher-order probabilistic languages such as a functor category
that embeds Meas (Staton et al., 2016) and the category of quasi-Borel spaces (Heunen
et al., 2017). To support full recursion, the category of probabilistic coherence spaces
(Danos and Ehrhard, 2011; Ehrhard et al., 2014) can be used for languages with discrete
sampling and the category of measurable cones (Ehrhard et al., 2018) and the category
of omega quasi-Borel space (Vákár et al., 2019) for continuous sampling.

Probabilistic λ-calculus Another approach of probabilistic programming is the so-
called probabilistic λ-calculus (Saheb-Djahromi, 1978), which is an extension of pure
(untyped) λ-calculus with a probabilistic choice operator +p, indexed by a Real number
p ∈ [0,1], where M +p N reduces to M with p probability and N with 1 − p probability.
Probabilistic Böhm trees (Leventis, 2018) and weighted relational model (Ehrhard et al.,
2011) are models of the probabilistic λ-calculus.

Emitte lucem tuam et veritatem tuam; ipsa me deduxerunt,
et adduxerunt in montem sanctum tuum, et in tabernacula
tua.

— Psalm 42:3

4
Markov Chain Monte Carlo

A major challenge in Bayesian inference is to compute the posterior distribution of a
probabilistic model. In this chapter, we study the Markov Chain Monte Carlo (MCMC)
method of approximating the posterior. Using the recently suggested involutive MCMC
framework, we give examples and techniques used in many MCMC algorithms. As
case studies, we explore the popular Hamiltonian Monte Carlo (HMC) algorithm and
its discontinuous and irreversible variants; and the Reversible Jump MCMC algorithms
as instance of the involutive MCMC framework.

4.1 An Introduction to Markov Chains Monte Carlo

Borrowed from the famous casino in Monaco, the term Monte Carlo in statistics describes
the simulation of random process. Hence Markov chain Monte Carlo (MCMC) refers
to the simulation of random process using Markov chains.

A Markov chain is a sequence {xi}i∈N of elements, commonly called states, in a
measurable space (S,ΣS) where

• the first element x0 is sampled from some probability measure µ on (S,ΣS) called
the initial distribution; and

• given the chain x0, . . . , xi, the next element xi+1 is sampled from a probability
measure ι(xi, ⋅) given by a probability kernel ι ∶ S ↝ S commonly called the
transition kernel.

Example 21. Let (S,ΣS) be a measurable space and µS be a probability measure on S.

35

36 4.1. An Introduction to Markov Chains Monte Carlo

1 2

3

1/3

2/3

1/3

2/3

1/3

2/3

Figure 4.1: Directed graph of the transition kernel ι

(i) Markov chains generated by the initial distribution µS and the transition kernel
ι(s,A) ∶= [s ∈ A] are simply sequences consisting of the same element.

(ii) A slightly more interesting example would be Markov chains generated by the
initial distribution µS × R and the transition kernel ι((s, r),A) ∶= [(s,−r) ∈ A],
which are sequences of the form (s, r), (s,−r), (s, r), (s,−r),

It is common to present a transition kernel as a weighted directed graph with states
as nodes and the probability of sampling s′ from ι(s, ⋅) given by the weight of an edge
from s to s′. Edges with zero weight are omitted.

Example 22. Consider the measurable space (3 ∶= {1,2,3},℘(3)) with the Dirac
distribution δ1 in 1 as the initial distribution and transition kernel ι ∶ 3 ↝ 3 given
by

ι(1,A) ∶= 1
3[2 ∈ A] +

2
3[3 ∈ A];

ι(2,A) ∶= 2
3[1 ∈ A] +

1
3[3 ∈ A];

ι(3,A) ∶= 1
3[1 ∈ A] +

2
3[2 ∈ A].

The graph in Fig. 4.1 represents the transition kernel ι. Examples of Markov chains gen-
erated using this kernel are 1,2,3,2,1,2,3,2,1, . . . and 1,3,2,3,1,3,2,1,2, Note
the initial distribution δ1 ensures the chain must start with 1 and the transition kernel ι
ensures there are no consecutive states of the same kind in the chain.

It is natural to ask whether these generated Markov chains simulate any random
process. More specifically, can we determine the occurrence of every state in the Markov
chain generated by the same transition kernel?

4. Markov Chain Monte Carlo 37

A transition kernel ι ∶ S ↝ S on a measurable space (S,ΣS) preserves a probability
measure π on S if ∫

S
ι(x,A) π(dx) = π(A) for all A ∈ ΣS . We call π the invariant

(or equilibrium or stationary) distribution of the transition kernel ι.
Remark 15. The invariant distribution of a transition kernel need not be unique. For
instance, the transition kernel considered in Ex. 21.i preserves all probability measures
on S and that considered in Ex. 21.ii preserves all probability measure of the form µS ×ν

where ν is a probability measure on R such that pdfν(r) = pdfν(−r) for all r ∈ R.

Example 23. Consider the transition kernel ι given in Ex. 22. Taking pi to be the
probability of state i, we can figure out the invariant distribution of ι using the following
system of equations:

p1 =
2
3p2 +

1
3p3; p2 =

1
3p1 +

2
3p3; p3 =

2
3p1 +

1
3p2; 1 = p1 + p2 + p3

which has solution p1 = p2 = p3 = 1/3. Hence, the transition kernel ι preserves the
probability measure π which assigns 1/3 weight to each state, and every state has the
same probability of occurrence in all Markov chains generated by ι.

Let π be a probability measure on a measurable space (S,ΣS). A transition ker-
nel ι ∶ S ↝ S is π-reversible (or simply reversible) if it satisfies detailed balanced:
∫

B
ι(x,A) π(dx) = ∫

A
ι(x,B) π(dx) for all A,B ∈ ΣS .

Proposition 9. A π-reversible transition kernel preserves π.

Proof. The result follows by considering B = S and the fact that transition kernel is a
probability kernel.

It is often easier to show reversibility rather than invariance. Indeed, most MCMC
algorithms deduce their invariance result by proving reversibility.
Remark 16. The reverse of Prop. 9 is not true in general. For instance the transition
kernel given in Ex. 22 is not π-reversible since the probability of moving from 1 to 2 is
not the same as the reverse.

Proposition 10. Composition of transition kernels preserves invariant distribution.

Proof. Let T1, T2 be transition kernels on the measure space (X,ΣX , µX) with invariant
measure π. Then for any U ∈ ΣX ,

π(U) = ∫
X
T2(x

′, U) π(dx′)

= ∫
X
T2(x

′, U) ∫
X
T1(x,dx′) π(dx)

= ∫
X
∫

X
T2(x

′, U) ⋅ T1(x,dx′) π(dx)

= ∫
X
(T2 ○ T1)(x,U) π(dx).

38 4.1. An Introduction to Markov Chains Monte Carlo

The composition T2 ○ T1 preserves the distribution π.

If an invariant distribution π exists, we can then study the circumstances in which
the generated Markov chain converges to π. Recall given a probability kernel ι on S,
the probability kernel ιn on S represents the application of n stochastic steps given by
ι, and ιn(x,A) gives the probability of a Markov chain that starts off at x and ends
up in A after n ‘steps’.

Let ι ∶ S ↝ S be a transition kernel and π be a probability measure on a measurable
space (S,ΣS).

• The transition kernel ι is π-irreducible if for all x ∈ S and A ∈ ΣS , there is n ∈ N>0

such that π(A) > 0 implies ιn(x,A) > 0.

• The transition kernel ι is π-aperiodic if there do not exist m ≥ 2 and disjoint
measurable sets B1, . . . ,Bm where π(B1) > 0 and x ∈ Bi implies ι(x,Bi+1) = 1
for all i

• The transition kernel ι converges to π if for any x ∈ S, limn→∞∥ιn(x,−) − π∥ = 0
with ∥⋅∥ denoting the total variation distance.

The following lemma states that as long as the transition kernel is able to move to
any positively weighted area (according to π) in a finite number of steps regardless of
its starting point (π-irreducible) and does not form perpetual loops (π-aperiodic), it
converges to its invariant distribution π, if it exists.

Lemma 1 ((Tierney, 1994), Theorem 1 and Corollary 2). All π-irreducible and π-
aperiodic transition kernels that preserve π also converge to π.

Example 24. The transition kernel ι considered in Ex. 21.i defined as ι(s,A) ∶= [s ∈ A]
is π-irreducible if the space S is equipped with the trivial σ-algebra ΣS ∶= {∅, S} and
π(∅) ∶= 0 and π(S) ∶= 1. This is not true in general. For instance, ι is not irreducible
with respect to any probability measure on the Borel measurable space.

Example 25. The transition kernel ι in Ex. 22 which is shown to preserve the probability
measure π in Ex. 23, is also π-irreducible and π-aperiodic. Hence by Lem. 1, it converges
to π.

4. Markov Chain Monte Carlo 39

4.2 Involutive MCMC Algorithms

As Markov chains are generated by transition kernels, and random processes can be
described using probability distributions, the study of MCMC focuses on the construction
of transition kernels (usually in the form of stochastic algorithms) that preserve and
converge to a specified target distribution. This is because by setting the target distribution
to be the posterior distribution of a probabilistic program, MCMC methods can generate
a Markov chain that approximates the posterior.

Many MCMC inferences introduced in the last half century are inspired by the seminal
work by Metropolis et al. (Metropolis et al., 1953) and Hastings (Hastings, 1970). Hence,
almost all of them have a similar design: perform some stochastic and deterministic steps
to the current sample in order to figure out a proposal for the next sample which is accepted
with some probability that ensures the transition kernel preserves the target distribution.

The involutive Markov chain Monte Carlo (iMCMC) algorithm, introduced by
(Neklyudov et al., 2020; Cusumano-Towner et al., 2020), is a framework that aims to
describe these steps formally. Given a target density ρ on the measure space (X,ΣX , µX),
the iMCMC algorithm constructs a Markov chain of samples {x(i)}i∈N in three steps:
Given the current sample x0,

1. (Stochastic step) Sample a value v0 on the measure space (Y,ΣY , µY) from a
probability measure K(x0, ⋅) given by a probability kernel K ∶X ↝ Y ;

2. (Deterministic step) Compute the new state (x,v) by applying a continuously
differentiable involution Φ on X × Y to (x0,v0);

3. (Accept/reject step) Accept this new sample x with probability

α(x0,v0) ∶=min{1, ρ(x) ⋅ pdfK(x,v)

ρ(x0) ⋅ pdfK(x0,v0)
∣det (∇Φ(x0,v0))∣}

otherwise repeat with the current sample x0.

The iMCMC algorithm advocates for a reduction and separation of the stochastic and
deterministic elements in a MCMC algorithm using the auxiliary kernel K ∶X ↝ Y to
capture all randomness and the involution Φ on X ×Y to determine the proposal sample.
We now discuss the advantages and limits of such treatment.

40 4.2. Involutive MCMC Algorithms

4.2.1 Correctness of iMCMC Algorithm

It will be pointless to discuss the iMCMC algorithm unless it does preserve the tar-
get distribution

ν(U) ∶=
1
Z ∫U

ρ dµX where Z ∶= ∫
X
ρ dµX

given by the target density ρ on (X,ΣX , µX).
To do this, we first figure out the transition kernel of the algorithm. Let x0 be the

current sample. The probability that the next sample x is in some measurable set A is
α(x0,v0) ⋅ [Φ(x0,v0) ∈ A×Y] if the algorithm accepts the proposal or (1−α(x0,v0)) ⋅

[(x0,v0) ∈ A × Y] if the algorithm rejects the proposal but x0 ∈ A, given that v0 is
sampled from K(x0, ⋅). Hence, the transition kernel ι on the parameter space X of
the iMCMC algorithm is formally defined to be

ι(x0,A) ∶= ∫
Y
(α(x0,v0) ⋅ [Φ(x0,v0) ∈ A × Y]

+(1 − α(x0,v0)) ⋅ [(x0,v0) ∈ A × Y]) K(x0,dv0)

for all x0 ∈ X and A ∈ ΣX .
A nice thing about iMCMC is that there are hardly any conditions for this correctness

result. The following proposition shows that as long as the input kernelK is a probability
kernel and the input function Φ is indeed involutive, the iMCMC algorithm is reversible
and hence preserves the target distribution.

Proposition 11 ((Neklyudov et al., 2020), Proposition 2). The Markov chain generated
by the transition kernel ι is ν-reversible.

Corollary 1. The iMCMC algorithm preserves the target distribution.

With Cor. 1, the correctness proof of any MCMC algorithm can be simplified to a
formulation of the algorithm as an instance of the iMCMC algorithm.

4.2.2 Pseudocode of iMCMC Algorithm

Some might rightly argue that iMCMC is too general in the sense that formulating a
sophisticated MCMC algorithm as an instance of iMCMC would result in unnecessarily
complicated auxiliary kernel and involution. This is indeed the case for some MCMC
algorithms given in Appendix B of (Neklyudov et al., 2020). Therefore, like (Cusumano-
Towner et al., 2020), we specify all MCMC algorithms (including the iMCMC algorithm)
using the SPCF language introduced in Chapter 3.

4. Markov Chain Monte Carlo 41

Listing 4.1: Pseudocode of the iMCMC algorithm� �
def iMCMC(x0):
v0 = auxkernel(x0) # stochastic step
(x,v) = involution(x0,v0) # deterministic step
return x if uniform < min{1, w(x)/w(x0) * # accept/reject step

pdfauxkernel(x,v)/pdfauxkernel(x0,v0) *
absdetjacinv(x0,v0)}

else x0� �
Listing 4.2: Pseudocode of the MH algorithm� �

def MH(x0):
v0 = proposal(x0) # stochastic step
(x,v) = (v0,x0) # deterministic step
return x if uniform < min{1, w(x)/w(x0) * # accept/reject step

pdfproposal(x,v)/pdfproposal(x0,v0)}
else x0� �

The iMCMC function in Listing 4.1 is an implementation of the iMCMC algorithm in
SPCF. We assume there are SPCF programs auxkernel of type X -> Y that implements
the auxiliary kernel K ∶X ↝ Y ; pdfauxkernel of type X*Y -> R that implements the
probability density function pdfK ∶X × Y → R of the auxiliary kernel; involution of
type X*Y -> X*Y that implements the involution Φ on X × Y ; absdetjacinv of type
X*Y -> R that implements the absolute value of the Jacobian determinant of Φ; and
w of type X -> R that implements the target density ρ.

Remark 17. Similar to many MCMC algorithms, the implementation iMCMC in Listing 4.1
assumes the existence of both a sampler auxkernel and a probability density function
pdfauxkernel of the auxiliary kernel.

The term absdetjacinv is not strictly necessary in a programming language that
supports the computation of derivatives of deterministic programs.

4.2.3 Unified View of MCMC Algorithms

As discussed at the start of this section, Metropolis and Hastings played key roles in the
development of MCMC methods for Bayesian inference. The algorithm that bears both
their names is the classic Metropolis-Hastings (MH) sampler. It can be implemented
as MH in Listing 4.2.

It is clear that the MH function is identical to the iMCMC function in Listing 4.1 with
auxkernel replaced by the proposal distribution proposal and involution replaced

42 4.3. Techniques on iMCMC Algorithms

by a swap function, as the Jacobian determinant of a swap is always one. Cor. 1 tells
us that MH indeed preserves the target distribution.

4.3 Techniques on iMCMC Algorithms

Viewing MCMC algorithms through the iMCMC framework helps distil the techniques
employed. In this section, we generalise and discuss some of the techniques identified in
(Neklyudov et al., 2020) that aim to improve the flexibility and efficiency of iMCMC
samplers for the target distribution given by a density ρ on (X,ΣX , µX).

4.3.1 State-dependent iMCMC Mixture

Perhaps there is a range of iMCMC samplers suitable for different area in the parameter
space. The following technique allows us to form a ‘mixture’ of these samplers. The key
is to randomly choose one of the samplers in such a way that the ‘mixture’ preserves
the target distribution.

Given a family of iMCMC algorithms, indexed by a ∈ A, each with auxiliary kernel
Ka ∶X ↝ Y and involution Φa on X ×Y , a State-dependent iMCMC Mixture generates
a new sample from the current sample x0 by drawing a value a from a probability measure
KM(x0, ⋅) on A given by a probability kernel KM ∶X ↝ A, and then proposing the state
(x,v) which is the result of applying the involution Φa to (x0,v0) where v0 is sampled
from Ka(x0, ⋅) (as in the iMCMC algorithm) and is accepted with probability

min{1,
ρ(x) ⋅ pdfKa

(x,v) ⋅ pdfKM
(x, a)

ρ(x0) ⋅ pdfKa
(x0,v0) ⋅ pdfKM

(x0, a)
∣det (∇Φa(x0,v0))∣} .

Pseudocode This sampler can be implemented in SPCF as the MixtureiMCMC function
in Listing 4.3. (Terms specific to this technique are highlighted.) We assume there
are SPCF programs mixkernel of type X -> A that implements the mixture kernel
KM ∶ X ↝ A; and for each a ∈ A, auxkernel(a) that implements the auxiliary kernel
Ka with pdf implemented by pdfauxkernel(a) and involution(a) that implements
the involution Φa with the absolute value of the Jacobian determinant of Φa implemented
by absdetjacinv(a) .

Remark 18. Mixture distribution (Trick 1 in (Neklyudov et al., 2020)) can be formed
using MixtureiMCMC if the involution stays the same for each a ∈ A; similarly a mixture
of involutions (Trick 2) is simply MixtureiMCMC where the same auxiliary kernel is used
for each a ∈ A.

4. Markov Chain Monte Carlo 43

Listing 4.3: Pseudocode of the State-dependent iMCMC Mixture algorithm� �
def MixtureiMCMC(x0):
a = mixkernel(x0) # mixture step
v0 = auxkernel(a)(x0) # stochastic step
(x,v) = involution(a)(x0,v0) # deterministic step
return x # accept/reject step
if uniform < min{1, w(x)/w(x0) *

pdfmixkernel(x,a)/pdfmixkernel(x0,a) *
pdfauxkernel(a)(x,v)/pdfauxkernel(a)(x0,v0)*
absdetjacinv(a)(x0,v0)}

else x0� �
Listing 4.4: Pseudocode for mixauxkernel and mixinvolution� �

def mixauxkernel(x0):
a = mixkernel(x0)
v0 = auxkernel(a)(x0)
return (a,v0)

def mixinvolution(x0,a,v0):
(x,v) = involution(a)(x0,v0)
return (x,a,v)� �

Correctness We show that the State-dependent iMCMC Mixture preserves the target
distribution by formulating MixtureiMCMC as an instance of iMCMC in Listing 4.1. This
means specifying the terms auxkernel and involution and arguing that the resulting
iMCMC function is equivalent to MixtureiMCMC .

The SPCF terms mixauxkernel and mixinvolution given in Listing 4.4 should
suffice. Notice that the density of mixauxkernel at (x,a,v) is equal to the prod-
uct of pdfmixkernel(a,x) and pdfauxkernel(a)(x,v) , so the iMCMC function with
auxkernel replaced by mixauxkernel and involution replaced by mixinvolution is
equivalent to MixtureiMCMC . By Cor. 1, the State-dependent iMCMC Mixture given
by MixtureiMCMC preserves the target distribution.

4.3.2 Direction iMCMC Algorithm

It is sometimes difficult to specify an involution that explores the parameter space. The
following technique tells us that a bijection is enough. The key is to add an additional
direction variable d0 to the sampler.

Given a non-involutive bijection f on the state space X × Y , the Direction iMCMC
algorithm generates the next sample by following the standard iMCMC algorithm with

44 4.3. Techniques on iMCMC Algorithms

Listing 4.5: Pseudocode of the Direction iMCMC algorithm� �
def DirectioniMCMC(x0):
d0 = normal # direction step
v0 = auxkernel(x0) # stochastic step
(x,v) = bijection(d0)(x0,v0) # deterministic step
d = -d0
return x if uniform < min{1,w(x)/w(x0) * # accept/reject step

pdfauxkernel(x,v)/pdfauxkernel(x0,v0) *
absdetjacbij(d0)(x0,v0)}

else x0� �
Listing 4.6: Pseudocode for dirauxkernel and dirinvolution� �

def dirauxkernel(x0)
d0 = normal
v0 = auxkernel(x0)
return (d0,v0)

def dirinvolution(x0,(d0,v0))
(x,v) = bijection(d0)(x0,v0)
d = -d0
return (x,(d,v))� �

the involution replaced by either f or its inverse f−1, depending on the sign of a random
normally-distributed direction variable d0 ∈ R.

Pseudocode This algorithm can be expressed in SPCF as the DirectioniMCMC function
in Listing 4.5. (Terms specific to this technique are highlighted.) In addition to the
SPCF terms assumed in iMCMC , we assume there is a SPCF term bijection(d) which
implements the bijection f when d is positive and the inverse f−1 otherwise and
absdetjacbij(d) that implements the absolute value of the Jacobian determinant of
the bijection f if d is positive and the inverse f−1 otherwise.

Remark 19. DirectioniMCMC corresponds to Trick 3 in (Neklyudov et al., 2020).

Correctness We show that the Direction iMCMC algorithm preserves the target
distribution by formulating DirectioniMCMC as an instance of iMCMC in Listing 4.1
with a specification of the terms auxkernel and involution .

The SPCF terms dirauxkernel and dirinvolution in Listing 4.6 would work.
The density of dirauxkernel(x) at (d,v) is equal to the product of pdfnormal(d) and
pdfauxkernel(x,v) and the absolute value of the Jacobian determinant of dirinvolution

at (d,x,v) is equal to absdetjacbij(d)(x,v) . Hence the iMCMC function with auxkernel

4. Markov Chain Monte Carlo 45

1 2

3

2/3

1/6

1/6

1/6

2/3

1/61/6

1/6

2/3

Figure 4.2: Directed graph of the transition kernel described in Ex. 26

replaced by dirauxkernel and involution replaced by dirinvolution is equivalent to
DirectioniMCMC . By Cor. 1, the Direction iMCMC algorithm given by DirectioniMCMC

preserves the target distribution.

Example 26. Let’s consider the DirectioniMCMC algorithm with auxkernel given by
the probability kernel discussed in Ex. 22 and bijection given by the function

f(s, v) ∶= ((s mod 3) + 1, v).

Say we want to simulate the target distribution with density ρ(s) ∶= 1/3 on the measurable
space (3 ∶= {1,2,3},℘(3)). What would the transition kernel of DirectioniMCMC look
like?

Say the current sample x0 is 2 . If the direction variable d0 is drawn to be positive
and the auxiliary variable v0 to be 1 , then the proposal state (x,v) becomes (3,1)

and 3 is accepted with half probability. This is the only possible way to move from 2

to 3 and has probability 1/6.
Similar arguments can be used to work out the transition kernel of the DirectioniMCMC

algorithm which is given as a graph in Fig. 4.2. Note the transition kernel is reversible
and hence preserves the target distribution given by the target density ρ.

4.3.3 Persistent iMCMC Algorithm

It is known that irreversible transition kernels (those that do not satisfy detailed balance)
have better mixing times, i.e. converge more quickly to the target distribution, compared

46 4.3. Techniques on iMCMC Algorithms

to reversible ones. However, most MCMC samplers (including iMCMC) are reversible.
The following technique gives us a method to transform reversible iMCMC algorithms
to irreversible ones that still preserve the target distribution. The key is to compose the
iMCMC algorithm with some transition kernel so that the resulting algorithm does not
satisfy detailed balance but still preserves the invariant distribution.

The Persistent iMCMC algorithm is an MCMC algorithm similar to the Direction
iMCMC algorithm in which the stochastic step (given by the auxiliary kernel) and
the deterministic step (given by the bijection) both depend on the value of a direction
variable d0. But instead of sampling a new direction in each iteration, Persistent iMCMC
keeps track of and negates the previous direction d0 strategically to make the resulting
algorithm irreversible.

Given the current sample x0 and direction d0, a proposal state (x,v) is obtained by
applying a bijection f or its inverse f−1 depending on the value of d0 to (x0,v0) where
v0 is sampled from a probability measure conditioned on x0 and d0. Then x is accepted
with an appropriate probability alongside an unchanged direction d0 or rejected and the
current sample x0 is returned with a negated direction −d0.

Pseudocode The algorithm can be expressed in SPCF as PersistentiMCMC in List-
ing 4.7. (Terms specific to this technique are highlighted.) In addition to the SPCF
terms in DirectioniMCMC , we assume there is a SPCF term auxkernel that implements
the auxiliary kernel KP ∶ X × R ↝ Y with pdf implemented by pdfauxkernel . Note
that the Markov chain generated by the PersistentiMCMC algorithm has state space
X × R instead of X , which can easily be marginalised by taking the first component
of each state in the chain.

Correctness We first show that the Persistent iMCMC algorithm preserves the distribu-
tion ν ×N on X × R by formulating the PersistentiMCMC function as a composition of
an instance of the iMCMC function (by specifying the terms auxkernel and involution)
and the transition kernel ι defined by ι((s, r),A) ∶= [(s,−r) ∈ A] in Ex. 21.ii.

Consider the iMCMC algorithm with involution replaced by perinvolution in
Listing 4.8 (and the auxkernel stays the same.) The resulting iMCMC is almost equiv-
alent to PersistentiMCMC except with a negated direction. Hence, composing this
instance of iMCMC with the transition kernel ι gives us a sampler that is equivalent to
PersistentiMCMC . By construction, the composition preserves the distribution ν ×N
on X × R. It is easy to see that the marginalised Markov chain obtained by taking
the X-component of that generated by iterating PersistentiMCMC preserves the tar-
get distribution ν.

4. Markov Chain Monte Carlo 47

Listing 4.7: Pseudocode of the Persistent iMCMC algorithm� �
def PersistentiMCMC(x0,d0):
v0 = auxkernel(x0,d0) # stochastic step
(x,v) = bijection(d0)(x0,v0) # deterministic step
d = -d0
return (x,-d) # accept/reject step
if uniform < min{1,w(x)/w(x0) *

pdfauxkernel((x,d),v)/pdfauxkernel((x0,d0),v0) *
absdetjacbij(d0)(x0,v0)}

else (x0,-d0)� �
Listing 4.8: Pseudocode for perinvolution� �

def perinvolution((x0,d0),v0)
(x,v) = bijection(d0)(x0,v0)
d = -d0
return ((x,d),v)� �

(1,+)

(1,−) (2,+)

(2,−)

(3,+)(3,−)

2/3

1/3
2/3

1/3

2/3

1/3

2/3
1/3

2/3

1/3

2/3

1/3

Figure 4.3: Directed graph of the transition kernel described in Ex. 27

48 4.4. Case Study: Hamiltonian Monte Carlo

Example 27. Follow the setup in Ex. 26 but with the PersistentiMCMC algorithm in
Listing 4.7. The transition kernel on 3×R can be illustrated as the graph in Fig. 4.3. (We
simplified the graph to give the sign of the Real-component of each state.)

It is easy to check that the resulting transition kernel preserves the target distribution
given by the target density ρ(s, r) ∶= 1/6 but is irreversible as there is non-zero probability
to move from state (1,+) to (2,+) but none the other way round.

Remark 20. Persistent iMCMC corresponds to Tricks 5 and 6 in (Neklyudov et al., 2020).

4.4 Case Study: Hamiltonian Monte Carlo

The Hamiltonian Monte Carlo (also known as Hybrid Monte Carlo) (HMC) algorithm
is a popular MCMC inference that uses Hamiltonian dynamics to sample from a target
distribution on the measure space (Rn,Bn,Lebn). In this case study, we explore the
standard HMC algorithm as presented in (Neal, 2011) and its variants, namely the
Generalised HMC (Horowitz, 1991) and Look Ahead HMC (Sohl-Dickstein et al., 2014)
(equivalent to the Extra Chance Generalised HMC (Campos and Sanz-Serna, 2015))
using the iMCMC framework and techniques introduced in Sec. 4.2 and 4.3.

4.4.1 The Hamiltonian Monte Carlo Algorithm

Let ν be the target distribution on Rn given by a continuously differentiable target density
ρ ∶ Rn → [0,∞). The HMC algorithm generates a Markov chain {(qi,pi)}i∈N with the
invariant distribution π on the measure space (Rn × Rn,Bn × Bn,Lebn × Lebn) given
by the probability density function

ζ(q,p) ∶=
1
Z

exp (−U(q) −K(p))

where U ∶ Rn → R is the potential energy, given by U(q) ∶= − log ρ(q), and K ∶ Rn → R

is the kinetic energy, given byK(p) ∶= − log pdfD(p)whereD is the momentum distribu-
tion, a probability measure on (Rn,Bn,Lebn) typically chosen to be the (unnormalised)
multivariate Gaussian distribution Nn(0,In), in which case K(p) ∶= p⊺p/2, and Z
is the normalising constant.

Clearly the target distribution ν on Rn is the q-marginal of π on Rn × Rn. Hence
if the Markov chain generated by the HMC algorithm indeed preserves its invariant
distribution π as defined above, the corresponding marginal chain {qi}i∈N preserves
the target distribution ν.

4. Markov Chain Monte Carlo 49

Hamiltonian Dynamics To generate a proposal with a high acceptance probability,
HMC tracks the Hamiltonian motion of a particle on the surface defined by the potential
energy U with momentum defined by the kinetic energy K. Intuitively, this makes sense
as an area with a high probability will have low potential energy and is more likely
to be visited by the simulated particle.

The Hamiltonian H ∶ Rn × Rn → [0,∞) of a system is defined quite simply to be
the sum of the potential and kinetic energies, i.e.

H(q,p) ∶= U(q) +K(p).

The trajectories {(qt,pt)}t≥0, where qt and pt are the position and momentum of the
particle at time t respectively, defined by the Hamiltonian H , can be determined by
the Hamiltonian equations

∂qi(t)

∂t
=
∂H

∂pi

(q(t), p(t)) and ∂pi(t)

∂t
= −

∂H

∂qi

(q(t), p(t)) for i = 1, . . . , n

with initial conditions (q(0), p(0)) = (q0,p0). Since computers cannot simulate con-
tinuous motions like Hamiltonian, the equations of motion are typically numerically
integrated by the leapfrog method:

ϕM
ϵ/2 ○ ϕ

P
ϵ ○ ϕ

M
ϵ/2

where ϕM
k (q,p) ∶= (q,p − k∇U(q)) is the k-sized momentum step; ϕP

k (q,p) ∶= (q +

k∇K(p),p) is the k-sized position step; and ϵ is the time step.
We define the (L, ϵ)-leapfrog (or simply leapfrog) function L to be a map on Rn ×Rn

such that L(q,p) is the result of L iterations of the above leapfrog method with initial
condition (q0,p0) ∶= (q,p), i.e. L ∶= (ϕM

ϵ/2 ○ ϕ
P
ϵ ○ ϕ

M
ϵ/2)

L.

Proposition 12. The leapfrog function L is bijective and has inverse L−1 =M ○L ○M
where M(q,p) ∶= (q,−p), and the leapfrog function L and its inverse are volume
preserving (i.e. L∗Leb2n = Leb2n and L−1∗Leb2n = Leb2n).

Proof. It is easy to see that (ϕM
k)
−1
=M ○ ϕM

k ○M and (ϕP
k)
−1
=M ○ ϕP

k ○M . Hence,

L−1 = ((ϕM
ϵ/2)

−1
○ (ϕQ

ϵ)
−1
○ (ϕM

ϵ/2)
−1
)

L
=M ○ (ϕM

ϵ/2 ○ ϕ
Q
ϵ ○ ϕ

M
ϵ/2)

L
○M =M ○L ○M.

Moreover, ϕM
k , ϕP

k and the momentum flipM are sheaf transformations and preserves
measure on R2n, i.e. ϕM

k (D), ϕP
k (D),M(D) andD all have the same weight w.r.t. Leb2n

for all measurable set D in R2n. Hence,

(L∗Leb2n)(D) = Leb2n(L−1(D)) = Leb2n(M(L(M(D)))) = Leb2n(D)

(L−1
∗Leb2n)(D) = Leb2n(L(D)) = Leb2n(D)

50 4.4. Case Study: Hamiltonian Monte Carlo

and L and L−1 are volume preserving.

Pseudocode of HMC Algorithm We can formulate the HMC algorithm as an in-
stance of the DirectioniMCMC algorithm in Listing 4.5, with the momentum distribution
(typically the n-dimensional multivariate Gaussian distribution) [normal]*len(q) as
the auxiliary kernel, the leapfrog function leapfrog as the bijection, and the pdf w

of the target distribution ν on Rn.
The resulting HMC algorithm in Listing 4.9 can then given the current state q0

returns a new state as follows.

1. (Direction step) Sample a direction d0 from normal .

2. (Stochastic step) Generate a (fresh) n-dimensional momentum vector p0 from the
momentum distribution [normal]*len(q0) .

3. (Deterministic step) Find q by evolving Hamilton’s equation with initial condition
(q0,p0) and the leapfrog function leapfrog if d0 is positive, otherwise with its
inverse momflip leapfrog momflip .

4. (Accept/reject step) Return q as the next state with probability

min{1,
ρ(q) ⋅ pdfNn

(p)

ρ(q0) ⋅ pdfNn
(p0)
}.

Otherwise return the current state q0 .

Since the leapfrog step L and its inverse L−1 are volume preserving (Prop. 12), the
absolute value of the Jacobian determinant of L and its inverse L−1 is always one.
Hence, the term absdetjacbij(d0)(q0,p0) for all (q0,p0) and d0 not necessary
in the accept/reject step.

Remark 21. Most presentations of the HMC algorithm (Neal, 2011; Cances et al., 2007)
do not contain the direction variable d0 , miss the direction step and use the involution
M ○L in the deterministic step to find the proposal state. This undoubtedly makes for a
cleaner presentation of HMC. However, as we will see in Sec. 4.4.3, viewing HMC as an
instance of DirectioniMCMC makes it easier to extend.

Correctness of HMC Since leapfrog is bijective and the momentum distribution is a
probability measure, the statement that the HMC algorithm preserves the distribution π
is induced from the correctness of the Direction iMCMC algorithm given in Sec. 4.3.2.

4. Markov Chain Monte Carlo 51

Listing 4.9: Pseudocode of the HMC algorithm with the SPCF terms HMC, leapfrog and
momflip� �

def HMC(q0):
d0 = normal # direction
p0 = [normal]*len(q0) # stochastic
(q,p) = leapfrog(q0,p0) if d0 > 0 # deterministic

else momflip(leapfrog(momflip(q0,p0)))
return q if uniform < min{1, w(q) / w(q0) * # accept/reject

pdfnormal(p) / pdfnormal(p0)}
else q0

def leapfrog(q0,p0): # implements the function L
(q,p) = (q0,p0)
for i in range(L):
p = p - ep/2 * grad(U)(q)
q = q + ep * grad(K)(p)
p = p - ep/2 * grad(U)(q)

return (q,p)

def momflip(q0,p0): return (q0,-p0) # implements the function M� �
4.4.2 Discontinuous Hamiltonian Monte Carlo

The HMC algorithm relies on the conservation of Hamiltonian energy to propose samples
with high acceptance ratio. However, energy is not preserved if the target density function
ρ is not continuously differentiable, which is often the case for probabilistic program
containing branching or recursion commands. As a result, applying HMC on these
programs has low acceptance ratio.

Instead Nishimura et al. (2020) presents the Discontinuous Hamiltonian Monte Carlo
(DHMC) sampler, which pairs the discontinuous variables with the Laplace momentum
instead of the Gaussian momentum, preserving the energy and thus having a high
acceptance ratio.

Say the target density ρ ∶ Rn → [0,∞) is not differentiable on the j-th coordinate for
j ∈ D ⊆ {1, . . . , n} and is differentiable on i-th coordinates for i ∈ C ∶= {1, . . . , n} ∖D.
Then, the equations of motion for the continuous variables in C are the same as that
in the conventional HMC algorithm, whereas the discontinuous variables in D are
numerically integrated as follows: the state (q,p) is updated as (q∗,p∗) = χD

ϵ (q,p)

where for each j ∈ D,

q∗ = q + ϵsign(pj)ej and p∗ = p − sign(pj)(∆U)ej

52 4.4. Case Study: Hamiltonian Monte Carlo

if ∣pj ∣ > ∆U ∶= U(q∗) − U(q) and otherwise

q∗ = q and p∗ = Rj ⋅ p

where ej is the j-th standard basis vector,Rj ∶= diag(1, . . . ,1,−1,1, . . . ,1) is the diagonal
matrix with diagonal entries 1 everywhere except in the j-th position, where it is -1
and ϵ is the time step.

We define the (L, ϵ)-Integrator function Int to be a map

(ϕM
ϵ/2 ○ ϕ

P
ϵ/2 ○ χ

D
ϵ ○ ϕ

P
ϵ/2 ○ ϕ

M
ϵ/2)

L

on Rn × Rn such that Int(q,p) is the result of L iterations of the leapfrog method and
the above discontinuous step with initial condition (q,p).

Proposition 13 (Lemma 1 of (Nishimura et al., 2020)). The integrator function Int
is bijective and has inverse Int−1 = M ○ Int ○M where M(q,p) ∶= (q,−p), and the
integrator function Int and its inverse are volume preserving (i.e. Int∗Leb2n = Leb2n

and Int−1
∗Leb2n = Leb2n).

Pseudocode of DHMC Algorithm We can again formulate the DHMC algorithm as an
instance of the DirectioniMCMC algorithm in Listing 4.5, with the momentum distribution
(typically the n-dimensional multivariate Gaussian distribution) [normal]*len(q) as
the auxiliary kernel, the integrator function integrator as the bijection, and the pdf
w of the target distribution ν on Rn. The resulting algorithm is given by the DHMC

function in Listing 4.10.

Remark 22. The DHMC sampler given by (Nishimura et al., 2020) randomly permutes
and updates (all) the discontinuous variables in D. Here we present a simplified version
of it.

Correctness of DHMC Since integrator is bijective and the momentum distribution
is a probability measure, the statement that the DHMC algorithm preserves the distribution
π is induced from the correctness of the Direction iMCMC algorithm given in Sec. 4.3.2.

4.4.3 Irreversible HMC Algorithms

With the catalogue of techniques explored in Sec. 4.3, different irreversible variants of
the HMC algorithm can be formed. In this case study, we focus on two such variants,
the Generalised HMC algorithm (Horowitz, 1991) and the Look Ahead HMC algorithm
(Sohl-Dickstein et al., 2014), which is shown to be equivalent to the Extra Chance
Generalised HMC (Campos and Sanz-Serna, 2015).

4. Markov Chain Monte Carlo 53

Listing 4.10: Pseudocode of the DHMC algorithm� �
def DHMC(q0,C,D):
d0 = normal # direction
p0 = [normal]*len(q0) # stochastic
(q,p) = integrator(q0,p0,C,D) if d0 > 0 # deterministic

else momflip(integrator(momflip(q0,p0),C,D))
return q if uniform < min{1, w(q) / w(q0) * # accept/reject

pdfnormal(v) / pdfnormal(p0)}
else q0

def integrator(q0,p0,C,D): # implements the function Int
(q,p) = (q0,p0)
for i in range(L):
p[C] = p[C] - ep/2 * grad(U)(q[C])
q[C] = q[C] + ep/2 * grad(K)(p[C])
for j in D:
q* = q
q*[j] = q[j] + ep*sign(p[j])
DeltaU = U(q*) - U(q)
if abs(p[j]) > DeltaU: # refract
q = q*
p[j] = p[j] - sign(p[j])*DeltaU

else: # reflect
p[j] = -p[j]

q[C] = q[C] + ep/2 * grad(K)(p[C])
p[C] = p[C] - ep/2 * grad(U)(q[C])

return (q,p)

momflip(q0,p0) = (q0,-p0) # implements the function M� �
Generalised HMC The Generalised HMC algorithm (Horowitz, 1991) makes two
changes to the conventional HMC algorithm in order to generate irreversible Markov
chains on Rn × Rn, namely

1. “corrupts” the current momentum p0 (instead of samples for a fresh one) in such a
way that preserves the state distribution and

2. persists with the direction d0 (i.e. skipping the direction step) if the proposal is
accepted; otherwise persists with the negated direction.

As shown in (Neklyudov et al., 2020), the Generalised HMC algorithm can be nicely
presented as a composition of an iMCMC algorithm that “corrupts” the momentum
(implemented as CorruptMom) and a Persistent iMCMC algorithm (implemented as
PerHMC) that uses Hamiltonian dynamics to find a new state with persisting direction.
The resulting algorithm is implemented as the GenHMC function in Listing 4.11.

Given the current state ((q0,p0),d0) , GenHMC generates a new state as follows.

54 4.4. Case Study: Hamiltonian Monte Carlo

Listing 4.11: Pseudocode for the Generalised HMC algorithm� �
GenHMC((q0,p0),d0) = PerHMC(CorruptMom((q0,p0),d0))

def HMCw(q,p): return w(q)

def CorruptMom((q0,p0),d0):
v0 = [normal(p0[i]*sqrt(1-alpha^2), alpha^2) for i in range(len(p0))]
(((q,p),d),v) = (((q0,v0),d0),p0)
return ((q,p),d)

def PerHMC((q1,p1),d1):
v1 = normal # stochastic
((q,p),v) = (leapfrog(q1,p1),v1) if d1 > 0 # deterministic

else (momflip(leapfrog(momflip(q1,p1))),v1)
d = -d1
return ((q,p),-d) if uniform <

min{1,HMCw(q,p)/HMCw(q1,p1)} # accept/reject
else ((q1,p1),-d1)� �

1. (CorruptMom) Return ((q0,p),d0) where the i-th component of p is sampled
from normal(p0[i]*sqrt(1-alpha^2), alpha^2) with a hyperparameter alpha .

The CorruptMom function is given in the iMCMC format where the auxiliary kernel is
[normal(p0[i]*sqrt(1-alpha^2), alpha^2)for i in range(len(p0))] , the invo-
lution is a swap, and (hence) the acceptance ratio is

min{1, ρ(q0) ⋅ φn(v0) ⋅ pdfN (d0) ⋅ φn(p0 ∣ v0
√

1 − α2, α2)

ρ(q0) ⋅ φn(p0) ⋅ pdfN (d0) ⋅ φn(v0 ∣ p0
√

1 − α2, α2)
} = 1.

2. (PerHMC) Taking the output state ((q1,p1),d1) from CorruptMom , simulate
Hamiltonian dynamics using the leapfrog function implemented in Listing 4.9
if d1 is positive, otherwise its inverse momflip leapfrog momflip , with initial
condition (q1,p1) . The computed proposal state (q,p) is then accepted with
probability

min{1,
ρ(q) ⋅ pdfNn

(p)

ρ(q0) ⋅ pdfNn
(p0)
},

and returned with an unchanged direction d1 . Otherwise, the state (q1,p1) with
a negated direction -d1 is returned instead.

The PerHMC is given as an instance of the PersistentiMCMC function with the
target distribution HMCw , a dummy auxiliary kernel normal and the product of
leapfrog and identity as the bijection.

4. Markov Chain Monte Carlo 55

The Generalised HMC algorithm preserves the target distribution as both CorruptMom ,
an instance of iMCMC, and PerHMC , an instance of Persistent iMCMC, are shown to
preserve the target distribution in Sec. 4.2.1 and 4.3.3.

Look Ahead HMC Last but not least, we consider the Look Ahead HMC algorithm
(Sohl-Dickstein et al., 2014), which is equivalent to the Extra Chance Generalised HMC
algorithm (Campos and Sanz-Serna, 2015). This algorithm modifies the Generalised
HMC algorithm by performing extra leapfrog steps when the proposal state is rejected.
This has the effect of increasing the acceptance rate for the algorithm as the chance that
the algorithm accepts a proposal has increase.

Similar to Generalised HMC, we present the Look Ahead HMC algorithm as a
composition of the iMCMC algorithm that “corrupts” the momentum (implemented as
CorruptMom in Listing 4.11) and a Persistent iMCMC algorithm that applies a random
number of leapfrog function (or its inverse) to the current state.

There are two different ways of implementing this Persistent iMCMC sampler. We
can either draw a random number in the stochastic step and then perform said number
of steps; or after each set of leapfrog steps, determine whether to perform an extra set
of leapfrog steps in the acceptance step. We call the first implementation the Multiple
HMC sampler and the second the Extra Chance HMC sampler.

Multiple HMC Sampler Listing 4.13 gives the implementation of the Multiple HMC
sampler in SPCF.

Given the returned state ((q1,p1),d1) from CorruptMom , simulate Hamiltonian dy-
namics using the leapfrog function nleapfrog in the direction d1 to the initial condition
(q1,p1) and obtain the next state (q,p) . The duration of the simulation is determined
by the value of the auxiliary variable n sampled from Multikernel((q1,p1),d1) . The
proposal state (q,p) is always accepted alongside an unchanged direction d1 if n

is non-zero, otherwise the direction is negated.
The MultiHMC is given as an instance of the PersistentiMCMC function with the

auxiliary kernel Multikernel and a bijection that finds the proposal state (q,p) by
evolving Hamiltonian equation using the nleapfrog(n) function with the initial con-
dition (q0,p0) .

The heart of MultiHMC is the definition of the auxiliary kernel Multikernel that
determines the number n of applications of the leapfrog function (or its inverse). Given
the state ((q0,p0), d0) and K ∈ N>0, Multikernel returns n > 0 with probability

56 4.4. Case Study: Hamiltonian Monte Carlo

Listing 4.12: Pseudocode for Look Ahead HMC Sampler with Multiple HMC� �
LAHMC((q0,p0),d0) = MultiHMC(CorruptMom((q0,p0),d0)))� �

Listing 4.13: Pseudocode for Multiple HMC Sampler� �
def MultiHMC((q1,p1),d1):
n = LAkernel((q1,p1),d1) # stochastic
((q,p),n) = (leapfrog(n)(q1,p1),n) if d1 > 0 # deterministic

else (momflip(leapfrog(n)(momflip(q1,p1))),n)
d = -d1 if n > 0 else d1
return ((q,p),-d) # always accept

def LAkernel((q1,p1),d1):
u = uniform
n = 1
acc = min{1,w(nleapfrog(n)(q1,p1))/w(q1,p1)} if d1 > 0

else min{1,w(momflip(nleapfrog(n)(momflip(q1,p1))))/w(q1,p1)}
while acc < u && n <= K:
n = n+1
acc = min{1,w(nleapfrog(n)(q1,p1))/w(q1,p1)} if d1 > 0

else min{1,w(momflip(nleapfrog(n)(momflip(q1,p1))))/w(q1,p1)}
return 0 if n = K+1

else n

def nleapfrog(n)(q1,p1) = # apply leapfrog n times
(q,p) = (q1,p1)
for i in range(n):
(q,p) = leapfrog(q,p)

return (q,p)� �
max{0,min{1, σn} − max{σℓ ∣ ℓ < n}} and returns 0 with probability max{0,1 −
max{σℓ ∣ ℓ ≤ K}} where

σk ∶=

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

ζ(Lk(q0,p0))

ζ(q0,p0)
if d0 > 0

ζ(M(Lk(M(q0,p0)))

ζ(q0,p0)
otherwise.

Hence the likelihood of performing n numbers of Ls is the distance between min{1, σn}

and the highest of σℓ for ℓ < n, if it is non-negative. Moreover, it has the interesting
consequence that the MultiHMC function always accepts the proposal because by Prop. 14,
the acceptance ratio is

min{1,
ζ(q,p) ⋅ pdf

Multikernel
((q,p),−d0)(k)

ζ(q0,p0) ⋅ pdf
Multikernel

((q0,p0), d0)(k)
} =min{1, σk ⋅

1
σk

} = 1

4. Markov Chain Monte Carlo 57

Listing 4.14: Pseudocode for Look Ahead HMC Sampler with Extra Chance HMC� �
LAHMC((q0,p0),d0) = ExtraChanceHMC(CorruptMom((q0,p0),d0)))� �

Listing 4.15: Pseudocode for Extra Chance HMC Sampler� �
def ExtraChanceHMC((q1,p1),d1):
(q,p) = (q1,p1)
u = uniform
stop = False
j = 1
while not stop:
perform a set of leapfrog steps
(q,p) = leapfrog(q,p) if d1 > 0

else momflip(leapfrog(momflip(q,p)))
if u > min{1,w(q)/w(q1) *

pdfnormal(p)/pdfnormal(p1)}:
if j <= J:
perform an extra set of leapfrog steps
j = j + 1

else:
no leapfrog steps is performed
(q,p) = (q1,p1)
stop = True
d = d0

else:
enough leapfrog steps are performed
stop = True
d = -d0

return ((q,p), -d)� �
for k > 0.

Proposition 14. Let (q0,p0) ∈ Rn × Rn, d0 ∈ R and k > 1. Let

(q,p) =

⎧⎪⎪
⎨
⎪⎪⎩

Lk(q0,p0) if d0 > 0
(L−1)k(q0,p0) otherwise

Then,
pdf

Multikernel
((q,p),−d0)(k)

pdf
Multikernel

((q0,p0), d0)(k)
=

1
σk

or is undefined.

With the CorruptMom from Listing 4.11, the Look Ahead HMC sampler is imple-
mented as the LAHMC function in Listing 4.12. Since both CorruptMom , an instance of
iMCMC, and MultiHMC , an instance of Persistent iMCMC, preserve the target distribution
(Sec. 4.2.1 and 4.3.3), so does the Look Ahead HMC sampler.

58 4.4. Case Study: Hamiltonian Monte Carlo

0 σ1 σ3 σ2 σ4 1

(L1(x,v), u
σ1
,F)

(L2(x,v), u
σ2
,F)

(L4(x,v), u
σ4
,F)

(L0(x,v), u
σ0
,F)

(L3(x,v), u
σ3
,F)

Figure 4.4: Result of Φ(x, v, u, T) for varying u ∈ [0, 1].

Extra Chance HMC Another way of describing Look Ahead HMC is to check, after
each set of leapfrog steps, whether to perform an extra set of leapfrog steps in the
acceptance step.

We consider the involution Φ on Rn × Rn × [0,1) × 2 given by

Φ(x,v, u,T) ∶=
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

(Lj(x,v),
u

σj

,F) if max{σi ∣ i < j} ≤ u <min{1, σj}

(x,v, u,T) if max{σj ∣ j ≤ J} ≤ u

Φ(x,v, u,F) ∶=
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

(L−j(x,v),
u

σ′j
,T) if max{σ′i ∣ i < j} ≤ u <min{1, σ′j}

(x,v, u,F) if max{σ′j ∣ j ≤ J} ≤ u

where
σj ∶=

ζ(Lj(x,v))

ζ(x,v)
, σ′j ∶=

ζ(L−j(x,v))

ζ(x,v)
, L−j ∶= (L−1)j

and J is the maximum set of leapfrog steps.
The first two parameters of Φ, namely (x,v), give the state of the algorithm, and the

last parameter indicates the direction of the Hamiltonian simulation. The third parameter
of Φ is the most interesting: u ∈ [0,1) is a uniformly distributed variable that determines
how many sets (j) of leapfrog steps are to be performed. The idea is to perform an
extra set of leapfrog steps if the proposal is rejected. Hence if all the acceptance ratios
min{1, σj} for j = 1, . . . , J are marked on the unit interval [0,1], the probability of
performing j sets of leapfrog steps is given by the distance between min{1, σj} and
the highest of σi for i < j, if it is non-negative. Sec. 4.4.3 gives an example of the
result of Φ(x,v, u,T) for varying u ∈ [0,1].

The Look Ahead HMC sampler can be formulated as a Persistent iMCMC sampler
with the auxiliary kernel K((x,v), ⋅) ∶= U[0,1) and the above involution Φ. Note that
the sampler always accepts the proposal as the acceptance ratio is for u ∈ [max{σi ∣

i < j},min{1, σj})

min{1, ζ(L
j(x,v))

ζ(x,v)
⋅ ∣det∇Φ(x,v, u,T)∣} =min{1, σj ⋅ ∣(det∇Lj(x,v)) ⋅

1
σj

∣} = 1

4. Markov Chain Monte Carlo 59

and similarly for u ∈ [max{σj ∣ j ≤ J},1]. A similar argument can be made when
the direction is F.

Listing 4.15 gives a SPCF implementation of the Extra Chance HMC sampler. After
a random variable u is drawn from the uniform distribution, the first set of leapfrog
steps (or its inverse) is performed on (q,p) . To determine whether to do an extra set of
leapfrog steps, the variable u is compared to the acceptance ratio. If u is lower than
the ratio, the state is returned as the proposal. Otherwise, a new set of leapfrog steps
(or its inverse) is performed. This is repeated for at most J times. By then, if u is still
higher than the acceptance ratio, the initial state (q1,p1) is returned.

Putting ExtraChanceHMC and CorruptMom from Listing 4.11 together, we get the
Look Ahead HMC sampler as the LAHMC function in Listing 4.14.

4.5 Case Study: Reversible Jump MCMC

Transdimensional inferences aim to sample from a posterior distribution where the number
of parameters (and hence the dimension of the model) is unknown. A transdimensional
MCMC algorithm has to move between dimensions in order to explore the whole
parameter space. Different transdimensional samplers have been suggested (Carlin
and Chib, 1995; Grenander and Miller, 1994) based on different processes, but the
most widely applied one is the infamous Reversible Jump MCMC (RJMCMC) (Green,
1995) suggested by Green in 1995.

One can see RJMCMC as a natural generalisation of the standard Metropolis-Hastings
algorithm (Green and Hastie, 2009). In this case study, we explore a simplified RJMCMC
algorithm from (Gagnon and Doucet, 2020) using the iMCMC framework.

4.5.1 The Reversible Jump MCMC Algorithm

Let ν be the target distribution on ⋃
j∈N

Rj with density ρ ∶ ⋃
j∈N

Rj → [0,∞). Given the

current state x ∈ Rk, the RJMCMC algorithm generates a new state as follows:

1. Propose a model candidate k′ from some probability distribution g(k, ⋅) on N;

2. Generate uk→k′ from some probability distribution qk→k′;

3. Apply the function Tk→k′ to (x, uk→k′) to obtain (y, uk′→k) where Tk→k′ is a
diffeomorphism with inverse Tk′→k;

60 4.5. Case Study: Reversible Jump MCMC

Listing 4.16: Pseudocode of the RJMCMC algorithm� �
def RJMCMC(x0):
k0 = len(x0) # stochastic step
k = g(k0)
u0 = proposal(k0)(k)(x0)
(x,u) = T(k0)(k)(x0,u0) # deterministic step
return x if uniform < min{1, w(x)/w(x0) * # accept/reject step

pdfg(k,k0)/pdfg(k0,k)*
pdfproposal(k)(k0)(u)/pdfproposal(k0)(k)(u0)*
absdetjacT(k0)(k)(x0,u0)}

else x0� �
Listing 4.17: Auxiliary kernel and involution of the RJMCMC algorithm� �

def auxkernel(x0):
k0 = len(x0)
k = g(k0)
u0 = proposal(k0)(k)(x0)
return (u0,k0,k)

def involution(x0,u0,k0,k):
(x,u) = T(k0)(k)(x0,u0)
return (x,u,k,k0)� �

4. Accept the proposal y with probability

min{1, g(k
′, k) ⋅ ρ(y) ⋅ qk′→k(uk′→k)

g(k, k′) ⋅ ρ(x) ⋅ qk→k′(uk→k′)
⋅ ∣det∇T k→k′(x, uk→k′)∣};

otherwise return the initial state x.

Note that the state “jumps” from dimension k to k′ if the proposal is accepted.

Pseudocode of RJMCMC Algorithm We can formulate the RJMCMC algorithm as

an instance of the iMCMC algorithm (Listing 4.1) with the pdf w as the target density

function, auxkernel and involution as given in Listing 4.17. The resulting algorithm

is given by the RJMCMC function in Listing 4.16.

Correctness of RJMCMC Since involution is indeed an involution, the correctness

of RJMCMC is deduced from that of the iMCMC algorithm (Cor. 1).

4. Markov Chain Monte Carlo 61

4.5.2 Instances and Generalisations of RJMCMC

The jump-diffusion sampler of (Grenander and Miller, 1994) and the birth-death sampler
of (Stephens, 2000), can be seen as instances or a sequence of RJMCMC samplers. Based
on the product state space approach of (Carlin and Chib, 1995), Godsill presented a
sampler that generalises RJMCMC for the product state space (Godsill, 2001). The RJM-
CMC sampler has also be extended to construct a non-reversible Markov chain (Gagnon
and Doucet, 2020). (Chavis et al., 2021) gave a parallelised extension of RJMCMC.

4.5.3 Automating RJMCMC

The performance of RJMCMC replies on its proposal distributions, namely g(k, ⋅) and
qk→k′ , and its between-model mappings Tk→k′ . Considerable efforts have been put
to automate these distributions and mappings in hope to construct a fully automatic
transdimensional algorithm. For instance, between-model mappings are suggested by
(Green, 2003; Godsill, 2003) in order to form an automatic generic trans-dimensional
sampler. Recently, (Heck et al., 2019) suggested a design on the estimated stationary
distribution g of the discrete parameter indexing the competing models.

4.6 Approximate Inferences for Probabilistic Program-
ming

Since the inception of probabilistic programming, inference algorithms have played
an important role. Here we discuss common inference algorithms found in popular
probabilistic programming, including some that are designed specifically for proba-
bilistic programming.

4.6.1 Importance Sampling

Importance Sampling (IS) is a basic, simple to implement Monte Carlo method that
can sample from all probabilistic models, including those described by probabilistic
programs. It is conceptually elegant, comprising of three steps:

1. Draw samples from a proposal distribution;

2. Compute the ratio of the weight of each sample w.r.t. the posterior and the proposal;

3. Perform inference using the weighted samples.

62 4.6. Approximate Inferences for Probabilistic Programming

Listing 4.18: State Space Model� �
def StateSpaceModel(x, data):
for t in range(len(data)):
observe data[t] from Dist(x[0:t])� �

Various extensions of IS have been developed to find a good proposal distribution that
can locate the posterior. Multiple IS methods (Elvira et al., 2019) draw samples from
multiple proposal distributions; whereas adaptive IS methods (Bugallo et al., 2017) update
the proposal distribution by iterating the sampling and weighting process, resulting
in more accurate samples.

IS is commonly found in probabilistic programming languages as a baseline inference
algorithm for models. However designing a suitable proposal distribution is challenging.
The recently suggested adaptive IS has been applied to probabilistic programs in (Luo
et al., 2021), though no correctness proof was provided in their account.

4.6.2 Particle Methods

Sequential Monte Carlo (SMC) (also known as particle filter) methods (Gordon, 1993;
Doucet et al., 2001) are a class of algorithms that sequentially sample from the posterior.
It is particularly suitable for recursive estimation problems such as state space models in
Listing 4.18 where new data points are considered sequentially. For instance, Sequential
Importance Resampling with N particles samples from StateSpaceModel with dataset
data of length T as follows:

1. Draw N weighted samples (x[0],weight[0]) from the distribution given by
y = normal; StateSpaceModel(y, data[0]) using IS;

2. For each subsequent parameters t = 1, . . . , T − 1,

(a) DrawN weighted (temporary) samples (tempx[t],tempweight[t]) from the
distribution given by y = normal; StateSpaceModel(x[0:t-1]+[y],

data[0:t]) using IS;

(b) Draw N samples (x[t],weight[t]) using the weighted samples
(tempx[t],tempweight[t]) .

Similar to IS, the selection of proposal distributions in SMC can be tricky and the SMC
approximation deteriorates as components might not be rejuvenated at subsequent time
steps in high dimensional models.

4. Markov Chain Monte Carlo 63

Attempts to combine the strengths of SMC and MCMC lead to the development
of Particle MCMC methods such as Particle Metropolis-Hastings and Particle Gibbs
(Andrieu et al., 2010). These algorithms use SMC approximations to build efficient high
dimensional proposal distributions for MCMC schemes and have been applied success-
fully to a non-linear state space model and a Lévy-driven stochastic volatility model.

Many probabilistic programming languages have implemented some kind of particle
methods. Designing a suitable proposal distribution for probabilistic programming
remains difficult. Staton et al. (2016) applied their semantics to validate the correctness
of SMC simulation.

4.6.3 Optimisation Methods

Besides sampling methods, variational inference (VI) provides another method for
approximating probability densities. The main idea behind it is to optimise

q∗(z) = arg min
q∈Q
{KL(q(z) ∣∣ p(z∣x))}

where Q is a family of approximate densities. In this case, the optimised member q∗

minimises the Kullback-Leibler (KL) divergence to the exact posterior density p and
approximates the posterior p.

Unlike Monte Carlo methods, variational inference (VI) (Blei et al., 2017) solves the
Bayesian inference problem by treating it as an optimisation problem. When adapted to
models expressed as probabilistic programs, the score function VI (Ranganath et al., 2014)
can in principle be applied to a large class of branching and recursive programs because
only the variational density functions need to be differentiable. Existing implementations
of VI algorithms in probabilistic programming systems are however far from automatic:
in the main, the guide programs (that express variational distributions) still need to
be hand-coded.

4.6.4 Lightweight Metropolis-Hastings

The standard MCMC algorithm for probabilistic programming that is widely implemented
(for example, in Anglican, Venture, and Web PPL) is the Lightweight Metropolis-Hastings
(LMH) algorithm (Wingate et al., 2011) and its extensions (Yang et al., 2014; Tolpin et al.,
2015; Ritchie et al., 2016), which performs single-site updates on the current sample
and re-executes the program. It works well in simple cases but suffers from a lack of
predictive accuracy in its proposal for high dimensional models.

64 4.6. Approximate Inferences for Probabilistic Programming

4.6.5 Divide, Conquer and Combine

Recently, Zhou et al. (2020) introduced the Divide, Conquer, and Combine (DCC)
algorithm, which is applicable to programs definable using branching and recursion. As a
hybrid algorithm, DCC solves the problem of designing a proposal that can efficiently tran-
sition between configurations by performing local inferences on submodels, and returning
an appropriately weighted combination of the respective samples. Thanks to a judicious
resource allocation scheme, it exhibits strong performance on multimodal distributions.

4.6.6 MCMC Methods

In this chapter, we studied the HMC and RJMCMC samplers. Here we discuss how they
might or might not be suitable for probabilistic programming.

HMC The HMC algorithm and its variants, notably the No-U Turn Sampler, are the
workhorse inference methods in the influential PPL Stan (Gelman et al., 2015). The
challenges posed by stochastic branching in probabilistic programming are the focus of
reflective/refractive HMC (Afshar and Domke, 2015); discontinuous HMC (Nishimura
et al., 2020); mixed HMC (Zhou, 2020); and the first-order PPL in (Zhou et al., 2019)
which is equipped with an implementation of discontinuous HMC. However, none of
these variants addresses the transdimensional movement in the parameter space posed
by recursion in probabilistic programming.

RJMCMC The Reversible Jump Markov chain Monte Carlo (RJMCMC) algorithm
(Green, 1995) is a trans-dimensional MCMC sampler. However, it additionally requires
the user to specify a transition kernel which is labour-intensive. Various RJMCMC
transition kernels have been suggested for specific models, e.g. split-merge proposal
for infinite Gaussian mixture models.

Some practical probabilistic programming languages such as Hakaru, Pyro and Gen
give users the flexibility to hand-code the proposal in a MCMC setting. For instance,
Cusumano-Towner et al. (2019) implement the split-merge proposal (Richardson and
Green, 1997) of RJMCMC in Gen. Though this line of research is orthogonal to ours,
probabilistic programming such as Gen could play a useful role in the implementation
of trans-dimensional samplers for probabilistic programming.

Et introibo ad altare Dei, ad Deum qui lætificat juventutem
meam.

— Psalm 42:4

5
Nonparametric Involutive MCMC

Recall the two main tasks in Bayesian Machine Learning — the specification of probabilis-
tic models and the computation of the posterior distribution. As discussed in Sec. 3.1.2,
this thesis leaves the discussion of model specification to domain experts and instead
demonstrates that probabilistic programs are fitting presentations of probabilistic models
in Bayesian inference (Sec. 3.2.2). Hence, we are left with the task of computing the
posterior of a probabilistic program, in other words, the design of inference algorithms
for probabilistic programming.

In this chapter, we present the Nonparametric Involutive Markov chain Monte
Carlo (NP-iMCMC), an inference algorithm that simulates the probabilistic model
specified by a given SPCF program. As its name suggests, the NP-iMCMC sampler
gives a general framework for the design of MCMC algorithms, similar to the involutive
MCMC sampler, and is specially developed to compute the posteriors of nonparametric
probabilistic programs.

To start, we study how the Metropolis-Hastings (MH) inference algorithm fails to
sample from the infinite Gaussian mixture model (iGMM), and investigate the challenge
faced by all MCMC samplers in simulating nonparametric probabilistic models. After
that, we detail the NP-iMCMC inference algorithm: its state space, conditions on the
inputs and steps to generate the next sample; and study how the sampler tackles the
aforementioned challenge and returns new samples of a nonparametric probabilistic
program. We then give an implementation of NP-iMCMC in SPCF and demonstrate
how the NP-iMCMC method extends the MH sampler and samples from iGMM. Finally,
we provide some techniques to improve the NP-iMCMC sampler.

We will discuss the correctness of NP-iMCMC in Chapter 6 and will report the
empirical experiments on the sampler in Chapter 7.

65

66 5.1. The Challenge MCMC Samplers Face

Listing 5.1: Infinite Gaussian mixture model� �
def iGMM:
K = normal
means = []
for i in range(abs(K)+1):
means.append(normal)

for d in data:
score(sum[pdfnormal(x,1)(d) for x in means]/len(means))

return K� �
5.1 The Challenge MCMC Samplers Face

The goal of a MCMC sampler is to generate a Markov chain that simulates the target
distribution given by a target density ρ w.r.t. the Lebesgue measure. This is typically
done by iterating a stochastic algorithm that updates the current sample. For example,
the classic Metropolis-Hastings (MH) algorithm updates the current sample x0 with a
proposal x randomly drawn from a proposal distribution q(x0, ⋅) with probability

min{1,
ρ(x) ⋅ pdfq(x,x0)

ρ(x0) ⋅ pdfq(x0,x)
}

where pdfq is the Radon-Nikodym derivative of q w.r.t. the Lebesgue measure. Otherwise,
it repeats with the current sample x0.

We demonstrate the challenge of updating samples of a nonparametric model by
considering the MH sampler on the infinite Gaussian mixture model iGMM (Listing 5.1).
iGMM describes a mixture of max{0, ⌊ K ⌋}Gaussian distributions with normally-distributed
random variables K and means . Notice that the total number of calls to normal in
iGMM depends on the result of the first sample, i.e. the value of K , making the model
iGMM nonparametric.

Say the current sample is x0 ∶= [3.4,−1.2,1.0,0.5]. Then, the model iGMM with a
trace specified by x0, describes a mixture of three Gaussian distributions, centred at
−1.2,1.0 and 0.5 respectively. To update the current sample, the MH sampler draws
say x = [4.3,−2.4,−0.1,1.4] from the proposal distribution N∣x0∣(x0,I). Unfortunately,
we cannot simply propose x. This is because with x as the trace, the model iGMM

describes a mixture of four Gaussian distributions (as K is set to be 4.3), with only
three values provided for the means. What is the mean of the “extra” Gaussian? Or
more generally, how should the state move from a sample x0 of length (or dimension)
four to one of length (or dimension) five?

5. Nonparametric Involutive MCMC 67

This is the challenge all MCMC inferences face when simulating a nonparametric
model like iGMM . For instance, to design an iMCMC sampler that explores the model
iGMM fully, the auxiliary kernel or the involution must jump between states of different
lengths (or dimensions). Designing such a sampler could be labour-intensive and model
specific. For example, we have to specify the kernels g , proposal and diffeomorphism
T in the Reversible Jump MCMC sampler in Sec. 4.5.

This thesis presents the Nonparametric Involutive MCMC (NP-iMCMC) sampler
which naturally moves between states of different dimensions and explores every dimen-
sions of the nonparametric model. We start our discussion with the state space of the
NP-iMCMC sampler, laying the groundwork for the rest of this chapter.

5.2 State Spaces

A state in the NP-iMCMC algorithm is a pair (x,v) of equal dimension parameter and
auxiliary variables. The parameter variable x is used to store traces and the auxiliary
variable v is used to record randomness. Both variables are vectors of entropies, i.e. Real-
boolean pairs. This section gives the formal definitions of the entropy, parameter and aux-
iliary variables and the state, in preparation for the discussion of the NP-iMCMC sampler.

5.2.1 Entropy Space

As shown in Sec. 3.2, the reduction of a SPCF program is determined by the input trace t ∈

T, a record of drawn values in a particular run of the program. Hence in order to simulate
a probabilistic model described by a SPCF program, the NP-iMCMC sampler should
generate Markov chains on the trace space. However traversing through the trace space is
a delicate business because the positions and numbers of discrete and continuous values
in a trace given by a SPCF program may vary. (Consider if coin: normal else: coin .)

Instead, we pair each value ti in a trace t with a random value t of the other type to
make a Real-boolean pair (ti, t) (or (t, ti)). For instance, the trace [T,−3.1] can be made
into a Real-boolean vector [(1.5,T), (−3.1,T)] with randomly drawn values 1.5 and T.
In this case, the position of discrete and continuous random variables does not matter
and the number of discrete and continuous random variables is fixed in each vector.

We call a Real-boolean pair an entropy and define the entropy space E to be the product
space R × 2 of the Borel measurable space and the boolean measurable space, equipped
with the σ-algebra ΣE ∶= σ({R ×B ∣ R ∈ B,B ∈ Σ2}), and the product measureµE ∶= N×

µ2. Note the Radon-Nikodym derivative φE of µE can be defined as φE(r, a) ∶=
1
2φ(r). A

n-length entropy vector is then a vector of n entropies, formally an element in the product
measurable space (En,ΣEn). We write ∣x∣ to mean the length of the entropy vector x.

68 5.2. State Spaces

As mentioned earlier, the parameter variable of a state is an entropy vector that
stores traces. Hence, it would be useless if a unique trace cannot be restored from an
entropy vector. We found that such a recovery is possible if the trace is in the support
of a tree representable function.

Say we would like to recover the trace t̂ that is used to form the entropy vector x by
pairing each value in the trace with a random value of the other type. First we realise
that traces can be made by selecting either the Real or boolean component of each pair
in a prefix of x. For example, traces like [], [T], [−0.2], [T,2.9] and [−0.2,T,F] can
be made from the entropy vector [(−0.2,T), (2.9,T), (1.3,F)]. We call these traces
instances of the entropy vector. Formally, a trace t ∈ T is an instance of an entropy vector
x ∈ En if ∣t∣ ≤ n and ti ∈ {r, a ∣ (r, a) = xi} for all i = 1, . . . , ∣t∣. We denote the set of all
instances of x as instance(x) ⊆ T. Then, the trace t̂ must be an instance of x. Moreover,
if we can further assume that t̂ is in the support of a tree representable function, then
Prop. 15 says we can uniquely identify t̂ amongst all instances of x.

Proposition 15. There is at most one trace that is both an instance of an entropy vector
and in the support of a tree representable function.

Finally, we consider differentiability on the multi-dimensional entropy space. We say
a function f ∶ Ek1 → Ek2 is differentiable almost everywhere if for all i ∈ 2k1 , j ∈ 2k2 ,
the partial function fi→j ∶ Rk1 → Rk2 where

fi→j(r) = q ⇐⇒ f(zip(r, i)) = (zip(q, j))1

is differentiable almost everywhere on its domain

Dom(fi→j) ∶= {r ∈ Rk1 ∣ ∃q ∈ Rk2 . f(zip(r, i)) = (zip(q, j))}.

The Jacobian of f on (zip(r, i)) is given by ∇fi→j(r), if it exists.

5.2.2 Parameter Space

A parameter variable x of dimension n is an entropy vector of length ιX(n) where
ιX ∶ N → N is a monotone map, i.e. n1 < n2 implies ιX(n1) < ιX(n2) for all n1, n2 ∈ N.
We write dim(x) to mean the dimension of x and ∣x∣ to mean the length of x. Hence,
dim(x) ≤ ∣x∣ and ιX(dim(x)) = ∣x∣. We extend the notion of dimension to traces and
say a trace t ∈ T has dimension n if ∣t∣ = ιX(n).

1We write zip(ℓ1, ℓ2) to be the n-length vector [(ℓ1
1, ℓ2

1), (ℓ1
2, ℓ2

2), . . . , (ℓ1
n, ℓ2

n)] ∈ (L1 × L2)n
for any vectors ℓ1 ∈ Ln1

1 and ℓ2 ∈ Ln2
2 with n ∶=min{n1, n2}.

5. Nonparametric Involutive MCMC 69

We distinguish the length ιX(n) and dimension n of variables to better accommodate
techniques in Sec. 5.5. The variable x in these techniques might contain extra information
we would like to keep track of. These extra information would be stored in the first ιX(n)−
n coordinates of x, whereas the last n coordinates of x gives the value of the variable.

Formally, the n-dimensional parameter space (X(n),ΣX(n)) is the product of ιX(n)
copies of the entropy space (E,ΣE) and the base measure µX(n) on X(n) is the product of
ιX(n) copies of the entropy measure µE with the Radon-Nikodym derivative φX(n) . For
ease of reference, we write (X,ΣX, µX) for the one-dimensional parameter space.

5.2.3 Auxiliary Space

Similarly, an auxiliary variable v of dimension n is an entropy vector of length ιY(n)
where ιY ∶ N→ N is a monotone map. The n-dimensional auxiliary space (Y(n),ΣY(n)) is
the product of ιY(n) copies of the entropy space (E,ΣE) and the base measure µY(n) on
Y(n) is the product of ιY(n) copies of the entropy measure µE with the Radon-Nikodym
derivative φY(n) . For ease of reference, we write (Y,ΣY, µY) for the one-dimensional
auxiliary space.

5.2.4 State Space

A state is a pair of equal dimension but not necessarily equal length parameter and
auxiliary variable. For instance with ιX(n) ∶= n+1 and ιY(n) ∶= n, the parameter variable
x ∶= [(−0.2,T), (2.9,T), (1.3,F)] and the auxiliary variable v ∶= [(1.5,T), (−2.1,F)]
are both of dimension two and (x,v) is a two-dimensional state.

Formally, the state space S is the list measurable space of the product of parameter
and auxiliary spaces of equal dimension, i.e. S ∶= ⋃

n∈N
(X(n) × Y(n)), equipped with

the σ-algebra ΣS ∶= σ{Xn × Vn ∣Xn ∈ ΣX(n) , Vn ∈ ΣY(n) , n ∈ N} and measure µS(S) ∶=
∞
∑
n=1
∫

Y(n)
µX(n)({x ∈ X(n) ∣ (x,v) ∈ S}) µY(n)(dv). We write S(n) for the set consisting

of all n-dimensional states.
We extend the notion of instances to states and say a trace t is an instance of a state

(x,v) if it is an instance of the parameter component x.

5.3 Inputs of the NP-iMCMC Algorithm

Besides the target density function, the NP-iMCMC sampler, like iMCMC, introduces
randomness via auxiliary kernels and moves around the state space via involutions to
propose the next sample. We now examine each of these inputs closely.

70 5.3. Inputs of the NP-iMCMC Algorithm

5.3.1 Target Density Function

Similar to other inference algorithms for probabilistic programming, the NP-iMCMC
sampler takes the weight function w ∶ T→ [0,∞) as the target density function. Recall
w(t) gives the weight of the run of the probabilistic program indicated by the trace t.
By Prop. 6, the weight function w is always tree representable. For the sampler to work
properly, we also require weight function w to satisfy the following assumptions.

(V1) w is integrable, i.e. ∫
T
w dµT =∶ Z < ∞ (otherwise, the inference problem is

undefined).

(V2) w is almost surely terminating (AST), i.e. µT({t ∈ T ∣ w(t) > 0}) = 1 (otherwise,
the loop in the NP-iMCMC algorithm may not terminate almost surely).

(V3) Every trace in the support of w has a dimension (w.r.t. ιX), i.e. Supp(w)
= ⋃

n∈N
SuppιX(n)(w).

Virtually all useful probabilistic models can be specified by SPCF programs with
densities satisfying V1 and 2. Exceptions are models that are not normalizable or diverge
with non-zero probability. (See Sec. 3.3.3 for more details.) As ιX is used internally (to
accommodate the techniques in Sec. 5.5), we expect all probabilistic models specified
by SPCF programs satisfy V 3.

5.3.2 Auxiliary kernels

To introduce randomness, the NP-iMCMC sampler takes, for each n ∈ N, a probability
auxiliary kernel K(n) ∶ X(n) ↝ Y(n) which gives a probability distribution K(n)(x, ⋅)
on Y(n) for each n-dimensional parameter variable x. We assume each auxiliary kernel
K(n) has a probability density function (pdf) pdfK(n) ∶ X(n) ×Y(n) → [0,∞) w.r.t. µY(n) .

5.3.3 Involutions

To move around the state space S, the NP-iMCMC sampler takes, for each n ∈ N, an end-
ofunction Φ(n) on X(n)×Y(n) that is both involutive and differentiable almost everywhere.
We require the set {Φ(n)}n of involutions to satisfy the projection commutation property:

(V4) For all (x,v) ∈ S where dim(x) =m, if SuppιX(n)(w)∩ instance(x) /= ∅ for some
n, then for all k = n, . . . ,m, takek(Φ(m)(x,v)) = Φ(k)(takek(x,v))

5. Nonparametric Involutive MCMC 71

where takek is the projection that takes a state (x,v) and returns a k-dimensional
state (x1...ιX(k),v1...ιY(k)) with the first ιX(k) coordinates of x and the first ιY(k) co-
ordinates of v.

The projection commutation property ensures that the order of applying a projection
and an involution to a state (which has an instance in the support of the target density
function) does not matter.

5.4 The NP-iMCMC Algorithm

After identifying the state space and the necessary conditions on the inputs of the NP-
iMCMC sampler, we have enough foundation to describe the algorithm.

Given a SPCF program M with weight function w on the trace space T, the Non-
parametric Involutive Markov chain Monte Carlo (NP-iMCMC) algorithm gener-
ates a Markov chain on T as follows. Given a current sample t0 of dimension k0

(i.e. ∣t0∣ = ιX(k0)),

1. (Initialisation Step) Form a k0-dimensional parameter variable x0 ∈ X(k0) by
pairing each element t0

i in the trace t0 with a randomly drawn value t of the other
type to make a pair (t0

i, t) or (t, t0
i) in the entropy space E ∶= R × 2. Note that t0

is the unique instance of x0 that is in the support of w.

2. (Stochastic Step) Introduce randomness to the sampler by drawing a k0-dimensional
value v0 ∈ Y(k0) from the probability measure K(k0)(x0, ⋅).

3. (Deterministic Step) Move around the n-dimensional state space X(n) × Y(n) and
compute the new state (x,v) by applying the involution Φ(n) to the initial state
(x0,v0) where n = dim (x0) = dim (v0).

4. (Extend Step) Test whether any instance t of x is in the support of w. If so,
proceed to the next step with t as the proposed sample; otherwise

i. Extend the n-dimensional initial state to a state (x0 ++y0,v0 ++u0) of dimen-
sion n + 1 where y0 and u0 are values drawn randomly from µEιX(n+1)−ιX(n)

and µEιY(n+1)−ιY(n) respectively,

ii. Go to Step 3 with an incremented n and the initial state (x0,v0) replaced by
(x0 ++ y0,v0 ++u0).

72 5.4. The NP-iMCMC Algorithm

5. (Accept/reject Step) Accept the proposed sample t as the next sample with
probability

min{1; w(t) ⋅ pdfK(k)(takek(x,v)) ⋅ φX(n)(x) ⋅ φY(n)(v)

w(t0) ⋅ pdfK(k0)(takek0(x0,v0)) ⋅ φX(n)(x0) ⋅ φY(n)(v0)
⋅ (5.1)

∣det(∇Φ(n)(x0,v0))∣}

where n = dim (x0) = dim (v0), k is the dimension of t and k0 is the dimension
of t0; otherwise reject the proposal and repeat t0.

Remark 23. The integrable assumption on the target density (V1) ensures the inference
problem is well-defined. The assumption that all traces in the support of the target density
has a dimension (V3) confirms that the notion of dimension makes sense in the support
of w. The almost surely terminating assumption on the target density (V2) guarantees
that the NP-iMCMC sampler almost surely terminates. (Lem. 2 for a concrete proof.)
The projection commutation property on the involutions (V4) allows us to define the
invariant distribution.

5.4.1 Movement Between Samples of Varying Dimensions

As mentioned earlier (Sec. 5.1), all MCMC samplers that simulate a nonparametric model
must decide how to move between samples of varying dimensions. We now discuss
how the NP-iMCMC sampler achieves this.

Form initial and new states in the same dimension Say the current sample t0 has a
dimension of k0. Step 1 to 3 form a k0-dimensional initial state (x0,v0) and a new
k0-dimensional state (x,v).

Move between dimensions The novelty of NP-iMCMC is its ability to generate a
proposed sample t in the support of the target density w which may not be of same
dimension as t0. This is achieved by Step 4.

Propose a sample of a lower dimension Step 4 first checks whether any instance of the
parameter-component x ∈ X(k0) of the new state (computed in Step 3) is in the support
of w. If so, we proceed to Step 5 with that instance, say t, as the proposed sample.

Say the dimension of t is k. Then, we must have k ≤ k0 as by the definition of
instances, the instance t ∈ T of a k0-dimensional parameter x ∈ X(k0) must have a
dimension that is lower than or equal to k0. Hence, the dimension of the proposed sample
t is lower than or equal to the current sample t0.

5. Nonparametric Involutive MCMC 73

Listing 5.2: Pseudocode of the NP-iMCMC algorithm� �
def NPiMCMC(t0):
k0 = dim(t0) # initialisation step
x0 = [(e, coin) if Type(e) in R else (normal, e) for e in t0]
v0 = auxkernel[k0](x0) # stochastic step
(x,v) = involution[k0](x0,v0) # deterministic step
n = k0 # extend step
while not intersect(instance(x),support(w)):
x0 = x0 + [(normal, coin)]*(indexX(n+1)-indexX(n))
v0 = v0 + [(normal, coin)]*(indexY(n+1)-indexY(n))
n = n + 1
(x,v) = involution[n](x0,v0)

t = intersect(instance(x),support(w))[0] # accept/reject step
k = dim(t)
return t if uniform < min{1, w(t)/w(t0) *

pdfauxkernel[k](proj((x,v),k))/
pdfauxkernel[k0](proj((x0,v0),k0)) *

pdfpar[n](x)/pdfpar[n](x0) *
pdfaux[n](v)/pdfaux[n](v0) *
absdetjacinv[n](x0,v0)}

else t0� �
Propose a sample of a higher dimension Otherwise (i.e. if none of the instances of
x ∈ X(k0) is in the support of w) Step 4 extends the initial state (x0,v0) ∈ X(k0) ×Y(k0) to
(x0++y0,v0++u0) ∈ X(k0+1)×Y(k0+1); and computes a new (k0+1)-dimensional state (x++
y,v ++u) ∈ X(k0+1) × Y(k0+1) (via Step 3). This process of incrementing the dimensions
of both the initial and new states is repeated until an instance t of the new state, say of
dimension n, is in the support of w. At which point, the proposed sample is set to be t.

Say the dimension of t is k. Then, we must have k > k0 as t is not an instance of
the k0-dimensional parameter x ∈ X(k0) but one of x ++ y ∈ X(n). Hence, the dimension
of the proposed sample t is higher than the current sample t0.

Accept or reject the proposed sample Say the proposed sample t is of dimension
k. With the probability given in Eq. (5.1), Step 5 accepts t as the next sample and
NP-iMCMC updates the current sample t0 of dimension k0 to a sample t of dimension k.
Otherwise, the current sample t0 is repeated and the dimension remains unchanged.

5.4.2 Pseudocode of NP-iMCMC Algorithm

The NPiMCMC function in Listing 5.2 is an implementation of the NP-iMCMC algorithm
in SPCF. We assume that the following SPCF types and terms exist. For each n ∈ N,
the SPCF types T , X[n] and Y[n] implement T, X(n) and Y(n) respectively; the SPCF

74 5.4. The NP-iMCMC Algorithm

term w of type T -> R implements the target density w; for each n ∈ N, the SPCF
terms auxkernel[n] of type X[n] -> Y[n] implements the auxiliary kernel K(n) ∶
X(n) ↝ Y(n); pdfauxkernel[n] of type X[n]*Y[n] -> R implements the probability
density function pdfK(n) ∶ X(n) × Y(n) → R of the auxiliary kernel; involution[n]

of type X[n]*Y[n] -> X[n]*Y[n] implements the involution Φ(n) on X(n) × Y(n); and
absdetjacinv[n] of type X[n]*Y[n] -> R implements the absolute value of the Ja-
cobian determinant of Φ(n).

We further assume that the following primitives are implemented: dim returns
the dimension of a given trace; indexX and indexY implement the maps ιY and ιX
respectively; pdfpar[n] implements the derivative φX(n) of the n-dimensional parameter
space X(n); pdfaux[n] implements the derivative φY(n) of the n-dimensional auxiliary
space Y(n); instance returns a set of all instances of a given entropy vector; support

returns a set of traces in the support of a given function; and proj implements the
projection function where proj((x,v),k)=(x[:indexX(k)],v[:indexY(k)]) .

5.4.3 Nonparametric Metropolis-Hastings

Let us now extend the Metropolis-Hastings sampler to work on nonparametric models
using the NP-iMCMC method.

As discussed in Sec. 4.2.3, the standard MH sampler can be seen as an instance
of the iMCMC sampler with the proposal distribution q as the auxiliary kernel and a
swap function as the involution. What would be the resulting algorithm if we take the
NP-iMCMC method described in Sec. 5.4 with these inputs?

To keep things simple, we assume the parameter and auxiliary variables do not hold
extra information and set both ιX and ιY to be identities. This means X(n) = Y(n) = En for
all n ∈ N and V3 holds trivially. Moreover, we assume a proposal kernel q(n) ∶ X(n) ↝ Y(n)

exists for each n ∈ N. Then, as long as the target density function w is integrable (V1) and
almost surely terminating (V2), we have a nonparametric extension of the MH sampler!

The NPMH function in Listing 5.3 is a SPCF implementation of this sampler. It
can seen as an instance of the NPiMCMC function with auxkernel[n] replaced by the
proposal distribution q[n] , pdfauxkernel[n] replaced by the pdf of the proposal distri-
bution pdfq[n] , involution[n] replaced by a swap function, and indexX and indexY

replaced by identities, alongside a simplified acceptance ratio as (x,v) = (v0,x0),
φX(n) = φY(n) , and

φX(n)(x)

φX(n)(x0)
⋅
φY(n)(v)

φY(n)(v0)
⋅ ∣det∇Φ(n)(x0,v0)∣ = 1.

5. Nonparametric Involutive MCMC 75

Listing 5.3: Pseudocode of the NP-MH algorithm� �
def NPMH(t0):
k0 = dim(t0) # initialisation step
x0 = [(e, coin) if Type(e) in R else (normal, e) for e in t0]
v0 = q[k0](x0) # stochastic step
(x,v) = (v0,x0) # deterministic step
while not intersect(instance(x),support(w)): # extend step
x0 = x0 + [(normal, coin)]
v0 = v0 + [(normal, coin)]
(x,v) = (v0,x0)

t = intersect(instance(x),support(w))[0] # accept/reject step
k = dim(t)
return t if uniform < min{1, w(t)/w(t0) *

pdfq[k](proj((x,v),k))/
pdfq[k0](proj((x0,v0),k0))}

else t0� �
To see NPMH in action, recall the example in Sec. 5.1 where we tried and failed to

simulate the infinite Gaussian mixture model iGMM using the MH sampler.
Given the weight function w of the model iGMM as the target density, how does the

NPMH sampler generate a new sample from the current sample t0 = [3.4, -1.2, 1.0,

0.5] ? (For simplicity we only consider the Real-components of the entropy vec-
tors.) Say after the initialisation, stochastic and deterministic steps in NPMH , we have
x0 = [3.4, -1.2, 1.0, 0.5] , v0 = [4.3, -3.4, -0.1, 1.4] and (x,v) = (v0,x0) .

The extend step then tests whether any instance of x = [4.3, -3.4, -0.1, 1.4]

is in the support of w . Since the iGMM term does not terminate with a trace speci-
fied by any prefixes of [4.3, -3.4, -0.1, 1.4] , the body of the while loop is exe-
cuted. Say -0.7 and -0.3 are drawn and we have x0 = [3.4, -1.2, 1.0, 0.5, -0.7] ,
v0 = [4.3, -3.4, -0.1, 1.4, -0.3] and (x,v) = (v0,x0) .

Again the extend step checks whether any instance of x = [4.3, -3.4, -0.1, 1.4,

-0.3] is in the support of w . Since the model iGMM does terminate with a trace specified
by x = [4.3, -3.4, -0.1, 1.4, -0.3] (each of the four Gaussian distributions has a
value for their mean), we exit the while loop and propose [4.3, -3.4, -0.1, 1.4, -0.3]

to be the next sample t .
Lastly, the proposed sample t is accepted with probability� �
min{1, w(t)/w(t0) * pdfq[k](proj((x,v),k))/pdfq[k0](proj((x0,v0),k0))}� �

otherwise the current sample t0 is returned.

76 5.5. Techniques on NP-iMCMC Algorithms

Unlike the classic MH sampler, this new NPMH sampler is able to generate a new
sample t of dimension five from a current sample t0 of dimension four. Hence it is
more suitable for nonparametric models like iGMM .

Let us consider another instance where after the initialisation, stochastic and deter-
ministic steps, we have x0 = [3.4, -1.2, 1.0, 0.5] , v0 = [2.5, -0.1, 2.1, -0.7]

and (x,v) = (v0,x0) . Since [2.5, -0.1, 2.1] is an instance of x that is in the
support of w , the extend step will not increase the dimension and instead proceed
to the accept/reject step with [2.5, -0.1, 2.1] as the proposal. If it is accepted, the
NPMH sampler decreases the dimension (from four to three).

5.5 Techniques on NP-iMCMC Algorithms

In this section, we discuss how the techniques of the iMCMC sampler discussed in Sec. 4.3
can be applied on the NP-iMCMC sampler. We assume the input target density function
w ∶ T→ [0,∞) is tree representable, integrable (V1) and almost surely terminating (V2).

5.5.1 State-dependent NP-iMCMC Mixture

Say we want to use multiple NP-iMCMC samplers to simulate the posterior given by
the target density function w. The following technique allows us to ‘mix’ NP-iMCMC
samplers in such a way that the resulting sampler still preserves the posterior.

Given a collection of NP-iMCMC samplers, indexed by m ∈ Eℓ, each with auxiliary
kernels {K(n)m ∶ X(n) ↝ Y(n)}n∈N and involutions {Φ(n)m ∶ X(n) × Y(n) → X(n) × Y(n)}n∈N

satisfying the projection commutation property (V4), the State-dependent NP-iMCMC
Mixture sampler determines which NP-iMCMC sampler to use by drawing an indicator
m ∈ Eℓ from a probability measureKM(x0, ⋅) whereKM ∶ ⋃

n∈N
X(n) ↝ Em is a probability

kernel and x0 is the parameter variable constructed from the current sample t0 at the
initialisation step (Step 1 of NP-iMCMC). Then, using the m-indexed NP-iMCMC
sampler, a proposal t is generated and accepted with a modified probability that includes
the probability of picking m, namely

min{1; w(t) ⋅ pdfK(k)m(takek(x,v)) ⋅ φX(n)(x) ⋅ φY(n)(v)

w(t0) ⋅ pdfK(k0)
m(takek0(x0,v0)) ⋅ φX(n)(x0) ⋅ φY(n)(v0)

⋅

pdfKM(x01...k0 ,m)

pdfKM(x1...k,m)
⋅ ∣det(∇Φ(n)m (x0,v0))∣}

where (x0,v0) is the (possibly extended) initial state, (x,v) is the new state, n =
dim (x0) = dim (v0), k0 is the dimension of t0 (i.e. ∣t0∣ = ιX(k0)) and k is the dimension
of t (i.e. ∣t∣ = ιX(k)).

5. Nonparametric Involutive MCMC 77

Pseudocode This sampler can be implemented in SPCF as the MixtureNPiMCMC func-
tion in Listing 5.4. (Terms specific to this technique are highlighted.) We assume the
following SPCF terms exists: mixkernel of type List(X) -> (R*B)^l implements the
mixture kernel KM ∶ ⋃

n∈N
X(n) ↝ Eℓ; pdfmixkernel of type List(X)*(R*B)^l -> R

implements the probability density function pdfKM ∶ ⋃
n∈N

X(n) × Eℓ → R ; and for

each m ∈ Eℓ and n ∈ N, auxkernel[n][m] implements the auxiliary kernel K(n)m ;
pdfauxkernel[n][m] implements the pdf pdfK(n)m; involution[n][m] implements
the involution Φ(n)m ; and absdetjacinv[n][m] implements the absolute value of the
Jacobian determinant of Φ(n)m .

Correctness Similar to the correctness arguments in Sec. 4.3, we show that the State-
dependent NP-iMCMC Mixture sampler is correct by formulating MixtureNPiMCMC

as an instance of NPiMCMC (Listing 5.2). This means specifying auxkernel[n] and
involution[n] in NPiMCMC and arguing that the resulting NPiMCMC function is equiv-
alent to MixtureNPiMCMC .

The SPCF terms mixauxkernel[n] and mixinvolution[n] given in Listing 5.5
should suffice. The auxiliary space is expanded to embed the indicator m in such a way
that the auxiliary variable mixv is in the space Eℓ × Y(n) where its first ℓ components
mixv[:l] give m and the rest mixv[l:] gives v . Since the auxiliary space is expanded
to include the indicator, the maps mixindexX and mixindexY and the projection mixproj

are modified accordingly.

To see how the NPiMCMC function with auxkernel[n] replaced by mixauxkernel[n]

and involution[n] replaced by mixinvolution[n] is equivalent to MixtureNPiMCMC ,
we consider the probability density of mixauxkernel[k] at mixproj((x,mixv),k) .� �

pdfmixauxkernel[k](x[:mixindexX(k)], mixv[:mixindexY(k)])
= pdfmixauxkernel[k](x[:indexX(k)], mixv[:l+indexY(k)])
= pdfmixkernel(x[:indexX(k)], mixv[:l]) * pdfauxkernel[k][mixv[:l]](x[:

indexX(k)], mixv[l:l+indexY(k)])
= pdfmixkernel(x[:indexX(k)], m) * pdfauxkernel[k][m](x[:indexX(k)], v[:

indexY(k)])
= pdfmixkernel(proj(x,k),m) * pdfauxkernel[k][m](proj((x,v),k))� �

where m = mixv[:l] and v = mixv[l:] . This shows that the acceptance probabil-
ity in NPiMCMC is identical to that in MixtureNPiMCMC and hence the two algorithms
are equivalent.

78 5.5. Techniques on NP-iMCMC Algorithms

Listing 5.4: Pseudocode of the State-dependent NP-iMCMC Mixture algorithm� �
def MixtureNPiMCMC(t0):
k0 = dim(t0) # initialisation step
x0 = [(e, coin) if Type(e) in R else (normal, e) for e in t0]
m = mixkernel(x0) # mixture step
v0 = auxkernel[k0][m](x0) # stochastic step
(x,v) = involution[k0][m](x0,v0) # deterministic step
n = k0 # extend step
while not intersect(instance(x),support(w)):
x0 = x0 + [(normal, coin)]*(indexX(n+1)-indexX(n))
v0 = v0 + [(normal, coin)]*(indexY(n+1)-indexY(n))
n = n + 1
(x,v) = involution[n][m](x0,v0)

t = intersect(instance(x),support(w))[0] # accept/reject step
k = dim(t)
return t if uniform < min{1, w(t)/w(t0) *

pdfauxkernel[k][m](proj((x,v),k))/
pdfauxkernel[k0][m](proj((x0,v0),k0)) *

pdfpar[n](x)/pdfpar[n](x0) *
pdfaux[n](v)/pdfaux[n](v0) *
pdfmixkernel(proj(x,k),m)/
pdfmixkernel(proj(x0,k0),m) *

absdetjacinv[n][m](x0,v0)}
else t0� �

Listing 5.5: Pseudocode for mixauxkernel and mixinvolution� �
def mixauxkernel[n](x0):
m = mixkernel(x0)
v0 = auxkernel[n][m](x0)
return m + v0

def pdfmixauxkernel[n](x,mixv):
m = mixv[:l]
v = mixv[l:]
return pdfmixkernel(x, m) * pdfauxkernel[n][m](x, v)

def mixinvolution[n](x0,mixv0):
m = mixv0[:l]
v0 = mixv0[l:]
(x,v) = involution[n][m](x0,v0)
return (x,m + v)

mixindexX = indexX
mixindexY(n) = l + indexY(n)
mixproj((x,v),k) = (x[:mixindexX(k)],v[:mixindexY(k)])� �

5. Nonparametric Involutive MCMC 79

5.5.2 Direction NP-iMCMC Algorithm

Sometimes it is difficult to specify involutions that explore the model fully. The following
technique tells us that bijections are good enough.

Given endofunctions f (n) on X(n)×Y(n) that are differentiable almost everywhere and
bijective for each n ∈ N such that the sets {f (n)}n and {f (n)−1

}n satisfy the projection
commutative property (V4), the Direction NP-iMCMC algorithm randomly uses either
f (n) or f (n)−1 to move around the state space and proposes a new sample.

Pseudocode This sampler can be expressed in SPCF as the DirectionNPiMCMC function
in Listing 5.6. (Terms specific to this technique are highlighted.) We assume for each
n ∈ N and d ∈ 2, there is a SPCF term bijection[n][d] where bijection[n][True]

implements the bijection f (n) and bijection[n][False] implements the inverse f (n)−1

and SPCF term absdetjacbij[n][d] that implements the absolute value of the Jacobian
determinant of f (n) if d = True and the inverse f (n)−1 otherwise.

Correctness We show that DirectionNPiMCMC can be formulated as an instance of
NPiMCMC (Listing 5.2) with a specification of auxkernel[n] and involution[n] .

The SPCF terms dirauxkernel[n] and dirinvolution[n] in Listing 5.7 would
work. The auxiliary space is expanded to include the direction variable d0 so that
the auxiliary variable dirv0 is in the space E × Y(n) where the Boolean-component
dirv0[0][1] of its first coordinate gives d0 and the remaining coordinates dirv0[1:]

give v0 . (Note the value of dirv0[0][0] is redundant and is only used to make
dirv0[0] an entropy.) Since the auxiliary space is expanded, the maps dirindexX

and dirindexY and the projection dirproj are modified accordingly.
To see how the NPiMCMC function with auxkernel[n] replaced by dirauxkernel[n]

and involution[n] replaced by dirinvolution[n] is equivalent to DirectionNPiMCMC ,
we first consider the density of dirauxkernel[k0] at dirproj((x0,dirv0),k0) .� �

pdfdirauxkernel[k0](x0[:dirindexX(k0)], dirv0[:dirindexY(k0)])
= pdfdirauxkernel[k0](x0[:indexX(k0)], dirv0[:1+indexY(k0)])
= pdfcoin(dirv0[0][1]) * pdfnormal(dirv0[0][0]) * pdfauxkernel[k0](x0[:

indexX(k0)], dirv0[1:1+indexY(k0)])
= 0.5 * pdfnormal(dirv0[0][0]) * pdfauxkernel[k0](proj((x0,v0),k0))� �

where v0 = dirv0[1:] . A similar argument can be made for pdfdirauxkernel[k](

dirproj((x,dirv),k)) , which makes the acceptance probability in NPiMCMC identical to
that in DirectionNPiMCMC . Moreover, writing d0 for dirv0[0][1] , the absolute value of
the Jacobian determinant of dirinvolution[n] at (x0,dirv0) is absdetjacbij[n][d0]

(x0,v0) . Most importantly, dirinvolution[n] is now involutive. Hence, the resulting
NPiMCMC algorithm is the same as DirectionNPiMCMC .

80 5.5. Techniques on NP-iMCMC Algorithms

Listing 5.6: Pseudocode of the Direction NP-iMCMC algorithm� �
def DirectionNPiMCMC(t0):
d0 = coin # direction step
k0 = dim(t0) # initialisation step
x0 = [(e, coin) if Type(e) in R else (normal, e) for e in t0]
v0 = auxkernel[k0](x0) # stochastic step
(x,v) = bijection[k0][d0](x0,v0) # deterministic step
n = k0 # extend step
while not intersect(instance(x),support(w)):
x0 = x0 + [(normal, coin)]*(indexX(n+1)-indexX(n))
v0 = v0 + [(normal, coin)]*(indexY(n+1)-indexY(n))
n = n + 1
(x,v) = bijection[n][d0](x0,v0)

d = not d0 # not used
t = intersect(instance(x),support(w))[0] # accept/reject step
k = dim(t)
return t if uniform < min{1, w(t)/w(t0) *

pdfauxkernel[k](proj((x,v),k))/
pdfauxkernel[k0](proj((x0,v0),k0)) *

pdfpar[n](x)/pdfpar[n](x0) *
pdfaux[n](v)/pdfaux[n](v0) *
absdetjacbij[n][d0](x0,v0)}

else t0� �
Listing 5.7: Pseudocode for dirauxkernel and dirinvolution� �

def dirauxkernel[n](x0):
d0 = coin
v0 = auxkernel[n](x0)
return [(normal, d0)] + v0

def pdfdirauxkernel[n](x0,dirv0):
d0 = dirv0[0][1]
v0 = dirv0[1:]
return pdfcoin(d0) * pdfnormal(dirv0[0][0]) * pdfauxkernel[n](x0,v0)

def dirinvolution[n](x0,dirv0):
d0 = dirv0[0][1]
v0 = dirv0[1:]
(x,v) = bijection[n][d0](x0,v0)
d = not d0
return (x, [(dirv0[0][0],d)] + v)

dirindexX = indexX
dirindexY(n) = 1+indexY(n)
dirproj((x,v),k) = (x[:dirindexX(k)], v[:dirindexY(k)])� �

5. Nonparametric Involutive MCMC 81

5.5.3 Persistent NP-iMCMC Algorithm

It is known that irreversible transition kernels (those that do not satisfy detailed balance)
have better mixing times, i.e. converge more quickly to the target distribution, compared
to reversible ones. The following technique gives us a method to transform NP-iMCMC
algorithms to irreversible ones that still preserve the target distribution. The key is to
compose the NP-iMCMC sampler with a transition kernel so that the resulting algorithm
does not satisfy detailed balance.

The Persistent NP-iMCMC algorithm is a MCMC algorithm similar to the Direction
NP-iMCMC sampler in which the stochastic step (given by a couple of sets of auxiliary
kernels, say {K(n)1 ∶ X(n) ↝ Y(n)}n and {K(n)2 ∶ X(n) ↝ Y(n)}n) and/or the deterministic
step (given by the set of bijections {f (n) ∶ X(n) × Y(n) → X(n) × Y(n)}n) depend on a
direction variable d0 ∈ 2. The difference is that Persistent NP-iMCMC keeps track of
the direction (instead of sampling a fresh one in each iteration) and flips it strategically
to make the resulting algorithm irreversible.

Pseudocode This sampler can be expressed in SPCF as PersistentNPiMCMC in List-
ing 5.8. (Terms specific to this technique are highlighted.) In addition to the SPCF
terms in DirectionNPiMCMC , we assume there is a SPCF term auxkernel[n][d] such
that auxkernel[n][True] implements the auxiliary kernel K(n)1 ∶ X(n) ↝ Y(n) and
pdfauxkernel[n][True] its pdf pdfK(n)1 and similarly for auxkernel[n][False] and
pdfauxkernel[n][False] . Note that PersistentNPiMCMC updates samples on the space
X(n) × 2, which can easily be marginalised to X(n) by taking the first ιX(n) components.

Correctness We show that PersistentNPiMCMC can be formulated as an instance of
NPiMCMC (Listing 5.2) with a specification of auxkernel[n] and involution[n] .

The SPCF terms perauxkernel[n] and perinvolution[n] in Listing 5.9 would
work. In this case, the parameter space is expanded to include the direction variable so
that a parameter variable perx is on the space E×X(n) where perx[0][1] gives d and
perx[1:] gives x . Since the parameter space is expanded, the maps perindexX and
perindexY and projection perproj are modified accordingly.

Again, we first consider the density of perauxkernel[k0] at perproj((perx0,v0),k0) .� �
pdfperauxkernel[k0](perx0[:perindexX(k0)], v0[:perindexY(k0)])

= pdfauxkernel[k0][perx[0][1]](perx0[1:1+indexX(k0)], v0[:indexY(k0)])
= pdfauxkernel[k0][d0](x0[:indexX(k0)], v0[:indexY(k0)])
= pdfauxkernel[k0][d0](proj((x0,v0),k0))� �

82 5.5. Techniques on NP-iMCMC Algorithms

Listing 5.8: Pseudocode of the Persistent NP-iMCMC algorithm� �
def PersistentNPiMCMC(t0,d0):
k0 = dim(t0) # initialisation step
x0 = [(e, coin) if Type(e) in R else (normal, e) for e in t0]
v0 = auxkernel[k0][d0](x0) # stochastic step
(x,v) = bijection[k0][d0](x0,v0) # deterministic step
n = k0 # extend step
while not intersect(instance(x),support(w)):
x0 = x0 + [(normal, coin)]*(indexX(n+1)-indexX(n))
v0 = v0 + [(normal, coin)]*(indexY(n+1)-indexY(n))
n = n + 1
(x,v) = bijection[n][d0](x0,v0)

d = not d0
t = intersect(instance(x),support(w))[0] # accept/reject step
k = dim(t)
return (t, not d) if uniform < min{1, w(t)/w(t0) *

pdfauxkernel[k][d](proj((x,v),k))/
pdfauxkernel[k0][d0](proj((x0,v0),k0)) *

pdfpar[n](x)/pdfpar[n](x0) *
pdfaux[n](v)/pdfaux[n](v0) *
absdetjacbij[n][d0](x0,v0)}

else (t0, d)� �
Listing 5.9: Pseudocode for perauxkernel and perinvolution� �

def perauxkernel[n](perx0):
d0 = perx0[0][1]
x0 = perx0[1:]
v0 = auxkernel[n][d0](x0)
return v0

def pdfperauxkernel[n](perx0, v0):
d0 = perx0[0][1]
x0 = perx0[1:]
return pdfauxkernel[n][d0](x0, v0)

def perinvolution[n](perx0,v0):
d0 = perx0[0][1]
x0 = perx0[1:]
(x,v) = bijection[n][d0](x0,v0)
d = not d0
return ([(perx0[0][0],d)] + x, v)

perindexX(n) = 1+indexX(n)
perindexY = indexY
perproj((x,v),k) = (x[:perindexX(k)],v[:perindexY(k)])� �

5. Nonparametric Involutive MCMC 83

where d0 = perx0[0][1] and x0 = perx0[1:] . A similar argument can be made for
pdfperauxkernel[k](perproj((perx,v),k)) . Moreover, the absolute value of the Jaco-
bian determinant of perinvolution[n] at (perx0,v0) is absdetjacbij[n][d0](x0,v0) .
Hence, the acceptance probability in NPiMCMC is identical to that in PersistentNPiMCMC .

The NPiMCMC function with auxkernel[n] replaced by perauxkernel[n] and
involution[n] replaced by perinvolution[n] is almost equivalent to
PersistentNPiMCMC , except NPiMCMC induces a transition kernel on E × X(n) whereas
PersistentNPiMCMC induces a transition kernel on 2 ×X(n); and when the proposal t

is accepted, NPiMCMC returns d whereas PersistentNPiMCMC returns not d .
These differences can be reconciled by composing NPiMCMC with the transition

kernel t ∶ E × X(n) ↝ E × X(n) defined as t([(r, d),x],X) ∶= [[(r,not d),x] ∈ X]. The
composition generates a Markov chain on E × X(n) and marginalising it to a Markov
chain on 2 × X(n) gives us the same result as PersistentNPiMCMC .

5.6 Related Work

The involutive MCMC framework (Neklyudov et al., 2020) can in principle be used
for nonparametric models. For instance, Reversible Jump MCMC (Green, 1995) is
an instance of iMCMC that works for the infinite GMM model, with the split-merge
proposal (Richardson and Green, 1997) specifying when and how states can “jump”
across dimensions. However, designing appropriate auxiliary kernels and involutions
that enable the extension of an iMCMC sampler to nonparametric models remains
challenging and model specific. By contrast, NP-iMCMC only requires the specification
of involutions on the finite-dimensional space Xn × Yn; moreover, it provides a general
procedure (via Step 4) that drives state movement between dimensions. For designers
of nonparametric samplers who do not care to custom build trans-dimensional methods,
we contend that NP-iMCMC is their method of choice.

The performance of NP-iMCMC and iMCMC depends on the complexity of the
respective auxiliary kernels, involutions and the model in question. Take iGMM for
example. RJMCMC with the split-merge proposal which computes the weight, mean,
and variance of the new component(s) would be slower than NP-MH, an instance of
NP-iMCMC with a computationally light involution (a swap), but more efficient than
NP-HMC, an instance of (Multiple Step) NP-iMCMC with the computationally heavy
leapfrog integrator as involution.

84

Confitebor tibi in cithara, Deus, Deus meus. Quare tristis
es, anima mea? et quare conturbas me?

— Psalm 42:5

6
Correctness of Nonparametric Involutive

MCMC

The Nonparametric Involutive Markov chain Monte Carlo (NP-iMCMC) algorithm
presented in Chapter 5 aims to simulate probabilistic models specified by probabilistic
programs. In this chapter, we justify this claim by proving that the Markov chain
generated by iterating the NP-iMCMC algorithm (Sec. 5.4) preserves the target dis-
tribution, specified by

ν ∶ ΣT Ð→ [0,∞)

U z→
1
Z ∫U

w dµT where Z ∶= ∫
T
w dµT,

as long as the target density function w (given by the weight function of the probabilistic
program) is integrable (V1), almost surely terminating (V2) and each trace in the support
of w has a dimension w.r.t. ιX (V3); with a probability kernel K(n) ∶ X(n) ↝ Y(n) and an
endofunction Φ(n) on X(n) × Y(n) that is involutive and differentiable almost everywhere
for each n ∈ N such that {Φ(n)}n satisfies the projection commutation property (V4).

Throughout this chapter, we assume the assumptions stated above, and prove the fol-
lowing.

(1) The NP-iMCMC sampler almost surely returns a sample for the simulation (Lem. 2).

(2) The state movement in the NP-iMCMC sampler preserves the state distribution
(Lem. 3).

(3) The marginalisation of the state distribution which the state movement of NP-
iMCMC preserves coincides with the target distribution (Lem. 4).

85

86 6.1. Almost Sure Termination

6.1 Almost Sure Termination

We asserted in Rem. 23 that the almost surely terminating assumption (V 2) on the
target density guarantees that the NP-iMCMC algorithm almost surely terminates. We
justify this claim here.

Step 4 in the NP-iMCMC algorithm repeats itself if the sample-component x of
the new state (x,v) (computed by applying the involution Φ(n) on the extended initial
state (x0,v0)) does not have an instance in the support of w. This loop halts almost
surely if the measure of the set

{(x0,v0) ∈ S ∣ (x,v) = Φ(n)(x0,v0) and instance(x) ∩ Supp(w) = ∅}

tends to zero as the dimension n tends to infinity. Since Φ(n) is invertible and
∣det∇Φ(n)(x0,v0)∣ > 0 for all n ∈ N and (x0,v0) ∈ S,

µS({(x0,v0) ∈ S ∣ (x,v) = Φ(n)(x0,v0) and instance(x) ∩ Supp(w) = ∅})

= Φ(n)∗ µS({(x,v) ∈ S ∣ instance(x) ∩ Supp(w) = ∅})

< µS({(x,v) ∈ S ∣ instance(x) ∩ Supp(w) = ∅})

= µX(n)({x ∈ X(n) ∣ instance(x) ∩ Supp(w) = ∅}).

Thus it is enough to show that the measure of a n-dimensional parameter variable
not having any instances in the support of w tends to zero as the dimension n tends
to infinity, i.e.

µX(n)({x ∈ X(n) ∣ instance(x) ∩ Supp(w) = ∅})→ 0 as n→∞.

We start with the following proposition which proves that the chance of an-dimensional
parameter variable having some instances in the support of w is the same as the chance
of the SPCF program with w as its weight function terminating before ιX(n) samples.

Proposition 16. µX(n)({x ∈ X(n) ∣ instance(x) ∩ Supp(w) /= ∅}) = µT(
n

⋃
i=1

SuppιX(i)(w))

for all n ∈ N and all tree representable function w that satisfy V3.

Proof. Let n ∈ N and w be a tree representable function.
For each i ≤ n, we unpack the set {x ∈ X(i) ∣ instance(x) ∩A /= ∅} of i-dimensional

parameter variables that have an instance in the set A ∈ ΣΩιX(i) of traces of length
ιX(i) where Ω ∶= R ∪ 2. Write π ∶ {1, . . . , ιX(i)} → {R,2} for the measurable space
π(1) × π(2) × ⋅ ⋅ ⋅ × π(ιX(i)) with a probability measure µπ ∶= µΩιX(i) on π; π−1 for
the “inverse” measurable space of π, i.e. π−1(j) ∶= Ω ∖ π(j) for all j ≤ ιX(i); and

6. Correctness of Nonparametric Involutive MCMC 87

S for the set of all such measurable spaces. Then, for any i-dimensional parameter
variable x, t ∈ instance(x) ∩ A if and only if there is some π ∈ S where t ∈ A ∩ π

and x ∈ zip(A ∩ π,π−1). Hence, {x ∈ X(i) ∣ instance(x) ∩A /= ∅} can be written as
⋃
π∈S

zip(A∩π,π−1). Moreover µX(i)(zip(A∩π,π−1)) = µπ(A∩π)⋅µπ−1(π−1) = µπ(A∩π).

Consider the case where A ∶= SuppιX(i)(w). Then, we have

{x ∈ X(i) ∣ instance(x) ∩ SuppιX(i)(w) /= ∅} = ⋃
π∈S

zip(SuppιX(i)(w) ∩ π,π−1).

We first show that the RHS is a disjoint union, i.e. for all π ∈ S, zip(SuppιX(i)(w)∩π,π−1)

are disjoint. Let x ∈ zip(SuppιX(i)(w) ∩ π1, π1−1) ∩ zip(SuppιX(i)(w) ∩ π2, π2−1) where
π1, π2 ∈ S. Then, at least one instance t1 of x is in SuppιX(i)(w) ∩ π1 and similarly at
least one instance t2 of x is in SuppιX(i)(w)∩π2. By Prop. 15, t1 = t2 and hence π1 = π2.

Since zip(SuppιX(i)(w) ∩ π,π−1) are disjoint for all π ∈ S, we have

µX(i)({x ∈ X(i) ∣ instance(x) ∩ SuppιX(i)(w) /= ∅})

= µX(i)(⋃
π∈S

zip(SuppιX(i)(w) ∩ π,π−1))

= ∑
π∈S

µX(i)(zip(SuppιX(i)(w) ∩ π,π−1)) = ∑
π∈S

µπ(SuppιX(i)(w) ∩ π)

= ∑
π∈S

µΩιX(i)(SuppιX(i)(w) ∩ π) = µΩιX(i)(SuppιX(i)(w)) = µT(SuppιX(i)(w)).

Finally, by V 3, {x ∈ X(n) ∣ instance(x) ∩ Supp(w) /= ∅} is equal to
n

⋃
i=1
{x ∈ X(i) ∣

instance(x) ∩ SuppιX(i)(w) /= ∅} × EιX(n)−ιX(i) and hence

µX(n)({x ∈ X(n) ∣ instance(x) ∩ Supp(w) /= ∅})

= µX(n)(
n

⋃
i=1
{x ∈ X(i) ∣ instance(x) ∩ SuppιX(i)(w) /= ∅} × EιX(n)−ιX(i))

=
n

∑
i=1
µX(i)({x ∈ X(i) ∣ instance(x) ∩ SuppιX(i)(w) /= ∅})

=
n

∑
i=1
µT(SuppιX(i)(w))

= µT(
n

⋃
i=1

SuppιX(i)(w))

Prop. 16 links the termination of the NP-iMCMC sampler with that of the target
density function w. Hence by assuming that w terminates almost surely (V2), we can
deduce that the NP-iMCMC algorithm almost surely terminates.

88 6.2. Invariant State Distribution

Lemma 2 (Almost Sure Termination). Assuming V2 and V3, the NP-iMCMC algorithm
(Sec. 5.4) almost surely terminates.

Proof. Since Φ(n) is invertible for all n ∈ N, and w almost surely terminates (V 2),
i.e. limm→∞ µT(

m

⋃
j=1

Suppj
(w)) = 1 and satisfies (V3), we deduce from Prop. 16 that

µS({(x0,v0) ∈ S ∣ (x,v) = Φ(n)(x0,v0) and instance(x) ∩ Supp(w) = ∅})

< µX(n)({x ∈ X(n) ∣ instance(x) ∩ Supp(w) = ∅})

= µX(n)(X
(n) ∖ {x ∈ X(n) ∣ instance(x) ∩ Supp(w) /= ∅})

= 1 − µX(n)({x ∈ X(n) ∣ instance(x) ∩ Supp(w) /= ∅})

= 1 − µT(
n

⋃
i=1

SuppιX(i)(w)) (Prop. 16)

→ 1 − 1 = 0 as n→∞. (V2)

So the probability of satisfying the condition of the loop in Step 4 of NP-iMCMC sampler
tends to zero as the dimension n tends to infinity, making the NP-iMCMC sampler almost
surely terminating.

6.2 Invariant State Distribution

After ensuring the NP-iMCMC sampler almost always returns a sample (Lem. 2), we
identify the distribution on the states and show that it is invariant against the movement
between states of varying dimensions in NP-iMCMC.

6.2.1 State Distribution

Recall a state is an equal dimension parameter-auxiliary pair. We define the state
distribution π on the state space S ∶= ⋃

n∈N
(X(n) × Y(n)) to be a distribution with density

ζ (with respect to µS) given by

ζ(x,v) ∶=
1
Z
⋅w(t) ⋅ pdfK(k)(takek(x,v)) (6.1)

if (x,v) ∈ Svalid and t ∈ instance(x) ∩ Supp(w) has dimension k; and 0 otherwise,
where Z ∶= ∫

T
w dµT (which exists by V 1) and Svalid is the subset of S consisting

of all valid states.

Remark 24. If there is some trace in instance(x)∩Supp(w) for a parameter variable x, by
Prop. 15 this trace t is unique and hence x represents a sample of the target distribution.

We say a n-dimensional state (x,v) is valid if

6. Correctness of Nonparametric Involutive MCMC 89

(i) instance(x) ∩ Supp(w) /= ∅, and

(ii) (y,u) = Φ(n)(x,v) implies instance(y) ∩ Supp(w) /= ∅, and

(iii) takek(x,v) /∈ Svalid for all k < n.

Intuitively, valid states are the states which, when transformed by the involution Φ(n), the
instance of the parameter-component of which does not “fall beyond” the support of w.

We write Svalid
n ∶= Svalid ∩ (X(n) × Y(n)) to denote the set of all n-dimensional valid

states. The following proposition shows that involutions preserve the validity of states.

Proposition 17. Assuming V4, the involution Φ(n) sends Svalid
n to Svalid

n for all n ∈ N.
i.e. If (x,v) ∈ Svalid

n , then (y,u) = Φ(n)(x,v) ∈ Svalid
n .

Proof. Let (x,v) ∈ Svalid
n and (y,u) = Φ(n)(x,v). We prove (y,u) ∈ Svalid

n by induction
on n ∈ N.

• Let n = 1. As Φ(1) is involutive and (x,v) is a valid state, (i) instance(y) ∩
Supp(w) /= ∅ and (ii) (x,v) = Φ(1)(y,u) and instance(x) ∩ Supp(w) /= ∅.
(iii) holds trivially and hence (y,u) ∈ Svalid

1 .

• Assume for all m < n, (z,w) ∈ Svalid
m implies (z′,w′) = Φ(m)(z,w) ∈ Svalid

m .
Similar to the base case, (i) and (ii) hold as Φ(n) is involutive and (x,v) is a
valid state. Assume for contradiction that (iii) does not hold, i.e. there is k < n
where takek(y,u) ∈ Svalid

k . As instance(takek(y)) ∩ Supp(w) /= ∅, by V4 and the
inductive hypothesis,

takek(x,v) = takek(Φ(n)(y,u)) = Φ(k)(takek(y,u)) ∈ Svalid
k

which contradicts with the fact that (x,v) is a valid state.

We can partition the set Svalid of valid states. Let (x,v) be a m-dimensional valid
state. The parameter variable x can be written as zip(t1, t2)++y where t1 ∈ instance(x)∩
Supp(w) is of dimension k0, t2 is a trace where zip(t1, t2) = takek0(x), and y ∶=

xιX(k0)+1...ιX(m) is the remaining suffix of x. Similarly, the auxiliary variable v can
be written as v1 ++ v2 where v1 ∶= takek0(v) and v2 ∶= vιY(k0)+1...ιY(m). Hence, we have

Svalid =
∞
⋃

k0=1

∞
⋃

m=1
{(zip(t1, t2) ++ y,v1 ++ v2) ∈ Svalid

m ∣

t1 ∈ SuppιX(k0)(w), t2 ∈ T,y ∈ EιX(m)−ιX(k0),v1 ∈ Y(k0),v2 ∈ EιY(m)−ιY(k0)}

90 6.2. Invariant State Distribution

and the state distribution π on the measurable set S ∈ ΣS can be written as

π(S) =
∞
∑

k0=1

∞
∑
m=1
∫

EιY(m)−ιY(k0) ∫Y(k0) ∫EιX(m)−ιX(k0) ∫T
∫

SuppιX(k0)(w)

[(zip(t1, t2) ++ y,v1 ++ v2) ∈ S ∩ Svalid
m] ⋅

1
Z
w(t1) ⋅ pdfK(k0)(zip(t1, t2),v1)

µT(dt1) µT(dt2) µEιX(m)−ιX(k0)(dy) µY(k0)(dv1) µEιY(m)−ιY(k0)(dv2)

We can now show two simple properties of the state distribution.

Proposition 18. Assuming V1,

(i) The state distribution π is indeed a probability measure, i.e. π(S) = 1.

(ii) The set of valid states almost surely covers all states w.r.t. the state distribution,
i.e. π(S ∖

n

⋃
k=1

Svalid
k)→ 0 as n→∞.

Proof. (i) Consider the set Svalid with the partition discussed above.

π(S)

= π(Svalid)

=
∞
∑

k0=1

∞
∑
m=1
∫

EιY(m)−ιY(k0) ∫Y(k0) ∫EιX(m)−ιX(k0) ∫T
∫

SuppιX(k0)(w)

[(zip(t1, t2) ++ y,v1 ++ v2) ∈ Svalid
m] ⋅

1
Z
w(t1) ⋅ pdfK(k0)(zip(t1, t2),v1)

µT(dt1) µT(dt2) µEιX(m)−ιX(k0)(dy) µY(k0)(dv1) µEιY(m)−ιY(k0)(dv2)

=
∞
∑

k0=1
∫

Y(k0) ∫T
∫

SuppιX(k0)(w)

1
Z
w(t1) ⋅ pdfK(k0)(zip(t1, t2),v1)⋅

(
∞
∑
ℓ1=1

∞
∑
ℓ2=1
∫

Eℓ1
∫

Eℓ2
[(zip(t1, t2) ++ y,v1 ++ v2) ∈ Svalid] µEℓ2(dy) µEℓ1(dv2))

µT(dt1) µT(dt2) µY(k0)(dv1)

=
∞
∑

k0=1
∫

T
∫

SuppιX(k0)(w)

1
Z
w(t1) ⋅ (∫

Y(k0)
pdfK(k0)(zip(t1, t2),v1) µY(k0)(dv1))

µT(dt1) µT(dt2)

=
∞
∑

k0=1
∫

T
∫

SuppιX(k0)(w)

1
Z
w(t1) µT(dt1) µT(dt2)

= ∫
Supp(w)

1
Z
w(t1) µT(dt1) = 1.

(ii) Since π is a probability distribution and π(S ∖ Svalid) = 0, the series
∞
∑
n=1

π(Svalid
n)

6. Correctness of Nonparametric Involutive MCMC 91

Listing 6.1: Pseudocode of the equivalent program of the NP-iMCMC sampler� �
1 def eNPiMCMC(x*,v*):
2 t0 = intersect(instance(x*),support(w))[0] # find a valid state
3 k0 = dim(t0)
4 x0 = [(e, coin) if Type(e) in R else (normal, e) for e in t0]
5 v0 = auxkernel[k0](x0)
6 (x,v) = involution[k0](x0,v0)
7 n = k0
8 while not intersect(instance(x),support(w)):
9 x0 = x0 + [(normal, coin)]*(indexX(n+1)-indexX(n))
10 v0 = v0 + [(normal, coin)]*(indexY(n+1)-indexY(n))
11 n = n + 1
12 (x,v) = involution[n](x0,v0)
13 (x,v) = involution[n](x0,v0) # accept/reject proposed

state
14 t = intersect(instance(x),support(w))[0]
15 k = dim(t)
16 return (x,v) if uniform < min{1, w(t)/w(t0) *
17 pdfauxkernel[k](proj((x,v),k))/
18 pdfauxkernel[k0](proj((x0,v0),k0)) *
19 pdfpar[n](x)/pdfpar[n](x0) *
20 pdfaux[n](v)/pdfaux[n](v0) *
21 absdetjacinv[n](x0,v0)}
22 else (x0,v0)� �

which equals π(
∞
⋃
n=1

Svalid
n) = π(Svalid) = 1 must converge. Hence π(S ∖

n

⋃
k=1

Svalid
k) =

π(Svalid ∖
n

⋃
k=1

Svalid
k) =

∞
∑

i=n+1
π(Svalid

i)→ 0 as n→∞.

6.2.2 Equivalent Program

Though the NP-iMCMC algorithm (Sec. 5.4) traverses state, it takes and returns samples
on the trace space T. Hence instead of asking whether the state distribution π is invariant
against the NP-iMCMC sampler directly, we consider a program which takes and returns
states and prove the state distribution π is invariant w.r.t. this program.

Consider the program eNPiMCMC in Listing 6.1. It is similar to NPiMCMC (Listing 5.2)
syntactically except it takes and returns states instead of traces, and has two additional lines
(highlighted). It is easy to deduce from Lem. 2 that eNPiMCMC almost surely terminates.

6.2.3 Invariant Distribution

After identifying the state distribution and presenting the eNPiMCMC program, we now
prove that the program preserves the distribution by first defining a transition kernel

92 6.2. Invariant State Distribution

of a SPCF term.
Take a SPCF program M of type List(X*Y)-> List(X*Y) where the SPCF types X

and Y implement the parameter space X and auxiliary space Y respectively. We define
the transition kernel of M to be the kernel T

M
∶ S ↝ S such that

T
M
(s, S) ∶= ∫

value
M(s)

−1(S′)
weight

M(s)
dµT = ⟨⟨ M(s) ⟩⟩(S

′)

where s implements the state s andS′ is the set consisting of SPCF terms that implements
states in S. Intuitively, T

M
(s, S) gives the probability that the term M returns a state

in S given the current state s.

Proposition 19. Let M be a SPCF term of type List(X*Y)-> List(X*Y) . If M(s) does
not contain any scoring subterm and almost surely terminates for all SPCF terms s of
type List(X*Y) then its transition kernel T

M
is probabilistic.

Proof. Since the term M(s) does not contain score(⋅) and terminates almost surely, by
Prop. 7 its value measure must be probabilistic. Hence T

M
(s ,S) = ⟨⟨ M(s) ⟩⟩(S′) =

⟨⟨ M(s) ⟩⟩(Λ0
v) = 1.

We say a distribution µ on states S is invariant w.r.t. an almost surely terminating
SPCF program M of type List(X*Y)-> List(X*Y) if µ is not altered after applying
M , formally ∫

S
T
M
(s, S) µ(ds) = µ(S).

We now prove that the program eNPiMCMC in Listing 6.1 preserves the state distribu-
tion π stated in Sec. 6.2.1 by considering the transition kernels given by the two steps
in eNPiMCMC given in Sec. 6.2.2: find a valid state (Lines 2-12) and accept/reject the
computed proposed state (Lines 13-22).

Finding a Valid Initial State Assuming the initial state (x*,v*) is valid, eNPiMCMC

(Lines 2-12) aims to construct a valid state (x0,v0) where x* and x0 share the same
instance t0 that is in the support of the density w .

To do this, it first finds the instance t0 of x* which is in the support of w (Line 2).
Say the dimension of t0 is k0 (Line 3). It then forms a k0 -dimensional state (x0,v0)

by sampling partners t for each value in the trace t0 to form a k0 -dimensional
parameter variable x0 (Line 4); and drawing a k0 -dimensional auxiliary variable
from auxkernel[k0](x0) (Line 5). Say v is the auxiliary value drawn. Then, the
k0 -dimensional state can be written as (zip(t0,t),v) .

Note that the k0 -dimensional state (zip(t0,t),v) might not be valid. In which
case, it repeatedly appends zip(t0,t) and v with entropies (normal, coin) until

6. Correctness of Nonparametric Involutive MCMC 93

the resulting state is valid (Lines 6-12). Say y and u are the entropy vectors drawn
for the parameter and auxiliary variables respectively. Then the resulting state can be
written as (zip(t0,t)+y, v+u) .

The transition kernel of Lines 2-12 can be expressed as

T1((x
∗,v∗), S) ∶=

∞
∑
n=1
∫

EιY(n)−ιY(k0) ∫EιX(n)−ιX(k0) ∫Y(k0) ∫T

[(zip(t0, t) ++ y,v ++u) ∈ S ∩ Svalid
n] ⋅ pdfK(k0)(zip(t0, t),v)

µT(dt) µY(k0)(dv) µEιX(n)−ιX(k0)(dy) µEιY(n)−ιY(k0)(du)

if (x∗,v∗) ∈ Svalid and t0 ∈ instance(x∗) ∩ Supp(w) has some dimension k0 ∈ N;
and 0 otherwise.

Remark 25. Recall zip(ℓ1, ℓ2) ∶= [(ℓ1
1, ℓ2

1
), (ℓ1

2, ℓ2
2
), . . . , (ℓ1

n, ℓ2
n
)] ∈ (L1 × L2)n for

any vectors ℓ1 ∈ L
n1
1 and ℓ2 ∈ L

n2
2 with n ∶=min{n1, n2}. Here we extend the definition

to lists ℓ1, ℓ2 ∈ (L1 ∪ L2)n such that either (ℓ1
i, ℓ2

i
) or (ℓ2

i, ℓ1
i
) is in L1 × L2 for all

i = 1, . . . , n. Then, we write zip(ℓ1, ℓ2) for the list of pairs in L1 ×L2.

Proposition 20. Assuming V2 and V3, T1((x0,v0),Svalid) = 1 for all (x0,v0) ∈ Svalid.

Proof. Since Lines 2-12 in eNPiMCMC can be described by a closed SPCF term that
does not contain score(⋅) and terminates almost surely. By Prop. 19, its transition
kernel is probabilistic. Moreover, as this term always returns a valid state, we have
T1((x0,v0),Svalid) = T1((x0,v0),S) = 1.

Proposition 21. Assuming V1 to 3, the state distribution π is invariant against Lines
2-12 in eNPiMCMC .

Proof. We aim to show: ∫
S
T1((x

∗,v∗), S) π(d(x∗,v∗)) = π(S) for any measurable
set S ∈ ΣS. (Changes are highlighted for readability.)

∫ S
T1((x

∗,v∗), S) π(d(x∗,v∗))

= { T1((x∗,v∗), S) = 0 for all (x∗,v∗) /∈ Svalid }

∫
Svalid

T1((x
∗,v∗) , S) π(d(x∗,v∗))

= { Writing (x∗,v∗) as (zip(t1, t2) ++ y,v1 ++ v2) ∈ Svalid
m where

t1 ∈ SuppιX(k0)(w), t2 ∈ T,y ∈ EιX(m)−ιX(k0),v1 ∈ Y(k0),v2 ∈ EιY(m)−ιY(k0),
m,k0 ∈ N }

94 6.2. Invariant State Distribution

∞
∑

k0=1

∞
∑
m=1
∫

EιY(m)−ιY(k0) ∫Y(k0) ∫EιX(m)−ιX(k0) ∫T
∫

SuppιX(k0)(w)

T1((zip(t1, t2) ++ y,v1 ++ v2), S)

[(zip(t1, t2) ++ y,v1 ++ v2) ∈ Svalid
m] ⋅

1
Z
w(t1) ⋅ pdfK(k0)(zip(t1, t2),v1)

µT(dt1) µT(dt2) µEιX(m)−ιX(k0)(dy) µY(k0)(dv1) µEιY(m)−ιY(k0)(dv2)

= { Definition of T1 on (zip(t1, t2) ++ y,v1 ++ v2) ∈ Svalid

where t1 ∈ SuppιX(k0)(w) }
∞
∑

k0=1

∞
∑
m=1
∫

EιY(m)−ιY(k0) ∫Y(k0) ∫EιX(m)−ιX(k0) ∫T
∫

SuppιX(k0)(w)

(
∞
∑
n=1
∫

EιY(n)−ιY(k0) ∫EιX(n)−ιX(k0) ∫Y(k0) ∫T

[(zip(t1, t
′) ++ y′,v′ ++u′) ∈ S ∩ Svalid

n] ⋅ pdfK(k0)(zip(t1, t
′),v′)

µT(dt′) µY(k0)(dv′) µEιX(n)−ιX(k0)(dy′) µEιY(n)−ιY(k0)(du′))

[(zip(t1, t2) ++ y,v1 ++ v2) ∈ Svalid
m] ⋅

1
Z
w(t1) ⋅ pdfK(k0)(zip(t1, t2),v1)

µT(dt1) µT(dt2) µEιX(m)−ιX(k0)(dy) µY(k0)(dv1) µEιY(m)−ιY(k0)(dv2)

= { Tonelli’s theorem as all measurable functions are non-negative }
∞
∑

k0=1

∞
∑
n=1
∫

EιY(n)−ιY(k0) ∫Y(k0) ∫EιX(n)−ιX(k0) ∫T
∫

SuppιX(k0)(w)

(
∞
∑
m=1
∫

EιY(m)−ιY(k0) ∫EιX(m)−ιX(k0) ∫Y(k0) ∫T

[(zip(t1, t2) ++ y,v1 ++ v2) ∈ Svalid
m] ⋅ pdfK(k0)(zip(t1, t2),v1)

µT(dt2) µY(k0)(dv1) µEιX(m)−ιX(k0)(dy) µEιY(m)−ιY(k0)(dv2))

[(zip(t1, t
′) ++ y′,v′ ++u′) ∈ S ∩ Svalid

n] ⋅
1
Z
w(t1) ⋅ pdfK(k0)(zip(t1, t

′),v′)

µT(dt1) µT(dt′) µEιX(n)−ιX(k0)(dy′) µY(k0)(dv′) µEιY(n)−ιY(k0)(du′)

= { Definition of T1 on (zip(t1, t2) ++ y,v1 ++ v2) ∈ Svalid

where t1 ∈ SuppιX(k0)(w) }
∞
∑

k0=1

∞
∑
n=1
∫

EιY(n)−ιY(k0) ∫Y(k0) ∫EιX(n)−ιX(k0) ∫T
∫

SuppιX(k0)(w)

T1((zip(t1, t2) ++ y,v1 ++ v2),Svalid)

[(zip(t1, t
′) ++ y′,v′ ++u′) ∈ S ∩ Svalid

n] ⋅
1
Z
w(t1) ⋅ pdfK(k0)(zip(t1, t

′),v′)

µT(dt1) µT(dt′) µEιX(n)−ιX(k0)(dy′) µY(k0)(dv′) µEιY(n)−ιY(k0)(du′)

= { By Prop. 20, T1((zip(t1, t2) ++ y,v1 ++ v2),Svalid) = 1 }

6. Correctness of Nonparametric Involutive MCMC 95

∞
∑

k0=1

∞
∑
n=1
∫

EιY(n)−ιY(k0) ∫Y(k0) ∫EιX(n)−ιX(k0) ∫T
∫

SuppιX(k0)(w)

[(zip(t1, t
′) ++ y′,v′ ++u′) ∈ S ∩ Svalid

n] ⋅
1
Z
w(t1) ⋅ pdfK(k0)(zip(t1, t

′),v′)

µT(dt1) µT(dt′) µEιX(n)−ιX(k0)(dy′) µY(k0)(dv′) µEιY(n)−ιY(k0)(du′)

= { Writing (x∗,v∗) ∈ S ∩ Svalid
n as (zip(t1, t

′) ++ y′,v′ ++u′) where
t1 ∈ SuppιX(k0)(w), t′ ∈ T,y′ ∈ EιX(m)−ιX(k0),v′ ∈ Y(k0),u′ ∈ EιY(m)−ιY(k0),
n, k0 ∈ N }

π(S)

Accept/Reject Proposed State After constructing a valid state (x0,v0) , say of dimen-
sion n , eNPiMCMC traverses the state space via involution[n] to obtain a proposal state
(x,v) (Line 13). By Prop. 17, (x,v) must also be a n -dimensional valid state. Say it
has an instance t of dimension k in the support of w , then (Line 14-22) (x,v)

is accepted with probability

α(x0,v0) ∶=min{1, w(t) ⋅ pdfK(k)(takek(x,v)) ⋅ φX(n)(x) ⋅ φY(n)(v)

w(t0) ⋅ pdfK(k0)(takek0(x0,v0)) ⋅ φX(n)(x0) ⋅ φY(n)(v0)
⋅

∣det (∇Φ(n)(x0,v0))∣}

=min{1, ζ(x,v) ⋅ φX(n)(x) ⋅ φY(n)(v)

ζ(x0,v0) ⋅ φX(n)(x0) ⋅ φY(n)(v0)
⋅ ∣det (∇Φ(n)(x0,v0))∣}.

The transition kernel for Line 13-22 can be expressed as

T2(s, S) ∶= α(s) ⋅ [Φ(n)(s) ∈ S] + (1 − α(s)) ⋅ [s ∈ S]

if s ∈ Svalid
n for some n ∈ N; and 0 otherwise.

To show that the state distribution π is invariant against T2, we consider a partition
of the set of valid states. Let S(n)ij be the set of n-dimensional valid states where i is
the list of boolean values in all states in S(n)ij and Φ(n) maps any s ∈ S

(n)
ij to a (valid)

state with boolean values given by the list j. Note that both lists i, j of booleans must
be of length ñ ∶= ιX(n) + ιY(n). Formally,

S
(n)
ij ∶= {s ∈ Svalid

n ∣ s = zip(r, i) and Φ(n)(s) = s′ = zip(q, j) for some r,q ∈ Rñ}.

Then, the set Svalid of valid states can written as⋃{S(n)ij ∣ i, j ∈ 2ñ and n ∈ N}.

Proposition 22. Assuming V1 to 4, for n ∈ N, s ∈ Svalid
n and s′ = Φ(n)(s), we have

α(s′) ⋅ ζ ′(s′) ⋅ ∣det (∇Φ(n)(s))∣ = α(s) ⋅ ζ ′(s)

96 6.2. Invariant State Distribution

where ζ ′(z,w) ∶= ζ(z,w) ⋅ φX(m)(z) ⋅ φY(m)(w) for any (z,w) ∈ Sm.

Proof. Let s ∈ S
(n)
ij where there are r,q ∈ Rñ, i, j ∈ 2ñ such that s = zip(r, i) and

s′ ∶= Φ(n)(s) = zip(q, j).1 Hence, taking the Jacobian determinant on both sides of the
equation Φ(n)j→i ○Φ(n)i→j = id gives us

∣det (∇Φ(n)(s′))∣ = ∣det (∇Φ(n)j→i(q))∣ =
1

∣det (∇Φ(n)i→j(r))∣
=

1
∣det (∇Φ(n)(s))∣ . (6.2)

Moreover we can write the acceptance ratio in terms of ζ ′ as

α(s′′) =min {1, ζ
′(Φ(n)(s′′))
ζ ′(s′′)

⋅ ∣det (∇Φ(n)(s′′))∣} for any s′′ ∈ Sm.

Hence given s′ = Φ(n)(s), we have

α(s′) ⋅ ζ ′(s′) ⋅ ∣det (∇Φ(n)(s))∣

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ζ ′(s)

ζ ′(s′)
⋅ ∣det (∇Φ(n)(s′))∣ ⋅ ζ ′(s′) ⋅ ∣det (∇Φ(n)(s))∣

if ζ
′(s)

ζ ′(s′)
⋅ ∣det (∇Φ(n)(s′))∣ < 1

ζ ′(s′) ⋅ ∣det (∇Φ(n)(s))∣ otherwise

(s = Φ(n)(s′))

=

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

ζ ′(s) if ζ
′(s′)

ζ ′(s)
⋅ ∣det (∇Φ(n)(s))∣ > 1

ζ ′(s′)

ζ ′(s)
⋅ ∣det (∇Φ(n)(s))∣ ⋅ ζ ′(s) otherwise

(By Eq. (6.2))

= α(s) ⋅ ζ ′(s)

Proposition 23. Assuming V1 to 4, the state distribution π is invariant against Line
13-22 in eNPiMCMC .

Proof. We aim to show: ∫
S
T2(s, S) π(ds) = π(S) for all S ∈ ΣS.

Let s be a n-dimensional valid state and S ∈ ΣS. Then we can write T2(s, S) as
[s ∈ S] + [Φ(n)(s) ∈ S] ⋅ α(s) − [s ∈ S] ⋅ α(s). Hence, it is enough to show that the
integral of the second and third terms over all valid states are the same, i.e.

∫
Svalid
[Φ(n)(s) ∈ S] ⋅ α(s) π(ds) = ∫

Svalid
[s ∈ S] ⋅ α(s) π(ds)

First we consider the valid states in S(n)ij where n ∈ N, i, j ∈ 2ñ and ñ ∶= ιX(n)+ιY(n).
These are n-dimensional valid states with boolean values given by i and are mapped by

1We write zip(r, i) for (zip(r1...ιX(n), i1...ιX(n)), zip(rιX(n)+1...ιX(n)+ιY(n), iιX(n)+1...ιX(n)+ιY(n)))
when the context is clear.

6. Correctness of Nonparametric Involutive MCMC 97

Φ(n) to valid states with boolean values given by j. Then we have zip(⋅, j)−1
(S
(n)
ji) =

Φ(n)i→j(zip(⋅, i)−1
(S
(n)
ij)) where zip(⋅, j) ∶ Rñ → Eñ is a measurable function. Writing

ζ ′(z,w) for ζ(z,w) ⋅ φX(m)(z) ⋅ φY(m)(w) for any (z,w) ∈ Sm, we have

∫
S
(n)
ji

[s ∈ S] ⋅ α(s) π(ds)

= ∫
S
(n)
ji

[s ∈ S] ⋅ α(s) ⋅ ζ ′(s) µEñ(ds) (Definition of π)

= ∫
zip(⋅,j)−1(S(n)

ji
)
[zip(r, j) ∈ S] ⋅ α(zip(r, j)) ⋅ ζ ′(zip(r, j)) µRñ(dr)

(zip(⋅, j)∗µRñ = µEñ on S(n)ji)

= ∫
zip(⋅,i)−1(S(n)

ij
)
[zip(Φ(n)i→j(q), j) ∈ S]⋅

α(zip(Φ(n)i→j(q), j)) ⋅ ζ
′(zip(Φ(n)i→j(q), j)) ⋅ ∣det∇Φ(n)i→j(q)∣ µRñ(dq)

(Change of variable where r = Φ(n)i→j(q))

= ∫
zip(⋅,i)−1(S(n)

ij
)
[Φ(n)(zip(q, i)) ∈ S] ⋅ α(zip(q, i)) ⋅ ζ ′(zip(q, i)) µRñ(dq)

(Prop. 22 as Φ(n)(zip(q, i)) = zip(Φ(n)i→j(q), j) for (zip(q, i)) ∈ S(n)ij)

= ∫
S
(n)
ij

[Φ(n)(s) ∈ S] ⋅ α(s) ⋅ ζ ′(s) µEñ(ds) (zip(⋅, i)∗µRñ = µEñ on S(n)ij)

= ∫
S
(n)
ij

[Φ(n)(s) ∈ S] ⋅ α(s) π(ds)

Recall the set Svalid of all valid states can be written as⋃{S(n)ij ∣ i, j ∈ 2ñ and n ∈ N}.

Hence, we conclude our proof with

∫
Svalid
[Φ(n)(s) ∈ S] ⋅ α(s) π(ds) =

∞
∑
n=1
∑

i,j∈2ñ
∫

S
(n)
ij

[Φ(n)(s) ∈ S] ⋅ α(s) π(ds)

=
∞
∑
n=1
∑

i,j∈2ñ
∫

S
(n)
ji

[s ∈ S] ⋅ α(s) π(ds) = ∫
Svalid
[s ∈ S] ⋅ α(s) π(ds).

Since the transition kernel of eNPiMCMC is the composition of T1 and T2 and both

T1 and T2 are invariant against π (Propositions 21 and 23), with Prop. 10 we deduce

that eNPiMCMC preserves the state distribution π.

Lemma 3 (State Invariant). π is the invariant distribution of the Markov chain generated

by iterating eNPiMCMC .

98 6.3. Marginalised Markov Chains

6.3 Marginalised Markov Chains

As discussed above, the Markov chain {si}i∈N generated by iterating eNPiMCMC (which
has invariant distribution π (Lem. 3)) has elements on the state space S and not the trace
space T. The chain we are in fact interested in is the marginalised chain {m(si)}i∈N

where the measurable function m ∶ Svalid → T takes a valid state s = (x,v) and returns the
instance of the parameter variable x that is in the support of the target density function w.

In this section we show that this marginalised chain simulates the target distribution
ν. Let T

NPiMCMC
∶ T ↝ T be a kernel such that

T
NPiMCMC

(t,A) ∶=

⎧⎪⎪
⎨
⎪⎪⎩

T
eNPiMCMC

(s,m−1(A)) if t ∈ Supp(w) and s ∈ m−1({t})

0 otherwise.

Comparing the commands of NPiMCMC and eNPiMCMC in Listings 5.2 and 6.1, we claim
that T

NPiMCMC
is the transition kernel of NPiMCMC .

Proposition 24. We consider some basic properties of T
NPiMCMC

.

(i) T
NPiMCMC

is well-defined.

(ii) T
eNPiMCMC

(s,m−1(A)) = T
NPiMCMC

(m(s),A) for all s ∈ Svalid and A ∈ ΣT.

Proof. (i) Let t ∈ Supp(w) andA ∈ ΣT. Say s,s′ ∈ m−1({t}). Since only the instance
of the input state matters in eNPiMCMC (Listing 6.1), the value of T

NPiMCMC
(t,A)

given by s and s′ are the same, i.e.

T
eNPiMCMC

(s,m−1(A)) = T
eNPiMCMC

(s′,m−1(A)).

(ii) Let s ∈ Svalid and A ∈ ΣT. Then, T
NPiMCMC

(m(s),A) = T
eNPiMCMC

(s′,m−1(A))

for some s′ ∈ m−1({m(s)}). Since s ∈ m−1({m(s)}), we have

T
eNPiMCMC

(s′,m−1(A)) = T
eNPiMCMC

(s,m−1(A)).

To show T
NPiMCMC

preserves the target distribution, we consider a distribution πn on
each of then-dimensional state space S(n) ∶= X(n)×Y(n) with density ζn (w.r.t.µS(n)) given
by

ζn(x,v) ∶=

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

1
Zn

⋅w(t) ⋅ pdfK(k)(takek(x,v))

if t ∈ instance(x) ∩ Supp(w) has dimension k ≤ n
0 otherwise

6. Correctness of Nonparametric Involutive MCMC 99

whereZn ∶= ∫
T
[∣t∣ ≤ ιX(n)] ⋅w(t) µT(dt). Notice thatZn ⋅ζn = Z ⋅ζ on valid states Svalid

n .

The following proposition shows how the state distribution π can be represented using πn.

Proposition 25. Let n ∈ N.

(i) πn is a probability measure.

(ii) For k ≤ n, Zk ⋅ πk = Zn ⋅ takek∗πn on Svalid
k .

(iii) Let g(n) ∶ S(n) ⇀
n

⋃
k=1

Svalid
k be the partial measurable function that returns the

projection of the input state that is valid, if it exists. Formally, g(n)(s) = takek(s)

if takek(s) ∈ Svalid
k . Then Z ⋅ π = Zn ⋅ g

(n)
∗ πn on

n

⋃
k=1

Svalid
k .

Proof. (i) Consider πn(S(n)),

πn(S(n)) =
n

∑
k=1
∫

S(n)
[t ∈ instance(x)] ⋅ [∣t∣ = ιX(k)] ⋅

1
Zn

⋅w(t)⋅

pdfK(k)(takek(x,v)) µS(n)(d(x,v))

=
n

∑
k=1
∫

SuppιX(k)(w)
∫

T
∫

Y(k)

1
Zn

⋅w(t) ⋅ pdfK(k)(zip(t, t′),v′)

µY(k)(dv′) µT(dt′) µT(dt)

=
n

∑
k=1
∫

SuppιX(k)(w)
∫

T

1
Zn

⋅w(t) µT(dt′) µT(dt)

(K(k) is a probability kernel)

= ∫
T
[∣t∣ ≤ ιX(n)] ⋅

1
Zn

⋅w(t) µT(dt) = 1

(ii) Let S ∈ ΣS where S ⊆ Svalid
k . Hence Zk ⋅ ζk(s) = Zk ⋅ ζk(s′) if s ∈ S and s =

takek(s′). Then,

Zn ⋅ (takek∗πn)(S)

= Zn ⋅ πn(takek
−1
(S))

= ∫
S(n)
[takek(s

′) ∈ S] ⋅Zn ⋅ ζn(s
′) µS(n)(d(s′))

= ∫
S(k)
[s ∈ S] ⋅Zk ⋅ ζk(s) ⋅ µS(k)(d(s))

= Zk ⋅ πk(S)

100 6.3. Marginalised Markov Chains

(iii) Let S ∈ ΣS where S ⊆
n

⋃
k=1

Svalid
k . Then, Z ⋅ ζ(s) = Zk ⋅ ζk(s) for all s ∈ S ∩ Svalid

k .

Z ⋅ π(S) = ∫
S
[s ∈ Svalid] ⋅Z ⋅ ζ(s) µS(ds)

=
n

∑
k=1
∫

S
[s ∈ Svalid

k] ⋅Z ⋅ ζ(s) µS(k)(ds)

=
n

∑
k=1
∫

S
[s ∈ Svalid

k] ⋅Zk ⋅ ζk(s) µS(k)(ds)

=
n

∑
k=1

Zk ⋅ πk(S ∩ Svalid
k)

= Zn

n

∑
k=1

takek∗πn(S ∩ Svalid
k) (i)

= Zn ⋅ πn(
n

⋃
k=1
{s ∈ S(n) ∣ takek(s) ∈ S ∩ Svalid

k })

= Zn ⋅ g
(n)
∗ πn(S).

Lemma 4 (Invariant). Assuming V1 to 4, ν is the invariant distribution of the Markov
chain generated by iterating the NP-iMCMC algorithm (Sec. 5.4).

Proof. Assuming (1) ν = m∗π on T and (2) µT = m∗µS on Supp(w), we have for any
A ∈ ΣT,

ν(A) = m∗π(A) (1)

= ∫
S
T
eNPiMCMC

(s,m−1(A)) π(ds) (Lem. 3)

= ∫
Svalid

T
eNPiMCMC

(s,m−1(A)) π(ds)

= ∫
Svalid

T
NPiMCMC

(m(s),A) π(ds) (Prop. 24.ii)

= ∫
Supp(w)

T
NPiMCMC

(t,A) m∗π(dt)

= ∫
Supp(w)

T
NPiMCMC

(t,A) ν(dt) (2)

= ∫
T
T
NPiMCMC

(t,A) ν(dt).

It is enough to show (1) and (2).

(1) Let A ∈ ΣT where A ⊆ SuppιX(n)(w) and δ > 0. Then partitioning m−1(A) using

6. Correctness of Nonparametric Involutive MCMC 101

Svalid
k , we have for sufficiently large m,

m∗π(A)

= π (
m

⋃
k=1

m−1(A) ∩ Svalid
k) + π (

∞
⋃

k=m+1
m−1(A) ∩ Svalid

k)

<
Zm

Z
⋅ g
(m)
∗ πm (

m

⋃
k=1

m−1(A) ∩ Svalid
k) + δ (Prop. 24.iii, Prop. 25.ii)

≤
Zm

Z
⋅ πm({(zip(t, t′) ++ y,v) ∣ t ∈ A, t′ ∈ T,y ∈ EιX(m)−ιX(n),v ∈ Y(m)}) + δ

=
1
Z ∫A

∫
T
∫

EιX(m)−ιX(n)
w(t)⋅

(∫
Y(m)

pdfK(n)(taken(zip(t, t′) ++ y,v)) µY(m)(dv))

µEιX(m)−ιX(n)(dy)µT(dt′)µT(dt) + δ

=
1
Z ∫A

w(t) µT(dt) + δ (K(n) is a probability kernel)

= ν(A) + δ.

For any measurable set A ∈ ΣT, we have m∗π(A) = m∗π(A ∩ Supp(w)) =
∞
∑
n=1

m∗π(A∩SuppιX(n)(w)) ≤
∞
∑
n=1

ν(A∩SuppιX(n)(w)) = ν(A∩Supp(w)) = ν(A).

Since both ν and π are probability distributions, we also have ν(A) = 1−ν(T∖A) ≤
1 −m∗π(T ∖A) = 1 − (1 −m∗π(A)) = m∗π(A). Hence m∗π = ν on T.

(2) Similarly, let A ∈ ΣT where A ⊆ SuppιX(n)(w) and δ > 0. Then by Prop. 24.iii, for

sufficiently large m, we must have µS(
∞
⋃

k=m+1
Svalid

k) = µS(Svalid ∖Svalid
≤m) < δ. Hence,

m∗µS(A)

= µS (
m

⋃
k=1

m−1(A) ∩ Svalid
k) + µS (

∞
⋃

k=m+1
m−1(A) ∩ Svalid

k)

<
m

∑
k=1

µS(k)(m
−1(A) ∩ Svalid

k) + δ

=
m

∑
k=1

µS(m)({(x,v) ∈ S(m) ∣ takek(x,v) ∈ m
−1(A) ∩ Svalid

k }) + δ

= µS(m)(
m

⋃
k=1
{(x,v) ∈ S(m) ∣ takek(x,v) ∈ m

−1(A) ∩ Svalid
k }) + δ

≤ µS(m)({(zip(t, t′) ++ y,v) ∣ t ∈ A, t′ ∈ T,y ∈ EιX(m)−ιX(n),v ∈ Y(m)}) + δ

= µT(A) + δ.

Then the proof proceeds as in (1). Note that since w almost surely terminates (V2),
m∗µS(Supp(w)) = µT(Supp(w)) = 1

102 6.3. Marginalised Markov Chains

Spera in Deo, quoniam adhuc confitebor illi, salutare
vultus mei, et Deus meus.

— Psalm 42:6

7
Nonparametric Hamiltonian Monte Carlo

In this chapter, we study the nonparametric Hamiltonian Monte Carlo (NP-HMC) infer-

ence algorithm and its variants. We first show that NP-HMC is an instance of a variant

of the NP-iMCMC sampler, where the involution is applied multiple times to generate a

proposed state and then we apply some techniques to NP-HMC to form nonparametric

variants of Generalised HMC and Look Ahead HMC.

7.1 Motivation

Recall the Hamiltonian Monte Carlo (HMC) algorithm can be seen as an instance of

the DirectioniMCMC algorithm with the leapfrog function L as its bijection (Sec. 4.4.1)

What happens when we extend HMC using the NP-iMCMC framework?

A direct nonparametric extension is actually very inefficient! This is because whenever

the dimension of the state is changed, the NP-iMCMC algorithm (Sec. 5.4) has to “re-run”

the involution in the extend step (Step 4.ii). In the example of extending HMC, this

means the number of leapfrog steps performed in one iteration is unbounded. To remedy

this problem, we introduce two new concepts:

• The slice function which can make “re-runs” (Step 4.ii) quicker.

• The Multiple Step NP-iMCMC sampler, a variant of NP-iMCMC, which uses a list

of bijections to move around the state space.

103

104 7.2. Slice function

7.2 Slice function

For each dimension n ∈ N, we call the measurable function s(n) ∶ S(n) → EιX(n)−ιX(n−1) ×

EιY(n)−ιY(n−1) a slice of the endofunction Φ(n) on S(n) if given a state (x,v) ∈ S(n) with
an instance t of x in the support of w and has a lower dimension than x, s(n)(x,v) is
equal to the n-th dimension of the result of Φ(n)(x,v). Formally, this means

s(n)(x,v) = (dropn−1 ○Φ(n))(x,v) if t ∈ instance(x) ∩ Supp(w) and ∣t∣ < ιX(n).

Note we can always define a slice of Φ(n) by setting s(n) ∶= dropn−1 ○ Φ(n).
With the slice function s(n) defined for each involution Φ(n), Step 4.ii in the NP-

iMCMC algorithm (Sec. 5.4):

(Step 4.ii) Move around the n + 1-dimensional state space X(n+1) × Y(n+1) and compute the
new state by applying the involution Φ(n+1) to the initial state (x0 ++ y0,v0 ++u0);

can be replaced by the following Step 4.ii’:

(Step 4.ii’) Replace and extend then-dimensional new state from (x,v) to a state (x++y,v++u)
of dimension n + 1 where (y,u) is the result of s(n+1)(x0 ++ y0,v0 ++u0).

By V 4, the first n components of the new n + 1-dimensional state Φ(n+1)(x0 ++

y0,v0 ++ u0) is

taken(Φ(n+1)(x0++y0,v0++u0)) = Φ(n)(taken(x0++y0,v0++u0)) = Φ(n)(x0,v0) = (x,v)

and by the definition of slice the n + 1 component of the new state is

dropn(Φ(n+1)(x0 ++ y0,v0 ++u0)) = s
(n+1)(x0 ++ y0,v0 ++u0).

Hence the new states computed by Step 4.ii and Step 4.ii’ are the same.
The slice function s(n) is useful when the involution is computationally expensive

but its slice function is cheap. After replacing Step 4.ii with Step 4.ii’, the NP-iMCMC
sampler needs only to run the involution once (Step 3) and any subsequent “re-runs”
(Step 4) can be performed by the slice function.

If the slice function s(n) is implemented as slice[n] in SPCF, Line 11 in NPiMCMC

can be changed from (x,v) = involution[n](x0,v0) to� �
(x’,v’) = slice[n](x0,v0); (x,v) = (x + x’, v + v’)� �

7. Nonparametric Hamiltonian Monte Carlo 105

7.2.1 Example (HMC)

The momentum update where the gradient of the density function is calculated is the
most computationally heavy component in the HMC sampler. Hence it would be useful
if it had a lightweight slice function.

In the setting of NP-iMCMC, we assume the trace space T is a list of the Real
measurable space R. Then, the n-dimensional momentum update ϕM

k is an endofunction
on Rn × Rn defined as

ϕM
k (q,p) ∶= (q,p − k∇U(q))

where U(q) ∶= − log max{w(t) ∣ t ∈ instance(q)} is the n-dimensional potential energy.
Given a n-dimensional state (q,p) where t ∈ instance(q) ∩ Supp(w) has dimension

lower than n, the gradient of the potential energy U at q w.r.t. the n-th coordinate
is zero. Hence,

(dropn−1 ○ ϕ
M
k)(q,p) = dropn−1(q,p − k∇U(q)) = (q

n,pn),

and the slice of the momentum update ϕM
k is simply the projection dropn−1(q,p) ∶=

(qn,pn).

However, not all momentum updates in the re-runs of the leapfrog function L can
be replaced by its slice dropn−1. This is because when the dimension increments to,
say n + 1, only the extended initial state (x0 ++ y0,v0 ++u0) has the property that it has
an instance with dimension lower than n + 1 and not the intermediate states. Hence
we introduce another idea.

7.3 Multiple Step NP-iMCMC

Say the involution of a NP-iMCMC sampler is comprised of a list of bijective endofunc-
tions on S(n), namely Φ(n) ∶= f (n)L ○⋅ ⋅ ⋅○f

(n)
2 ○f

(n)
1 . To compute the new state, we can either

• apply the involution Φ(n) to the initial state (x0,v0) in one go and check whether
the result (x,v) has an instance in the support of w, or

• for each ℓ = 1, . . . , L, apply the endofunction f (n)ℓ to (xℓ−1,vℓ−1) and (immediately)
check whether the intermediate state (xℓ,vℓ) has an instance in the support of w.

The NP-iMCMC sampler presented in Sec. 5.4 takes the first option as it is conceptu-
ally simple. However, the second option is just as valid and more importantly gives us the
requirements needed to replace each endofunction by its slice in any subsequent “re-runs”.

106 7.3. Multiple Step NP-iMCMC

7.3.1 The Multiple Step NP-iMCMC Algorithm

Assume the target density w satisfies V1 to 3; and for each n ∈ N, there are a probability
kernel K(n) and a list of L bijective endofunctions {f (n)ℓ ∶ S(n) → S(n) ∣ ℓ = 1, . . . , L}

n

such that for each ℓ, {f (n)ℓ }n
satisfies the projection commutation property (V4) and

for each n ∈ N, their composition f (n)L ○ ⋅ ⋅ ⋅ ○ f
(n)
1 is involutive.

Let s(n)ℓ be a slice of the endofunction f (n)ℓ . Given a SPCF program M with weight
functionw on the trace space, the Multiple Step NP-iMCMC sampler generates a Markov
chain as follows. Given a current sample t0 of dimension k0,

1. (Initialisation Step) Form a k0-dimensional parameter variable x0 ∈ X(k0) by pairing
each value t0

i in t0 with a randomly drawn value t of the other type to make a pair
(t0

i, t) or (t, t0
i) in the entropy space E.

2. (Stochastic Step) Introduce randomness to the sampler by drawing a k0-dimensional
value v0 ∈ Y(k0) from the probability measure K(k0)(x0, ⋅).

3. (Multiple Step) Initialise ℓ = 1. If ℓ = L, proceed to Step 4 with t as the proposed
sample; otherwise

3.1. (Deterministic Step) Compute the ℓ-th state (xℓ,vℓ) by applying the endo-
function f (n)ℓ to (xℓ−1,vℓ−1) where n = dim (xℓ−1).

3.2. (Extend Step) Test whether any instance t of xℓ is in the support of w. If so,
go to Step 3 with an incremented ℓ; otherwise (none of the instances of xℓ is
in the support of w),

3.2.i. Extend and replace the n-dimensional initial state from (x0,v0) to a
state (x0 ++y0,v0 ++u0) of dimension n+ 1 where y0 and u0 are values
drawn randomly from µEιX(n+1)−ιX(n) and µEιY(n+1)−ιY(n) respectively.

3.2.ii. For each i = 1, . . . , ℓ, extend and replace the n-dimensional i-th interme-
diate state from (xi,vi) to a state (xi ++ yi,vi ++ui) of dimension n + 1
where (yi,ui) is the result of s(n+1)

i (xi−1,vi−1).
3.2.iii. Go to Step 3.2 with the extended n + 1-dimensional states (xi,vi) for

i = 0, . . . , ℓ.

4. (Accept/reject Step) Accept the proposed sample t as the next sample with proba-
bility

min{1; w(t) ⋅ pdfK(k)(takek(xL,vL)) ⋅ φX(n)(xL) ⋅ φY(n)(vL)

w(t0) ⋅ pdfK(k0)(takek0(x0,v0)) ⋅ φX(n)(x0) ⋅ φY(n)(v0)
⋅

L

∏
ℓ=1
∣det(∇f (n)ℓ (xℓ−1,vℓ−1))∣}

7. Nonparametric Hamiltonian Monte Carlo 107

where n = dim (x0) = dim (v0), k is the dimension of t and k0 is the dimension
of t0; otherwise reject the proposal and repeat t0.

Unlike in NP-iMCMC, the Multiple Step NP-iMCMC sampler computes the in-
termediate states {(xℓ,vℓ)}ℓ=1,...,L one-by-one, making sure in Step 3.2 that each of
these state (xℓ,vℓ) has an instance in the support of w. Hence when the dimension
is incremented from n to n + 1, the slice functions can be used to extend intermediate
states to states of dimension n + 1.

Remark 26. The Multiple Step NP-iMCMC sampler can be seen as a generalisation of
NP-iMCMC as we can recover NP-iMCMC by setting L to one and take the involution
Φ(n) as the only endofunction in Multiple Step NP-iMCMC.

7.3.2 Pseudocode of Multiple Step NP-iMCMC Algorithm

Listing 7.1 gives a SPCF implementation of Multiple Step NP-iMCMC as the func-
tion MultistepNPiMCMC with target density w ; auxiliary kernel auxkernel[n] and its
density pdfauxkernel[n] and L number of endofunctions f[n][l] (l ranges from
1 to L) for each dimension n with slice slice[n][l] and the absolute value of its
Jacobian determinant absdetjacf[n][l] ; parameter and auxiliary index maps indexX

and indexY and projection proj .

7.3.3 Correctness of Multiple Step NP-iMCMC Algorithm

The Multiple Step NP-iMCMC sampler cannot be formulated as an instance of NP-
iMCMC and requires a separate proof. Nonetheless, the arguments are similar.

Almost Sure Termination Since the target density w satisfies V 3, Prop. 16 tells
us that as long as w almost surely terminates (V 2), the measure of a n-dimensional
parameter variable not having any instances in the support of w tends to zero as the
dimension n tends to infinity. As f (n)ℓ is bijective (and hence invertible), the Multiple
Step NP-iMCMC sampler almost surely satisfies the condition in the loop in Step 3.2
and hence almost surely terminates.

Invariant State Distribution Next, we identify the state distribution of Multiple Step
NP-iMCMC. We say a n-dimensional state (x,v) is valid if

(i) For all ℓ = 1, . . . , L, instance(xℓ) ∩ Supp(w) /= ∅ where (x0,v0) ∶= (x,v) and
(xℓ,vℓ) ∶= f

(n)
ℓ (xℓ−1,vℓ−1); and

108 7.3. Multiple Step NP-iMCMC

Listing 7.1: Pseudocode of the Multiple Step NP-iMCMC algorithm� �
def MultistepNPiMCMC(t0):
k0 = dim(t0) # initialisation step
x0 = [(e, coin) if Type(e) in R else (normal, e) for e in t0]
v0 = auxkernel[k0](x0) # stochastic step

start of multiple step
n = k0
(x[0],v[0]) = (x0,v0)
for l in range(1,L+1):
(x[l],v[l]) = f[n][l](x[l-1],v[l-1]) # deterministic step
while not intersect(instance(x[l]),support(w)): # extend step
x[0] = x[0] + [(normal, coin)]*(indexX(n+1)-indexX(n))
v[0] = v[0] + [(normal, coin)]*(indexY(n+1)-indexY(n))
for i in range(1,l+1):
(y,u) = slice[n+1][i](x[i-1],v[i-1])
(x[i],v[i]) = (x[i]+y, v[i]+u)

n = n + 1
(x0,v0) = (x[0],v[0])
(x,v) = (x[L],v[L])
end of multiple step

t = intersect(instance(x),support(w))[0] # accept/reject
step

k = dim(t)
return t if uniform < min{1,w(t)/w(t0) *

pdfauxkernel[k](proj((x,v),k))/
pdfauxkernel[k0](proj((x0,v0),k0)) *

pdfpar[n](x)/pdfpar[n](x0) *
pdfaux[n](v)/pdfaux[n](v0) *
product([absdetjacf[n][l](x[l-1],v[l-1]) for l in

range(1,L+1)])}
else t0� �

(ii) For all ℓ = 1, . . . , L, instance(yℓ) ∩ Supp(w) /= ∅ where (y0,u0) ∶= (x,v) and
(yL−ℓ+1,uL−ℓ+1) ∶= f

(n)
ℓ

−1
(yL−ℓ,uL−ℓ); and

(iii) For all k < n, takek(x,v) is not a valid state, i.e. not satisfying (i) and (ii).

Then, we can define the state distribution and show that the state movement in Multiple
Step NP-iMCMC is invariant against this distribution.

Marginalised Markov Chain Finally, we conclude that the marginalised chain of
the state movement in the Multiple Step NP-iMCMC sampler is invariant against the
target distribution.

7. Nonparametric Hamiltonian Monte Carlo 109

Listing 7.2: Pseudocode of the State-dependent Multiple Step NP-iMCMC Mixture algorithm� �
def MixtureMSNPiMCMC(t0):
k0 = dim(t0) # initialisation step
x0 = [(e, coin) if Type(e) in R else (normal, e) for e in t0]
m = mixkernel(x0) # mixture step
v0 = auxkernel[k0][m](x0) # stochastic step

start of multiple step
n = k0
(x[0],v[0]) = (x0,v0)
for l in range(1,L+1):
(x[l],v[l]) = f[n][l][m](x[l-1],v[l-1]) # deterministic step
while not intersect(instance(x[l]),support(w)): # extend step
x[0] = x[0] + [(normal, coin)]*(indexX(n+1)-indexX(n))
v[0] = v[0] + [(normal, coin)]*(indexY(n+1)-indexY(n))
for i in range(1,l+1):
(y,u) = slice[n+1][i][m](x[i-1],v[i-1])
(x[i],v[i]) = (x[i]+y, v[i]+u)

n = n + 1
(x0,v0) = (x[0],v[0])
(x,v) = (x[L],v[L])
end of multiple step

t = intersect(instance(x),support(w))[0] # accept/reject step
k = dim(t)
return t if uniform < min{1, w(t)/w(t0) *

pdfauxkernel[k][m](proj((x,v),k))/
pdfauxkernel[k0][m](proj((x0,v0),k0)) *

pdfpar[n](x)/pdfpar[n](x0) *
pdfaux[n](v)/pdfaux[n](v0) *
pdfmixkernel(proj(x,k),m)/
pdfmixkernel(proj(x0,k0),m) *

product([absdetjacf[n][m](x[l-1],v[l-1]) for
l in range(1,L+1)])}

else t0� �
7.3.4 Techniques on Multiple Step NP-iMCMC

Recall we discussed three techniques in Sec. 5.5, each when applied to the NP-iMCMC
sampler, improving its flexibility and/or efficiency. We now see how these techniques
can be applied to Multiple Step NP-iMCMC.

State-dependent Multiple Step NP-iMCMC Mixture

This technique allows us to ‘mix’ Multiple Step NP-iMCMC samplers in such a way
that the resulting sampler still preserves the posterior. Given a collection of Multiple
Step NP-iMCMC samplers, indexed by m ∈ Eℓ for some ℓ ∈ N, the State-dependent

110 7.3. Multiple Step NP-iMCMC

Listing 7.3: Pseudocode for the correctness of State-dependent Multiple Step NP-iMCMC Mixture� �
def mixauxkernel[n](x0):
m = mixkernel(x0)
v0 = auxkernel[n][m](x0)
return m + v0

def pdfmixauxkernel[n](x,mixv):
m = mixv[:l] # l is the dimension of the variable m
v = mixv[l:]
return pdfmixkernel(x, m) * pdfauxkernel[n][m](x, v)

def mixf[n][l](x0,mixv0):
m = mixv0[:l]
v0 = mixv0[l:]
(x,v) = f[n][l][m](x0,v0)
return (x,m + v)

def absdetjacmixf[n][l](x0,mixv0):
m = mixv0[:l]
v0 = mixv0[l:]
return absdetjacf[n][l][m](x0,v0)

def mixslice[n][l](x0,mixv0):
m = mixv0[:l]
v0 = mixv0[l:]
(y,u) = slice[n][l][m](x0,v0)
return (y,u)

mixindexX = indexX
mixindexY(n) = l + indexY(n)
mixproj((x,v),k) = (x[:mixindexX(k)],v[:mixindexY(k)])� �

Multiple Step NP-iMCMC Mixture sampler draws an indicator m ∈ Eℓ from a probability
measure KM(x0, ⋅) on Eℓ where KM ∶ ⋃

n∈N
X(n) ↝ Eℓ is a probability kernel and x0 is the

parameter variable constructed from the current sample t0 in Step 1. A proposal t is then
generated by running Steps 2 and 3 of the m-indexed Multiple Step NP-iMCMC sampler,
and is accepted with a modified probability that includes the probability of picking m.

Pseudocode Listing 7.2 gives the SPCF implementation of this sampler as the
MixtureMSNPiMCMC function. (Terms specific to this technique are highlighted.) We
assume the SPCF term mixkernel implements the mixture kernel KM ; pdfmixkernel

implements the probability density function pdfKM ; and for each m ∈ Eℓ and n ∈ N,
auxkernel[n][m] implements the auxiliary kernel and pdfauxkernel[n][m] imple-
ments its density; f[n][l][m] implements the endofunction, slice[n][l][m] imple-

7. Nonparametric Hamiltonian Monte Carlo 111

ments its slice and absdetjacf[n][l][m] implements the absolute value of the Jacobian
determinant of the endofunction of the m -indexed Multiple Step NP-iMCMC sampler.

Correctness MixtureMSNPiMCMC can be formed as an instance of MultistepNPiMCMC

with auxiliary kernel mixauxkernel[n] and its density mixpdfauxkernel[n] and L num-
ber of endofunctions mixf[n][l] (l ranges from 1 to L) for each dimension n with
slice mixslice[n][l] and the absolute value of its Jacobian determinant
absdetjacmixf[n][l] ; parameter and auxiliary index maps mixindexX and mixindexY

and projection mixproj given in Listing 7.3.

Direction Multiple Step NP-iMCMC

This technique allows us to relax the assumption that the composition f (n)L ○⋅ ⋅ ⋅○f
(n)
2 ○f

(n)
1

is involutive. Assuming for ℓ = 1, . . . , L, both sets {f (n)ℓ }n
and {f (n)ℓ

−1
}

n
satisfy the

projection commutation property (V4), the Direction Multiple Step NP-iMCMC sampler
randomly employs either f (n)L ○ ⋅ ⋅ ⋅ ○ f

(n)
2 ○ f

(n)
1 or f (n)1

−1
○ f
(n)
2
−1
○ ⋅ ⋅ ⋅ ○ f

(n)
L

−1
to move

around the n-dimensional state space and proposes a new sample.

Pseudocode Listing 7.4 gives the SPCF implementation of this sampler as
DirectionMSNPiMCMC function. (Terms specific to this technique are highlighted.) We as-
sume for each n ∈ N and d ∈ 2, the SPCF term f[n][l][True] implements the endofunc-
tion f (n)ℓ and f[n][l][False] implements the inverse f (n)L−ℓ+1

−1
; slice[n][l][True]

implements the slice of f (n)ℓ and slice[n][l][False] implements the slice of f (n)L−ℓ+1
−1

;
and absdetjacf[n][l][True] implements the absolute value of the Jacobian determinant
of f (n)ℓ and absdetjacf[n][l][False] implements that of f (n)L−ℓ+1.

Correctness DirectionMSNPiMCMC can be formed as an instance of MultistepNPiMCMC

with auxiliary kernel dirauxkernel[n] and its density pdfdirauxkernel[n] and dirL

number of endofunctions dirf[n][l] (l ranges from 1 to dirL) for each dimen-
sion n with slice dirslice[n][l] and the absolute value of its Jacobian determinant
absdetjacf[n][l] ; parameter and auxiliary index maps dirindexX and dirindexY and
projection dirproj given in Listing 7.5. Note the dirf[n] function denotes the compo-
sition that flips the direction after applying the endofunctions f (n)ℓ for ℓ = 1, . . . , Lwith an
inverse that flips the direction and then applies the endofunctions f (n)L−ℓ+1 for ℓ = 1, . . . , L.

112 7.3. Multiple Step NP-iMCMC

Listing 7.4: Pseudocode of the Direction Multiple Step NP-iMCMC algorithm� �
def DirectionMSNPiMCMC(t0):
d0 = coin # direction step
k0 = dim(t0) # initialisation step
x0 = [(e, coin) if Type(e) in R else (normal, e) for e in t0]
v0 = auxkernel[k0](x0) # stochastic step

start of multiple step
n = k0
(x[0],v[0]) = (x0,v0)
for l in range(1,L+1):
(x[l],v[l]) = f[n][l][d0](x[l-1],v[l-1]) # deterministic

step
while not intersect(instance(x[l]),support(w)): # extend step
x[0] = x[0] + [(normal, coin)]*(indexX(n+1)-indexX(n))
v[0] = v[0] + [(normal, coin)]*(indexY(n+1)-indexY(n))
for i in range(1,l+1):
(y,u) = slice[n+1][i][d0](x[i-1],v[i-1])
(x[i],v[i]) = (x[i]+y, v[i]+u)

n = n + 1
(x0,v0) = (x[0],v[0])
(x,v) = (x[L],v[L])
d = not d0 # flip direction (not used)
end of multiple step

t = intersect(instance(x),support(w))[0] # accept/reject step
k = dim(t)
return t if uniform < min{1, w(t)/w(t0) *

pdfauxkernel[k](proj((x,v),k))/
pdfauxkernel[k0](proj((x0,v0),k0)) *

pdfpar[n](x)/pdfpar[n](x0) *
pdfaux[n](v)/pdfaux[n](v0) *
product([absdetjacf[n][l][d0](x[l-1],v[l-1])

for l in range(1,L+1)])}
else t0� �

Persistent Multiple Step NP-iMCMC Algorithm

This technique gives us a method to construct irreversible Multiple Step NP-iMCMC

samplers. The key is to persist the direction from a previous iteration.

The Persistent Multiple Step NP-iMCMC sampler keeps track of a direction variable

d0 ∈ 2 (instead of sampling a fresh one at the start) and uses it to determine the auxiliary

kernel (K(n)T ∶ X(n) ↝ Y(n) orK(n)F ∶ X(n) ↝ Y(n)) and list of endofunctions (f (n)L ○⋅ ⋅ ⋅○f
(n)
1

or f (n)1
−1
○ ⋅ ⋅ ⋅ ○ f

(n)
L

−1
) employed. This direction variable is flipped strategically to make

the resulting algorithm irreversible.

7. Nonparametric Hamiltonian Monte Carlo 113

Listing 7.5: Pseudocode for the correctness of Direction Multiple Step NP-iMCMC� �
dirL = L+1

def dirauxkernel[n](x0):
d0 = coin
v0 = auxkernel[n](x0)
return [(normal, d0)] + v0

def pdfdirauxkernel[n](x0,dirv0):
d0 = dirv0[0][1]
v0 = dirv0[1:]
return pdfcoin(d0) * pdfnormal(dirv0[0][0]) * pdfauxkernel[n](x0,v0)

def dirf[n][l](x,dirv):
d = dirv[0][1]
v = dirv[1:]
if l == dirL:
return (x,[(dirv[0][0],not d)] + v)

else:
(x,v) = f[n][l][d](x,v)
return (x, [(dirv[0][0],d)] + v)

def absdetjacdirf[n][l](x,dirv):
d = dirv[0][1]
v = dirv[1:]
if l == dirL: return 1
else: return absdetjacf[n][l][d](x, v)

def dirslice[n][l](x,dirv):
d = dirv[0][1]
v = dirv[1:]
(y,u) = slice[n][l][d](x,v)
return (y,u)

dirindexX = indexX
dirindexY(n) = 1+indexY(n)
dirproj((x,v),k) = (x[:dirindexX(k)], v[:dirindexY(k)])� �

Pseudocode Listing 7.6 gives the SPCF implementation of this sampler as the function
PersistentMSNPiMCMC . (Terms specific to this technique are highlighted.) In addi-
tion to the SPCF terms in DirectionMSNPiMCMC , the SPCF term auxkernel[n][True]

implements the auxiliary kernel K(n)T and pdfauxkernel[n][True] implements its den-
sity pdfK(n)T and auxkernel[n][False] implements the auxiliary kernel K(n)F and
pdfauxkernel[n][False] implements its density pdfK(n)F. Note that
PersistentMSNPiMCMC updates samples on the space X(n) × 2, which can easily be
marginalised to X(n) by taking the first ιX(n) components.

114 7.3. Multiple Step NP-iMCMC

Listing 7.6: Pseudocode of the Persistent Multiple Step NP-iMCMC algorithm� �
def PersistentMSNPiMCMC(t0,d0):
k0 = dim(t0) # initialisation step
x0 = [(e, coin) if Type(e) in R else (normal, e) for e in t0]
v0 = auxkernel[k0][d0](x0) # stochastic step

start of multiple step
n = k0
(x[0],v[0]) = (x0,v0)
for l in range(1,L+1):
(x[l],v[l]) = f[n][l][d0](x[l-1],v[l-1]) # deterministic

step
while not intersect(instance(x[l]),support(w)): # extend step
x[0] = x[0] + [(normal, coin)]*(indexX(n+1)-indexX(n))
v[0] = v[0] + [(normal, coin)]*(indexY(n+1)-indexY(n))
for i in range(1,l+1):
(y,u) = slice[n+1][i][d0](x[i-1],v[i-1])
(x[i],v[i]) = (x[i]+y, v[i]+u)

n = n + 1
(x0,v0) = (x[0],v[0])
(x,v) = (x[L],v[L])
d = not d0 # flip direction
end of multiple step

t = intersect(instance(x),support(w))[0] # accept/reject step
k = dim(t)
return (t, not d) if uniform < min{1, w(t)/w(t0) *

pdfauxkernel[k][d](proj((x,v),k))/
pdfauxkernel[k0][d0](proj((x0,v0),k0)) *

pdfpar[n](x)/pdfpar[n](x0) *
pdfaux[n](v)/pdfaux[n](v0) *
product([absdetjacf[n][l][d0](x[l-1],v[l-1])

for l in range(1,L+1)])}
else (t0, d)� �

Correctness Consider the MultistepNPiMCMC function with auxiliary kernel
perauxkernel[n] and its density pdfperauxkernel[n] and perL number of endo-
functions perf[n][l] (l ranges from 1 to perL) for each dimension n with slice
perslice[n][l] and the absolute value of its Jacobian determinant absdetjacperf[n][l] ;
parameter and auxiliary index maps perindexX and perindexY and projection perproj

given in Listing 7.7.
The MultistepNPiMCMC function with the primitives indicated in Listing 7.7 is almost

equivalent to PersistentMSNPiMCMC , except MultistepNPiMCMC induces a transition
kernel on E × X(n) whereas PersistentMSNPiMCMC induces a transition kernel on 2 ×

X(n); and when the proposal t is accepted, MultistepNPiMCMC returns d whereas
PersistentMSNPiMCMC returns not d .

7. Nonparametric Hamiltonian Monte Carlo 115

Listing 7.7: Pseudocode for the correctness of Persistent Multiple Step NP-iMCMC� �
perL = L+1

def perauxkernel[n](perx0)
d0 = perx0[0][1]
x0 = perx0[1:]
v0 = auxkernel[n][d0](x0)
return v0

def pdfperauxkernel[n](perx0, v0):
d0 = perx0[0][1]
x0 = perx0[1:]
return pdfauxkernel[n][d0](x0, v0)

def perf[n][l](perx,v)
d = perx[0][1]
x = perx[1:]
if l == perL:
return ([(perx[0][0],not d)] + x, v)

else:
(x,v) = f[n][l][d](x,v)
return ([(perx[0][0],d)] + x, v)

def absdetjacperf[n][l](perx,v)
d = perx[0][1]
x = perx[1:]
if l == perL: return 1
else: return absdetjacf[n][l][d](x, v)

def perslice[n][l](perx,v)
d = perx[0][1]
x = perx[1:]
(y,u) = slice[n][l][d](x,v)
return (y,u)

perindexX(n) = 1+indexX(n)
perindexY = indexY
perproj((x,v),k) = (x[:perindexX(k)],v[:perindexY(k)])

def flipdir(perx0,v0):
perx0[0][1] = not perx0[0][1]
return (perx0,v0)� �

116 7.4. Nonparametric Hamiltonian Monte Carlo

By composing MultistepNPiMCMC with flipdir which flips the direction and
marginalising the Markov chain generated by the composition from E ×X(n) to 2 ×X(n),
we get PersistentMSNPiMCMC .

7.4 Nonparametric Hamiltonian Monte Carlo

The Hamiltonian Monte Carlo (also known as Hybrid Monte Carlo) (HMC) algorithm
is a popular MCMC inference that makes use of Hamiltonian dynamics to simulate a
target distribution on the measure space (Rn,Bn,Nn).

In this section, we explore how Nonparametric Hamiltonian Monte Carlo (NP-HMC)
as presented in (Mak et al., 2021b) can be seen as an instance of Direction Multiple Step
NP-iMCMC. Furthermore, we introduce new variants of NP-HMC using the techniques
introduced in Sec. 7.3.4, namely NP-Discontinuous HMC (an extension of Discontinuous
HMC (Nishimura et al., 2020)), Generalised NP-DHMC (an extension of Generalised
HMC (Horowitz, 1991)) and Look Ahead NP-HMC (an extension of the Look Ahead
HMC (Sohl-Dickstein et al., 2014), equivalent to the Extra Chance Generalised HMC
(Campos and Sanz-Serna, 2015)).

7.4.1 Nonparametric HMC

Nonparametric Hamiltonian Monte Carlo (NP-HMC) is a MCMC sampler introduced by
(Mak et al., 2021b) for probabilistic programming. Here we show that it is an instance
of the Direction Multiple Step NP-iMCMC sampler (Sec. 7.3.4).

Typically, the HMC sampler proposes a new state by simulating L leapfrog steps:

L ∶= (ϕM
ϵ/2 ○ ϕ

P
ϵ ○ ϕ

M
ϵ/2)

L

where ϕM
ϵ (x,v) ∶= (x,v − ϵ∇U(x)) and ϕP

ϵ (x,v) ∶= (x + ϵv,v) are the momen-
tum and position updates with step size ϵ respectively. Notice that the momentum
and position updates satisfy projection commutation property (V 4), have inverses
(ϕM

ϵ)
−1
= M ○ ϕM

ϵ ○M and (ϕP
ϵ)
−1
= M ○ ϕP

ϵ ○M where M(x,v) ∶= (x,−v) and
slices dropn−1 (for ϕM

ϵ/2, see Sec. 7.2.1 for more details) and (x,v) ↦ (xn + ϵvn,vn)

(for ϕP
ϵ) respectively. Moreover, the absolute values of the Jacobian determinants of

both updates are ∣det∇ϕM
ϵ (x,v)∣ = ∣det∇ϕP

ϵ/2(x,v)∣ = 1.
Hence, the HMC sampler can be extended using the Direction Multiple Step NP-

iMCMC sampler as follows. Given an input sample t0 ∈ Rk0 , a k0-dimensional initial
state (x0,v0) is formed where x0 ∶= t0 and v0 drawn fromK(n)(x, ⋅) ∶= Nn. A direction
variable d0 is drawn to determine whether L or its inverse L−1 is performed on the

7. Nonparametric Hamiltonian Monte Carlo 117

Listing 7.8: Pseudocode for the NP-HMC algorithm� �
def NPHMC(t0):
d0 = coin # direction step
k0 = dim(t0) # initialisation step
x0 = t0
v0 = [normal]*k0 # stochastic step
start of multiple step
n = k0
(x,v) = (x0,v0)
for m in range(1,L+1):
(x,v) = (x, v-ep/2*grad(U)(x)) # half momentum update
(x,v) = (x+ep*v, v) # full position update
while not intersect(instance(x),support(w)): # extend step
x0 = x0 + [normal]
v0 = v0 + [normal]
(y,u) = (x0[n+1] + m*ep*v0[n+1], v0[n+1]) # slice of leapfrog step
(x,v) = (x+y, v+u)
n = n + 1

(x, v) = (x, v-ep/2*grad(U)(x)) # half momentum update
d = d0
end of multiple step
t = intersect(instance(x),support(w))[0] # accept/reject step
k = dim(t)
return t if uniform < min{1,w(t)/w(t0)*pdfnormal[n](x)/pdfnormal[n](x0)*

pdfnormal[n](v)/pdfnormal[n](v0)}
else t0� �

initial state (x0,v0), one update at a time, extending the dimension as required. Say
the initial state is extended to a n-dimensional state (x0,v0) and is traversed to the
n-dimensional new state (x∗,v∗) which has an instance t in the support of w. t is
returned with probability

min{1; w(t) ⋅ φn(x∗) ⋅ φn(v∗)

w(t0) ⋅ φn(x0) ⋅ φn(v0)
}.

Pseudocode of NP-HMC Listing 7.8 gives the SPCF implementation NPHMC of the
NP-HMC sampler as an instance of the Direction Multiple Step NP-iMCMC sampler.
(Terms that differ from HMC are highlighted.) Note that we do not need to perform the
extend step if the previous deterministic step does not change the sample-component
x of the state. This is the case for the half momentum step in HMC, hence we only do
the extend step after the full position step in Listing 7.8. Moreover, we can compose
the slice functions to become (x,v) ↦ (xn + t ⋅ vn,vn) for time t.

118 7.4. Nonparametric Hamiltonian Monte Carlo

Correctness Since bothϕM
ϵ/2 andϕP

ϵ are bijective and satisfy the projection commutation
property (V4), the correctness of NP-HMC is implied by the correctness of Direction
Multiple Step NP-iMCMC sampler.

7.4.2 Nonparametric Discontinuous HMC (NP-DHMC)

Similar to Discontinuous HMC discussed in Sec. 4.4.2, we can form a discontinuous
variant of the NP-HMC sampler using a different bijection for the discontinuous variables.

Recall the DHMC algorithm samples a new proposal by simulating the leapfrog
steps for the continuous variables C and the discontinuous steps for the discontinuous
variables D, resulting with the bijection

Int ∶= (ϕM
ϵ/2 ○ ϕ

P
ϵ/2 ○ χ

D
ϵ ○ ϕ

P
ϵ/2 ○ ϕ

M
ϵ/2)

L

on Rn × Rn where χD
ϵ (x,v) is the result of applying ψj

ϵ defined by

ψj
ϵ(x,v) ∶=

⎧⎪⎪
⎨
⎪⎪⎩

(x + ϵsign(vj)ej,v − sign(vj)(∆U)ej) if ∣vj ∣ >∆U
(x,Rj ⋅ v) otherwise.

for each j ∈D, where ∆U ∶= U(x + ϵsign(vj)ej) −U(x), ej is the j-th standard basis
vector, Rj ∶= diag(1, . . . ,1,−1,1, . . . ,1) is the diagonal matrix with diagonal entries 1
everywhere except in the j-th position, where it is -1 and ϵ is the time step.

Similar to its continuous counterparts ϕM and ϕP , the discontinuous step ψj also
satisfies projection commutation property (V 4), has inverse (ψj

ϵ)
−1
= M ○ ψj

ϵ ○M

where M(x,v) ∶= (x,−v) (Prop. 13). Moreover, the absolute value of the Jacobian
determinant of the update is ∣det∇ψj

ϵ(x,v)∣ = 1.
Consider the slices of ψj

ϵ . Let (x,v) ∈ Rn × Rn be a state with an instance t of
x where ∣t∣ < ∣x∣. For j /= n,

(dropn−1 ○ ψ
j
ϵ)(x,v) = dropn−1(x,v),

whereas for j = n, the difference in potential energy before and after the discontinuous
step for dimension j = n would be the same, hence ∆U = 0 and

(dropn−1 ○ ψ
j
ϵ)(x,v) = dropn−1(x + ϵsign(vn)en,v − sign(vn)(∆U)en)

= dropn−1(x + ϵsign(vn)en,v)

= (xn + ϵsign(vn),vn).

Hence, similar to the NP-HMC sampler, DHMC can be extended using the Direction
Multiple Step NP-iMCMC sampler to work on nonparametric models.

7. Nonparametric Hamiltonian Monte Carlo 119

Listing 7.9: Integrator for NP-DHMC� �
def NPintegrator(x0,v0):
(x,v) = (x0,v0)
n = len(x0)
for i in range(L):
v[C] = v[C] - ep/2 * grad(U)(x[C])
x[C] = x[C] + ep/2 * v[C]
for j in D:
x* = x
x*[j] = x[j] + ep*sign(v[j])
if abs(v[j]) > U(x*)-U(x): # refract
x = x*
v[j] = v[j] - sign(v[j])*(U(x*)-U(x))

else: # reflect
v[j] = -v[j]

extend step
while not intersect(instance(x),support(w)):
n = n + 1
x0.append(normal); v0.append(normal)
(y,u) = NPintegratorslice((x0,v0),n,ep*m)
x.append(y); v.append(u)

x[C] = x[C] + ep/2 * v[C]
v[C] = v[C] - ep/2 * grad(U)(x[C])

return ((x0,v0),(x,v))

def NPintegratorslice((x0,v0),n,t):
(y,u) = (x0[n] + t*v0[n], v0[n]) if n in C # slice of leapfrog

else (x0[n] + t*sign(v0[n]),v0[n]) # slice of disstep
return (y,u)

def inverse_NPintegrator(x0,v0):
(x0,v0) = momflip(x0,v0)
((x0,v0),(x,v)) = NPintegrator(x0,v0)
return (momflip(x0,v0), momflip(x,v))� �

Pseudocode for NP-DHMC Listing 7.10 gives the SPCF implementation NPDHMC

of the NP-DHMC sampler as an instance of the Direction Multiple Step NP-iMCMC

sampler. (Terms that differ from DHMC is highlighted.) First notice that we only

need to perform the extend step in the integrator implemented by NPintegrator in

Listing 7.9 after the discontinuous step because only the discontinuous variables can fall

out of the current dimension. Moreover, say the target density is continuous w.r.t. the

extended dimension n + 1, the state is extended as in NP-HMC. Otherwise, the slice

of ψn+1
t is performed instead.

120 7.4. Nonparametric Hamiltonian Monte Carlo

Listing 7.10: Pseudocode for the NP-DHMC algorithm� �
def NPDHMC(t0):
d0 = coin # direction step
k0 = dim(t0) # initialisation step
x0 = t0
v0 = [normal]*k0 # stochastic step
((x0,v0),(x,v)) = NPintegrator(x0,v0) if d0

else inverse_NPintegrator(x0,v0)
d = not d0
n = len(x0)
t = intersect(instance(x),support(w))[0] # accept/reject step
return t if uniform < min{1,w(t)/w(t0)*pdfnormal[n](x)/pdfnormal[n](x0)*

pdfnormal[n](v)/pdfnormal[n](v0)}
else t0� �
Listing 7.11: Pseudocode for the Generalised NP-DHMC algorithm� �

GenNPHMC((x0,v0),d0) = PersistentHMC(CorruptMom((x0,v0),d0))

def CorruptMom((x0,v0),d0):
u0 = [normal(v0[i]*sqrt(1-alpha^2), alpha^2) for i in range(len(v0))]
(((x,v),d),u) = (((x0,u0),d0),v0)
return ((x,v),d)

def PersistentNPDHMC((x0,v0),d0):
k0 = dim(t0) # initialisation step
(x0,v0),(x,v) = NPintegrator(x0,v0) if d0 # multiple step

else inverse_NPintegrator(x0,v0)
d = not d0 # flip direction
(x*,v*) = intersect(instance(x,v),support(HMCw))[0] # accept/reject
return ((x*,v*), not d)

if uniform < min{1, HMCw(x*,v*)/HMCw(x0,v0) *
pdfnormal[n](x)/pdfnormal[n](x0) *
pdfnormal[n](v)/pdfnormal[n](v0) }

else ((x0,v0), d)� �
7.4.3 Generalised NP-DHMC

With the catalogue of techniques explored in Sec. 7.3.4, different irreversible variants of
the NP-DHMC algorithm can be formed. Here we focus on the Generalised NP-DHMC
algorithm which can be seen as a nonparametric and discontinuous extension of the
Generalised HMC algorithm (Horowitz, 1991).

Generalised HMC As discussed in Sec. 4.4.3, two changes are made to the conventional
HMC algorithm in Generalised HMC to generate an irreversible Markov chain on

7. Nonparametric Hamiltonian Monte Carlo 121

Rn × Rn, namely

1. a “corrupted” momentum is used to move round the state space; and

2. the direction is “persisted” if the proposal is accepted; otherwise it is negated.

Moreover, it can be presented as a composition of an iMCMC algorithm that “corrupts”
the momentum and a Persistent iMCMC algorithm that uses Hamiltonian dynamics
to find a new state with a persisting direction. We consider a similar approach in our
construction of a nonparametric and discontinuous extension of Generalised HMC.

State Density Let the state (x,v) ∈ Rn × Rn have density w′(x,v) ∶= w(x) w.r.t. the
normal distributionN2n. It is clear that this densityw′ is integrable (V1) and almost surely
terminating (V2). By setting the parameter index map to ιX(n) ∶= 2n and parameter
space X(n) ∶= Rn×Rn, the state (x,v) of length 2n is a n-dimensional parameter variable.
HMCw in Listing 4.11 is a SPCF implementation of w′.

Corrupt Momentum Given the current state (x0,v0) ∈ Rn×Rn with direction d0 ∈ 2, a
new momentum is drawn from the distributionNn(v0

√
1 − α2, α2) for a hyper-parameter

α ∈ [0,1]. Note that α is the degree of momentum persistence in the algorithm and can
be fine-tuned to deal with different models. α = 1 means a fresh momentum will be
sampled and hence making the resulting Generalised NP-DHMC identical to NP-DHMC.

This can be presented in the NP-iMCMC format with the auxiliary variable u sampled
from Nn(v0

√
1 − α2, α2) and the swap (((x0,v0), d0),u)↦ (((x0,u), d0),v0) as the

involution. Since the new state (x0,u) always has an instance in the support of w′,
and the acceptance ratio is

min{1, w
′(x0,u) ⋅ φ2n(x0,u) ⋅ pdf2(d0) ⋅ φn(v0 ∣ u

√
1 − α2, α2)

w′(x0,v0) ⋅ φ2n(x0,v0) ⋅ pdf2(d0) ⋅ φn(u ∣ v0
√

1 − α2, α2)
} = 1,

the extend step (Step 4) and the accept/reject step (Step 5) of the NP-iMCMC sampler can
both be skipped. This results in a sampler that has the SPCF implementation CorruptMom

in Listing 7.11. (This is identical to the one given in Listing 4.11 for GenHMC .)

Persistent NP-DHMC We introduce the Persistent NP-DHMC sampler using the Persis-
tent Multiple Step NP-iMCMC algorithm (Sec. 7.3.4) with the target densityw′ as follows.

Given a k0-dimensional parameter (x0,v0) ∈ X(n) ∶= Rn × Rn and direction d0 ∈

2, a dummy auxiliary variable u ∈ Y(n) ∶= Rn is sampled from K(n)((x0,v0), ⋅) ∶=

Nn to form an initial state ((x0,v0),u). Depending on the direction d0, either Int ×

122 7.4. Nonparametric Hamiltonian Monte Carlo

idRn or its inverse is performed on ((x0,v0),u), one update at a time, extending the
dimension as required. Say the initial state is extended to a n-dimensional ((x∗0,v∗0),u∗)
and is traversed to the n-dimensional new state ((x∗,v∗),u∗). Then, the instance
(x,v) ∈ Supp(w′) of the n-dimensional parameter (x∗,v∗) is returned alongside the
direction variable d0 with probability

min{1; w′(x,v) ⋅ φn(x∗) ⋅ φn(v∗)

w′(x0,v0) ⋅ φn(x∗0) ⋅ φn(v∗0)
}.

Note that the auxiliary variable u has no effect on the sampler. Hence, Listing 7.11
gives a SPCF implementation PersistentNPDHMC where the stochastic step (Step 2) is
skipped.

Generalised NP-DHMC Composing the sampler which “corrupts” the momentum
with the Persistent NP-DHMC sampler gives us the Generalised NP-DHMC algorithm,
which is a nonparametric extension of Generalised HMC. Listing 7.11 gives the SPCF
implementation GenNPHMC by composing CorruptMom and PersistentNPDHMC .

7.4.4 Look Ahead NP-HMC

Last but not least, we extend the Look Ahead HMC algorithm (Sohl-Dickstein et al.,
2014; Campos and Sanz-Serna, 2015) discussed in Sec. 4.4.3.

Look Ahead HMC Recall, the Look Ahead HMC sampler modifies the Generalised
HMC algorithm by performing extra leapfrog steps when the proposal state is rejected,
resulting in a high acceptance rate. There are two different ways of formulating the Look
Ahead HMC sampler. We can either use the Multiple HMC sampler, which draws a
random number in the stochastic step and then perform said number of steps; or the Extra
Chance HMC sampler, which after each set of leapfrog steps, determines whether to
perform an extra set of leapfrog steps in the acceptance step. To form a nonparametric and
discontinuous variant of Look Ahead HMC, we consider the Extra Chance HMC sampler.

Extra Chance NP-DHMC Similar to Generalised NP-DHMC, we formulate the Extra
Chance NP-DHMC sampler as a composition where we first corrupt the momentum
of the current parameter.

Then, given the corrupted k0-dimensional parameter (x0,v0) ∈ Rn×Rn and direction
d0 ∈ 2, we use the Persistent Multiple Step iMCMC algorithm (Sec. 7.3.4) to sample from
the target density w′(x,v) ∶= w(x). In the stochastic step, a random variable u ∈ [0,1)
is sampled from the uniform distribution U(0,1) to form an initial state ((x0,v0), u, d0).

7. Nonparametric Hamiltonian Monte Carlo 123

Listing 7.12: Pseudocode for the Look Ahead NP-DHMC algorithm� �
LookAheadNPDHMC((x0,v0),d0) = ExtraChanceNPDHMC(CorruptMom((x0,v0),d0))

def ExtraChanceNPDHMC((x0,v0),d0):
k0 = dim(x0) # initialisation step
u = uniform # stochastic step
start of multiple step
(x,v) = (x0,v0)
stop = False
j = 1
while not stop:
((xl,vl),(x,v)) = NPintegrator(x,v) if d0

else inverse_NPintegrator(x0,v0)
n = len(x)
update the initial state (x0,v0) using (xl,vl)
for i in range(len(x0),n):
(y,u) = momflip(NPintegratorslice(momflip(xl,vl),i+1,ep*(j-1)*L)) if d0

else NPintegratorslice((xl,vl),i+1,ep*(j-1)*L)
x0.append(y); v0.append(u)

if u > min{1,HMCw(x,v)/HMCw(x0,v0) *
pdfnormal[n](x)/pdfnormal[n](x0) *
pdfnormal[n](v)/pdfnormal[n](v0) }:

if j <= J: # perform an extra set of leapfrog steps
j = j + 1

else: # no leapfrog steps is performed
(x,v) = (x0,v0)
stop = True
d = d0

else: # enough leapfrog steps are performed
stop = True
d = not d0

return ((x,v), not d)� �
Similar to Extra Chance HMC, the first set Int of integrator steps is performed on

(x0,v0), extending the dimension as required. The acceptance ratio is then computed
and compared to the value of u. If u is lower than the acceptance ratio, the proposal
state is returned. Otherwise, an extra set Int is performed. This is repeated for at most
J times. If u is still higher than the acceptance ratio after J sets of integrator steps,
the initial state (x0,v0) is returned. This can be encoded as a set of bijections similar
to the one given for Extra Chance HMC.

Notice that if the dimension is extended in the j-th set of integrator steps, the
algorithm needs to back track and update the initial state (x0,v0) using the slice of
the involution (highlighted).

Combining ExtraChanceNPDHMC with CorruptMom , the LookAheadNPDHMC function
implements the Look Ahead NP-DHMC sampler in Listing 7.12.

124 7.5. Experiments

Table 7.1: Geometric distribution example: total variation difference from the ground truth,
averaged over 10 runs, and standard deviation. Each run: 103 samples with L ∈ {2, 5} leapfrog
steps of size ϵ = 0.1. with corruption parameter α ∈ {0.1, 0.5} and look-ahead K ∈ {1, 2}.

Corruption TVD from ground truth
L = 2 α = 0.1 0.0534 ± 0.0058
L = 2 α = 0.5 0.0570 ± 0.0115
L = 2 α = 1 0.0768 ± 0.0181
L = 5 α = 0.1 0.0461 ± 0.0083
L = 5 α = 0.5 0.0464 ± 0.0074
L = 5 α = 1 0.0524 ± 0.0069

7.5 Experiments

These NP-HMC variants are evaluated in (Mak et al., 2022) on the following bench-
marks: a model for the geometric distribution, a model involving a random walk, an
unbounded Gaussian mixture model, and a Dirichlet process mixture model. They are
all nonparametric models that can be defined in the SPCF language. We ran the NP-
DHMC, Generalised NP-DHMC parametrised by α ∈ [0,1], Lookahead NP-DHMC,
parametrised by α ∈ [0,1] and K ≥ 0, which is the number of extra set of leapfrog
steps to try before rejecting a proposed sample.

These algorithms are implemented by Fabian Zaiser in Python 1 and are published
in (Mak et al., 2022). He has kindly agreed to allow this thesis to use his code to
demonstrate the usefulness of these algorithms.

7.5.1 Geometric distribution

A classic example for the use of recursion in probabilistic programming is the construction
of the geometric distribution with parameter p. It can be specified by flipping a biased
coin with probability p. The pseudocode is given in Ex. 18 (ii).

We ran Generalised NP-DHMC on this problem with p = 0.2, L ∈ {2,5} sets of
leapfrog steps and different degree of corruption α ∈ [0,1]. The algorithm has no
problem jumping between the traces of different length (Fig. 7.1). As can be seen in
Table 7.1, Generalised NP-DHMC usually performs better with a high level of momentum
corruption (low α). In fact, the configuration L = 2, α = 0.1 is almost as good as L = 5
without corruption, despite taking 2.5 times less computing time.

1The source code is available at https://github.com/fzaiser/nonparametric-hmc.

https://github.com/fzaiser/nonparametric-hmc

7. Nonparametric Hamiltonian Monte Carlo 125

Figure 7.1: Geometric distribution: Length of traces of the persistent NP-DHMC algorithm with
corruption parameter α = 0.1.

0 2000 4000 6000 8000 10000
number of samples

0

500

1000

1500

2000

2500

3000

3500

ef
fe

ct
iv

e
sa

m
pl

e
siz

e

method
NP-DHMC
NP-Lookahead-DHMC (K=1)
NP-Lookahead-DHMC (K=2)
NP-DHMC pers. (α=0.1)
NP-Lookahead-DHMC pers. (α=0.1, K=1)
NP-Lookahead-DHMC pers. (α=0.1, K=2)

Figure 7.2: Random walk example: ESS in terms of number of samples, computed from 10
runs. Each run: 103 samples with L = 5 leapfrog steps of size ϵ = 0.1 with corruption parameter
α ∈ {0.1, 0.5} and look-ahead K ∈ {1, 2}.

126 7.5. Experiments

200 400 600 800 1000
number of samples

−678.0

−677.5

−677.0

−676.5

−676.0

−675.5

−675.0

lo
g

po
in

tw
ise

 p
re

di
ct

iv
e

de
ns

ity

NP-DHMC
NP-Lookahead-DHMC (K=1)
NP-Lookahead-DHMC (K=2)
NP-DHMC pers. (α=0.5)
NP-Lookahead-DHMC pers. (α=0.5, K=1)
NP-Lookahead-DHMC pers. (α=0.5, K=2)
ground truth

Figure 7.3: Gaussian mixture with Poisson prior: LPPD in terms of number of samples, averaged
over 10 runs. The shaded area is one standard deviation. Each run: 103 samples with L = 25
leapfrog steps of size ϵ = 0.05 with corruption parameter α = 0.5 and look-ahead K ∈ {1, 2}.

7.5.2 Random walk

Another typical nonparametric model is the random walk. Here we consider a one-sided
random walk model with the distance travelled as the observed data. The story goes
as follows. A pedestrian starts from a random point in [0, 3] and walks a uniformly
random distance of at most 1 in either direction, until they pass 0. Given a (noisily)
measured total distance of 1.1 travelled, what is the posterior distribution of the starting
point? The pseudocode is given in Sec. 3.2.2.

Fig. 7.2 shows the effective sample size (ESS) in terms of the number of samples
drawn, comparing NP-DHMC, Generalised NP-DHMC (α = 0.1) and Look-ahead NP-
DHMC (J ∈ {1,2}). We can see again that irreversible MCMC methods are clearly
advantageous. Look-ahead (J ∈ {1,2}) seems to give an additional boost on top. We
ran all these versions with the same computation time budget, which is why the lines
for J = 1,2 are cut off before the others.

7.5.3 Infinite Gaussian mixture model

We also consider the following infinite Gaussian mixture model where the number of
Gaussian distributions is drawn from a Poisson prior. The pseudocode is given by

7. Nonparametric Hamiltonian Monte Carlo 127

Figure 7.4: Gaussian mixture with Poisson prior: Length of traces.

� �
def iGMM():
K = Poisson(10)+1
for k in range(K):
mean[k] = [uniform(0,100)]*3

for d in Data:
score(pdfnormal(mean[k], [100]*3)(d))� �

A training data set is generated from a mixture of 9 components (the ground truth). We
ran NP-DHMC, Generalised NP-DHMC (α = 0.5) and Look Ahead NP-DHMC (α = 0.5
and J ∈ {1,2}). These algorithms can clearly jump between dimensions (Fig. 7.4).
Furthermore, we compute the log pointwise predictive density (LPPD) on a test data set
drawn from the same distribution as the training data. It is given in Fig. 7.3 in terms
of the number of samples. Note that the experiments with Look Ahead NP-DHMC
(K ∈ {1,2}) converge more quickly than the others.

7.5.4 Dirichlet process mixture model

Last but not least, we consider a Gaussian mixture whose weights are drawn from
a Dirichlet process.

The setup is the same as for the Poisson prior, and the results are shown in Fig. 7.5.
The version with corruption is worse at the start but obtains a better LPPD at the end.

128 7.5. Experiments

20 40 60 80 100 120 140
number of samples

−682

−681

−680

−679

−678

−677

−676

−675

−674

lo
g

po
in

tw
ise

 p
re

di
ct

iv
e

de
ns

ity

NP-DHMC
NP-Lookahead-DHMC (K=1)
NP-Lookahead-DHMC (K=2)
NP-DHMC pers. (α=0.5)
NP-Lookahead-DHMC pers. (α=0.5, K=1)
NP-Lookahead-DHMC pers. (α=0.5, K=2)
ground truth

Figure 7.5: Dirichlet process mixture: LPPD in terms of number of samples, averaged over 10
runs. The shaded area is one standard deviation. Each run: 150 samples with L = 20 leapfrog
steps of size ϵ = 0.05, with corruption parameter α = 0.5 and look-ahead K ∈ {1, 2}.

Look-ahead (K ∈ {1,2}) yields a small additional boost in the LPPD. It should be
noted that the variance over the 10 runs is larger in this example than in the previous
benchmarks, so the conclusion of this benchmark is less clear-cut.

Dominus illuminatio mea.

— Psalm 26

8
Conclusion

8.1 Summary

In Chapter 3, we introduced probabilistic programming: the idea of constructing prob-
abilistic models for Bayesian inference as computer programs where their posterior
distributions are computed automatically. To gain a theoretical understanding of this
programming paradigm, we discussed the Statistical Programming Computable Functions
(SPCF), a probabilistic variant of the infamous functional PCF language, where all
computable probabilistic models can be specified. We gave a simple small-step reduction
system for SPCF programs, and defined for each SPCF program its density function and
value measure. This theoretical understanding of SPCF gave us the means to discuss
features of the probabilistic programming paradigm. In particular, we identified a key
characteristic of the densities, namely that they must be tree representable (Prop. 6).

We then turned our attention to the computation of the posterior distributions of SPCF
programs in Chapter 4. Since calculating the exact posterior distribution for complex
models is often intractable in practice, it is necessary for probabilistic programming
languages to implement approximations like the Markov Chain Monte Carlo (MCMC)
inference methods, where the posterior is simulated via a Markov chain of samples.
We studied the recently suggested involutive Markov Chain Monte Carlo (iMCMC)
framework, and described the popular Hamiltonian Monte Carlo (HMC) and Reversible
Jump MCMC (RJMCMC) samplers as instances of iMCMC. Furthermore, we discussed
how discontinuous and irreversible extensions of HMC can be formed by applying
generic iMCMC techniques on it.

129

130 8.2. Evaluation

The HMC and RJMCMC samplers both have their advantages and limitations. While
HMC is easily extensible and works out-of-the-box, it can only compute the posterior
of probabilistic models with a finite number of random variables and is not suitable
for the nonparametric models that can be described in SPCF. On the other hand, if
we were to use the RJMCMC method on a nonparametric model, we are required to
define trans-dimensional (between-model) mappings which makes the resulting inference
algorithm model-specific.

This thesis proposed the Nonparametric Involutive Markov chain Monte Carlo (NP-
iMCMC) algorithm in Chapter 5, a general framework to design MCMC algorithms
for nonparametric probabilistic models specified in the SPCF language. Relying on
the tree representable structure of their density functions, the NP-iMCMC algorithm
automates the trans-dimensional movement in the sampling process and only requires
the specification of proposal distributions and mappings on fixed dimensional spaces
which are provided by iMCMC methods like HMC. As SPCF can specify all computable
probabilistic models, NP-iMCMC is applicable to virtually all useful probabilistic models.
Furthermore, techniques identified for iMCMC can also be applied on the NP-iMCMC
sampler to facilitates powerful extensions. With some minor assumptions, we in Chapter 6
justified the NP-iMCMC algorithm and proved that the generated Markov chain preserves
the target distribution of the given SPCF program.

Finally, we designed some MCMC algorithms for nonparametric models by extending
the conventional HMC algorithm, an instance of iMCMC, via the Multiple Step NP-
iMCMC framework described in Chapter 7. The resulting algorithm which we called the
Nonparametric HMC (NP-HMC) works out-of-the-box and can be applied to virtually
all useful probabilistic models. Furthermore, we applied some techniques to NP-HMC to
form discontinuous and nonparametric variants of Generalised HMC and Look Ahead
HMC with minimal effort.

8.2 Evaluation

Probabilistic programming makes Bayesian inference more accessible by embedding the
computation of the posterior inference into its analysis process. This frees up resource for
model designing and analysis. However, no single inference technique fits all scenarios.
In fact, the art of designing inference algorithms for probabilistic programming mostly
resides in an adequate trade-off amongst reliability, efficiency, applicability, adaptability,
simplicity of implementation, easiness to extend, and automation. Here, we provide
an assessment of how the proposed NP-HMC algorithm and its variants in Chapter 7
dealt with these desirable qualities.

8. Conclusion 131

Theoretically reliable Using the operational semantics of SPCF, we proved the correct-
ness of the general NP-iMCMC framework (Lem. 4) and hence NP-HMC and its variants.
This gives a theoretical guarantee that these inference algorithms work in the way we
expect, i.e. the generated Markov chain indeed simulates the posterior distribution.

Efficiency depends on automatic differentiation It is not a coincidence that the
HMC algorithm becomes more popular after computer systems implement the efficient
automatic differentiation method for computing gradients. The main computation of
HMC rests in the calculation of the gradient of the density function in each leapfrog step.
NP-HMC and its variants inherit this property, and hence their efficiencies depend on
that of computational differentiation. Note that the high acceptance ratio of NP-HMC
and variants make it more efficient than simple MCMC inferences.

Widely applicable The NP-HMC algorithm and variants are applicable to all almost
surely terminating and integrable probabilistic models, making it a generic option for
virtually all useful programs defined in a probabilistic programming language.

Fairly Adaptable NP-HMC and variants do not explicitly incorporate important
characteristics of specific target distribution. For instance, NP-HMC does not make
the most out of the modality of the distribution (unlike Reversible Jump MCMC (Green,
1995) and Divide, Conquer and Combine (Zhou et al., 2020)) or the type of random
variables being sampled (unlike Lightweight Metropolis-Hastings (Wingate et al., 2011)).
However, given a smooth target density, the Hamiltonian dynamics used by NP-HMC
traverses the target density in such a way that areas with high density are visited more
often and hence sampled more often.

Simple to implement Given that the host language has an efficient way to compute
gradients and can compile the density function of a probabilistic program, the implemen-
tation of the NP-HMC algorithm and variants are surprisingly straightforward.

Simple to extend Due to the success of the conventional HMC algorithm, it has been
extended for different tasks. Similarly the NP-HMC algorithm can also be extended.
In this thesis, we presented the NP-DHMC, a discontinuous variant of NP-HMC, the
Generalised NP-DHMC and Look Ahead NP-DHMC.

132 8.3. Future Direction

Almost automatic Once the involutions and auxiliary kernels in NP-iMCMC are set,
the resulting inference algorithm is fully automatic for probabilistic programs that might
have an unbounded number of random variables. For example after the hyperparameters
are tuned, NP-HMC and its variants are fully automatic and can jump between states
of varying dimensions.

8.3 Future Direction

This thesis has taken a step towards designing automatic inference algorithms for prob-
abilistic programming that can serve as a foundation for further development on com-
putation of posterior.

One can improve the theoretical reliability of NP-iMCMC by providing an ergodic
theory which discusses the conditions on which the Markov chain generated by NP-
iMCMC indeed converges to the target distribution almost surely. Here we have pursued
this task to some extent by proving that the stationary distribution of the Markov chain is
the target distribution, but it is evident that the ergodic theory needs further investigation.

To design a fully automatic trans-dimensional inference for probabilistic programs, it
would be beneficial to develop a nonparametric extension of the Non-U-Turn Sampler
(NUTS) (Hoffman and Gelman, 2014), which embeds the tuning of the hyperparameters
in the HMC algorithm. It would be interesting to examine NUTS as a iMCMC algorithm
and extend it using the NP-iMCMC framework.

One limitation of NP-iMCMC is its lack of adaptability to the characteristics of
probabilistic models. A future direction would be to consider correspondence between
the states when their dimensions are being changed in the extend step. This technique
should make the algorithm better adapt to the shape of the target distribution, resulting
in higher quality samples.

Finally, it would be interesting to implement the NP-iMCMC algorithm in a host
language that supports both probabilistic and differentiable constructs. This would make
designing trans-dimensional MCMC inferences more accessible.

Appendices

133

Bibliography

Hadi Mohasel Afshar and Justin Domke. Reflection, refraction, and hamiltonian
monte carlo. In Corinna Cortes, Neil D. Lawrence, Daniel D. Lee, Masashi
Sugiyama, and Roman Garnett, editors, Advances in Neural Information Process-
ing Systems 28: Annual Conference on Neural Information Processing Systems
2015, December 7-12, 2015, Montreal, Quebec, Canada, pages 3007–3015, 2015.
URL http://papers.nips.cc/paper/5801-reflection-refraction-and-
hamiltonian-monte-carlo.

Christophe Andrieu, Arnaud Doucet, and Roman Holenstein. Particle markov chain
monte carlo methods. Journal of the Royal Statistical Society. Series B (Statistical
Methodology), 72(3):269–342, 2010. ISSN 13697412, 14679868. URL http://
www.jstor.org/stable/40802151.

Robert J. Aumann. Borel structures for function spaces. Illinois J. Math., 5(4):614–630,
12 1961. URL https://projecteuclid.org:443/euclid.ijm/1255631584.

John W. Backus, Robert J. Beeber, Sheldon Best, Richard Goldberg, Lois M. Haibt,
Harlan L. Herrick, Robert A. Nelson, David Sayre, Peter B. Sheridan, H. Stern, Irving
Ziller, Robert A. Hughes, and R. Nutt. The FORTRAN automatic coding system. In
Morton M. Astrahan, editor, Papers presented at the 1957 western joint computer
conference: Techniques for reliability, IRE-AIEE-ACM 1957 (Western), Los Angeles,
California, USA, February 26-28, 1957, pages 188–198. ACM, 1957. doi: 10.1145/
1455567.1455599. URL https://doi.org/10.1145/1455567.1455599.

Eli Bingham, Jonathan P. Chen, Martin Jankowiak, Fritz Obermeyer, Neeraj Pradhan,
Theofanis Karaletsos, Rohit Singh, Paul A. Szerlip, Paul Horsfall, and Noah D.
Goodman. Pyro: Deep universal probabilistic programming. J. Mach. Learn. Res., 20:
28:1–28:6, 2019. URL http://jmlr.org/papers/v20/18-403.html.

David M Blei, Alp Kucukelbir, and Jon D McAuliffe. Variational inference: A review
for statisticians. Journal of the American statistical Association, 112(518):859–877,
2017.

Johannes Borgström, Ugo Dal Lago, Andrew D. Gordon, and Marcin Szymczak. A
lambda-calculus foundation for universal probabilistic programming. In Proceedings
of the 21st ACM SIGPLAN International Conference on Functional Programming,
ICFP 2016, Nara, Japan, September 18-22, 2016, pages 33–46, 2016.

Mónica F. Bugallo, Víctor Elvira, Luca Martino, David Luengo, Joaquín Míguez, and
Petar M. Djurić. Adaptive importance sampling: The past, the present, and the future.
IEEE Signal Processing Magazine, 34:60–79, 2017.

Cédric M. Campos and J.M. Sanz-Serna. Extra chance generalized hybrid monte carlo.
Journal of Computational Physics, 281:365–374, 2015. ISSN 0021-9991. doi: https:
//doi.org/10.1016/j.jcp.2014.09.037. URL https://www.sciencedirect.com/
science/article/pii/S0021999114006731.

135

http://papers.nips.cc/paper/5801-reflection-refraction-and-hamiltonian-monte-carlo
http://papers.nips.cc/paper/5801-reflection-refraction-and-hamiltonian-monte-carlo
http://www.jstor.org/stable/40802151
http://www.jstor.org/stable/40802151
https://projecteuclid.org:443/euclid.ijm/1255631584
https://doi.org/10.1145/1455567.1455599
http://jmlr.org/papers/v20/18-403.html
https://www.sciencedirect.com/science/article/pii/S0021999114006731
https://www.sciencedirect.com/science/article/pii/S0021999114006731

136 Bibliography

Eric Cances, Frédéric Legoll, and Gabriel Stoltz. Theoretical and numerical comparison
of some sampling methods for molecular dynamics. ESAIM: Mathematical Modelling
and Numerical Analysis, 41:351–389, 03 2007. doi: 10.1051/m2an:2007014.

Bradley P. Carlin and Siddhartha Chib. Bayesian model choice via markov chain monte
carlo methods. Journal of the Royal Statistical Society. Series B (Methodological),
57(3):473–484, 1995. ISSN 00359246. URL http://www.jstor.org/stable/
2346151.

John Chavis, Amy Cochran, and Christopher Earls. Cu-msdsp: A flexible parallelized
reversible jump markov chain monte carlo method. SoftwareX, 14:100664, 06 2021.
doi: 10.1016/j.softx.2021.100664.

Ryan Culpepper and Andrew Cobb. Contextual equivalence for probabilistic programs
with continuous random variables and scoring. In Hongseok Yang, editor, Program-
ming Languages and Systems - 26th European Symposium on Programming, ESOP
2017, Held as Part of the European Joint Conferences on Theory and Practice of
Software, ETAPS 2017, Uppsala, Sweden, April 22-29, 2017, Proceedings, volume
10201 of Lecture Notes in Computer Science, pages 368–392. Springer, 2017. doi:
10.1007/978-3-662-54434-1/_14. URL https://doi.org/10.1007/978-3-662-
54434-1_14.

Marco Cusumano-Towner, Alexander K. Lew, and Vikash K. Mansinghka. Automating
involutive mcmc using probabilistic and differentiable programming, 2020.

Marco F. Cusumano-Towner, Feras A. Saad, Alexander K. Lew, and Vikash K. Mans-
inghka. Gen: a general-purpose probabilistic programming system with programmable
inference. In Kathryn S. McKinley and Kathleen Fisher, editors, Proceedings
of the 40th ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI 2019, Phoenix, AZ, USA, June 22-26, 2019, pages 221–236.
ACM, 2019.

Vincent Danos and Thomas Ehrhard. Probabilistic coherence spaces as a model of
higher-order probabilistic computation. Inf. Comput., 209(6):966–991, 2011. doi:
10.1016/j.ic.2011.02.001. URL https://doi.org/10.1016/j.ic.2011.02.001.

Luc Devroye. Discrete Univariate Distributions, pages 485–553. Springer-Verlag, New
York, NJ, USA, 1986.

Arnaud Doucet, Nando de Freitas, and Neil Gordon. An Introduction to Sequential Monte
Carlo Methods, pages 3–14. Springer New York, New York, NY, 2001.

Thomas Ehrhard, Michele Pagani, and Christine Tasson. The computational meaning of
probabilistic coherence spaces. In Proceedings of the 26th Annual IEEE Symposium on
Logic in Computer Science, LICS 2011, June 21-24, 2011, Toronto, Ontario, Canada,
pages 87–96, 2011. doi: 10.1109/LICS.2011.29. URL https://doi.org/10.1109/
LICS.2011.29.

Thomas Ehrhard, Christine Tasson, and Michele Pagani. Probabilistic coherence spaces
are fully abstract for probabilistic PCF. In Suresh Jagannathan and Peter Sewell, editors,
The 41st Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’14, San Diego, CA, USA, January 20-21, 2014, pages 309–320.
ACM, 2014. doi: 10.1145/2535838.2535865. URL https://doi.org/10.1145/
2535838.2535865.

Thomas Ehrhard, Michele Pagani, and Christine Tasson. Full abstraction for probabilistic
PCF. CoRR, abs/1511.01272, 2015. URL http://arxiv.org/abs/1511.01272.

http://www.jstor.org/stable/2346151
http://www.jstor.org/stable/2346151
https://doi.org/10.1007/978-3-662-54434-1_14
https://doi.org/10.1007/978-3-662-54434-1_14
https://doi.org/10.1016/j.ic.2011.02.001
https://doi.org/10.1109/LICS.2011.29
https://doi.org/10.1109/LICS.2011.29
https://doi.org/10.1145/2535838.2535865
https://doi.org/10.1145/2535838.2535865
http://arxiv.org/abs/1511.01272

Bibliography 137

Thomas Ehrhard, Michele Pagani, and Christine Tasson. Measurable cones and stable,
measurable functions: a model for probabilistic higher-order programming. PACMPL,
2(POPL):59:1–59:28, 2018.

Víctor Elvira, Luca Martino, David Luengo, and Mónica F. Bugallo. Generalized
Multiple Importance Sampling. Statistical Science, 34(1):129 – 155, 2019. doi:
10.1214/18-STS668. URL https://doi.org/10.1214/18-STS668.

D. H Fremlin. Measure theory, volume two. Torres Fremlin, Colchester, 2010. ISBN
978-0-9538129-7-4.

Philippe Gagnon and Arnaud Doucet. Nonreversible jump algorithms for bayesian nested
model selection. Journal of Computational and Graphical Statistics, 30:1–12, 11
2020. doi: 10.1080/10618600.2020.1826955.

Hong Ge, Kai Xu, and Zoubin Ghahramani. Turing: A language for flexible probabilistic
inference. In Amos Storkey and Fernando Perez-Cruz, editors, Proceedings of
the Twenty-First International Conference on Artificial Intelligence and Statistics,
volume 84 of Proceedings of Machine Learning Research, pages 1682–1690. PMLR,
09–11 Apr 2018.

Andrew Gelman, Daniel Lee, and Jiqiang Guo. Stan: A probabilistic programming
language for bayesian inference and optimization. Journal of Educational and
Behavioral Statistics, 40(5):530–543, 2015. doi: 10.3102/1076998615606113.

Michèle Giry. A categorical approach to probability theory. In B. Banaschewski, editor,
Categorical Aspects of Topology and Analysis, pages 68–85, Berlin, Heidelberg, 1982.
Springer Berlin Heidelberg. ISBN 978-3-540-39041-1.

Simon J. Godsill. On the relationship between markov chain monte carlo methods for
model uncertainty. Journal of Computational and Graphical Statistics, 10(2):230–248,
2001. ISSN 10618600. URL http://www.jstor.org/stable/1391010.

Simon J. Godsill. Proposal densities and product-space models. In Nils Lid Hjort
Peter J. Green and Sylvia Richardson, editors, Highly Structured Stochastic Systems,
volume 27 of Oxford Statistical Science Series, chapter 6A, pages 199–203. Oxford
University Press, 2 edition, 2003.

Noah D Goodman and Andreas Stuhlmüller. The Design and Implementation of
Probabilistic Programming Languages. http://dippl.org, 2014. Accessed: 2021-
2-4.

Noah D. Goodman, Vikash K. Mansinghka, Daniel M. Roy, Keith Bonawitz,
and Joshua B. Tenenbaum. Church: a language for generative models. In
David A. McAllester and Petri Myllymäki, editors, UAI 2008, Proceedings
of the 24th Conference in Uncertainty in Artificial Intelligence, Helsinki,
Finland, July 9-12, 2008, pages 220–229. AUAI Press, 2008. URL
https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1&smnu=
2&article_id=1346&proceeding_id=24.

Andrew D. Gordon, Thomas A. Henzinger, Aditya V. Nori, and Sriram K. Rajamani. Prob-
abilistic programming. In Proceedings of the on Future of Software Engineering, FOSE
2014, Hyderabad, India, May 31 - June 7, 2014, pages 167–181, 2014. doi: 10.1145/
2593882.2593900. URL http://doi.acm.org/10.1145/2593882.2593900.

N.J. Gordon. Novel approach to nonlinear/non-gaussian bayesian state estimation. IEE
Proceedings F (Radar and Signal Processing), 140:107–113(6), April 1993. ISSN
0956-375X.

https://doi.org/10.1214/18-STS668
http://www.jstor.org/stable/1391010
http://dippl.org
https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1&smnu=2&article_id=1346&proceeding_id=24
https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1&smnu=2&article_id=1346&proceeding_id=24
http://doi.acm.org/10.1145/2593882.2593900

138 Bibliography

Peter J. Green. Reversible jump Markov chain Monte Carlo computation and Bayesian
model determination. Biometrika, 82(4):711–732, 12 1995. ISSN 0006-3444. doi:
10.1093/biomet/82.4.711. URL https://doi.org/10.1093/biomet/82.4.711.

Peter J. Green. Trans-dimensional markov chain monte carlo. In Nils Lid Hjort
Peter J. Green and Sylvia Richardson, editors, Highly Structured Stochastic Systems,
volume 27 of Oxford Statistical Science Series, chapter 6, pages 179–198. Oxford
University Press, 2 edition, 2003.

Peter J. Green and David I. Hastie. Reversible jump mcmc. 2009.

Ulf Grenander and Michael I. Miller. Representations of knowledge in
complex systems. Journal of the Royal Statistical Society: Series B
(Methodological), 56(4):549–581, 1994. doi: https://doi.org/10.1111/j.2517-
6161.1994.tb02000.x. URL https://rss.onlinelibrary.wiley.com/doi/
abs/10.1111/j.2517-6161.1994.tb02000.x.

W. K. Hastings. Monte carlo sampling methods using markov chains and their applications.
Biometrika, 57:97–109, April 1970.

Daniel Heck, Antony Overstall, Quentin Gronau, and Eric-Jan Wagenmakers. Quantifying
uncertainty in transdimensional markov chain monte carlo using discrete markov
models. Statistics and Computing, 29, 07 2019. doi: 10.1007/s11222-018-9828-0.

Chris Heunen, Ohad Kammar, Sam Staton, and Hongseok Yang. A Convenient
Category for Higher-Order Probability Theory. 2017. URL http://arxiv.org/
abs/1701.02547.

Matthew D. Hoffman and Andrew Gelman. The no-u-turn sampler: adaptively setting
path lengths in hamiltonian monte carlo. J. Mach. Learn. Res., 15(1):1593–1623, 2014.
URL http://dl.acm.org/citation.cfm?id=2638586.

Alan M. Horowitz. A generalized guided monte carlo algorithm. Physics Let-
ters B, 268(2):247–252, 1991. ISSN 0370-2693. doi: https://doi.org/10.1016/
0370-2693(91)90812-5. URL https://www.sciencedirect.com/science/
article/pii/0370269391908125.

Dexter Kozen. Semantics of probabilistic programs. In 20th Annual Symposium on
Foundations of Computer Science, San Juan, Puerto Rico, 29-31 October 1979, pages
101–114, 1979.

Thomas Leventis. Probabilistic böhm trees and probabilistic separation. In Proceedings
of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2018,
Oxford, UK, July 09-12, 2018, pages 649–658, 2018. doi: 10.1145/3209108.3209126.
URL http://doi.acm.org/10.1145/3209108.3209126.

Yicheng Luo, Antonio Filieri, and Yuan Zhou. Symbolic parallel adaptive importance
sampling for probabilistic program analysis. In Diomidis Spinellis, Georgios Gousios,
Marsha Chechik, and Massimiliano Di Penta, editors, ESEC/FSE ’21: 29th ACM
Joint European Software Engineering Conference and Symposium on the Foundations
of Software Engineering, Athens, Greece, August 23-28, 2021, pages 1166–1177.
ACM, 2021. doi: 10.1145/3468264.3468593. URL https://doi.org/10.1145/
3468264.3468593.

Carol Mak, C.-H. Luke Ong, Hugo Paquet, and Dominik Wagner. Densities of almost
surely terminating probabilistic programs are differentiable almost everywhere. In
Nobuko Yoshida, editor, Programming Languages and Systems - 30th European Sym-
posium on Programming, ESOP 2021, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2021, Luxembourg City, Luxembourg,

https://doi.org/10.1093/biomet/82.4.711
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-6161.1994.tb02000.x
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-6161.1994.tb02000.x
http://arxiv.org/abs/1701.02547
http://arxiv.org/abs/1701.02547
http://dl.acm.org/citation.cfm?id=2638586
https://www.sciencedirect.com/science/article/pii/0370269391908125
https://www.sciencedirect.com/science/article/pii/0370269391908125
http://doi.acm.org/10.1145/3209108.3209126
https://doi.org/10.1145/3468264.3468593
https://doi.org/10.1145/3468264.3468593

Bibliography 139

March 27 - April 1, 2021, Proceedings, volume 12648 of Lecture Notes in Computer
Science, pages 432–461. Springer, 2021a. doi: 10.1007/978-3-030-72019-3/_16.
URL https://doi.org/10.1007/978-3-030-72019-3_16.

Carol Mak, Fabian Zaiser, and Luke Ong. Nonparametric hamiltonian monte carlo.
In Marina Meila and Tong Zhang, editors, Proceedings of the 38th International
Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event, volume
139 of Proceedings of Machine Learning Research, pages 7336–7347. PMLR, 2021b.
URL http://proceedings.mlr.press/v139/mak21a.html.

Carol Mak, Fabian Zaiser, and Luke Ong. Nonparametric involutive markov chain
monte carlo. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvári,
Gang Niu, and Sivan Sabato, editors, International Conference on Machine Learning,
ICML 2022, 17-23 July 2022, Baltimore, Maryland, USA, volume 162 of Proceedings
of Machine Learning Research, pages 14802–14859. PMLR, 2022. URL https:
//proceedings.mlr.press/v162/mak22a.html.

Vikash K. Mansinghka, Daniel Selsam, and Yura N. Perov. Venture: a higher-order prob-
abilistic programming platform with programmable inference. CoRR, abs/1404.0099,
2014. URL http://arxiv.org/abs/1404.0099.

Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Augusta H. Teller,
and Edward Teller. Equation of state calculations by fast computing machines. The
Journal of Chemical Physics, 21(6):1087–1092, 1953. doi: 10.1063/1.1699114. URL
https://doi.org/10.1063/1.1699114.

T. Minka, J.M. Winn, J.P. Guiver, Y. Zaykov, D. Fabian, and J. Bronskill. /Infer.NET 0.3,
2018. Microsoft Research Cambridge. http://dotnet.github.io/infer.

Praveen Narayanan and Chung-chieh Shan. Symbolic disintegration with a variety of base
measures. ACM Transactions on Programming Languages and Systems (TOPLAS), 42
(2):1–60, 2020.

Radford M. Neal. Philosophy of bayesian inference. http://www.cs.toronto.edu/
~radford/res-bayes-ex.html, 1998. Accessed: 2021-09-23.

Radford M. Neal. Mcmc using hamiltonian dynamics. In Steve Brooks, Andrew Gelman,
Galin Jones, and Xiao-Li Meng, editors, Handbook of Markov Chain Monte Carlo,
chapter 5. Chapman & Hall CRC Press, 2011.

Kirill Neklyudov, Max Welling, Evgenii Egorov, and Dmitry P. Vetrov. Involutive
MCMC: a unifying framework. In Proceedings of the 37th International Conference
on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event, volume 119 of
Proceedings of Machine Learning Research, pages 7273–7282. PMLR, 2020. URL
http://proceedings.mlr.press/v119/neklyudov20a.html.

Akihiko Nishimura, David B Dunson, and Jianfeng Lu. Discontinuous hamiltonian
monte carlo for discrete parameters and discontinuous likelihoods. Biometrika, 107
(2):365–380, Mar 2020. ISSN 1464-3510. doi: 10.1093/biomet/asz083. URL
http://dx.doi.org/10.1093/biomet/asz083.

Sungwoo Park, Frank Pfenning, and Sebastian Thrun. A probabilistic language based
upon sampling functions. In Proceedings of the 32nd ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, POPL 2005, Long Beach, California,
USA, January 12-14, 2005, pages 171–182, 2005. doi: 10.1145/1040305.1040320.
URL http://doi.acm.org/10.1145/1040305.1040320.

https://doi.org/10.1007/978-3-030-72019-3_16
http://proceedings.mlr.press/v139/mak21a.html
https://proceedings.mlr.press/v162/mak22a.html
https://proceedings.mlr.press/v162/mak22a.html
http://arxiv.org/abs/1404.0099
https://doi.org/10.1063/1.1699114
http://www.cs.toronto.edu/~radford/res-bayes-ex.html
http://www.cs.toronto.edu/~radford/res-bayes-ex.html
http://proceedings.mlr.press/v119/neklyudov20a.html
http://dx.doi.org/10.1093/biomet/asz083
http://doi.acm.org/10.1145/1040305.1040320

140 Bibliography

Gordon D. Plotkin. LCF considered as a programming language. Theor. Comput. Sci., 5
(3):223–255, 1977. doi: 10.1016/0304-3975(77)90044-5. URL https://doi.org/
10.1016/0304-3975(77)90044-5.

Norman Ramsey and Avi Pfeffer. Stochastic lambda calculus and monads of probability
distributions. In Conference Record of POPL 2002: The 29th SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, Portland, OR, USA, January
16-18, 2002, pages 154–165, 2002. doi: 10.1145/503272.503288. URL http:
//doi.acm.org/10.1145/503272.503288.

Rajesh Ranganath, Sean Gerrish, and David M. Blei. Black box variational inference.
In Proceedings of the Seventeenth International Conference on Artificial Intelligence
and Statistics, AISTATS 2014, Reykjavik, Iceland, April 22-25, 2014, volume 33 of
JMLR Workshop and Conference Proceedings, pages 814–822. JMLR.org, 2014. URL
http://proceedings.mlr.press/v33/ranganath14.html.

Sylvia. Richardson and Peter J. Green. On bayesian analysis of mixtures with an unknown
number of components (with discussion). Journal of the Royal Statistical Society:
Series B (Statistical Methodology), 59(4):731–792, 1997. doi: https://doi.org/10.1111/
1467-9868.00095. URL https://rss.onlinelibrary.wiley.com/doi/abs/
10.1111/1467-9868.00095.

Daniel Ritchie, Andreas Stuhlmüller, and Noah D. Goodman. C3: lightweight in-
crementalized MCMC for probabilistic programs using continuations and callsite
caching. In Arthur Gretton and Christian C. Robert, editors, Proceedings of the 19th
International Conference on Artificial Intelligence and Statistics, AISTATS 2016, Cadiz,
Spain, May 9-11, 2016, volume 51 of JMLR Workshop and Conference Proceedings,
pages 28–37. JMLR.org, 2016. URL http://proceedings.mlr.press/v51/
ritchie16.html.

Nasser Saheb-Djahromi. Probabilistic lcf. In International Symposium on Mathematical
Foundations of Computer Science, pages 442–451. Springer, 1978.

John Salvatier, Thomas V. Wiecki, and Christopher Fonnesbeck. Probabilistic program-
ming in python using pymc3. PeerJ Comput. Sci., 2:e55, 2016.

Adam Ścibior, Ohad Kammar, Matthijs Vákár, Sam Staton, Hongseok Yang, Yufei Cai,
Klaus Ostermann, Sean K Moss, Chris Heunen, and Zoubin Ghahramani. Denotational
validation of higher-order bayesian inference. Proceedings of the ACM on Programming
Languages, 2(POPL):60, 2017.

Dana S. Scott. A type-theoretical alternative to iswim, cuch, OWHY. Theor. Comput.
Sci., 121(1&2):411–440, 1993.

Kurt Sieber. Relating full abstraction results for different programming languages.
In Foundations of Software Technology and Theoretical Computer Science, Tenth
Conference, Bangalore, India, December 17-19, 1990, Proceedings, pages 373–387,
1990.

Jascha Sohl-Dickstein, Mayur Mudigonda, and Michael Robert DeWeese. Hamiltonian
monte carlo without detailed balance. In ICML, 2014.

Sam Staton. Commutative semantics for probabilistic programming. In Hongseok
Yang, editor, Programming Languages and Systems - 26th European Symposium
on Programming, ESOP 2017, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2017, Uppsala, Sweden, April 22-29, 2017,
Proceedings, volume 10201 of Lecture Notes in Computer Science, pages 855–879.
Springer, 2017.

https://doi.org/10.1016/0304-3975(77)90044-5
https://doi.org/10.1016/0304-3975(77)90044-5
http://doi.acm.org/10.1145/503272.503288
http://doi.acm.org/10.1145/503272.503288
http://proceedings.mlr.press/v33/ranganath14.html
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/1467-9868.00095
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/1467-9868.00095
http://proceedings.mlr.press/v51/ritchie16.html
http://proceedings.mlr.press/v51/ritchie16.html

Bibliography 141

Sam Staton, Hongseok Yang, Frank D. Wood, Chris Heunen, and Ohad Kammar.
Semantics for probabilistic programming: higher-order functions, continuous dis-
tributions, and soft constraints. In Martin Grohe, Eric Koskinen, and Natarajan
Shankar, editors, Proceedings of the 31st Annual ACM/IEEE Symposium on Logic
in Computer Science, LICS ’16, New York, NY, USA, July 5-8, 2016, pages 525–534.
ACM, 2016. ISBN 978-1-4503-4391-6. doi: 10.1145/2933575.2935313. URL
https://doi.org/10.1145/2933575.2935313.

Matthew Stephens. Bayesian analysis of mixture models with an unknown number of
components- an alternative to reversible jump methods. Annals of Statistics, 28:40–74,
2000.

Luke Tierney. Markov chains for exploring posterior distributions. Ann. Statist., 22
(4):1701–1728, 12 1994. doi: 10.1214/aos/1176325750. URL https://doi.org/
10.1214/aos/1176325750.

David Tolpin, Jan-Willem van de Meent, Brooks Paige, and Frank D. Wood. Output-
sensitive adaptive metropolis-hastings for probabilistic programs. In Annalisa Appice,
Pedro Pereira Rodrigues, Vítor Santos Costa, João Gama, Alípio Jorge, and Carlos
Soares, editors, Machine Learning and Knowledge Discovery in Databases - European
Conference, ECML PKDD 2015, Porto, Portugal, September 7-11, 2015, Proceedings,
Part II, volume 9285 of Lecture Notes in Computer Science, pages 311–326. Springer,
2015. doi: 10.1007/978-3-319-23525-7/_19. URL https://doi.org/10.1007/
978-3-319-23525-7_19.

Matthijs Vákár, Ohad Kammar, and Sam Staton. A domain theory for statistical
probabilistic programming. Proc. ACM Program. Lang., 3(POPL):36:1–36:29, 2019.
doi: 10.1145/3290349. URL https://doi.org/10.1145/3290349.

Matthijs Vákár and Luke Ong. On s-finite measures and kernels, 2018.

Mitchell Wand, Ryan Culpepper, Theophilos Giannakopoulos, and Andrew Cobb.
Contextual equivalence for a probabilistic language with continuous random variables
and recursion. PACMPL, 2(ICFP):87:1–87:30, 2018.

David Williams. Probability with Martingales. Cambridge University Press, 1991. doi:
10.1017/CBO9780511813658.

David Wingate, Andreas Stuhlmüller, and Noah D. Goodman. Lightweight implementa-
tions of probabilistic programming languages via transformational compilation. In
Geoffrey J. Gordon, David B. Dunson, and Miroslav Dudík, editors, Proceedings of the
Fourteenth International Conference on Artificial Intelligence and Statistics, AISTATS
2011, Fort Lauderdale, USA, April 11-13, 2011, volume 15 of JMLR Proceedings,
pages 770–778. JMLR.org, 2011.

Frank D. Wood, Jan-Willem van de Meent, and Vikash Mansinghka. A new approach to
probabilistic programming inference. In Proceedings of the Seventeenth International
Conference on Artificial Intelligence and Statistics, AISTATS 2014, Reykjavik, Iceland,
April 22-25, 2014, volume 33 of JMLR Workshop and Conference Proceedings,
pages 1024–1032. JMLR.org, 2014. URL http://proceedings.mlr.press/v33/
wood14.html.

Lingfeng Yang, Pat Hanrahan, and Noah D. Goodman. Generating efficient MCMC
kernels from probabilistic programs. In Proceedings of the Seventeenth International
Conference on Artificial Intelligence and Statistics, AISTATS 2014, Reykjavik, Iceland,
April 22-25, 2014, volume 33 of JMLR Workshop and Conference Proceedings,
pages 1068–1076. JMLR.org, 2014. URL http://proceedings.mlr.press/v33/
yang14d.html.

https://doi.org/10.1145/2933575.2935313
https://doi.org/10.1214/aos/1176325750
https://doi.org/10.1214/aos/1176325750
https://doi.org/10.1007/978-3-319-23525-7_19
https://doi.org/10.1007/978-3-319-23525-7_19
https://doi.org/10.1145/3290349
http://proceedings.mlr.press/v33/wood14.html
http://proceedings.mlr.press/v33/wood14.html
http://proceedings.mlr.press/v33/yang14d.html
http://proceedings.mlr.press/v33/yang14d.html

142 Bibliography

Guangyao Zhou. Mixed hamiltonian monte carlo for mixed discrete and continuous vari-
ables. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan,
and Hsuan-Tien Lin, editors, Advances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020,
December 6-12, 2020, virtual, 2020. URL https://proceedings.neurips.cc/
paper/2020/hash/c6a01432c8138d46ba39957a8250e027-Abstract.html.

Yuan Zhou, Bradley J. Gram-Hansen, Tobias Kohn, Tom Rainforth, Hongseok Yang, and
Frank Wood. LF-PPL: A low-level first order probabilistic programming language for
non-differentiable models. In Kamalika Chaudhuri and Masashi Sugiyama, editors,
The 22nd International Conference on Artificial Intelligence and Statistics, AISTATS
2019, 16-18 April 2019, Naha, Okinawa, Japan, volume 89 of Proceedings of Machine
Learning Research, pages 148–157. PMLR, 2019.

Yuan Zhou, Hongseok Yang, Yee Whye Teh, and Tom Rainforth. Divide, conquer,
and combine: a new inference strategy for probabilistic programs with stochastic
support. In Proceedings of the 37th International Conference on Machine Learn-
ing, ICML 2020, 13-18 July 2020, Virtual Event, volume 119 of Proceedings
of Machine Learning Research, pages 11534–11545. PMLR, 2020. URL http:
//proceedings.mlr.press/v119/zhou20e.html.

https://proceedings.neurips.cc/paper/2020/hash/c6a01432c8138d46ba39957a8250e027-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/c6a01432c8138d46ba39957a8250e027-Abstract.html
http://proceedings.mlr.press/v119/zhou20e.html
http://proceedings.mlr.press/v119/zhou20e.html

	List of Figures
	Introduction
	A Brief Introduction to Measure Theory
	Measurable space
	Measurable function
	Measure
	Pushforward measure
	Product measure

	Integration
	Definition
	Integration by substitution
	Radon-Nikodym Derivative
	Commutativity of Integrals
	Kernel

	Probabilistic Programming for Bayesian Inference
	Bayesian Machine Learning
	Bayesian Framework
	Challenges of Bayesian Machine Learning

	Statistical PCF
	Syntax
	SPCF for Bayesian Inference

	Properties of SPCF
	Operational Semantics
	Tree Representable Functions
	Almost Sure Termination and Integrability

	Other Probabilistic Programming Languages

	Markov Chain Monte Carlo
	An Introduction to Markov Chains Monte Carlo
	Involutive MCMC Algorithms
	Correctness of iMCMC Algorithm
	Pseudocode of iMCMC Algorithm
	Unified View of MCMC Algorithms

	Techniques on iMCMC Algorithms
	State-dependent iMCMC Mixture
	Direction iMCMC Algorithm
	Persistent iMCMC Algorithm

	Case Study: Hamiltonian Monte Carlo
	The Hamiltonian Monte Carlo Algorithm
	Discontinuous Hamiltonian Monte Carlo
	Irreversible HMC Algorithms

	Case Study: Reversible Jump MCMC
	The Reversible Jump MCMC Algorithm
	Instances and Generalisations of RJMCMC
	Automating RJMCMC

	Approximate Inferences for Probabilistic Programming
	Importance Sampling
	Particle Methods
	Optimisation Methods
	Lightweight Metropolis-Hastings
	Divide, Conquer and Combine
	MCMC Methods

	Nonparametric Involutive MCMC
	The Challenge MCMC Samplers Face
	State Spaces
	Entropy Space
	Parameter Space
	Auxiliary Space
	State Space

	Inputs of the NP-iMCMC Algorithm
	Target Density Function
	Auxiliary kernels
	Involutions

	The NP-iMCMC Algorithm
	Movement Between Samples of Varying Dimensions
	Pseudocode of NP-iMCMC Algorithm
	Nonparametric Metropolis-Hastings

	Techniques on NP-iMCMC Algorithms
	State-dependent NP-iMCMC Mixture
	Direction NP-iMCMC Algorithm
	Persistent NP-iMCMC Algorithm

	Related Work

	Correctness of Nonparametric Involutive MCMC
	Almost Sure Termination
	Invariant State Distribution
	State Distribution
	Equivalent Program
	Invariant Distribution

	Marginalised Markov Chains

	Nonparametric Hamiltonian Monte Carlo
	Motivation
	Slice function
	Example (HMC)

	Multiple Step NP-iMCMC
	The Multiple Step NP-iMCMC Algorithm
	Pseudocode of Multiple Step NP-iMCMC Algorithm
	Correctness of Multiple Step NP-iMCMC Algorithm
	Techniques on Multiple Step NP-iMCMC

	Nonparametric Hamiltonian Monte Carlo
	Nonparametric HMC
	Nonparametric Discontinuous HMC (NP-DHMC)
	Generalised NP-DHMC
	Look Ahead NP-HMC

	Experiments
	Geometric distribution
	Random walk
	Infinite Gaussian mixture model
	Dirichlet process mixture model

	Conclusion
	Summary
	Evaluation
	Future Direction

	Bibliography

