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A B S T R A C T

Background: Despite knowledge of qualitative changes that occur on ultrasound in tendinopathy, there is
currently no objective and reliable means to quantify the severity or prognosis of tendinopathy on ultrasound.
Objective: The primary objective of this study is to produce a quantitative and automated means of inferring
potential structural changes in tendinopathy by developing and implementing an algorithm which performs a
texture based segmentation of tendon ultrasound (US) images.
Method: A model-based segmentation approach is used which combines Gaussian mixture models, Markov
random field theory and grey-level co-occurrence (GLCM) features. The algorithm is trained and tested on
49 longitudinal B-mode ultrasound images of the Achilles tendons which are labelled as tendinopathic (24) or
healthy (25). Hyperparameters are tuned, using a training set of 25 images, to optimise a decision tree based
classification of the images from texture class proportions. We segment and classify the remaining test images
using the decision tree.
Results: Our approach successfully detects a difference in the texture profiles of tendinopathic and healthy
tendons, with 22/24 of the test images accurately classified based on a simple texture proportion cut-off
threshold. Results for the tendinopathic images are also collated to gain insight into the topology of structural
changes that occur with tendinopathy. It is evident that distinct textures, which are predominantly present in
tendinopathic tendons, appear most commonly near the transverse boundary of the tendon, though there was
a large variability among diseased tendons.
Conclusion: The GLCM based segmentation of tendons under ultrasound resulted in distinct segmentations
between healthy and tendinopathic tendons and provides a potential tool to objectively quantify damage in
tendinopathy.
1. Introduction

Tendinopathy is a painful and chronic condition of the tendon
for which there is no gold standard imaging approach to quantify
disease severity or prognosis [1]. Ultrasound (US) imaging is the most
common and accessible imaging modality used to assess tendinopa-
thy [2]. On US, tendinopathy is characterised by segments within the
tendon displaying a deviation from the homogeneous grey scale texture
seen in healthy tendons. A healthy tendon profile consists of parallel
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echogenic lines with thin hypoechoic spaces between [3]. Whilst the
absence of these imaging changes is helpful in excluding a diagnosis of
tendinopathy, conventional US methods are unable to reliably quantify
microstructural changes which correlate with pain or prognosis [1].
Pain is known to be complex and there may be many contributors be-
yond microstructural changes which may explain the poor correlation.
However, US imaging is affected by speckle and acoustic shadowing,
is operator-dependent, and image analyses are classically performed
subjectively [1]. Due to the current limitations of conventional US,
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further investigation into quantitative and objective tools is warranted
to refute or challenge the premise that imaging and pain are minimally
correlated.

Ultrasound Tissue Characterisation (UTC) is the only method of
quantitatively analysing and segmenting static US images of tendons
which has been widely adopted by the clinical research community
[4–6]. The algorithm for UTC compares grey level variability between
adjacent transverse images and subsequently segments the tendon tis-
sue on US into four distinct categories, based on the continuity of
greyscale values across images [4]. A series of transverse images are
taken along the entire length of the tendon at regular intervals, classi-
cally 0.2 mm apart. It is assumed that low variability in pixel intensities
across corresponding points in contiguous transverse images represents
healthy continuous collagen alignment [4,7]. Whilst UTC has become a
popular method for tendon image analysis among clinical researchers,
findings suggest limited diagnostic and prognostic capabilities [8,9].
In a study on 179 male football players, UTC provided no additional
diagnostic or prognostic benefit over B-mode US [9]. A potential expla-
nation for these findings may be that pixel intensity-based approaches
for image segmentation, such as UTC, are often more sensitive to noise
than filtering or statistical model-based approaches [10]. UTC also
requires specialised and expensive US equipment, and a large number
(100s) of images are required to span the entire tendon length [11].

Machine learning is an objective tool for classification and segmen-
tation of images which has the potential to be applied in tendon; labels
can be generated at the image level, providing a label of ‘tendinopathic’
or ‘healthy’ tendon, or at the pixel level, providing a segmentation
of the image into ‘tendinopathic’ and ‘healthy’ regions. In the latter
case, we can also quantify the proportion of tendinopathic tissue in
an image. Neural networks, particularly convolution neural networks
(CNNs), are a commonly used ML approach for medical image seg-
mentation [12,13]. Neural networks have classically been used for
supervised segmentation, requiring a gold standard segmentation of the
training images. Jahanifar et al. [14],Alzyadat et al. [15] investigated
the use of CNNs in the automatic segmentation of tendinopathic regions
in the supraspinatus and Achilles tendon, respectively. Both authors
utilised transfer learning and implemented a fully supervised approach
in which a segmentation carried out by a radiologist was considered
as ground truth, and hence the approach is unlikely to surpass the
accuracy of the radiologist.

Recently CNNs have been used in a weakly supervised setting for
medical image segmentation [16,17]. Weakly supervised segmentation
involves assigning a label to each pixel whilst training the model on
data with only coarse annotations, such as image level labels [18,19].
In the context of CNNs, a weakly supervised segmentation can be
extracted through self-attention analysis [20]. Using an image-level
labelled dataset of tendinopathic and healthy tendons, weakly supervised
learning provides a means to extract distinguishing features and regions
between healthy and tendinopathic tendons. This would enable the
detection of pathology that may be missed by visual inspection and
provide an automated means of identifying and quantifying pathology
in the clinical setting, without requiring a set of segmented images
for training. A key limitation of the application of CNNs to tendon,
however, is the volume of data required for training [21]. Given healthy
and pain-free tendons are not routinely scanned under US, acquiring
a large sample of healthy tendon images poses a challenge. Instead,
it may be more appropriate to consider a ML algorithm which uses
targeted feature engineering based on domain knowledge, rather than
deep learning approaches such as CNNs.

The grey level co-occurrence matrix (GLCM) is a commonly used
approach for feature engineering in tendon image analysis. The GLCM
describes the probability distribution of grey-level pairs at a specific
distance and orientation within an image, or window within an image,
and can be used to extract texture features [22]. Texture features
generated from the GLCM, such as the contrast, have the advantage
2

of being easily interpretable. The GLCM has been used as a feature
extraction method to coarsely identify regions of interest (a square win-
dow over a large section of the image) in tendinopathic images [23,24]
and for image classification [25,26]. The GLCM has shown promise in
these applications but has not been investigated as a feature extraction
method to segment tendon images at the pixel level within an unsu-
pervised or weakly supervised framework. In contrast to identifying
coarse regions of interest, providing a full segmentations of the image
at the pixel level may provide direct insight into the proportion of
tissue which has exhibited a loss of the normal texture seen in healthy
tendons. Furthermore, for images with a high level of directionality,
the GLCM orientation and distance can be chosen to capture specific
microstructural changes in collagen fibre alignment [27], however, it
has not yet been applied in this directed manner for tendinopathic
images under US.

Filter bank approaches are an alternative method to the GLCM to
generate texture-based features. Wavelet and curvelet filters have been
applied to automatically segment tendon tears on US in animals [28]
and humans [29] but have not been applied in tendinopathy. A key
advantage of these approaches is that a rotationally invariant filter
bank can be chosen such that the orientation of the image does not
affect analysis [30]. However, filter banks also generate higher dimen-
sional and less readily interpretable features than those derived from
the GLCM [22,31,32].

Texture features can be paired with Bayesian model-based rep-
resentations of the image for enhanced segmentation [33]. Gaussian
mixture models (GMMs) are commonly used for image segmentation
and clustering [34,35]. Unlike K-means clustering, a GMM allows
for non-spherical clusters. A key limitation of GMMs is the lack of
spatial information encoded. A Hidden Gaussian Markov random field
(HGMRF) is a composite of a GMM and Markov random field which has
been used for the segmentation of breast and brain lesions in medical
images but has not been applied to tendons [36,37]. The Markov
element introduces a set of spatial dependencies across the image. As
a result, HGMRFs cope well with noisy images, providing a smooth
segmentation. They also represent a flexible approach which can be
combined with other techniques to derive improved segmentations of
the image [37].

There is currently no gold standard technique for automated tendon
image segmentation in the setting of tendinopathy. Collectively, quan-
titative approaches to tendon image analysis show promise but further
research in this area is needed to generate a clinically reliable tool.
In this work, we utilise a HGMRF model-based approach to segment
a dataset of tendinopathic and healthy images based on GLCM texture
features. A weakly supervised framework is used in which segmentation
results are validated by assessing their use in determining image-level
class labels. To our knowledge, we are the first to apply a HGMRF
approach to tendinopathic images and to use the GLCM to extract fea-
tures for a full segmentation of tendon images under US. Furthermore,
in contrast to previous work, we specifically extract GLCM features
utilising a specific orientation and distance that is biologically informed
and consistent with visual changes observed by the radiologist in
practice. We start, in Section 2, by introducing hidden Gaussian Markov
random fields (HGMRFs) and grey-level co-occurrence matrix (GLCM)
features. In Section 3 we outline how the GLCM-based texture features
are calculated for a dataset of tendinopathic and healthy tendon images
under US, and how these image features are captured in the HGMRF
modelling framework to provide a segmentation of each image. The
validation process is then explained, in which we use a decision tree
approach to assess how well texture class proportions can be used to
predict disease state from imaging. In Section 4 we demonstrate how
the GLCM features differ between healthy and tendinopathic tendon
images, and how this results in distinct texture segmentation profiles
which correlate with disease state.
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2. Preliminaries

2.1. Hidden Gaussian Markov random fields

A multivariate Gaussian mixture model (GMM) describes a mixture
population formed by a set of discrete multivariate Gaussian distributed
subpopulations 𝑘 ∈ {1,… , 𝐾}. We use {𝒀 1,… , 𝒀 𝑁} to denote a set
of independent variables belonging to the mixture population and
{𝒚1,… , 𝒚𝑁} to denote their associated realisations. The subpopulation
of each variable is given by the realisation of an associated hidden
random variable 𝑋𝑖 = 𝑥𝑖. The distribution of 𝒀 𝑖 conditioned on 𝑋𝑖,
ermed the emission distribution, is a multivariate Gaussian: 𝒀 𝑖|𝑋𝑖 =
∼  (𝝁𝑘,𝜮𝑘) where (𝝁𝑘 and 𝜮𝑘) are the mean vector and covariance
atrix associated with the subpopulation 𝑘.

Hidden Gaussian Markov random fields (HGMRFs) can be con-
idered as an extension of GMMs where the variables {𝑋1,… , 𝑋𝑁},
nd subsequently {𝒀 1,… , 𝒀 𝑁}, are dependent. A Markov dependence
tructure is present in which the probability of 𝑋𝑖 having the label 𝑘,
hen conditioned on the labels assigned to the neighbouring hidden
ariables 𝑋𝑗 ∈  (𝑖) where 𝑖 ≠ 𝑗, is independent of the remaining
idden variables. Mathematically this equates to the local Markov
roperty

(𝑋𝑖 = 𝑘|𝒙−{𝑖}) = 𝑃 (𝑋𝑖 = 𝑘|𝒙 (𝑖)) (1)

here 𝒙−{𝑖} denotes the realisations of all variables excluding at the
ocation 𝑖, whilst 𝒙 (𝑖) denotes realisations for variables in the sur-
ounding neighbourhood of 𝑖. The variables which constitute the neigh-
ourhood  (𝑖) are chosen dependent on the modelling task at hand,
ut, for images, usually constitute some square neighbourhood around
ach pixel.

The probability density function for the entire hidden field 𝑿 = 𝒙
an be factorised across each clique 𝑐 ∈  (all subgroups in which all
ariables within the subgroup share a direct dependency) such that the
oint probability takes the form

(𝒙) =
exp

(

−
∑

𝑐∈ 𝑉𝑐 (𝒙𝑐 , 𝛽)
)

𝑍(𝛽)
, (2)

ermed a Gibbs distribution. Here 𝑉𝑐 is termed the clique potential, 𝒙𝑐
re the realisations of 𝑋𝑖 in the clique 𝑐, 𝛽 is the Gibbs parameter, and
he function 𝑍 is a partition (normalising) function given by

(𝛽) =
∑

𝒙∈
exp

(

−
∑

𝑐∈
𝑉𝑐 (𝒙𝑐 , 𝛽)

)

, (3)

here 𝒙 ∈  denotes all possible realisations of the hidden field. The
oint distribution for the HGMRF is then given by

(𝒙, 𝒚) = 𝑝(𝒙)𝑝(𝒚|𝒙) = 𝑒−
∑

𝑐∈𝐶 𝑉𝑐 (𝒙𝑐 ,𝛽)

𝑍(𝛽)

𝑁
∏

𝑖=1
 (𝒚|𝝁𝑥𝑖 ,𝜮𝑥𝑖 ) (4)

where  (𝝁𝑥𝑖 ,𝜮𝑥𝑖 ) is the multivariate Gaussian density function.

2.2. Grey-level co-occurrence matrix

For all images, the grey-level co-occurrence matrix (GLCM) is cal-
culated for a window 𝑊 ∶ 𝑤𝐶𝑀1 × 𝑤𝐶𝑀2 centred around each pixel.
Intensity values within the image are divided into 𝑁𝐶𝑀 even width bins
and pixels are assigned their corresponding grey-level value 𝐼(𝑥, 𝑦) ∈
{1,… , 𝑁𝐶𝑀} where (𝑥, 𝑦) is the pixel row and column coordinate.
The GLCM is an 𝑁𝐶𝑀 × 𝑁𝐶𝑀 matrix specifying the number of each
unique grey-level pixel pairings (‘co-occurrences’) within the window
that occur at a given offset. For an offset of (𝛥𝑥, 𝛥𝑦), each component
(𝑖, 𝑗) of the normalised GLCM 𝑪 is defined mathematically by

𝑪(𝑖, 𝑗) = 1
|𝑪|

∑

𝑥,𝑦∈𝑊
𝟏0 (𝐼(𝑥, 𝑦) − 𝑖) 𝟏0 (𝐼(𝑥+𝛥𝑥, 𝑦+𝛥𝑦)− 𝑗) (5)

where 𝟏0(⋅) is the 0 − 1 indicator function and |𝑪| is the total number
of pixel pairings. The matrix entries represent estimates of the co-
occurrence probabilities. In Fig. 1 an example of the GLCM calculations
for a given image window are displayed.
3

Fig. 1. Example of GLCM calculated for an image window with 𝑁𝐺𝑀 = 8. Left:
Grey-level assigned to each pixel based on the pixel’s intensity. Right: Corresponding
normalised GLCM detailing the number of co-occurring pairs for the offset (−1, 0). GLCM
exture features are assigned to the central pixel (grey).

. Methods

.1. Image collection and pre-processing

Forty-nine images were provided by Imaging at Olympic Park (IOP),
elbourne. Images were obtained from patients who had been referred

o IOP by their clinician and consented to their images being used
or future research. Images were collected using a GE Logiq E9 US
achine, using a 15Mhz linear transducer, and were downloaded as
igh resolution JPEG files (500 dpi). Twenty-four images were of
endinopathic tendons. Diagnosis was made by imaging features [38]
nd clinical presentation (by a sports physician or physiotherapist).
mages were masked to include a 4 cm length along the midportion
f the tendon. Grey scale values were normalised for each image and
Gaussian filter was applied, using the MATLAB function imgaussfilt

standard deviation of 1 pixel) to reduce noise.

.2. GLCM features

In healthy tendons the texture pattern of bright parallel fibres
nterspersed with hypoechoic spaces [3] can be considered as a high-
requency signal parallel to the fibre axis. To capture disruptions to
his signal, we calculate the local GLCM for each pixel with an offset
f (−1, 0) (one row down, same column). We use the following metrics
alculated from the GLCM [22]:

ontrast:
∑

𝑖,𝑗
|𝑖 − 𝑗|2𝐶(𝑖, 𝑗), (6)

Energy:
∑

𝑖,𝑗
𝐶(𝑥, 𝑦)2, (7)

s a set of texture features for each pixel. The contrast and energy
ave shown to correlate to disease state when the GLCM is applied at
he image level [39]. We expect to see an increase in the energy and
educed contrast with loss of the high-frequency signal characteristic
f healthy echotexture [39].

.3. Hidden Gaussian Markov random field model

We model each 𝑚 × 𝑛 image as a hidden Gaussian Markov ran-
om field (HGMRF) whereby the GLCM features for each pixel 𝑖 ∈
1, 2,… , 𝑁 = 𝑚𝑛} constitute the observable variables, with realisations
iven by a set of two-dimensional data points 𝒀 𝑖 = 𝒚𝑖. We seek to
pproximate the associated unknown pixel labels 𝑋𝑖 = 𝑥𝑖, representing
he hidden field and providing a texture based segmentation of the
mage.

We assume that {𝑌1,… , 𝑌𝑁} are conditionally independent given
heir associated pixel label 𝑋𝑖 ∈ {1,… , 𝐾}: 𝒀𝒊|𝑿𝒊 = 𝒌 ∼  (𝝁𝒌, 𝜮𝒌). The
ixel labels have a Markov dependence structure (Eq. (1)) where  (𝑖)
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M

𝝁

Fig. 2. Example of square Markov neighbourhood  (𝑖). The label of pixel 𝑖 is directly
dependent on the labels of surrounding (dark grey) pixels. A 5 × 5 neighbourhood size
is displayed for visualisation.

represents a square neighbourhood surrounding each pixel (Fig. 2).
The width of  (𝑖) is a hyperparameter of the model, with a larger
neighbourhood size leading to greater smoothing of the segmentation
results. We let the clique potential in Eq. (2) have the common Ilsing
form Winkler [40]
∑

𝑐∈𝐶
𝑉𝑐 (𝒙𝑐 , 𝛽) =

∑

𝑖∈𝑆

∑

𝑗∈ (𝑖)
𝛽 𝟏0(𝑥𝑖 − 𝑥𝑗 ) (8)

which reflects prior knowledge that neighbouring pixels tend to share
the same label. We refer to [40] for further details regarding how
images can be viewed as hidden Gaussian Markov random fields.

3.4. HMRF-EM algorithm

For each image, given a set of GLCM features 𝒚, we seek to deter-
mine the parameter set 𝝋 =

((

𝝁1,𝜮1
)

,… ,
(

𝝁𝐾 ,𝜮𝐾
))

which maximises
the likelihood of observing the data

𝝋̂ = argmax
𝝋

𝑝 (𝒚|𝝋) , (9)

which is termed the maximum likelihood estimate (MLE). We also
seek to determine the most probable segmentation of the image 𝒙 by
approximating the maximum-a-posteriori (MAP) estimate

𝒙 = argmax
𝒙

𝑝 (𝒙|𝒚,𝝋) . (10)

To approximate the MLE and MAP estimate, we utilise a modified
version of the Expectation–Maximisation (EM) algorithm introduced
by Zhang et al. [37]. The EM algorithm [41] is a popular choice
to approximate the MLE in the setting of latent variables and oper-
ates by maximising over the expected log-likelihood (using the joint
distribution 𝑝(𝒚,𝒙|𝝋)). The algorithm iterates between two steps:

1. Expectation Step Define the expected value of the complete log
likelihood of 𝝋, with respect to the conditional distribution 𝒙|𝒚,𝝋𝑡:

𝑄(𝝋;𝝋𝑡) = 𝐸[log 𝑝(𝒚,𝒙|𝝋)|𝐘 = 𝐲,𝝋 = 𝝋𝑡], (11)

where 𝝋𝑡 is the current parameter estimate at iteration 𝑡.

2. Maximisation Step Find the parameter set 𝝋 which maximises 𝑄(𝝋;𝝋𝑡)

𝝋𝑡+1 = argmax
𝝋

𝑄
(

𝝋;𝝋𝑡) . (12)

For a HGMRF, the objective function 𝑄 is given by

𝑄(𝝋;𝝋𝑡) =
∑

𝒙∈
𝑝
(

𝒙|𝒚,𝝋𝑡) log 𝑝
(

𝒚,𝒙|𝝋𝑡) .

The sum over  is intractable due to a combinatorial explosion of the
possible segmentations (𝑘𝑁 where 𝑁 is the number of pixels). We use
an approximation of the marginal probability, introduced by Celeux
et al. [42], in which the neighbouring hidden variables are held fixed:

𝑝(𝒙) ≈
∏

𝑝
(

𝑥𝑖|𝒙𝑡 (𝑖)

)

. (13)
4

𝑖∈𝑆
The neighbours are fixed using an approximation of the maximum-a-
posteriori (MAP) estimate

𝑥𝑡𝑖 = argmax
𝑥𝑖

𝑝
(

𝑥𝑖|𝑦𝑖,𝒙𝑡−1 (𝑖),𝝋
𝑡−1

)

. (14)

A tractable approximation of our objective function is then

𝑄(𝝁,𝜮;𝝋𝑡) ≈
𝑁
∑

𝑖=1

𝐾
∑

𝑥𝑖=1
𝑝
(

𝑥𝑖|𝒙𝑡 (𝑖), 𝑦𝑖,𝝋
𝑡
)

log 𝑓𝑖
(

𝑦𝑖|𝑥𝑖,𝝋
)

+
𝑁
∑

𝑖=1

𝐾
∑

𝑥𝑖=1
𝑝
(

𝑥𝑖|𝒙𝑡 (𝑖), 𝑦𝑖,𝝋
𝑡
)

log 𝑝
(

𝑥𝑖|𝒙𝑡 (𝑖)

)

= 𝑄1
(

𝝋;𝝋𝑡) +𝑄2
(

𝝋𝑡) (15)

where

𝑝(𝑥𝑖|𝒙𝑡 (𝑖), 𝑦𝑖,𝝋
𝑡) =

𝑓𝑖(𝒚𝑖|𝑥𝑖,𝝁𝑡
𝑥𝑖
,𝜮𝑡

𝑥𝑖
)𝑝(𝑥𝑖|𝒙𝑡 (𝑖)

)
∑𝐾

𝑥𝑖=1
𝑓𝑖(𝒚𝑖|𝑥𝑖,𝝁𝑡

𝑥𝑖
,𝜮𝑡

𝑥𝑖
)𝑝(𝑥𝑖|𝒙𝑡 (𝑖)

)
. (16)

Here 𝑓𝑖(⋅) represents the Gaussian density function. Combining Eqs. (2)
with (8) we find

𝑝(𝑥𝑖|𝒙 (𝑖)) =
exp

(

−
∑

𝑗∈ (𝑖) 𝛽 𝟏0(𝑥𝑖 − 𝑥𝑗 )
)

∑𝐾
𝑥𝑖=1

exp
(

−
∑

𝑗∈ (𝑖) 𝛽 𝟏0(𝑥𝑖 − 𝑥𝑗 )
) . (17)

aximising (15), the MLE estimates at iteration 𝑡 are given by

̂ 𝑘 =

∑𝑁
𝑖=1 𝑃

(

𝑥𝑖 = 𝑘|𝒙𝑡 (𝑖)
, 𝑦𝑖,𝝋𝑡

)

𝒚𝑖
∑𝑁

𝑖=1 𝑃
(

𝑥𝑖 = 𝑘|𝒙𝑡 (𝑖)
, 𝑦𝑖,𝝋𝑡

) , (18)

𝜮̂𝑘 =

∑𝑁
𝑖=1 𝑃

(

𝑥𝑖 = 𝑘|𝒙𝑡 (𝑖)
, 𝑦𝑖,𝝋𝑡

)

(𝒚𝑖 − 𝝁̂𝑘)(𝒚𝑖 − 𝝁̂𝑘)𝑇

∑𝑁
𝑖=1 𝑃

(

𝑥𝑖 = 𝑘|𝒙𝑡 (𝑖)
, 𝑦𝑖,𝝋𝑡

) (19)

for 𝑘 = 1,… , 𝐾.
Psuedocode for the initial clustering of GLCM features and subse-

quent HMRF-EM processing is provided in Appendix A.1.

3.5. Initial parameter estimation

The HMRF-EM algorithm is applied independently to each image.
We use K-means clustering over the entire training set to generate the
initial parameter values 𝝋𝑡=0 and segmentation for each image 𝒙𝑡=0.
Since the EM and K-means algorithms are sensitive to initialisation
(both algorithms are only locally convergent), we perform three ran-
dom initialisations of K-means and choose the optimal (in terms of the
K-means objective function) result. For the test images, initial pixel
labels are determined by assigning the pixels to the closest cluster
centroid, calculated from the training set. After this initial K-means
segmentation, texture class labels {1, 2,… , 𝐾} across all images refer
to subpopulations from the same Gaussian mixture population. During
HMRF-EM implementation, small updates to the mean and variance are
made for each image individually, and hence labels between images
no longer correspond to the exact same mixture population. However,
since the HMRF-EM mainly serves to reduce noise and provide a more
distinct segmentation, we show that corresponding labels between
images to refer to approximately the same subpopulations. Hence labels
across images are comparable for the purpose of classifying images and
validating our segmentation results.

3.6. Classification and hyperparameter tuning

To validate our segmentation results we fit a decision tree to classify
the images as tendinopathic or healthy based on texture class proportions
within each image. The standard CART algorithm [43] in MATLAB was
used and the number of splits was limited to two. Hyperparameters
were tuned using grid-based optimisation of the decision tree results
on 25 of the images, termed the training set. Because the HMRF-EM



Computers in Biology and Medicine 169 (2024) 107872I. Scott et al.
Fig. 3. Scatter plot of GLCM features for pixels within the training and test sets.
(a) Different distributions between values for pixels within healthy and tendinopathic
tendons for the training set. (b) Initial K-means class assignments for the training set.
(c-d) HMRF-EM cluster assignments for the training and test sets.

component is sensitive to the accuracy of the initialisation, hyper-
parameters were divided into two sets: those related to the initial
texton/GLCM feature generation and K-means clustering, and those
related to the HMRF-EM algorithm, which were tuned sequentially (the
decision tree was applied to only the K-means output for the former).
The optimal hyperparameters are defined to be those that provide
clear class proportion thresholds which can be used for classification.
Thus we choose hyperparameters which produce a decision tree fit
with the highest classification accuracy and minimum number of splits.
The neighbourhood  (𝑖) size was tested over the range [1, 50] and
had no impact on the classification accuracy. Hence, a neighbourhood
size of 30 × 30 was chosen for qualitative purpose: this size provided
sufficient smoothing of the segmentation to facilitate interpretation by
the radiologist. Further details regarding the hyperparameter tuning
and final values are provided in Appendix A.2.

4. Results

4.1. Feature generation and training

The GLCM feature generation for the training set took 460 s (> 10 s
per image) whilst initial clustering of the training set, using the kmeans
function in MATLAB, took 561 s. The computational time taken for
subsequent analysis of the images by the HMRF-EM algorithm was fast,
taking < 10 s per image.

4.2. Grey-level co-occurrence matrix features

A scatter plot of the GLCM features for pixels belonging to images
within the training and test sets are given in Fig. 3. In Fig. 3a it is
evident there is a distinct difference in the distribution of local GLCM
features between tendinopathic (blue points) and healthy (green points)
tendons, with pixels belonging to tendinopathic tendon images tending
to have a lower contrast and higher energy. In Figs. 3b and 3c a plot
of the same training data shows the texture label assigned for each
pixel after K-means and subsequent HMRF-EM clustering. The data is
clustered into three texture classes with yellow corresponding to high
contrast and low energy values, orange corresponding to moderate
5

Fig. 4. Segmentation results for four images within the training set. Images (a) and (b)
are of tendinopathic tendons, and (c) and (d) are of healthy tendons. Regions labelled
as texture class one are outlined in yellow and constitute areas with high contrast and
low energy. Areas assigned to texture class two are outlined in orange and refer to
areas with moderate contrast and energy. Areas outlined in red are assigned to texture
class three and constitute areas with low contrast and high energy.

contrast and energy values, and red corresponding to low contrast and
high energy values. Comparing Figs. 3b and 3c, the reassignment of
pixel class labels due to subsequent HMRF-EM processing occurred only
for pixels that have GLCM values lying at the border of the clusters
or that are outliers (low energy with moderate contrast). The overall
distribution of GLCM values for the test set (Fig. 3d), as well as the
distribution of pixel GLCM values within each class, is similar to that
of the training set (Fig. 3c). Contrasting Figs. 3a and 3c, the pixels
corresponding to tendinopathic images appear to be predominantly
assigned to the second and third texture classes.

4.3. GLCM-based HMRF-EM segmentation

Fig. 4 displays the GLCM-based HMRF-EM segmentation for four
examples from the training set. In Fig. 5 the corresponding GLCM
features for each pixel within the four images are given. Figs. 4a and
4b give the segmentations for two tendinopathic tendons. In Fig. 4a
a tendon segment has been assigned to the third texture class, with
associated low contrast and high energy values occurring for the en-
compassed pixels (Fig. 5a). The region is visibly tendinopathic, with
no discernible collagen fibres and very low echogenicity. In Fig. 4b
the first and second texture classes are predominant. In contrast to
Fig. 5a, more extreme high energy and low contrast values are not
observed in Fig. 5b. However, the second texture – with moderate
contrast and energy – accounts for the largest proportion of this image.
Figs. 4c and 4d are the image segmentations for two healthy tendons.
In Fig. 4c pixels were assigned to the second texture class but in lower
proportions than seen in Fig. 4b. Fig. 4d displays a healthy tendon with
a visibly consistent texture pattern throughout and, accordingly, only
the first texture class is assigned. In Fig. 4b–d the first texture class
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Fig. 5. GLCM features for each pixel for two tendinopathic (a,b) and two healthy (c,d)
images within the training set.

Fig. 6. Mean energy and contrast for images after GLCM-based HMRF-EM
segmentation.

has been assigned to regions with clearly visible collagen fibres and
darker hypoechoic spaces between. In Fig. 4a–c the second texture class
has been assigned to regions with less clarity between the fibres and
interfibre spacing, but without the level of hypoechogenicity of regions
assigned to the third class. This qualitative pattern was consistent
across the training set (Appendix B Fig. B.1).Across the training set,
hypoechoic regions assigned to the third texture class occurred most
commonly near the transverse posterior border.

In Table 1 the mean and standard deviation of texture proportions
within the training set are given after GLCM-based clustering. Values
after initialisation through K-means clustering, and following further
HMRF-EM processing are displayed. Consistent with the visual segmen-
tations shown in Appendix B Fig. B.1, there is a clear difference in
texture class proportions between tendinopathic and healthy tendons.
The first texture class appears predominantly in healthy tendons whilst
the second class is more predominant in the tendinopathic tendons. The
third class is only present in the tendinopathic tendons. As expected,
following HMRF-EM implementation, there are only minimal changes
to the mean texture class proportions.

In Table 1 it is also evident that there are only small differences
in the texture class proportions between the K-means- and HMRF-EM-
based segmentations. This is consistent with observable differences in
the segmentations between the HMRF-EM-based (Appendix B Fig. B.1)
and K-means-based (Appendix B Fig. B.2) segmentations of the training
set, in which the HMRF-EM extension predominantly serves to reduce
noise and provide a more distinct segmentation.

In Fig. 6 a plot of the means 𝜇𝑘 for the texture class labels 𝑘 ∈
{1, 2, 3}, after implementation of the HMRF-EM algorithm, is displayed.
6

Fig. 7. Segmentation results for four images within the test set. Images (a) and (b)
are of tendinopathic tendons, and (c) and (d) are of healthy tendons. Regions labelled
as texture class one are outlined in yellow and constitute areas with high contrast and
low energy. Areas assigned to texture class two are outlined in orange and refer to
areas with moderate contrast and energy. Areas outlined in red are assigned to texture
class three and constitute areas with low contrast and high energy.

Table 1
Mean and standard deviation of segmentation proportions for training set after K-means
and HMRF-EM clustering of GLCM features.

Image set Texture class proportion: Mean (SD)

1 2 3

K-means
Tendinopathic 0.15 (0.10) 0.67 (0.16) 0.18 (0.17)
Healthy 0.69 (0.14) 0.31 (0.14) 0.00 (0.00)
HMRF-EM
Tendinopathic 0.12 (0.10) 0.72 (0.19) 0.16 (0.18)
Healthy 0.73 (0.18) 0.27 (0.18) 0.00 (0.00)

The mean is calculated for each individual image in the dataset. Across
the images, the means for each label can be seen to form distinct
clusters. Hence, the texture class labels 𝑘 ∈ {1, 2, 3} are comparable
across images, referring to high contrast and low energy, moderate
contrast and energy, and low contrast and high energy, respectively.

In Fig. 7 the GLCM-based HMRF-EM segmentation for two tendino-
pathic and two healthy images from the test set are given. Fig. 8 depicts
the corresponding scatter plots of GLCM features of pixels within each
image. In Figs. 7a and 7b two tendinopathic images are displayed.
In Figs. 7c and 7d two healthy images are displayed. There is good
qualitative agreement with the segmentations given for the training
examples in Figs. 4 and 5, in which the third texture is assigned to
hypoechoic regions with lower contrast and minimal visible fibres, and
the first texture is assigned to regions with higher contrast and more
clearly visible fibres. Similar to the segmentation results for the training
set (Fig. 4a and Appendix B Fig. B.1), across the test set, hypoechoic
regions assigned to the third texture class occurred most commonly
near the transverse border of the tendon and there is an overall loss
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Fig. 8. GLCM features for each pixel for two tendinopathic (a,b) and two healthy (c,d)
images within the test set.

Fig. 9. Decision tree for classifying tendon images as tendinopathic or healthy based
on GLCM-based HMRF-EM segmentation proportions.

of collagen fibre visibility demonstrated by a greater proportion of the
second texture class also being present (Appendix B Fig. B.3).

Overall the HMRF-EM algorithm segmented and quantified the pro-
portion of clearly hypoechoic regions that represent obvious tendino-
pathic damage, assigning these regions to the third texture class. The
algorithm also segmented and quantified the proportion of regions
which exhibited some loss of clearly defined collagen fibres but were
not clearly hypoechoic, as can be seen by comparing texture class
two to one in Fig. 5b. This provided a delineation of regions that
were difficult to identify a-priori by visual inspection, but nonetheless
could be visualised to show a loss of the clearly defined collagen fibres
after the segmentation was applied to highlight these regions. The
segmentations for all tendinopathic tendons in the training and test sets
(Appendix B Figs. B.1 and B.3) show a high proportion of the second
texture class and only a small proportion of the first, demonstrating an
overall lost off collagen fibre visibility.

4.4. Classification of healthy and tendinopathic tendons

The decision tree produced from the training set is displayed in
Fig. 9. Images are classified as tendinopathic if the proportion of
the first texture, calculated for the masked 4 cm region, is less then
0.37. Otherwise, the tendon is considered healthy. Using this simple
binary cut-off, the decision tree was able to classify all training images
accurately. Using the decision tree on the test set, 22 of the 24 images
were accurately classified. All tendinopathic images were successfully
classified, whilst two healthy images were misclassified as tendino-
pathic due to low proportions of the first texture. Fig. 10a displays
the tendinopathic image from the test set which exhibits the highest
proportion of the first texture (0.33) and was correctly classified. This
is contrasted with the two misclassified healthy images from the test
7

Fig. 10. Segmentation examples, and associated GLCM features for each pixel, for
three images within the test set. (a) Successfully classified tendinopathic image with
the largest proportion of texture one of all tendinopathic test images. (b, c) Misclassified
healthy images from the test set.

Fig. 11. GLCM features for each pixel for three images within the test set. (a)
Successfully classified tendinopathic image with the largest proportion of texture one
of all tendinopathic test images. (b, c) Misclassified healthy images from the test set.

set in Figs. 10b and 10c. Comparing, the associated scatter plots of
GLCM features (Fig. 11), despite the misclassification, there is still a
difference in the GLCM distributions between the tendinopathic and
healthy tendons. The tendinopathic tendon has a greater spread of
contrast and energy values amongst its’ pixels than the misclassified
healthy images. The tendinopathic tendon also exhibits a small region
classified as the third texture whilst the other two images do not have
a region with such low contrast and high energy values.

The classifications results were the same for the K-means-based
segmentation of the images, except the texture proportion cut off was
0.39.

5. Discussion

Local texture features based on the grey-level co-occurrence ma-
trix (GLCM) were analysed as a means for providing a segmentation
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Fig. B.1. GLCM-based HMRF-EM segmentation results for the training set. Regions labelled as texture class one are coloured yellow and constitutes areas with high contrast and
low energy. Areas assigned to texture class two are coloured in orange and refer to areas with moderate contrast and energy. Areas coloured in red have been assigned to texture
class three and constitute areas with low contrast and high energy.
Table A.2
Final model hyperparameters and tuning ranges explored.

Hyperparameter Range Value

𝑁𝐶𝑀 : GLCM grey level bins [4, 10] 8
𝑊𝐶𝑀 : GLCM window size (px) [10, 30]x[10, 30] 10 × 20
𝐾: Texture classes [2, 4] 3
𝛽: Gibbs parameter [0.5, 2] 1
 (𝑖): Neighbourhood size (px) [1, 30]x[1, 30] 30 × 30

which could differentiate between tendinopathic and healthy tendons
on imaging. Only two features were required to capture difference
between tendinopathic and healthy tendon images: the contrast and
energy, a measure of the uniformity. A continuum of changes in the
8

contrast and energy appear to occur with tendinopathy. Collectively,
the GLCM-based HMRF-EM segmentation results suggest that a reduc-
tion in the contrast, and an increase in the energy, of a region is
indicative of potential tendinopathic changes. The results also suggest
that regions with the lowest contrast (< 0.2) and highest energy (>
0.6) may represent a higher level of damage. Visually these findings
correlated with a loss of fibre clarity, extending to a complete loss
of fibre visibility. This could suggest a loss of collagen fibres in that
region or an accumulation of denser substances such as fluid (for
example due to proteoglycan deposition preventing fluid expulsion)
which obscure the fibres on US. There was a wide variety of topological
presentations, however, there was a general trend that these more
extreme low contrast and high energy regions occurred closer to the
transverse tendon boundaries (Appendix B Figs. B.1 and B.3).
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Fig. B.2. GLCM-based K-means segmentation results for the training set. Regions labelled as texture class one are coloured yellow and constitutes areas with high contrast and
low energy. Areas assigned to texture class two are coloured in orange and refer to areas with moderate contrast and energy. Areas coloured in red have been assigned to texture
class three and constitute areas with low contrast and high energy. The two healthy tendons which were misclassified during testing are labelled.
Whilst the second texture in the GLCM-based HMRF-EM segmen-
tation, corresponding to moderate contrast and energy values, was
predominantly present in tendinopathic tendons, it was also present
in lower proportions amongst healthy tendon images. These regions
may still correspond to early tendinopathic changes, as several lon-
gitudinal studies have demonstrated that tendinopathic changes on
imaging often precede pain and suggest a higher risk for later symptom
development [44–46]. This could also be a result of using K-means
for initial clustering. In the setting of overlapping clusters, K-means
allocates points in a way that roughly equalises the spatial variance
of the clusters. This can be problematic if the true optimal clustering
solution is one in which the clusters have a large difference in the
number of points. Facilitating larger differences in cluster sizes may be
necessary to provide an even better distinction between tendinopathic
and healthy tendons.
9

The K-means and HMRF-EM approaches yielded similar segmenta-
tions and the classification accuracy between healthy and tendinopathic
tendons was not impacted by including the additional HMRF-EM ex-
tension on top of the initial K-means segmentation. However, the
HMRF-EM extension required minimal extra time computational run
time and provided a smoother segmentation of the images that may be
useful for the application of this tool as an adjunct to the radiologist.
Because the distribution of GLCM features showed clear differences
between tendinopathic and healthy tendons, threshold based segmen-
tation techniques [47], using the GLCM features, provide an alternative
approach to the algorithm presented here. However, these techniques
can be sensitive to noise and even more computationally intensive than
K-means [48], and hence consideration needs to be taken in terms of
the training set size and quality.



Computers in Biology and Medicine 169 (2024) 107872I. Scott et al.
Fig. B.3. GLCM-based HMRF-EM segmentation results for the test set. Regions labelled as texture class one are coloured yellow and constitutes areas with high contrast and low
energy. Areas assigned to texture class two are coloured in orange and refer to areas with moderate contrast and energy. Areas coloured in red have been assigned to texture class
three and constitute areas with low contrast and high energy. The two healthy tendons which were misclassified during testing are labelled.
The purpose of this work was to identify a segmentation technique
that could be used as a quantitative tool to measure disease severity.
Since a prognostic labelled dataset was not available, we correlated
the segmentation results with disease state to first provide a proof
of concept. A simple decision tree approach was chosen to validate
whether the segmentation could be used to accurately classify images,
as we desired a segmentation that would provide readily interpretable
quantifiable predictors for the clinician. A simple cut-off value for one
texture allowed us to classify 47 of 49 images correctly, with 100%
accuracy for the tendinopathic images. Evaluation of GLCM features for
the misclassified healthy images suggested there was still a difference
between the distribution of GLCM features of misclassified healthy
tendons and the tendinopathic set. A more refined decision tree may
improve the classification accuracy, such as if we had used K-fold cross-
validation1 in training the model and allowed for a higher number of

1 The dataset if split into ‘K’ groups, with one used as the test set and
the others used as the training set. The model is trained and tested, with the
process repeated using each of the unique groups as the test set.
10
splits within the tree. However, the focus of this work was in providing
a novel segmentation approach, and using the classification step to
simply validate the segmentation approach. For this reason, and due
to the computational runtime associated with generating the initial
clustering of GLCM features, we did not further optimise our approach
to achieve the highest classification accuracy. Another useful extension
to our approach, and one that may improve accuracy, would be to
consider extracting additional metrics from the segmentation results
– other than texture class proportions – that could be utilised in the
decision tree. In this case, it would be desirable to have a larger sample
size to prevent over fitting.

The GLCM-based HMRF-EM segmentation algorithm presented here
has several advantages over Ultrasound Tissue Characterisation (UTC)
[7]. In contrast to UTC, which captures the continuity of fibres in
the longitudinal direction, the GLCM-based HMRF-EM segmentation
algorithm also captures information about the relationship of collagen
fibres in the transverse direction. Our approach can also be used on the
output of standard B-mode US devices, whilst UTC requires expensive
specialised equipment. Furthermore, the HMRF-EM segmentation algo-
rithm requires only one masked longitudinal image, in contrast to UTC
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which requires a hundredfold greater number of masked transverse
images to span the length of the tendon. .

6. Conclusions and limitations

We have developed a segmentation approach which strongly cor-
relates with disease state in tendons. We utilised a Hidden Gaussian
Markov Random Field model to segment each image based on a set of
local grey-level co-occurrence features. The model was fit using a modi-
fied version of the HMRF-EM algorithm developed by Zhang et al. [37].
The segmentation output from this approach provides a tool which can
be used as an adjunct to the radiologist. It provides both quantifiable
and interpretable information regarding the texture profiles within the
image, as well as a segmentation of the image which the radiologist can
use to ensure they have detected all segments of interest. In agreement
with the literature [1,49], our segmentation results and analysis of
texture features suggest that tendinopathic changes occur as continuum
and early changes structural changes may precede pain. The results also
gave insight into the topology of changes which occur in tendinopathy,
demonstrating that more severe tendinopathic changes are most likely
to occur nearest to the transverse tendon boundary.

A key weakness of this study in the limited size of the dataset
and the lack of additional clinical features to correlate with the seg-
mentation results, such as pain levels. This would allow for more
accurate hyperparameter tuning and allow us to confirm whether the
texture profiles exhibited correlate with disease severity, as well as
disease state. With an increase in dataset size, modifications to the
initial K-means clustering may be required. We also note that the
hyperparameters were tuned according to the resolution of the dataset
available. The resolution between images in our dataset was similar
and hence the same hyperparameters values were used throughout.
To ensure generalisability, future work should consider identifying a
resolution dependent scaling for the hyperparameters, such as GLCM
window size. Finally, there is a trade off in developing an approach
that only requires one longitudinal image: unlike approaches such as
UTC which span the whole tendon, the output from our approach may
not provide as comprehensive coverage of tendon changes. Future work
should seek to compare this approach with UTC. Despite the above
limitations, the results from this study are promising and support the
collection of a larger prognostic dataset. The segmentation approach we
have developed here has the potential to provide a readily accessible
tool for the quantitative analysis of tendon images in both the research
and clinical settings.

CRediT authorship contribution statement

Isabelle Scott: Conceptualization, Formal analysis, Funding acqui-
ition, Methodology, Validation, Visualization, Writing – original draft,
riting – review & editing. David Connell: Data curation, Funding

acquisition. Derek Moulton: Supervision, Writing – review & editing.
arah Waters: Supervision, Writing – review & editing. Ana Nambu-
ete: Methodology, Supervision, Writing – review & editing. Anurag
rnab: Methodology, Supervision, Writing – original draft, Writing –

eview & editing. Peter Malliaras: Data curation, Funding acquisition,
upervision, Writing – review & editing.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.

cknowledgements

We are grateful to the Australasian Musculoskeletal Imaging Group
or funding this work.
11
ppendix A

.1. HMRF-EM algorithm pseudocode

Algorithm 1 GLCM Feature Generation and K-Means Clustering
Inputs:

𝑁𝑖𝑚𝑔 greyscale images.
𝑁𝑖𝑚𝑔 corresponding image masks.
Number of grey levels for GLCM generation 𝑁𝐶𝑀 .
Window size for GLCM generation
𝑊𝐶𝑀1 = 𝑤𝐶𝑀2 ×𝑤𝐶𝑀 .
Number of texture class labels 𝐾.

for each image do
for each pixel do

Using graycomatrix: generate GLCM for
surrounding window 𝑊𝐶𝑀 .
Using graycoprops on GLCM: Calculate (energy,
contrast)𝑇 ← 𝒚𝑖.

for all images and pixels do
Cluster 𝒚𝑖 into K clusters.
Use cluster label 𝑘 ∈ {1, ..., 𝐾} to provide

initial segmentation 𝑘 ← 𝑥𝑡=0𝑖 .

Algorithm 2 HMRF-EM Segmentation
Inputs:

Texton histogram for each pixel 𝒚𝑖.
Initial pixel class labels 𝑥𝑡=0𝑖 .
Number of clusters for segmentation 𝐾.
Max iterations 𝑇 .
Gibbs parameter 𝛽.

for texture class labels k=1:K do
Compute initial mean and variance:
𝝁0
𝑘 =

∑

𝑖∶ 𝑥𝑖=𝑘
𝒚𝑖
/

∑

𝑖∶ 𝑥𝑖=𝑘
1.

(𝜮0
𝑘)

2 =
∑

𝑖∶ 𝑥𝑖=𝑘
(𝒚𝑖 − 𝝁𝑘)2

/

∑

𝑖∶ 𝑥𝑖=𝑘
1.

repeat
Neighbour Assignment
for pixels i=1:n do

for class labels k=1:K do
Calculate P(class label assignment):
𝑃𝐺(𝑥𝑖 = 𝑘|𝑦𝑖,𝒙𝑡−1 (𝑖)

,𝝋𝑡−1) .
Assign pixel label:
𝑥𝑡𝑖 ← argmax

𝑥𝑖
𝑃𝐺(𝑥𝑖|𝑦𝑖,𝒙𝑡−1 (𝑖)

,𝝋𝑡−1).

Expectation
for pixels i=1:n do

for class labels k=1:K do
Calculate P(pixel label | neighbour labels):
𝑃 (𝑥𝑖 = 𝑘|𝑦𝑖,𝒙 (𝑖),𝝋𝑡−1) =

𝑓 (𝑦𝑖|𝑥𝑖,𝝋𝑡−1)𝑃 (𝑥𝑖|𝒙𝑡 (𝑖)
, 𝛽)

/

𝑓 (𝑦𝑖|𝝋𝑡−1).

Maximisation
for class labels k=1:K do

Compute mean and variance: (𝝁𝑡
𝑘,𝜮

𝑡
𝑘) =

argmax
(𝜇𝑘 ,𝜮𝑘)

∑

𝑖∈𝑆

∑

𝑥𝑖∈
𝑃𝒙𝑡 (𝑥𝑖|𝑦𝑖,𝝋

𝑡) log𝑓 (𝑦𝑖|𝑥𝑖,𝝁,𝜮).

until 𝝋 converges or iterations 𝑡 > 𝑇 .
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A.2. Hyperparameter tuning

A GLCM offset of (−1, 0) is used to capture increases in fibre spacing
onsistent with tendinopathy [3]; this offset is perpendicular to the
ibre axis in a healthy longitudinal tendon image. To tune the remaining
yperparameters, a grid-based search is used with parameter ranges
ased on previous values utilised in the literature, as well as the scale
f physical units within the image. The optimal hyperparameters are
efined to be those that provide clear class proportion thresholds that
an be used for classification. Thus we chose hyperparameters which
roduce a decision tree fit with the highest classification accuracy and
inimum number of splits. The model hyperparameter ranges explored

n the grid-search, and final values chosen, are given in Table A.2.
The GLCM parameter ranges are based off previous work [50]

nd partially informed by knowledge of the scale of physical units
ithin the image, prescribed to capture several fibres within a window.
he parameter range for the Gibbs parameter is informed by previous
pplications to image segmentation [51].

ppendix B

See Figs. B.1, B.2 and B.3
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