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A B S T R A C T

Cell competition is a process in multicellular organisms where cells interact with their neighbours to determine
a ‘‘winner’’ or ‘‘loser’’ status. The loser cells are eliminated through programmed cell death, leaving only the
winner cells to populate the tissue. Cell competition is context-dependent; the same cell type can win or lose
depending on the cell type it is competing against. Hence, winner/loser status is an emergent property. A
key question in cell competition is: how do cells acquire their winner/loser status? In this paper, we propose
a mathematical framework for studying the emergence of winner/loser status based on a set of quantitative
criteria that distinguishes competitive from non-competitive outcomes. We apply this framework in a cell-based
modelling context, to both highlight the crucial role of active cell death in cell competition and identify the
factors that drive cell competition.
1. Introduction

Cell competition is a process that occurs in multicellular organ-
isms where cells composing genetically heterotypic tissues interact to
determine their relative fitness and acquire a winner or loser sta-
tus (Johnston, 2009; Vivarelli et al., 2012; Levayer and Moreno, 2013;
Vincent et al., 2013; Amoyel and Bach, 2014; Bowling et al., 2019). The
loser cells are then eliminated through programmed cell death, leaving
only winner cells to populate the tissue. Cell competition is context-
dependent: the competing cell types are both viable in homotypic
conditions, and acquire a winner/loser status only when exposed to
each other in the same tissue. The main function of cell competition
is to improve the overall fitness of the tissue by removing suboptimal
cells. For example, during development of the Drosophila wing, cell
competition serves as a homeostatic mechanism that stabilises tissue
growth and ensures consistent wing shape (De La Cova et al., 2004).
It can also play a role in tumour suppression by eliminating cells
with proto-oncogenic mutations (Norman et al., 2012). However, this
is not the case for all proto-oncogenic mutations; overexpression of
Myc results in mutants that outcompete wild-type cells in a process
known as super-competition (Moreno and Basler, 2004). This allows
precancerous cells to expand within a tissue at the expense of healthy
cells, without producing detectable morphological abnormalities. Cell
competition can therefore also contribute to the early stages of tumour
development.
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The underlying mechanisms of cell competition are not yet fully
understood. While progress has been made in identifying the drivers of
cell competition and the pathways downstream of winner/loser identi-
fication, the intra- and intercellular processes by which cells determine
winner/loser status are still unclear. Mathematical modelling, particu-
larly cell-based modelling, has the potential to provide insight into the
mechanisms of cell competition. Cell-based models allow researchers
to define the behaviours of individual cells and study their effects at
the population level. Because cell competition is a process that unfolds
at the population level while being mediated by interactions at the
cellular level, cell-based models are potentially an effective tool for
exploring the most pertinent questions in cell competition. However,
current cell-based models of cell competition assume a priori win-
ner/loser identities (Bove et al., 2017; Lee and Morishita, 2017; Tsuboi
et al., 2018; Gradeci et al., 2021). Although such models can simulate
processes occurring downstream of winner/loser identification, they do
not address how cells become winners or losers in the first place. In this
paper, we propose a mathematical framework to address precisely this
question.

1.1. Emergence of winner/loser status

Our framework does not assume that certain cells are winners or
losers a priori. Instead, we consider cell-based models with two cell
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Fig. 1. Illustration of the cell competition criteria. The two cell types A and B fulfil the cell competition criteria if (i) cell type A is homotypically viable, (ii) cell type B is
homotypically viable, and (iii) cell type A is heterotypically viable and cell type B is heterotypically nonviable or, conversely, cell type A is heterotypically nonviable and cell type
B is heterotypically viable.
types that vary only in their parameters and investigate the conditions
that lead to competitive outcomes. Because this approach involves
detecting rather than asserting winners and losers, we need a stringent
definition of what a ‘‘competitive outcome’’ entails. We consider two
defining features of cell competition: (i) both of the competing cell
types are viable when grown in homotypic conditions; and (ii) the loser
cells are completely eliminated in heterotypic conditions. Therefore,
to identify competitive outcomes between two competing cell types
in a cell-based model, we evaluate their viability in both homotypic
and heterotypic conditions. This evaluation can be made either using
computational simulation or through theoretical analysis, in which case
viability can be analytically predicted. An interaction between two
cell types is thus classified as competitive if both cell types are found
to be viable in a homotypic environment and only one cell type is
observed to remain viable in a heterotypic environment. These are the
cell competition criteria, which we illustrate in Fig. 1.

We can use these cell competition criteria to identify parameter
regimes that are associated with cell competition. Our approach has
two important advantages over modelling frameworks that hardcode
winner/loser identities. Firstly, it allows us to determine whether a
given cell-based model is capable of displaying cell competition. Sec-
ondly, characterising the parameter regimes that lead to competitive
outcomes helps us identify and analyse the factors that drive cell
competition. Finally, we note that our framework respects the context-
dependent nature of cell competition; winner/loser status is treated as
an emergent property that exists only in the relationship between two
cell types and is not inherent to any particular cell type.

1.2. Viability matrix

Generally speaking, the most appropriate definition of viability to
be used for the cell competition criteria will depend on the model and
the context. We assume, however, that viability is a binary property: a
cell type is either viable or nonviable. Enumerating all combinations
of homotypic and heterotypic viability for two competing cell types
therefore results in 22×2 = 16 possible outcomes. In order to better
contextualise the cell competition criteria, we tabulate these outcomes
in a viability matrix (Fig. 2).
2

In this paper, we will assess the viability of a cell population based
on its survival frequency, which is a statistic summarising cell population
growth (or decline) in simulations of cell-based models. Later on, in
Section 3.3, we introduce its analytical analogue, the survival proba-
bility. Suppose, for the sake of illustration, that we have two cell types,
labelled A and B, and we want to determine whether they satisfy the
cell competition criteria. As Fig. 1 suggests, we need to run at least two
homotypic simulations, one per cell type, and one heterotypic simula-
tion in order to measure their viability in homotypic and heterotypic
conditions. We compute the homotypic survival frequencies as

�̂�𝐴 = # A divisions
# A divisions + # A deaths , (1)

�̂�𝐵 = # B divisions
# B divisions + # B deaths , (2)

for cell types A and B from their respective homotypic simulations.
Similarly, we compute the heterotypic survival frequencies from a
heterotypic simulation as

𝜉𝐴|𝐵 = # A divisions
# A divisions + # A deaths , (3)

𝜉𝐵|𝐴 = # B divisions
# B divisions + # B deaths , (4)

for cell types A and B, respectively. The simulations thus yield four
survival frequencies: �̂�𝐴, �̂�𝐵 , 𝜉𝐴|𝐵 , and 𝜉𝐵|𝐴. If a survival frequency is
below one half, then the cell population has declined over the course of
the simulation, so we consider the population nonviable. Conversely,
if a survival frequency is greater or equal to one half, then the cell
population has grown or stayed the same, so we consider the population
viable.

The viability matrix is then constructed by arranging the homotypic
viability outcomes along the horizontal axis, and arranging the het-
erotypic viability outcomes along the vertical axis in the same order,
as illustrated in Fig. 2. Every column thus corresponds to a particular
set of homotypic viability outcomes, every row corresponds to a par-
ticular set of heterotypic viability outcomes, and every element of the
matrix represents a specific combination of homotypic and heterotypic
viability outcomes.

The last column satisfies the first part of the cell competition crite-
ria, i.e. both cell types are homotypically viable. Between the diagonal
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Fig. 2. Viability matrix. The matrix is constructed by arranging the homotypic and heterotypic viability outcomes along the horizontal and vertical axes, respectively. Viability
is measured in terms of survival frequency: see Eqs. (1) and (2) for the definitions of the homotypic survival frequencies �̂�𝐴 and �̂�𝐵 , and Eqs. (3) and (4) for the definitions of
the heterotypic survival frequencies 𝜉𝐴|𝐵 and 𝜉𝐵|𝐴. On the main diagonal (cyan) the viability is identical for heterotypic and homotypic conditions. On the antidiagonal (red), the
heterotypic viability is the opposite of the homotypic viability. The competitive outcomes are coloured green. The double-sided arrows show the result of swapping cell type labels.
outcome (both cell types remain viable) and antidiagonal outcome
(both cell types become nonviable) of this column, only one cell
type remains viable in heterotypic conditions (green), thus completely
satisfying the cell competition criteria. We define these outcomes as
competitive outcomes. The surviving cell type is assigned the winner
status, and the heterotypically nonviable cell type receives the loser
status. The aim of our framework is to study the emergence of cell
competition and winner/loser status by investigating the parameters
and conditions that give rise to such competitive outcomes.

Finally, because we assume that the competing cell types differ
only in their parameters, we note that the choice of cell type labels
is arbitrary; swapping cell type labels should have no effect on the
behaviour of the model. The double-sided arrows show which outcomes
convert into each other as a result of swapping cell type labels, and can
therefore be considered equivalent.

1.3. Outline

In this paper, we demonstrate the utility of the proposed framework
by applying it to two different models: a mechanical model and a G2
death signal model. The mechanical model is discussed and analysed
in Section 2, where we investigate whether differences in mechanical
parameters between two cell types in a vertex-based model consti-
tute a sufficient mechanism for cell competition. We perform a large
parameter sweep to search for competitive outcomes, but we do not
find significant evidence for competitive behaviour, suggesting that
an active mechanism of cell death is necessary for cell competition.
Motivated by these results, we introduce a modelling framework in
Section 3 that simulates the intercellular exchange of death signals and
the intracellular initiation of apoptosis: the ‘‘death clock’’ framework.
Importantly, within this framework we can derive expressions for the
survival probability of cells, providing us with an analytical tool for
predicting the viability of cell populations. We also discuss the im-
plementation of the death clock framework in two concrete cell-based
models: the well-mixed model and the vertex-based model.

We use the death clock framework in Section 4 to construct the G2
death signal model, where cells emit death signals in the G2 phase of
the cell cycle. To investigate the potential for competitive outcomes
in this model, we predict the viability of cells in homotypic and
heterotypic conditions using analytical arguments based on the survival
probability, and validate the predictions with computational simula-
tions of the well-mixed and vertex-based models. We demonstrate that
3

not only can the G2 death signal model produce competitive outcomes,
but also that it reveals additional biologically relevant competition
regimes that have the potential to refine and expand the current
theoretical understanding of cell competition. Finally, in Section 5,
we discuss and interpret the results of the G2 death signal model,
and propose a conceptual model of cell competition based on two key
cellular properties: tolerance to, and emission of, death signals. We
examine the experimental evidence in support of this model, suggest
novel cell competition experiments inspired by it, and discuss potential
avenues for future research.

2. Cell competition via differing biomechanical properties

Mechanical cell competition is a special case of cell competition,
observed specifically in epithelia, that is mediated through mechanical
interactions (Brás-Pereira and Moreno, 2018). The losers in this interac-
tion are more sensitive to cell compression than the winners and initiate
apoptosis in response to cell crowding (Levayer et al., 2016; Wagstaff
et al., 2016). In addition, we note that epithelial tissues shed live cells
in response to cell crowding under homotypic conditions (Marinari
et al., 2012; Eisenhoffer et al., 2012). In this study, cells undergo
a ‘‘passive’’ form of cell death because they are extruded from the
tissue as a result of mechanical interactions, and only die after being
removed from the tissue. In this section, we investigate the question:
are differences in biomechanical properties, combined with passive cell
extrusion, sufficient to engender cell competition? A suitable cell-based
framework for simulating the mechanical interactions in epithelial
tissues is vertex-based modelling, since it has been shown to repro-
duce the dynamics of epithelial tissues in a variety of developmental
processes (Fletcher et al., 2014).

The overall strategy of this section is therefore to construct a het-
erotypic vertex-based model that allows for the independent variation
of mechanical parameters between two cell types, and to test whether
this variation is sufficient to give rise to competitive outcomes. We
call this model the ‘‘mechanical model’’ because our aim is to search
for competitive outcomes mediated through mechanical interactions
alone. In Section 2.1, we introduce the general vertex-based model and
adapt it for heterotypic populations. We then describe our methodology
for systematically exploring its parameter space in Section 2.2 and
present the results in Section 2.3. As we will discuss in Section 2.4, we
failed to find any significant evidence for competitive outcomes in the
mechanical model, which motivates the construction of a model based

on death signals in Section 3.
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2.1. Vertex-based model

In vertex-based modelling, the epithelial tissue is represented by a
polygonal mesh where each polygon corresponds to an epithelial cell,
and the dynamics of the tissue is based on the motion of the mesh
vertices. In particular, the equation of motion for vertex 𝑖 with position
𝐫𝑖, experiencing the total force 𝐅𝑖, has the form
d𝐫𝑖
d𝑡

= 𝐅𝑖 , (5)

where 𝜇 is the friction coefficient (Purcell, 1977). The force acting on
vertex 𝑖 is given by

𝐅𝑖 = ∇𝑖𝐸 , (6)

where ∇𝑖 is the gradient of an energy function 𝐸 with respect to the
spatial coordinates of vertex 𝑖. We use the energy function presented
n Farhadifar et al. (2007), which describes three major biomechanical
roperties: cell elasticity, cell contractility, and cell–cell adhesion;

=
∑

𝛼

𝐾𝛼
2

(

𝑆𝛼 − 𝑆0
𝛼
)2 +

∑

𝛼

𝛤𝛼
2
𝐿2
𝛼 +

∑

⟨𝑖,𝑗⟩
𝛬𝑖𝑗𝓁𝑖𝑗 . (7)

The first term represents cell elasticity, i.e. the cell’s resistance against
deformation. The parameters 𝐾𝛼 and 𝑆0

𝛼 are the elasticity constant and
the target cell area of cell 𝛼, respectively, while 𝑆𝛼 is the cell area
of cell 𝛼. The second term models cell contractility, with 𝛤𝛼 and 𝐿𝛼
corresponding to the contractility constant and the cell perimeter of
cell 𝛼, respectively. The final term represents cell–cell adhesion, which
is implemented as a line tension acting on cell–cell interfaces. For each
edge ⟨𝑖, 𝑗⟩ connecting the vertices 𝑖 and 𝑗, this line tension is the product
of the line tension constant, 𝛬𝑖𝑗 , and the edge length, 𝓁𝑖𝑗 .

In addition to vertex dynamics, the vertex-based model also evolves
through mesh rearrangements that allow cells to exchange neighbours,
proliferate, and be extruded from the tissue. During cell division, a new
edge is formed that bisects the mother cell and results in two daughter
cells. Cell extrusion, on the other hand, is achieved by the ‘‘T2 swap’’,
which removes cells when their cell area falls below a certain threshold.
There are many technical details involved with mesh rearrangements,
so we refer the reader to Fletcher et al. (2013) for further details.

Motivated by experiments with in vitro cell cultures (Smith and
Martin, 1973), we assume a two-phase cell cycle model. The first phase
corresponds to the G1 phase, and we lump together the S, G2 and M
phases in the second phase. For brevity, we refer to the second phase
as the G2 phase. For cell 𝛼, the duration of G1 phase is exponentially
distributed with mean 𝑡G1,𝛼 . The G2 phase lasts for the fixed duration
𝑡G2,𝛼 . At the end of the G2 phase, cell division occurs as described
above.

We divide the cell population into two non-overlapping sets that
correspond to two distinct cell types, A and B. The mechanical and
cell cycle constants for each cell are determined by its cell type. In
particular, the elasticity constant 𝐾𝛼 is given as

𝐾𝛼 =

{

𝐾𝐴 for 𝛼 ∈ 𝐴 ,
𝐾𝐵 for 𝛼 ∈ 𝐵 ,

(8)

and the target cell area 𝑆0
𝛼 , contractility constant 𝛤𝛼 , and cell cycle

constants 𝑡G1,𝛼 and 𝑡G2,𝛼 are determined analogously. Since the line
tension parameter is dependent on the edge type, rather than the cell
type, we need to specify values for every pairing of cell types. In
addition, we need to account for edges at the boundary of the tissue,
which border a cell on one side and empty space on the other. Denoting
the two cells sharing the edge ⟨𝑖, 𝑗⟩ as 𝛼 and 𝛽, we write

𝛬𝑖𝑗 =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

𝛬𝐴𝐴 for 𝛼, 𝛽 ∈ 𝐴 ,
𝛬𝐵𝐵 for 𝛼, 𝛽 ∈ 𝐵 ,
𝛬𝐴𝐵 for 𝛼 ∈ 𝐴, 𝛽 ∈ 𝐵 ,
𝛬𝐴 for 𝛼 ∈ 𝐴, 𝛽 ∈ ∅ ,
𝛬 for 𝛼 ∈ 𝐵, 𝛽 ∈ ∅ ,

(9)
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Table 1
Lower and upper bounds for parameter sweep of the mechanical model. The default
parameter value is also given. Any remaining parameters were set to the default Chaste
values. Each simulation was given a distinct seed for generating random numbers.

Parameter Lower Default Upper

𝑆0
𝐴 , 𝑆

0
𝐵 , 𝐾𝐴 , 𝐾𝐵 0.5 1.0 1.5

𝛤𝐴 , 𝛤𝐵 0.01 0.04 0.07
𝛬𝐴𝐴 , 𝛬𝐴𝐵 , 𝛬𝐵𝐵 0.06 0.12 0.18
𝑡G1,𝐴 , 𝑡G1,𝐵 0 30 60
𝑡G2,𝐴 , 𝑡G2,𝐵 40 70 100

Simulation timestep 0.05
Simulation time 250
T1 threshold distance 0.1
Initial cell count 36

where 𝛽 ∈ ∅ signifies that ⟨𝑖, 𝑗⟩ is a boundary edge. Furthermore, we
impose that each cell division results in cells that are of the same type
as the mother cell, i.e. a cell of type A divides into two daughter cells
of type A.

We implemented the mechanical model within Chaste, an open-
source simulation package for computational physiology and biol-
ogy (Mirams et al., 2013) that includes a range of cell-based mod-
els (Osborne et al., 2017). We refer the reader to the following GitHub
repository for the code of the mechanical model: https://github.com/
ThomasPak/cell-competition.

2.2. Methods

After constructing the heterotypic mechanical model, we now deter-
mine whether it can generate competitive outcomes. We first performed
a systematic parameter grid search varying the parameters of only one
cell type, but we did not find any statistically significant evidence
for competitive behaviour (results not shown). We then expanded the
parameter sweep to include the parameters of both cell types. Since
this involves changing the properties of two cell types simultaneously,
we needed to vary twice as many parameters compared to the grid
search. Therefore, because of the large number of parameters, we used
a Latin hypercube sampling (LHS) method to sample parameter values.
LHS methods are particularly useful when the parameter space is high-
dimensional, since the number of samples required is independent of
dimension (McKay et al., 1979). In particular, we used an LHS method
based on orthogonal arrays, which is an additional optimisation that
improves the dispersal of parameter values (Tang, 1993). Concretely,
we sampled a total of 2 809 parameter sets. The lower and upper bounds
for each parameter, as well as its default value, are given in Table 1.

Every parameter set thus sampled corresponds to a unique pair of
cell types. For each pair, we conducted three simulations to sample the
homotypic and heterotypic viabilities: two homotypic simulations (one
for each cell type) and one heterotypic simulation. Each homotypic
simulation has an initial population of 36 cells. For the heterotypic
simulations, we split the population equally between the two cell
types (18 cells each) and randomise their spatial distribution in the
tissue. The homotypic and heterotypic viabilities were evaluated as
described in Section 1.2, i.e. based on the homotypic survival frequency
(Eqs. (1) and (2)) and heterotypic survival frequency (Eqs. (3) and (4)),
respectively.

2.3. Results

Out of 2 809 parameter sets, 23 resulted in simulation errors because
the timestep was too large. Since this only represented a tiny propor-
tion of the parameter sweep, we excluded these parameters from our
analysis. We summarised the outcomes for the remaining parameters
using a viability matrix in Table 2.

The majority of parameter sets resulted in outcomes on the main

diagonal, accounting for nearly 90% of all results, indicating that little

https://github.com/ThomasPak/cell-competition
https://github.com/ThomasPak/cell-competition
https://github.com/ThomasPak/cell-competition
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Table 2
Count of homotypic and heterotypic viability outcomes for the parameter sweep,
summarised using the viability matrix (Fig. 2).

�̂�𝐵 < 1
2

�̂�𝐵 ≥ 1
2

�̂�𝐴 < 1
2

�̂�𝐴 ≥ 1
2

�̂�𝐴 < 1
2

�̂�𝐴 ≥ 1
2

𝜉𝐵|𝐴 < 1
2

𝜉𝐴|𝐵 < 1
2

305 17 11 0

𝜉𝐴|𝐵 ≥ 1
2

0 407 0 4

𝜉𝐵|𝐴 ≥ 1
2

𝜉𝐴|𝐵 < 1
2

0 0 476 16

𝜉𝐴|𝐵 ≥ 1
2

4 105 128 1313

to no interaction took place in most cell type pairings. We find the sec-
ond most numerous outcome in the middle entries of the bottom row,
comprising 8.4% of the observed outcomes. As discussed in Section 1.2,
these entries are equivalent after swapping cell labels. In these out-
comes, one cell type is nonviable in homotypic conditions, but becomes
viable when exposed to a homotypically viable cell type. Therefore, the
most commonly observed outcomes in the parameter sweep, accounting
for over 98% of all observations, are the following: heterotypic condi-
tions either engender no changes to viability, or enhance the viability of
a nonviable cell type through its interaction with a viable cell type. The
latter can be construed as the opposite of a competitive outcome; the
viability criteria in homotypic and heterotypic conditions are inverted
with respect to the cell competition criteria.

Of the remaining categories, the largest one consists of the middle
entries of the top row, accounting for 1% of observations. Similarly
to the middle entries of the bottom row, only one cell type is ho-
motypically viable. In contrast to the bottom row, however, both cell
types end up nonviable in heterotypic conditions. Only 20 outcomes
(roughly 0.7%) fall into the middle entries of the last column and thus
fulfil the cell competition criteria, the target of our search. Finally, the
least observed outcome lies on the antidiagonal (bottom left) with a
total of four outcomes, or 0.1%, corresponding to the case where two
homotypically nonviable cell types both become viable in heterotypic
conditions.

It is important to note here that the mechanical model is stochastic,
so we must account for random noise in the data. Hence, we conducted
additional simulations targeting specifically those 20 parameter sets
that satisfied the cell competition criteria, and tested whether the
competitive behaviour was statistically significant. We found that only
six out of the 20 targeted parameter sets showed statistically significant
competitive behaviour with a significance level of 5%. We also ran
additional simulations with segregated initial conditions to examine the
influence of spatial segregation. We found that this reduced the number
of significant results further to one single parameter set. We describe
the methodology and results of the statistical analysis in more detail in
Section S1 of the supplementary material.

2.4. Discussion

In this section, we constructed a heterotypic vertex-based model,
namely the mechanical model, to investigate whether differences in
mechanical properties are sufficient to give rise to cell competition.
We performed a large parameter sweep and found that we could only
reliably reproduce competitive behaviour for a tiny fraction of the
simulated parameter sets. Most of the parameter sets resulted in no
observable interactions, and most of the interactions that did occur
generated the opposite outcome of cell competition.

We conclude that simply varying the parameters of the mechanical
model is not sufficient to reliably generate competitive behaviour. This
agrees with experiments suggesting that cell competition generally de-
pends on an active mechanism of cell death, such as apoptosis (Moreno
et al., 2002), and that mechanical cell competition is no exception in
this respect (Levayer et al., 2016; Wagstaff et al., 2016). We note that
these results do not exclude the possibility of mechanical interactions
5

playing a role in cell competition. They do strongly suggest, however,
that passive cell death alone is an insufficient mechanism for cell com-
petition and that mechanical interactions must be paired with an active
mechanism of cell death to produce robust competitive behaviour.

3. Cell competition via exchange of death signals

The results of Section 2 suggest that cell competition requires an
active and non-autonomous mechanism of cell death. This observa-
tion is also supported experimentally (De La Cova et al., 2004; Norman
et al., 2012; Moreno et al., 2002). Therefore, the aim in this section is
to develop a modelling framework for cell competition implementing
such an active and non-autonomous mechanism for cell death. The core
idea is that cells exchange ‘‘death signals’’ with their neighbours and
that these signals are accumulated by the cell into an abstract quantity
called the ‘‘death clock’’. When the death clock reaches a threshold
value, apoptosis is triggered. We do not yet attach the death signal to
a concrete biological mechanism because there are multiple competing
hypotheses regarding the mode of intercellular communication that un-
derlies cell competition, and because the mode of communication may
depend on the specific type of cell competition under consideration.

We first discuss our biological assumptions and modelling choices
in Section 3.1, before introducing the death clock framework in Sec-
tion 3.2. In Section 3.3, we define the survival probability and derive
its analytic expression for a given death signal. Crucially, the survival
probability enables us to analyse the death clock framework from a
theoretical perspective and make predictions on the viability of cell
populations. Finally, in Section 3.4 we discuss the implementation of
the death clock framework in two computational cell-based models:
the well-mixed model and the vertex-based model. The analytical and
computational tools presented in this section will be used in Section 4
to conduct a thorough investigation of the G2 death signal model.

3.1. Assumptions

A series of studies involving mathematical modelling and experi-
ments have revealed the importance of threshold mechanisms in the
initiation of apoptosis (Bentele et al., 2004; Legewie et al., 2006; Rehm
et al., 2006; Lavrik et al., 2007). For instance, it was shown that death
ligand-induced apoptosis requires a threshold proportion of ligand to
receptor numbers to be reached (Bentele et al., 2004; Lavrik et al.,
2007). Given this precedent, we propose a model in which competition-
induced apoptosis is triggered by the accumulation of death signals
reaching a threshold value.

Furthermore, it has been established in the literature that apoptosis
and the cell cycle are closely coupled (King and Cidlowski, 1995,
1998; Pucci et al., 2000; Vermeulen et al., 2003). Notably, the regu-
latory protein Myc is known to affect both cell cycle progression and
apoptosis (Facchini and Penn, 1998; McMahon, 2014; Bretones et al.,
2015). On the one hand, Myc is necessary for the transition of G1 to S
phase, and it induces cell cycle progression in quiescent cells (Facchini
and Penn, 1998; Bretones et al., 2015). On the other hand, Myc has
been associated with increased rates of cell death (McMahon, 2014).
Coupled with the fact that differential Myc expression results in cell
competition (Moreno and Basler, 2004), we hypothesise that apoptosis,
competition, and the cell cycle are interrelated. Concretely, we assume
that the cell is only susceptible to competition-induced apoptosis in G1
phase, and that the cell is committed to division from S phase onwards.
Similar to the vertex-based model in Section 2, we assume a two-phase
cell cycle model, where we treat the duration of the G1 phase as a
random variable and lump together the S, G2 and M phases into the

G2 phase, which has a fixed duration.
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Fig. 3. Death clock flowchart. The ‘‘Sample’’ step corresponds to Eq. (10), and the ‘‘Integrate’’ step corresponds to Eq. (11). The condition in the decision block is the survival
condition, corresponding to Eq. (12).
3.2. Death clock framework

The death clock framework consists of two coupled cellular pro-
cesses: the cell cycle and the death clock, where the death clock governs
the initiation of apoptosis in response to death signals. We consider the
cell cycle to be an autonomous process, meaning that it is not affected
by other cells. On the other hand, the death clock is a non-autonomous
process because it is driven by extracellular signals produced by other
cells. Together, these processes determine whether and when the cell
divides or initiates apoptosis.

At division, we sample a stochastic G1 duration, denoted as 𝑡∗, from
the G1 duration distribution , i.e.

𝑡∗ ∼  , (10)

where  is subject to the constraints that (i) 𝑡∗ ∈ [0,∞) and (ii) 𝐸(𝑡∗) =
𝑡G1, with 𝑡G1 the autonomous G1 duration. If apoptosis is not triggered
by the death clock, the cell spends a duration 𝑡∗ in G1 phase and then
transitions into G2 phase. After spending a fixed duration, 𝑡G2, in G2
phase, the cell divides and the process repeats for each of the daughter
cells.

We model the accumulation of death signals using an ordinary
differential equation (ODE) model in which the death clock, denoted
by 𝜏(𝑡), evolves according to the ODE
d𝜏
d𝑡

= 𝑓 (𝑡) , (11)

where 𝑓 (𝑡) ≥ 0 is the death signal experienced by the cell. At birth, the
death clock of a cell is initialised to zero, i.e. 𝜏(𝑡 = 0) = 0. The apoptosis
rule is then

Cell is in G1 phase 𝐚𝐧𝐝 𝜏(𝑡) reaches 𝑇† ⇒ initiate apoptosis ,

where 𝑇† is the death threshold. We define the survival condition as

𝜏(𝑡∗) < 𝑇† . (12)

We note that there are two potential sources of uncertainty in the
death clock framework: variability in G1 duration and in the death
signal. The former originates from the cell cycle, the latter from inter-
cellular interactions, and both contribute to the decision of the cell to
initiate apoptosis. Our framework can thus be regarded as a minimalist
model of autonomous and non-autonomous processes interacting to
govern competition-induced apoptosis. The death clock framework is
summarised by the flowchart in Fig. 3.

3.3. Survival probability

In order to predict the viability of a cell population, we must
determine the probability of cells surviving. This problem is intractable
when considering the uncertainty in the death signal and in the cell
cycle simultaneously. To make analytic progress, we fix the death signal
6

and consider exclusively the variance in the cell cycle, which lets us
derive an expression for the ‘‘survival probability’’. We define this
survival probability, which we denote by 𝜃, as the probability that the
survival condition (Eq. (12)) is satisfied, i.e.

𝜃 ≡ 𝑃 (𝜏(𝑡∗) < 𝑇†) . (13)

Assuming that 𝑓 (𝑡) is a non-negative integrable function, we define

𝐹 (𝑡) ≡ ∫

𝑡

0
𝑓 (𝑡′)d𝑡′ , (14)

such that the value of the death clock at time 𝑡∗ is 𝐹 (𝑡∗). This lets us
write the survival condition as 𝐹 (𝑡∗) < 𝑇†. We define the pseudoinverse
function of 𝐹 (𝑡) as

𝐹−1(𝜏) ≡ min{𝑡 ∈ [0,∞) ∶ 𝐹 (𝑡) = 𝜏} , (15)

so that we can reformulate the survival condition as

𝑡∗ < 𝐹−1 (𝑇†
)

. (16)

Substituting this into Eq. (13), and denoting the cumulative distribution
function for the distribution of 𝑡∗ as 𝛹 (𝑡), we obtain

𝜃 = 𝑃
(

𝑡∗ < 𝐹−1 (𝑇†
))

= 𝛹
(

𝐹−1 (𝑇†
))

. (17)

As a special case, consider the constant death signal 𝑓 (𝑡) = 𝑐, where
𝑐 > 0 is a positive constant. We then have 𝐹 (𝑡) = 𝑐𝑡 ⇒ 𝐹−1(𝜏) = 𝜏∕𝑐 ⇒
𝜃 = 𝛹 (𝑇†∕𝑐).

3.4. Cell-based death clock models

So far, we have described the processes leading to competition-
induced apoptosis from the perspective of a single cell. The death clock
framework can be embedded in any cell-based model that (i) provides
cells with an extracellular environment from which to derive a death
signal and (ii) includes a cellular operation for initiating apoptosis. In
this paper, we implement the death clock mechanism in two particular
cell-based models: the vertex-based model (Section 2.1), and a well-
mixed model. In the vertex-based model, a cell interacts only with cells
in its local neighbourhood. In the well-mixed model, on the other hand,
each cell interacts with all other cells on an equal basis. In Section 4, we
use both models in a complementary manner. Here, we present a high-
level outline of the well-mixed and vertex-based models. For a detailed
discussion of their numerical implementations, see Sections S2 and S3
in the supplementary material. We provide the code for both models in
the following GitHub repository: https://github.com/ThomasPak/cell-
competition.

3.4.1. Well-mixed model
For each cell 𝛼, we represent its state with the cell vector 𝐲𝛼(𝑡),

where 𝛼 = 1,… , 𝑁(𝑡), and 𝑁(𝑡) is the number of cells at time 𝑡. We
write the cell vector as

𝐲 (𝑡) ≡
[ ∗ 0 ]

, (18)
𝛼 𝜏𝛼(𝑡) 𝑡𝛼 𝑡𝛼 𝛼 𝑡G2,𝛼 𝑓𝛼(⋅) 𝑇†,𝛼

https://github.com/ThomasPak/cell-competition
https://github.com/ThomasPak/cell-competition
https://github.com/ThomasPak/cell-competition
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𝑆

a
Table 3
Summary of cell vector elements.

Symbol Description

𝜏𝛼 (𝑡) Death clock
𝑡∗𝛼 Sampled G1 duration
𝑡0𝛼 Birth time
𝛼 G1 duration distribution
𝑡G2,𝛼 G2 duration
𝑓𝛼 (⋅) Death signal function
𝑇†,𝛼 Death threshold

and summarise its contents in Table 3. The state of the system, denoted
𝑆(𝑡), is then

(𝑡) ≡
{

𝐲1(𝑡) , 𝐲2(𝑡) , … , 𝐲𝑁(𝑡)(𝑡)
}

. (19)

We evolve the death clock for each cell 𝛼 as
d𝜏𝛼
d𝑡

= 𝑓𝛼(𝐱𝛼(𝑡)) , (20)

where 𝑓𝛼(⋅) is the death signal function and 𝐱𝛼(𝑡) is the ‘‘input vector’’
representing the extracellular environment. Since the cell population is
well-mixed, this environment is composed of every cell except itself,
i.e. 𝐱𝛼(𝑡) =

[

𝐲1(𝑡),… , 𝐲𝛼−1(𝑡), 𝐲𝛼+1(𝑡),… , 𝐲𝑁(𝑡)(𝑡)
]

.
In addition, we define two discrete operations: cell division and

cell death. When a cell’s age reaches its total cell cycle duration, the
division operation is triggered which constructs two daughter cells; one
in a new cell vector and one reusing the mother cell vector. When
a cell’s death clock reaches the death threshold in G1 phase, the cell
is removed from the population. See Section S2 in the supplementary
material for further implementation details.

3.4.2. Vertex-based model
We implemented the vertex-based death clock model by augmenting

the basic vertex-based model, introduced in Section 2, with the death
clock mechanism. Briefly, this involves equipping every cell with a
death clock that can trigger apoptosis. The death clock for each cell is
evolved similarly to the well-mixed model using Eq. (20). However, the
input vector 𝐱𝛼(𝑡) is constrained to contain only information about the
local extracellular environment of cell 𝛼, for instance the states of its
direct neighbours. Apoptosis is implemented in the vertex-based model
by shrinking the target cell area, 𝑆0

𝛼 , to zero, which causes the cell
to contract until it is extruded from the tissue. See Section S3 in the
supplementary material for implementation details.

4. The G2 death signal model

Having introduced the death clock framework, as well as the an-
alytical and computational tools to investigate its dynamics, we now
turn our attention to a particular form of the death signal, namely
the G2 death signal. In the G2 death signal model, cells emit death
signals to their neighbours while they are in G2 phase. This choice is
motivated by the observation that cell competition often manifests as
patches of proliferating cells inducing apoptosis in neighbouring cells
to make room for themselves. In the death clock framework, cells in
G2 phase are committed to division, so we decided to associate the
death signal with the decision to proliferate. Moreover, experimental
evidence suggests a link between cell cycle progression and death
signals (Ninov et al., 2007; Nakajima et al., 2011). Concretely, the G2
death signal is defined as

𝑓 (𝑡) = 𝑐𝑔(𝑡) , (21)

where 𝑔(𝑡) is the proportion of neighbouring cells in G2 phase, i.e.

𝑔(𝑡) =

⎧

⎪

⎨

⎪

# neighbours in G2
# neighbours if # neighbours > 0 ,

0 otherwise ,
(22)
7

⎩

nd 𝑐 is a positive constant.
We first investigate the effect that the G2 death signal model has

on homotypic populations in Section 4.1. This is done by deriving
an expression for the homotypic survival probability (Section 4.1.1),
which further enables us to characterise the parameter space in terms
of homotypic viability (Section 4.1.2). For heterotypic populations (Sec-
tion 4.2), we similarly characterise the heterotypic survival probability
(Section 4.2.1) and use it to derive the conditions for viability in
each subpopulation (Section 4.2.5). We also describe and classify the
different types of competitive interactions encountered in the G2 death
signal model in Section 4.2.4.

The cell competition criteria are based on both the homotypic
and heterotypic viabilities, so the results of Sections 4.1 and 4.2 are
combined in Section 4.3 to identify biologically relevant competition
regimes. Notably, we demonstrate that the G2 death signal model is
capable of producing competitive outcomes. Furthermore, our detailed
investigation of the parameter space reveals additional competition
regimes that refine and generalise the classical competition regimes
defined in the literature. Finally, in Section 5 we provide a detailed
discussion of our findings and their implications for cell competition.

4.1. Homotypic populations

We defined the survival probability in Section 3.3 for a given death
signal, but in general the death signal received by any particular cell
is not known a priori. Fortunately, as we will see in Section 4.1.1,
we can derive a useful approximation of the death signal in the G2
death signal model and use this to characterise the homotypic survival
probability. In Section 4.1.2, we build on this result to characterise the
proliferation regimes, which we define as the parameter regimes in which
cells are viable or nonviable. Finally, we validate these proliferation
regimes using simulations of the well-mixed and vertex-based models
in Section 4.1.3.

4.1.1. Homotypic survival probability
In order to derive the homotypic survival probability, we need

to obtain an expression for the G2 death signal under homotypic
conditions. But first, we highlight the critical role of the cell cycle in
the G2 death signal model to motivate the definition of an important
dimensionless parameter.

In the G2 death signal model, cells only emit death signals in G2
phase and this leads to an important trade-off; cells in G1 phase are
vulnerable to death signals and do not generate death signals, whereas
cells in G2 phase are impervious to death signals but do generate death
signals. This raises the question: what is the impact of changing the
proportion of the cell cycle that is spent in G1 or G2 phase on the
survival probability, given a fixed total cell cycle duration? In order to
investigate this question, we denote the total cell cycle duration as 𝑡G,
and define 𝛽 as the fraction of the cell cycle that is spent, on average,
in G1 phase, so that

𝑡G1 = 𝛽𝑡G , 𝑡G2 = (1 − 𝛽)𝑡G . (23)

Even though cell cycle phases are stochastic in the G2 death signal
model, we found that the death signal is not only relatively stable, but
also predictable. In particular, we observe that the system is ergodic,
in the sense that the average proportion of cells in G2 phase relative
to the population well approximates the average proportion of the cell
cycle spent in G2 phase. More precisely, we state that the system is
ergodic if, on average,
# cells in G2

# cells ≈ G2 duration
cell cycle duration . (24)

Furthermore, if the system is well-mixed, then we can approximate 𝑔(𝑡)
as

𝑔(𝑡) ≈ # cells in G2 . (25)
# cells
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Combining Eqs. (24) and (25), we have

𝑔(𝑡) ≈ G2 duration
cell cycle duration = 1 − 𝛽 , (26)

so that the death signal is

𝑓 (𝑡) = 𝑐𝑔(𝑡) ≈ 𝑐(1 − 𝛽) . (27)

Applying the methodology of Section 3.3, we use this result to derive
the homotypic survival probability, denoted 𝜆, as

𝜆 = 𝛹
( 𝑇†
𝑐(1 − 𝛽)

)

. (28)

For an exponential cell cycle model more specifically, this becomes

𝜆 = 1 − exp
(

−
𝑇†

𝑐𝑡G𝛽(1 − 𝛽)

)

. (29)

n order to simplify the notation, we introduce the dimensionless
arameter 𝜂,

≡
𝑇†
𝑐𝑡G

, (30)

hich can be interpreted as a normalised death threshold. Hence,
e write the homotypic survival probability as a function of two
imensionless parameters:

(𝛽, 𝜂) = 1 − exp
(

−
𝜂

𝛽(1 − 𝛽)

)

. (31)

We validate this expression via simulation in Section S4 of the supple-
mentary material.

4.1.2. Homotypic proliferation regimes
Based on the homotypic survival probability 𝜆, we distinguish be-

tween two proliferation regimes for homotypic populations1:

Nonviable Regime
{

𝜆 ≤ 1
2

}

. Cells are equally or more likely to die
than to proliferate, hence the population declines. We say that
cell types in this regime are nonviable.

Viable Regime
{

𝜆 > 1
2

}

. Cells are more likely to proliferate than to
die, hence the population grows. We say that cell types in this
regime are viable.

We define the homotypic viability curve as the curve satisfying
= 1∕2. This curve separates the Nonviable Regime from the Viable

egime. For the exponential cell cycle model, the homotypic viability
urve is given by

= ln(2)𝛽(1 − 𝛽) . (32)

his analysis therefore predicts that a population is viable for all 𝜂 >
n(2)∕4, and for 𝜂 ≤ ln(2)∕4 it is viable for extreme values of 𝛽 and
onviable otherwise (Fig. 4(a)).

.1.3. Computational validation of homotypic proliferation regimes
We use computational simulation to determine whether the viability

f homotypic populations in silico matches the homotypic proliferation
egimes as predicted by the homotypic viability curve. Further details
re provided in Section S5 of the supplementary material.

1 The astute reader may note the discrepancy between the definition of
iability based on survival probability versus the definition based on survival
requency (Section 1.2): 𝜆 = 1∕2 is considered nonviable, whereas �̂� = 1∕2 is

considered viable. This subtle distinction is rooted in the theory of birth–death
Markov chains but bears no significance on our argument so we will not go
8

into it further. 𝑐
For each simulation 𝑘, we computed the homotypic survival fre-
quency, denoted by �̂�𝑘, using Eq. (1). For every unique parameter set,
we averaged the homotypic survival frequency as

𝜆 = 1
𝑁sim

𝑁sim
∑

𝑘=1
�̂�𝑘 , (33)

where 𝑁sim is the number of simulations for the given parameter set.
We expect that nonviable populations tend to have a survival fre-

quency below a half, i.e. �̂�𝑘 < 1∕2, and vice versa for viable populations.
Fig. 4(a) predicts that cell types below the homotypic viability curve
are nonviable and cell types above the curve are viable. To verify these
predictions, we visualise 𝜆 in Fig. 4(b) for both the well-mixed and
vertex-based models.

The left-hand plot in Fig. 4(b) shows that the observed border
between nonviable and viable regimes closely matches predictions for
the well-mixed model. We see that for small 𝜂 values, the survival
frequency is asymmetrical with respect to 𝛽, with higher survival
frequencies for 𝛽 < 1∕2 than 𝛽 > 1∕2. The reason for this discrepancy
is discussed in Section S4.5. In short, for low 𝜂 values, the rate of
apoptosis is so high that the limiting factor is the number of cells
susceptible to apoptosis, rather than the survival probability. For small
𝛽 values, cells spend less time in G1 phase and are therefore susceptible
for a shorter amount of time.

The right-hand plot in Fig. 4(b) also shows good agreement between
theory and simulations for the vertex-based model, although the border
is less finely resolved than in the well-mixed case. We also observe the
same asymmetry for small 𝜂 values as seen in the well-mixed model.

4.2. Heterotypic populations

In Section 4.1, we derived an expression for the survival probability
of cells in a homotypic population and used it to characterise the homo-
typic proliferation regimes. We take a similar approach to heterotypic
populations in this section, deriving the heterotypic survival probabil-
ity (Section 4.2.1) in order to map out the heterotypic proliferation
regimes. However, unlike the homotypic case, the heterotypic survival
probability cannot be approximated by a constant. We therefore need
to define two additional quantities before we can characterise the
dynamics of heterotypic populations.

Specifically, in Section 4.2.2 we define the heterotypic survival dif-
ference, which quantifies the difference in survival probability between
competing cell types with respect to each other, and in Section 4.2.3,
we define the homotypic survival difference, which quantifies the dif-
ference in survival probability of cells in heterotypic conditions with
respect to homotypic conditions. We make use of both quantities in
Section 4.2.4 to classify the different types of interactions that can occur
in heterotypic populations. After analysing these derived quantities, we
are able to derive the heterotypic proliferation regimes in Section 4.2.5,
which we validate computationally using the well-mixed and vertex-
based models in Section 4.2.6. Finally, in Section 4.3, we pull together
the analyses from Section 4.1 and this section to characterise the
competition regimes.

Similarly to Section 2, we create a heterotypic population in the G2
death signal model by splitting the cell population into two cell types,
denoted A and B. Each cell type has its own cell cycle model, 𝛹𝐴(𝑡)
and 𝛹𝐵(𝑡), death signal function, 𝑓𝐴(𝑡) and 𝑓𝐵(𝑡), and death threshold,
𝑇†,𝐴 and 𝑇†,𝐵 . We assume that the cell cycle models and death signal
functions are identical in both cell types, except in their parameters.
With 𝛹 (⋅) as the common cell cycle model, the cell cycle models are
thus parameterised as 𝛹𝐴(𝑡) = 𝛹 (𝑡 ; 𝑡G1,𝐴), 𝛹𝐵(𝑡) = 𝛹 (𝑡 ; 𝑡G1,𝐵). Similarly,
he death signal functions are parameterised as 𝑓𝐴(𝑡) = 𝑐𝐴𝑔(𝑡), 𝑓𝐵(𝑡) =

𝐵𝑔(𝑡), with 𝑔(𝑡) as defined in Eq. (22).
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Fig. 4. Homotypic proliferation regimes (a) Diagram of homotypic proliferation regimes. The homotypic viability curve is given by Eq. (32). Red: Viable Regime. Grey: Nonviable
Regime. (b) Estimated homotypic survival frequency, 𝜆, defined in Eq. (33), for the well-mixed and vertex-based models. The homotypic viability curve is plotted using a black
line.
4.2.1. Heterotypic survival probability
In this section, we generalise the ergodic approximation, introduced

in Section 4.1.1, to obtain expressions for the heterotypic survival
probabilities of cell types A and B. We demonstrated for homotypic
populations that the proportion of the cell cycle spent in G1 phase, 𝛽,
is an important nondimensional parameter in determining the survival
probability. Hence, in analogy with Eq. (23), we define 𝛽𝐴 and 𝛽𝐵 for
heterotypic populations such that:

𝑡G1,𝐴 = 𝛽𝐴𝑡G,𝐴 , 𝑡G2,𝐴 = (1 − 𝛽𝐴)𝑡G,𝐴 ; (34)

𝑡G1,𝐵 = 𝛽𝐵𝑡G,𝐵 , 𝑡G2,𝐵 = (1 − 𝛽𝐵)𝑡G,𝐵 . (35)

Furthermore, we assume that the ergodic property holds for both cell
types separately. For cell type A, we have
# A cells in G2

# A cells ≈ G2 duration of A cells
cell cycle duration of A cells = 1 − 𝛽𝐴 , (36)

and an analogous expression can be derived for cell type B. We denote
the number of A-type and B-type cells with 𝑛𝐴(𝑡) and 𝑛𝐵(𝑡), respectively,
so that we can write the fraction of cells in G2 phase for the whole
population as
# cells in G2

# cells = # A cells in G2 + # B cells in G2
𝑛𝐴(𝑡) + 𝑛𝐵(𝑡)

. (37)

We substitute Eq. (36) and its analogue for cell type B to obtain

# cells in G2
# cells ≈

𝑛𝐴(𝑡)(1 − 𝛽𝐴) + 𝑛𝐵(𝑡)(1 − 𝛽𝐵)
𝑛𝐴(𝑡) + 𝑛𝐵(𝑡)

. (38)

To simplify notation, we define the weighted average

⟨1 − 𝛽⟩(𝑡) ≡
𝑛𝐴(𝑡)(1 − 𝛽𝐴) + 𝑛𝐵(𝑡)(1 − 𝛽𝐵)

𝑛𝐴(𝑡) + 𝑛𝐵(𝑡)
. (39)

Assuming that the population is well-mixed, i.e. that Eq. (25) holds, we
can approximate 𝑔(𝑡) as

𝑔(𝑡) ≈ # cells in G2
# cells ≈ ⟨1 − 𝛽⟩(𝑡) . (40)

For cell type A, the death signal is thus approximated as 𝑓𝐴(𝑡) =
𝑐𝐴𝑔(𝑡) ≈ 𝑐𝐴⟨1 − 𝛽⟩(𝑡). Note that the quantity ⟨1 − 𝛽⟩(𝑡) is not constant
with respect to time because it depends on 𝑛𝐴(𝑡) and 𝑛𝐵(𝑡). This is
unlike the homotypic case (Section 4.1.1), where the death signal is
approximated by the constant quantity 1 − 𝛽. Therefore, even with the
ergodic approximation we cannot derive an exact heterotypic survival
probability. Nonetheless, we can define the instantaneous heterotypic
survival probability at time 𝑡 as the survival probability of a cell
assuming a constant death signal of magnitude 𝑓𝐴(𝑡), i.e.

𝜉𝐴|𝐵(𝑡) = 𝛹𝐴

( 𝑇†,𝐴
𝑐𝐴⟨1 − 𝛽⟩(𝑡)

)

, (41)

where we use the symbol 𝜉𝐴|𝐵(𝑡) to denote the instantaneous survival
probability at time 𝑡 for cell type A in a heterotypic population with
cell type B. Similarly, for cell type B, we have

𝜉𝐵|𝐴(𝑡) = 𝛹𝐵

( 𝑇†,𝐵
)

. (42)
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𝑐𝐵⟨1 − 𝛽⟩(𝑡)
In order to derive the instantaneous heterotypic survival probability
for the exponential cell cycle model in particular, we first define the
dimensionless parameters

𝜂𝐴 ≡
𝑇†,𝐴
𝑐𝐴𝑡𝐺,𝐴

, 𝜂𝐵 ≡
𝑇†,𝐵
𝑐𝐵𝑡𝐺,𝐵

, (43)

in analogy with Eq. (30). We can then derive that the instantaneous
heterotypic survival probabilities are

𝜉𝐴|𝐵(𝑡) = 1 − exp
(

−
𝜂𝐴

𝛽𝐴⟨1 − 𝛽⟩(𝑡)

)

, (44)

𝜉𝐵|𝐴(𝑡) = 1 − exp
(

−
𝜂𝐵

𝛽𝐵⟨1 − 𝛽⟩(𝑡)

)

, (45)

for cell types A and B, respectively. For brevity, we omit the word
‘‘instantaneous’’ going forward and use the symbols ⟨1 − 𝛽⟩ and 𝜉𝐴|𝐵
instead of ⟨1 − 𝛽⟩(𝑡) and 𝜉𝐴|𝐵(𝑡), except when we wish to emphasise
their time dependence. Furthermore, in the rest of the paper we will
assume an exponential cell cycle model, unless stated otherwise.

Comparing the expressions for the heterotypic survival probability
and the homotypic survival probability (Eq. (31)), we see that they are
almost identical, except that the weighted average ⟨1−𝛽⟩ is used instead
of 1− 𝛽. We note that if 𝑛𝐵 = 0, then ⟨1− 𝛽⟩ = 1− 𝛽𝐴 and vice versa for
𝑛𝐴 = 0. In other words, when one cell type is absent, we recover the
homotypic survival probability of the other cell type.

4.2.2. Heterotypic survival difference
Even though the instantaneous heterotypic survival probabilities

𝜉𝐴|𝐵(𝑡) and 𝜉𝐵|𝐴(𝑡) change over time, in this section we show that
the sign of their difference is invariant with respect to system state,
and only depends on model parameters. This enables us to predict
which cell type in a heterotypic population has the highest survival
probability.

We define the heterotypic survival difference between cell types
A and B as

𝛥≠
𝐴|𝐵 ≡ 𝜉𝐴|𝐵 − 𝜉𝐵|𝐴 . (46)

The sign of the heterotypic survival difference tells us which cell type
is at a proliferative advantage. If 𝛥≠

𝐴|𝐵 > 0, then we say that A-type
cells are winner cells and B-type cells are loser cells, and vice versa
for 𝛥≠

𝐴|𝐵 < 0. Moreover, if 𝛥≠
𝐴|𝐵 = 0, we say that the cell types are in

coexistence, since neither cell type has a proliferative advantage over
the other.

We define winners and losers here in a weak sense; if the popula-
tion were to reproduce indefinitely, the winner cells would come to
dominate the heterotypic population. It is not specified whether the
loser population is eliminated. The classical definition of winners and
losers, however, is based on the stronger condition of loser elimination.
In Section 4.3, we will refine our terminology and differentiate winners
and losers into more precise categories, which include classical winners
and losers.

We also note that this definition of winners and losers relies on
the assumption that 𝑡 = 𝑡 , such that differences in survival
G,𝐴 G,𝐵
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probability alone determine relative proliferative success. In the general
case, however, differences in the total cell cycle duration can also
affect the dynamics of heterotypic populations. For instance, a cell type
with a lower survival probability may become more abundant than
the competing cell type by dividing more rapidly. However, for the
sake of simplicity we do not consider such cases in this paper, and
instead characterise population dynamics solely in terms of survival
probabilities.

To obtain an expression for the sign of 𝛥≠
𝐴|𝐵 , we substitute Eqs. (44)

nd (45) into Eq. (46) and rearrange to give

≠
𝐴|𝐵 = exp

(

−
𝜂𝐵

𝛽𝐵⟨1 − 𝛽⟩

)

− exp
(

−
𝜂𝐴

𝛽𝐴⟨1 − 𝛽⟩

)

. (47)

Since exp(⋅) is a monotonically increasing function, we have sgn(exp(𝑥)−
xp(𝑦)) = sgn(𝑥 − 𝑦). Applying the sign function thus yields

gn
(

𝛥≠
𝐴|𝐵

)

= sgn
(

𝜂𝐴
𝛽𝐴⟨1 − 𝛽⟩

−
𝜂𝐵

𝛽𝐵⟨1 − 𝛽⟩

)

= sgn
(

𝜂𝐴
𝛽𝐴

−
𝜂𝐵
𝛽𝐵

)

. (48)

To interpret Eq. (48), we note that 𝜂 and 𝛽 both affect a cell’s
sensitivity to the death signal. Increasing 𝜂 corresponds to a higher
death threshold, and thus a lower sensitivity, and decreasing 𝛽 shortens
the time spent in G1 phase, during which a cell is vulnerable to
competition-induced apoptosis. This suggests that we can interpret 𝜂∕𝛽
as a cell’s tolerance to death signals. Therefore, Eq. (48) states that the
relative tolerance to death signals determines winner/loser status, with
the most tolerant cell type becoming the winner.

Since the sign of 𝛥≠
𝐴|𝐵 depends only on model parameters, we can

partition the parameter space into two regions in which 𝛥≠
𝐴|𝐵 > 0

and 𝛥≠
𝐴|𝐵 < 0, respectively. We define the coexistence curve for

fixed 𝛽𝐵 and 𝜂𝐵 as the curve in (𝛽𝐴, 𝜂𝐴)-space that satisfies 𝛥≠
𝐴|𝐵 = 0.

From Eq. (48), we derive that the coexistence curve is given by
𝜂𝐴
𝛽𝐴

−
𝜂𝐵
𝛽𝐵

= 0 . (49)

e validate this result using simulations of the well-mixed and vertex-
ased models in Section S6 of the supplementary material.

.2.3. Homotypic survival difference
The heterotypic survival difference does not indicate that a compet-

tive interaction, or indeed any interaction, is taking place. After all,
o-culturing two cell types that do not interact at all but have different
ntrinsic survival probabilities would result in a nonzero heterotypic
urvival difference. In this section, however, we describe a metric that
uantifies changes in survival probability resulting from heterotypic in-
eractions. In particular, we define the homotypic survival difference
s
=
𝐴|𝐵 ≡ 𝜉𝐴|𝐵 − 𝜆𝐴 , 𝛥=

𝐵|𝐴 ≡ 𝜉𝐵|𝐴 − 𝜆𝐵 , (50)

or cell types A and B, respectively. The homotypic survival difference
ompares the fitness of a cell type in a heterotypic environment to its
itness in a homotypic environment.

The sign of the homotypic survival difference indicates whether a
ell type is more or less fit as a result of the heterotypic interaction,
ompared to homotypic conditions. If 𝛥=

𝐴|𝐵 > 0, then we say that cell
ype A is more fit when competing with cell type B, and vice versa for
=
𝐴|𝐵 < 0. A positive homotypic survival difference indicates that the
ell type benefits from the interaction. This does not mean, however,
hat the interaction is mutualistic, since in that case both cell types
ould need to benefit from the interaction (i.e. 𝛥=

𝐴|𝐵 , 𝛥
=
𝐵|𝐴 > 0). We

how below that such an interaction is impossible in the G2 death signal
odel. Finally, if 𝛥=

𝐴|𝐵 = 0, then we say that cell type A is in neutral
ompetition with cell type B, since the presence of cell type B does not
roduce a net change in the fitness of cell type A.

Focusing our derivation on the homotypic survival difference of cell
ype A, we apply the sign function to give

gn
(

𝛥=
)

= sgn
(

1 − 1
)

. (51)
10

𝐴|𝐵
⟨1 − 𝛽⟩ 1 − 𝛽𝐴 g
We expand ⟨1 − 𝛽⟩(𝑡) to give

1
⟨1 − 𝛽⟩(𝑡)

− 1
1 − 𝛽𝐴

=
𝑛𝐵(𝑡)(𝛽𝐵 − 𝛽𝐴)

[

𝑛𝐴(𝑡)(1 − 𝛽𝐴) + 𝑛𝐵(𝑡)(1 − 𝛽𝐵)
]

(1 − 𝛽𝐵)
. (52)

The denominator of the right-hand side is strictly positive, so we only
need to consider the sign of the numerator. Eq. (52) indicates that the
sign of 𝛥=

𝐴|𝐵 is dependent on the system state. In the degenerate case of
𝑛𝐵(𝑡) = 0, we are reduced to a homotypic population composed solely
of A-type cells, and thus 𝛥=

𝐴|𝐵 = 0. However, if we limit our scope to
the heterotypic case, i.e. 𝑛𝐴(𝑡), 𝑛𝐵(𝑡) > 0, we can rewrite Eq. (51) as

sgn
(

𝛥=
𝐴|𝐵

)

= sgn(𝛽𝐵 − 𝛽𝐴) . (53)

For cell type B, we derive an analogous expression:

sgn
(

𝛥=
𝐵|𝐴

)

= sgn(𝛽𝐴 − 𝛽𝐵) . (54)

omparing Eqs. (53) and (54), we derive the following identity:

gn
(

𝛥=
𝐴|𝐵

)

= −sgn
(

𝛥=
𝐵|𝐴

)

. (55)

n other words, the homotypic survival differences of two competing
ell types have opposite signs. Hence, one cell type’s loss is another
ell type’s gain, and a mutualistic relationship is impossible.

For the heterotypic survival difference (Section 4.2.2), we factored
ut the death signal, ⟨1 − 𝛽⟩, to find an expression for the sign of
≠
𝐴|𝐵 and found that winner/loser status is determined by the difference
n tolerance to death signals. Here, in contrast, we factored out the
olerance to death signals, 𝜂∕𝛽, to find that the sign of the homotypic
urvival difference depends on the difference in 𝛽. Under the ergodic
pproximation (Sections 4.1.1 and 4.2.1), a larger value of 1 − 𝛽
orresponds to a greater death signal. This is because the amount
f time spent in G2 phase, during which cells emit death signals, is
roportional to 1 − 𝛽. This suggests that we can interpret 1 − 𝛽 as the
ell’s emission rate of death signals. Rewriting Eq. (53) as

gn
(

𝛥=
𝐴|𝐵

)

= sgn
(

(1 − 𝛽𝐴) − (1 − 𝛽𝐵)
)

, (56)

hows that the sign of the homotypic survival difference is determined
y the difference in emission of death signals. In particular, cell type A
ares better in heterotypic conditions if cell type B has a lower emission
f death signal than cell type A, and vice versa.

Eqs. (53) and (54) show that the signs of 𝛥=
𝐴|𝐵 and 𝛥=

𝐵|𝐴 are inde-
endent of the system state, except in the degenerate homotypic cases
𝐴(𝑡) = 0 and 𝑛𝐵(𝑡) = 0. We can therefore partition the parameter space
nto two regions: one where 𝛥=

𝐴|𝐵 > 0 ∧ 𝛥=
𝐵|𝐴 < 0, and one where

=
𝐴|𝐵 < 0 ∧ 𝛥=

𝐵|𝐴 > 0. We define the neutral competition curve as
he curve in (𝛽𝐴, 𝜂𝐴)-space that satisfies 𝛥=

𝐴|𝐵 = 0 for fixed values of 𝛽𝐵
nd 𝜂𝐵 . From Eq. (53), we derive that the neutral competition curve is
iven by

𝐵 − 𝛽𝐴 = 0 . (57)

e validate this result using simulations of the well-mixed and vertex-
ased models in Section S7 of the supplementary material.

.2.4. Classification of competitive interactions
In Sections 4.2.2 and 4.2.3, we defined the heterotypic and ho-

otypic survival differences, respectively. The former relates the dif-
erence in survival probability between competing cell types in het-
rotypic conditions, while the latter relates the difference compared to
omotypic conditions. In this section, we construct a classification of
ompetitive interactions based on these quantities.

Enumerating the signs of the homotypic and heterotypic survival
ifferences, combined with the identity sgn(𝛥≠

𝐴|𝐵) = −sgn(𝛥≠
𝐵|𝐴) (see

q. (55)), we obtain nine types of competitive interactions (Table 4).
fter accounting for the fact that cell type labels are arbitrary, we can

roup these types into five distinct categories:
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Table 4
Classification of competitive interactions based on the heterotypic survival difference,
𝛥≠
𝐴|𝐵 , defined in Section 4.2.2, and the homotypic survival difference, 𝛥=

𝐴|𝐵 , defined in
Section 4.2.3.

𝛥≠
𝐴|𝐵

\

𝛥=
𝐴|𝐵 + 0 −

+ A direct winner A neutral winner A indirect winner
B direct loser B neutral loser B indirect loser

0 Coexistence Neutral coexistence Coexistence

− A indirect loser A neutral loser A direct loser
B indirect winner B neutral winner B direct winner

Neutral coexistence
{

𝛥≠
𝐴|𝐵 = 0, 𝛥=

𝐴|𝐵 = 0
}

. This is the degenerate
case where neither cell type has a relative survival advantage,
and both cell types have the same survival probability as in
homotypic conditions. The competitive interaction is neutral
because there is no effect on either cell type’s absolute fitness,
and the cell types coexist because they have the same fitness.

Coexistence
{

𝛥≠
𝐴|𝐵 = 0, 𝛥=

𝐴|𝐵 ≠ 0
}

. The cells experience a change in
absolute fitness compared to the homotypic environment, but
there is no relative survival advantage for either cell type.
Therefore, neither cell type dominates.

Neutral competition
{

𝛥≠
𝐴|𝐵 ≠ 0, 𝛥=

𝐴|𝐵 = 0
}

. The nonzero heterotypic
survival difference means that there is a difference in relative
fitness. Thus, winners and losers emerge, with the winner cell
type dominating the population. However, neither cell type ex-
periences a difference in absolute fitness compared to homotypic
conditions.

Indirect competition
{

𝛥≠
𝐴|𝐵 ≠ 0, sgn

(

𝛥≠
𝐴|𝐵

)

= −sgn
(

𝛥=
𝐴|𝐵

)}

. As in
neutral competition, winners and losers emerge from the com-
petitive interaction. The sign of the homotypic survival differ-
ence is nonzero and opposite to the sign of the heterotypic
survival difference, which means that the losers experience an
increase in absolute fitness compared to homotypic conditions,
and the winners experience a decrease.

Direct competition
{

𝛥≠
𝐴|𝐵 ≠ 0, sgn

(

𝛥≠
𝐴|𝐵

)

= sgn
(

𝛥=
𝐴|𝐵

)}

. Similar to
the other types of competition, the population splits into winner
and loser cells. In contrast to indirect competition, however,
the homotypic survival difference has the same sign as the
heterotypic survival difference, meaning that the winners are
fitter than in the homotypic environment, and the losers less fit.

All types of competition involve one cell type (the winners) becom-
ing more abundant than the other cell type (the losers). The distinction
between competition types is based on the change in fitness experi-
enced by the winners and losers compared to homotypic conditions.
In neutral competition, there is no change in fitness for either the
winners or losers. In indirect competition, the winners become less
fit and the losers more fit, potentially leading to a scenario where a
previously nonviable loser cell type is ‘‘rescued’’ by the interaction with
the winner cell type and becomes viable. In direct competition, the
winners become more fit and the losers less fit, potentially leading to a
previously viable loser cell type becoming nonviable as a result of the
interaction, which is one of the cell competition criteria. We therefore
expect any competitive outcomes to be the result of direct competition.

As discussed previously, we can partition cross sections of parameter
space using the coexistence curve and the neutral competition curve.
In Fig. 5, we plot these curves in (𝛽𝐴, 𝜂𝐴)-space for fixed values of 𝛽𝐵
and 𝜂𝐵 . The curves translate to straight lines, on which we find the
coexistence and neutral competition regimes. Furthermore, we find the
neutral coexistence point at their intersection, i.e. 𝛽 = 𝛽 and 𝜂 =
11

𝐴 𝐵 𝐴
Fig. 5. Diagram situating the different types of competitive interactions in (𝛽𝐴 , 𝜂𝐴)-
space, given fixed values for 𝛽𝐵 and 𝜂𝐵 . The full and dashed lines correspond to the
coexistence and neutral competition curves, respectively. The green dot corresponds to
the neutral coexistence point.

𝜂𝐵 , which corresponds to the degenerate case where the competing
cell types have identical parameters. Finally, we see that the curves
divide the cross section into four sectors, with the top left and bottom
right sectors corresponding to direct competition, and the top right and
bottom left sectors corresponding to indirect competition.

4.2.5. Heterotypic proliferation regimes
While introducing the heterotypic survival difference in

Section 4.2.2, we defined winners and losers in a weak sense based
on which cell type is more prolific. Although this is an important
precondition for cell competition, the cell competition criteria, as
defined in Section 1.1, are based on the viability of the competing cell
types, not their relative abundance. Thus, in this section we investigate
the viability of winners and losers, ultimately deriving the heterotypic
proliferation regimes. In Section 4.3, we use these results to arrive at a
more comprehensive definition of winners and losers.

Regardless of the type of competitive interaction, winners (in the
proliferative sense) become the dominant species in the population over
time by definition. Therefore, we expect that the population-weighted
average death signal, ⟨1−𝛽⟩(𝑡), approaches the intrinsic death signal of
the winning cell type. Assuming for now that cell type A is the winner,
i.e. 𝛥≠

𝐴|𝐵 > 0, we have

⟨1 − 𝛽⟩(𝑡) → 1 − 𝛽𝐴 as 𝑡 → ∞ . (58)

Hence, when considering the long-term behaviour of the population, we
can substitute 1−𝛽𝐴 for ⟨1−𝛽⟩ into the heterotypic survival probability
for cell types A and B to obtain the asymptotic survival probabilities:

𝜉𝐴|𝐵(𝑡 → ∞) = 1 − exp
(

−
𝜂𝐴

𝛽𝐴(1 − 𝛽𝐴)

)

, (59)

𝜉𝐵|𝐴(𝑡 → ∞) = 1 − exp
(

−
𝜂𝐵

𝛽𝐵(1 − 𝛽𝐴)

)

. (60)

Comparing Eq. (59) with Eq. (31), we find that the asymptotic survival
probability of cell type A is equal to its homotypic survival probability,
𝜆𝐴. The heterotypic viability of winners is thus determined by their
homotypic viability. We denote the right-hand side of Eq. (60) as

𝜉∞𝐵|𝐴 ≡ 1 − exp
(

−
𝜂𝐵

𝛽𝐵(1 − 𝛽𝐴)

)

, (61)

so that we can write the asymptotic survival probabilities more suc-
cinctly as

𝜉𝐴|𝐵(𝑡 → ∞) = 𝜆𝐴 , (62)

𝜉 (𝑡 → ∞) = 𝜉∞ . (63)
𝐵|𝐴 𝐵|𝐴
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Fig. 6. Heterotypic proliferation regimes: diagram and well-mixed results. (a) Diagrams for Cross Sections I, II, and III, situating the different heterotypic proliferation regimes.
The green dot corresponds to the neutral coexistence point. Grey: cell types A and B are nonviable. Green: cell type A is nonviable, cell type B is viable. Orange: cell type A is
viable, cell type B is nonviable. Red: cell types A and B are viable. (b) Estimated heterotypic survival frequency of cell types A and B using the well-mixed model. The top row
displays the estimated heterotypic survival frequency of cell type A, 𝜉𝐴|𝐵 , defined in Eq. (70). The bottom row displays the estimated heterotypic survival frequency of cell type
B, 𝜉𝐵|𝐴, also defined in Eq. (70). All curves are the same as in (a).
Conversely, if cell type B is the winner, i.e. 𝛥≠
𝐴|𝐵 < 0, we have

𝜉𝐴|𝐵(𝑡 → ∞) = 𝜉∞𝐴|𝐵 , (64)

𝜉𝐵|𝐴(𝑡 → ∞) = 𝜆𝐵 , (65)

where 𝜉∞𝐴|𝐵 is defined analogously to Eq. (61).
We can now use the asymptotic survival probability to characterise

the viability of competing cell types in a heterotypic population. Assum-
ing that cell type A is the winner, we distinguish between the following
outcomes:

Case
{

𝜆𝐴 ≤ 1
2

}

. If the winner cells are not viable, then the losers are
also not viable, since they have, by definition, a lower survival
probability than the winners. Thus, both winners and losers go
extinct.

Case
{

𝜆𝐴 > 1
2

}

. The winner cells are homotypically viable and there-
fore remain viable. Whether or not the losers are viable depends
on 𝜉∞𝐵|𝐴.

Subcase
{

𝜉∞𝐵|𝐴 ≤ 1
2

}

. The loser cells are heterotypically nonvi-
able and are eliminated from the tissue.
12
Subcase
{

𝜉∞𝐵|𝐴 > 1
2

}

. The losers are heterotypically viable and
persist in the tissue.

We thus have three distinct proliferation regimes for 𝛥≠
𝐴|𝐵 > 0. Three

analogous proliferation regimes exist for 𝛥≠
𝐴|𝐵 < 0, for a total of

six proliferation regimes overall. We cannot visualise four-dimensional
(𝛽𝐴, 𝜂𝐴, 𝛽𝐵 , 𝜂𝐵)-space directly, so we first provide an outline of the pro-
liferation regimes, and then sketch them in cross sections for particular
values of 𝛽𝐵 and 𝜂𝐵 .

Firstly, the coexistence hypersurface 𝛥≠
𝐴|𝐵 = 0 divides the param-

eter space into two subspaces, 𝛥≠
𝐴|𝐵 > 0 and 𝛥≠

𝐴|𝐵 < 0, where cell types
A and B are the respective winners. Secondly, for 𝛥≠

𝐴|𝐵 > 0, we have
two regions where 𝜆𝐴 > 1∕2 and 𝜆𝐴 < 1∕2, respectively. The boundary
is given by the A winner viability hypersurface 𝜆𝐴 = 1∕2. The region
in which the winner is viable, i.e. 𝜆𝐴 > 1∕2, is further split into two
parts, based on whether the loser is viable (𝜉∞𝐵|𝐴 > 1∕2) or nonviable
(𝜉∞𝐵|𝐴 < 1∕2), by the B loser viability hypersurface 𝜉∞𝐵|𝐴 = 1∕2.
We divide the subspace 𝛥≠

𝐴|𝐵 < 0, where cell type B is the winner,
in an analogous manner. Hence, in total there are five hypersurfaces
that delineate the heterotypic proliferation regimes: the coexistence
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hypersurface, two winner viability hypersurfaces and two loser viability
hypersurfaces.

We visualise the heterotypic proliferation regimes using cross sec-
tions for particular values of 𝛽𝐵 and 𝜂𝐵 in (𝛽𝐴, 𝜂𝐴)-space. In these cross
sections, the hypersurfaces become the following curves:

Coexistence curve: 𝛥≠
𝐴|𝐵 = 0 ⇔ 𝜂𝐴 =

𝜂𝐵
𝛽𝐵

𝛽𝐴 , (66)

A winner curve: 𝜆𝐴 = 1
2

⇔ 𝜂𝐴 = ln(2)𝛽𝐴(1 − 𝛽𝐴) , (67)

B loser curve: 𝜉∞𝐵|𝐴 = 1
2

⇔ 𝛽𝐴 = 1 −
𝜂𝐵

ln(2)𝛽𝐵
, (68)

A loser curve: 𝜉∞𝐴|𝐵 = 1
2

⇔ 𝜂𝐴 = ln(2)(1 − 𝛽𝐵)𝛽𝐴 . (69)

The B winner viability hypersurface does not map onto a curve in
(𝛽𝐴, 𝜂𝐴)-space because it depends only on 𝛽𝐵 and 𝜂𝐵 . We therefore
consider the cases 𝜆𝐵 < 1∕2 and 𝜆𝐵 > 1∕2 in separate cross sections.

If 𝜂𝐵∕𝛽𝐵 > ln(2), then Eq. (68) does not have a solution for positive
𝛽𝐴, hence the B loser viability curve does not appear in cross sections
for which this is the case. We therefore consider this case in a separate
cross section. It can be easily verified that 𝜂𝐵∕𝛽𝐵 > ln(2) implies 𝜆𝐵 >
1∕2, so we only need to consider three distinct cross sections (Fig. 6(a)):

Cross Section I
{

𝛽𝐵 = 0.2, 𝜂𝐵 = 0.2
}

. This cross section satisfies 𝜂𝐵∕𝛽𝐵 >
ln(2). We see three distinct regimes. Above the coexistence curve, both
cell types are viable, with cell type A as the winner. Between the
coexistence curve and the A loser viability curve, cell type B is the
winner and both cell types are viable. Below the A loser viability curve,
only cell type B is viable. We note that there are no values of 𝛽𝐴
and 𝜂𝐴 for which cell type B is nonviable. Therefore, regardless of the
competing cell type, cell type B is always viable.

Cross Section II
{

𝛽𝐵 = 0.8, 𝜂𝐵 = 0.2
}

. This cross section satisfies 𝜂𝐵∕𝛽𝐵
< ln(2) and 𝜆𝐵 > 1∕2. We identify five distinct regimes. Below the
coexistence curve, we see the same two regimes as in Cross Section
I. The wedge-shaped region between the coexistence curve and the A
loser viability curve is particularly interesting because it partly overlaps
with the area under the homotypic viability curve of cell type A. The A-
type cells in this region are nonviable under homotypic conditions, but
are viable when interacting with cell type B and are therefore ‘‘rescued’’
by the competitive interaction. This is also present in Cross Section I,
but it is more visible here. We note that this region is contained within
the indirect competition sector because only an indirect competitive
interaction can increase the fitness of loser cells.

We see three regimes above the coexistence curve. Below the A
winner viability curve, the winning A-type cells are nonviable, which
renders both cell types nonviable. Above this curve, the winner A-type
cells are viable. In this subspace, the survival of cell type B depends on
𝛽𝐴. To the left of the B loser viability curve, the death signal emitted
by cell type A is sufficiently high to eliminate cell type B, whereas, on
the other side, the death signal is too weak to eliminate cell type B, so
cell type B survives.

Cross Section III
{

𝛽𝐵 = 0.4, 𝜂𝐵 = 0.1
}

. This cross section satisfies 𝜂𝐵∕𝛽𝐵
< ln(2) and 𝜆𝐵 < 1∕2. Below the coexistence curve, where cell type
B is the winner, both cell types are nonviable because cell type B is
homotypically nonviable. Above the coexistence curve, we find the
same regimes as in Cross Section II. Since cell type B is homotypically
nonviable in this cross section, we note that the top right triangular
region, where cell type B is heterotypically viable, corresponds to
nonviable loser rescue, and thus is analogous to the wedge-shaped area
discussed in Cross Section II. Similarly, this area is fully contained
within the indirect competition sector.

4.2.6. Computational validation of heterotypic proliferation regimes
In this section, we validate the predicted heterotypic prolifera-

tion regimes of Section 4.2.5 by conducting simulations of the well-
mixed and vertex-based models. For the vertex-based model, we con-
ducted simulations with both segregated and random initial condi-
tions. Further details are provided in Section S8 of the supplementary
material.
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Table 5
Classification of competition regimes. The competition regime (bolded) can be subdi-
vided in two ways: loser elimination and loser survival regimes (top section), or cell
competition, neutral competition, and indirect competition regimes (bottom section).
The underlined conditions are implied by the other conditions on the same row. The
legend column maps the regimes onto areas and curves plotted in Fig. 8.

Regime 𝜆𝑊 , 𝜆𝐿 𝛥≠
𝑊 |𝐿 𝜉∞𝐿|𝑊 𝛥=

𝐿|𝑊 Legend

Homotypic viability >1∕2 – – –
Coexistence >1∕2 = 0 – –
Competition >1∕2 >0 – – –

Loser elimination >1∕2 >0 ≤1∕2 <0 –
Loser survival >1∕2 >0 >1∕2 – –

Cell competition >1∕2 >0 – <0
Complete cell competition >1∕2 >0 <1∕2 <0
Critical cell competition >1∕2 >0 =1∕2 <0
Incomplete cell competition >1∕2 >0 >1∕2 <0

Neutral competition >1∕2 >0 >1∕2 = 0
Indirect competition >1∕2 >0 >1∕2 >0

To estimate the survival frequency for a particular parameter set,
we averaged the heterotypic survival frequencies across repeated sim-
ulations as

𝜉𝐴|𝐵 = 1
𝑁sim

𝑁sim
∑

𝑘=1
𝜉𝐴|𝐵,𝑘 , 𝜉𝐵|𝐴 = 1

𝑁sim

𝑁sim
∑

𝑘=1
𝜉𝐵|𝐴,𝑘 . (70)

The results for the well-mixed model are given in Fig. 6(b). The
top and bottom rows show the survival frequency for cell types A and
B, respectively. When comparing the results to Fig. 6(a), we see an
excellent agreement between the simulations and predictions.

The results for the vertex-based model with random and segregated
initial conditions are provided in Fig. 7(a) and (b), respectively. In
Fig. 7(a), we can see similar proliferation regimes as in the well-mixed
case, except that the contours do not align perfectly with the predicted
curves. In Cross Section II, for cell type A, we expect to see a sequence
of red–blue–red–blue regions from top left to bottom right, but instead
we see a gradual transition from red to blue. In addition, for high 𝛽𝐴,
we see red regions for cell type A that extend below their predicted
limits in all cross sections.

In Fig. 7(b), we see significant deviations from the predicted pro-
liferation regimes. When comparing the plots for cell type A with the
results for the homotypic proliferation regimes in Fig. 4(b), we see
that A-type cells essentially behave as if they were in a homotypic
environment. Similarly, the heterotypic viability of cell type B matches
its viability in homotypic conditions, regardless of the parameters of
cell type A. These results suggest that segregated cell types behave like
homotypic populations.

4.3. Classification of competition regimes

So far, we have systematically characterised the proliferation
regimes of homotypic populations (Section 4.1.2) and heterotypic
populations (Section 4.2.5). In addition, we have described and clas-
sified the different types of competitive interactions in heterotypic
populations (Section 4.2.4). In this section, we integrate all these
classifications into the competition regimes of the G2 death signal
model, allowing us to not only apply the cell competition criteria, but
also to refine and expand the known cell competition regimes.

The first condition of the cell competition criteria is that both cell
types are homotypically viable, i.e. 𝜆𝐴, 𝜆𝐵 > 1∕2. In order to satisfy
𝜆𝐴 > 1∕2, we only consider the parameter space above the homotypic
viability curve, as shown in Fig. 8. To satisfy the viability condition for
cell type B, we only consider cross sections that satisfy 𝜆𝐵 > 1∕2. In
particular, Cross Section III does not satisfy this condition, so we only
plot Cross Sections I and II in Fig. 8. We define the homotypic viability
regime as

𝜆 , 𝜆 > 1 . (71)
𝐴 𝐵 2
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Fig. 7. Heterotypic proliferation regimes: vertex-based results. (a–b) Estimated heterotypic survival frequency of cell types A and B using the vertex-based model with random
and segregated initial conditions. See Fig. 6(b) for legend. (a) Random initial conditions. (b) Segregated initial conditions.
The second condition is that only one cell type remains viable when
the two cell types compete. This implies a nonzero heterotypic survival
difference, i.e. 𝛥≠

𝐴|𝐵 ≠ 0, splitting the homotypic viability regime into
the coexistence regime

𝜆𝐴, 𝜆𝐵 > 1
2

∧ 𝛥≠
𝐴|𝐵 = 0 , (72)

and the competition regime

𝜆𝐴, 𝜆𝐵 > 1
2

∧ 𝛥≠
𝐴|𝐵 ≠ 0 . (73)

The competition regime is further subdivided according to which cell
type is the winner. The G2 death signal model is symmetric with
respect to swapping cell type labels, so the choice of winner or loser
is arbitrary. Therefore, for ease of notation, we henceforth label the
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winner cell type with W and the loser cell type with L, such that
𝛥≠
𝑊 |𝐿 > 0 by construction.

As we saw in Section 4.2.5, the viability of the winner cell type is
determined by its homotypic viability, which is guaranteed by Eq. (71).
Therefore, we only need to impose further that the loser cell type
is heterotypically nonviable, i.e. 𝜉∞𝐿|𝑊 ≤ 1∕2. We define the loser
elimination regime as

𝜆𝑊 , 𝜆𝐿 > 1
2

∧ 𝛥≠
𝑊 |𝐿 > 0 ∧ 𝜉∞𝐿|𝑊 ≤ 1

2
, (74)

and the loser survival regime as

𝜆𝑊 , 𝜆𝐿 > 1
2

∧ 𝛥≠
𝑊 |𝐿 > 0 ∧ 𝜉∞𝐿|𝑊 > 1

2
. (75)

The loser elimination regime satisfies the cell competition criteria
and is non-empty for the G2 death signal model. In addition, we
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Fig. 8. Diagrams of competition regimes for Cross Sections I and II. The green dot corresponds to the neutral coexistence point. The labels W and L are used to refer to the
winner and loser cell types, respectively, i.e. W = A, L = B for 𝛥≠

𝐴|𝐵 > 0 and W = B, L = A for 𝛥≠
𝐴|𝐵 < 0. The symbol 𝜉∞𝐿|𝑊 refers to the asymptotic survival probability of the loser

cell type. Linear hatch: homotypic viability. Cross hatch: cell competition. Red: complete cell competition. Orange: incomplete cell competition. Green: indirect cell competition.
See also Table 5 for the legend.
have validated the predicted proliferation regimes with computational
simulations. We therefore conclude that the G2 death signal model is
capable of producing competitive outcomes.

We can further refine the competition regimes by considering, in
addition, the type of competitive interaction. Fig. 8 shows that the
neutral competition curve, defined by 𝛥=

𝐿|𝑊 = 0, runs through the loser
survival regime. We define the neutral competition regime as

𝜆𝑊 , 𝜆𝐿 > 1
2

∧ 𝛥≠
𝑊 |𝐿 > 0 ∧ 𝛥=

𝐿|𝑊 = 0 . (76)

The neutral competition curve separates the loser survival regime into
two subregimes where 𝛥=

𝐿|𝑊 < 0 and 𝛥=
𝐿|𝑊 > 0, respectively. In the case

of 𝛥=
𝐿|𝑊 < 0, the fitness of losers is reduced by the winners, but not

enough to cause loser elimination. We define this as the incomplete
cell competition regime

𝜆𝑊 , 𝜆𝐿 > 1
2

∧ 𝛥≠
𝑊 |𝐿 > 0 ∧ 𝜉∞𝐿|𝑊 > 1

2
∧ 𝛥=

𝐿|𝑊 < 0 . (77)

In addition, we can partition the loser elimination regime into the
complete cell competition regime

𝜆𝑊 , 𝜆𝐿 > 1
2

∧ 𝛥≠
𝑊 |𝐿 > 0 ∧ 𝜉∞𝐿|𝑊 < 1

2
, (78)

and the critical cell competition regime

𝜆𝑊 , 𝜆𝐿 > 1
2

∧ 𝛥≠
𝑊 |𝐿 > 0 ∧ 𝜉∞𝐿|𝑊 = 1

2
, (79)

which is the threshold regime between complete and incomplete cell
competition. The common feature of complete, critical, and incomplete
cell competition is that the winners negatively impact the losers. We
group these regimes under the cell competition regime

𝜆𝑊 , 𝜆𝐿 > 1
2

∧ 𝛥≠
𝑊 |𝐿 > 0 ∧ 𝛥=

𝐿|𝑊 < 0 . (80)

Finally, on the other side of the neutral competition curve we have
𝛥=
𝐿|𝑊 > 0, where loser cells have a higher fitness than in homotypic

conditions. We denote this as the indirect competition regime

𝜆𝑊 , 𝜆𝐿 > 1
2

∧ 𝛥≠
𝑊 |𝐿 > 0 ∧ 𝛥=

𝐿|𝑊 > 0 . (81)

We plot the competition regimes in Fig. 8 for Cross Sections I and II,
and summarise them in Table 5.

The competition regimes let us discriminate between different types
of winners and losers. We define complete winners, critical winners,
incomplete winners, neutral winners, and indirect winners as the winner
cell types in the respective competition regimes, and define different
types of losers analogously. In this terminology, complete and critical
winners and losers correspond to the classical definition of winners and
losers in the cell competition literature.
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5. Discussion

We stated in the introduction (Section 1) that there are two impor-
tant advantages in treating winner/loser status as an emergent property
rather than hardcoded identities: (i) we can test whether a given cell-
based model is capable of producing competitive outcomes; and (ii),
if so, analyse the conditions that give rise to competitive outcomes
in that model. We demonstrated the first capability in Section 2 by
showing that differences in mechanical properties alone (i.e. without
a mechanism for active cell death) are insufficient to robustly generate
competitive outcomes in a vertex-based model of an epithelial tissue,
which agrees with experimental observations that cell competition
depends on the initiation of cell death in loser cells (Moreno et al.,
2002).

This negative result motivated our decision to propose a modelling
framework for cell competition with an active mechanism of cell death
that is triggered by the exchange of death signals (Section 3). In
Section 4, we introduced the G2 death signal model, in which cells
only emit death signals in the G2 phase. We systematically investigated
its behaviour for homotypic (Section 4.1) and heterotypic populations
(Section 4.2), studying their proliferation regimes through a combi-
nation of (i) theoretical analysis based on the survival probability
and (ii) computational simulation using the well-mixed and vertex-
based models, ultimately culminating in the characterisation of the
competition regimes in Section 4.3. Importantly, our analysis allows
for a direct examination of the conditions and parameters that lead to
competitive outcomes. In this section, we will interpret and discuss our
findings, propose specific ideas for novel cell competition experiments,
and outline potential future research directions.

5.1. Spatial mixing is required for cell competition

In Section 4.2.6, we observed that the occurrence of competitive
outcomes in the vertex-based model depends on the initial spatial
patterning of cell types. When the cell types are distributed randomly,
we observe competitive outcomes, but when they are segregated, we
do not. In fact, the behaviour of the segregated cell types is virtually
identical to that of isolated homotypic populations. This result agrees
with experimental observations that spatial mixing is required for cell
competition (Levayer et al., 2015), and has been replicated in other
cell-based models of cell competition (Gradeci et al., 2021).

Our derivation of heterotypic proliferation regimes is based on the
assumption that the population is well-mixed, which is only true locally
at heterotypic clone boundaries in the vertex-based model, where cells
sample the death signal of both cell types. Within clones, however, cells
interact only with cells of the same type, so they behave more like a
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homotypic population. The degree of competition therefore depends
on the amount of heterotypic contact between cell types, which is
modulated by the level of spatial mixing.

5.2. Tolerance and emission

When we derived the heterotypic survival difference in
Section 4.2.2, we found that the relative abundance of cell types in
a tissue is determined by their tolerance to death signals (i.e. 𝜂∕𝛽).
Furthermore, when we derived the homotypic survival difference in
Section 4.2.3, we showed that the difference in death signal emission
(i.e. 1 − 𝛽) between two competing cell types determines the impact
of the heterotypic interaction compared to homotypic conditions. Also,
in Section 4.2.5, we demonstrated that loser elimination depends on
the relationship between the tolerance of the loser and the emission of
the winner. From these observations, we infer that tolerance to, and
emission of, death signals are the fundamental cell properties driving
cell competition in the G2 death signal model. Here, we present a
transformation of parameters that explicitly describes the behaviour of
the model in terms of tolerance and emission. We also show that the
transformed parameters allow us to describe the competition regimes
using intuitive and elegant expressions.

We define the tolerance and emission of cell type 𝑋, respectively
denoted �̃�𝑋 and 𝑑𝑋 , as follows:

�̃�𝑋 ≡
𝜂𝑋

ln(2)𝛽𝑋
, 𝑑𝑋 ≡ 1 − 𝛽𝑋 . (82)

We can formulate the homotypic viability condition, 1∕2 < 𝜆𝑋 , using
�̃�𝑋 and 𝑑𝑋 by substituting the homotypic survival probability (Eq. (31))
and rearranging:
1
2
< 𝜆𝑋 ⇔ 1 − 𝛽𝑋 <

𝜂𝑋
ln(2)𝛽𝑋

⇔ 𝑑𝑋 < �̃�𝑋 . (83)

The last inequality reads as the condition that cells must have a higher
tolerance than emission to be homotypically viable. The biological
interpretation is that cells must be capable of tolerating the death
signal that they themselves emit in order to survive as a group. The
loser elimination condition, 𝜉∞𝐿|𝑊 < 1∕2, can also be expressed using
tolerance and emission. Denoting the winner and loser cell types using
the labels W and L, respectively, we substitute the asymptotic survival
probability of the loser (Eq. (61)) to obtain

𝜉∞𝐿|𝑊 < 1
2

⇔
𝜂𝐿

ln(2)𝛽𝐿
< 1 − 𝛽𝑊 ⇔ �̃�𝐿 < 𝑑𝑊 . (84)

This means that winner cells must emit death signals at a rate that loser
cells cannot tolerate in order to eliminate the loser cell type from the
tissue.

To satisfy the cell competition criteria, we require that both cell
types are homotypically viable, i.e. 𝑑𝐿 < �̃�𝐿 and 𝑑𝑊 < �̃�𝑊 , and that the
loser is eliminated, i.e. �̃�𝐿 < 𝑑𝑊 . Combining these expressions, we can
summarise the conditions on the model parameters such that the cell
competition criteria are satisfied in a single statement:

𝑑𝐿 < �̃�𝐿 < 𝑑𝑊 < �̃�𝑊 , (85)

which can be read as ‘‘loser emission < loser tolerance < winner
emission < winner tolerance’’.

This corresponds to the complete cell competition regime that we
defined earlier in Section 4.3. In a similar manner, we can express all
the competition regimes defined in Section 4.3 in terms of tolerance and
emission (compare the following with the bottom section of Table 5):

Cell competition: 𝑑𝐿 < �̃�𝐿 < �̃�𝑊 ∧ 𝑑𝐿 < 𝑑𝑊 .

Complete cell competition: 𝑑𝐿 < �̃�𝐿 < 𝑑𝑊 < �̃�𝑊 .

Critical cell competition: 𝑑𝐿 < �̃�𝐿 = 𝑑𝑊 < �̃�𝑊 .

Incomplete cell competition: 𝑑 < 𝑑 < �̃� < �̃� .
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𝐿 𝑊 𝐿 𝑊
Fig. 9. Diagram of competition regimes using the transformed parameters �̃�𝑋 and 𝑑𝑋 ,
defined in Eq. (82). The green dot corresponds to the neutral coexistence point. The
same conventions apply as in Fig. 8. See Table 5 for the legend.

Neutral competition: 𝑑𝐿 = 𝑑𝑊 < �̃�𝐿 < �̃�𝑊 .

Indirect competition: 𝑑𝑊 < 𝑑𝐿 < �̃�𝐿 < �̃�𝑊 .

These relationships can be verified visually in Fig. 9, which shows the
competition regimes in transformed parameter space.

5.3. The tolerance–emission model of cell competition

Based on Eq. (85), we make the following biological prediction:
cell competition requires that winner cells have a higher tolerance to
death signals and a higher rate of death signal emission than loser
cells. The implicit assumption in this statement is that cells emit and
tolerate some form of death signal, which can be contact-based, ligand-
based, mechanical stress-based, etc. Intuitively, regardless of the type
of death signal, winners must expose losers to a sufficiently high level
of death signal to eliminate them, while still being able to withstand it
themselves.

Importantly, this model implies that mutations resulting in cell
competition, such as Minutes and Myc, are pleiotropic because they
simultaneously alter the tolerance to, and emission of, death signals. As
a corollary, mutations which affect only one or neither, do not engender
cell competition. This potentially explains why some mutations related
to proliferation rates result in cell competition, and others do not
(De La Cova et al., 2004). In this view, the inhibition of apoptosis
can be regarded as a mutation that results in an infinite tolerance,
without affecting emission. Indeed, it has been shown in experiments
that inhibiting apoptosis prevents cell competition (De La Cova et al.,
2004; Moreno et al., 2002).

This observation raises the question: do mutations exist that in-
crease the emission of death signals, without affecting tolerance? If so,
they would be challenging to culture, since such mutants would not
tolerate their own death signal and thus be homotypically nonviable.
However, the tolerance–emission model suggests that such a mutation
would be viable if it were paired with apoptosis inhibition. Our model
therefore predicts that a hypothetical emission-enhancing mutation
combined with apoptosis inhibition would result in a novel species of
super-competitors.

5.3.1. Experimental support
Experimental evidence from Myc-based cell competition supports

the tolerance–emission hypothesis. In Alpar et al. (2018), the authors
demonstrated that the ligand Spätzle is necessary for the elimination of
loser cells in the Drosophila wing disc, forming what the authors term
a ‘‘killing signal’’. They also observed that Spätzle is produced in wild-
type conditions at a rate that is tolerated by the wild-type cells, and
that the production of Spätzle is upregulated in Myc super-competitors
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without inducing cell death in Myc mutants. Myc mutants therefore
emit more death signal than wild-type cells, while simultaneously being
less sensitive to it.

In this experiment, the death signal takes on the form of a diffusible
death ligand. While the principles of tolerance and emission should
still apply, there is an important difference with the contact-based G2
death signal discussed in Section 4; namely that death ligands can
diffuse away from the site of heterotypic contact. This could potentially
explain why we observe loser cell death at a distance in Myc-based cell
competition (De La Cova et al., 2004), but not in Minutes-based cell
competition. According to the tolerance–emission model, death ligand
secretion is upregulated in mutant winner cells in the former case, and
downregulated in mutant loser cells in the latter case.

We also find support for the tolerance–emission model in mechan-
ical cell competition, specifically in cultures of Madine–Darby canine
kidney (MDCK) cells (Bove et al., 2017). The authors discovered that
cell proliferation is in part modulated by the composition of cell types
in the cellular neighbourhood. In particular, winner cells are more
prolific when they are specifically surrounded by loser cells. This agrees
with our observations that winner cells benefit from proximity to loser
cells because loser cells emit a lower level of death signal.

5.3.2. Experimental validation
To validate the tolerance–emission hypothesis, we must extrapolate

the model predictions to experimental conditions that have not yet been
tested. We predicted in Section 4.2.5 that homotypically nonviable
loser cells can be rescued through indirect competition. This occurs
when a winner cell type has a lower emission rate than the loser
cell type, creating an environment in which losers can proliferate
even if they are not viable on their own. The challenge in producing
this outcome experimentally, however, is that we would first need to
identify an intrinsically nonviable mutant cell type to assume the role
of the loser. We therefore propose an alternative experiment that could
potentially simulate this behaviour with known cell types.

Consider a triple co-culture where cell type A outcompetes cell type
B and cell type B outcompetes cell type C. Cell types B and C are
both eliminated in a background of cell type A, which mimics the
intrinsic nonviability of cell types B and C. The tolerance–emission
model predicts that the emission of death signals by cell type C is
tolerated by cell type B. Therefore, if we inhibit apoptosis in cell
type C, we expect to see: (i) C-type clones forming in an A-type
background; and (ii) the survival of B-type cells exclusively inside the
C-type clones. This outcome would be analogous to the rescue of a
homotypically nonviable loser by indirect competition, with cell types
B and C corresponding to the indirect losers and winners, respectively.

5.4. The function of cell competition

The prevalent hypothesis is that cell competition is a mechanism
for maintaining tissue health by eliminating unfit cells. However, what
is meant by ‘‘fitness’’ in this context is not clear (Maheden, 2022).
The classical definition of fitness is based on reproductive success and
early experiments indeed linked reproductive fitness to cell competi-
tion, with winner cells having higher intrinsic proliferation rates than
losers (Morata and Ripoll, 1975; Simpson and Morata, 1981). However,
not all mutations that increase proliferation rates result in cell compe-
tition (De La Cova et al., 2004). In cell competition, fitness is perhaps
more accurately defined as a measure of competitive success, which can
determined by pairwise contests between cell types. In the tolerance–
emission model, competitive success is a combination of tolerance and
emission, and lacks a causal relationship with proliferation rates.

Competitive fitness is therefore not the same as reproductive fitness,
but then why are they often linked in practice? We speculate that dif-
ferential proliferation rates are not the mechanism of cell competition,
but the target of cell competition. Cell competition evolved to optimise
reproductive fitness, but uses competitive fitness as an imperfect means
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to communicate it. In other words, competitive fitness serves as a proxy
for reproductive fitness and evolved in a trade-off with other factors
such as the costs involved in cell competition.

Furthermore, we expect that the target of cell competition depends
on the function of the host tissue. In the Drosophila wing disc, the tissue
expands from 50 to 50 000 cells in the span of four days, so the function
of cell competition in this context is to optimise for reproductive fitness.
MDCK cells, on the other hand, were derived from kidney tubules, so
their function is to form a mechanically resilient barrier. In this case,
cell competition is linked to mechanical cell compression, which we
hypothesise acts as a proxy for the cell’s ability to contribute to the
structural integrity of the tissue.

5.5. Future work

The framework presented in this paper can be applied to any cell-
based model to study hypothetical mechanisms of cell competition.
Moreover, the cell competition criteria are sufficiently abstract that
they can potentially be translated to models of cell competition that are
not cell-based, such as Lotka–Volterra models (Nishikawa et al., 2016).

We emphasise that the death clock framework is agnostic with
respect to the death signal, and that it can be used to represent
different kinds of cell competition mechanisms. Of particular interest
are diffusible ligands and mechanical compression as death signals.
Studies show that cell competition in the Drosophila wing disc involves
the use of diffusible death ligands (Alpar et al., 2018; Meyer et al.,
2014; Senoo-Matsuda and Johnston, 2007). A death clock model based
on the secretion (i.e. emission) and recognition of death ligands is
therefore an obvious next step toward a more biologically accurate
representation of the cell competition process. Section 2 suggests that
differences in mechanical properties alone do not robustly generate
competitive outcomes in a heterotypic vertex-based model. However,
they may still play a role in cell competition when paired with an
active mechanism for cell death. Research indicates that mechanical
compression triggers apoptosis in loser cells during mechanical cell
competition (Wagstaff et al., 2016), hence cell compression may be
an appropriate death signal in this context. Further research is needed
to investigate models that incorporate diffusible ligands or mechanical
compression as death signals.
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