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ABSTRACT1

We study the problem of counting answers to unions of conjunctive2

queries (UCQs) under structural restrictions on the input query.3

Concretely, given a class𝐶 of UCQs, the problem #UCQ(𝐶) provides4

as input a UCQ Ψ ∈ 𝐶 and a database D and the problem is to5

compute the number of answers of Ψ in D.6

Chen andMengel [PODS’16] have shown that for any recursively7

enumerable class𝐶 , the problem #UCQ(𝐶) is either fixed-parameter8

tractable or hard for one of the parameterised complexity classes9

W[1] or #W[1]. However, their tractability criterion is unwieldy in10

the sense that, given any concrete class𝐶 of UCQs, it is not easy to11

determine how hard it is to count answers to queries in𝐶 . Moreover,12

given a single specific UCQ Ψ, it is not easy to determine how hard13

it is to count answers to Ψ.14

In this work, we address the question of finding a natural tractabil-15

ity criterion: The combined conjunctive query of a UCQ Ψ =16

𝜑1∨· · ·∨𝜑ℓ is the conjunctive query∧ (Ψ) = 𝜑1∧· · ·∧𝜑ℓ . We show17

that under natural closure properties of𝐶 , the problem #UCQ(𝐶) is18

fixed-parameter tractable if and only if the combined conjunctive19

queries of UCQs in 𝐶 , and their contracts, have bounded treewidth.20

A contract of a conjunctive query is an augmented structure, taking21

into account how the quantified variables are connected to the free22

variables — if all variables are free, then a conjunctive query is equal23

to its contract; in this special case the criterion for fixed-parameter24

tractability of #UCQ(𝐶) thus simplifies to the combined queries25

having bounded treewidth.26

Finally, we give evidence that a closure property on𝐶 is necessary27

for obtaining a natural tractability criterion: We show that even for28

a single UCQ Ψ, the meta problem of deciding whether #UCQ({Ψ})29

can be solved in time 𝑂 ( |D|𝑑 ) is NP-hard for any fixed 𝑑 ≥ 1.30

Moreover, we prove that a known exponential-time algorithm for31

solving the meta problem is optimal under assumptions from fine-32

grained complexity theory. As a corollary of our reduction, we also33

establish that approximating the Weisfeiler-Leman-Dimension of a34

UCQ is NP-hard.35

CCS CONCEPTS36

• Theory of computation → Design and analysis of algo-37

rithms; • Information systems→ Relational database query38

languages.39
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1 INTRODUCTION 49

Conjunctive queries are among the most fundamental and well- 50

studied objects in database theory [2, 21, 47, 48, 60, 61]. A con- 51

junctive query (CQ) 𝜑 with free variables 𝑋 = {𝑥1, . . . , 𝑥𝑘 } and 52

quantified variables 𝑌 = {𝑦1, . . . , 𝑦𝑑 } is of the form 53

𝜑 (𝑋 ) = ∃𝑌 𝑅1 (t1) ∧ . . . ∧ 𝑅𝑛 (t𝑛),

where 𝑅1, . . . , 𝑅𝑛 are relational symbols and each t𝑖 is a tuple of 54

variables from 𝑋 ∪ 𝑌 . A database D consists of a set of elements 55

𝑈 (D), denoted the universe of D, and a set of relations over this 56

universe. The corresponding relation symbols are the signature of 57

D. If 𝑅1, . . . , 𝑅𝑛 are in the signature of D then an answer of 𝜑 in 58

D is an assignment 𝑎 : 𝑋 → 𝑈 (D) that has an extension to the 59

existentially quantified variables 𝑌 that agrees with all the relations 60

𝑅1, . . . , 𝑅𝑛 . Even more expressive is a union of conjunctive queries 61

(UCQ). Such a union is of the form Ψ(𝑋 ) = 𝜑1 (𝑋 ) ∨ . . . ∨ 𝜑ℓ (𝑋 ), 62

where each 𝜑𝑖 (𝑋 ) is a CQ with free variables 𝑋 . An answer to Ψ is 63

then any assignment that is answer to at least one of the CQs in 64

the union. 65

Since evaluating a givenCQon a given database is NP-complete [21] 66

a lot of research focused on finding tractable classes of CQs. A funda- 67

mental result by Grohe, Schwentick, and Segoufin [42] established 68

that the tractability of evaluating all CQs of bounded arity whose 69

Gaifman graph is in some class of graphs 𝐶 depends on whether or 70

not the treewidth in 𝐶 is bounded. 71

More generally, finding an answer to a conjunctive query can 72

be cast as finding a (partial) homomorphism between relational 73

structures, and therefore is closely related to the framework of con- 74

straint satisfaction problems. In this setting, Grohe [40] showed that 75

treewidth modulo homomorphic equivalence is the right criterion 76

for tractability. There is also an important line of work [38, 41, 50] 77

culminating in the fundamental work byMarx [51] that investigates 78

the parameterised complexity for classes of queries with unbounded 79

arity. In general, tractability of conjunctive queries is closely related 80

to how “tree-like” or close to acyclic they are. 81

Counting answers to CQs has also received significant attention 82

in the past [3, 23, 29, 31, 32, 39, 56]. Chen and Mengel [22] gave 83

a complete classification for the counting problem on classes of 84

CQs (with bounded arity) in terms of a natural criterion loosely 85

based on treewidth. They present a trichotomy into fixed-parameter 86
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tractable, W[1]-complete, and #W[1]-complete cases. In subse-87

quent work [23], this classification was extended to unions of88

conjunctive queries (and to even more general queries in [31]).89

However, for UCQs, the established criteria for tractability and in-90

tractability are implicit (see [23, Theorems 3.1 and 3.2]) in the sense91

that, given a specific UCQ Ψ, it is not at all clear how hard it is to92

count answers to Ψ based on the criteria in [23]. To make this more93

precise: It is not even clear whether we can, in polynomial time in94

the size of Ψ, determine whether answers to Ψ can be counted in95

linear time in the input database.96

1.1 Our contributions97

With the goal of establishing a more practical tractability criterion98

for counting answers to UCQs, we explore the following two main99

questions in this work:100

Q1) Is there a natural criterion that captures the fixed-101

parameter tractability of counting answers to a class102

of UCQs, parameterised by the size of the query?103

Q2) Is there a natural criterion that captures whether104

counting answers to a single fixed UCQ is linear-time105

solvable (in the size of a given database)?106

Question Q1): Fixed-Parameter Tractability. For a class𝐶 of UCQs,107

we consider the problem #UCQ(𝐶) that takes as input a UCQ Ψ108

from 𝐶 and a database D, and asks for the number ans(Ψ→ D)109

of answers of Ψ in D. We assume that the arity of the UCQs in110

𝐶 is bounded, that is, there is constant 𝑐 such that each relation111

that appears in some query in 𝐶 has arity at most 𝑐 . As explained112

earlier, due to a result of Chen and Mengel [23], there is a known113

but rather unwieldy tractability criterion for #UCQ(𝐶), when the114

problem is parameterised by the size of the query. On a high level,115

the number of answers of a UCQ Ψ in a given database can be116

expressed as a finite linear combination of CQ answer counts, using117

the principle of inclusion-exclusion. This means that ans(Ψ→ D)118

is equal to

∑
𝑖 𝑐𝑖 · ans(𝜑𝑖 → D), where each 𝜑𝑖 is simply a con-119

junctive query (and not a union thereof). We refer to this linear120

combination as the CQ expansion of Ψ. Chen and Mengel showed121

that the parameterised complexity of computing ans(Ψ→ D) is122

guided by the hardest term in the respective CQ expansion. The123

complexity of computing these terms is simply the complexity of124

counting the answers of a conjunctive query, and this is well un-125

derstood [22]. Hence, the main challenge for this approach is to126

understand the linear combination, i.e., to understand for which127

CQs the corresponding coefficients are non-zero. The problem is128

that the coefficients 𝑐𝑖 of these linear combinations are alternating129

sums, which in similar settings have been observed to encode al-130

gebraic and even topological invariants [57]. This makes it highly131

non-trivial to determine which CQs actually contribute to the lin-132

ear combination. We introduce the concepts required to state this133

classification informally, the corresponding definitions are given in134

Section 2.135

We first give more details about the result of [22]. Let Γ(𝐶) be136

the class of those conjunctive queries that contribute to the CQ137

expansion of at least one UCQ in 𝐶 , and that additionally are what138

we call #minimal. Intuitively, a conjunctive query 𝜑 is #minimal if139

there is no proper subquery 𝜑 ′ of 𝜑 that has the same number of140

answers as 𝜑 in every given database. Then the tractability criterion141

depends on the treewidth of the CQs in Γ(𝐶). It also depends on the 142

treewidth of the corresponding class contract(Γ(𝐶)) of contracts 143

(formally defined in Definition 17), which is an upper bound of 144

what is called the “star size” in [32] and the “dominating star size” 145

in [31]. Here is the formal statement of the known dichotomy for 146

#UCQ(𝐶). 147

Theorem 1 ([23]). Let 𝐶 be a recursively enumerable class of UCQs 148

of bounded arity. If the treewidth of Γ(𝐶) and of contract(Γ(𝐶)) 149

is bounded, then #UCQ(𝐶) is fixed-parameter tractable. Otherwise, 150

#UCQ(𝐶) isW[1]-hard. 151

We investigate under which conditions this dichotomy can be 152

simplified.We show that for large classes of UCQs there is actually a 153

much more natural tractability criterion that does not rely on Γ(𝐶), 154

i.e., here the computation of the coefficients of the linear combina- 155

tions as well as the concept of #minimality do not play a role. We 156

first show a simpler classification for UCQswithout existential quan- 157

tifiers. To state the results we require some additional definitions: 158

The combined query ∧ (Ψ) of a UCQ Ψ(𝑋 ) = 𝜑1 (𝑋 ) ∨ · · · ∨ 𝜑ℓ (𝑋 ) 159

is the conjunctive query obtained from Ψ by replacing each disjunc- 160

tion by a conjunction, that is ∧ (Ψ) = 𝜑1 (𝑋 ) ∧ · · · ∧ 𝜑ℓ (𝑋 ). Given 161

a class of UCQs 𝐶 , we set ∧ (𝐶) = {∧ (Ψ) | Ψ ∈ 𝐶}. 162

It will turn out that the structure of the class of combined queries 163

∧ (𝐶) determines the complexity of counting answers to UCQs in 164

𝐶 , given that 𝐶 has the following natural closure property: We say 165

that 𝐶 is closed under deletions if, for all Ψ(𝑋 ) = 𝜑1 (𝑋 ) ∨ · · · ∨ 166

𝜑ℓ (𝑋 ) and for every 𝐽 ⊆ [ℓ], the subquery

∨
𝑗∈ 𝐽 𝜑 𝑗 (𝑋 ) is also 167

contained in 𝐶 . For example, any class of UCQs defined solely by 168

the conjunctive queries admissible in the unions (such as unions of 169

acyclic conjunctive queries) is closed under deletions. The following 170

classification resolves the complexity of counting answers to UCQs 171

in classes that are closed under deletions; we will see later that 172

the closedness condition is necessary. Moreover, the tractability 173

criterion depends solely on the structure of the combined query, 174

and not on the terms in the CQ expansion, thus yielding, as desired, 175

a much more concise and natural characterisation. As mentioned 176

earlier, we first state the classification for quantifier-free UCQs. 177

Theorem 2. Let𝐶 be recursively enumerable class of quantifier-free 178

UCQs of bounded arity. If∧ (𝐶) has bounded treewidth then #UCQ(𝐶) 179

is fixed-parameter tractable. If ∧ (𝐶) has unbounded treewidth and 180

𝐶 is closed under deletions then #UCQ(𝐶) isW[1]-hard. 181

We emphasise here that Theorem 2 is in terms of the simpler 182

object ∧ (𝐶) instead of the complicated object Γ(𝐶). 183

If we allow UCQs with quantified variables in the class 𝐶 then 184

the situation becomes more intricate. Looking for a simple tractabil- 185

ity criterion that describes the complexity of #UCQ(𝐶) solely in 186

terms of ∧ (𝐶) requires some additional effort. First, for a UCQ 187

Ψ that has quantified variables, contract(Ψ) is not necessarily the 188

same as Ψ, and therefore the treewidth of the contracts also plays 189

a role. Moreover, the matching lower bound requires some condi- 190

tions in addition to being closed under deletions. Nevertheless, our 191

result is in terms of the simpler objects ∧ (𝐶) and contract(∧ (𝐶)) 192

rather than the more complicated Γ(𝐶) and contract(Γ(𝐶)). For 193

Theorem 3, recall that a conjunctive query is self-join-free if each 194

relation symbol occurs in at most one atom of the query. 195



Theorem 3. Let 𝐶 be a recursively enumerable class of UCQs of196

bounded arity. If ∧ (𝐶) and contract(∧ (𝐶)) have bounded treewidth197

then #UCQ(𝐶) is fixed-parameter tractable. Otherwise, if (I)–(III) are198

satisfed, then #UCQ(𝐶) isW[1]-hard.199

(I) 𝐶 is closed under deletions.200

(II) The number of existentially quantified variables of queries in201

𝐶 is bounded.202

(III) The UCQs in 𝐶 are unions of self-join-free conjunctive queries.203

In Appendix E we show that Theorem 3 is tight in the sense204

that, if any of these conditions is dropped, there are counterex-205

amples to the claim that tractability is guided solely by ∧ (𝐶) and206

contract(∧ (𝐶)).207

Question Q2): Linear-Time Solvability. Now we turn to the ques-208

tion of linear-time solvability for a single fixed UCQ. The huge209

size of databases in modern applications motivates the question210

of which query problems are actually linear-time solvable. Along211

these lines, there is a lot of research for enumeration problems [8,212

11, 12, 15, 20, 61].213

The question whether counting answers to a conjunctive query214

𝜑 can be achieved in time linear in the given database has been stud-215

ied previously [52]. The corresponding dichotomy is well known216

and was discovered multiple times by different authors in different217

contexts.
1
In these results, the tractability criterion is whether 𝜑 is218

acyclic, i.e., whether it has a join tree (see [37]). The corresponding219

lower bounds are conditioned on a widely used complexity assump-220

tion from fine-grained complexity, namely the Triangle Conjecture.221

We define all of the complexity assumptions that we use in this222

work in Section 2. There we also formally define the size of a data-223

base (as the sum of the size of its signature, its universe, and its224

relations).225

It is well-known that counting answers to quantifier-free con-226

junctive queries can be done in linear time if and only if the query227

is acyclic. The “only if” part relies on hardness assumptions from228

fine-grained complexity theory. Concretely, we have229

Theorem 4 (See Theorem 12 in [17], and [7, 8, 11]). Let 𝜑 be230

a quantifier-free conjunctive query and suppose that the Triangle231

Conjecture is true. Then the number of answers of 𝜑 in a given232

database D can be computed in time linear in the size of D if and233

only if 𝜑 is acyclic.234

We note that the previous theorem is false if quantified variables235

were allowed as this would require the consideration of semantic236

acyclicity
2
(see [10]).237

Theorem 4 yields an efficient way to check whether counting238

answers to a quantifier-free conjunctive query 𝜑 can be done in239

linear time: Just check whether 𝜑 is acyclic (in polynomial time,240

see for instance [37]). We investigate the corresponding question241

for unions of conjunctive queries. In stark contrast to Theorem 4,242

we show that there is no efficiently computable criterion that de-243

termines the linear-time tractability of counting answers to unions244

1
We remark that [11, Theorem 7] focuses on the special case of graphs and near linear

time algorithms. However, in the word RAM model with𝑂 (log𝑛) bits, a linear time

algorithm is possible [20].

2
A conjunctive query is semantically acyclic if and only if its #core (Definition 16) is

acyclic.

of conjunctive queries, unless some conjectures of fine-grained 245

complexity theory fail. 246

We first observe that, as in the investigation of question Q1), 247

one can obtain a criterion for linear-time solvability by expressing 248

UCQ answer counts as linear combinations of CQ answer counts. 249

Concretely, by a straightforward extension of previous results, we 250

show that, assuming the Triangle Conjecture, a linear combination 251

of CQ answer counts can be computed in linear time if and only if 252

the answers to each #minimal CQ in the linear combination can be 253

computed in linear time, that is, if each such CQ is acyclic. However, 254

this criterion is again unwieldy in the sense that, for all we know, 255

it may take time exponential in the size of the respective UCQ to 256

determine whether this criterion holds. 257

In view of our results for question Q1) about fixed-parameter 258

tractability, one might suspect that a more natural and simpler 259

tractability criterion exists. However, it turns out that even under 260

strong restrictions on the UCQs that we consider, an efficiently 261

computable criterion is unlikely. We make this formal by studying 262

the following meta problem. 263

Name: Meta

Input: A union Ψ of quantifier-free conjunctive queries.

Output: Is it possible to count answers to Ψ in time linear in the

size of D.

Restricting the input of Meta to quantifier-free queries is sensi- 264

ble as, without this restriction, the meta problem is known to be 265

NP-hard even for conjunctive queries: If all variables are existen- 266

tially quantified, then evaluating a conjunctive query can be done 267

in linear time if and only if the query is semantically acyclic [61] 268

(the “only if” relies on standard hardness assumptions). However, 269

verifying whether a conjunctive query is semantically acyclic is 270

already NP-hard [10]. In contrast, when restricted to quantifier- 271

free conjunctive queries, the problemMeta is polynomially-time 272

solvable according to Theorem 4. 273

We can now state our main result about the complexity ofMeta. 274

The hardness results hold under substantial additional input restric- 275

tions, which make these results stronger. 276

Theorem 5. Meta can be solved in time 2
𝑂 (ℓ ) · |Ψ|poly(log |Ψ | ) , 277

where ℓ is the number of conjunctive queries in the union, if the 278

Triangle Conjecture is true. Moreover, 279

• If the Triangle Conjecture is true then Meta is NP-hard. If, 280

additionally, ETH is true, then Meta cannot be solved in time 281

2
𝑜 (ℓ )

. 282

• If SETH is true then Meta is NP-hard and cannot be solved in 283

time 2
𝑜 (ℓ )

. 284

• If the non-uniform ETH is true then Meta is NP-hard and 285

Meta ∉
⋂
Y>0 DTime(2Y ·ℓ ). 286

The lower bounds remain true even if Ψ is a union of self-join-free 287

and acyclic conjunctive queries over a binary signature (that is, of 288

arity 2). 289

We make some remarks about Theorem 5. First, it may seem 290

counterintuitive that the algorithmic part of this result relies on 291

some lower bound conjectures. This is explained by the fact that an 292

algorithmic result forMeta is actually a classification result for the 293

underlying counting problem. The lower bound conjectures are the 294



reason that the algorithm forMeta can answer that a linear-time295

algorithm is not possible for certain UCQs.296

Second, while for counting the answers to a CQ in linear time297

the property of being acyclic is the right criterion, note that for298

unions of CQs, acyclicity is not even sufficient for tractability. Even299

when restricted to unions of acyclic conjunctive queries, the meta300

problem is NP-hard.301

Third, we elaborate on the idea that we use to prove Theorem 5.302

Asmentioned before, the algorithmic part of Theorem 5 comes from303

the well-known technique of expressing UCQ answer counts in304

terms of linear combinations of CQ answer counts, and establishing305

a corresponding complexity monotonicity property, see Section 2.3.306

The more interesting result is the hardness part. Here we discover a307

connection between the meta question stated in Meta, and a topo-308

logical invariant, namely, the question whether the reduced Euler309

characteristic of a simplicial complex is non-zero. It is known that310

simplicial complexes with non-vanishing reduced Euler character-311

istic are evasive, and as such this property is also related to Karp’s312

Evasiveness Conjecture (see e.g. the excellent survey of Miller [53]).313

We use the known fact that deciding whether the reduced Euler314

characteristic is vanishing is NP-hard [58]. Roughly, the reduction315

works as follows. Given some simplicial complex Δ, we carefully316

define a UCQ ΨΔ in such a way that only one particular term in317

the CQ expansion of ΨΔ determines the linear-time tractability of318

counting answers to ΨΔ. However, the coefficient of this term is319

zero precisely if the reduced Euler characteristic of Δ is vanishing.320

Simplicial complexes also appeared in a related context in a work321

by Roth and Schmitt [57]. They show a connection between the322

complexity of counting induced subgraphs that fulfil some graph323

property and the question whether a simplicial complex associated324

with this graph property is non-zero. To solve their problem, it325

suffices to consider simplicial graph complexes, which are special326

simplicial complexes whose elements are subsets of the edges of a327

complete graph, and to encode these as induced subgraph counting328

problems In contrast, to get our result we must encode arbitrary329

abstract simplicial complexes as UCQs and to show how to transfer330

the question about their Euler characteristic to a question about331

linear-time solvability of UCQs.332

It turns out that, as additional consequences of our reduction in333

the proof of Theorem 5, we also obtain lower bounds for (approxi-334

mately) computing the so-called Weisfeiler-Leman-dimension of a335

UCQ.336

Consequences for the Weisfeiler-Leman-dimension of quantifier-337

free UCQs. During the last decade we have witnessed a resurge in338

the study of theWeisfeiler-Leman-dimension of graph classes and339

graph parameters [4, 9, 30, 36, 46, 54]. The Weisfeiler-Leman algo-340

rithm (WL-algorithm) and its higher-dimensional generalisations341

are important heuristics for graph isomorphism; for example, the342

1-dimensional WL-algorithm is equivalent to the method of colour-343

refinement. We refer the reader to e.g. the EATCS Bulletin article of344

Arvind [4] for a concise and self-contained introduction; however,345

in this work we will use the WL-algorithm only in a black-box346

manner.347

For each positive integer 𝑘 , we say that two graphs 𝐺1 and 𝐺2348

are 𝑘-WL equivalent, denoted by𝐺1 �𝑘 𝐺2, if they cannot be distin-349

guished by the 𝑘-dimensional WL-algorithm. A graph parameter350

𝜋 is called 𝑘-WL invariant if 𝐺1 �𝑘 𝐺2 implies 𝜋 (𝐺1) = 𝜋 (𝐺2). 351

Moreover, the WL-dimension of 𝜋 is the minimum 𝑘 for which 𝜋 352

is 𝑘-WL invariant, if such a 𝑘 exists, and∞ otherwise (see e.g.[5]). 353

The WL-dimension of a graph parameter 𝜋 provides important 354

information about the descriptive complexity of 𝜋 [18]. Moreover, 355

recent work of Morris et al. [54] shows that the WL-dimension 356

of a graph parameter lower bounds the minimum dimension of a 357

higher-order Graph Neural Network that computes the parameter. 358

The definitions of the WL-algorithm and the WL-dimension 359

extend from graphs to labelled graphs, that is, directed multi-graphs 360

with edge- and vertex-labels (see e.g. [49]). Formally, we say that a 361

database is a labelled graph if its signature has arity at most 2, and if 362

it contains no self-loops, that is, tuples of the form (𝑣, 𝑣). Similarly, 363

(U)CQs on labelled graphs have signatures of arity at most 2 and 364

contain no atom of the form 𝑅(𝑣, 𝑣). 365

Definition 6 (WL-dimension). Let Ψ be a UCQ on labelled graphs. 366

The WL-dimension of Ψ, denoted by dimWL (Ψ), is the minimum 𝑘 367

such that, for any pair of labelled graphs D1 and D2 with D1 �𝑘 368

D2, it holds that the number of answers to Ψ in D1 is the same as 369

in D2. If no such 𝑘 exists, then the WL-dimension is∞. 370

Note that a CQ is a special case of a UCQ, so Definition 6 also 371

applies when Ψ is a CQ 𝜑 . 372

It was shown very recently that theWL-dimension of a quantifier- 373

free conjunctive query 𝜑 on labelled graphs is equal to the treewidth 374

of the Gaifman graph of 𝜑 [49, 55]. Using known algorithms for 375

computing the treewidth [16, 33] it follows that, for every fixed pos- 376

itive integer 𝑑 , the problem of deciding whether the WL-dimension 377

of 𝜑 is at most 𝑑 can be solved in polynomial time (in the size of 𝜑). 378

Moreover, the WL-dimension of 𝜑 can be efficiently approximated 379

in polynomial time. In stark contrast, we show that the computation 380

of the WL-dimension of a UCQ is much harder; in what follows, 381

we say that 𝑆 is an 𝑓 -approximation of 𝑘 if 𝑘 ≤ 𝑆 ≤ 𝑓 (𝑘) · 𝑘 . 382

Theorem 7. There is an algorithm that computes a 𝑂 (
√︁
log𝑘)- 383

approximation of the WL-dimension 𝑘 of a quantifier-free UCQ on 384

labelled graphs Ψ = 𝜑1 ∨ · · · ∨ 𝜑ℓ in time |Ψ|𝑂 (1) ·𝑂 (2ℓ ). 385

Moreover, let 𝑓 : Z>0 → Z>0 be any computable function. The 386

problem of computing an 𝑓 -approximation of dimWL (Ψ) given an 387

input UCQ Ψ = 𝜑1 ∨ · · · ∨ 𝜑ℓ is NP-hard, and, assuming ETH, an 388

𝑓 -approximation of dimWL (Ψ) cannot be computed in time 2
𝑜 (ℓ )

. 389

Finally, the computation of the WL-dimension of UCQs stays 390

intractable even if we fix 𝑘 . 391

Theorem 8. Let 𝑘 be any fixed positive integer. The problem of 392

deciding whether the WL-dimension of a quantifier-free UCQ on 393

labelled graphs Ψ = 𝜑1 ∨ · · · ∨ 𝜑ℓ is at most 𝑘 can be solved in time 394

|Ψ|𝑂 (1) ·𝑂 (2ℓ ). 395

Moreover, the problem is NP-hard and, assuming ETH, cannot be 396

solved in time 2
𝑜 (ℓ )

. 397

1.2 Further Related Work 398

For exact counting it makes a substantial difference whether one 399

wants to count answers to a conjunctive query or a union of conjunc- 400

tive queries [23, 31]. However, for approximate counting, unions can 401

generally be handled using a standard trick of Karp and Luby [45], 402

and therefore fixed-parameter tractability results for approximately 403



counting the answers to a conjunctive query also extend to unions404

of conjunctive queries [3, 35].405

Counting and enumerating the answers to a union of conjunctive406

queries has also been studied in the context of dynamic databases [13,407

14]. This line of research investigates the question whether linear-408

time dynamic algorithms are possible. Concretely, the question409

is whether, after a preprocessing step that builds a data structure410

in time linear in the size of the initial database, the number of411

answers to a fixed union of conjunctive queries can be returned412

in constant time with a constant-time update to the data struc-413

ture, whenever there is a change to the database. Berkholz et al.414

show that for a conjunctive query such a linear-time algorithm is415

possible if and only if the CQ is 𝑞-hierarchical [13, Theorem 1.3].416

There are acyclic CQs that are not 𝑞-hierarchical, for instance the417

query 𝜑 ({𝑎, 𝑏, 𝑐, 𝑑}) = 𝐸 (𝑎, 𝑏) ∧ 𝐸 (𝑏, 𝑐) ∧ 𝐸 (𝑐, 𝑑) is clearly acyclic —418

however, the sets of atoms that contain 𝑏 and 𝑐 , respectively, are nei-419

ther comparable nor disjoint, and therefore 𝜑 is not 𝑞-hierarchical.420

So, there are queries for which counting in the static setting is421

easy, whereas it is hard in the dynamic setting. Berkholz et al. ex-422

tend their result from CQs to UCQs [14, Theorem 4.5], where the423

criterion is whether the UCQ is exhaustively 𝑞-hierarchical. This424

property essentially means that, for every subset of the CQs in the425

union, if instead of taking the disjunction of these CQs we take426

the conjunction, then the resulting CQ should be 𝑞-hierarchical.427

Moreover, checking whether a CQ 𝜙 is 𝑞-hierarchical can be done428

in time polynomial in the size of 𝜙 . However, the straightforward429

approach of checking whether a UCQ is exhaustively 𝑞-hierarchical430

takes exponential time, and it is stated as an open problem in [14]431

whether this can be improved. In the dynamic setting this question432

remains open — however, in the static setting we show that, while433

for counting answers to CQs the criterion for linear-time tractabil-434

ity can be verified in polynomial time, this is not true for unions of435

conjunctive queries, subject to some complexity assumptions, as436

we have seen in Theorem 5.437

1.3 Organisation of the Paper438

The subsequent Section 2 introduces some preliminary material,439

and in Section 3 we prove the complexity classification of #UCQ(𝐶)440

for deletion-closed classes𝐶 . Due to the space constraints, we defer441

the treatment of Meta and its connection to the WL-dimension to442

the appendix.443

2 PRELIMINARIES444

Due to the fine-grained nature of the questions we ask in this445

work (e.g. linear time counting vs non-linear time counting), it is446

important to specify the machine model. We use the standard word447

RAMmodel with𝑂 (log𝑛) bits. The exact model makes a difference.448

For example, it is possible to count answers to quantifier-free acyclic449

conjunctive queries in linear time in the word RAM model [20],450

while Turing machines only achieve near linear time (or expected451

linear time) [11].452

Due to the space constraints, we defer the introduction of some453

background material on parameterised complexity theory and rela-454

tional databases to the appendix.455

2.1 Fine-grained Complexity Theory 456

In this work, we will rely on the following hypotheses from fine- 457

grained complexity theory. 458

Conjecture 9 (ETH [43]). 3-SAT cannot be solved in time exp(𝑜 (𝑛)), 459

where 𝑛 denotes the number of variables of the input formula. 460

Conjecture 10 (SETH [19, 43]). For each Y > 0 there exists a positive 461

integer 𝑘 such that 𝑘-SAT cannot be solved in time𝑂 (2(1−Y )𝑛), where 462

𝑛 denotes the number of variables of the input formula. 463

Conjecture 11 (Non-uniform ETH [26]). 3-SAT is not contained in 464⋂
Y>0 DTime(exp(Y𝑛)), where 𝑛 denotes the number of variables of 465

the input formula. 466

Conjecture 12 (Triangle Conjecture [1]). There exists 𝛾 > 0 such 467

that any (randomised) algorithm that decides whether a graph with 𝑛 468

vertices and𝑚 edges contains a triangle takes time at least Ω(𝑚1+𝛾 ) 469

in expectation. 470

2.2 Homomorphisms and Conjunctive Queries 471

Weassume familiaritywith the central notions of relational databases 472

such as signatures, structures, and Gaifman graphs. We refer the 473

reader to Appendix A.2 for a brief introduction. 474

Homomorphisms as Answers to CQs. Let A and B be structures 475

over signatures 𝜏A ⊆ 𝜏B . A homomorphism from A to B is a 476

mapping ℎ : 𝑈 (A) → 𝑈 (B) such that for each relation symbol 477

𝑅 ∈ 𝜏A with arity 𝑎 and each tuple ®𝑡 = (𝑡1, . . . , 𝑡𝑎) ∈ 𝑅A we 478

have that ℎ(®𝑡) = (ℎ(𝑡1), . . . , ℎ(𝑡𝑎)) ∈ 𝑅B . We use Hom(A → B) 479

to denote the set of homomorphisms from A to B, and we use 480

the lower case version hom(A → B) to deonote the number of 481

homomorphisms from A to B. 482

Let𝜑 be a conjunctive query with free variables𝑋 = {𝑥1, . . . , 𝑥𝑘 } 483

and quantified variables 𝑌 = {𝑦1, . . . , 𝑦𝑑 }. We can associate 𝜑 with 484

a structure A𝜑 defined as follows: The universe of A𝜑 are the 485

variables 𝑋 ∪ 𝑌 and for each atom 𝑅(®𝑡) of 𝜑 we add the tuple ®𝑡 to 486

𝑅A . It is well-known that, for each database D, the set of answers 487

of 𝜑 in D is precisely the set of assignments 𝑎 : 𝑋 → 𝑈 (D) 488

such that there is a homomorphism ℎ ∈ Hom(A𝜑 → D) with 489

ℎ |𝑋 = 𝑎. Since working with (partial) homomorphisms will be very 490

convenient in this work, we will use the notation from [31] and 491

(re)define a conjunctive query as a pair consisting of a relational 492

structure A together with a set 𝑋 ⊆ 𝑈 (A). The size of (A, 𝑋 ) is 493

denoted by | (A, 𝑋 ) | and defined to be |A| + |𝑋 |. Furthermore, the 494

set of answers of (A, 𝑋 ) in D, denoted by Ans((A, 𝑋 ) → D), is 495

defined as {𝑎 : 𝑋 → 𝑈 (D) | ∃ℎ ∈ Hom(A → D) : ℎ |𝑋 = 𝑎}.We 496

then use ans((A, 𝑋 ) → D) to denote the number of answers, i.e., 497

ans((A, 𝑋 ) → D) B |Ans((A, 𝑋 ) → D)|. 498

We can now formally define the (parameterised) problem of 499

counting answers to conjunctive queries. As is usual, we restrict 500

the problem by a class 𝐶 of allowed queries. 501

Name: #CQ(𝐶)
Input: A conjunctive query (A, 𝑋 ) ∈ 𝐶 and a database D.

Parameter: | (A, 𝑋 ) |.
Output: The number of answers ans((A, 𝑋 ) → D).

#Equivalence and #Minimality. In the realm of decision problems, 502

it is well known that evaluating a conjunctive query is equivalent 503



to evaluating the (homomorphic) core of the query, i.e., evaluat-504

ing the minimal homomorphic-equivalent query. A similar, albeit505

slightly different notion of equivalence and minimality is required506

for counting answers to conjunctive queries. In what follows, we507

will provide the necessary definitions and properties of equivalence,508

minimality and cores for counting answers to conjunctive queries,509

and we refer the reader to [23] and to the full version of [31] for a510

more comprehensive discussion. To avoid confusion between the511

notions in the realms of decision and counting, we will from now512

on use the # symbol for the counting versions (see Definition 14).513

Definition 13. Two conjunctive queries (A, 𝑋 ) and (A′, 𝑋 ′) are514

isomorphic, denoted by (A, 𝑋 ) � (A′, 𝑋 ′), if there is an isomor-515

phism 𝑏 from A to A′ with 𝑏 (𝑋 ) = 𝑋 ′.516

Definition 14 (#Equivalence and #minimality (see [23, 31])). Two517

conjunctive queries (A, 𝑋 ) and (A′, 𝑋 ′) are #equivalent, denoted518

by (A, 𝑋 ) ∼ (A′, 𝑋 ′), if for every databaseD wehave ans((A, 𝑋 ) →519

D) = ans((A′, 𝑋 ′) → D). A conjunctive query (A, 𝑋 ) is #minimal520

if there is no proper substructure A′ of A such that (A, 𝑋 ) ∼521

(A′, 𝑋 ).522

Observation 15. The following are equivalent:523

(1) A conjunctive query (A, 𝑋 ) is #minimal.524

(2) (A, 𝑋 ) has no #equivalent substructure that is induced by a525

set𝑈 with 𝑋 ⊆ 𝑈 ⊂ 𝑈 (A).526

(3) Every homomorphism fromA to itself that is the identity on𝑋527

is surjective.528

It turns out that #equivalence is the same as isomorphism if all529

variables are free, and it is the same as homomorphic equivalence530

if all variables are existentially quantified (see e.g. the discussion in531

Section 5 in the full version of [31]). Moreover, each quantifier-free532

conjunctive query is #minimal.533

Definition 16 (#core). A #core of a conjunctive query (A, 𝑋 ) is a534

#minimal conjunctive query (A′, 𝑋 ′) with (A, 𝑋 ) ∼ (A′, 𝑋 ′).535

It is well known (see e.g. [31]) that,for #minimal queries, #equiv-536

alence and isomorphism coincide. Thus the #core is unique up to537

isomorphisms; in fact, this allows us to speak of “the” #core of a538

conjunctive query.539

Classification of #CQ(𝐶) via Treewidth and Contracts. It is well540

known that the complexity of counting answers to a conjunctive541

query is governed by its treewidth, and by the treewidth of its542

contract [22, 31], which we define as follows.543

Definition 17 (Contract). Let (A, 𝑋 ) be a conjunctive query, let544

𝑌 = 𝑈 (A) \𝑋 , and let𝐺 be the Gaifmann graph ofA. The contract545

of (A, 𝑋 ), denoted by contract(A, 𝑋 ) is obtained from 𝐺 [𝑋 ] by546

adding an edge between each pair of vertices 𝑢 and 𝑣 for which547

there is a connected component 𝑆 in 𝐺 [𝑌 ] that is adjacent to both548

𝑢 and 𝑣 , that is, there are vertices 𝑥,𝑦 ∈ 𝑆 such that {𝑥,𝑢} ∈ 𝐸 (𝐺)549

and {𝑦, 𝑣} ∈ 𝐸 (𝐺). Given a class of conjunctive queries𝐶 , we write550

contract(𝐶) for the class of all contracts of queries in 𝐶 .551

We note that there are multiple equivalent ways to define the552

contract of a query. For our purposes, the definition in [31] is most553

suitable. Also, the treewidth of the contract of a conjunctive query554

is an upper bound of what is called the query’s “star size” in [32]555

and its “dominating star size” in [31].556

Chen and Mengel established the following classification for 557

counting answers to conjunctive queries of bounded arity. 558

Theorem 18 ([22]). Let 𝐶 be a recursively enumerable class of 559

conjunctive queries of bounded arity, and let 𝐶′ be the class of #cores 560

of queries in𝐶 . If the treewidth of𝐶′ and of contract(𝐶′) is bounded, 561

then #CQ(𝐶) is solvable in polynomial time. Otherwise, #CQ(𝐶) is 562

W[1]-hard. 563

We point out that theW[1]-hard cases can further be partitioned 564

into W[1]-complete, #W[1]-complete and even harder cases [22, 565

31].
3
However, for the purpose of this work, we are only interested 566

in tractable and intractable cases (recall thatW[1]-hard problems 567

are not fixed-parameter tractable under standard assumptions from 568

fine-grained and parameterised complexity theory, such as ETH). 569

Self-join-free Conjunctive Queries and Isolated Variables. A con- 570

junctive query (A, 𝑋 ) is self-join-free if each relation ofA contains 571

at most one tuple. We say that a variable of a conjunctive query is 572

isolated if it is not part of any relation. 573

Note that that adding/removing isolated variables to/from a 574

conjunctive query does not change its treewidth or the treewidth 575

of its #core. Further, it does not change the complexity of counting 576

answers: Just multiply/divide by 𝑛𝑣 , where 𝑛 is the number of 577

elements of the database and 𝑣 it the number of added/removed 578

isolated free variables. For this reason, we will allow ourselves in 579

this work to freely add and remove isolated variables from the 580

queries that we encounter. For the existence of homomorphisms 581

we also observe the following. 582

Observation 19. Let (A, 𝑋 ) be a conjunctive query, let 𝑋 ′ be a 583

superset of 𝑋 and let A′ be the structure obtained from A by adding 584

an isolated variable for each 𝑥 ∈ 𝑋 ′ \𝑋 . Then for all 𝑎 : 𝑋 ′ → 𝑈 (D) 585

we have that 𝑎 |𝑋 ∈ Ans((A, 𝑋 ) → D) iff 𝑎 ∈ Ans((A′, 𝑋 ′) → D). 586

2.3 UCQs and the Homomorphism Basis 587

A union of conjunctive queries (UCQ) Ψ is a tuple of structures 588

(A1, . . . ,Aℓ (Ψ) ) over the same signature together with a set of 589

designated elements 𝑋 (the free variables) that are in the universe 590

of each of the structures. For each 𝐽 ⊆ [ℓ (Ψ)], we define Ψ| 𝐽 = 591

((𝐴 𝑗 ) 𝑗∈ 𝐽 , 𝑋 ). If we restrict to a single term of the union then we 592

usually just write Ψ𝑖 instead of Ψ|{𝑖 } . Note that Ψ𝑖 = (A𝑖 , 𝑋 ) is 593

simply a conjunctive query (rather than a union of CQs). 594

We will assume (without loss of generality) that, for any distinct 595

𝑖 and 𝑖′ in [ℓ (Ψ)], 𝑈 (A𝑖 ) ∩𝑈 (A𝑖′ ) = 𝑋 , i.e., that each CQ in the 596

union has its own set of existentially quantified variables. 597

If each such conjunctive query is acyclic we say that Ψ is a 598

union of acyclic conjunctive queries. Moreover, the arity of Ψ is the 599

maximum arity of any of the A𝑖 . The size of Ψ is |Ψ| = ∑ℓ (Ψ)
𝑖=1
|Ψ𝑖 |. 600

The elements of𝑋 are the free variables of Ψ and ℓ (Ψ) is the number 601

of CQs in the union. The set of answers ofΨ in a databaseD, denoted 602

by Ans(Ψ→ D) is defined as follows: 603

Ans(Ψ→ D) = {𝑎 : 𝑋 → 𝑈 (D) | ∃𝑖 ∈ [ℓ] : 𝑎 ∈ Ans(Ψ𝑖 → D)} .

Again, we use the lower case version ans(Ψ→ D) to denote the 604

number of answers of Ψ in D. 605

3
Those cases are: #W[2]-hard and #A[2]-complete.



In the definition of UCQs we assume that every CQ in the union606

has the same set of free variables, namely 𝑋 . This assumption is607

without loss of generality. To see this, suppose that we have a608

union of CQs (A1, 𝑋1), . . . , (Aℓ , 𝑋ℓ ) with individual sets of free609

variables. Let 𝑋 =
⋃ℓ
𝑖=1 𝑋𝑖 and, for each 𝑖 ∈ [ℓ], let A′𝑖 be the610

structure obtained from A𝑖 by adding an isolated variable for each611

𝑥 ∈ 𝑋 \ 𝑋𝑖 . Then consider the UCQ Ψ := ((A′
1
, . . . ,A′

ℓ
), 𝑋 ). If612

for some assignment 𝑎 : 𝑋 → 𝑈 (D) it holds that there is an613

𝑖 ∈ [ℓ] such that 𝑎 |𝑋𝑖
∈ Ans((A𝑖 , 𝑋𝑖 ) → D). Then, according614

to Observation 19, this is equivalent to 𝑎 ∈ Ans((A′
𝑖
, 𝑋 ) → D),615

which means that 𝑎 is an answer of Ψ. So, without loss of generality616

we can work with Ψ, which uses the same set of free variables for617

each CQ in the union.618

Now we define the parameterised problem of counting answers619

to UCQs. As usual, the problem is restricted by a class𝐶 of allowed620

queries with respect to which we classify the complexity.621

Name: #UCQ(𝐶)
Input: A UCQ Ψ ∈ 𝐶 together with a database D.

Parameter: |Ψ|.
Output: The number of answers ans(Ψ→ D).

The next definition will be crucial for the analysis of the com-622

plexity of #UCQ(𝐶).623

Definition 20 (combined query∧ (Ψ)). LetΨ = ((A1, , . . . ,Aℓ ), 𝑋 )624

be a UCQ. Thenwe define the combined query ∧ (Ψ) = (⋃𝑗∈[ℓ ] 𝐴 𝑗 , 𝑋 ).625

What follows is an easy, but crucial observation about ∧
(
Ψ| 𝐽

)
.626

Observation 21. Let ((A1, , . . . ,Aℓ ), 𝑋 ) be a UCQ, and let ∅ ≠ 𝐽 ⊆627

[ℓ]. For each database D and assignment 𝑎 : 𝑋 → 𝑈 (D) we have628

𝑎 ∈ Ans(∧
(
Ψ| 𝐽

)
→ D) ⇔ ∀𝑗 ∈ 𝐽 : 𝑎 ∈ Ans(Ψ𝑗 → D).

Definition 22 (Coefficient function 𝑐Ψ). LetΨ = ((A1, , . . . ,Aℓ ), 𝑋 )629

be a UCQ. For each conjunctive query (A, 𝑋 ), we set I(A, 𝑋 ) =630

{𝐽 ⊆ [ℓ] | (A, 𝑋 ) ∼ ∧
(
Ψ| 𝐽

)
}, and we define the coefficient function631

of Ψ as follows: 𝑐Ψ (A, 𝑋 ) =
∑
𝐽 ∈I(A,𝑋 ) (−1) | 𝐽 |+1 .632

Using inclusion-exclusion, we can transform the problem of633

counting answers to Ψ into the problem of evaluating a linear com-634

bination of CQ answer counts. We include a proof in Appendix A.3635

only for reasons of self-containment and note that the complexity-636

theoretic applications of this transformation, especially regarding637

lower bounds, have first been discovered by Chen and Mengel [23].638

639

Lemma 23 ([23]). Let Ψ = ((A1, , . . . ,Aℓ ), 𝑋 ) be a UCQ. For every640

databaseD, ans(Ψ→ D) = ∑
(A,𝑋 ) 𝑐Ψ (A, 𝑋 )·ans((A, 𝑋 ) → D),641

where the sum is over all equivalence classes of ∼.642

We conclude this subsection with the following two operations643

on classes of UCQs.644

Definition 24 (Γ(𝐶) and ∧ (𝐶)). Let 𝐶 be a class of UCQs. Γ(𝐶)645

is the class of all (A, 𝑋 ) such that (A, 𝑋 ) is #minimal and there is646

Ψ ∈ 𝐶 with 𝑐Ψ (A, 𝑋 ) ≠ 0. Let ∧ (𝐶) = {∧ (Ψ) | Ψ ∈ 𝐶}.647

It was independently discovered by Chen and Mengel [23], and648

by Curticapean, Dell and Marx [27] that the computation of a linear649

combination of homomorphism counts is precisely as hard as com-650

puting its hardest term. Moreover, in the former work, Chen and651

Mengel also established this property in the more general context of652

linear combinations of conjunctive queries. Applying this principle 653

to counting answers to UCQs (which we have seen to be equivalent 654

to computing a linear combination in Lemma 23), we obtain the 655

following two results; details are provided in Appendix A.4. 656

Corollary 25. Let Ψ be a UCQ. For each 𝑑 ≥ 1, computing the 657

function D ↦→ ans(Ψ → D) can be done in time 𝑂 ( |D|𝑑 ) if and 658

only if for each #minimal (A, 𝑋 ) with 𝑐Ψ (A, 𝑋 ) ≠ 0 the function 659

D ↦→ ans((A, 𝑋 ) → D) can be computed in time 𝑂 ( |D|𝑑 ). 660

Corollary 26 (Implicitly also in [23]). Let 𝐶 be a recursively enu- 661

merable class of UCQs. The problems #UCQ(𝐶) and #CQ(Γ(𝐶)) are 662

interreducible with respect to parameterised Turing-reductions. 663

3 PROOFS OF THEOREM 2 AND THEOREM 3 664

Let 𝐶 be a class of UCQs. Recall that ∧ (𝐶) is the class of all con- 665

junctive queries that are obtained just by substituting all ∨ by ∧ 666

in UCQs in 𝐶 , whereas Γ(𝐶) in Theorem 1 is the much less natural 667

class of #minimal queries that survive with a non-zero coefficient 668

in the CQ expansion of a UCQ in 𝐶 . The work of Chen and Men- 669

gel [23] implicitly also shows an upper bound for counting answers 670

to UCQs from the class 𝐶 in terms of the simpler objects ∧ (𝐶) 671

and contract(∧ (𝐶)), rather than in terms of the more complicated 672

objects Γ(𝐶) and contract(Γ(𝐶)). We include a proof for complete- 673

ness. 674

Lemma 27. Let𝐶 be recursively enumerable class of UCQs. Suppose 675

that both ∧ (𝐶) and contract(∧ (𝐶)) have bounded treewidth. Then 676

#UCQ(𝐶) is fixed-parameter tractable. 677

Proof. Let Ψ ∈ 𝐶 . Recall from the proof of Lemma 23 that, for 678

everyD, ans(Ψ→ D) = ∑
∅≠𝐽 ⊆[ℓ ] (−1) | 𝐽 |+1 ·hom(∧

(
Ψ| 𝐽

)
→ D). 679

Hence #UCQ(𝐶) ≤FPT #CQ(𝐶) where𝐶 is {∧
(
Ψ| 𝐽

)
| Ψ ∈ 𝐶 ∧ ∅ ≠ 680

𝐽 ⊆ [ℓ (Ψ)]}. Finally, since∧
(
Ψ| 𝐽

)
is a subquery of∧ (Ψ) for each 𝐽 , 681

the treewidths of ∧
(
Ψ| 𝐽

)
and contract(∧

(
Ψ| 𝐽

)
) are bounded from 682

above by the treewidths of∧ (Ψ) and contract(∧ (Ψ)), respectively. 683

Consequently, the treewidths of 𝐶 and contract(𝐶) are bounded, 684

and thus #CQ(𝐶) is polynomial-time solvable by the classification of 685

Chen and Mengel [22, Theorem 22] Since #UCQ(𝐶) ≤FPT #CQ(𝐶), 686

the lemma follows. □ 687

Our goal is to relate the complexity of #UCQ(𝐶) to the structure 688

of∧ (𝐶) with the hope of obtaining a more natural tractability crite- 689

rion than the one given by Theorem 1. While we will see later that 690

this seems not always possible (Appendix E), we identify conditions 691

under which a natural criterion based on ∧ (𝐶) is possible, both in 692

the quantifier-free case (Section 3.1), and in the general case that 693

allows quantified variables (Section 3.2). 694

A class of UCQs 𝐶 is closed under deletions if, for every Ψ = 695

((A1, . . . ,Aℓ ), 𝑋 ) ∈ 𝐶 and for every ∅ ≠ 𝐽 ⊆ [ℓ], the UCQ Ψ| 𝐽 696

is also contained in 𝐶 . For example, any class of UCQs defined 697

by prescribing the allowed conjunctive queries is closed under 698

deletions. This includes, e.g., unions of acyclic conjunctive queries. 699

3.1 The Quantifier-free Case 700

As a warm-up, we start with the much simpler case of quantifier- 701

free queries. Here, we only allow (unions of) conjunctive queries 702

(A, 𝑋 ) satisfying𝑈 (A) = 𝑋 . 703



Lemma 28. Let𝐶 be a recursively enumerable class of quantifier-free704

UCQs of bounded arity. Suppose that 𝐶 is closed under deletions. If705

∧ (𝐶) has unbounded treewidth then #UCQ(𝐶) is W[1]-hard.706

Proof. We show that ∧ (𝐶) ⊆ Γ(𝐶), which then proves the707

claim by Theorem 1. Recall fromDefinition 24 that Γ(𝐶) = {(A, 𝑋 ) |708

(A, 𝑋 ) is #minimal and there is Ψ ∈ 𝐶 with 𝑐Ψ (A, 𝑋 ) ≠ 0}. Let709

Ψ = ((A1, . . . ,Aℓ ), 𝑋 ) ∈ 𝐶 . Note that, according to Observation 15,710

∧ (Ψ) is its own #core since it does not have existentially quanti-711

fied variables. For the same reason, for each nonempty subset 𝐽712

of [ℓ], the query ∧
(
Ψ| 𝐽

)
is its own #core. Now let 𝐽 ⊆ [ℓ] be713

inclusion-minimal with the property that ∧
(
Ψ| 𝐽

)
is isomorphic to714

∧ (Ψ). Since 𝐶 is closed under deletions, the UCQ Ψ| 𝐽 is contained715

in 𝐶 . By the inclusion-minimality of 𝐽 , Definition 22 ensures that716

𝑐Ψ | 𝐽 (∧ (Ψ)) = (−1) | 𝐽 |+1 ≠ 0. As a consequence, ∧ (Ψ) ∈ Γ(𝐶),717

concluding the proof. □718

From Lemmas 28 and 27 together with the fact that the contract719

of a quantifier-free query is the query itself, we obtain Theorem 2.720

3.2 The General Case721

Nowwe consider UCQswith existentially quantified variables. Here,722

a corresponding hardness result (Lemma 31) can be achieved under723

some additional assumptions. Note that the number of existentially724

quantified variables in a UCQ Ψ = ((A1, . . . ,Aℓ ), 𝑋 ) is equal to725 ∑ℓ
𝑖=1 |𝑈 (A𝑖 ) \𝑋 |. We first need the following two auxiliary results:726

Lemma 29. Let (A, 𝑋 ) and (A′, 𝑋 ′) be #equivalent conjunctive727

queries. Further, let 𝐺 and 𝐺 ′ be the Gaifman graphs of A and A′,728

respectively. Then 𝐺 [𝑋 ] and 𝐺 ′ [𝑋 ′] are isomorphic.729

Lemma 30. Let (A, 𝑋 ) be a self-join-free conjunctive query. LetA′730

be the structure obtained from A by deleting all isolated variables in731

𝑈 (A) \ 𝑋 . Then (A′, 𝑋 ) is the #core of (A, 𝑋 ).732

Lemma 31. Let 𝐶 be a recursively enumerable class of unions of733

self-join-free conjunctive queries with bounded arity. Suppose that734

𝐶 is closed under deletions and that there is a finite upper bound on735

the number of existentially quantified variables in queries in 𝐶 . If736

either of ∧ (𝐶) or contract(∧ (𝐶)) have unbounded treewidth then737

#UCQ(𝐶) isW[1]-hard.738

Proof. Let𝑑 be the maximum number of existentially quantified739

variables in a query in 𝐶 . Assume first that ∧ (𝐶) has unbounded740

treewidth. We show that Γ(𝐶) has unbounded treewidth, which741

proves the claim by Theorem 1. To this end, let 𝐵 be any positive in-742

teger. The goal is to find a conjunctive query in Γ(𝐶) with treewidth743

at least 𝐵. Since ∧ (𝐶) has unbounded treewidth, there is a UCQ744

Ψ = ((A1, . . . ,Aℓ ), 𝑋 ) in 𝐶 such that ∧ (Ψ) has treewidth larger745

than 𝑑 + 𝐵. Note that, although all Ψ𝑖 are self-join-free, ∧ (Ψ) is746

not necessarily self-join-free. Let 𝐽 be inclusion-minimal among747

the subsets of [ℓ] with the property that the #core of ∧
(
Ψ| 𝐽

)
is748

isomorphic to the #core of ∧ (Ψ). Since𝐶 is closed under deletions,749

the UCQ Ψ| 𝐽 is contained in 𝐶 . Let (A′, 𝑋 ′) be the #core of ∧ (Ψ).750

By inclusion-minimality of 𝐽 , 𝑐Ψ | 𝐽 ((A′, 𝑋 ′)) = (−1) | 𝐽 |+1 ≠ 0.751

As a consequence, (A′, 𝑋 ′) ∈ Γ(𝐶). It remains to show that the752

treewidth of (A′, 𝑋 ′) is at least 𝐵. For this, let 𝐺 be the Gaifmann753

graph of ∧ (Ψ) and let 𝐺 ′ be the Gaifmann graph of the #core of754

∧ (Ψ) (the Gaifman graph of A′). First, deletion of a vertex can755

decrease the treewidth by at most 1. Thus,𝐺 [𝑋 ] has treewidth at 756

least 𝑑 +𝐵 −𝑑 = 𝐵. By Lemma 29,𝐺 [𝑋 ] and𝐺 ′ [𝑋 ′] are isomorphic. 757

Therefore the treewidth of𝐺 ′ [𝑋 ′], i.e., the treewidth of (A′, 𝑋 ′), 758

is at least 𝐵. So we have shown that if the treewidth of ∧ (𝐶) is 759

unbounded then so is the treewidth of Γ(𝐶). 760

In the second case, we assume that the contracts of queries 761

in ∧ (𝐶) (see Definition 17) have unbounded treewidth. We intro- 762

duce the following terminology: Let (A, 𝑋 ) be a conjunctive query 763

and let 𝑦 ∈ 𝑈 (A). The degree of freedom of 𝑦 is the number of 764

vertices in 𝑋 that are adjacent to 𝑦 in the Gaifman graph of A. 765

Let 𝐶 be the class of all conjunctive queries (A, 𝑋 ) such that there 766

exists Ψ = ((A1, . . . ,Aℓ (Ψ) ), 𝑋 ) in 𝐶 with (A, 𝑋 ) = (A𝑖 , 𝑋 ) for 767

some 𝑖 ∈ [ℓ (Ψ)]. Since 𝐶 is closed under deletions, 𝐶 ⊆ 𝐶 . By the 768

assumptions of the lemma, 𝐶 consists only of self-join-free queries. 769

Thus, by Lemma 30, each query in𝐶 is its own #core (up to deleting 770

isolated variables). We will now consider the following cases: 771

(i) Suppose that 𝐶 has unbounded degree of freedom. With 772

Definition 17 it is straightforward to check that a quantified 773

variable 𝑦 with degree of freedom 𝐵 induces a clique of size 774

𝐵 in the contract of the corresponding query. Therefore, the 775

contracts of the queries in 𝐶 have unbounded treewidth. 776

Consequently, #CQ(𝐶) is W[1]-hard by the classification 777

of Chen and Mengel [22, Theorem 22]. Since 𝐶 ⊆ 𝐶 the 778

problem #CQ(𝐶) is merely a restriction of #UCQ(𝐶), the 779

latter of which is thusW[1]-hard as well. 780

(ii) Suppose that the degree of freedomof queries in𝐶 is bounded 781

by a constant𝑑′.We show that Γ(𝐶) has unbounded treewidth, 782

which proves the claim by Theorem 1. To this end, let 𝐵 be 783

any positive integer. The goal is to find a conjunctive query 784

in Γ(𝐶) with treewidth at least 𝐵. Since contract(∧ (𝐶)) has 785

unbounded treewidth, there is a UCQ Ψ = (A1, . . . ,Aℓ ), 𝑋 ) 786

in 𝐶 such that contract(∧ (Ψ)) has treewidth larger than 787

𝑑 +
(𝑑𝑑 ′
2

)
+ 𝐵. We will show that ∧ (Ψ) has treewidth larger 788

than 𝑑 + 𝐵, which, as we have argued previously, implies 789

that Γ(𝐶) contains a query with treewidth at least 𝐵. To 790

prove that ∧ (Ψ) indeed has treewidth larger than 𝑑 + 𝐵, 791

let ∧ (Ψ) = (A, 𝑋 ) and let 𝐺 be the Gaifman graph of 792

A. Let 𝑌 = 𝑈 (A) \ 𝑋 and recall from Definition 17 that 793

contract(A, 𝑋 ) is obtained from 𝐺 [𝑋 ] by adding an edge 794

between any pair of vertices 𝑢 and 𝑣 that are adjacent to a 795

common connected component in 𝐺 [𝑌 ]. Let 𝑁 ⊆ 𝑋 be the 796

set of all vertices in 𝑋 that are adjacent to a vertex in 𝑌 and 797

observe that |𝑁 | ≤ 𝑑𝑑′ since the number of existentially 798

quantified variables and the degree of freedom are bounded 799

by 𝑑 and 𝑑′, respectively. Thus, contract(A, 𝑋 ) is obtained 800

by adding at most

(𝑑𝑑 ′
2

)
edges to 𝐺 [𝑋 ]. The deletion of an 801

edge can decrease the treewidth by at most 1, so tw(∧ (Ψ)) = 802

tw(𝐺) ≥ tw(𝐺 [𝑋 ]) ≥ tw(contract(A, 𝑋 )) −
(𝑑𝑑 ′
2

)
> 𝑑 + 𝐵, 803

which concludes Case (ii). 804

With all cases concluded, the proof is completed. □ 805

From Lemmas 27 and 31 we directly obtain Theorem 3. 806

Remark 32. It turns out that all side conditions of Theorem 3 are 807

necessary if we aim to classify #UCQ(𝐶) solely via ∧ (𝐶). To this 808

end, we provide counter examples for each missing condition in 809

Appendix E. 810
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A FURTHER PRELIMINARIES1023

A.1 Parameterised Complexity Theory1024

A parameterised counting problem is a pair consisting of a function 𝑃 : {0, 1}∗ → N and a computable
4
parameterisation ^ : {0, 1}∗ → N.1025

For example, in the problem #Cliqe the function maps an input (a graph 𝐺 and a positive integer 𝑘 , encoded as a string in {0, 1}∗ to the1026

number of 𝑘-cliques in 𝐺 . The parameter is 𝐾 so ^ (𝐺,𝑘) = 𝑘 .1027

A parameterised counting problem (𝑃, ^) is called fixed-parameter tractable (FPT) if there is a computable function 𝑓 and an algorithm A1028

that, given input 𝑥 , computes 𝑃 (𝑥) in time 𝑓 (^ (𝑥)) · |𝑥 |𝑂 (1) . We call A an FPT-algorithm for (𝑃, ^).1029

A parameterised Turing-reduction from (𝑃, ^) to (𝑃 ′, ^′) is an algorithm A equipped with oracle access to 𝑃 ′ that satisfies the following1030

two constraints: (I) A is an FPT-algorithm for (𝑃, ^), and (II) there is a computable function 𝑔 such that, when the algorithm A is run with1031

input 𝑥 , every oracle query 𝑦 to (𝑃 ′, ^′) has the property that the parameter ^′ (𝑦) is bounded by 𝑔(^ (𝑥)). We write (𝑃, ^) ≤FPT (𝑃 ′^′) if a1032

parameterised Turing-reduction exists.1033

Evidence for the non-existence of FPT algorithms is usually given by hardness for the parameterised classes #W[1] and W[1], which can1034

be considered to be the parameterised versions of #P and NP. The definition of those classes uses bounded-weft circuits, and we refer the1035

interested reader e.g. to the standard textbook of Flum and Grohe [34] for a comprehensive introduction. For this work, it suffices to rely on1036

the clique problem to establish hardness for those classes: A parameterised counting problem (𝑃, ^) is #W[1]-hard if #Cliqe ≤FPT (𝑃, ^),1037

and it is W[1]-hard if Cliqe ≤FPT (𝑃, ^), where Cliqe is the decision version of #Cliqe, that is, given 𝐺 and 𝑘 , the task is to decide1038

whether there is at least one 𝑘-clique in 𝐺 . As observed in previous works [22], if all variables are existentially quantified, the problem1039

of counting answers to a conjunctive query actually encodes a decision problem. So it comes to no surprise that both complexity classes1040

W[1] and #W[1] are relevant for its classification. It is well known (see e.g. [24, 25, 28] thatW[1]-hard and #W[1]-hard problems are not1041

fixed-parameter tractable.1042

A.2 Signatures and Structures1043

A signature is a finite tuple 𝜏 = (𝑅1, . . . , 𝑅𝑠 ) where each 𝑅𝑖 is a relation symbol and comes with an arity 𝑎𝑖 . The arity of a signature is the1044

maximum arity of its relation symbols. A structure A over 𝜏 consists of a finite universe𝑈 (A) and a relation 𝑅A
𝑖

of arity 𝑎𝑖 for each relation1045

symbol 𝑅𝑖 of 𝜏 . As usual in relational algebra, we view databases as relational structures. We encode a structure by listing its signature, its1046

universe and its relations. Therefore, given a structure A over 𝜏 , we set |A| = |𝜏 | + |𝑈 (A)| +∑𝑅∈𝜏 |𝑅A | · 𝑎𝑅 , where 𝑎𝑅 is the arity of 𝑅.1047

For example, a graph 𝐺 is a structure over the signature (𝐸) where 𝐸 has arity 2. The Gaifman graph of a structure A has as vertices the1048

universe𝑈 (A) of A, and for each pair of vertices 𝑢, 𝑣 , there is an edge {𝑢, 𝑣} in 𝐸 if and only if at least one of the relations of A contains a1049

tuple containing both 𝑢 and 𝑣 . Note that the edge set 𝐸 of a Gaifman graph is symmetric and irreflexive.1050

The treewidth of graphs and structures is defined as follows1051

Definition 33 (Tree decompositions, treewidth). Let 𝐺 be a graph. A tree decomposition of 𝐺 is a pair (𝑇, 𝐵), where 𝑇 is a (rooted) tree, and1052

𝐵 assigns each vertex 𝑡 ∈ 𝑉 (𝑇 ) a bag 𝐵𝑡 such that the following constraints are satisfied:1053

(C1) 𝑉 (𝐺) = ⋃
𝑡 ∈𝑉 (𝑇 ) 𝐵𝑡 ,1054

(C2) For each edge 𝑒 ∈ 𝐸 (𝐺) there exists 𝑡 ∈ 𝑉 (𝑇 ) such that 𝑒 ⊆ 𝐵𝑡 , and1055

(C3) For each 𝑣 ∈ 𝑉 (𝐺), the subgraph of 𝑇 containing all vertices 𝑡 with 𝑣 ∈ 𝐵𝑡 is connected.1056

The width of a tree decomposition is max𝑡 ∈𝑉 (𝑇 ) |𝐵𝑡 | − 1, and the treewidth of 𝐺 is the minimum width of any tree decomposition of 𝐺 .1057

Finally, the treewidth of a structure is the treewidth of its Gaifman graph.1058

Let A and B be structures over the same signature 𝜏 . Then A is a substructure of B if 𝑈 (A) ⊆ 𝑈 (B) and, for each relation symbol1059

𝑅 in 𝜏 , it holds that 𝑅A ⊆ 𝑅B ∩𝑈 (A)𝑎 , where 𝑎 is the arity of 𝑅. A substructure is induced if, for each relation symbol 𝑅 in 𝜏 , we have1060

𝑅A = 𝑅B ∩𝑈 (A)𝑎 . A substructure A of B with A ≠ B is a proper substructure of B. We also define the union A ∪ B of two structures A1061

and B as the structure over 𝜏 with universe𝑈 (A) ∪𝑈 (B) and 𝑅A∪B = 𝑅A ∪ 𝑅B . Note that the union is well-defined even if the universes1062

are not disjoint.1063

A.3 Proof of Lemma 231064

Proof. By inclusion-exclusion and Observation 21,

ans(Ψ→ D) =
∑︁

∅≠𝐽 ⊆[ℓ ]
(−1) | 𝐽 |+1 ·

��{𝑎 : 𝑋 → 𝑈 (D) | ∀𝑗 ∈ 𝐽 : 𝑎 ∈ Ans((𝐴 𝑗 , 𝑋 ) → D)}
��

=
∑︁

∅≠𝐽 ⊆[ℓ ]
(−1) | 𝐽 |+1 · ans(∧

(
Ψ| 𝐽

)
→ D).

The claim then follows by collecting #equivalent terms. □1065

4
Some authors require the parameterisation to be polynomial-time computable; see the discussion in the standard textbook of Flum and Grohe [34]. In this work, the parameter will

always be the size of the input query, which can clearly be computed in polynomial time.



A.4 Isolating Terms in the Homomorphism Basis 1066

We provide the details on how Corollaries 25 and 26 are derived from the work of Chen and Mengel [23]. The following theorem follows 1067

from the arguments made in [23, Section 5]. Since it is not stated explicitly, we include a proof for reasons of self-containment. 1068

Theorem 34 (Implicitly by [23]). There is an algorithm A with the following properties: 1069

(1) The input of A is a UCQ Ψ and a database D. 1070

(2) A has oracle access to the function D′ ↦→ ans(Ψ→ D′). 1071

(3) The output of A is a list with entries ((A, 𝑋 ), ans((A, 𝑋 ) → D)) for each (A, 𝑋 ) in the support of 𝑐Ψ . 1072

(4) A runs in time 𝑓 ( |Ψ|) ·𝑂 ( |D|) for some computable function 𝑓 . 1073

Proof. A crucial operation in the construction is the Tensor product of relational structures. LetA and B be structures over the signatures 1074

𝜏𝐴 and 𝜏𝐵 . The structureA⊗B is defined as follows: The signature is 𝜏𝐴 ∩𝜏𝐵 , and the universe is𝑈 (A) ×𝑈 (B). Moreover, for every relation 1075

symbol 𝑅 ∈ 𝜏𝐴 ∩ 𝜏𝐵 with arity 𝑟 , a tuple ((𝑢1, 𝑣1), . . . , (𝑢𝑟 , 𝑣𝑟 )) is contained in 𝑅A⊗B if and only if (𝑢1, . . . , 𝑢𝑟 ) ∈ 𝑅A and (𝑣1, . . . , 𝑣𝑟 ) ∈ 𝑅B . 1076

Observe that A ⊗ B is of size bounded by and can be computed in time 𝑂 ( |A||B|).5 The algorithm A proceeds as follows. Let Ψ = 1077

((A1, . . . ,Aℓ ), 𝑋 ) be the input. For a selected set of structures B1 . . . ,B𝑘 , specified momentarily, the algorithm queries the oracle on the 1078

Tensor products D ⊗ B𝑖 . Using Lemma 23, this yields the following equations: 1079

ans(Ψ→ D ⊗ B𝑖 ) =
∑︁
(A,𝑋 )

𝑐Ψ (A, 𝑋 ) · ans((A, 𝑋 ) → D ⊗ B𝑖 ) .

Next, we use the fact (see e.g. [23]) that the Tensor product is multiplicative with respect to counting answers to conjunctive queries: 1080

ans((A, 𝑋 ) → D ⊗ B𝑖 ) = ans((A, 𝑋 ) → D) · ans((A, 𝑋 ) → B𝑖 ) .
In combination, the previous equations yield a system of linear equations: 1081

ans(Ψ→ D ⊗ B𝑖 ) =
∑︁
(A,𝑋 )

𝑐Ψ (A, 𝑋 ) · ans((A, 𝑋 ) → D) · ans((A, 𝑋 ) → B𝑖 ),

the unknowns of which are 𝑐Ψ (A, 𝑋 ) · ans((A, 𝑋 ) → D). Finally, it was shown in [23] and [31] that it is always possible to find B𝑖 for 1082

which the system is non-singular. Moreover, the time it takes to find the B𝑖 only depends on Ψ. Finally, solving the system yields the terms 1083

𝑐Ψ (A, 𝑋 ) · ans((A, 𝑋 ) → D) from which we can recover ans((A, 𝑋 ) → D) by dividing by 𝑐Ψ (A, 𝑋 ). It can easily be observed that the 1084

overall running time is bounded by 𝑓 ( |Ψ|) ·𝑂 ( |D|) for some computable function 𝑓 , as required, which concludes the proof. □ 1085

Now note that, using Lemma 23, Corollaries 25 and 26 follow immediately from the previous Theorem. 1086

B OMITTED PROOFS FROM SECTION 3 1087

Proof of Lemma 29. By [23] (see Lemma 48 in the full version of [31] for an explicit statement), there are surjective functions 𝑠 : 𝑋 → 𝑋 ′ 1088

and 𝑠′ : 𝑋 ′ → 𝑋 and homomorphisms ℎ ∈ Hom(A → A′) and ℎ′ ∈ Hom(A′ → A) such that ℎ |𝑋 = 𝑠 and ℎ′ |𝑋 ′ = 𝑠′. 1089

Clearly, 𝑠 and 𝑠′ are bijective. Let 𝑒 = {𝑢, 𝑣} be an edge of 𝐺 [𝑋 ]. Then there exists a tuple ®𝑡 of elements of𝑈 (A) such that 1090

(i) ®𝑡 ∈ 𝑅A for some relation (symbol) 𝑅 of the signature of A, and 1091

(ii) 𝑢 and 𝑣 are elements of ®𝑡 . 1092

Since ℎ is a homomorphism, ℎ(®𝑡) ∈ 𝑅B . Thus {ℎ(𝑢), ℎ(𝑣)} = {𝑠 (𝑢), 𝑠 (𝑣)} is an edge of 𝐺 ′ [𝑋 ′]. The backward direction is analogous. □ 1093

Proof of Lemma 30 . Clearly, (A, 𝑋 ) and (A′, 𝑋 ) are #equivalent. Thus it remains to show that (A′, 𝑋 ) is #minimal. Assume for 1094

contradiction by Observation 15 that (A′, 𝑋 ) has an #equivalent substructure
ˆA that is induced by a set𝑈 with 𝑋 ⊆ 𝑈 ⊂ 𝑈 (A′). 1095

Since A′ is self-join-free and it does not have isolated variables, there is a relation (symbol) 𝑅 such that 𝑅A
′
contains precisely one tuple, 1096

and 𝑅
ˆA
is empty. Thus, there is no homomorphism from A′ to ˆA and, consequently, ( ˆA, 𝑋 ) and (A′, 𝑋 ) cannot be #equivalent, yielding a 1097

contradiction and concluding the proof. □ 1098

C THE META COMPLEXITY OF COUNTING ANSWERS TO UCQS 1099

We consider the meta-complexity question of deciding whether it is possible to count the answers of a given UCQ in linear time. As pointed 1100

out in the introduction, this problem is immediately NP-hard even when restricted to conjunctive queries if we were to allow quantified 1101

variables. Therefore, we consider quantifier-free UCQs in this section. Recall the definition ofMeta from Section 1. 1102

Name: Meta

Input: A union Ψ of quantifier-free conjunctive queries.

Output: Is it possible to count answers to Ψ in time linear in the size of D, i.e., can the function D ↦→ ans(Ψ→ D) be computed in time

𝑂 ( |D|).
5
Compute the Cartesian product of𝑈 (A) and𝑈 (B) and then, for every relation 𝑅 ∈ 𝜏𝐴 ∩ 𝜏𝐵 iterate over all pairs of tuples in 𝑅A and 𝑅B and add their point-wise product to

𝑅A⊗B .



Since we focus in this section solely on quantifier-free queries, it will be convenient to simplify our notation as follows. As all variables1103

are free, we will identify a conjunctive query 𝜑 just by its associated structure, that is, we will write 𝜑 = A, rather than 𝜑 = (A,𝑈 (A)).1104

Similarly, we represent a union of quantifier-free conjunctive queries Ψ as a tuple of structures Ψ = (A1, . . . ,Aℓ ).1105

For studying the complexity ofMeta, it will be crucial to revisit the classification of linear-time counting of answers to quantifier-free1106

conjunctive queries: The following theorem is well known and was discovered multiple times by different authors in different contexts.
6

1107

This is Theorem 4 from the introduction, which we now restate in a version that expresses CQs as structures.1108

Theorem 35 (See Theorem 12 in [17], and [7, 8, 11]). Let A be a quantifier-free conjunctive query and suppose that the Triangle Conjecture is1109

true. Then the function D ↦→ hom(A → D) is computable in linear time if and only if A is acyclic.1110

Theorem 35 yields an efficient way to check whether counting answers to a quantifier-free conjunctive query 𝜑 can be done in linear1111

time: Just check whether 𝜑 is acyclic. In stark contrast, we show that no easy criterion for linear time tractability of counting answers to1112

unions of conjunctive queries is possible, unless some conjectures of fine-grained complexity theory fail. In fact, our Theorem 5, which we1113

restate here for convenience, precisely determines the complexity ofMeta.1114

Theorem 5. Meta can be solved in time 2
𝑂 (ℓ ) · |Ψ|poly(log |Ψ | ) , where ℓ is the number of conjunctive queries in the union, if the Triangle1115

Conjecture is true. Moreover,1116

• If the Triangle Conjecture is true then Meta is NP-hard. If, additionally, ETH is true, then Meta cannot be solved in time 2
𝑜 (ℓ )

.1117

• If SETH is true then Meta is NP-hard and cannot be solved in time 2
𝑜 (ℓ )

.1118

• If the non-uniform ETH is true then Meta is NP-hard and Meta ∉
⋂
Y>0 DTime(2Y ·ℓ ).1119

The lower bounds remain true even if Ψ is a union of self-join-free and acyclic conjunctive queries over a binary signature (that is, of arity 2).1120

The lower bounds in Theorem 5 imply that the exponential dependence on ℓ in our 2
𝑂 (ℓ ) · |Ψ|poly(log |Ψ | ) time algorithm forMeta cannot1121

be significantly improved, unless standard assumptions fail.1122

The remainder of this section is devoted to the proof of Theorem 5. It is split into two parts: In the first and easier part (Section C.1), we1123

construct the algorithm for Meta. For this, all we need to do is to translate the problem into the homomorphism basis (see Section 2.3),1124

i.e., we transform the problem of counting answers to Ψ into the problem of evaluating a linear combination of terms, each of which can1125

be determined by counting the answers to a conjunctive query. This is done in Lemma 36. The second part (Section C.2) concerns the1126

lower bounds and is more challenging. The overall strategy is as follows: In the first step, we use a parsimonious reduction from 3-SAT1127

to computing the reduced Euler Characteristic of a complex. The parsimonious reduction is due to Roune and Sáenz-de-Cabezón [58]. In1128

combination with the Sparsification Lemma [44], this reduction becomes tight enough for our purposes. In the second step, we show how to1129

encode a complex Δ into a union of acyclic conjunctive queries Ψ such that the following is true: The reduced Euler Characteristic of Δ is1130

zero if and only if all terms in the homomorphism basis are acyclic. The lower bound results of Theorem 5 are established in Lemmas 49, 50,1131

and 51.1132

C.1 SolvingMeta via Inclusion-Exclusion1133

Lemma 36. The problem Meta can be solved in time |Ψ|𝑂 (log |Ψ | ) · 2𝑂 (ℓ ) , where ℓ is the number of conjunctive queries in the union, if the1134

Triangle Conjecture is true.1135

Proof. If the Triangle Conjecture is true, then Theorem 35 implies that counting answers to a quantifier-free conjunctive query is1136

solvable in linear time if and only if the query is acyclic. In combination with Corollary 25 we obtain that counting answers to a UCQ1137

Ψ = (A1, . . . ,Aℓ ) can be done in linear time if and only if each A with 𝑐Ψ (A) ≠ 0 is acyclic.1138

Recall that #equivalence is the same as isomorphism for quantifier-free queries (Definition 14). By Definition 22,1139

𝑐Ψ (A) =
∑︁
𝐽 ⊆[ℓ ]

∧(Ψ | 𝐽 )�A

(−1) | 𝐽 |+1 .

This suggests the following algorithm for Meta with input Ψ. For each subset 𝐽 ⊆ [ℓ], compute ∧
(
Ψ| 𝐽

)
. Afterwards, using Babai’s1140

algorithm [6] collect the isomorphic terms and compute 𝑐Ψ (∧
(
Ψ| 𝐽

)
) for each 𝐽 ⊆ [ℓ] in time 2

𝑂 (ℓ ) · |Ψ|poly(log |Ψ | ) . Clearly, 𝑐Ψ (A) = 0 for1141

every A that is not isomorphic to any ∧
(
Ψ| 𝐽

)
.1142

Finally, output 1 if each A with 𝑐Ψ (A) ≠ 0 is acyclic (each of these checks can be done in linear time [59]), and output 0 otherwise. The1143

total running time of this algorithm is bounded from above by 2
𝑂 (ℓ ) · |Ψ|poly(log |Ψ | ) . □1144

C.2 Fine-grained Lower bounds forMeta1145

For our hardness proof for Meta, we will construct a reduction from the computation of the reduced Euler characteristic of an abstract1146

simplicial complex. We begin by introducing some central notions about (abstract) simplicial complexes.1147

6
We remark that [11, Theorem 7] focuses on the special case of graphs and near linear time algorithms. However, in the word RAM model with𝑂 (log𝑛) bits, a linear time algorithm

is possible [20].



Figure 1: Two complexes over the groundset Ω = {1, 2, 3, 4}. Let Δ1 be the complex shown on the left. It has facets {2, 3, 4},
{1, 2}, {1, 3}, and {1, 4}. Let Δ2 be the complex shown on the right, with facets {1, 2}, {2, 3}, {1, 3}, and {4}. The reduced Euler

characteristic of these complexes is computed as follows: Since Δ1 has one face of size 3 ({2, 3, 4}), 6 faces of size 2, 4 faces of size
1, and the empty set as face of size 0 it holds that 𝜒 (Δ1) = −(−1 + 6 − 4 + 1) = −2. Similarly, we have 𝜒 (Δ2) = −(3 − 4 + 1) = 0.

C.2.1 Simplicial Complexes. A simplicial complex captures the geometric notion of an independence system. We will use the corresponding 1148

combinatorial description, which is also known as abstract simplicial complex, and defined as follows. 1149

Definition 37. A complex (short for abstract simplicial complex) Δ is a pair consisting of a nonempty finite ground set Ω and a set of faces 1150

I ⊆ 2
Ω
that includes all singletons and is a downset. That is, the set of faces I satisfies the following criteria. 1151

• ∀𝑆 ⊆ Ω : 𝑆 ∈ I ⇒ ∀𝑆 ′ ⊆ 𝑆 : 𝑆 ′ ∈ I, and 1152

• ∀𝑥 ∈ Ω : {𝑥} ∈ I. 1153

The inclusion-maximal faces in I are called facets. Unless stated otherwise, we encode complexes by the ground set Ω and the set of facets. 1154

Then |Δ| is its encoding length. 1155

Definition 38. The reduced Euler characteristic of a complex Δ = (Ω,I) is defined as 1156

𝜒 (Δ) := −
∑︁
𝑆∈I
(−1) |𝑆 | .

Consider for example the complexes Δ1 and Δ2 in Figure 1, given with a computation of their reduced Euler characteristic. 1157

Let Δ = (Ω,I) be a complex. Consider distinct elements 𝑥 and 𝑦 in Ω. We say that 𝑥 dominates 𝑦 if, for every 𝑆 ∈ I, 𝑦 ∈ 𝑆 implies 1158

𝑆 ∪ {𝑥} ∈ I. For example, 𝑥 and 𝑦 dominate each other if they are contained in the same facets. We start with a simple observation: 1159

Lemma 39. Let Δ = (Ω,I) be a complex and let 𝑥,𝑦 ∈ Ω. Then 𝑥 dominates 𝑦 if and only if each facet that contains 𝑦 must also contain 𝑥 . 1160

Proof. For the forward direction suppose 𝑥 dominates 𝑦. Let 𝐹 be a facet that contains 𝑦. Then 𝐹 ∪ {𝑥} ∈ I. Since facets are inclusion 1161

maximal in I it follows that 𝐹 = 𝐹 ∪ {𝑥}, that is, 𝑥 ∈ 𝐹 . 1162

For the backward direction suppose that each facet containing 𝑦 must also contain 𝑥 . Let 𝑆 ∈ I with 𝑦 ∈ 𝑆 . Then there is a facet 𝐹 with 1163

𝑆 ⊆ 𝐹 . Since 𝑥 ∈ 𝐹 we have 𝑆 ∪ {𝑥} ⊆ 𝐹 and hence 𝑆 ∪ {𝑥} ∈ I. Therefore 𝑥 dominates 𝑦. □ 1164

We say that a complex Δ = (Ω,I) is irreducible if, for every 𝑦 ∈ Ω, there is no 𝑥 ∈ Ω \ {𝑦} that dominates 𝑦. 1165

Given Δ = (Ω,I) and 𝑦 ∈ Ω, we define Δ \ 𝑦 to be the complex obtained from Δ by deleting all faces that contain 𝑦 and by deleting 𝑦 1166

from Ω. The following lemma seems to be folklore. We include a proof only for reasons of self-containment. 1167

Lemma 40. Let Δ = (Ω,I) be a complex. If 𝑦 ∈ Ω is dominated by some 𝑥 ∈ Ω \ {𝑦} then 𝜒 (Δ) = 𝜒 (Δ \ 𝑦). 1168

Proof. Let Δ = (Ω,I). Write I𝑦 for the set of all faces containing 𝑦. Consider the mapping 𝑏 : I𝑦 → I𝑦 1169

𝑏 (𝑆) :=
{
𝑆 ∪ {𝑥} 𝑥 ∉ 𝑆

𝑆 \ {𝑥} 𝑥 ∈ 𝑆 .
Note that 𝑏 is well-defined since 𝑆 ∪ {𝑥} ∈ I𝑦 because 𝑦 ∈ 𝑆 and 𝑥 dominates 𝑦. Observe that 𝑏 induces a partition of I𝑦 in pairs {𝑆, 𝑆 ∪ {𝑥}} 1170

for 𝑥 ∉ 𝑆 . For those pairs, we clearly have |𝑆 | + 1 = |𝑆 ∪ {𝑥}|. Thus 1171∑︁
𝑆∈I𝑦
(−1) |𝑆 | = 0 ,

and therefore 1172

𝜒 (Δ) = −
∑︁
𝑆∈I
(−1) |𝑆 | = −

∑︁
𝑆∈I\I𝑦

(−1) |𝑆 | = 𝜒 (Δ \ 𝑦) .

□ 1173



Definition 41. Two complexes Δ1 = (Ω1,I1) and Δ2 = (Ω2,I2) are isomorphic if there is a bijection 𝑏 : Ω1 → Ω2 such that 𝑆 ∈ I1 if and1174

only if 𝑏 (𝑆) ∈ I2 for each 𝑆 ⊆ Ω, where 𝑏 (𝑆) = {𝑏 (𝑥) | 𝑥 ∈ 𝑆}.1175

Finally, a complex (Ω,I) is called trivial if it is isomorphic to ({𝑥}, {∅, {𝑥}}).1176

C.2.2 The Main Reduction. To begin with, we require a conjunctive query whose answers cannot be counted in linear time under standard1177

assumptions. To this end, we define, for positive integers 𝑘 and 𝑡 , a binary relational structure K𝑘𝑡 as follows. Start with a 𝑡-clique 𝐾𝑡 and1178

𝑘-stretch every edge, that is, each edge of 𝐾𝑡 is replaced by a path consisting of 𝑘 edges. We denote the resulting graph by 𝐾𝑘𝑡 . For each edge1179

𝑒 of 𝐾𝑘𝑡 , we introduce a relation 𝑅𝑒 = {𝑒} of arity 2. The structure K𝑘𝑡 has universe 𝑉 (𝐾𝑘𝑡 ) and relations (𝑅𝑒 )𝑒∈𝐸 (𝐾𝑘
𝑡 )
.1180

Observation 42. Let 𝑘 and 𝑡 be positive integers. The structure K𝑘𝑡 is self-join-free and has arity 2.1181

Lemma 43. Suppose that the non-uniform ETH holds. For all positive integers 𝑑 , there is a 𝑡 such that for each 𝑘 , the functionD ↦→ hom(K𝑘𝑡 →1182

D) cannot be computed in time 𝑂 ( |D|𝑑 ).1183

Proof. We again write 𝐾𝑡 for the 𝑡-clique and 𝐾
𝑘
𝑡 for the 𝑘-stretch of 𝐾𝑡 . Chen, Eickmeyer and Flum [26] proved that, under non-uniform1184

ETH, for each positive integer 𝑑 , there is a 𝑡 such that determining whether a graph 𝐺 contains 𝐾𝑡 as a subgraph cannot be done in time1185

𝑂 ( |𝐺 |𝑑 ).1186

We construct a simple linear-time reduction to computing D ↦→ hom(K𝑘𝑡 → D). Since for each edge 𝑒 of the underlying graph 𝐾𝑘𝑡 , the1187

structure K𝑘𝑡 has a separate binary single-element relation 𝑅𝑒 , the input database D (of the same signature as K𝑘𝑡 ) also has a relation 𝑅′𝑒1188

whose elements can be interpreted as 𝑒-coloured edges. This means that the problem of computingD ↦→ hom(K𝑘𝑡 → D) can equivalently be1189

expressed as the following problem: Given a graph 𝐺 ′, that comes with an edge-colouring col : 𝐸 (𝐺 ′) ↦→ 𝐸 (𝐾𝑘𝑡 ), count the homomorphisms1190

ℎ from 𝐾𝑘𝑡 to 𝐺 ′ such that for each edge 𝑒 of 𝐾𝑘𝑡 we have col(ℎ(𝑒)) = 𝑒 .1191

We now reduce the problem of determining whether a graph𝐺 contains 𝐾𝑡 to this problem. Given input𝐺 , we construct an edge-coloured1192

graph 𝐺 ′ as follows. Each edge of 𝐺 is replaced by

(𝑡
2

)
paths of length 𝑘 , and we colour the edges of the 𝑖-th of those paths with the 𝑘 edges1193

of the 𝑘-stretch of the 𝑖-th edge 𝑒𝑖 of 𝐾𝑡 . It is easy to see that𝐺 contains a 𝑡-clique if and only if there is at least one homomorphism from 𝐾𝑘𝑡1194

to 𝐺 ′ that preserves the edge-colours. Moreover, the construction of 𝐺 ′ can clearly be done in linear time. □1195

Before proving Theorem 5, we need to take a detour to examine the complexity of computing the reduced Euler Characteristic of a1196

complex associated with a UCQ. To begin with, we introduce the notion of a “power complex”.1197

Definition 44. LetU be a finite set, and let Ω ⊆ 2
U

be a set system that does not containU. The power complex ΔΩ,U is a complex with1198

ground set Ω and faces1199

I =

{
𝑆 ⊆ Ω :

⋃
𝐴∈𝑆

𝐴 ≠ U
}
.

It is easy to check that ΔΩ,U is a complex — for each 𝑥 ∈ Ω, the set {𝑥} is in I since Ω does not containU. Although we typically encode1200

complexes by the ground set Ω and the set of facets, in the case of a power complex we list the elements ofU and Ω.1201

In the first step, we show that each complex is isomorphic to a power complex.1202

Lemma 45. Let Δ = (Ω,I) be a non-trivial irreducible complex. It is possible to compute, in polynomial time in |Δ|, a setU and a set Ω̂ ⊆ 2
U

1203

withU ∉ Ω̂ such that Δ is isomorphic to the power complex ΔΩ̂,U .1204

Proof. Let 𝐹1, . . . , 𝐹𝑘 be the facets of Δ so that the encoding of Δ consists of Ω and 𝐹1, . . . , 𝐹𝑘 , and |Δ| is the length of this encoding. For1205

each 𝑖 ∈ [𝑘], we introduce an element 𝐸𝑖 corresponding to 𝐹𝑖 . LetU = {𝐸1, . . . , 𝐸𝑘 }. Next, we define a mapping 𝑏 : Ω → 2
U

as follows:1206

𝑏 (𝑥) B {𝐸𝑖 | 𝑥 ∉ 𝐹𝑖 } .
Observe that 𝑏 is injective since otherwise two elements of Ω are contained in the same facets of Δ, which means that they dominate each1207

other. Also, note that 𝑏 (𝑥) = U implies that 𝑥 is contained in every facet of Δ and therefore dominates all other elements in Ω. This gives a1208

contradiction as Δ is non-trivial and therefore Ω contains at least two elements (none of which dominate each other).1209

We choose Ω̂ as the range of 𝑏. Then, clearly, 𝑏 is a bijection from Ω to Ω̂. Furthermore,U and Ω̂ can be constructed in time polynomial1210

in |Δ|.1211

It remains to prove that 𝑏 is also an isomorphism from Δ to ΔΩ̂,U . To this end, we need to show that1212

𝑆 ∈ I ⇔
⋃

𝐴∈𝑏 (𝑆 )
𝐴 ≠ U ,

where 𝑏 (𝑆) = {𝑏 (𝑥) | 𝑥 ∈ 𝑆}.1213

For the first direction, let 𝑆 ∈ I. W.l.o.g. we have 𝑆 ⊆ 𝐹1. Then, for all 𝑥 ∈ 𝑆 , 𝐸1 ∉ 𝑏 (𝑥). Hence 𝐸1 ∉
⋃
𝐴∈𝑏 (𝑆 ) 𝐴. For the other direction,1214

suppose that 𝑆 ∉ I. Then 𝑆 is not a subset of any facet. Consequently, for every 𝑖 ∈ [𝑘], there exists 𝑥𝑖 ∈ 𝑆 such that 𝑥𝑖 ∉ 𝐹𝑖 . By definition of1215

𝑏, we thus have that, for every 𝑖 ∈ [𝑘], there exists 𝑥𝑖 ∈ 𝑆 such that 𝐸𝑖 ∈ 𝑏 (𝑥𝑖 ). Thus
⋃
𝐴∈𝑏 (𝑆 ) 𝐴 = U. □1216



Recall, for example, the complex Δ1 in Figure 1. Δ1 has facets 𝐹1 = {2, 3, 4}, 𝐹2 = {1, 2}, 𝐹3 = {1, 3}, and 𝐹4 = {1, 4}. Since Δ1 is 1217

irreducible and non-trivial, we can apply the construction in the previous lemma to construct an isomorphic power complex: We set 1218

U = {𝐸1, 𝐸2, 𝐸3, 𝐸4}, since Δ1 has 4 facets. Moreover, the ground set Ω̂ of the power complex is the range of the function 𝑏 : Ω → 2
U

with 1219

𝑏 (𝑥) B {𝐸𝑖 | 𝑥 ∉ 𝐹𝑖 }, that is, 𝑏 (1) = {𝐸1} since 1 ∉ 𝐹1, and similarly, 𝑏 (2) = {𝐸3, 𝐸4}, 𝑏 (3) = {𝐸2, 𝐸4}, and 𝑏 (4) = {𝐸2, 𝐸3}. Then the facets 1220

ˆI of the power complex are {𝐸1, 𝐸3, 𝐸4}, {𝐸1, 𝐸2, 𝐸4}, {𝐸1, 𝐸2, 𝐸3}, and {𝐸2, 𝐸3, 𝐸4}. Then Δ1 and the power complex ΔΩ̂,U are isomorphic, 1221

where for instance 𝐹2 = {1, 2} corresponds to 𝑏 (1) ∪ 𝑏 (2) = {𝐸1, 𝐸3, 𝐸4}. When applied to Δ2, the same construction yields a power complex 1222

withU = {𝐸1, 𝐸2, 𝐸3, 𝐸4} and ground set {{𝐸3, 𝐸4}, {𝐸1, 𝐸4}, {𝐸2, 𝐸4}, {𝐸1, 𝐸2, 𝐸3}}. 1223

We now introduce the main technical result that we use to establish lower bounds forMeta; note that computability result in the last part 1224

of Lemma 46 will just be required for the construction of exemplary classes of UCQs in the appendix. 1225

Lemma 46. For each positive integer 𝑡 , there is a polynomial-time algorithm
ˆA𝑡 that, when given as input a non-trivial irreducible complex 1226

Δ = (Ω,I) with Ω ∉ I, computes a union of quantifier-free conjunctive queries Ψ = (B1, . . . ,Bℓ ) satisfying the following constraints: 1227

(1) ∧ (Ψ) � K𝑘𝑡 for some 𝑘 ≥ 1. 1228

(2) 𝑐Ψ (∧ (Ψ)) = −𝜒 (Δ). 1229

(3) For all relational structures B � ∧ (Ψ), 𝑐Ψ (B) ≠ 0 implies that B is acyclic. 1230

(4) ℓ ≤ |Ω |. 1231

(5) For all 𝑖 ∈ [ℓ] the conjunctive query B𝑖 is acyclic and self-join-free, and has arity 2. 1232

Moreover, the algorithm
ˆA𝑡 can be explicitly constructed from 𝑡 . 1233

Proof. The algorithm
ˆA𝑡 applies Lemma 45 to obtain U and Ω̂ such that the power-complex ΔΩ̂,U is isomorphic to Δ. Let 𝑘 = |U| 1234

and assume w.l.o.g. thatU = [𝑘]. Let Ω̂ = {𝐴1, . . . , 𝐴ℓ }. Let 𝑒 𝑗 be the 𝑗-th edge of the 𝑘-stretch of 𝑒 in 𝐾𝑘𝑡 and recall that K𝑘𝑡 contains the 1235

relations 𝑅𝑒𝑖 = {𝑒𝑖 } for each 𝑒 ∈ 𝐸 (𝐾𝑡 ) and 𝑖 ∈ [𝑘]. For each 𝑖 ∈ [𝑘] we define E𝑖 to be the substructure of K𝑘𝑡 containing the universe 1236

𝑉 (𝐾𝑘𝑡 ) and the relations 𝑅𝑒𝑖 (one relation for each 𝑒 ∈ 𝐸 (𝐾𝑡 )). The algorithm constructs Ψ = (B1, . . . ,Bℓ ) as follows: For each 𝑗 ∈ [ℓ], set 1237

B𝑗 = ∪𝑖∈𝐴 𝑗
E𝑖 , that is, B𝑗 is the substructure of K𝑘𝑡 obtained by taking all relations in E𝑖 for all 𝑖 ∈ 𝐴 𝑗 . The pseudocode for ˆA𝑡 is as follows.

Algorithm 1 Pseudocode for
ˆA𝑡

1: Input: Δ = (Ω,I)
2: (𝐹1, . . . , 𝐹𝑘 ) ← facets of Δ
3: for 𝑥 ∈ Ω do

4: 𝐴𝑥 ← {𝑖 | 𝑥 ∉ 𝐹𝑖 } ⊲U = [𝑘] and Ω̂ = {𝐴𝑥 | 𝑥 ∈ Ω} = {𝐴1, . . . , 𝐴ℓ } yield the power complex

5: end for

6: 𝐾𝑡 ← 𝑡-clique,𝑚 ←
(𝑡
2

)
⊲ 𝑒𝑖 denotes the 𝑖-th edge of 𝐾𝑡

7: 𝐾𝑘𝑡 ← 𝑘-stretch of 𝐾𝑡 ⊲ 𝑒
𝑗
𝑖
denotes the 𝑗-th edge of the 𝑘-stretch of 𝑒𝑖 ∈ 𝐸 (𝐾𝑡 )

8: for 𝑖 ∈ [𝑚], 𝑗 ∈ [𝑘] do
9: 𝑅

𝑒
𝑗

𝑖

← {𝑒 𝑗
𝑖
}

10: end for

11: for 𝑖 ∈ [𝑘] do
12: E𝑖 ← (𝑉 (𝐾𝑡𝑘 ), 𝑅𝑒𝑖

1

, . . . , 𝑅𝑒𝑖𝑚
)

13: end for

14: for 𝑗 ∈ [ℓ] do
15: B𝑗 ←

⋃
𝑖∈𝐴 𝑗
E𝑖

16: end for

17: Output: Ψ = (B1, . . . ,Bℓ )

1238
We now prove the required properties of Ψ. 1239

(1) Recall that Ω is not a facet. Since Δ and ΔΩ̂,U are isomorphic, Ω̂ is not a facet. Thus

⋃
𝑖∈[ℓ ] 𝐴𝑖 = U by the definition of power 1240

complexes. Since B𝑗 contains all relations in E𝑖 with 𝑖 ∈ 𝐴 𝑗 , we have that ∧ (Ψ) = K𝑘𝑡 as desired. 1241

(2) Recall fromDefinition 22 thatI(B, 𝑋 ) = {𝐽 ⊆ [ℓ] | (B, 𝑋 ) ∼ ∧
(
Ψ| 𝐽

)
}. Since we are in the setting of quantifier-free queries (𝑋 = 𝑈 (B); 1242

we will drop the 𝑋 as before), equivalence (∼) is equivalent to isomorphism. Thus, we have that 𝑐Ψ (∧ (Ψ)) is equal to 1243∑︁
𝐽 ⊆[ℓ ]

∧(Ψ)�∧(Ψ | 𝐽 )

(−1) | 𝐽 |+1 =
∑︁
𝐽 ⊆[ℓ ]

∧(Ψ)�∧(Ψ | 𝐽 )

(−1) | 𝐽 | =
∑︁
𝐽 ⊆[ℓ ]

∪𝑗 ∈ 𝐽𝐴 𝑗≠U

(−1) | 𝐽 | = −𝜒 (ΔΩ̂,U ) = −𝜒 (Δ) .



Figure 2: (Top:) The structure K4

3
. (Bottom:) Substructures S𝐴 for some selected 𝐴 ⊆ [4]. Observe that all of the S𝐴 are acyclic.

(3) If B � ∧ (Ψ) and 𝑐Ψ (B) ≠ 0, then B is a substructure of K𝑘𝑡 that is missing at least one of the E𝑖 . The claim holds since each E𝑖 is a1244

feedback edge set (i.e., the deletion of all tuples in E𝑖 breaks every cycle), because deleting E𝑖 corresponds to deleting one edge from1245

each stretch.1246

(4) Follows immediately by construction.1247

(5) The B𝑖 are self-join-free and of arity 2 since they are substructures of K𝑘𝑡 (see Observation 42). For acyclicity, we use the fact that for1248

each 𝑗 we have 𝐴 𝑗 ≠ U by definition of the power complex, which implies the claim by the same argument as 3.1249

With all cases completed, the proof is concluded. □1250

To provide a concrete example, we apply the construction in Lemma 46 to the complexes Δ1 and Δ2 in Figure 1. For this example, we1251

will choose 𝑡 = 3. Since both Δ1 and Δ2 have four facets, we will choose 𝑘 = 4. The structure K𝑘𝑡 is depicted in Figure 2, together with six1252

selected substructures corresponding to the B𝑗 in the proof of the Lemma 46.1253

Let us start by applying
ˆA3 to Δ1. Recall from the previous example, that the power complex of Δ1 has ground set {𝐴1, 𝐴2, 𝐴3, 𝐴4} with1254

𝐴1 = {𝐸1}, 𝐴2 = {𝐸3, 𝐸4}, 𝐴3 = {𝐸2, 𝐸4}, and 𝐴4 = {𝐸2, 𝐸3}. Thus ˆA3 returns the UCQ Ψ1 = (S1,S34,S24,S23). Similarly, applying
ˆA3 to Δ21255

yields the UCQ Ψ2 = (S24,S34,S14,S123).1256

For the purpose of illustration, let us write Ψ1 and Ψ2 as formulas. To this end, given a non-empty subset 𝐴 of {1, 2, 3, 4}, define the1257

conjunctive query 𝜑𝐴 as follows:1258

𝜑𝐴 =
∧
𝑎∈𝐴

𝑅𝑒𝑎
1

(𝑥𝑎−1, 𝑥𝑎) ∧ 𝑅𝑒𝑎
2

(𝑥4+𝑎−1, 𝑥4+𝑎) ∧ 𝑅𝑒𝑎
3

(𝑥8+𝑎−1, 𝑥8+𝑎) ,

where indices are taken modulo 12. Observe that the S𝐴 depicted in Figure 2 are the structures associated to 𝜑𝐴 for 𝐴 ∈ {{1}, {2, 4}, {1, 4},
{3, 4}, {2, 3}, {1, 2, 3}}. Then

Ψ1 (𝑥0, . . . , 𝑥11) = 𝜑1 ∨ 𝜑34 ∨ 𝜑24 ∨ 𝜑23 , and
Ψ2 (𝑥0, . . . , 𝑥11) = 𝜑24 ∨ 𝜑34 ∨ 𝜑14 ∨ 𝜑123



Note that ∧ (Ψ1) = ∧ (Ψ2) = K4

3
. Now recall that 𝜒 (Δ1) ≠ 0 and

ˆ𝜒 (Δ2) = 0. Thus, by Item 2. of Lemma 46, it holds that 𝑐Ψ1
(K4

3
) ≠ 0, 1259

which means that there is an acyclic CQ in the CQ expansion of Ψ1. On the contrary, by Item 3. of Lemma 46, for all (A, 𝑋 ), we have 1260

that 𝑐Ψ2
(A, 𝑋 ) ≠ 0 implies that (A, 𝑋 ) is acyclic. So, as a conclusion of our example, using complexity monotonicity (Corollary 25) and 1261

Theorem 35, we obtain as an immediate consequence: 1262

Corollary 47. While it is not possible to count answers to Ψ1 in linear time (in the input database), unless the Triangle Conjecture fails, for Ψ2 1263

such a linear-time algorithm exists (even though ∧ (Ψ1) = ∧ (Ψ2)). 1264

Proof. By Corollary 25, it is possible to count answers to a UCQ Ψ in linear time if and only if for each #minimal conjunctive query 1265

(A, 𝑋 ) with 𝑐Ψ (A, 𝑋 ) ≠ 0, it is possible to count answers to (A, 𝑋 ) in linear time. Since Ψ1 and Ψ2 are quantifier-free, all conjunctive 1266

queries ∧
(
Ψ1 | 𝐽

)
and ∧

(
Ψ2 | 𝐽

)
are also quantifier-free and thus #minimal. For all (A, 𝑋 ), 𝑐Ψ2

(A, 𝑋 ) ≠ 0 implies that (A, 𝑋 ) is acyclic, so 1267

it follows from Theorem 35 that it is possible to count answers to Ψ2 in linear time. Moreover, given that K4

3
is not acyclic, Theorem 35 1268

also implies that counting answers to K4

3
cannot be done in linear time, unless the Triangle Conjecture fails. Since 𝑐Ψ1

(K4

3
) ≠ 0, counting 1269

answers to Ψ1 cannot be done in linear time, unless the Triangle Conjecture fails. □ 1270

We will now conclude the hardness proof forMeta. 1271

Lemma 48. For each positive integer 𝑡 , there is a polynomial-time algorithmA𝑡 that, when given as input a complex Δ = (Ω,I), either computes 1272

𝜒 (Δ), or computes a union of quantifier-free conjunctive queries Ψ = (B1, . . . ,Bℓ ) satisfying the following constraints: 1273

(1) ∧ (Ψ) � K𝑘𝑡 for some 𝑘 ≥ 1. 1274

(2) 𝑐Ψ (∧ (Ψ)) = −𝜒 (Δ). 1275

(3) For all relational structures B � ∧ (Ψ), 𝑐Ψ (B) ≠ 0 implies that B is acyclic. 1276

(4) ℓ ≤ |Ω |. 1277

(5) For all 𝑖 ∈ [ℓ] the conjunctive query B𝑖 is acyclic and self-join-free, and has arity 2. 1278

Proof. Given Δ = (Ω,I), we can successively apply Lemma 40 without changing the reduced Euler characteristic, until the resulting 1279

simplicial complex is irreducible. This can be done in polynomial time: By Lemma 39 it suffices to check whether there are 𝑦 ≠ 𝑥 ∈ Ω 1280

such that each facet containing 𝑦 also contains 𝑥 . If no such pair exists, we are done. Otherwise we delete 𝑦 from Ω and from all facets and 1281

continue recursively. Clearly, the number of recursive steps is bounded by |Ω | so the run time is at most a polynomial in |Δ|. 1282

If this process makes the complex trivial, we output 0 (i.e., the reduced Euler Characteristic of the trivial complex). We can furthermore 1283

assume that Ω is not a facet, i.e., that Ω ∉ I, since in this case every subset of Ω is a face and the reduced Euler Characteristic is 0. We can 1284

thus assume that Δ is non-trivial and irreducible, and that Ω is not a facet. Therefore, we can use the algorithm
ˆA𝑡 from Lemma 46. This 1285

concludes the proof. □ 1286

We are now able to prove our lower bounds forMeta. 1287

Lemma 49. If the Triangle Conjecture is true then Meta is NP-hard. If the Triangle Conjecture and ETH are both true then Meta cannot be 1288

solved in time 2
𝑜 (ℓ )

where ℓ is the number of conjunctive queries in its input. Both results remain true even if the input to Meta is restricted to be 1289

over a binary signature. 1290

Proof. For the first result, we assume the triangle conjecture and show that Meta is NP-hard. The input to Meta is a formula Ψ′ which 1291

is a union of quantifier-free, self-join-free, and acyclic conjunctive queries. The goal is to decide whether counting answers of Ψ′ (in an input 1292

database) can be done in linear time. 1293

We reduce from 3-SAT. Let 𝐹 be a 3-SAT formula. The first step of our reduction is to apply a reduction from [58]. Concretely, [58] gives a 1294

reduction that, given a 3-SAT formula 𝐹 with 𝑛 variables and𝑚 clauses, outputs in polynomial time a complex Δ such that 𝐹 is satisfiable if 1295

and only if 𝜒 (Δ) ≠ 0. Moreover, the ground set of Δ has size 𝑂 (𝑛 +𝑚). 1296

Let 𝑡 = 3 and let A𝑡 be the algorithm from Lemma 48. Consider running A𝑡 with input Δ. If A𝑡 outputs 𝜒 (Δ) then we can check 1297

immediately whether 𝜒 (Δ) = 0, which determines whether or not 𝐹 is satisfiable. Otherwise, A𝑡 outputs a formula Ψ which is a union of 1298

self-join-free, quantifier-free, and acylic conjunctive queries of arity 2, and further has the property that 𝑐Ψ (∧ (Ψ)) = −𝜒 (Δ). Since A𝑡 is a 1299

polynomial-time algorithm, the number of conjunctive queries ℓ in Ψ is at most a polynomial in 𝑛 +𝑚. 1300

We wish to show that determining whether counting answers of Ψ can be done in linear time would reveal whether or not 𝑐Ψ (∧ (Ψ)) = 0 1301

(which would in turn reveal whether 𝐹 is satisfiable). 1302

By Corollary 25, it is possible to computeD ↦→ ans(Ψ→ D) in linear time if and only if, for each relational structureA with 𝑐Ψ (A) ≠ 0, 1303

the function D ↦→ hom(A → D) can be computed in linear time. 1304

So the intermediate problem is to check whether, for each relational structure A with 𝑐Ψ (A) ≠ 0, the function D ↦→ hom(A → D) can 1305

be computed in linear time. We wish to show that solving the intermediate problem (in polynomial time) would enable us to determine 1306

whether or not 𝑐Ψ (∧ (Ψ)) = 0 (also in polynomial time). 1307

Item 1 of Lemma 48 implies that there is a positive integer 𝑘 such that ∧ (Ψ) � K𝑘
3
. Thus, ∧ (Ψ) is not acyclic. However, Item 3 of 1308

Lemma 48 implies that every relational structure A � ∧ (Ψ) in the intermediate problem, the structure A is acyclic. Theorem 35 shows 1309



(assuming the triangle conjecture) that, for each A, D ↦→ hom(A → D) can be computed in linear time if and only if A is acyclic. We1310

conclude that the answer to the intermediate problem is yes iff 𝑐Ψ (∧ (Ψ)) = 0, completing the proof thatMeta is NP-hard.1311

To obtain the second result, we assume both the triangle conjecture and ETH. In this case, we apply the Sparsification Lemma [44] to the1312

initial 3-SAT formula 𝐹 before invoking the reduction. By the Sparsification Lemma, it is possible in time 2
𝑜 (𝑛)

to construct 2
𝑜 (𝑛)

formulas1313

𝐹1, 𝐹2, . . . such that 𝐹 is satisfiable if and only if at least one of the 𝐹𝑖 is satisfiable. Additionally, each 𝐹𝑖 has𝑂 (𝑛) clauses. As before, for each1314

such 𝐹𝑖 we obtain in polynomial time a corresponding complex Δ𝑖 , whose ground set has size𝑂 (𝑛). For each Δ𝑖 , the algorithm from Lemma 481315

either outputs its reduced Euler characteristic 𝜒 (Δ𝑖 ) or or outputs a UCQ Ψ𝑖 which has the property that that 𝑐Ψ (∧ (Ψ𝑖 )) = −𝜒 (Δ𝑖 ).1316

If, for any 𝑖 , the algorithm outputs a value 𝜒 (Δ𝑖 ) ≠ 0 then 𝐹𝑖 is satisfiable, so 𝐹 is satisfiable. Let 𝐼 be the set of indices 𝑖 such that the1317

algorithm outputs a UCQ Ψ𝑖 . The argument from the first result shows that 𝐹 is satisfiable if and only if there is an 𝑖 ∈ 𝐼 such that counting1318

answers to Ψ𝑖 can be done in linear time.1319

We will argue that a 2
𝑜 (ℓ )

algorithm forMeta (where ℓ is the number of CQs in its input) would make it possible to determine in 2
𝑜 (𝑛)

1320

time whether there is an 𝑖 ∈ 𝐼 such that counting answers to Ψ𝑖 can be done in linear time. This means that a 2
𝑜 (ℓ )

algorithm for Meta1321

would make it possible to determine in 2
𝑜 (𝑛)

time whether 𝐹 is satisfiable, contrary to ETH.1322

To do this, we just need to show that the number of CQs in Ψ𝑖 , which we denote ℓ (Ψ𝑖 ), is 𝑂 (𝑛). This follows since the ground set of1323

Δ𝑖 has size 𝑂 (𝑛) and by Item 4 of Lemma 48, ℓ (Ψ𝑖 ) is at most the size of the ground set. Since the size of 𝐼 is 2𝑜 (𝑛) the running time for1324

determining whether 𝐹 is satisfiable is 2
𝑜 (𝑛)

(for the sparsification) plus |𝐼 | poly(𝑛) = 2
𝑜 (𝑛)

time (for computing the complexes Δ𝑖 ) plus1325 ∑
𝑖∈𝐼 2

𝑜 (ℓ (Ψ𝑖 ) ) = 2
𝑜 (𝑛)

for the calls toMeta, contradicting ETH, as desired. □1326

The proofs of the following two lemmas are analogous, with the only exception that we do not invoke Theorem 35 but apply Lemma 431327

with 𝑑 = 1 to obtain a 𝑡 such that for each 𝑘 the function D ↦→ hom(K𝑘𝑡 → D) cannot be evaluated in linear time. (For Lemma 50, we also1328

need that SETH implies non-uniform ETH, which is however a standard application of the Sparsification Lemma [43]).1329

Lemma 50. If SETH is true thenMeta is NP-hard and cannot be solved in time 2
𝑜 (ℓ )

. This remains true even if the input toMeta is restricted to1330

be over a binary signature.1331

Lemma 51. If non-uniform ETH is true then Meta is NP-hard and, furthermore,1332

Meta ∉
⋂
Y>0

DTime(2Y ·ℓ ) .

This remains true even if the input to Meta is restricted to be over a binary signature.1333

Theorem 5 now follows immediately from Lemmas 36, 49, 50, and 51.1334

Finally, we point out that our construction shows, in fact, something much stronger than just the intractability of deciding whether1335

we can count answers to a UCQ in linear time: For any pair (𝑐, 𝑑) of positive integers satisfying 𝑐 ≤ 𝑑 , it is hard to distinguish whether1336

counting answers to a given UCQ can be done in time 𝑂 (𝑛𝑐 ), or whether it takes time at least 𝜔 (𝑛𝑑 ). Formally, we introduce the following1337

gap problem:1338

Definition 52. Let 𝑐 and 𝑑 be positive integers with 𝑐 ≤ 𝑑 . The problemMeta[𝑐, 𝑑] has as input a union of quantifier-free, self-join-free,1339

and acyclic conjunctive queries Ψ. The goal is to decide whether the function D ↦→ ans(Ψ → D) can be computed in time 𝑂 ( |D|𝑐 ), or1340

whether it cannot be solved in time 𝑂 ( |D|𝑑 ); the behaviour may be undefined for inputs Ψ for which the best exponent in the running time1341

is in the interval (𝑐, 𝑑].1342

Theorem 53. Assume that non-uniform ETH holds. Then for each positive integer 𝑑 , the problem Meta[1, 𝑑] is NP-hard and, furthermore,1343

Meta[1, 𝑑] ∉
⋂
Y>0

DTime(2Y ·ℓ ) .

This remains true even if the input to Meta is restricted to be over a binary signature.1344

Proof. By Lemma 43 there is a positive integer 𝑡 such that for all positive integers 𝑘 , the function D ↦→ hom(K𝑘𝑡 → D) cannot be1345

computed in time 𝑂 ( |D|𝑑 ). Fix this 𝑡 and proceed similarly to the proof of Lemma 51. □1346

Corollary 54 is an immediate consequence, since any algorithm that solvesMeta[𝑐, 𝑑] for 1 ≤ 𝑐 ≤ 𝑑 solves, without modification,Meta[1, 𝑑].1347

Corollary 54. Assume that non-uniform ETH holds. Then for every pair (𝑐, 𝑑) of positive integers satisfying 𝑐 ≤ 𝑑 , the problem Meta[𝑐, 𝑑] is1348

NP-hard and, furthermore,1349

Meta[𝑐, 𝑑] ∉
⋂
Y>0

DTime(2Y ·ℓ ) .

This remains true even if the input to Meta is restricted to be over a binary signature.1350



D CONNECTION TO THEWEISFEILER-LEMAN-DIMENSION 1351

Recall that we call a database a labelled graph if its signature has arity at most 2, and if it does not contain a self-loop, that is, a tuple of the 1352

form (𝑣, 𝑣). Moreover, (U)CQs on labelled graphs must also have signatures of arity at most 2 and must not contain atoms of the form 𝑅(𝑣, 𝑣), 1353

where 𝑅 is any relation symbol of the signature. 1354

Neuen [55] and Lanzinger and Barceló [49] determined the WL-dimension of computing finite linear combinations of homomorphism 1355

counts to be the hereditary treewidth, defined momentarily. Since counting homomorphisms is equivalent to counting answers to quantifier- 1356

free conjunctive queries, and since the number of answers of a union of conjunctive queries can be expressed as a linear combination of 1357

conjunctive query answer counts (Lemma 23), we can state their results as follows. 1358

Definition 55 (Hereditary Treewidth of UCQs). Let Ψ be a UCQ. The hereditary treewidth of Ψ, denoted by hdtw(Ψ), is defined as follows: 1359

hdtw(Ψ) = max{tw(𝐴,𝑋 ) | 𝑐Ψ (𝐴,𝑋 ) ≠ 0},

that is, hdtw(Ψ) is the maximum treewidth of any conjunctive query that survives with a non-zero coefficient when Ψ is expressed as a 1360

linear combination of conjunctive queries. 1361

Then, applying the main result of Neuen, Lanzinger and Barceló to UCQs, we obtain: 1362

Theorem 56 ([49, 55]). Let Ψ be a quantifier-free UCQ on labelled graphs. Then dimWL (Ψ) = hdtw(Ψ). 1363

This enables us to prove Theorem 7, which we restate for convenience. 1364

Theorem 7. There is an algorithm that computes a 𝑂 (
√︁
log𝑘)-approximation of the WL-dimension 𝑘 of a quantifier-free UCQ on labelled 1365

graphs Ψ = 𝜑1 ∨ · · · ∨ 𝜑ℓ in time |Ψ|𝑂 (1) ·𝑂 (2ℓ ). 1366

Moreover, let 𝑓 : Z>0 → Z>0 be any computable function. The problem of computing an 𝑓 -approximation of dimWL (Ψ) given an input UCQ 1367

Ψ = 𝜑1 ∨ · · · ∨ 𝜑ℓ is NP-hard, and, assuming ETH, an 𝑓 -approximation of dimWL (Ψ) cannot be computed in time 2
𝑜 (ℓ )

. 1368

Proof. For the upper bound, we compute the coefficients 1369

𝑐Ψ (A, 𝑋 ) =
∑︁
𝐽 ⊆[ℓ ]

∧(Ψ | 𝐽 )� (A,𝑋 )

(−1) | 𝐽 |+1,

that is, for each subset 𝐽 ⊆ [ℓ], compute ∧
(
Ψ| 𝐽

)
. Afterwards, collect the isomorphic terms and compute 𝑐Ψ (∧

(
Ψ| 𝐽

)
) for each 𝐽 ⊆ [ℓ]. 1370

Clearly, 𝑐Ψ (A, 𝑋 ) = 0 for every (A, 𝑋 ) that is not isomorphic to any ∧
(
Ψ| 𝐽

)
. Clearly, this can be done in time |Ψ|𝑂 (1) ·𝑂 (2ℓ ). 1371

Next, for each (A, 𝑋 ) with 𝑐Ψ (A, 𝑋 ) ≠ 0, we use the algorithm of Feige, Hajiaghayi, and Lee [33] to compute in polynomial time a 1372

𝑔-approximation 𝑆 (A, 𝑋 ) of the treewidth of (A, 𝑋 ), where 𝑔(𝑘) ∈ 𝑂 (
√︁
log𝑘). Finally, we output the maximum of 𝑆 (A, 𝑋 ) over all (A, 𝑋 ) 1373

with 𝑐Ψ (A, 𝑋 ) ≠ 0 1374

For the lower bound, assume that there is a function 𝑓 : Z>0 → Z>0 and an algorithm A that computes an 𝑓 -approximation of dimWL (Ψ) 1375

in subexponential time in the number of conjunctive queries in the union. We will use A to construct a subexponential time algorithm for 1376

3-SAT, which refutes ETH. Our construction is similar to the proof of Lemma 49. Fix any positive integer 𝑡 > 𝑓 (1) + 1. 1377

Let 𝐹 be a 3-CNF with 𝑛 variables, which we can again assume to be sparse by using the Sparsification Lemma [19] (the details are 1378

identical to its application in the proof of Lemma 49). Next, using [58], we obtain a complex Δ, the reduced Euler characteristic of which 1379

is zero if and only if 𝐹 is not satisfiable. Finally, we apply Lemma 48 with our choice of 𝑡 . The corresponding algorithm computes in 1380

polynomial time either the reduced Euler characteristic of Δ, or otherwise outputs a UCQ Ψ such that the number ℓ of CQs in the union is 1381

bounded by 𝑂 (𝑛). Moreover, the hereditary treewidth of Ψ is 1 if 𝜒 (Δ) = 0, i.e., if 𝐹 is not satisfiable; and its hereditary treewidth is at least 1382

tw(K𝑘𝑡 ) = 𝑡 − 1 > 𝑓 (1), otherwise. 1383

Thus, we run A on Ψ and report that 𝐹 is satisfiable if and only if it outputs 𝑆 > 𝑓 (1). Since A runs in time 2
𝑜 (ℓ )

, the total running time is 1384

bounded by 2
𝑜 (𝑛)

, which refutes ETH. NP-hardness follows likewise. □ 1385

Finally, the proof of Theorem 8 is identical with the only exception being that, since 𝑘 is fixed, we can substitute the approximation 1386

algorithm for treewidth of Feige, Hajiaghayi, and Lee [33] by the exact algorithm of Bodlaender [16], which runs in polynomial time if 𝑘 is 1387

fixed. 1388

E NECESSITY OF THE SIDE CONDITIONS IN THEOREM 3 1389

We show that Theorem 3 is optimal in the sense that, if any of the conditions (I), (II), or (III) is dropped, the statement of the theorem becomes 1390

false (assuming that W[1]-hard problems are not fixed-parameter tractable). 1391



Dropping condition (I).1392

Lemma 57. There is a recursively enumerable class 𝐶 of quantifier-free UCQs of bounded arity such that ∧ (𝐶) has unbounded treewidth but1393

#UCQ(𝐶) is fixed-parameter tractable. The class 𝐶 satisfies (II) and (III).1394

Proof. Let Δ be the second complex in Figure 1, that is, the ground set is Ω = {1, 2, 3, 4} and the facets are {1, 2}, {2, 3}, {3, 1}, and {4}.1395

Note that Δ is irreducible (no element dominates another element), non-trivial, and Ω is not a facet. We can thus use Lemma 46 and let Ψ𝑡 to1396

be the output of algorithm
ˆA𝑡 given Δ. Note that Ψ𝑡 is quantifier-free — in particular, this implies that all conjunctive queries within Ψ𝑡1397

are #minimal. Since the algorithm
ˆA𝑡 can be explicitly constructed from 𝑡 (see Lemma 46 and Algorithm 1) the class 𝐶 = {Ψ𝑡 | 𝑡 ≥ 1} is1398

recursively enumerable. Furthermore, all of the relation symbols in queries in UCQs in 𝐶 have arity 2, so 𝐶 has bounded arity.1399

By Item 1 of Lemma 46, ∧ (𝐶) has unbounded treewidth, since the treewidth of K𝑘𝑡 is equal to 𝑡 − 1. Moreover, by Item 5 of Lemma 46, all1400

Ψ𝑡 are unions of self-join-free conjunctive queries. We next show that #UCQ(𝐶) is fixed-parameter tractable.1401

Recall that 𝜒 (Δ) = −(3 − 4 + 1) = 0. Item 2 of Lemma 46 shows that 𝑐Ψ𝑡 (∧(Ψ𝑡 )) = 0. Item 3 shows that for any relational structure B that1402

is not isomorphic to ∧(Ψ𝑡 ) with 𝑐Ψ𝑡 (B) ≠ 0, B is acyclic. Recall that Γ(𝐶) is the class of those conjunctive queries that contribute to the CQ1403

expansion of at least one UCQ in 𝐶 . So all CQs in Γ(𝐶) are acyclic, which means that the treewidth of Γ(𝐶) is bounded by 1.1404

Since each query in Γ(𝐶) is quantifier-free, and is thus its own contract, Γ(𝐶) = contract(Γ(𝐶)). Thus, by Theorem 1, #UCQ(𝐶) is1405

fixed-parameter tractable.1406

We finish the proof by showing that 𝐶 satisfies (II) and (III). Item (II) - that the number of existentially qunatified variables of queries in 𝐶1407

is bounded - is trivial, because there are none. We have already noted (III) – that the UCQs in 𝐶 are unions of self-join-free CQs.1408

□1409

Dropping condition (II).1410

Lemma 58. There is a recursively enumerable and deletion-closed class 𝐶 of unions of self-join-free conjunctive queries of bounded arity such1411

that ∧ (𝐶) has unbounded treewidth but #UCQ(𝐶) is fixed-parameter tractable.1412

Proof. The statement of the lemma guarantees that 𝐶 satisfies items (I) and (III) of Theorem 3.1413

Let 𝑘 ≥ 3 be a positive integer and let 𝜏𝑘 = (𝐸1, . . . , 𝐸𝑘 ) be a signature with arity(𝐸𝑖 ) = 2 for all 𝑖 ∈ [𝑘]. For any pair 𝑖, 𝑗 ∈ [𝑘] with 𝑖 < 𝑗 ,1414

consider the conjunctive query1415

𝜑
𝑖, 𝑗

𝑘
(𝑥1, . . . , 𝑥𝑘 , 𝑥⊥) = ∃𝑦

𝑖, 𝑗

𝑘
: 𝐸𝑖 (𝑥𝑖 , 𝑦𝑖, 𝑗𝑘 ) ∧ 𝐸 𝑗 (𝑥 𝑗 , 𝑦

𝑖, 𝑗

𝑘
) ∧

∧
ℓ∈[𝑘 ]\{𝑖, 𝑗 }

𝐸ℓ (𝑥ℓ , 𝑥⊥) .

Let Ψ𝑘 =
∨
𝑖< 𝑗∈[𝑘 ] 𝜑

𝑖, 𝑗

𝑘
and let𝐶 be obtained from the class {Ψ𝑘 | 𝑘 ≥ 3} by taking the closure under deletion of conjunctive queries. Clearly,1416

𝐶 is recursively enumerable.1417

Note that each conjunctive query 𝜑
𝑖, 𝑗

𝑘
is self-join-free and that Ψ𝑘 contains

(𝑘
2

)
existentially quantified variables. Thus the number of1418

existentially quantified variables of queries in 𝐶 is unbounded. Moreover, the treewidth of ∧ (𝐶) is unbounded. To see this, observe that1419

∧ (Ψ𝑘 ) (𝑥1, . . . , 𝑥𝑘 ) = ∃𝑦1,2𝑘 , 𝑦
1,3

𝑘
, . . . , 𝑦

𝑘−1,𝑘
𝑘

:

∧
𝑖< 𝑗

𝐸𝑖 (𝑥𝑖 , 𝑦𝑖, 𝑗𝑘 ) ∧ 𝐸 𝑗 (𝑥 𝑗 , 𝑦
𝑖, 𝑗

𝑘
) ∧

∧
ℓ∈[𝑘 ]

𝐸ℓ (𝑥ℓ , 𝑥⊥) .

Therefore, the Gaifman graph of ∧ (Ψ𝑘 ) contains as a subgraph a subdivision of a 𝑘-clique and thus has treewidth at least 𝑘 − 1.1420

It remains to show that #UCQ(𝐶) is fixed-parameter tractable. To show this we claim that the classes Γ(𝐶) and contract(Γ(𝐶)) have1421

treewidth at most 2, and thus the problem #UCQ(𝐶) is fixed-parameter tractable by Theorem 1. To prove the claim, fix any 𝑘 ≥ 3 and any1422

non-emtpy subset 𝐽 ⊆ {(𝑖, 𝑗) ∈ [𝑘2] | 𝑖 < 𝑗}. We will show that the #minimal representatives of ∧ (Ψ𝑘 , 𝐽 ) and its contract are acyclic. To this1423

end, assume first that |𝐽 | = 1. Then ∧ (Ψ𝑘 , 𝐽 ) is equal to one of the conjunctive queries 𝜑
𝑖, 𝑗

𝑘
, which is clearly acyclic. Since 𝜑

𝑖, 𝑗

𝑘
is self-join-free1424

and does not contain isolated variables, it is #minimal by Lemma 30. Let𝐺 be the Gaifman graph of 𝜑
𝑖, 𝑗

𝑘
, and recall that the contract of 𝜑

𝑖, 𝑗

𝑘
is1425

obtained from 𝐺 [𝑋 ] by adding an edge between two free variables in 𝑋 if and only if there is a connected component in the quantified1426

variables that is adjacent to both free variables. Since the only quantified variable in 𝜑
𝑖, 𝑗

𝑘
is 𝑦

𝑖, 𝑗

𝑘
, which is adjacent (in 𝐺) to 𝑥𝑖 and 𝑥 𝑗 , the1427

contract of 𝜑
𝑖, 𝑗

𝑘
is just the graph obtained from 𝐺 [𝑋 ] by adding an edge between 𝑥𝑖 and 𝑥 𝑗 , which also yields an acyclic graph.1428

Next assume that |𝐽 | ≥ 2. For an index 𝑠 ∈ [𝑘], we say that 𝐽 covers 𝑠 if each (𝑖, 𝑗) ∈ 𝐽 satisfies 𝑖 = 𝑠 or 𝑗 = 𝑠 . We distinguish three cases:1429

(A) There are distinct 𝑠1 < 𝑠2 such that 𝐽 covers 𝑠1 and 𝑠2. Then 𝐽 = {(𝑠1, 𝑠2)}, contradicting the assumption that |𝐽 | ≥ 2.1430

(B) There is precisely one 𝑠 ∈ [𝑘] such that 𝐽 covers 𝑠 . Assume w.l.o.g. that 𝑠 = 𝑘 . Then since every (𝑖, 𝑗) ∈ 𝐽 has 𝑖 < 𝑗

∧ (Ψ𝑘 , 𝐽 ) =
∧

ℓ∈[𝑘−1]
𝐸ℓ (𝑥ℓ , 𝑥⊥) ∧

∧
(𝑖, 𝑗 ) ∈ 𝐽

∃𝑦𝑖, 𝑗
𝑘

: 𝐸𝑖 (𝑥𝑖 , 𝑦𝑖, 𝑗𝑘 ) ∧ 𝐸 𝑗 (𝑥 𝑗 , 𝑦
𝑖, 𝑗

𝑘
)

=
∧

ℓ∈[𝑘−1]
𝐸ℓ (𝑥ℓ , 𝑥⊥) ∧

∧
(𝑖,𝑘 ) ∈ 𝐽

∃𝑦𝑖,𝑘
𝑘

: 𝐸𝑖 (𝑥𝑖 , 𝑦𝑖,𝑘𝑘 ) ∧ 𝐸𝑘 (𝑥𝑘 , 𝑦
𝑖,𝑘

𝑘
) .



Observe that any answer of ∧ (Ψ𝑘 , 𝐽 ) in a database D is also an answer of the following query, and vice versa: 1431

𝜓𝑘 :=
∧

ℓ∈[𝑘−1]
𝐸ℓ (𝑥ℓ , 𝑥⊥) ∧

∧
𝑖∈[𝑘−1]

∃𝑦𝑖,𝑘
𝑘

: 𝐸𝑖 (𝑥𝑖 , 𝑦𝑖,𝑘𝑘 ) ∧ 𝐸𝑘 (𝑥𝑘 , 𝑦
𝑖,𝑘

𝑘
),

since all 𝑦
𝑖,ℓ

𝑘
with 𝑖 < 𝑘 can be mapped to the same vertex as 𝑥⊥. Thus ∧ (Ψ𝑘 , 𝐽 ) and 𝜓𝑘 are counting equivalent. Moreover, 𝜓𝑘 is 1432

self-join-free and does not contain isolated variables. Thus, by Lemma 30, it is #minimal. Finally, deleting 𝑥𝑘 from the Gaifman graph 1433

of𝜓𝑘 yields an acyclic graph, and the same is true for the contract of𝜓𝑘 . Therefore, the treewidth of both𝜓𝑘 and its contract are at 1434

most 2. 1435

(C) There is no 𝑠 ∈ [𝑘] such that 𝐽 covers 𝑠 . Then 1436

∧ (Ψ𝑘 , 𝐽 ) =
∧
ℓ∈[𝑘 ]

𝐸ℓ (𝑥ℓ , 𝑥⊥) ∧
∧
(𝑖, 𝑗 ) ∈ 𝐽

∃𝑦𝑖, 𝑗
𝑘

: 𝐸𝑖 (𝑥𝑖 , 𝑦𝑖, 𝑗𝑘 ) ∧ 𝐸 𝑗 (𝑥 𝑗 , 𝑦
𝑖, 𝑗

𝑘
) .

Observe that any answer of ∧ (Ψ𝑘 , 𝐽 ) in a database D is also an answer of the following query, and vice versa: 1437

𝜓𝑘 :=
∧
ℓ∈[𝑘 ]

𝐸 (𝑥ℓ , 𝑥⊥) ,

since all 𝑦
𝑖, 𝑗

𝑘
can be mapped to the same vertex as 𝑥⊥. 1438

Thus ∧ (Ψ𝑘 , 𝐽 ) and𝜓𝑘 are counting equivalent. Since𝜓𝑘 does not contain quantified variables, it must be both its own #core and its 1439

own contract. This concludes the proof of the claim since𝜓𝑘 is acyclic. 1440

□ 1441

Dropping condition (III). 1442

Lemma 59. There is a recursively enumerable and deletion-closed class 𝐶 of quantifier-free UCQs of bounded arity such that ∧ (𝐶) has 1443

unbounded treewidth but #UCQ(𝐶) is fixed-parameter tractable. 1444

Proof. The statement of the lemma guarantees that 𝐶 satisfies items (I) and (II) of Theorem 3. We show an even stronger claim by 1445

requiring 𝐶 to be a recursively enumerable class of quantifier-free CQs (instead of UCQs) of bounded arity such that ∧ (𝐶) has unbounded 1446

treewidth but #UCQ(𝐶) is polynomial-time solvable. Note that each conjunctive query is a (trivial) union of conjunctive queries; moreover, 1447

this also means that 𝐶 is deletion-closed. 1448

For each 𝑘 ≥ 1, we define a conjunctive query𝜓𝑘 over the signature of graphs as follows: 1449

𝜓𝑘 (𝑥1, . . . , 𝑥𝑘 , 𝑥⊥) = ∃𝑦 :

∧
𝑖∈[𝑘 ]

𝐸 (𝑥𝑖 , 𝑥⊥) ∧ 𝐸 (𝑥𝑖 , 𝑦) .

The query𝜓𝑘 has only one quantified variable. Moreover, the contract of𝜓𝑘 is a 𝑘-clique and thus has treewidth 𝑘 − 1. However,𝜓𝑘 is clearly 1450

#equivalent to the query 1451

𝜓 ′
𝑘
=

∧
𝑖∈[𝑘 ]

𝐸 (𝑥𝑖 , 𝑥⊥) ,

which is its own contract (since there are no quantified variables), and which is of treewidth 1. Thus, for 𝐶 being the class of all𝜓𝑘 , we find 1452

that contract(∧ (𝐶)) has unbounded treewidth, but, according to Theorem 18, the problem #UCQ(𝐶) is solvable in polynomial time. □ 1453
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