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Aerial image data are becoming more widely available, and analysis techniques based on supervised 
learning are advancing their use in a wide variety of remote sensing contexts. However, supervised 
learning requires training datasets which are not always available or easy to construct with aerial 
imagery. In this respect, unsupervised machine learning techniques present important advantages. 
This work presents a novel pipeline to demonstrate how available aerial imagery can be used to better 
the provision of services related to the built environment, using the case study of road traffic collisions 
(RTCs) across three cities in the UK. In this paper, we show how aerial imagery can be leveraged to 
extract latent features of the built environment from the purely visual representation of top-down 
images. With these latent image features in hand to represent the urban structure, this work then 
demonstrates how hazardous road segments can be clustered to provide a data-augmented aid for 
road safety experts to enhance their nuanced understanding of how and where different types of RTCs 
occur.

The field of remote sensing, which is concerned with detecting and monitoring the physical characteristics of 
an area from a distance, has grown substantially with the proliferation of freely accessible high-quality aerial 
imagery. Remote sensing as a domain within computer vision has recently led to advances in  agriculture1, cli-
mate  change2,  transportation3, and disaster  response4. With governments such as the UK aiming to harness the 
power of machine learning (ML) to deliver “first-class public services”5, there is a need for academic research 
that demonstrates how available data and technologies within remote sensing can help allow for the improved 
provision of public services. This project takes on the important safety issue of road traffic collisions (RTCs) 
as a case study for exploring how old challenges can be tackled from fresh perspectives using aerial imagery 
alongside ML methodologies.

Globally, approximately 1.3 million people die each year because of RTCs, and a majority of these deaths 
fall among vulnerable road users such as pedestrians and  cyclists6. In the UK, the country we focus on here as a 
case study due to the government’s prioritisation of road safety and availability of aerial imagery, fatal or serious 
injuries occur on public roads every 16  min7. In 2020, the United Nations General Assembly resolved to halve 
the number of global deaths and injuries from RTCs by 2030, noting that the “overwhelming majority” of these 
cases are  preventable8. To achieve this ambitious goal, new technologies and data will be required to enhance 
road safety experts’ implementation of RTC interventions.

The study of RTCs has a long history with research dating back to the early days of motorisation in the first 
two decades of the twentieth century. While early research focused on the characteristics that make up “accident-
prone drivers”, today’s road safety research is more focused on how to best implement policies and interventions 
aimed at creating a safe road system that works for a variety of road  users9. Although ML has been utilized in 
recent research concerned with predicting future RTCs or identifying hazardous road  locations10,11, this project 
shows how aerial imagery can equip public officials, who already have some knowledge of which points within 
the road network are dangerous, with a new perspective. Specifically, we demonstrate how to leverage ML meth-
ods to cluster hazardous road segments solely on their built form which can help improve qualitative analysis 
of and intervention planning for reducing future RTCs. To do this, we utilize unsupervised machine learning 
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techniques to extract latent features from aerial images and then leverage hierarchical cluster techniques to 
group hazardous road segments. We show how aerial image data can provide nuance to understanding how and 
where different types of RTCs occur, which can in turn allow for improved targeting of interventions designed 
at tackling this classical issue.

Aerial image data presents unique challenges in terms of extracting data and meaning. On the one hand, 
aerial images offer incredible, high-resolution data on the built environment. However, extracting meaning from 
image data is not as straightforward as working with prototypical tabular data. Image data requires linkages to 
existing knowledge (road networks in our case) as well as novel metrics of similarity in order to enable com-
parisons between images. To address these challenges, we present a pipeline that extracts meaning from aerial 
images with minimal supervision, a process which has been shown to have widespread  utility12, and focus on 
three case study locations within the UK, Cambridge, Gloucester, and Oxford, to demonstrate the application 
of the pipeline for road safety analysis.

The rest of this paper is structured as follows. We first review related work on the built environment and road 
safety, especially prior research that has sought to use aerial imagery and ML methods. Then, we describe the 
data and methods used in our paper. To apply our methods, we present the results of our analytic pipeline for 
the three cities we use as case studies: Cambridge, Gloucester, and Oxford. Finally, we discuss the results and 
conclude by outlining the limitations of our study and considering future directions for similar methodologies 
in other public settings.

Literature review. Prior research on the built environment has found success by conceptualizing features 
at the macro- or neighbourhood-level and at the micro- or street-level13. At the neighbourhood-level, features 
such as urban density and street connectivity have been found to be related to outcomes such as  walkability14. At 
the street-level, features such as street trees and street width have been associated with housing  price15 and air 
 quality16, respectively. This study extracts both macro and micro features of the built environment from aerial 
images to give a more holistic understanding of the larger geographic context around hazardous road segments.

Studies of the built environment have previously made efforts to quantify the many physical attributes of the 
urban environment. Access to imagery when analysing the built environment has been lauded for better ena-
bling standardised assessments, in turn facilitating comparability across other image-based studies of the built-
environment17,18. Ewing and  Handy19, for instance, found mixed success using human annotators to measure 
more than 100 characteristics of the built environment from video clips. Other researchers have used machine 
learning to try and computationally measure some of these features from street view  images20. Measuring features 
such as building facades, street condition, or even temporally dynamic features, such as the number of parked 
cars, is tricky, with various cultural or selection biases introduced no matter the method used for quantification. 
By relying solely on the latent visual features residing within images, this study attempts to bypass some of the 
issues that arise from manually deriving measures of the built environment.

Given the potential of ML to address global  challenges12, using ML methods alongside imagery to study the 
built environment has become popular in recent years to study crime  incidents21, urban  morphology22, as well 
as human perceptions of their urban  environments23. In many ways, raw imagery provides a more unfiltered 
view of the built environment as opposed to the more common annotated datasets such as land use or street 
features in a tabular format.

One popular area of study that relies heavily on data about the built environment is road safety research. In 
their comprehensive review of RTC research, Gutierrez-Osorio &  Pedraza24 found that governmental data such 
as road infrastructure design features were among the most commonly used sources. Importantly, numerous 
features of the built environment have been found to contribute to RTCs. Looking at RTCs involving pedestrians, 
Guo et al.25 found that more densely connected road networks were related to higher incidence rates. Meanwhile, 
a qualitative study of fatal collisions in the UK found that excessive speed on road bends was a clear factor in 
many fatal accidents, particularly in low-lit areas during hours of darkness and on more rural  roads26.

More recently, deep learning methods have become common in road safety research, primarily as a means for 
making predictions with tabular data to better capture the spatial and temporal aspects of RTC data. Convolution 
neural  networks10, negative binomial  models27, and long short-term memory  networks28 have all been shown to 
predict RTCs with relatively high accuracy and claim to be more effective than classical regression techniques. 
Other methods such as decision  trees29 and extreme gradient  boosting30 have been used to explore the relative 
importance of various built environment attributes on RTC frequency and injury severity respectively. Closely 
related to this project, prior research by Zhang et al.11 used graph neural networks to extract latent visual features 
from satellite imagery in order to identify hazardous traffic locations in conjunction with social media data. Their 
work showed that ML-derived image features out-performed conventional and deep learning models for traffic 
risk forecasting in New York. Additionally, the authors observed that “locations with similar accident rates tend 
to share similar visual features” (p. 2)11. While Zhang et al.11 focused on mining historical data to make predic-
tions about future hazardous locations, our work hopes to help officials better understand past RTCs to allow 
for improved interventions that can prevent future RTCs.

An area of major concern for road safety research is omitted variable bias. Often, many factors affect the 
likelihood of a RTC which do not have detailed data available for analysts. Statistical methods that are meant 
to account for this unobserved heterogeneity often struggle with increased complexity, complicating interpret-
ability and  transferability31. While it is extremely difficult and costly to collect data on some of these unknown 
factors, such as the mental state of drivers, raw aerial image features allow for a more complete view of aspects 
of the built environment that contribute to each incident.

One less studied area is the use of unsupervised ML methods to extract latent image features from the built 
environment. In one study, Singleton et al. measure local spatial structures from the latent image features derived 
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from Sentinel 2 satellite data, creating a new measure of geodemographic  classification32. Another study extracted 
the latent features from street view imagery to allow for a more interpretable method of predicting street qual-
ity and street network  attributes33. Further work described the areas around leisure and retail amenities using 
latent image features extracted from storefront  images34. One common thread among these works is the use of 
dimension reduction techniques such as k-means or principal component analysis (PCA) to allow for an easier 
interpretation of the latent image features.

Clustering algorithms are among the most used analytic tools among RTC  researchers24. Clustering algo-
rithms calculate the similarity across features using a distance function to partition objects into clusters. Unlike 
supervised ML tasks such as classification, clustering does not require data points to have a predefined target 
category to train the algorithm on. One limitation of commonly used clustering algorithms is the possibility that 
there can be a multitude of valid possible solutions. Additionally, just because clusters can be formed, does not 
mean that the clusters themselves are meaningful. This study utilizes agglomerative clustering with Euclidean 
linkage distance, which is a bottom-up hierarchical clustering technique that tends to form higher quality clusters 
although it can be expensive  computationally35. Another benefit of agglomerative clustering is that the method 
is computationally robust, so the same result is achieved every time.

Taken together, prior work has shown that combining aerial imagery with ML has the potential to help address 
global challenges relating to the built environment, specifically, RTCs. While urban planners have long studied 
the physical characteristics that influence traffic patterns and RTCs, harnessing aerial imagery and ML can enable 
governments to make more accurate forecasts and devise policies informed by city-level data. Importantly, rolling 
out such technologies also creates new dilemmas, especially if the focus is on ML solely as a predictive tool. For 
example, what should a city planner do if presented with a statistical probability of 60%—or even 97%—that a 
road segment will be the site of a future RTC? Should the government invest more resources in interventions 
to make that location safer for pedestrians, or divert them away? Here, we do not undertake such a normative 
stance or offer a predictive analysis, instead, we seek to show the potential of using ML to help road safety experts 
understand their cities better by deriving useful insights about the built environment from aerial imagery and 
historical RTC data. As such, our results demonstrate the potential of unsupervised ML techniques in extracting 
aerial image features that can effectively cluster hazardous road segments.

Study sites and data
In this section, we will describe the study sites and associated data used in our paper. Data for each of the study 
sites are taken from three sources: aerial imagery from the EDINA Aerial Digimap Service; street network data 
from OpenStreetMap; and RTC data from the UK Department for Transport (DfT). These three data sources 
are described in turn below.

Study sites. Three mid-sized UK towns were selected for this analysis as they represent the average urban 
environment in the UK. We selected three study sites to bolster the number of possible training images for our 
feature-extraction models, while also allowing us to demonstrate that the pipeline can be utilized in locations 
with varying local priorities. To ensure extraction of the most robust features, we wanted to select locales with 
similarly structured built environments. Cambridge, Gloucester, and Oxford were chosen as they are comparable 
in terms of population and land area. This, coupled with their proximity to one another and shared morphologi-
cal  heritage36 allows us to reasonably assume that their built environments will contain similar types of features. 
Table 1 provides some additional contextual transport information for each of the study sites.

While these three study sites share similar structural components, the deployment of these components differ 
due to varying local conditions and priorities. In Cambridge, the latest local plan emphasized a revised design 
approach to improve safety by creating a ‘low-speed environment’37. As part of this, Cambridge is instituting 
policies which hope to build on the culture of cycling and walking within the city, noting their belief that roads 
designed to have a speed limit of 20 mph can generally accommodate cyclists without additional  provisions37. In 
Gloucester, road safety policies are aimed at generating a 50% reduction in road fatalities by 2032. Gloucester is 

Table 1.  Study Site Details. Population and Land  Area40; Local authority highways and transport expenditure 
10-year average 2009-  201841; Road Condition Statistics 2017–202142; Estimated yearly traffic calculated using 
data and methods described  in43; Average Road Speed derived from OpenStreetMap.

Cambridge Gloucester Oxford

Population 144,714 132,538 160,021

Land Area 41  km2 41  km2 46  km2

Transport Expenditures (thousands of £) 15,400 11,400 20,700

Road Condition (5-year avg.)

% Major Roads needing maintenance 3 2 4.2

% Minor Roads needing maintenance 6.4 5 6.6

% Local Roads needing maintenance 19 12.4 21.4

2021 Estimated Yearly Traffic (millions of km)

Bicycles 22.4 1.6 16.7

Motorcycles 3.4 3.9 4.1

All Motor Vehicles 556.7 737.4 550.8

Average Road Speed (km/h) 45.8 53.9 41.7
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building a “safety culture” when it comes to their roads, with targeted education programmes utilized as one of 
their top  strategies38. In Oxford, improving junction safety is a key area of focus as junction collisions have been 
rising over the past few years. A key component of the Oxford plan is to create systems which can better under-
stand the causes of collisions, noting that their most serious accidents tend to involve pedestrians and  cyclists39.

Aerial image data. Vertical aerial image RGB data for each of the study sites in this project were retrieved 
from the EDINA Aerial Digimap Service at 25 cm  resolution44. In total 540 true orthorectified 1 km by 1 km 
images were acquired that have been processed to retain their geometric fidelity. The aerial imagery were cap-
tured to an absolute accuracy of 1.1 m root mean square error and contain less than 5% snow and cloud cover per 
image. Image data varies in availability from year to year, the full details of which can be found in Supplementary 
Table S1. Multiple years of images were acquired to bolster the number of available training samples, however for 
final analyses only a single year’s worth of images from each locale are included.

Street network data. Street network data for this project was retrieved from  OpenStreetMap45 for a sin-
gle time point in June 2020. We observed minimal change in these street networks over the time period of the 
acquired aerial image data, so a central time point was selected. Only roads which are accessible to cars were 
included in this analysis, so the network was filtered to remove cycleways, footpaths, and other types of non-
vehicular roads.

Road traffic collision data. RTC data is based on the point-level incidents provided by the DfT road acci-
dents and safety statistics publication for the years 2017–2020 and compiled with the stats19 R package which 
enables access to the UK’s official RTC  database46. Importantly, the RTC data used in this article only includes 
collisions involving personal injury on public roads which have been reported to police within 30 days. In the 
UK, data on vehicular damage-only RTCs do not generate a police report and incident counts are not published. 
While this paper focuses only on RTCs involving personal injury, we believe these incidents are the most critical 
to mitigate and have the potential to benefit most from this analysis. Besides the location of the RTC, descriptive 
variables are also recorded for each incident including the type of road user involved in the incident. Full details 
on the RTCs included can be found in Supplementary Table S2.

Methodology
Figure 1 shows the methodological pipeline employed for this analysis. First, road networks and aerial images 
were combined into one dataset of evenly spaced road segment points, which were further linked to RTC data. 
Then, a convolutional autoencoder (CAE), PCA, and hierarchical clustering are used to extract image features 
from the data before grouping road segments for analysis and interpretation. We describe each of these steps in 
turn in the sections below.

Data combination. Starting with the street network data, points were sampled evenly along the street net-
work every 50 m. Two square buffers, one with a radius of 25 m and one with a radius of 100 m, were created for 
each point. We expect that having two buffers will allow for better feature extraction overall, as the 25-m buffer 
should capture micro features about the road itself, while the 100-m buffer should capture macro features about 
the local street network and the urban form. The small buffer size was chosen to capture the full width of the 
dataset’s widest road sample, while the large buffer size was chosen as it has been used previously as a search 
radius for traffic accident  research47. Each of the square buffers was matched to an aerial image and clipped to 
create two sets of image patches for feature extraction. The 100 m buffers were then resampled from a 25 cm res-
olution to a one metre resolution so both sets of images would have a size of 200 × 200 pixels. This process gener-
ated 107,305 images for the small buffer, and 105,441 images for the large buffer. These numbers differ as a small 
number of the large buffers did not fall entirely within the acquired aerial images. While all images were used 
to train the CAEs, only points with both a small and large buffer were included in the final feature extraction.

For each point and associated images, RTCs were assigned if they occurred within 50 m of each point. This 
process allowed for a single RTC point to be assigned to multiple road segments if it occurred somewhere in the 
middle, while also ensuring that no points are left unassigned to a road segment. Additionally, RTC data was 
aggregated for the years 2017–2020 so each image was assigned four years of RTCs to help account for some of 
the natural variance that can cause the number of RTCs in a particular location to fluctuate from year to year. We 
found that imagery, road network, and RTC data aligned closely enough to avoid necessitating further adjust-
ments to the combined data. Samples of the combined data are provided in Supplementary Figure S1.

Figure 2 maps out the location of each of the 1575 road segments which contained at least one RTC in each 
of the three cities under study. For final analyses, this study focuses only on 334 hazardous road segments, also 
shown in Fig. 2, which are defined here as points that contained at least three RTCs over the study period, similar 
to definitions used throughout  Europe48.

It is worth noting that, due to the dense road networks in parts of the study cities, road segments that were 
sampled every 50 m along the street network could end up significantly closer than 50 m in straight line distance 
(especially when they occur around intersecting roads). While these segments contained relevant information 
to warrant inclusion in the model training and feature extraction steps, to avoid double counting similarly 
located segments in the clustering process, a further reduction of points was performed to ensure no segments 
remained within a 50 m buffer radius of any other point. A breakdown of the number of segments at each step 
in the analytic pipeline can be seen in Table 2.
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Feature extraction. Previous works have utilized CAEs to extract latent features from  images32,33. By cre-
ating a convolutional network that can recreate an image, the feature space in the middle of the CAE forms a 
set of latent features that should contain a good representation of the data in a one-dimensional space. For this 
project, two identical CAEs were trained separately on the small and large image buffers respectively. The full 
model architecture can be found in Supplementary Figure S2. Each of the CAEs included 518,691 parameters 
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Figure 1.  Aerial Image Road Traffic Collision Methodological Pipeline. Plots and images shown here were 
generated for illustrative purposes only. Maps were generated in R using software v4.3.0 (https:// www.R- proje ct. 
org/) and imagery were sourced from the EDINA Aerial Digimap Service (https:// digim ap. edina. ac. uk/ aerial).
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split across an encoder and decoder culminating in a sigmoid activation. Both models were trained for 50 epochs 
using an Adam optimizer.

The input tensor to each of these CAEs is a 3 × 200 × 200 RGB image. Through the encoding portion of the 
model, whereby the latent structure of the images is learned, each image was compressed into a set of 4608 
features. The size of this feature space was chosen to avoid over-compressing the data such that features could 
not be learned by the decoder algorithm, while also not creating so many features that would result in a sparse 
vector where features are hyper specialized to a small set of images.

While over 100,000 images were used to train each of the models, for the final feature extraction, only one 
timepoint from each locality was used to extract a final set of features. Timepoints were selected based on their 

CambridgeCambridgeCambridge

CambridgeCambridgeCambridge

OxfordOxfordOxford

GloucesterGloucesterGloucester

Road segments with at least 1 RTCRoad segments with at least 1 RTCRoad segments with at least 1 RTC

Hazardous RTC road segmentsHazardous RTC road segmentsHazardous RTC road segments

England

GloucesterGloucesterGloucester

OxfordOxfordOxford

5 Km5 Km5 Km

Figure 2.  Locations of RTC and hazardous RTC road segments across the three UK towns. Maps were created 
in Python using software v3.9.15 (https:// www. python. org/) and base maps from OpenStreetMap contributors 
(https:// www. opens treet map. org/).

https://www.python.org/
https://www.openstreetmap.org/
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temporal proximity to each other and their coverage of the study area which varied year over year. By including 
latent features from each of these two CAEs in the final clustering analysis, we expect that a set of built environ-
ment variables will be constructed that represent a holistic view of the area around each road segment, capturing 
both street-level and neighbourhood-level features.

Dimension reduction and clustering. After extracting the latent features from the two CAEs, we next 
ran a PCA separately on each set of latent features to aid in dimension reduction. The PCA forms a representa-
tion of the latent feature space with a higher degree of interpretability than the features generated by the CAEs, 
while also concentrating a larger percentage of the variability from the image features into a smaller number of 
principal  components49.

Agglomerative clustering was then performed on the combined sets of principal components to create a set 
of clusters from hazardous road segments. Importantly, the principal components computed from the latent 
image features likely contains common features that are shared by most images. To ensure a clustering analysis 
which could differentiate hazardous road segments, we only included a small subset of the principal components 
which displayed the highest correlation to at least one of the RTC variables. The number of highest correlated 
principal components selected varied by locale (Cambridge N = 946; Gloucester N = 73; Oxford N = 154). The 
final number of components used was determined iteratively by running the agglomerative clustering analysis 
on different sets of components and analysing the silhouette  scores50 from 2 to 15 clusters to determine which 
sets of components with the highest correlation to RTCs also identified the most well-formed clusters.

Dendrograms in conjunction with the Calinski–Harabasz (CH) index were used to select the final number of 
clusters for each location. Dendrograms are a pictorial display of the hierarchical process of points being merged 
into successive clusters, with the lines connecting clusters representing the distance between each set of  points51. 
The CH index on the other hand provides one evaluative measure of how well split clusters are using a variance 
ratio  criterion52, this measure has been in used in previous research to evaluate the ideal number of clusters using 
agglomerative  clustering53. Final clusters were chosen primarily due to their jump in linkage distance between 
merged groups, alongside visual inspection of cluster members, and their CH scores, where higher scores indicate 
a better internal split. This clustering analysis was done separately for Cambridge, Gloucester, and Oxford to 
allow some variance based on the unique combination of features that make up each city.

After clustering, descriptive correlational analysis using standard Pearson correlation coefficients and visual 
inspection of the clusters was performed to determine the utility of this process for augmenting road safety 
analysis. Clusters were examined to find potential outliers or interesting patterns on the various RTC variables. 
One cluster from each locale was then chosen to focus on and interrogate for potential usefulness. Shared aspects 
of each cluster’s road segments were identified which appear to be particularly associated with common RTC 
types within the cluster.

Results and discussion
Clustering hazardous road segments. Agglomerative clustering for Cambridge, Gloucester, and 
Oxford generated three separate dendrograms shown in Fig. 3. The dotted horizontal line in each plot signifies 
the cut point for choosing the number of clusters, whereby the number of intersecting vertical lines represents 
the number of final clusters. To assess which number of clusters best separated each of the datasets, the CH 
scores, also shown in Fig. 3 were used alongside the dendrograms to select the final clusters. For Cambridge and 
Gloucester, three clusters were determined to be most appropriate, while for Oxford four clusters of hazardous 
road segments were deemed most appropriate for this analysis. There is no one size fits all approach to selecting 
the number of clusters, exemplified by the fact that not each locale was determined to contain the same number 
of clusters.

Descriptive analysis of clusters. After identifying the final number of clusters in each location, descrip-
tive analyses examined the various RTC variables to see if there were differences across clusters. Figure 4 shows 
selected RTC variables from each locale highlighting some of the most interesting RTC features. The goal of 
this descriptive analysis was to evaluate the utility of the clusters for identifying patterns within the RTC data. 
For this report, we selected one cluster of interest from each locale to examine in detail based on variations we 
observed among the different RTC variables. Imagery from the remaining clusters are shown in Supplementary 
Figure S3. Looking at the breakdown of RTCs by type within each cluster of Gloucester, Cluster 3 combines road 
segments with a higher average rate of RTCs involving motorcycles than either of the other two clusters, while 
also having the highest correlation to serious RTCs. In Cambridge, Cluster 2 stands out as having a high aver-

Table 2.  Data samples used throughout the analytic pipeline.

Locality
Image year selected for final 
analyses # of segments used in training

# of segments used for feature 
extraction

# of segments after point 
reduction

# of hazardous road 
segments (> 3 RTCs)

Gloucester 2018 42,076 20,736 3,029 67

Cambridge 2020 32,022 15,676 2,776 129

Oxford 2019 33,207 17,142 3,154 138

Totals 107,305 53,554 8,959 334
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age number of RTCs involving cyclists, with small correlations to RTCs that occurred in the dark and at higher 
speeds above 30 mph. Alternatively, in Oxford RTCs involving pedestrians were observed at a higher rate in the 
smallest cluster, Cluster 4. These three clusters are examined qualitatively through visual inspection and map-
ping to explore the types of insights that can be gained from analysis which is augmented by this type of method.

Visual interpretation of clusters. Figure 5 shows a visual inspection of five randomly chosen road seg-
ments from the chosen clusters. Each road segment is shown with their two paired buffers. Policymakers from 
these cities will be best positioned to interpret the clusters and determine what interventions might be appro-
priate, however there are some high-level conclusions that can be made from a simple visual inspection. For 
instance, Cluster 2 from Cambridge contains road segments which all highlight long straight roadways with 
merging lanes. This cluster also has a high rate of serious RTCs, likely suggesting higher speeds are involved. 
The danger of these higher speeds could be further enhanced by the curved nature of these intersections. In line 
with their goals to create low-speed environments, Cambridgeshire has recently begun fast-tracking lower speed 
limits in selected zones throughout the county to combat this very  issue54, highlighting one possible intervention 
which could be used to help reduce RTCs in this cluster.

In Gloucester, roundabouts appear in nearly all the images of the selected cluster, Cluster 3. Given the high 
rate of RTCs involving motorcycles within this cluster, it could be that motorcycles have particular difficulties 
with roundabouts in Gloucester, perhaps emphasizing the need for clarity in their right of way assignments. This 
echoes Gloucestershire’s recent Local Transport Plan which emphasized a need for interventions of education 
programmes aimed at  motorcyclists38.

Gloucester Cambridge Oxford

Cambridge Cambridge GloucesterGloucester

OxfordOxford

Cluster Selec�on CutpointCluster Selec�on Cutpoint
Clustered Road SegmentsClustered Road Segments

0

5

10

15

20

25

2 3 4 5 6 7 8 9 10

C
al

in
sk

i–H
ar

ab
as

z 
in

de
x

Nunber of Clusters

Figure 3.  Cluster Selection. Dendrograms used to select the final number of clusters for the three UK towns 
alongside CH scores. Linkage distance and CH scores should not be compared across the different towns as 
it depends on the number of variables included in the clustering, which differed by locale. For CH scores, the 
optimal number of clusters are determined by the largest CH values.
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Looking at the chosen Oxford cluster, Cluster 4, these road segments contain the highest rate of RTCs involv-
ing pedestrians and appear to be in denser urban areas with T road segments. This could indicate places where 
pedestrians need to cross the street, but don’t currently have a straightforward means to do so. Uncovering why 
these sorts of junctions have been particularly problematic for pedestrians will feed into Oxford’s goal of better 
understanding collisions, while targeting this cluster will be essential for Oxford as creating more pedestrian-
friendly roads is a key component of Oxfordshire’s Vision Zero plan to eliminate fatalities from RTCs by  205039.

The right side of Fig. 5 shows the geographical distribution of these selected clusters. In each locale there is 
occasional grouping of points along thoroughfares and around large junctions. Some geographical clustering is 
expected given the use of aerial images, especially since the large buffers may overlap in places. Despite this, for 
each location hazardous road segments with similar built forms are identified across large distances in disparate 
parts of each city. This highlights the difficulties faced by policymakers in tackling an issue that spans across 
diverse communities.
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Figure 4.  Descriptive Plots. The top dot plot shows selected RTC variables by cluster in each of the three UK 
towns. A Z-score of 0 denotes a mean level of that type of RTC for the specified locale, Z-scores should not be 
compared across locales. The bottom correlation table highlights relational patterns between membership in the 
clusters and the reported RTC data within each study site using standard Pearson correlation coefficients.
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Harnessing the built environment. Initial inspection of the feature extraction process and the created 
clusters indicates that the methodology presented in this paper can identify meaningful clusters of hazardous 
road segments in three UK cities. In each location, a group of hazardous road segments was reviewed which 
share similar image-derived features. Because these road segments share common characteristics pulled solely 
from their built form, when it is found that these road segments also share similar challenges, such as a pro-
pensity for RTCs involving pedestrians, policymakers should have more confidence that these locations can be 
targeted by a comparable set of interventions. Looking at the whole set of hazardous road segments, there is not 
a strong reason for public officials to believe that just because similar RTC incidents frequently occur at multiple 
locations, that the cause of those RTCs and therefore planned interventions should also be similar in those loca-
tions. By utilizing aerial image features, this work suggests that the similarities found in the built environment 
in different parts of these cities can be leveraged to create better targeted interventions at reducing future RTCs.
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Figure 5.  Visual interpretation of the selected cluster for each of the three UK towns. The maps on the right 
only show the location of hazardous road segments from the selected cluster, with the randomly chosen images 
highlighted in red. Maps were created in Python using software v3.9.15 (https:// www. python. org/) and base 
maps from OpenStreetMap contributors (https:// www. opens treet map. org/). Imagery were sourced from the 
EDINA Aerial Digimap Service (https:// digim ap. edina. ac. uk/ aerial).
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Data-augmented decision making. This methodology provides a straightforward pipeline for road 
safety experts to harness the power of ML through aerial imagery for the improved provision of public roads. 
Notably, by designing a pipeline that utilizes unsupervised ML and clustering techniques but is intentionally not 
a fully unsupervised process, experts can be kept in the analytic loop to leverage their necessary domain knowl-
edge for enhanced qualitative analysis of hazardous road segments. Much research utilizing ML in road safety 
research is focused around using the newest methods to make better predictions about where RTCs will happen 
in the future or identifying where RTC hot spots are. However, simple descriptive analyses of governmental 
datasets can inform policymakers exactly where the most problematic road segments are. Much of the difficulty 
around the provision of increasingly complex public services is figuring out how to leverage expert knowledge to 
allocate a limited set of public funds in the most effective manner. As more cities set ambitious goals to eliminate 
deaths from RTCs, the methodology provided in this paper lays out one data augmented process whereby road 
safety experts are enabled to employ aerial imagery and technical tools, which may be underutilized within the 
public sector, to support the development of targeted local plans and road safety policies.

Limitations. Although this paper presents some promising findings, there are some important limitations 
to consider. Most notably, the relatively simple visual feature extraction method used in this paper is likely insuf-
ficient to capture all the RTC-related features contained within aerial images given the complexity and scope of 
the potential feature space. More advanced ML architectures, such as the addition of attention  mechanisms11, 
may be able to better extract RTC-related features. Moreover, aerial images only provide a top-down perspec-
tive of roads, so other types of imagery such as street-view images or 3D views may allow for additional features 
aligned with the road user’s perspective to be captured.

Additionally, cluster analysis itself has some limitations. Methods which are used to determine the ideal 
number of clusters, such as the silhouette score, are not always reliable, expert knowledge is often required to 
make meaningful interpretations of groupings, and results can be difficult to replicate, especially with alternative 
clustering algorithms that make different assumptions about what constitutes a  cluster55. Furthermore, refine-
ment will be needed in coordination with public sector collaborators to ensure that this and similar tools can be 
integrated effectively into current public sector decision-making streams.

Conclusions and future research directions
This paper presented a pipeline to extract features from aerial images to allow for the clustering of hazardous 
road segments in three UK cities. The clusters examined in this paper were able to identify high level patterns 
among the RTC data and appeared well formed upon visual inspection, allowing an interpretable framework from 
which to assess the possible interventions that may be appropriate for reducing certain types of RTCs which are 
particularly prevalent in these groups. This research was designed to demonstrate how aerial imagery and ML 
methods can be leveraged to aid decisions that should reduce RTCs on public roads and improve governmental 
decision making. Building off this work, it is easy to see how similar methodologies could utilize aerial imagery 
to better understand other factors related to the built environment such as crime, energy use, pollution, wildlife 
management, and food access, to name but a few.

Data availability
The aerial imagery used in this study are available from the EDINA Aerial Digimap Service (https:// digim ap. 
edina. ac. uk/ aerial) to members of subscribing higher and further education institutions in the UK. All other 
data sources are publicly available via OpenStreetMap (https:// www. opens treet map. org/) and the UK’s Depart-
ment for Transport. The code used in this study can be found at: https:// github. com/ ai- for- public- servi ces/ 
sat- img- demon strat or.
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