
Approximate counting via complex

zero-free regions and spectral

independence

Andrés Herrera poyatos

Balliol College

University of Oxford

A thesis submitted for the degree of

Doctor of Philosophy

Trinity 2023

To my parents and my brothers.

Acknowledgements

First and foremost, I would like to express my deepest gratitude to my supervisors, Leslie

Goldberg and Andreas Galanis, for introducing me to the fascinating field of approximate

counting and for their invaluable time, guidance and expertise. Working under the supervision

of such exceptionally talented researchers has been an enlightening opportunity that I am truly

grateful for.

I would also like to extend my thanks to Stefan Kiefer and Standa Živný for serving as

examiners for my various DPhil examinations, and their excellent questions and feedback during

those. Additionally, I would like to thank in advance my DPhil viva examiners for taking the

time to review this thesis.

On a personal note, I am deeply grateful to my office mates for creating an uplifting and

stimulating environment in our shared space. A special thanks goes to Marc, with whom I have

shared countless of maths discussions, coffee breaks and board games nights during the four

years that we have been office mates. I would also like to acknowledge the incredible friends

that I have made during my time in Oxford, with a special thanks to my Balliol friends for their

constant support, particularly as housemates during the pandemic.

Last but not the least, I would like to express my deepest gratitude to my parents, for their

never-ending support and instilling in me their passion for mathematics, and to my brothers,

David and Sergio. Your presence in my life has been a constant source of inspiration and

encouragement and I have missed you dearly since I moved to Oxford.

Page 1 of 212

Abstract

This thesis investigates fundamental problems in approximate counting that arise in the field

of statistical mechanics. Building upon recent advancements in the area, our research aims to

enhance our understanding of the computational complexity of sampling from the Ising and

Potts models, as well as the random k-SAT model.

The q-state Potts model is a spin model in which each particle is randomly assigned a spin

(out of q possible spins), where the probability of a certain assignment depends on how many

adjacent particles present the same spin. The edge interaction of the model is a parameter

that quantifies the strength of interaction between two adjacent particles. The Ising model

corresponds to the Potts model with q = 2. Sampling from these models is inherently connected

to approximating the partition function of the model, a graph polynomial that encodes several

aggregate thermodynamic properties of the system. In addition to classical connections with

quantum computing and phase transitions in statistical physics, recent work in approximate

counting has shown that the behaviour in the complex plane of these partition functions, and more

precisely the location of zeros, is strongly connected with the complexity of the approximation

problem, even for positive real-valued parameters. Thus, following this trend in both statistical

physics and algorithmic research, we allow the edge interaction to be any complex number.

First, we study the complexity of approximating the partition function of the q-state Potts

model and the closely related Tutte polynomial for complex values of the underlying parameters.

Previous work in the complex plane by Goldberg and Guo focused on q = 2; for q > 2, the

behaviour in the complex plane is not as well understood and most work applies only to the

real-valued Tutte plane. Our main result is a complete classification of the complexity of the

approximation problems for all non-real values of the parameters, by establishing #P-hardness

results that apply even when restricted to planar graphs. Our techniques apply to all q ≥ 2

and further complement/refine previous results both for the Ising model and the Tutte plane,

answering in particular a question raised by Bordewich, Freedman, Lovász and Welsh in the

context of quantum computations.

Secondly, we investigate the complexity of approximating the partition function ZIsing(G;β)

of the Ising model in terms of the relation between the edge interaction β and a parameter

∆ which is an upper bound on the maximum degree of the input graph G. In this thesis we

establish both new tractability and inapproximability results. Our tractability results show that

ZIsing(−;β) has an FPTAS when β ∈ C and |β − 1|/|β + 1| < tan(π/(4∆ − 4)). The core of

the proof is showing that there are no inputs G that make the partition function 0 when β is

in this range. Our result significantly extends the known zero-free region of the Ising model

(and hence the known approximation results). Our intractability results show that it is #P-hard

to approximate ZIsing(−;β) when β ∈ C is an algebraic number such that β ̸∈ R ∪ {i,−i} and

|β − 1|/|β + 1| > 1/
√

∆− 1. These are the first results to show intractability of approximating

Page 2 of 212

Abstract

ZIsing(−, β) on bounded degree graphs with complex β. Moreover, we demonstrate situations in

which zeros of the partition function imply hardness of approximation in the Ising model.

Finally, we exploit the recently successful framework of spectral independence to analyse

the mixing time of a Markov chain, and we apply it in order to sample satisfying assignments

of k-CNF formulas. Our analysis leads to a nearly linear-time algorithm to approximately

sample satisfying assignments in the random k-SAT model when the density of the random

formula α = m/n scales exponentially with k, where n is the number of variables and m is the

number of clauses. The best previously known sampling algorithm for the random k-SAT model

applies when the density α = m/n of the formula is less than 2k/300 and runs in time nexp(Θ(k)).

Our algorithm achieves a significantly faster running time of n1+ok(1) and samples satisfying

assignments up to density α ≤ 20.039k. The main challenge in our setting is the presence of many

variables with unbounded degree, which causes significant correlations within the formula and

impedes the application of relevant Markov chain methods from the bounded-degree setting.

Page 3 of 212

Declaration of authorship

If not explicitly stated otherwise, all the results presented in this thesis are new contributions.

Parts of this thesis have been published in peer-reviewed academic journals and conference

proceedings. Some parts are available as preprints and are currently submitted to journals.

Chapters 2 and 3 are based on the following papers, which are co-authored with my supervisors

Andreas Galanis and Leslie Ann Goldberg:

[51] Andreas Galanis, Leslie Ann Goldberg, and Andrés Herrera-Poyatos. The complexity of

approximating the complex-valued potts model. Comput. Complexity, 31(1):Paper No. 2,

2022. doi:10.1007/s00037-021-00218-x.

◦ A preliminary version of this work appeared in MFCS: Andreas Galanis, Leslie Ann

Goldberg, and Andrés Herrera-Poyatos. The complexity of approximating the complex-

valued potts model. In 45th International Symposium on Mathematical Foundations

of Computer Science (MFCS 2020), volume 170 of Leibniz International Proceedings

in Informatics (LIPIcs), pages 36:1–36:14, Dagstuhl, Germany, 2020. Schloss Dagstuhl–

Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.MFCS.2020.36.

[47] Andreas Galanis, Leslie A. Goldberg, and Andres Herrera-Poyatos. The complexity of

approximating the complex-valued Ising model on bounded degree graphs. SIAM J.

Discrete Math., 36(3):2159–2204, 2022. doi:10.1137/21M1454043.

Chapter 4 is based on an updated version of the following work, which is co-authored with

my suvervisors and Heng Guo.

[48] Andreas Galanis, Leslie Ann Goldberg, Heng Guo, and Andrés Herrera-Poyatos. Fast

sampling of satisfying assignments from random k-sat. arXiv preprint, 2022. arXiv:

2206.15308.

The version of [48] presented in this thesis includes results on the geometry of the space of

satisfying assignments of random k-CNF formulas, that have been developed in conjunction with

Zongchen Chen, Nitya Mani and Ankur Moitra. The proofs of these geometry results presented

here are my own. This extended version of [48] has been submitted to Random Structures and

Algorithms.

Page 4 of 212

https://doi.org/10.1007/s00037-021-00218-x
https://doi.org/10.4230/LIPIcs.MFCS.2020.36
https://doi.org/10.1137/21M1454043
http://arxiv.org/abs/2206.15308
http://arxiv.org/abs/2206.15308

Contents

1 Introduction and contributions 12

1.1 Partition functions: from statistical mechanics to approximate counting 14

1.1.1 The Potts model and the Tutte polynomial 15

1.1.2 Hardness of exact computation of partition functions 16

1.1.3 Constraint satisfaction problems, statistical mechanics and the random

k-SAT model . 17

1.2 Fully polynomial approximation schemes in spin systems 18

1.2.1 Phase transitions on bounded-degree graphs 19

1.2.2 Why complex numbers? . 21

1.3 Approximating the partition function of the Potts model 21

1.3.1 Overview of previous work . 21

1.3.2 Results . 22

1.3.3 Brief proof outline . 24

1.4 Approximating the partition funtion of the Ising model on bounded-degree graphs 25

1.4.1 Overview of previous work . 26

1.4.2 Results . 26

1.4.3 Brief proof outline . 29

1.5 Sampling satisfying assignments from the random k-SAT model 30

1.5.1 Overview of previous work . 30

1.5.2 Results . 31

1.5.3 Brief proof outline . 31

1.5.4 The geometry of the space of satisfying assignments 32

1.6 Organisation of this thesis . 34

2 The complexity of approximating the complex-valued Potts model 35

2.1 Proof outline . 35

2.1.1 Shifts in the Tutte plane . 36

2.1.2 Polynomial-time approximate shifts . 37

2.1.3 The reductions . 39

2.2 Preliminaries . 40

2.2.1 The multivariate Tutte polynomial . 40

2.2.2 Implementing weights, series compositions and parallel compositions . . . 40

2.2.3 Computing with algebraic numbers . 42

2.3 Polynomial-time approximate shifts . 43

2.4 Polynomial-time approximate shifts with complex weights 49

2.4.1 Some algorithms for algebraic numbers . 50

Page 5 of 212

Table of contents

2.4.2 Some shifts for non-real algebraic numbers 52

2.4.3 An approximate shift to (0, 1− q) . 55

2.4.4 An approximate shift to (x′, y′) with y′ ∈ (0, 1) 56

2.4.5 Approximate shifts for polynomial-time computable real numbers 61

2.5 Hardness results . 65

2.5.1 Properties of ZTutte(G; q, γ) for algebraic numbers q and γ 66

2.5.2 Computing representations of algebraic numbers via approximations . . . 68

2.5.3 Exact Hardness results . 68

2.5.4 Computational problems . 69

2.5.5 Reducing exact computation to sign and approximate computation 69

2.5.6 The connection between approximate shifts and reductions 83

2.5.7 Hardness for the Tutte polynomial . 86

2.5.8 Proofs of the main theorems in this chapter 87

2.6 Further consequences of our results . 88

2.6.1 Hardness results for real algebraic parameters in the Tutte plane 88

2.6.2 Hardness results for the Jones polynomial 89

3 The complexity of approximating the complex-valued Ising model on bounded

degree graphs 92

3.1 Proof outline . 92

3.2 Preliminaries . 95

3.2.1 The tree of self-avoiding walks . 95

3.2.2 Computing with algebraic numbers . 96

3.2.3 Implementing weights, series compositions and parallel compositions . . . 97

3.2.4 Iteration of complex rational maps . 98

3.3 Easiness: a zero-free region for the Ising model 100

3.3.1 Proof of Theorem 1.5 . 100

3.3.2 Comparing Theorem 1.5 to the state of the art 104

3.3.3 Mathematica code for the proof of Lemma 3.22 108

3.4 Hardness results: proof of Theorem 1.7 . 109

3.4.1 Ising and Mobius programs . 110

3.4.2 Proof of Lemma 3.2 . 113

3.4.3 Reducing exact computation to approximate computation 118

3.5 Zeros of the partition function and hardness . 122

3.6 Mobius-programs: proofs of Lemmas 3.30 and 3.31 126

3.6.1 From program-approximable to densely program-approximable 126

3.6.2 Proof of Lemma 3.30 . 129

3.6.3 Proof of Lemma 3.31 . 131

Page 6 of 212

Table of contents

4 Fast sampling of satisfying assignments from random k-SAT 138

4.1 Proof outline and preliminaries . 138

4.1.1 Marking variables in the random k-SAT model 140

4.1.2 Mixing time of the Glauber dynamics on the marked variables 143

4.1.3 Analysis of the connected components of ΦΛ 146

4.1.4 The sampling algorithm . 149

4.1.5 Organisation of the rest of this chapter . 150

4.2 High-degree and bad variables in random CNF formulae 151

4.3 Identifying a set of “marked” variables with good marginals 153

4.4 Analysis of the connected components of ΦΛ . 160

4.4.1 Logarithmic-sized sets of clauses in the random k-SAT model 160

4.4.2 Number of marked variables in logarithmic-sized sets of clauses 162

4.4.3 Proof of Lemma 4.12 . 163

4.5 Sampling from small connected components . 167

4.6 Mixing time of the Markov chain . 169

4.6.1 Previous work . 170

4.6.2 Spectral independence in the k-SAT model 171

4.6.3 Mixing time of the ρ-uniform-block Glauber dynamics 184

4.7 Proof of Theorem 1.8 . 185

4.8 Proof of Theorems 1.10 and 1.12 . 188

4.8.1 Proof of Theorem 1.10 . 189

4.8.2 Proof of Theorem 1.12 . 192

4.9 Proofs of Lemmas 4.15 and 4.16 . 194

4.10 Proof of Lemma 4.8 . 197

5 Conclusion and open questions 199

Bibliography 202

Page 7 of 212

List of definitions and notation

Here we gather the notation and definitions that are used repeatedly in each chapter of this

thesis. If some notation or definition is not here, then it is only used in one specific section of a

chapter (and it is defined in that section).

Chapter 1

Notation Description Reference

#P The class of counting problems . Page 12

hom The graph homomorphism partition function Eq. (1.3), page 15

ZI The independent set polynomial . Page 15

size(G) The size of a graph G . Page 15

ZPotts The Potts model partition function Eq. (1.4), page 15

ZIsing The Ising model partition function Page 16

ZTutte The Tutte polynomial . Eq. (1.5), page 16

Φ(k, n,m) A random k-CNF formula with n var. and m clauses . Page 18

α The density of the formula Φ, so α = m/n Page 18

FPRAS Fully-polynomial randomised approximation scheme . . Page 19

FPTAS Fully-polynomial deterministic approximation scheme Page 19

arg The principal argument of a complex number Page 22

Arg The set of arguments of a complex number Page 22

ε∆ The number tan(π/(4(∆− 1))) . Theorem 1.5

δ∆ The number max
{

sin
(
α
2

)
cos
(
∆α

2

)
: 0 < α < 2π

3∆

}
. . . . Page 26

hβ The Mobius function hβ(z) = (βz + 1)/(β + z) Page 29

w.h.p. Stands for “with high probability” Page 31

dTV The total variation distance between two distributions Page 31

∥Λ∥1 Hamming weight . Definition 1.9

D-connectivity Connectivity of assignments of a k-CNF formula Definition 1.9

f(n)-loose Looseness in a k-CNF formula . Definition 1.11

Computational problems

Notation Description Reference

Factor-K-NormPotts(q, y) Norm approx. problem for Potts Page 22

Factor-K-NormPlanarPotts(q, y) Same restricted to planar graphs Page 22

Distance-ρ-ArgPotts(q, y) Argument approx. problem for Potts Page 22

Page 8 of 212

List of definitions and notation

Distance-ρ-ArgPlanarPotts(q, y) Same restricted to planar graphs Page 22

Factor-K-NormIsing(y) Norm approx. problem for Ising Page 22

Distance-ρ-ArgIsing(q, y) Argument approx. problem for Ising . Page 22

Factor-K-NormTutte(q, γ) Norm approx. problem for Tutte Page 22

Factor-K-NormPlanarTutte(q, γ) Same restricted to planar graphs Page 22

Distance-ρ-ArgTutte(q, γ) Argument approx. problem for Tutte Page 22

Distance-ρ-ArgPlanarTutte(q, γ) Same restricted to planar graphs Page 22

SignTutte(q, γ) . Sign problem for Tutte polynomial . . Page 22

SignPlanarTutte(q, γ) Same restricted to planar graphs Page 22

IsingNorm(β,∆,K) Norm approx. problem for b.d. Ising Page 28

IsingArg(β,∆, ρ) . Same problem for argument Page 28

Chapter 2

Notation Description Reference

theta graph Graph with two terminals joined by paths Definition 2.1

series-parallel graph . . . Graph constructed from series-parallel operations Definition 2.1

PC . Set of poly-time computable numbers Page 38

PR . The set PC ∩ R . Page 38

Zst(G; q, γ) Tutte poly. for connected terminals s and t Page 40

Zs|t(G; q, γ) Tutte poly. for non-connected terminals s and t . Page 40

γ-implement See definition . Page 40

shift See definition . Page 41

parallel composition . . . Operation between two graphs Page 41

series composition Operation between two graphs Page 41

Θ(l1,...,lm) Theta graph with m paths of lengths l1, . . . , lm . . Page 42

w(. . .) Weight implemented by a Theta graph Page 42

Root of unity Complex root of zk = 1 for some k Page 43

poly-time approx. shift See definition . Definition 2.10

Chapter 3

Notation Description Reference

A, CA The sets of real and complex algebraic numbers Page 93

SAW tree Tree of self-avoiding walks of a graph Page 95

Zj
v(G;β) Ising model partition function with a pinning on vertex v Definition 3.6

R (T, v;β) The ratio Z1
v (T ;β)/Z0

v (T ;β) for a tree T Definition 3.6

Fβ,k (z1, . . . , zk) Recursion for Ising model on trees . Page 96

Page 9 of 212

List of definitions and notation

B(x, r) Open disk with centre x and radius r Page 96

B(x, r) Closed disk with centre x and radius r Page 96

C(x, r) Circle with centre x and radius r Page 96

Zjk
st (H;β) Ising model p.f. with two pinnings Page 97

Ist(H;β) The interaction matrix of the Ising model Page 97

(∆, β)-implements See definition . Definition 3.7

Ĉ . The Riemann sphere . Page 99

d(z, w) Cordal metric . Page 99

Mobius map Rational map of degree one Page 99

multiplier Derivative at a fixpoint . Page 99

fixpoint Point ω with f(ω) = ω . Page 99

Julia set See definiton . Page 99

neighbourhood of x Set containing a ball with centre x Page 100

exceptional point Point with finite number of iterations on f . . . Page 100

R(δ) . Set of z ∈ C with |(z − 1)/(z + 1)| ≤ δ Definition 3.15

Ising program See the definition . Definition 3.25

gβ . The map gβ(z) = hβ(hβ(z)) Definition 3.25

Mobius program See the definition . Definition 3.27

program-approximable . . See definition . Definition 3.28

desenly program-approx. See definition . Definition 3.29

Chapter 4

Notation Description Reference

V The set of variables of Φ . Page 140

C The set of clauses of Φ . Page 140

var(c) The variables in the clause c . Page 140

var(S) The union of var(c) over c ∈ S . Page 140

ξ Our sampling algorithm has error at most n−ξ Theorem 1.8

∆r The high-degree threshold, set to ⌈2(r0−δ)k⌉ Definition 4.1

high-degree See definition . Definition 4.1

r-distributed See definition . Definition 4.3

(r, rm, ra, rc)-marking See definition . Definition 4.3

r0, r1, δ r0 = 0.117841, r1 = 0.227092 and δ = 0.00001 Definition 4.3

Vm, Va, Vc The sets of marked, auxiliary and control variables Definition 4.3

Ω∗ The set of all assignments V → {F,T} Definition 4.4

Ω The set of satisfying assignments of Φ Definition 4.4

µA The uniform distribution over A ⊆ Ω∗ Definition 4.4

ΦΛ The formula Φ simplified under Λ Definition 4.4

Page 10 of 212

List of definitions and notation

VΛ, CΛ The variables and clauses of ΦΛ Definition 4.4

ΩΛ . The set of satisfying assignments of ΦΛ Definition 4.4

µ|V . The marginal distribution of µ on V Definition 4.6

ε-uniform See definition . Definition 4.7

Tmix(ρ, ε) Mixing time of the block Glauber dynamics Page 143

b-marginally bounded . . See definition . Page 143

IΛ(u→ v) The influence of u on v (under Λ) Page 144

η-spectrally independent See definition . Page 144

GΦ . The dependency graph of C . Definition 4.11

HΦ . The dependency graph of V . Definition 4.13

Cgood(r), Cbad(r) Good and bad clauses, a partition of C Page 151

Vgood(r), Vbad(r) Good and bad variables, a partition of V Page 151

Φgood(r) The formula with all good var. and clauses of Φ Definition 4.19

Φbad(r) The formula with all bad var. and clauses of Φ . Definition 4.19

Page 11 of 212

Chapter 1

Introduction and contributions

Approximate counting is a branch of computational complexity and randomised algorithms that

has seen a growing interest in the past decade due to its connections to sampling, statistical

mechanics and random systems. Before delving into approximate counting, let us briefly introduce

the class of counting problems, which can be understood as the counting analogue to NP. Formally,

an exact counting problem is a computational problem of the form “compute f(x)”, where f(x)

is the number of accepting paths (on input x) of a non-deterministic Turing machine that runs in

polynomial time. We use #P to denote the class of all counting problems, which was introduced

by Valiant [115]. As an example, a canonical counting problem is #SAT, the problem of counting

the number of satisfying assignments of a boolean formula in conjunctive normal form (CNF).

By the celebrated Cook-Levin theorem, any counting problem has a polynomial-time reduction

to #SAT. Thus, we say that #SAT is #P-complete. Other relevant #P-complete problems

are counting the number of independent sets of a graph or counting the number of satisfying

assignments of a formula in disjunctive normal form, denoted #DNF, see, for instance, [121].

Several more #P-complete (or #P-hard) problems will come up in this thesis.

The goal of approximate counting is understanding the inherent difficulty of computing

approximate answers to counting problems that would be #P-hard to solve exactly. For a precise

notion of approximability, we refer to Section 1.2. A classic example of fundamental relevance in

theoretical computer science is, for k ≥ 3, the problem of approximately counting the number of

satisfying assignments of a k-CNF formula (a formula in conjunctive normal form where every

clause has exactly k literals), which is hard unless NP = RP. Interestingly, this contrasts to the

complexity of the problem of approximating the number of satisfying assignments of a formula

in disjunctive normal form (#DNF), which turns out to have an elementary polynomial-time

algorithm. The complexity of several relevant approximate counting problems still remains

elusive see, for instance, [39].

Some of the most famous problems in approximate counting arise in statistical mechanics.

This is the case of some of the problems that we study in this thesis, including the problems

of approximating the partition function of spin systems such as the hard-core, Ising and Potts

models, which we will formally introduce in Section 1.1. As we will see, approximating partition

functions is inherently connected to sampling from the distributions of these spin systems, which

is of particular importance in statistical mechanics. Abstractly, for a finite set V of “particles”

and an integer q ≥ 2, we want to sample from a probability distribution over the configurations

σ : V → [q], where [q] := {1, 2, . . . , q} is the set of possible spins. We highlight that this abstract

setting also includes as a particular case the problem of uniformly sampling satisfying assignments

Page 12 of 212

Chapter 1. Introduction and contributions

of CNF formulas. In fact, we will work in this general setting at some stages in this thesis

as some of our methods exploit properties of spin distributions with local constrains. The

computational complexity of approximating these partition functions turns out to be related to

the physical phase transitions that these models present on bounded-degree graphs, which has

drawn a lot of attention to approximate counting and has motivated a lot of work in the area.

We will briefly delve into this connection in Section 1.2 of this introduction. Interestingly, these

partition functions occasionally admit fully-polynomial randomised approximation algorithms,

serving as examples of problems whose exact version is #P-hard but the approximate version is

tractable [8]. Other times the problem of approximating a partition function can be shown to be

hard, sometimes even as hard as the exact version. The study of the complexity of approximating

partition functions is a growing area where new techniques to envisage efficient approximation

algorithms or to show hardness are being developed.

The recent increasing interest in approximate counting has led to a remarkable progress,

and a number of innovative approaches have emerged, sometimes connecting approximate

counting to other seemingly unrelated areas of mathematics such as complex analysis and

complex dynamics [101, 8, 15, 16], or sometimes promoting a resurgence of classic techniques

such as Markov Chain Monte Carlo algorithms for spin systems via the spectral independence

method [7, 28]. As a consequence of these new techniques, a lot of old open problems have

started to fall. This thesis is devoted to exploiting some of these exciting approaches to further

understand some of the classic problems in approximate counting, including the complexity of

approximating the partition functions of the Ising and Potts model on complex parameters, as

well as developing approximate counting algorithms for the number of satisfying assignments

of random k-CNF formulas, and understanding the boundaries of efficient computation within

these models.

The rest of this introduction is organised as follows. In Section 1.1, we further motivate the

work presented in this thesis from the point of view of statistical mechanics, and introduce the

approximate counting problems for which we present new results in this work. In Section 1.2 we

introduce the concept of approximation schemes and briefly describe some of the most powerful

techniques to obtain such algorithms or prove hardness of approximation, highlighting the con-

nection between physical phase transitions and computational phase transitions in spin systems.

In Section 1.3 we state our results on the Potts model on complex parameters, where we give a

complete map of approximability of the partition function. In Section 1.4 we state our results on

the Ising model on bounded degree graphs, including novel tractability and inapproximability

results. In Section 1.5 we state our results on random k-CNF formulas, including the first

almost-uniform sampler of satisfying assignments based on spectral independence arguments.

Finally, in Section 1.6 we present the organisation of the rest of this thesis.

Page 13 of 212

Chapter 1. Introduction and contributions

1.1 Partition functions: from statistical mechanics to approxi-

mate counting

Partition functions arise naturally in physics, mathematics and computer science, and their study

has revealed connections among all these disciplines. The exact definition of partition function

varies depending on the area of study; in approximate counting we are interested in partition

functions from a combinatorial perspective. Before introducing the combinatorial definition of

the partition functions that we consider in this thesis, let us motivate this concept from the

lenses of statistical mechanics.

In statistical mechanics of discrete systems we model particles as vertices of an undirected

graph G = (V,E) (possibly with loops or multiple edges between the same vertices) that captures

the interactions among them. These particles may correspond, for example, to magnets, the

molecules of a gas, or atoms in spin glasses. Each particle is in one out of q possible states/spins,

where q ≥ 2. For instance, in the case of ferromagnetic systems, these states corresponds to plus

or minus (q = 2). A configuration is a map σ : V → [q], assigning each particle to a spin. Let Ω

be the set of all configurations. The Gibbs distribution of the system is a probability distribution

over Ω that assigns to each state a probability that is a function of that state’s energy, denoted

H(σ), and the temperature of the system T . We also call H(σ) the Hamiltonian of the state, and

we will define it explicitly later in this section. More precisely, the probability of a configuration

σ under the Gibbs distribution, denoted µ(σ), is proportional to exp(−H(σ)/(cT)), where T is

the temperature of the system and c is the Boltzmann constant. The partition function of the

system is the normalising factor of the Gibbs distribution, that is,

Z(G) =
∑
σ∈Ω

exp(−H(σ)/(cT)). (1.1)

The Hamiltonian/energy of a configuration depends on two interactions: the interaction energies

between adjacent particles based on their spins, and the interaction between the system particles

and an external field, which acts on each particle based on the particle’s spin. The interaction

energies are represented by a symmetric q × q matrix K, so the entry Ki,j ∈ R measures the

interaction energy between the spins i and j. The external field has associated a vector M ,

whose entry Mi ∈ R indicates how the field acts on spin i. The overall energy of a configuration

σ is then H(σ) =
∑

{u,v}∈E Kσ(u),σ(v) +
∑

v∈V Mσ(v).

This definition of the Gibbs distribution arises as the solution of an optimisation problem;

the Gibbs distribution is the distribution that maximises the entropy of the system, subject to

certain normalisation constraints. For more information about the Gibbs distribution from a

statistical mechanics point of view we refer to [53]. Some relevant aggregate thermodynamic

variables of the system, such as the entropy, total energy or free energy, can be expressed

in terms of the partition function and its derivatives. Moreover, if we can approximate the

partition function Z(G) efficiently, we can approximate efficiently any probability µ(σ) and, as

a consequence, we can strongly simulate the system. Thus, the problems of computing and

approximating partition functions are of particular relevance in statistical mechanics.

Page 14 of 212

Chapter 1. Introduction and contributions

By setting Yi,j = exp(−Ki,j/(cT)) and Zj = exp(−Mj/(cT)), from (1.1) we find that

Z(G) =
∑

σ : V→[q]

∏
{u,v}∈E

Yσ(u)σ(v)
∏
v∈V

Zσ(v). (1.2)

Even though in our derivation Yi,j , Zj are positive numbers, generally the partition function

Z(G) can be seen as a multivariate graph polynomial with variables Yij and Zj , which may take

complex values. In fact, (1.2) comprises many well-known graph polynomials as particular cases.

For example, when Z is a vector of ones, we obtain the graph homomorphism partition function

[8, Chapter 7],

hom(G;Y) =
∑

σ : V→[q]

∏
{u,v}∈E

Yσ(u)σ(v), (1.3)

which is of particular interest in theoretical computer science, see, for instance, [45, 40]. Another

relevant example is the case when q = 2 and, for λ ∈ C,

Y =

[
0 1

1 0

]
, Z =

[
λ

1

]
.

This instance is famously known as the independent set polynomial or the partition function of

the hard-core model [15], and is denoted ZI (G;λ). One can easily find that

ZI (G;λ) =
∑

I∈I(G)

λ|I|,

where I(G) is the set of all the independent sets of a graph G. The parameter λ is known

as the activity of the model. Note that ZI(G; 1) counts the number of independent sets of

the graph G, whose computation is known to be #P-hard. Hence, computing the polynomial

ZI(G;λ) is #P-hard. Under typical circumstances this is the case with partition functions, it

is unrealistic to write Z as a sum of monomials in a polynomial number of computations on

size(G) := |V (G)|+ |E(G)|.

1.1.1 The Potts model and the Tutte polynomial

The q-state Potts model is a classic model of ferromagnetism in statistical mechanics [105, 121]

that can be seen as a particular example of the graph homomorphism partition function. From

a physics point of view, this model arises when the energy between interacting particles behaves

as follows: for a constant θ > 0, the energy between two adjacent particles is θ if the particles’

spins are the same, and the energy is −θ if they are different. It is not difficult to check that

under our combinatorial notation, following a derivation along the lines of (1.1) and letting

y = exp(−2θ/(cT)), this model is equivalent to the case when Z is a vector of ones and the

matrix Y is such that Yii = y and Yij = 1 for every i, j with i ≠ j, see [121] for details. We

denote by ZPotts (G; q, y) the partition function of the Potts model with parameter y ∈ C, and

we find that

ZPotts (G; q, y) =
∑

σ : V→[q]

ym(σ), (1.4)

Page 15 of 212

Chapter 1. Introduction and contributions

where m(σ) denotes the number of monochromatic edges of G under σ. The parameter y is

known as the edge interaction; note that the Gibbs distribution of the model is only defined when

y is a positive real. This partition function includes several relevant combinatorial quantities

as a particular case. For example, ZPotts (G; q, 0) counts the number of proper q-colourings of

the graph G (recall that these are the q-colourings such that two adjacent vertices have distinct

colours), that is, ZPotts (G; q, 0) is the evaluation of the chromatic polynomial of G on a positive

integer q. We refer to [121] for more connections between the chromatic polynomial and the

Potts model. The case q = 2 is commonly known as the Ising model, and we write ZIsing(G; y)

to denote its partition function.

The Ising/Potts models have an extremely useful generalisation to non-integer values of q

via the so-called “random-cluster” formulation of the Tutte polynomial. For complex numbers q

and γ, the Tutte polynomial of a graph G = (V,E) is given by

ZTutte(G; q, γ) =
∑
A⊆E

qk(A)γ|A|, (1.5)

where k(A) denotes the number of connected components in the graph (V,A) (isolated vertices

do count). When q is an integer with q ≥ 2, we have ZPotts(G; q, y) = ZTutte(G; q, y − 1), see,

for instance, [109]. From a computational point of view, the Tutte polynomial encompasses

other relevant combinatorial quantities, such as the number of nowhere-zero q-flows of G (which

corresponds to ZTutte(G; q,−q) up to an easily computable factor) or the number of spanning

subgraphs of G, that is, the number of subgraphs (V,A) of G with k(A) = k(E) (which

coincides with the limit limq→0 ZTutte(G; q, 1)/qk(E)). The Tutte polynomial on planar graphs is

particularly relevant in quantum computing since it corresponds to the Jones polynomial of an

“alternating link” [121, Chapter 5], and polynomial-time quantum computation can be simulated

by additively approximating the Jones polynomial at certain roots of unity. This connection

between the Tutte polynomial and quantum computation will be relevant in Section 1.3 and

Chapter 2, see also [20] for details.

1.1.2 Hardness of exact computation of partition functions

Due to the combinatorial relevance of the Tutte polynomial and its connections to fundamental

problems in theoretical computer science, computational complexity questions involving the Tutte

polynomial have been the focus of a long series of publications, see [109] for a state of the art.

For example, an interesting question that will come up in Chapter 2 of this thesis is the problem

of determining the sign of ZTutte(G; q, γ) [59]. From the point of view of counting complexity,

one of the most natural questions is the following one: for a fixed pair (q, γ) ∈ C2, how hard is

it to evaluate ZTutte(G; q, γ) at (q, γ) and an input graph G? This question was addressed by

Jaeger, Vertigan and Welsh [73], concluding that the evaluation problem is #P-hard for almost

all pairs (q, γ), see Section 2.5.3 for the precise result. For example, evaluating ZIsing(G; y) is

#P-hard except when y ∈ {0,±1,±i}, where evaluation can be performed in polynomial time.

This kind of dichotomy also applies to the Potts model, where a few more exceptions / easy

Page 16 of 212

Chapter 1. Introduction and contributions

points arise. Similar results exist for the graph homomorphism partition function, although the

reductions are significantly more convoluted. This led researchers to focus on real parameters

first [40], and it took a lot of work to fully resolve the complexity of evaluation on complex

parameters, see [27]. Further questions arise, such as if these hardness results hold for certain

relevant families of graphs, for instance, planar graphs [116], or for certain modifications of

the partition function, see, for example, [45]. When it comes to approximate counting, the

complexity map for these partition functions is, at the time of writing, not fully resolved. In

this thesis we make significant progress on the Ising and Potts model.

1.1.3 Constraint satisfaction problems, statistical mechanics and the random

k-SAT model

We finish this section by highlighting the connections between k-SAT and statistical mechanics,

which have been exploited several times in the specialised literature to obtain predictions about

phase transitions in satisfiability problems [94]. To introduce this connection, first we consider

the concept of constraint satisfaction problem. Let V = {v1, . . . , vn} denote a collection of

variables and let D = {D1, D2, . . . , Dn} be the set of the respective domains. A constraint C is a

pair (t, ρ) where t is a tuple of variables, called the constraint scope, and ρ is a relation on their

corresponding domains, called the constraint relation. A constraint satisfaction problem (CSP)

is a triple (V,D, C), where V and D are as above and C = {C1, C2, . . . , Cm} is set of constraints.

A solution to (V,D, C) is a mapping that assigns to each variable vi a value from Di so that

the mapping satisfies all constraints, that is, for each constraint Cj , the image of the constraint

scope is a member of the constraint relation. For example, we can see the problem of finding a

proper q-colouring as a CSP; for a graph G = (V,E), let the domain of the variables be [q] and

consider for each edge (u, v) ∈ E the constraint {(i, j) : i, j ∈ [q], i ̸= j}. Then a q-colouring is a

solution of the CSP if and only if it is a proper q-colouring. Another obvious example is k-SAT,

where each constraint of the CSP is determined by a clause of the k-CNF formula.

We remark that the derivation of partition function given in (1.1) can be reproduced in the

setting of CSPs with a different definition of Hamiltonian. Let Φ = (V,D, C) be a CSP. For an

assignment σ of each variable to an element in its respective domain, which can be seen as a

tuple in
∏n

j=1Dj , we let HΦ(σ) be the number of constraints of Φ that are not satisfied by σ.

This gives rise to the partition function Z(Φ; θ) =
∑

σ∈
∏n

j=1 Dj
e−θHΦ(σ). When Φ corresponds to

the problem of finding a proper q-colouring of a graph G, we note that Z(Φ; θ) coincides with the

partition function of the Potts model on G with change of variables y = exp(−θ). On a different

note, the quantity Z(Φ; θ) converges to the number of solutions of Φ as θ converges to ∞. As

a consequence, certain methods of statistical mechanics that were developed to analyse Gibbs

distributions and partition functions can be applied to gain information about the number of

solutions of a CSP and, in particular, the number of satisfying assignments of a k-CNF formula.

We will see an example of this in Chapter 4, where we use a version of the simulated annealing

method originated in statistical mechanics [18, 71] to approximate the number of satisfying

Page 17 of 212

Chapter 1. Introduction and contributions

assignments of a k-CNF Φ under certain conditions.

Methods and predictions from statistical mechanics have been particularly successful when

analysing the random k-SAT model, which has played a key role as foundational model in the

study of randomised algorithms. For integers k, n,m ≥ 2, the random formula Φ = Φ(k, n,m) is

a k-CNF formula chosen uniformly at random from the set of formulae with n Boolean variables

and m clauses, where each clause has k literals (repetitions allowed). Here, we consider the

sparse regime where the density of the formula, α = m/n, is bounded by an absolute constant.

An important question is determining the probability that the random formula is satisfiable

as a function of its density (in the limit n → ∞). Interestingly, for all sufficiently large k,

the probability that Φ is satisfiable drops abruptly from 1 to 0 when the density α crosses

a certain threshold α⋆(k). Recently there has been tremendous progress in establishing this

phase transition (which was originally predicted by the replica symmetric method of statistical

mechanics), concluding that α⋆(k) = 2k log 2− 1
2(1 + log 2) + ok(1) as k →∞ [38, 34]. Despite

the good progress on pinning down this phase transition, finding satisfying assignments for

densities up to α⋆ poses severe challenges. In fact, the best known algorithm [30] for finding a

satisfying assignment of a random formula Φ succeeds up to densities (1 + ok(1))2
k

k log k, and

going beyond such densities is a major open problem with links to phase transitions [1].

From a probabilistic viewpoint, the analysis of the partition function of the random k-SAT

model (i.e. the number of satisfying assignments of the formula) depends on subtle properties of

the solution set Ω = ΩΦ consisting of the satisfying assignments of Φ [2, 32, 108, 95]. In this

direction, there has been substantial work on finding the so-called free energy of the model,

i.e., the asymptotic value of the quantity 1
nE[log(1 + |Ω|)]. Computing the k-SAT free energy

is a difficult problem which is still open (roughly, the difficulty comes from the asymmetry of

the model and the unbounded degrees), but there have been results for closely related models

including the permissive version of the model [32, 95, 35], the regular k-SAT model [36], and the

regular NAE-SAT model [99, 108]. Very recently, a formula for the free energy of the 2-SAT

model was given in [2]. In this thesis one of our goals is understanding the geometry of the space

of solutions of random k-CNF formulas with the aim of developing fast sampling algorithms

that lead to an efficient approximation of the partition function for densities below the threshold

α∗(k). Before presenting our results, we introduce the concept of approximation schemes.

1.2 Fully polynomial approximation schemes in spin systems

In this section we briefly overview some of the most successful techniques to come up with

approximation algorithms for partition functions, which serves as a motivation for the work

presented in this thesis. First, let us define the notion of approximation that we use in

approximate counting. Let f be a function from {0, 1}∗ to the positive real numbers. A

randomised approximation scheme for f is a probabilistic algorithm that takes as an input a

string x and a rational number ε ∈ (0, 1), and produces as output a random variable Y such

that P [e−ε ≤ Y/f(x) ≤ eε] ≥ 3/4. The choice of 3/4 in this definition is only due to convenience

Page 18 of 212

Chapter 1. Introduction and contributions

– via a standard bootstrapping argument we can swap 3/4 by any δ ∈ (0, 1). This definition of

approximation scheme can be extended to the case when f : {0, 1}∗ → C by requiring instead

that, with probability at least 3/4, the output Y of the algorithm is a complex number with

Y = f(x)ez for some z ∈ C with |z| ≤ ε, see for instance [16]. If this algorithm runs in

polynomial time in |x| and 1/ε, we say that it is a fully polynomial randomised approximation

scheme (usually abbreviated as FPRAS). If, moreover, this algorithm is actually deterministic,

that is, it always computes y ∈ C with y = f(x)ez for some z ∈ C with |z| ≤ ε, we call it fully

polynomial-time approximation scheme (abbreviated as FPTAS). A reader that is not familiar

with approximate counting may be surprised that multiplicative approximations are chosen

when defining approximation schemes. We remark that this definition arises naturally in the

area both from an algorithmic perspective – Monte Carlo methods naturally yield multiplicative

approximations – and a hardness perspective – this notion of approximability leads to a rich

hierarchy of computational classes of counting problems via approximation preserving reductions,

see [39]. Moreover, it is worth noting that we can recover an evaluation of the partition function

(even on non-real parameters) from an accurate enough additive approximation, thus making

additive approximations not very interesting from a complexity point of view – in fact we will

exploit this idea in Chapter 2 of this thesis in some of our reductions.

One of the most relevant FPRAS for partition functions is that of Jerrum and Sinclair on the

Ising model when the edge interaction y is real, y ≥ 1 and there is no external field [76]. This

setting is known as the ferromagnetic Ising model. The case when y ∈ (0, 1) is known as the

antiferromagnetic Ising model, and it is not difficult to show that approximating the partition

function on these edge interactions is NP-hard [61]. Thus, the edge interaction y presents a

computational phase transition at y = 1. A more difficult problem is that of showing #P-hardness

of approximation of the partition function, and we address this problem in Chapter 2.

The algorithm of Jerrum and Sinclair is a Monte Carlo Markov Chain algorithm whose

analysis is based on the analysis of the conductance of a certain Markov chain. At the time of

writing this thesis we do not know other FPRAS that succeeds at approximating the partition

function of the Potts model on any input graph G (other than exact evaluation algorithms at

exceptional/easy points). A more promising field of research is that of finding an FPRAS for a

partition function when the graphs considered have bounded degree.

1.2.1 Phase transitions on bounded-degree graphs

The study of spin systems on bounded degree graphs has lead to the discovery of several

connections between statistical mechanics and approximate counting, and it has motivated

the development of several novel techniques to come up with fast approximation schemes. To

illustrate this connection, let us focus on the Ising model, keeping in mind that the ideas

mentioned here apply to other two-spin systems such as the hard-core model. Let ∆ ≥ 3 be

an integer. We are interested in the problem of approximating ZIsing(G;β) when the input

graph G has maximum degree at most ∆. In his seminal work on the independent set polynomial,

Page 19 of 212

Chapter 1. Introduction and contributions

Weitz discovered a connection between the physical behaviour of 2-spin systems on the infinite

(∆− 1)-regular tree [120], which had already been the focus of previous studies from the point

of view of statistical mechanics, and the complexity of approximating the partition function on

graphs with maximum degree at most ∆. Before introducing these ideas, let us briefly describe

the concept of Gibb measure. Roughly speaking, a Gibbs measure is a probability measure µ over

all configurations of an infinite tree such that the marginal of µ on any finite subtree T (possibly

with some vertices pinned to spins) agrees with the Gibbs distribution of the Ising model on T .

The infinite (∆− 1)-regular tree experiences a physical phase transition at βc = (∆− 2)/∆: for

edge interactions in (βc, 1) there is a unique Gibbs measure µ, whereas for edges interactions

in (0, βc) more than one Gibbs measure arise. This phase transition is related to the number

of macroscopic equilibrium of the spin system, see [119] for details. Uniqueness of the Gibbs

measure µ occurs when there is decay of correlations in (∆− 1)-regular trees, which essentially

means that the correlation or influence of a vertex v on the marginal of the root r, defined

as µ(r 7→ +|v 7→ +) − µ(r 7→ +|v 7→ −), where + and − are the two possible spins, decays

exponentially on the distance from the root to the vertex v (even if some vertices of the tree are

pinned to certain spins). Conversely, in the non-uniqueness regime, decay of correlations does

not hold and a boundary condition on a set of vertices can continue to have an effect on the

marginals of the root, even as the distance tends to infinity.

A key idea in the argument of Weitz is noting that correlations between two vertices r and v

on a finite graph G corresponds to correlations in the tree of self-avoiding walk of G starting at

r, thus, linking the partition function of the Ising model on graphs with maximum degree ∆

to Gibbs measures of the inifite (∆− 1)-regular tree. With this connection in place, one can

exploit decay of correlations to approximate marginals of the Gibbs distribution of the Ising

model on G, see [120] for details. As a consequence, when β > (∆− 2)/∆ there is an FPRAS

for ZIsing(−;β) on graphs with maximum degree at most ∆ [76, 107]. On the other hand, when

0 < β < (∆− 2)/∆, there is no FPRAS for ZIsing(−;β) on graphs with maximum degree at most

∆ unless NP = RP [52]. Thus, βc = (∆− 2)/∆ also behaves as a computational phase transition

for the Ising model. One issue with Weitz algorithm is that even if the running time is polynomial

in n, the exponent of the polynomial is O(log ∆). Very recently there has been a resurgence of

the Markov Chain Monte Carlo method based on spectral independence that leads to almost

linear sampling algorithms for spin systems in the uniqueness region (on bounded-degree graphs),

including the Ising model [7, 28, 19, 17]. Applications of spectral independence require us to

show that certain sums of correlations/influences are bounded. These applications usually rely

on decay of correlations ideas to prove this bound. The obtained sampling results can be then

used to obtain to approximation schemes via self-reducibility arguments [77]. In this thesis, we

exploit spectral independence arguments in the context of the random k-SAT model, obtaining

the first application of spectral independence that holds even when decay of correlation fails. We

will come back to our spectral independence results in Section 1.5, where we give more details

about the ideas behind this technique.

Page 20 of 212

Chapter 1. Introduction and contributions

1.2.2 Why complex numbers?

Due to the difficulty of determining the complexity of the approximation problem, most approxi-

mate counting publications on these partition functions restrict their attention to real parameters.

However, given their origin in statistical mechanics, partition functions were studied on non-real

parameters since the very beginning. In fact, the framework of viewing partition functions

as polynomials in the complex plane of the underlying parameters has been well-explored in

statistical physics [121, 69, 85, 122, 12]. Indeed, as pointed out in [109], the possible points of

physical phase transitions are precisely the real limit points of complex zeros of the partition

function, and, thus, complex zeroes of partition functions have long been studied in the context

of statistical mechanics [122]. This problem has recently gained traction in computer science

in the context of approximate counting. On the positive side, zero-free regions in the complex

plane translate into efficient algorithms for approximating the partition function [8, 101] and this

scheme has lead to a broad range of new algorithms even for positive real values of the underlying

parameters [88, 103, 87, 104, 10, 62, 63, 65]. On the negative side, the presence of zeros poses a

barrier to this approach and, in fact, it has sometimes been demonstrated that zeros mark the

onset of computational hardness for the approximability of the partition function [59, 55, 16, 15].

A key approach in all of these applications, and one that we will also develop in this thesis, is

the connection to complex dynamics, we give more details in Section 1.4 of this introduction.

Coming back to approximation schemes based on zero-free regions, as noted by Barvinok

[8], one can exploit the analytic properties of the partition function to obtain an analytic

approximation of logZ via its Taylor series, which in turns yields a multiplicative approximation

of the partition function. This tool turns out to be particularly powerful in the context of

bounded-degree graphs, where we can compute the first O(log n) coefficients of the Taylor series

of logZ in polynomial time for a multitude of partition functions, see [101, 102], including the

Ising model among others. We exploit these promising ideas in Chapter 3, where we give a

novel zero-free region for the Ising model on bounded degree graphs (see Section 1.4 of this

introduction for more details). With this background and motivation in mind, we are ready to

describe the main results of this thesis.

1.3 Approximating the partition function of the Potts model

In Chapter 2 we study the complexity of approximating the partition function of the Potts

model and the Tutte polynomial on planar graphs as the parameter y ranges in the complex

plane. In this section we describe previous work as well as our novel results on this question.

1.3.1 Overview of previous work

Traditionally, this problem has been mainly considered in the case where y is a positive real,

however as explained in Section 1.2, recent developments have shown that for various models,

including the Ising and Potts models, there is a close interplay between the location of zeros of

Page 21 of 212

Chapter 1. Introduction and contributions

the partition function in the complex plane and the approximability of the problem, even for

positive real values of y.

The only known hardness of approximation result that applies for general values y in the

complex plane is by Goldberg and Guo [55], which addresses the case q = 2 (the Ising model) on

non-real edge interactions. For general (non-planar) graphs and non-real y, Goldberg and Guo

show #P-hardness on the non-real unit circle (|y| = 1) with y ̸= ±i, and establish NP-hardness

elsewhere. The case q ≥ 3 is largely open apart from the case when y is real which has been

studied extensively even for planar graphs [76, 57, 56, 59, 84, 55]. We will review all these results

more precisely in the next section, where we also state our main theorems.

1.3.2 Results

In this thesis, we completely classify the complexity of approximating ZPotts(G; q, y) for q ≥ 2

and non-real y, even on planar graphs G; in fact, our results also classify the complexity of

approximating the Tutte polynomial on planar graphs for reals q ≥ 2 and non-real γ. Along the

way, we also answer a question for the Jones polynomial raised by Bordewich, Freedman, Lovász,

and Welsh [20].

To formally state our results, we define the computational problems we consider. Let K and

ρ be real algebraic numbers with K > 1 and ρ ∈ (0, π/2). We investigate the complexity of the

following problems for any integer q with q ≥ 2 and any algebraic number y.1

Name: Factor-K-NormPotts(q, y)

Instance: A (multi)graph G.

Output: If ZPotts(G; q, y) = 0, the algorithm may output any rational number. Otherwise, it

must output a rational number N̂ such that N̂/K ≤ |ZPotts(G; q, y)| ≤ KN̂ .

Name: Distance-ρ-ArgPotts(q, y)

Instance: A (multi)graph G.

Output: If ZPotts(G; q, y) = 0, the algorithm may output any rational number. Otherwise, it

must output a rational Â such that, for some a ∈ arg(ZPotts(G; q, γ)), |Â− a| ≤ ρ .

A well-known fact is that the difficulty of the problems Factor-K-NormPotts(q, γ) and

Distance-ρ-ArgPotts(q, y) does not depend on the constants K > 1 and ρ ∈ (0, π/2). This

can be proved using standard powering techniques (see [55, Lemma 11] for a proof when q = 2).

In fact, the complexity of Factor-K-NormPotts(q, y) is the same even for K = 2n
1−ε

for any

constant ε > 0 where n is the size of the input.

In the special case that q equals 2, we omit the argument q and write Ising instead of

Potts in the name of the problem. Similarly, when the input of the problems is restricted

to planar graphs, we write PlanarPotts instead of Potts. We also consider the problems

1For z ∈ C\{0}, we denote by |z| the norm of z, by Arg(z) ∈ [0, 2π) the principal argument of z and by arg(z)

the set {Arg(z) + 2πj : j ∈ Z} of all the arguments of z, so that for any a ∈ arg(z) we have z = |z| exp(ia).

Page 22 of 212

Chapter 1. Introduction and contributions

Factor-K-NormTutte(q, γ) and Distance-ρ-ArgTutte(q, γ) for the Tutte polynomial

when q, γ are algebraic numbers. Note also that, when q, γ are real, the latter problem is

equivalent to finding the sign of the Tutte polynomial, and we sometimes write SignTutte(q, γ)

(and SignPlanarTutte(q, γ) for the planar version of the problem).

Our first and main result of Chapter 2 is a full resolution of the complexity of approximating

ZPotts(G; q, y) for q ≥ 3 and non-real y. More precisely, we show the following.

Theorem 1.1. Let q ≥ 3 be an integer, y ∈ C\R be an algebraic number, and K > 1. Then, the

problems Factor-K-NormPlanarPotts(q, y) and Distance-π/3-ArgPlanarPotts(q, y)

are #P-hard, unless q = 3 and y ∈ {e2πi/3, e4πi/3} when both problems can be solved exactly in

polynomial time.

We remark that, for real y > 0, the complexity of approximating ZPotts(G; q, y) on planar

graphs is not fully known, though on general graphs the problem is #BIS-hard [56] and NP-hard

for y ∈ (0, 1) [57], for all q ≥ 3. For real y < 0, the problem is NP-hard on general graphs when

y ∈ (−∞, 1− q] for all q ≥ 3 ([59])2 and #P-hard on planar graphs when y ∈ (1− q, 0) and q ≥ 5

([84], see also [58]). Our techniques for proving Theorem 1.1 allow us to resolve the remaining

cases q = 3, 4 for y ∈ (1− q, 0) on planar graphs, as a special case of the following theorem that

applies for general q ≥ 3. This is our second main result of Chapter 2.

Theorem 1.2. Let q ≥ 3 be an integer, y ∈ (−q + 1, 0) be a real algebraic number, and K > 1.

Then Factor-K-NormPlanarPotts(q, y) and Distance-π/3-ArgPlanarPotts(q, y) are

#P-hard, unless (q, y) = (4,−1) when both problems can be solved exactly in polynomial time.

Our third main contribution is a full classification of the range of the parameters where

approximating the partition function of the Ising model is #P-hard. On planar graphs G,

ZIsing(G; y) can be computed in polynomial time for all y, see, for instance, [116]. For general

(non-planar) graphs and non-real y, our next result shows that the NP-hardness results of [55]

can be elevated to #P-hardness.

Theorem 1.3. Let y ∈ C\R be an algebraic number, and K > 1. Then, Factor-K-NormIsing(y)

and Distance-π/3-ArgIsing(y) are #P-hard, unless y = ±i when both problems can be solved

exactly in polynomial time.

For real y, we remark that the problems of approximating ZIsing(G; y) and determining

its sign (when non-trivial) are well-understood:3 the problem is FPRASable for y > 1, NP-

hard for y ∈ (0, 1) ([76]), #P-hard for y ∈ (−1, 0) [55, 59], and equivalent to approximating

2Note, for y ∈ (−∞, 1 − q) ∪ [0,∞), #P-hardness is impossible (assuming NP ̸= #P): finding the sign

of ZPotts(G; q, y) is easy, even on non-planar graphs ([59]), and ZPotts(G; q, y) can be approximated using an

NP-oracle. For y = 1− q, the same applies when q ≥ 6; the cases q ∈ {3, 4, 5} are not fully resolved though [59]

shows that q = 3, 4 are NP-hard, whereas q = 5 should be easy unless Tutte’s 5-flow conjecture is false [121,

Section 3.5].
3Analogously to Footnote 2, for y ∈ (−∞,−1) ∪ (0, 1) #P-hardness is unlikely since the problem can be

approximated with an NP-oracle.

Page 23 of 212

Chapter 1. Introduction and contributions

#PerfectMatchings for y < −1 [57]. For y = 0,±1, ZIsing(G; y) can be computed exactly in

polynomial time.

1.3.3 Brief proof outline

In previous #P-hardness results for approximating the Tutte polynomial, the main technique was

to reduce the problem of counting the number of (s, t)-cuts with minimum possible cardinality

(denoted #MinimumCardinality (s, t)-Cut, see [59, 55] for a definition) to the problem of

approximating ZTutte(G; q, γ) using an elaborate binary search based on suitable oracle calls.

Key to these oracle calls are gadget constructions which are mainly based on planar graphs

which “implement” points (q′, γ′); this means that, by pasting the gadgets appropriately onto the

input graph G, the computation of ZTutte(·; q′, γ′) reduces to the computation of ZTutte(·; q, γ).

Much of the work in [59, 55], and for us as well, is understanding what values (q′, γ′) can be

implemented starting from (q, γ).

For planar graphs, while the binary-search technique from [55] is still useful, we have to use a

different overall reduction scheme since the problem #MinimumCardinality (s, t)-Cut is not

#P-hard when the input is restricted to planar graphs [106]. To obtain our #P-hardness results

our plan instead is to reduce the problem of exactly evaluating the Tutte polynomial for some

appropriately selected parameters q′, γ′ to the problem of computing its sign and the problem

of approximately evaluating it at parameters q, γ; note, this gives us the freedom to use any

parameters q′, γ′ we wish as long as the corresponding exact problem is #P-hard. Then, much

of the work consists of understanding what values (q′, γ′) can be “ approximately implemented”

starting from (q, γ), with the added difficulty that γ here may be non-real. We conclude that for

q > 2 and γ non-real we can indeed implement an arbitrarily close approximation to any (q, γ̂)

for any γ̂ ∈ R. The gadgets constructed in our results are planar; we give more details about

these constructions in an extended proof outline in Section 2.1.

1.3.3.1 Consequences of our techniques for the Tutte/Jones polynomials

While our main results are on the Ising/Potts models, in order to prove them it is convenient

to work in the “Tutte world”; this simplifies the proofs and has also the benefit of allowing

us to generalise our results to non-integer q. The following result generalises Theorem 1.1 to

non-integer q > 2.

Theorem 1.4. Let q > 2 be a real, γ ∈ C\R be an algebraic number, and K > 1. Then,

Factor-K-NormPlanarTutte(q, γ) and Distance-π/3-ArgPlanarTutte(q, γ) are #P-

hard, unless q = 3 and γ + 1 ∈ {e2πi/3, e4πi/3} when both problems can be solved exactly in

polynomial time.

After the results in this section were made public, our Theorem 1.4 has been reproved in [14],

extending the range of q and y where it applies. More precisely, [14, Corollary 13] shows that

Factor-K-NormPlanarTutte(q, y − 1) and Distance-π/3-ArgPlanarTutte(q, y − 1)

Page 24 of 212

Chapter 1. Introduction and contributions

are #P-hard for all pairs (q, y) ∈ C2 \ R2 with q ̸∈ {0, 1, 2} such that one of the following

conditions hold:

1. |y| > 1;

2. |1− q| > 1 or Re(q) > 3/2, except when y = 1 or (q, y) ∈ {(3, e2πi/3), (3, e4πi/3)}.

Note that the exceptions y = 1 and (q, y) ∈ {(3, e2πi/3), (3, e4πi/3)} given in Item 2 are included

in our Theorem 1.4 as the Tutte polynomial ZTutte(·; q, y − 1) can be evaluated in polynomial

time at these points. The proof given in [14] uses our reduction from exact evaluation of the

Tutte polynomial to approximating the norm or the argument of the partition function. The

main difference between both works is the techniques used to develop the implementation results;

[14] exploits the connection between complex dynamics and partition functions that we present in

Chapter 3 whereas our proof of Theorem 1.4 carefully constructs these implementations exploiting

the fact that q > 2. In particular, in the proofs of [14] the authors apply the constructions of

series-parallel graphs presented in Section 3.6.3 with some modifications.

Our techniques can further be used to elevate previous NP-hardness results of [59, 57] in the

Tutte plane to #P-hardness for planar graphs, and answer a question on the Jones polynomial

at roots of unity, raised by Bordewich et al. in [20]. Regarding the latter application, in [20]

the authors show that polynomial-sized quantum circuits can be simulated by determining

the sign of the real part of the Jones polynomial of a link at certain roots of unity and, thus,

wondered about the hardness of the latter problem. We show that determining this sign is

actually #P-hard. A more detailed discussion can be found in Section 2.6.

1.4 Approximating the partition funtion of the Ising model on

bounded-degree graphs

In Chapter 3 we present further work on the complexity of approximating the partition function

of the Ising model, this time in terms of the interaction between the edge interaction (denoted β

in this section following standard notation for the Ising model) and a parameter ∆ ≥ 3 which

is an upper bound on the maximum degree of the input graph G. Recall that for arbitrary

graphs (∆ = ∞), we have shown that the approximation problem is #P-hard except at the

easy points β ∈ {0,±1,±i} (Theorem 1.3). As we have mentioned in Section 1.2, the situation

changes for bounded-degree graphs, where approximation schemes based on Barvinok method

on zero-free regions can be found for edge interactions close to β = 1. Motivated by these

recent techniques and the powerful connection between complex dynamics and 2-spin systems

on complex parameters developed in [16], we explore the complexity picture for graphs with

maximum degree ∆.

Page 25 of 212

Chapter 1. Introduction and contributions

1.4.1 Overview of previous work

Before describing our results, we briefly describe existing work on the problem of approximating

the partition function of the Ising model. Let ∆ ≥ 3 be an integer. When the input graph G has

maximum degree at most ∆, this problem has already been well studied in the case where β is a

positive real. As described in Section 1.2, when β > (∆−2)/∆ there is an FPRAS for ZIsing(−;β)

on graphs with maximum degree at most ∆ [76, 107]. When 0 < β < (∆− 2)/∆, there is no

FPRAS for ZIsing(−;β) on graphs with maximum degree at most ∆ unless NP = RP [52].

The complexity of approximation is mostly not understood when β is complex. Prior to

this work, there was no inapproximability result for any non-real edge interactions. Indeed, the

reductions developed in Chapter 2 do not hold when the set of graphs is restricted to those

having maximum degree at most ∆; the main issue with these reductions is that most of the

gadgets used blow up the degree of the vertices of the graph. Therefore, a different approach is

needed. Regarding tractability results, zero-free regions of the partition function of the Ising

model have been the focus of recent publications [9, 86, 89]. Nonetheless, these regions turn out

to be far from optimal as we will see in Section 3.3.2 (see Figure 1.1 in this introduction for the

case ∆ = 3).

1.4.2 Results

In this thesis we shed some light on this approximability problem by significantly extending the

known zero-free regions (leading to approximation schemes) and by giving an inapproximability

result that covers most of the complex plane. Our zero-free region for the Ising model is stated

in Theorem 1.5.

Theorem 1.5. Let ∆ be an integer with ∆ ≥ 3. Let G = (V,E) be a graph of maximum degree

at most ∆. Let ε∆ = tan(π/(4(∆ − 1))) ∈ (0, 1). Then ZIsing(G;β) ̸= 0 for all β ∈ C with

|β − 1|/|β + 1| ≤ ε∆.

Theorem 1.5 can be applied in conjunction with the algorithms of Barvinok, and Patel and

Regts [8, 101] to obtain an FPTAS for ZIsing(−;β), giving the following corollary. Note that our

approximability results are stated for algebraic edge interactions, as we did in Section 1.3, since

they allow for efficient computation, see Section 2.2 and the references therein for more details.

Corollary 1.6. Let ∆ be an integer with ∆ ≥ 3. Let β be an algebraic number such that

|β − 1|/|β + 1| < ε∆, where ε∆ = tan(π/(4(∆− 1))). Then there is an algorithm that, on inputs

a graph G with maximum degree at most ∆ and a rational ε > 0, runs in time poly(size(G), 1/ε)

and outputs Ẑ = ZIsing(G;β)ez for some complex number z with |z| ≤ ε.

Page 26 of 212

Chapter 1. Introduction and contributions

0
1

−1 ∆−2
∆

∆
∆−2

i

−i

Re(β)

Im(β)

Figure 1.1: Zero-free regions for the partition function of the Ising models on graphs with maximum

degree ∆ = 3. The following four regions have been plotted:

• The large disk corresponds to the region given in Theorem 1.5.

• The small dotted disk corresponds to |β − 1|/|β + 1| ≤ δ∆, where δ∆ is as in (3.8), and it contains the

regions stated in Corollaries 3.20 and 3.21 due to Barvinok, Mann and Bremner [8, 89].

• The diamond-shaped region corresponds to the zero-free region given in [9] by Barvinok and Barvinok

(see Theorem 3.24 for the statement).

• The segment joining (∆− 2)/∆ and ∆/(∆− 2) corresponds to the region given in [86] by Liu, Sinclair

and Srivastava (see Theorem 3.23 for the statement).

Theorem 1.5 significantly extends the zero-free regions given in [9, 8, 86, 89]. The case

∆ = 3 is depicted in Figure 1.1. In fact, the zero-free regions of Barvinok, and Mann and

Bremner [8, 89] are contained in our result for any ∆ ≥ 3, see Section 3.3.2 for a detailed

description of these zero-free regions. In [89] the authors also discuss how an FPRAS for the

partition function of the Ising model on bounded-degree graphs can be used to strongly simulate

certain classes of IQP circuits. We note that their quantum simulation results are also extended

as a consequence of Theorem 1.5.

When it comes to hardness results on complex edge interactions, we are not aware of any

hardness result in the literature that covers non-real edge interactions. Our hardness result is given

in Theorem 1.7. First, let us introduce some notation. We consider the problem of multiplicatively

approximating the norm of ZIsing(G;β) and the problem of additively approximating the principal

argument of ZIsing(G;β) for a fixed algebraic number β. These computational problems can be

formally stated as follows. Let K > 1 and ρ ∈ (0, π/2) be real numbers.

Name: IsingNorm(β,∆,K)

Instance: A (multi)graph G with maximum degree at most ∆.

Output: If ZIsing(G;β) = 0, then the algorithm may output any rational number. Otherwise,

it must output a rational number N̂ such that N̂/K ≤ |ZIsing(G;β)| ≤ KN̂ .

Page 27 of 212

Chapter 1. Introduction and contributions

Name: IsingArg(β,∆, ρ)

Instance: A (multi)graph G with maximum degree ∆.

Output: If ZIsing(G;β) = 0, then the algorithm may output any rational number. Otherwise,

it must output a rational number Â such that for some a ∈ arg(ZIsing(G;β)) we have

|a− Â| ≤ ρ.

It is important to note that each choice of the parameters β,∆,K, ρ gives a different

computational problem. As noted in Section 1.3, by a standard powering argument of the

partition function, the choice of K and ρ does not change the hardness of the problem (as long

as K > 1 and ρ ∈ (0, π/2)), see [55, Lemma 3.2].

Theorem 1.7. Let ∆ be an integer with ∆ ≥ 3 and let β ∈ C be an algebraic number such that

β ̸∈ R∪{i,−i} and |β− 1|/|β + 1| > 1/
√

∆− 1. Then the problems IsingNorm(β,∆, 1.01) and

IsingArg(β,∆, π/3) are #P-hard.

0
1

−1

i

−i

β0

Re(β)

Im(β)

Figure 1.2: The complexity of approximating the partition function of the Ising model on graphs with

maximum degree ∆ = 3 and β ∈ C \ R.

• Theorem 1.7: when |β − 1|/|β + 1| > 1/
√

∆− 1 and β ̸∈ {i,−i}, IsingNorm(β,∆, 1.01) and

IsingArg(β,∆, π/3) are #P-hard (region outside the large dotted red circle).

• Corollary 3.44: there are points β0 ∈ C \ R with |β0 − 1|/|β0 + 1| < 1/
√

∆− 1 such that

ZIsing(G;β0) = 0 for some graph G with maximum degree ∆. The problems IsingNorm(β0,∆, 1.01) and

IsingArg(β0,∆, π/3) are #P-hard.

• Theorem 1.5: there is an FPTAS for ZIsing(−;β) when |β − 1|/|β + 1| < tan(π/(4∆− 4)) (region inside

the small green circle).

• Theorem 3.23 by Liu, Sinclair and Srivastava [86]: the interval ((∆− 2)/∆,∆/(∆− 2)) is contained in

an open zero-free region (thick segment on the real line), so there is an FPTAS for ZIsing(−;β).

◦ The points 0, 1,−1, i and −i are easy points of the Ising model: the partition function can be evaluated

at these points in polynomial time in the size of the input graph [73].

Corollary 1.6 and Theorem 1.7 leave the complexity of the problems IsingNorm(β,∆, 1.01)

Page 28 of 212

Chapter 1. Introduction and contributions

and IsingArg(β,∆, π/3) unaddressed for those edge interactions β ̸∈ R such that

tan
(π

4(∆− 1)

)
≤
∣∣∣∣β − 1

β + 1

∣∣∣∣ ≤ 1√
∆− 1

. (1.6)

It turns out that the partition function has zeros inside the region given by (1.6) (see Corol-

lary 3.44). Moreover, we show that if there is a “nice” graph G such that ZIsing(G;β) = 0,

then IsingNorm(β,∆, 1.01) and IsingArg(β,∆, π/3) are #P-hard, see Lemma 3.43 and Corol-

lary 3.45. This allows us to find points β as in (1.6) such that the approximation problems are

#P-hard, as depicted in Figure 1.2.

1.4.3 Brief proof outline

In the proof of Theorem 1.5 we use the SAW tree construction of Godsil and Weitz [54, 120] to

reduce the study of zero-free regions of partition functions on graphs to the study of zero-free

regions of partition functions on trees (see Section 3.2.1 for details). The partition function of

a two-spin system on a tree admits a recurrence expression that can be studied to find such

zero-free regions. This approach has been successfully applied in the literature for the Ising

model and other partition functions [86, 13, 16]. In our work we exploit the properties of the

Mobius function hβ(z) = (βz + 1)/(β + z) appearing in this recurrence for the Ising model. This

Mobius function satisfies the equality

hβ(z)− 1

hβ(z) + 1
=

(β − 1)(z − 1)

(β + 1)(z + 1)
,

which neatly relates properties of (β − 1)/(β + 1) to properties of the partition function of the

Ising model on trees, and greatly simplifies the derivation of the zero-free region of Theorem 1.5.

In order to obtain our inapproximability results, we construct graphs H with maximum

degree at most ∆ and two distinguished vertices s, t with degree 1 such that substituting an

edge in the host graph with (H, s, t) has the effect of altering the edge interaction β of the

original edge to a new edge interaction β′. In this case, we say that H (β,∆)-implements β′, see

Section 3.2.3 for a formal definition. As explained in Section 1.3, implementations have played

an important role in proofs of hardness of evaluating and approximating partition functions,

and they are the main tool to reduce exact computation to approximate computation via a

binary search [15, 59]. Here we take advantage of our results developed in Chapter 2 to reduce

approximate computation of the partition function to exact computation. Then we exploit

arguments from complex dynamics to (β,∆)-implement approximations of any complex edge

interaction. The key idea is coming up with a recurrent construction, so that starting at an

edge interaction z, we can implement g(z∆−1) for some Mobius map g. Then we can analyse

which points we can reach by iteratively applying g(z∆−1). The technical details are quite

convoluted as we can not afford the size of our gadgets to blow up, we refer to the full proof

outline presented in Section 3.1 for more details. After we made this work public, our results

on the connection between complex dynamics and implementations have been applied in the

Page 29 of 212

Chapter 1. Introduction and contributions

context of the Tutte and Chromatic polynomials in [14], where the authors analyse the Mobius

map fq(z) = 1 + q/(z− 1) and include several improvements to our approach that allow them to

conclude hardness for of approximation for planar graphs (maximum degree is not bounded)

for a large family of parameters of the Tutte polynomial, improving Theorem 1.4 of this thesis

significantly as a consequence (see the paragraph after Theorem 1.4 for a statement of their

result).

1.5 Sampling satisfying assignments from the random k-SAT

model

In Chapter 4 we study the random k-SAT model, which we have introduced in Section 1.1.3 from

the point of view of statistical mechanics. We are motivated by the increasing interest in the

computational problem of sampling satisfying assignments of a k-CNF formula Φ uniformly at

random and the recent progress in the spectral independence framework to prove fast mixing of

certain Markov chains. Sampling is closely connected to the problem of estimating the number

of satisfying assignments of Φ, which corresponds to the partition function of the model, see

Section 1.1.3, and we will delve into this connection in this section.

1.5.1 Overview of previous work

Regarding the algorithmic problem of sampling satisfying assignments uniformly at random,

in the random k-SAT model progress has been slower relative to other well-studied models on

random graphs (such as k-colourings or independent sets). One of the main reasons for this is

that the usual distribution properties that are typically used to obtain fast algorithms (such as

correlation decay and spatial mixing) fail to hold for densities as low as α = ok(1) [95]. These

issues are in fact present already in the bounded-degree k-SAT setting, where the formulae are

worst-case but every variable is constrained to have a bounded number of occurrences. For

random formulae, these issues are further aggravated by the fact that the degrees of a linear

number of variables are unbounded. Very recently, [49] gave an approximate counting algorithm

(FPTAS) for the number of satisfying assignments of Φ when k is large enough and α ≲ 2k/300

(where ≲ hides a polynomial factor in 1/k). This algorithm elevates Moitra’s counting method

for bounded-degree k-SAT [93] to the random formula setting, and is the first polynomial-time

approximate-counting algorithm to achieve an exponential-in-k bound on α. However, its running

time is nexp(Θ(k)) because the algorithm repeatedly has to enumerate local structures (including

solving LPs as a subroutine), which does not scale well with k. Hence, the problem of finding a

fast algorithm for sampling the satisfying assignments in the random k-SAT model has remained

open.

Page 30 of 212

Chapter 1. Introduction and contributions

1.5.2 Results

In this work we give a fast algorithm that in time n1+ok(1) approximately samples satisfying

assignments of a random k-SAT formula of density α ≤ 20.039k, within arbitrarily small polynomial

error. Our work also delves into the connections between the solution space geometry of k-CNF

Φ and algorithms for efficiently sampling from the solutions of Φ.

To formally state our main result, we say that an event E regarding the choice of the random

formula Φ holds with high probability (abbreviated w.h.p.) if Pr(E) = 1− o(1) as n→∞, see

Section 1.1.3 for the definition of random formula used in this probability distribution. The

total variation distance between two probability distributions µ and ν over the same space Ω is

given by 1
2

∑
x∈Ω|µ(x)− ν(x)| and is denoted by dTV(µ, ν). Our main result can now be stated

as follows.

Theorem 1.8. For any real θ ∈ (0, 1), there is k0 ≥ 3 with k0 = O(log(1/θ)) such that, for any

integers k ≥ k0 and ξ ≥ 1, and for any positive real α ≤ 20.039k, the following holds.

There is an efficient algorithm to sample from the satisfying assignments of a random k-CNF

formula Φ = Φ(k, n, ⌊αn⌋) within n−ξ total variation distance of the uniform distribution. The

algorithm runs in time O(n1+θ), and succeeds w.h.p. over the choice of Φ.

Using standard techniques from the literature, this O(n1+θ) uniform sampling algorithm can

be used to obtain a randomised approximation scheme for counting satisfying assignments of Φ

in time O(n2+θ/ε2), where ε is the multiplicative error, see [43, Section 7] and Remark 4.51 for

details.

1.5.3 Brief proof outline

A unifying theme of previous approaches to counting and sampling CSP solutions is a tool called

marking, first introduced in [93], which finds a set of “marked” variables such that the set of

satisfying assignments projected on these variables is connected. Marking is also an essential

step in the developing of our sampling algorithm. Our algorithm first runs a Markov chain to

sample assignments of a judiciously-chosen subset of marked variables of Φ (from the relevant

marginal distribution), and subsequently extending this random assignment to all the variables.

This has the advantage that it avoids the enumeration of local structures, and in fact achieves

a nearly-linear running time. We give a high-level overview of the techniques developed in

our proofs in Section 4.1. Roughly, our Markov chain is a uniform-block Glauber dynamics

which, interestingly, mixes quickly despite the presence of high-degree variables in the random

formula. The main point of departure from similar approaches that have been applied to the

bounded-degree setting is that we completely circumvent sophisticated coupling arguments that

have been used there and which are unfortunately severely constricted by the unbounded degrees

in our setting (and made inapplicable). Instead, our main technical contribution is to show that

the stationary distribution of our chain is (ck log n)-spectrally independent for some constant

c ∈ (0, 1), allowing us to apply recently-developed tools in the analysis of Markov chains. Unlike

Page 31 of 212

Chapter 1. Introduction and contributions

most applications of spectral independence, our proof does not rely on correlation decay (which,

as we mentioned, fails to hold for densities exponential in k). We show our spectral-independence

bounds by relating the probabilistic properties of the solution space with the structure of the

formula using coupling techniques, so that we can exploit local sparsity properties of random

k-SAT. We refer to Section 4.1 for an extended proof outline.

1.5.4 The geometry of the space of satisfying assignments

Our results can be applied to analyse the solution space geometry of random k-CNF formulae

for the densities under consideration. Many involved heuristics in statistical physics make

predictions about the geometry of the solution space of a random k-CNF instance, often

depicted in diagrams like Figure 1.3. Some phases and transitions in this diagram are precisely

understood. For example, as mentioned above, the satisfiability threshold (pictured in the

transition to the rightmost image in Figure 1.3) was determined by [38]. Another transition of

interest is the clustering threshold, above which the solution space of a random k-CNF shatters

into exponentially many linearly separated connected components, each of which contains an

exponentially small fraction of the satisfying assignments of the formula, as rigorously understood

in [33, 3, 90, 96].

Figure 1.3: Heuristic phase diagrams such as above [83] depict the predicted evolution of the structure of

the solution space of a random k-CNF as the density α of the formula increases from left to right. We

primarily study the leftmost regime.

In the lower-density regime, the solution space geometry of random k-CNFs appears poorly

understood. It is widely believed that beneath a critical clause density, the solution space of a

random k-CNF is “connected.” However, from the literature, it is not even clear what “connected”

means. Connectivity is sometimes used in the statistical physics literature as a characterization

of the entropy or energy profile of the solution space of a random k-CNF formula as in [124]. In

such settings, connectivity is often characterized by an absence of clustering behavior, leaving

somewhat of a mystery as to the graphical properties of the solution space of a low density

random k-CNF.

Conjectures about connectivity take different forms, and different notions of what connectivity

might mean are articulated in [124, 83, 33]. The most common precise notion of connectivity is

with respect to Hamming distance, i.e. understanding connectivity properties of the graph of

solutions to a random k-CNF, where solutions are f(n)-connected if their Hamming distance

is at most f(n). At lower densities, random k-CNFs can still have isolated solutions far in

Page 32 of 212

Chapter 1. Introduction and contributions

Hamming distance from other satisfying assignments. However, the prevailing belief is that

below some threshold, the overwhelming majority of solutions to a random k-CNF lie in a giant

component that is o(n)-connected.

Much more is known about related notions and local versions of connectivity, like looseness,

which characterises how rigid a particular satisfying assignment is. Roughly speaking, a satisfying

assignment to a formula is f(n)-loose if any variable can be flipped to yield a new satisfying

assignment by changing at most f(n) additional variable assignments. In [1], the authors showed

o(n)-looseness holds in the connectivity regime for related, simpler random models, random

q-coloring, and hypergraph 2-coloring, conjecturing that o(n)-looseness holds for random k-CNF

instances below the clustering threshold. This conjecture was partially resolved in [33], where

in an analysis of the decimation process for random k-SAT, the authors observed that with

high probability over formulae and satisfying assignments, at least 99% of the variables were

O(log n)-loose. Looseness, however, is a local notion, not a global one. The set of elements in

{0, 1}n that have Hamming weight at least 2n/3 or at most n/3 is 1-loose, but Ω(n)-connected.

We will concern ourselves with the following precise notion of connectivity.

Definition 1.9 (D-Connectivity). Let Φ = (V, C) be a k-CNF formula. For any assignment

Λ: V → {F,T}, let ∥Λ∥1 be the number of variables Λ assigns to be T. Throughout, we implicitly

consider variable assignments in Fn
2 , so ∥ · ∥1 encodes Hamming weight and ∥Λ1 − Λ2∥1 encodes

Hamming distance.

We say a sequence of satisfying assignments ζ0 ↔ ζ1 ↔ · · · ↔ ζℓ of Φ is a D-path if

∥ζi − ζi−1∥1 ≤ D for each i ∈ [t]. We say two satisfying assignments of Φ, Λ,Λ′ ∈ Ω, are

D-connected if there exists a D-path connecting Λ and Λ′ (that is, ζ0 = Λ and ζℓ = Λ′).

Marking-based deterministic and MCMC algorithms are mysterious at first glance, as they

enable counting and sampling of k-CNF solutions even in regimes where the solution space is

disconnected (i.e. not 1-connected). In this work, we leverage the idea of marking in a novel way

to construct paths that certify global connectivity properties of the solution space of k-CNFs at

densities close to where counting algorithms are known.

Theorem 1.10. There is k0 ≥ 3 and a polynomial p(k) with non-negative integer coefficients

such that, for any integer k ≥ k0, and for any positive real α ≤ 20.227k, the following claim

holds with high probability over the choice of a random k-CNF formula Φ = Φ(k, n, ⌊αn⌋). Two

satisfying assignments chosen uniformly at random are p(k) log(n)-connected with probability at

least 1− 1/n.

In fact, we show it suffices to take p(k) = 2k5. Our new applications of marking also

have implications for other, more local, structural properties of the k-CNF solution space, like

looseness.

Definition 1.11. Given a k-CNF formula Φ = (V, C) and a satisfying assignment Λ, a variable

v ∈ V is f(n)-loose with respect to Λ if there exists a satisfying assignment to Φ, τ ∈ Ω, with

τ(v) ̸= Λ(v) and ∥Λ− τ∥1 ≤ f(n).

Page 33 of 212

Chapter 1. Introduction and contributions

For a random k-CNF formula Φ = Φ(k, n,m) and a satisfying assignment Λ chosen uniformly

at random, we say that Φ is f(n)-loose if with high probability over (Φ,Λ), all variables v ∈ V

are f(n)-loose with respect to Λ.

We observed earlier that looseness does not imply connectivity; in fact, the other direction of

implication is also false as looseness is an incomparable goal to connectivity. Looseness requires

that locally, we are able to flip any variable and get to a nearby solution rather than merely the

existence of a path away from a solution. Nonetheless, we are able to deduce some nontrivial

results about the looseness of the solution space of random k-CNFs.

Theorem 1.12. There is k0 ≥ 3 such that, for any integer k ≥ k0, and for any positive real

α ≤ 20.227k, the random k-CNF formula Φ(k, n, ⌊αn⌋) is poly(k) log(n)-loose.

We note here that, independently of this work, He, Wu, and Wang [68] also obtained sampling

algorithms for random k-CNF formulae. The approach of [68] is based on bounding chains

following the recursive sampler method developed in [6, 67, 66]. Their algorithm works up

to densities roughly equal to 2k/3 and samples satisfying assignments within ε total variation

distance of the uniform distribution in time (n/ε)1+O(k−5).

1.6 Organisation of this thesis

The rest of this thesis is organised as follows. In Chapter 2 we prove our results on the hardness

of approximating the partition function of the Potts model on complex edge interactions, which

we have stated in Section 1.3. In Chapter 3 we study the complexity map of approximating the

partition function of the Ising model on bounded-degree graphs, proving the results plotted in

Figure 1.2, see Section 1.4. In Chapter 4 we describe our almost linear sampler for satisfying

assignments of random k-CNF formulas and prove its correctness, yielding an almost quadratic

algorithm to approximate the partition function of the random k-SAT model. Finally, in

Chapter 5 we present the conclusions and open questions derived from this thesis. Chapters 2, 3

and 4 follow the following organisation. Each chapter starts with a detailed outline of the proof

approach, which extends the proof outline given in this introduction and should help the reader

to follow the chapter. This proof outline contains informal definitions of the concepts used, that

will be formalised later in the chapter, and states the main technical lemmas of each chapter.

Then, the second section of each chapter contains the preliminary material needed to follow our

proofs. Chapter 4 is an exception to this rule, as the preliminaries and the proof outline are

presented at the same time for ease of reading, as our technical lemmas require us to provide a

lot of notation in order to state them. After the proof outline and preliminary material, each

chapter delves into the technical aspects of our work following the proof outline, the main results

of each chapter have been stated in this introduction.

Page 34 of 212

Chapter 2

The complexity of approximating the

complex-valued Potts model

◦ This chapter is based on the following publication:

Andreas Galanis, Leslie Ann Goldberg, and Andrés Herrera-Poyatos. The complexity of

approximating the complex-valued potts model. Comput. Complexity, 31(1):Paper No. 2,

2022. doi:10.1007/s00037-021-00218-x.

◦ A preliminary version of this work appeared in MFCS:

Andreas Galanis, Leslie Ann Goldberg, and Andrés Herrera-Poyatos. The complexity of

approximating the complex-valued potts model. In 45th International Symposium on Mathe-

matical Foundations of Computer Science (MFCS 2020), volume 170 of Leibniz International

Proceedings in Informatics (LIPIcs), pages 36:1–36:14, Dagstuhl, Germany, 2020. Schloss

Dagstuhl–Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.MFCS.2020.36.

Organisation of this chapter

This chapter contains the proofs of the results presented in Section 1.3 on the hardness of

approximating the partition function of the Potts model on complex edge interactions. The

organisation of this chapter is as follows. First, in Section 2.1 we provide a full outline of our

proof so as to make it easier to the reader to follow this chapter. Secondly, in Section 2.2 we

present some of the preliminary material that we need in our proofs. In Section 2.3 we formalise

the concept of approximate shifts, which will play a key role in our reductions. In Section 2.4 we

study approximate shifts in the complex plane, proving our main technical results. In Section 2.5

we prove our hardness results via a binary search approach that builds on the approximate

shifts developed in the previous sections. Finally, in Section 2.6 we gather some of the relevant

consequences of our results, extending hardness results of approximating the Tutte polynomial

on planar graphas in the real plane, and answering a question raised by Bordewich, Freedman,

Lovász and Welsh in [20] on the connection between quantum computation and approximating

the Jones polynomial at roots of unity.

2.1 Proof outline

In this section we provide some insight on the proofs of Theorems 1.1, 1.2, 1.3 and 1.4, introduced

in Section 1.3. The proofs presented here are performed in the context of the Tutte polynomial.

Page 35 of 212

https://doi.org/10.1007/s00037-021-00218-x
https://doi.org/10.4230/LIPIcs.MFCS.2020.36

Chapter 2. The complexity of approximating the complex-valued Potts model

In previous #P-hardness results [59, 55] for approximating the Tutte polynomial, the main

technique was to reduce the exact counting #MinimumCardinality (s, t)-Cut problem to

the problem of approximating ZTutte(G; q, γ) using an elaborate binary search based on suitable

oracle calls. Key to these oracle calls are gadget constructions which are mainly based on planar

graphs which “implement” points (q′, γ′); this means that, by pasting the gadgets appropriately

onto a graph G, the computation of ZTutte(G; q′, γ′) reduces to the computation of ZTutte(·; q, γ).

Much of the work in [59, 55], and for us as well, is understanding what values (q′, γ′) can be

implemented starting from (q, γ).

For planar graphs, while the binary-search technique from [55] is still useful, we have to use

a different overall reduction scheme since the problem #MinimumCardinality (s, t)-Cut is

not #P-hard when the input is restricted to planar graphs [106]. To obtain our #P-hardness

results our plan instead is to reduce the problem of exactly evaluating the Tutte polynomial

for some appropriately selected parameters q′, γ′ to the problem of computing its sign and the

problem of approximately evaluating it at parameters q, γ; note, this gives us the freedom to use

any parameters q′, γ′ we wish as long as the corresponding exact problem is #P-hard. Then,

much of the work consists of understanding what values (q′, γ′) can be implemented starting

from (q, γ), so we focus on that component first.

We first review previous constructions in the literature, known as shifts, and then introduce

our refinement of these constructions, which we call polynomial-time approximate shifts, and

state our main result about them.

2.1.1 Shifts in the Tutte plane

We say that that there is a shift from (q, γ1) to (q, γ2) if there is a graph H = (V,E) and vertices

s, t such that

γ2 = q
Zst(H; q, γ1)

Zs|t(H; q, γ1)
,

where Zst(H; q, γ1) is the contribution to ZTutte(H; q, γ1) from configurations A ⊆ E in which

s, t belong to the same connected component in (V,A), while Zs|t(H; q, γ1) is the contribution

from all other configurations A. In the following, we will usually encounter shifts in the (x, y)-

parametrisation of the Tutte plane, rather than the (q, γ)-parameterisation which was used for

convenience here. To translate between these, set y = γ + 1 and (x− 1)(y − 1) = q, see [121,

Chapter 3]. We denote by Hq the hyperbola {(x, y) ∈ C2 : (x− 1)(y − 1) = q}, and we will use

both parametrisations as convenient. Section 2.2.2 has a more detailed description of shifts that

apply to the multivariate Tutte polynomial.

As described earlier, shifts can be used to “move around” the complex plane. If one knows

hardness for some (x2, y2) ∈ Hq, and there is a shift from (x1, y1) ∈ Hq to (x2, y2), then one also

obtains hardness for (x1, y1). This approach has been very effective when attention is restricted

to real parameters [57, 58, 59], however, when it comes to non-real parameters, the success of

this approach has been limited. To illustrate this, in [55], the authors established #P-hardness

of the Ising model when y2 ∈ (−1, 0), and used this to obtain #P-hardness for y1 on the unit

Page 36 of 212

Chapter 2. The complexity of approximating the complex-valued Potts model

circle by constructing appropriate shifts. However, their shift construction does not extend to

general complex numbers, and this kind of result seems unreachable with those techniques.

2.1.2 Polynomial-time approximate shifts

To obtain our main theorems, we instead need to consider what we call polynomial-time

approximate shifts. First, we need the following definitions.

Definition 2.1 (theta graph, series-parallel graph). A theta graph consists of two terminals s

and t joined by internally disjoint paths [24]. A series-parallel graph with terminals s and t can

be obtained from the single-edge graph with edge (s, t) by repeatedly subdividing edges or adding

parallel edges [22, Chapter 11].

An polynomial-time approximate shift from (x1, y1) ∈ Hq to (x2, y2) ∈ Hq is an algorithm

that, for any positive integer n, computes in time polynomial in n a graph Gn that (x1, y1)-

implements (x̂2, ŷ2) with |y2 − ŷ2| ≤ 2−n. In fact, our constructions need to maintain planarity,

and we will typically ensure this by either making every Gn a series-parallel graph, in which case

we call the algorithm a polynomial-time approximate series-parallel shift, or by making every Gn

a theta graph, in which case we call the algorithm a polynomial-time approximate theta shift.

These generalised shifts allow us to overcome the challenges mentioned above and are key

ingredients in our reduction. Our main technical theorem about them is the following.

Theorem 2.2. Let q ≥ 2 be a real algebraic number. Let x and y be algebraic numbers

such that (x, y) ∈ Hq, y ∈ (−1, 0) ∪ (C\R) and (x, y) ̸∈ {(i,−i), (−i, i), (ω3, ω
2
3), (ω2

3, ω3)},
where ω3 = exp(2πi/3). Then, for any pair of real algebraic numbers (x′, y′) ∈ Hq there is a

polynomial-time approximate series-parallel shift from (x, y) to (x′, y′).

The exceptions {(i,−i), (−i, i), (ω3, ω
2
3), (ω2

3, ω3)} are precisely the non-real points of the

(x, y) plane where the Tutte polynomial of a graph can be evaluated in polynomial time (see

Section 2.5.3). As we will see, being able to (x, y)-implement approximations of any number in

(−1, 0) is essentially the property that makes the approximation problem #P-hard at (x, y).

We remark that the idea of implementing approximations of a given weight or edge interaction

has been explored in the literature, though only when all the edge interactions involved are real.

We review these results in Section 2.3.

We study the properties of polynomial-time approximate shifts in Section 2.3 and prove

Theorem 2.2 in Section 2.4. In the next section, we describe some of the techniques used.

2.1.2.1 Proof Outline of Theorem 2.2

Shifts, as defined in Section 2.1.1, have a transitivity property: if there is a shift from (x1, y1) to

(x2, y2) and from (x2, y2) to (x3, y3), then there is a shift from (x1, y1) to (x3, y3), see Section 2.2.2

for more details.

Page 37 of 212

Chapter 2. The complexity of approximating the complex-valued Potts model

The polynomial-time approximate shift given in Theorem 2.2 is constructed in a similar way.

First, we construct a polynomial-time approximate shift from (x, y) to some (x2, y2) such that

y2 ∈ (−1, 0), where x2 and y2 depend on x, y. Then, we construct a polynomial-time approximate

shift from (x2, y2) to (x′, y′). Finally, we combine both polynomial-time approximate shifts using

an analogue of the transitivity property.

However, when this approach is put into practice, there is a difficulty that causes various

technical complications: we only have mild control in our constructions over the intermediate

shift (x2, y2). In particular, even if the numbers x and y are algebraic, we cannot guarantee

that x2 and y2 are algebraic, and this causes problems with obtaining the required transitivity

property. Instead, we have to work with a wider class of numbers, the set PC of polynomial-time

computable numbers. These are numbers that can be approximated efficiently, i.e., for y ∈ PC

there is an algorithm that computes ŷn ∈ Q[i] with |y − ŷn| ≤ 2−n in time polynomial in n [80,

Chapter 2]. We denote by PR = R ∩ PC the set of polynomial-time computable real numbers.

Our polynomial-time approximate shifts are constructed in Section 2.4. The first of these

polynomial-time approximate shifts is provided by Lemma 2.3.

Lemma 2.3. Let q be a real algebraic number with q ≥ 2. Let x and y be algebraic numbers

such that (x, y) ∈ Hq, y ∈ (−1, 0) ∪ (C\R) and (x, y) ̸∈ {(i,−i), (−i, i), (ω3, ω
2
3), (ω2

3, ω3)}, where
ω3 = exp(2πi/3). Then there is a polynomial-time approximate series-parallel shift from (x, y)

to (x′, y′) for some (x′, y′) ∈ Hq with x′, y′ ∈ PR and y′ ∈ (0, 1).

The construction in Lemma 2.3 is obtained using a theta graph and trying to get a shift

that is very close to the real line. However, we cannot control the point (x′, y′) that we are

approximating, and as mentioned, x′, y′ might not be algebraic. The proof of Lemma 2.3 requires

the most technical work in this chapter and is given in Section 2.4.4.

Using Lemma 2.3, we have a series-parallel polynomial-time approximate shift from (x, y) to

some (x′, y′) ∈ Hq with x′, y′ ∈ PR and y′ ∈ (0, 1). Next, we have to construct a polynomial-time

approximate shift from (x′, y′) to (x̂, ŷ), where (x̂, ŷ) is the point that we want to shift to in

Theorem 2.2. In fact, we actually use a theta shift, which also facilitates establishing the required

transitivity property later on. Note that since y′ is not necessarily algebraic, we can not directly

apply the results that have already appeared in the literature on implementing approximations of

edge interactions. In the next lemma, we generalise these results to the setting of polynomial-time

computable numbers, where we need to address some further complications that arise from

computing with polynomial-time computable numbers instead of algebraic numbers. The proof

of the lemma is given in Section 2.4.5.

Lemma 2.4. Let q, x, y ∈ PR such that q > 0, (x, y) ∈ Hq, y is positive and 1− q/2 < y < 1.

There is a polynomial-time algorithm that takes as an input:

• two positive integers k and n, in unary;

• a real algebraic number w ∈ [yk, 1].

Page 38 of 212

Chapter 2. The complexity of approximating the complex-valued Potts model

The algorithm produces a theta graph J that (x, y)-implements (x̂, ŷ) such that
∣∣ŷ − w

∣∣ ≤ 2−n.

The size of J is at most a polynomial in k and n, independently of w.

Then, we are able to combine the shifts in Lemmas 2.3 and 2.4 via a transitivity property

for polynomial-time approximate shifts (see Lemma 2.16 in Section 2.3), and therefore prove

Theorem 2.2, see Section 2.4 for the details.

2.1.3 The reductions

In Section 2.5.6 we show how to use a polynomial-time approximate shift from (x1, y1) to (x2, y2)

to reduce the problem of approximating the Tutte polynomial at (x2, y2) to the same problem

at (x1, y1). The following lemma gives such a reduction for the problem of approximating the

norm, we also give an analogous result for approximating the argument.

Lemma 2.5. Let q ≠ 0, γ1 and γ2 ̸= 0 be algebraic numbers, and K > 1. For j ∈ {1, 2},
let yj = γj + 1 and xj = 1 + q/γj. If there is a polynomial-time series-parallel approximate

shift from (x1, y1) to (x2, y2), then we have a reduction from Factor-K-NormTutte(q, γ2) to

Factor-K-NormTutte(q, γ1). This reduction also holds for the planar version of the problem.

In order to prove Lemma 2.5, we need some lower bounds on the norm of the partition

function ZTutte(G; q, γ). This kind of lower bound plays an important role in several hardness

results on the complexity of approximating partition functions [55, 15]. Here, we have to work a

bit harder than usual since we have two (algebraic) underlying parameters (in the case of Tutte),

and we need to use results in algebraic number theory, see Section 2.5.1 for details.

By combining Theorem 2.2 and Lemma 2.5 with existing hardness results, we obtain our

hardness results for non-real edge interactions in Section 2.5.8. On the way, we collect some

hardness on real parameters as well that strengthen previous results in the literature, and part

of Section 2.5 is devoted to this. The main reason behind these improvements is that previous

work on real parameters used reductions from approximately counting minimum cardinality

(s, t)-cuts [59, 55], the minimum 3-way cut problem [57], or maximum independent set for planar

cubic graphs [58], which are either easy on planar graphs or the parameter regions they cover are

considerably smaller or cannot be used to conclude #P-hardness. We instead reduce the exact

computation of ZTutte(G; q, γ) to its approximation, which has the advantage that the problem

that we are reducing from is #P-hard for planar graphs [116]. Interestingly, our reduction

requires us to apply an algorithm of Kannan, Lenstra and Lovász [78] to reconstruct the minimal

polynomial of an algebraic number from an additive approximation of the number. The lower

bounds on the partition function ZTutte(G; q, γ) that are gathered in Section 2.5.1 also play a

role in this reduction, the details will be given in Section 2.5.5.

Page 39 of 212

Chapter 2. The complexity of approximating the complex-valued Potts model

2.2 Preliminaries

2.2.1 The multivariate Tutte polynomial

The random cluster formulation of the multivariate Tutte polynomial is particularly convenient

when working with implementations (as we will see in Section 2.2.2), and is defined as follows.

Let G = (V,E) be a graph. For any weight function γ : E → C and q ∈ C, the multivariate

Tutte polynomial of G is

ZTutte(G; q, γ) =
∑
A⊆E

qk(A)
∏
e∈A

γe. (2.1)

We will make use of the following notation. Let s and t be two distinct vertices of G. We define

Zst(G; q, γ) =
∑
A⊆E:

s and t in the same component

qk(A)
∏
e∈A

γe.

Analogously, let Zs|t be the contribution to ZTutte(G; q, γ) from the configurations A ⊆ E

such that s and t are in different connected components in (V,A). That is, Zs|t(G; q, γ) =

ZTutte(G; q, γ)− Zst(G; q, γ).

2.2.2 Implementing weights, series compositions and parallel compositions

In this section, we define implementations, shifts, series compositions and parallel compositions.

The definitions and results that we give are standard and can also be found, for instance, in [73,

Section 4], [58, Section 2.1] or [109, Section 4].

Let q ∈ C with q ̸= 0. The value of q is fixed across all this section. Let H be a weighted

graph with weight function γ̂. Let s and t be two distinct vertices of H, which are usually

referred to as terminals. We say that the graph H γ̂-implements the weight w with respect to

the terminals s and t if

w = q
Zst(H; q, γ̂)

Zs|t(H; q, γ̂)
.

We say that H γ̂-implements the weight w if there are terminals s and t such that H γ̂-implements

the weight w with respect to s and t. These definitions are motivated by Lemma 2.6, whose

proof is a straightforward computation involving the definitions of implementations and the

multivariate Tutte polynomial.

Lemma 2.6 ([58, Equation 2.2]). Let G and H be two graphs with weight functions γ and γ̂

respectively. Let f be an edge of G with weight γf such that H γ̂-implements γf with respect

to terminals s and t. Let Gf be the graph constructed by considering the union of G and H,

identifying the terminals s and t with the endpoints of f in G and removing f . Let γ′ be the

weight function on Gf that inherits the weights from γ and γ̂. Then

Zst

(
Gf ; q, γ′

)
=

Zs|t (H; q, γ̂)

q2
Zst (G; q, γ) , Zs|t

(
Gf ; q, γ′

)
=

Zs|t (H; q, γ̂)

q2
Zs|t (G; q, γ) .

Page 40 of 212

Chapter 2. The complexity of approximating the complex-valued Potts model

In particular, we have ZTutte (Gf ; q, γ′) =
Zs|t(H;q,γ̂)

q2
ZTutte (G; q, γ). Moreover, if G γ-implements

a weight w, then Gf also γ′-implements w.

Therefore, if we can compute Zs|t(H; q, γ̂) efficiently and Zs|t(H; q, γ̂) ̸= 0, then computing

ZTutte(G; q, γ) is as hard as computing ZTutte(Gf ; q, γ′). This observation leads to some of the

reductions that appear in this chapter.

In the remaining sections we usually assume that the weights are constant, that is, each edge

of the graph has the same weight, and we will make it clear when this is not the case. In the

constant weight function case Lemma 2.6 can be applied to each edge of the graph constructed

by copying G and substituting each edge f in G by a copy of H (identifying the endpoints of

f with s and t). Let α1, α2 ∈ C. We say that there is a shift from (q, α1) to (q, α2) if there

is a graph H that α1-implements α2. An important property of shifts is transitivity; if there

are shifts from (q, α1) to (q, α2) and from (q, α2) to (q, α3), then there is a shift from (q, α1) to

(q, α3). This is a consequence of Lemma 2.6. Let y1 = α1 + 1 and y2 = α2 + 1. We define x1 and

x2 by q = (x1 − 1)(y1 − 1) = (x2 − 1)(y2 − 1), which is the change of variables that relates the

Tutte polynomial and ZTutte. We equivalently refer to the shift from (q, α1) to (q, α2) as a shift

from (x1, y1) to (x2, y2), and we also say that H (x1, y1)-implements (x2, y2). This notation is

convenient to express many of the shifts considered in this chapter.

To conclude this section we introduce two tools that will provide us with many examples of

implementations and shifts: parallel compositions and series compositions. For each j ∈ {1, 2},
let Gj be a graph, let sj and tj be two terminals of Gj , and let γj be a weight function such

that Gj γj-implements a weight wj with respect to sj and tj .

Parallel compositions. The parallel composition of (G1, s1, t1) and (G2, s2, t2) is the graph G

constructed by considering the union of G1 and G2 and identifying s1 with s2 and t1 with t2.

Let γ̂ be the weight function on G inherited from γ1 and γ2. It is well-known and easy to check

that G γ̂-implements the weight

w = (1 + w1)(1 + w2)− 1 (2.2)

with respect to the terminals s1 and t1. Let (x1, y1) and (x2, y2) be the Tutte coordinates of

(q, w1) and (q, w2) respectively (so yj = wj + 1 and (xj − 1)(yj − 1) = q). Then the Tutte

coordinates of (q, w) are (x, y) with y = y1y2 and (x− 1)(y− 1) = q. Let Υ be a graph with two

vertices s, t and one edge joining them, and let Υn be the parallel composition of n copies of

(Υ, s, t) (so Υn has two vertices and n edges joining them). Then Υn (x, y)-implements (x′, y′)

with y′ = yn and (x′ − 1)(y′ − 1) = q. This is known as an n-thickening of (x, y) and it yields a

shift from (x, y) to (x′, yn).

Series compositions. The series composition of (G1, s1, t1) and (G2, s2, t2) is the graph G

constructed by considering the union of G1 and G2 and identifying t1 with s2. Let γ̂ be the

weight function on G inherited from γ1 and γ2. It is well-known and easy to check that G

Page 41 of 212

Chapter 2. The complexity of approximating the complex-valued Potts model

γ̂-implements the weight

w =
w1w2

w1 + w2 + q

with respect to the terminals s1 and t2. Note that w satisfies(
1 +

q

w

)
=

(
1 +

q

w1

)(
1 +

q

w2

)
. (2.3)

Let (x1, y1) and (x2, y2) be the Tutte coordinates of (q, w1) and (q, w2) respectively (so yj = wj+1

and (xj − 1)(yj − 1) = q). Then, in view of (2.3), the Tutte coordinates of (q, w) are (x, y) with

x = x1x2 and (x− 1)(y − 1) = q. Let Υ be a graph with two vertices s, t and one edge joining

them, and let Υn be the series composition of n copies of (Υ, s, t) (so Υn is a path graph with n

edges). Then Υn (x, y)-implements (x′, y′) with x′ = xn and (x′ − 1)(y′ − 1) = q. This is known

as an n-stretching of (x, y) and it yields a shift from (x, y) to (xn, y′).

For series-parallel and theta graphs (see Definition 2.1), these constructions give that either

Zs|t(G; q, γ) = 0, or the series-parallel graph G (with terminals s and t) γ-implements a weight

w(G, s, t; q, γ) that can be computed from the recursive definition of series-parallel graphs in

polynomial time. In particular, let Θ(l1,...,lm) be the theta graph with m internal paths of lengths

l1, . . . , lm. In this case,1 we have that

w
(
Θ(l1,...,lm), s, t; q, γ

)
=

m∏
j=1

(
1 +

q

xlj − 1

)
− 1, (2.4)

where x = 1 + q/γ. Series-parallel graphs can be built using series and parallel compositions.

The following definition is equivalent to the one in Definition 2.1. A graph G is series-parallel

(with terminals s and t) if either G is the graph with two vertices s and t and one edge joining

them, or G is the parallel or series composition of (G1, s1, t1) and (G2, s2, t2), where s = s1,

t = t2 and Gj is a series-parallel graph with terminals sj and tj [22, Chapter 11].

Finally, accross all this thesis the size of a graph G = (V,E) is the integer size(G) = |V |+ |E|.
Note that the size of Θ(l1,...,lm) is 2

∑m
j=1 lj −m + 2.

2.2.3 Computing with algebraic numbers

Our reductions will work when the partition functions under consideration are evaluated on

algebraic numbers. Here we overview how we algorithmically perform computations in the field

of algebraic numbers. We represent an algebraic number z as its minimal polynomial p and

a rectangle R of the complex plane such that z is the only root of p in R. We can compute

the addition, subtraction, multiplication, division and conjugation of algebraic numbers in

polynomial time in the length of their representations, see [113] for details. As a consequence,

we can also compute the real and imaginary parts of z and the norm of z, which are algebraic

1We should mention that we will make use of the Θ asymptotic notation in this chapter and this notation

should not be confused with that of theta graphs.

Page 42 of 212

Chapter 2. The complexity of approximating the complex-valued Potts model

numbers themselves, in polynomial time. Note that an algebraic number is 0 if and only if its

minimal polynomial is x, which can be easily checked in this representation. Hence, we can also

determine in polynomial time whether two algebraic numbers z1 and z2 are equal by checking if

z1 − z2 is 0.

When z is a real algebraic number, we can simply represent it as its minimal polynomial p

and an interval I with rational endpoints such that z is the only root of p in I. If we are given a

real algebraic number z with this representation, then we can approximate it as closely as we

want by applying Sturm sequences and binary search [41]. In fact, for z1 and z2 real algebraic

numbers, Sturm sequences also allow us to check whether z1 ≥ z2 in time polynomial in the

length of the representations of z1 and z2. See [41] for more details and complexity analysis.

A root of unity is a complex number z such that zk = 1 for some positive integer k. The

smallest positive integer n such that zn = 1 is the order of z. Note that roots of unity are

algebraic numbers. The roots of unity of order n share the same minimal polynomial, known as

the n-th cyclotomic polynomial, whose degree is φ(n), the Euler phi function. We can determine

whether an algebraic number z is a root of unity by checking whether its minimal polynomial is

cyclotomic, see [21] for a polynomial-time algorithm. If z is a root of unity, then we can easily

compute its order from its representation; we compute the smallest n such that the minimal

polynomial of z divides zn − 1. This computation runs in polynomial time in the length of the

representation of z as a consequence of the elementary bound φ(n) ≥
√
n/2.

2.3 Polynomial-time approximate shifts

Implementing a specific weight cannot always be achieved. Nonetheless, sometimes we can

implement an approximation of the desired weight with as much precision as we need. These

implementations have been exploited several times in the literature on Tutte polynomials and

the Ising model; see [57, 58, 59, 60]. Here we collect some of these results appearing in [59],

which in turn are based on arguments in [58]; here, we follow the presentation in [60] (that was

stated for q = 2).

Lemma 2.7 ([60, Lemma 22], [59, Lemma 5]). Let x and y be real algebraic numbers such that

y ̸∈ [−1, 1] and (x− 1)(y − 1) = q > 0. There is a polynomial-time algorithm that takes as an

input:

• two positive integers n and k, in unary;

• a real algebraic number y′ ∈ [1, |y|k].

This algorithm produces a theta graph G that (x, y)-implements (x̂, ŷ) such that
∣∣y′ − ŷ

∣∣ ≤ 2−n.

The size of G is at most a polynomial in n and k, independently of y′.

In Lemma 2.4 (Section 2.4), we give a similar result to Lemma 2.7 where the numbers x and

y may not be algebraic. The fact that the graph G computed in Lemma 2.7 is a theta graph

Page 43 of 212

Chapter 2. The complexity of approximating the complex-valued Potts model

is not directly stated in the statement of [59, Lemma 5] but it can easily be inferred from the

proof. This also applies to Lemma 2.8.

Lemma 2.8 ([60, Lemma 22], [59, Lemma 7]). Let x1, y1, x2, y2 be real algebraic numbers such

that y1 ∈ (−1, 1), y2 ̸∈ [−1, 1], and (x1 − 1)(y1 − 1) = (x2 − 1)(y2 − 1) = q < 0. There is a

polynomial-time algorithm that takes as an input:

• two positive integers n and k, in unary;

• a real algebraic number y′ ∈ [1, |y1|−k].

This algorithm produces a theta graph G = (V,E) and a weight function γ̂ : E → {y1 − 1, y2 − 1}
such that G γ̂-implements (x̂, ŷ) with

∣∣y′ − ŷ
∣∣ ≤ 2−n. The size of G is at most a polynomial in n

and k, independently of y′.

Corollary 2.9. Let x1, y1, x2, y2 be real algebraic numbers such that y1 ∈ (−1, 0) ∪ (0, 1),

y2 ̸∈ [−1, 1], (x1− 1)(y1− 1) = (x2− 1)(y2− 1) = q, q ̸= 0. There is a polynomial-time algorithm

that takes as an input:

• two positive integers n and k, in unary;

• a positive real algebraic number y′ such that |y′| ∈ [|y1|k, |y1|−k].

This algorithm produces a theta graph G = (V,E) and a weight function γ̂ : E → {y1 − 1, y2 − 1}
such that G γ̂-implements (x̂, ŷ) with

∣∣y′ − ŷ
∣∣ ≤ 2−n. The size of G is at most a polynomial in n

and k, independently of y′. Moreover, if either y1 < 0 or y2 < 0, then the restriction that y′ is

positive can be replaced with a restriction that y′ is non-zero.

Proof. This result easily follows from Lemmas 2.7 and 2.8 by an argument of Goldberg and

Jerrum (see the proof of [59, Lemma 2]). We include here their argument for completeness.

The case when y′ ≥ 1 has been covered in Lemmas 2.7 and 2.8. First, let us assume that

y′ ∈ (0, 1). We have 1 ≤ y′ · y−2k
1 ≤ |y1|−2k and using Lemmas 2.7 and 2.8 we can implement ỹ

with |ỹ − y′ · y−2k
1 | ≤ 2−n. We have |y2k1 ỹ − y′| ≤ 2−n, so we set ŷ = y2k1 ỹ. The graph G is the

parallel composition of the graph used to implement ỹ and 2k edges with weight y1. Finally,

let us assume that there is i ∈ {1, 2} such that yi < 0, and let us consider the case where y′ is

negative. We implement an approximation ŷ′ of y′/yi > 0, and return ŷ = ŷ′yi.

The graphs G produced by the algorithms given in Lemma 2.7, Lemma 2.8 and Corollary 2.9

are theta graphs. One may wonder which weights can be approximated as in these results.

This leads to the following definition, which was informally introduced in the proof outline

(Section 2.1); we state it formally here for ease of reading.

Definition 2.10 (polynomial-time approximate shift). Let (x1, y1), (x2, y2) ∈ Hq. Let γ1 = y1−1

and γ2 = y2 − 1. We say that there is a polynomial-time approximate shift from (q, γ1) to

(q, γ2) or, equivalently, from (x1, y1) to (x2, y2), if there is an algorithm that, for any positive

Page 44 of 212

Chapter 2. The complexity of approximating the complex-valued Potts model

integer n, computes in polynomial time in n a graph Gn that (x1, y1)-implements (x̂2, ŷ2) with

|y2 − ŷ2| ≤ 2−n. If the graph Gn computed by this algorithm is always a theta graph (resp. a

series-parallel graph), then we say that this is a polynomial-time approximate theta shift (resp.

polynomial-time approximate series-parallel shift).

Lemma 2.7 gives polynomial-time approximate theta shifts from (x1, y1) to (x2, y2) when the

considered numbers are real algebraic, y1 ̸∈ [−1, 1], y2 ∈ [1,∞) and q > 0. Note that shifts are a

particular case of polynomial-time approximate shifts. Moreover, due to the transitivity property

of shifts, if there is a shift from (x1, y1) to (x2, y2) and there is a polynomial-time approximate

shift from (x2, y2) to (x3, y3), then there is a polynomial-time approximate shift from (x1, y1) to

(x3, y3). In fact, polynomial-time approximate shifts exhibit some of the properties of shifts; in

Lemma 2.11 we show that they behave well with respect to parallel and series compositions and

in Lemma 2.16 we show that they are transitive under certain conditions. In Section 2.4 we

give more examples of polynomial-time approximate shifts, some of which will be constructed by

transitivity. These approximate shifts play an important role in our hardness proofs.

Lemma 2.11. Let q ∈ C \ {0} and let (xj , yj) ∈ Hq for each j ∈ {1, 2, 3}. Let us assume

that there are polynomial-time approximate shifts from (x1, y1) to (x2, y2), and from (x1, y1) to

(x3, y3). Let (x4, y4), (x5, y5) ∈ Hq with y4 = y2y3 and x5 = x2x3. Then:

1. there is a polynomial-time approximate shift from (x1, y1) to (x4, y4);

2. there is a polynomial-time approximate shift from (x1, y1) to (x5, y5).

Moreover, if the polynomial-time approximate shifts from (x1, y1) to (x2, y2) and (x3, y3) are

series-parallel, then the obtained polynomial-time approximate shifts are also series-parallel.

Proof. For j ∈ {2, 3}, let Gn,j be the graph computed by the polynomial-time approximate shift

from (x1, y1) to (xj , yj), so Gn,j (x1, y1)-implements (x̂j , ŷj) with |yj − ŷj | ≤ 2−n, for certain

terminals tj and sj .

For Item 1, let Pn be the parallel composition of (Gn,2, s2, t2) and (Gn,3, s3, t3). The graph

Pn gives a shift from (x1, y1) to (x̂4, ŷ2ŷ3) ∈ Hq. Since |y3 − ŷ3| ≤ 2−n, we have |ŷ3| ≤ |y3|+ 1

and

|y2y3 − ŷ2ŷ3| ≤ |y2 − ŷ2| |ŷ3|+ |y3 − ŷ3| |y2| ≤ 2−n (|y3|+ 1 + |y2|) .

Therefore, for k large enough, the graphs Pn+k give a polynomial-time approximate shift from

(x1, y1) to (x4, y4) with y4 = y2y3.

For Item 2, the proof is analogous but now we define the graph Sn as the series composition

of (Gn,2, s2, t2) and (Gn,3, s3, t3), which gives a shift from (x1, y1) to (x̂2x̂3, ŷ4) ∈ Hq.

Note that if the original polynomial-time approximate shifts are series-parallel, then the

obtained ones are also series-parallel by the definition of series-parallel graphs.

Page 45 of 212

Chapter 2. The complexity of approximating the complex-valued Potts model

When it comes to hardness results, we are only interested in algebraic numbers. However,

we will have to consider polynomial-time approximate shifts from (x1, y1) to (x2, y2) such that

the numbers involved are not algebraic. This is due to the fact that, even if x1 and y1 are

algebraic, x2 and y2 might not be. Nonetheless, in that case we can ensure that x2 and y2 are

polynomial-time computable.

Definition 2.12 (polynomial-time computable number). A real number x is polynomial-time

computable if there is a function ϕ : N → Q that is computable in polynomial time (with the

input written in unary notation, i.e., 0n) such that |x− ϕ(n)| ≤ 2−n for all n ∈ N, see [80,

Chapter 2] for a treatment on these numbers.

The definition of polynomial-time computable number given in [80, Chapter 2] uses dyadic

rational numbers instead of rational numbers, but these two definitions are easily seen to be

equivalent. We denote the set of polynomial-time computable real numbers by PR. One can easily

show that the set PR is a field. Real algebraic numbers are in PR because we can approximate

them as closely as we want by applying Sturm sequences and binary search [41]. We say that a

complex number z is polynomial-time computable if z = x + iy for some x, y ∈ PR. We denote

the set of polynomial-time computable complex numbers by PC. Algebraic numbers are in

PC (their real and imaginary parts are real algebraic numbers). It turns out that PC is an

algebraically-closed field [80, Chapter 2]. In particular, for z ∈ PC, we have |z| ∈ PR.

If there is a polynomial-time approximate theta shift from (x1, y1) to (x2, y2) and x1 and y1

are algebraic, then we can compute in polynomial time in n an algebraic number that additively

approximates y2 up to an additive error 2−n. Since we can approximate algebraic numbers by

rational numbers efficiently, it follows that x2 and y2 are polynomial-time computable. However,

if we only know that x1 and y1 are polynomial-time computable, then it is not clear if x2 and y2

are polynomial-time computable or not. Lemma 2.15 gives a partial answer to this question and

plays a key role in our transitivity result for polynomial-time approximate shifts (Lemma 2.16).

First, we need to prove some lemmas on polynomial-time computable numbers.

Lemma 2.13. Let z ∈ PC. There is an algorithm that computes b1 ∈ Q with |z| ≤ b1. Moreover,

if z ̸= 0, then there is an algorithm that computes b2 ∈ Q with 0 < b2 ≤ |z|.

Proof. Let x = |z|. From x ∈ PR, it follows that we can compute a sequence x̂n ∈ Q such that

|x− x̂n| ≤ 2−n, that is, we have x ∈ [x̂n − 2−n, x̂n + 2−n]. This computation for n = 1 gives the

upper bound x̂1 + 1/2. Note that the sequences x̂n − 2−n and x̂n + 2−n converge to x. Hence, if

x ̸= 0, then there must be n such that 0 < x̂n − 2−n ≤ x. We compute x̂n until this inequality

happens, obtaining the desired lower bound.

Lemma 2.14. Let z ∈ PC with |z| ≠ 1. There is a polynomial-time algorithm that takes as

inputs two positive integers n and k and computes a positive integer r(n, k) such that

1. r(n, k) is increasing in k;

2. r(n, k) = n + Θ(k);

Page 46 of 212

Chapter 2. The complexity of approximating the complex-valued Potts model

3. if |z − ẑ| ≤ 2−r(n,k), then
∣∣∣ 1
zk−1

− 1
ẑk−1

∣∣∣ ≤ 2−n.

Proof. By Lemma 2.13, we can compute an integer t ≥ 0 such that 2−t ≤ ||z| − 1| and |z| ≤ 2t.

Note that for every integer k ≥ 1 we have the bound
∣∣zk − 1

∣∣ ≥ 2−t. Indeed, if |z| < 1, then

2−t ≤ 1− |z| ≤ 1− |z|k ≤
∣∣zk − 1

∣∣
and when |z| > 1, we analogously find that 2−t ≤ |z| − 1 ≤ |z|k − 1 ≤

∣∣zk − 1
∣∣.

Let n and k be the inputs of our algorithm. Let r(n, k) = n + (t + 1)(k + 1), and note that r

is increasing in k and r(n, k) = n + Θ (k), establishing Items 1 and 2.

For Item 3, consider ẑ such that |z − ẑ| ≤ 2−r(n,k). Since |ẑ| ≤ |z|+ 2−r(n,k) ≤ 2t+1, for every

j ∈ {0, . . . , k − 1} we have |ẑ|j |z|k−1−j ≤ 2t(k−1)+j and hence∣∣zk − ẑk
∣∣ =

∣∣∣(z − ẑ)
∑k−1

j=0
ẑjzk−1−j

∣∣∣ ≤ |z − ẑ|
∑k−1

j=0
|ẑ|j |z|k−1−j

≤ |z − ẑ|
∑k−1

j=0
2t(k−1)+j < |z − ẑ| 2t(k−1)+k ≤ 2−(n+2t+1).

Moreover, we have that
∣∣∣∣zk − 1

∣∣− ∣∣ẑk − 1
∣∣∣∣ ≤ ∣∣zk − ẑk

∣∣ < 2−(t+1) and, thus,∣∣ẑk − 1
∣∣ ≥ ∣∣zk − 1

∣∣− 2−(t+1) ≥ 2−(t+1),

where we used that
∣∣zk − 1

∣∣ ≥ 2−t. Therefore, we find that∣∣∣∣ 1

zk − 1
− 1

ẑk − 1

∣∣∣∣ =

∣∣∣∣ zk − ẑk

(zk − 1)(ẑk − 1)

∣∣∣∣ ≤ 22t+1
∣∣zk − ẑk

∣∣ ≤ 2−n.

Lemma 2.15. Let q ∈ PC with q ̸= 0 and let γ ∈ PC with γ ̸∈ {0} ∪ −q/2 + iqR. There is a

polynomial-time algorithm that takes as an input:

• a positive integer n;

• a theta graph G = Θ(l1,...,lm) with terminals s and t.

This algorithm computes f(n,G) such that

1. f(n,G) = n + Θ (size(G));

2. for any γ̂ with |γ − γ̂| ≤ 2−f(n,G), we have |w(G, s, t; q, γ)− w(G, s, t; q, γ̂)| ≤ 2−n.

Proof. Let y = γ + 1 and x = 1 + q/γ. Note that |x| = 1 if and only if |γ + q| = |γ|. By basic

geometry, the latter statement is equivalent to γ ∈ −q/2 + iqR. Hence, by hypothesis, |x| ≠ 1.

There are two cases:

• |x| < 1. Then for any positive integer k we have∣∣∣∣1 +
q

xk − 1

∣∣∣∣ ≤ 1 +
|q|

1− |x|k
≤ 1 +

|q|
1− |x|

= 1 +
|q|

|1− |x||
.

Page 47 of 212

Chapter 2. The complexity of approximating the complex-valued Potts model

• |x| > 1. Then for any positive integer k we have∣∣∣∣1 +
q

xk − 1

∣∣∣∣ ≤ 1 +
|q|

|x|k − 1
≤ 1 +

|q|
|x| − 1

= 1 +
|q|

|1− |x||
.

Since q, x ∈ PC, we can apply Lemma 2.13 along with the above bounds to compute a non-

negative integer tx such that
∣∣1 + q/(xk − 1)

∣∣ ≤ 2tx for every positive integer k. Lemma 2.13

also allows us to compute non-negative integers tq and tγ such that |q| ≤ 2tq and 2−tγ ≤ |γ|.
Let n and G = Θ(l1,...,lm) be the inputs of our algorithm. Let k = max{l1, . . . , lm}. Since

|x| ≠ 1, we can compute g(n,G) = r(n + (tx + 1)(m + 1) + tq, k), where r is as in Lemma 2.14

for the polynomial-time computable number x. We compute f(n,G) = g(n,G) + tq + 2tγ + 1.

We claim that f satisfies the statement. In view of the properties of r, we have

f(n,G) = g(n,G) + Θ (1) = n + Θ (size(G)) .

We define yj = 1 + q/
(
xlj − 1

)
for every j ∈ {1, . . . ,m}. Recall that in (2.4) we argued that

w(G, s, t; q, γ) =

m∏
j=1

yj − 1.

Let γ̂ with |γ − γ̂| ≤ 2−f(n,G). Let ŷ = γ̂ + 1 and x̂ = 1 + q/(ŷ − 1). Then

w(G, s, t; q, γ̂) =

m∏
j=1

ŷj − 1,

where ŷj = 1 + q/
(
x̂lj − 1

)
. Since |γ − γ̂| ≤ 2−f(n,G) ≤ 2−tγ−1, we have |γ̂| ≥ |γ| − 2−tγ−1 ≥

2−tγ−1 and

|x− x̂| =
∣∣∣∣ qγ − q

γ̂

∣∣∣∣ =

∣∣∣∣q γ̂ − γ

γγ̂

∣∣∣∣ ≤ |q| |γ̂ − γ| 22tγ+1 ≤ 2tq+2tγ+1−f(n,G) = 2−g(n,G).

In light of the properties of r (Lemma 2.14) and the fact that lj ≤ k, it follows that

|yj − ŷj | =
∣∣∣∣ q

xlj − 1
− q

x̂lj − 1

∣∣∣∣ ≤ |q| 2−n−(tx+1)(m+1)−tq ≤ 2−n−(tx+1)(m+1)

for every j ∈ {1, . . . ,m}. Thus, we have |ŷj | ≤ |yj |+ 1 ≤ 2tx+1. We obtain∣∣∣∏m

j=1
yj −

∏m

j=1
ŷj

∣∣∣ =
∣∣∣∑m

j=1
(yj − ŷj)

∏j−1

s=1
ŷs
∏m

s=j+1
ys

∣∣∣ < m∑
j=1

|yj − ŷj | 2tx(m−1)+j−1

≤ 2tx(m−1)
m∑
j=1

2−n−(tx+1)(m+1)+j−1 ≤ 2−n−m−2
m∑
j=1

2j < 2−n.

Equivalently, |w(G, s, t; q, γ)− w(G, s, t; q, γ̂)| < 2−n as we wanted to prove.

We now prove the main transitivity property of polynomial-time approximate shifts that we

will use in our constructions.

Page 48 of 212

Chapter 2. The complexity of approximating the complex-valued Potts model

Lemma 2.16. Let q ∈ PC with q ̸= 0 and let (xj , yj) ∈ Hq for each j ∈ {1, 2, 3}. Let us assume

that the following hypotheses hold:

1. x2 and y2 are polynomial-time computable;

2. y2 ̸∈ {1} ∪ (1− q/2 + iqR);

3. there is a polynomial-time approximate shift from (x1, y1) to (x2, y2);

4. there is a polynomial-time approximate theta shift from (x2, y2) to (x3, y3).

Then there is a polynomial-time approximate shift from (x1, y1) to (x3, y3). Moreover, if the

polynomial-time approximate shift from (x1, y1) to (x2, y2) is series-parallel, then the polynomial-

time approximate shift from (x1, y1) to (x3, y3) is also series-parallel.

Proof. Let γj = yj − 1 for every j ∈ {1, 2, 3}. Let n be a positive integer. We give an algorithm

that constructs a graph Jn, in polynomial time in n, such that Jn γ1-implements γ̂3 with

|γ3 − γ̂3| ≤ 2−n. This algorithm is as follows. First, we use the approximate theta shift from

(x2, y2) to (x3, y3) to compute a theta graph G2 with terminals s2 and t2 such that

|γ3 − w(G2, s2, t2; q, γ2)| ≤ 2−n−1. (2.5)

The size of G2 is at most polynomial in n. In light of Lemma 2.15, we can compute, in polynomial

time in n, a positive integer f(n + 1, G2) such that for any γ̂2 with |γ2 − γ̂2| ≤ 2−f(n+1,G2), we

have

|w(G2, s2, t2; q, γ2)− w(G2, s2, t2; q, γ̂2)| ≤ 2−n−1. (2.6)

We also have f(n + 1, G2) = n + Θ (size(G2)), so f(n + 1, G2) is bounded by a polynomial in n.

Now we use the approximate shift from (x1, y1) to (x2, y2) to compute, in polynomial time in n,

a graph G1 such that G1 γ1-implements γ̂2 with |γ2 − γ̂2| ≤ 2−f(n+1,G2). Combining (2.5) and

(2.6) with the triangle inequality, we obtain
∣∣γ3 − w(G2, s2, t2; q, γ̂2)

∣∣ ≤ 2−n.

Finally, we construct a graph Jn as a copy of G2 where every edge is substituted by a copy

of G1 as in Lemma 2.6. Since the sizes of G1 and G2 are polynomial in n, the size of Jn also is

polynomial in n. Recall that G2 γ̂2-implements γ̂3 = w(G2, s2, t2; q, γ̂2) and G1 γ1-implements

γ̂2. Therefore, the graph Jn γ1-implements γ̂3, and |γ3 − γ̂3| ≤ 2−n, as we wanted to obtain.

Finally, if the polynomial-time approximate shift from (x1, y1) to (x2, y2) is series-parallel, then

the graphs Jn are easily seen to be series-parallel, and the result follows.

2.4 Polynomial-time approximate shifts with complex weights

In this section we show how to implement approximations of real weights when the original

weight is a non-real algebraic number. As a consequence of our results, for any real algebraic

number q with q ≥ 2 and any pair of algebraic numbers (x, y) ∈ Hq with y ̸∈ R and (x, y) ̸∈
{(−i, i), (i−i), (ω2

3, ω3), (ω3, ω
2
3)}, where ω3 = exp(2πi/3), there is a polynomial-time approximate

Page 49 of 212

Chapter 2. The complexity of approximating the complex-valued Potts model

shift from (x, y) to any pair of real algebraic numbers (x′, y′) ∈ Hq (see Theorem 2.2). Our

approach to prove Theorem 2.2 is as follows. First, we show that there is (x′, y′) ∈ Hq with

y′ ∈ (0, 1) such that there is a polynomial-time approximate theta shift from (x, y) to (x′, y′)

(see Lemma 2.32). Since x and y are algebraic, it follows that x′ and y′ are polynomial-time

computable. Secondly, we extend part of Lemma 2.7 to the case where the numbers involved are

only known to be polynomial-time computable (see Lemma 2.4). Finally, we use the transitivity

property given in Lemma 2.16 to combine both results in the proof of Theorem 2.2.

2.4.1 Some algorithms for algebraic numbers

In our proofs we use and develop some specific algorithms on algebraic numbers. We gather

these algorithms in this section. The first non-trivial operation that we can perform (other than

the standard ones described in the preliminaries - Section 2.2.3) is checking if the argument of

an algebraic number is in a fixed interval.

Lemma 2.17. Let a, b ∈ Q ∩ [0, 1] with a ≤ b. Then for any algebraic number z we can check

whether Arg(z) ∈ [2πa, 2πb] in time polynomial in the length of the representation of z.

Proof. We can split the interval [2πa, 2πb] into intervals of length at most π/2 and check if

Arg(z) belongs to any of those intervals. Hence, let us assume for the sake of simplicity that

[2πa, 2πb] ⊆ [0, π/2]. The other cases are analogous. Note that e2πia and e2πib are roots of

unity and, in particular, algebraic. Thus, we can compute za = ze−2πia and zb = ze2πi(1/4−b).

We have Arg(za) ∈ [0, π/2] if and only if Arg(z) ∈ [2πa, π/2 + 2πa], and Arg(zb) ∈ [0, π/2] if

and only if Arg(z) ∈ [−π/2 + 2πb, 2πb]. We conclude that Arg(z) ∈ [2πa, 2πb] if and only if

Arg(za) ∈ [0, π/2] and Arg(zb) ∈ [0, π/2]. Finally, note that, for any algebraic number y, since

Re(y) and Im(y) are algebraic, we can determine if Arg(y) ∈ [0, π/2] or not by checking the

inequalities Re(y) ≥ 0 and Im(y) ≥ 0.

In the rest of this section we show how to efficiently compute a sequence σ(n) such that

Arg(zσ(n)) ∈ [2πa, 2πb] for every n. We will use the following well-known result, see, e.g., [23,

Section 1.2]: if z ∈ C is not a root of unity and |z| = 1, then {zj : j ∈ N} is dense in the unit

circle.

Lemma 2.18. Let a, b ∈ Q ∩ [0, 1] with a < b. Let z be an algebraic number such that |z| = 1

and z is not a root of unity. Then there exists a sequence of positive integers {σ(n)} and a

positive integer k such that such that:

1. k can be computed from z;

2. σ(n) can be computed in polynomial time in n;

3. n ≤ σ(n) ≤ n + k − 1 for every positive integer n;

4. Arg(zσ(n)) ∈ [2aπ, 2bπ] + 2πZ for every positive integer n.

Page 50 of 212

Chapter 2. The complexity of approximating the complex-valued Potts model

Proof. Our algorithm to compute σ(n) is as follows. Set σ(0) = 0. We compute σ(n) as

the smallest integer such that n ≤ σ(n) and Arg(zσ(n)) ∈ [2aπ, 2bπ]. We can check whether

Arg(zσ(n)) ∈ [2aπ, 2bπ] or not by applying the procedure given in Lemma 2.17.

We show that σ(n) is well-defined. Let θ = Arg(z). Since z is not a root of unity, {zj : j ∈ N}
is dense in the unit circle, as we have discussed in the previous paragraph. Therefore, there is

q ∈ N such that Arg(zq) ∈ [0, 2(b− a)π]. Note that we can compute q in constant time with the

help of Lemma 2.17. Let τ = Arg(zq). Since z is not a root of unity, we find that τ ̸= 0. Let

t = ⌈2π/τ⌉. Since t is the smallest positive integer such that tτ ≥ 2π, t can be computed by

sequentially determining which of the following intervals contains the argument of zqj : (0, π/2),

(π/2, π), (π, 3π/2) or (3π/2, 2π). Hence, we can compute k = tq. For each positive integer n,

since tτ ≥ 2π and τ < 2(b−a)π, there is pn ∈ {0, . . . , t−1} such that nθ+pnτ ∈ [2aπ, 2bπ]+2πZ.

The integer mn = n + pnq satisfies n ≤ mn ≤ n + k − 1 and

mnθ ∈ nθ + pnτ + 2πZ ⊆ [2aπ, 2bπ] + 2πZ.

We conclude that σ(n) is well-defined and n ≤ σ(n) ≤ mn ≤ n+k−1, so our algorithm computes

σ(n) in polynomial time in n.

Lemma 2.19. Let z be a root of unity of order k with k ̸∈ {1, 2, 4}. Then there exists a sequence

of positive integers {σ(n)} and an integer l such that:

1. σ(n) can be computed in polynomial time in n;

2. n ≤ σ(n) ≤ n + k − 1 for every positive integer n;

3. zσ(n) = e2πil/k for every positive integer n;

4. π < 2πl/k < 3π/2.

Proof. Let θ = Arg(z). Since θ ̸= 0, we can write θ = 2πj/k for some integer j coprime with k.

We consider two cases.

Case I: k = 3. Then either we have θ = 2π/3 and we compute σ(n) ∈ {n, n + 1, n + 2}
with σ(n) ≡ 2 (mod 3), or we have θ = 4π/3 and we compute σ(n) ∈ {n, n + 1, n + 2} with

σ(n) ≡ 1 (mod 3). In any case, we have σ(n)θ ∈ 4π/3 + 2πZ, that is, zσ(n) = e4πi/3 for any

positive integer n.

Case II: k ≥ 5. Then there is an integer l such that k/2 < l < 3k/4, that is, 2πl/k ∈
(π, 3π/2). The Euclidean algorithm gives two integers t1, t2 such that t1j + t2k = 1. We compute

σ(n) ∈ {n, . . . , n+ k− 1} such that σ(n) ≡ t1l (mod k). We can write σ(n) = t1l+ qnk for some

integer qn. We have

σ(n)θ = t1l
2πj

k
+ qn2πj = l(1− t2k)

2π

k
+ qn2πj =

2πl

k
+ (qnj − lt2)2π

and, equivalently, zσ(n) = e2πil/k for every positive integer n.

Page 51 of 212

Chapter 2. The complexity of approximating the complex-valued Potts model

Corollary 2.20. Let z be an algebraic number such that z ̸∈ R ∪ iR. Let θ = Arg(z). Then

there exists a sequence of positive integers {σ(n)}, a positive integer k and a positive rational

number C such that such that:

1. k and C can be computed from z;

2. σ(n) can be computed in polynomial time in n;

3. n ≤ σ(n) ≤ n + k − 1 for every positive integer n;

4. cos(σ(n)θ) ≤ −C and sin(σ(n)θ) ≤ −C for every positive integer n.

Proof. We may assume that |z| = 1 since, otherwise, we can compute the algebraic number z/|z|
and apply the following algorithm to this quantity. We invoke either Lemma 2.18 for a = 7/12

and b = 8/12 or Lemma 2.19, depending on whether z is a root of unity or not, which can be

checked as explained at the beginning of this section. In any case, we find a sequence σ and

a positive integer k that satisfy the first three assertions announced in the statement. In the

non-root of unity case, we have cos(σ(n)θ) ≤ cos(2πb) < 0 and sin(σ(n)θ) ≤ sin(2πa) < 0 for

every positive integer n. In the root of unity case, the sequences cos(σ(n)θ) and sin(σ(n)θ)

are negative constants. In any case, we can compute a positive rational number C such that

cos(σ(n)θ) ≤ −C and sin(σ(n)θ) ≤ −C for every positive integer n.

Corollary 2.21. Let z be an algebraic number with |z| > 1. Then for any x ∈ Q with x > 0,

we can compute n such that Re (zn) ≥ x. Moreover, if z ̸∈ [0,∞), then we can compute m such

that Re (zm) ≤ −x.

Proof. Let z = Reiθ for some θ ∈ [0, 2π) and R > 1. We determine if z/|z| = eiθ is a

root of unity or not, and compute its order as explained before. If eiθ is a root of unity

of order k, then zk ∈ (1,∞), so computing n is straightforward. If eiθ is not a root of

unity, then, in view of Lemma 2.19 for a = 1/12 and b = 1/6, we can compute a sequence

σ such that σ(j) ≥ j and σ(j)θ ∈ [π/6, π/3] + 2πZ for every positive integer j. We find

that Re(zσ(j)) ≥ Rσ(j) cos(π/3) ≥ Rj/2. Hence, we can compute j large enough such that

Re(zσ(j)) ≥ x and we choose n = σ(j).

Now let us assume that z ̸∈ [0,∞). Note that eiθ ̸= 1. If eiθ is a root of unity of order 2 or 4,

then the result is trivial. If θ ̸∈ {0, π/2, π, 3π/2}, then, by invoking Corollary 2.20, we compute

σ and a positive rational number C such that σ(j) ≥ j and cos(σ(j)θ) ≤ −C for every positive

integer j. We find that Re(zσ(j)) ≤ −CRσ(j) ≤ −CRj . Hence, we can compute j large enough

such that Re(zσ(j)) ≤ −x and we choose m = σ(j).

2.4.2 Some shifts for non-real algebraic numbers

In this section we gather some of the shifts that we use in our proofs. Let q be a real algebraic

number with q ≥ 2 and let (x, y) ∈ Hq be a pair of algebraic numbers. We are interested in

computing a shift from (x, y) to (x1, y1) ∈ Hq with x1 ̸∈ R and |x1| > 1 whenever possible.

Page 52 of 212

Chapter 2. The complexity of approximating the complex-valued Potts model

The existence of this shift turns out to be closely related to the hardness of approximating

|ZTutte(G; q, γ)| with γ = y − 1; when we can compute such a shift the approximation problem

is #P-hard, as we will see in Section 2.5. Recall that one can evaluate the Tutte polynomial

of a graph in polynomial time at any of the points in {(−i, i), (i,−i), (ω2
3, ω3), (ω3, ω

2
3)}, where

ω3 = exp(2πi/3) (see Section 2.5.3). These are the points for which our results fail to construct

the desired shift.

The results of this section involve computations that might not run in polynomial time in

the length of the representation of the algebraic numbers q, x and y involved. However, when

applying these results, the numbers q, x and y are constants and, hence, this will not affect the

complexity of our algorithms.

Remark 2.22. Let q be a positive real number and let (x, y) ∈ Hq. From (x− 1)(y − 1) = q it

follows that x is real if and only if y is real. Note that x = 1 + q/(y − 1) = (y + q − 1)/(y − 1).

As noted in the proof of Lemma 2.15, we find that |x| = 1 if and only if |y + q − 1| = |y − 1|,
that is, y is on the line 1− q/2 + iR. Moreover, |x| > 1 if and only if Re(y) > 1− q/2. Note

that when q ≥ 2 and Re(y) > 0, we have Re(y) > 1− q/2 and, thus, |x| > 1. These observations

will be applied several times in this section.

Lemma 2.23. Let q be a real algebraic number with q ≥ 2. Let x and y be algebraic numbers

such that (x, y) ∈ Hq and Arg(y) ̸∈ {0, π/2, 2π/3, π, 4π/3, 3π/2}. Then we can compute a theta

graph J that (x, y)-implements (x1, y1) with |x1| > 1 and x1 ̸∈ R.

Proof. We show how to compute n such that Re(yn) > 0 and Im(yn) > 0. For such a n, we

let y1 = yn and x1 = 1 + q/(y1 − 1), so Remark 2.22 ensures that |x1| > 1 and x1 ̸∈ R. Hence,

we can return J as the graph with two vertices and n edges joining them. Since y and |y| are

algebraic numbers, we can compute the algebraic number y/ |y|. We can detect if y/ |y| is a root

of unity or not as explained in Section 2.4.1. There are two cases:

(i) y/ |y| is not a root of unity. Then we can apply Lemma 2.18 with a = 1/12, b = 1/6 and

z = yn to compute the smallest positive integer n such that Arg(yn) ∈ [π/6, π/3]. Recall

that such an integer exists because {(y/ |y|)j : j ∈ N} is dense in the unit circle. Finally,

since Arg(yn) ∈ [π/6, π/3], we have Re(yn) > 0 and Im(yn) > 0.

(ii) y/ |y| is a root of unity of order r with r ≥ 5. Recall that we can compute r by sequentially

computing the powers of y/ |y| until we obtain 1. Then we have (y/ |y|)r+1 = ei2π/r. Note

that the real and imaginary parts of ei2π/r = cos(2π/r) + i sin(2π/r) are positive.

Note that the argument given in Lemma 2.23 strongly uses the fact that q ≥ 2, that is,

1−q/2 ≤ 0. A proof of a version of Lemma 2.23 with q ∈ (0, 2) is unknown to us. Now we deal with

the cases Arg(y) ∈ {π/2, 2π/3, 4π/3, 3π/2}, where the exemptions (−i, i), (i,−i), (ω2
3, ω3), (ω3, ω

2
3)

arise. Note that (−i, i), (i,−i) ∈ H2 and (ω2
3, ω3), (ω3, ω

2
3) ∈ H3. In fact, one can easily check

that these are the only pairs (x, y) such that |y| = 1 and q ∈ {2, 3}.

Page 53 of 212

Chapter 2. The complexity of approximating the complex-valued Potts model

Lemma 2.24. Let q be a real algebraic number with q ≥ 2. Let x and y be algebraic numbers

such that (x, y) ∈ Hq, y ̸= 0 and Arg(y) ∈ {2π/3, 4π/3}. If q ̸= 3 or |y| ≠ 1, then we can

compute a series-parallel graph J that (x, y)-implements (x1, y1) with |x1| > 1 and x1 ̸∈ R.

Proof. Note that y/ |y| is a root of unity of order 3. We have Re(y) = |y| cos(2π/3) = − |y| /2 < 0.

Let x = 1 + q/(y − 1). We consider three cases.

Case I: Re(y) > 1− q/2. Then, by Remark 2.22, |x| > 1. We return J as the graph with 2

vertices and one edge joining them.

Case II: Re(y) < 1 − q/2. Then |x| < 1. Let yn = 1 + q/(xn − 1). An n-stretch gives a

shift from (x, y) to (xn, yn). Since x ̸∈ R, there are infinitely many values of n such that yn ̸∈ R.

Note that yn converges to 1 − q ∈ (−∞,−1], and the distance between 1 − q and the set of

complex points {z ∈ C : Arg(z) ∈ {π/2, 2π/3, 4π/3, 3π/2}} is larger than 0. Hence, we can

compute n such that Arg(yn) ̸∈ {0, π/2, 2π/3, π, 4π/3, 3π/2}. Since (xn, yn) ∈ Hq, the result

follows from applying Lemma 2.23 to (xn, yn), the transitivity property of shifts and noticing

that the obtained graph is series-parallel.

Case III: Re(y) = 1− q/2. Note that q > 2 because for q = 2 we would obtain Re(y) = 0.

We distinguish three subcases:

• |y| > 1. We compute the smallest positive integer n such that Arg(yn) = 2π/3 and

Re(yn) = − |y|n /2 < 1 − q/2. The proof is concluded by applying Case II to (xn, y
n),

where xn = 1+q/(yn−1), the transitivity property of shifts and noticing that the obtained

graph is series-parallel.

• |y| < 1. We compute the smallest positive integer n such that |y|n < q − 2 and Arg(yn) =

2π/3. We have Re(yn) > 1− q/2 (otherwise by applying Re(yn) = − |y|n /2 we would find

that |y|n ≥ q− 2), so |xn| > 1 for xn = 1 + q/(xn − 1). We return J as the graph with two

vertices and n edges joining them.

• |y| = 1. Then 1 − q/2 = Re(y) = − |y| /2 = −1/2. It follows that q = 3, but this case

(|y| = 1 and q ̸= 3) was excluded in the hypothesis.

This finishes the proof.

Lemma 2.25. Let q be a real algebraic number with q ≥ 2. Let y be an algebraic number such

that y ̸= 0 and Arg(y) ∈ {π/2, 3π/2}.

1. If q > 2, then we can compute a theta graph J that (x, y)-implements (x1, y1) with |x1| > 1

and x1 ̸∈ R.

2. If q = 2 and |y| ≠ 1, then we can compute a series-parallel graph J that (x, y)-implements

(x2, y2) with y2 ∈ (−1, 0).

Proof. The hypotheses y ̸= 0 and Arg(y) ∈ {π/2, 3π/2} are equivalent to y ̸= 0 and Re(y) = 0.

Let x = 1 + q/(y − 1). If q > 2, then 1 − q/2 < 0 = Re(y) and |x| > 1 as a consequence of

Page 54 of 212

Chapter 2. The complexity of approximating the complex-valued Potts model

Remark 2.22, so we return the graph with two vertices and one edge joining them as J . The

second claim (case q = 2) has been studied in [55, Lemma 3.15], where the graph constructed is

a 2-thickening of a k-stretching.

Corollary 2.26. Let q be a real algebraic number with q ≥ 2. Let x and y be algebraic numbers

such that (x, y) ∈ Hq, y ̸∈ (−∞,−1] ∪ [0,∞) and (x, y) ̸∈ {(i,−i), (−i, i), (ω3, ω
2
3), (ω2

3, ω3)},
where ω3 = exp(2πi/3). Then we can compute (x2, y2) ∈ Hq and a series-parallel graph J such

that |x2| < 1 and J (x, y)-implements (x2, y2).

Proof. First, we assume that y ̸∈ R. The case q = 2 and y ∈ Ri is covered in Lemma 2.25, so

we assume that q ≠ 2 or y ̸∈ Ri. By applying Lemmas 2.23, 2.24 or 2.25 (depending on the

argument of y), we can compute a graph J that (x, y)-implements (x1, y1) with |x1| > 1 and

x1 ̸∈ R. We apply Corollary 2.21 with z = x1 in order to compute n such that Re(xn1) > 1. A

n-stretching of (x1, y1) gives a shift from (x1, y1) to (x̂, ŷ), where x̂ = xn1 and ŷ = 1 + q/(x̂− 1).

We have Re(ŷ) = 1 + q(Re(x̂)− 1)/ |x̂− 1|2 > 1, so |ŷ| > 1. There are two cases:

• ŷ ̸∈ R. We apply Corollary 2.21 with z = ŷ to compute t such that Re(ŷt) < 1− q/2 < 0.

We set y2 = ŷt and x2 = 1+q/(y2−1). By the transitivity property of shifts, we have a shift

from (x, y) to (x2, y2). Since Re(y2) < 1− q/2, we conclude that |x2| < 1 (Remark 2.22).

• ŷ ∈ R. Hence, we have ŷ ∈ (1,∞). We can compute a positive integer l such that the norm

of y′ = ŷly is larger than 1. Note that y′ = ŷly ̸∈ R. A parallel composition yields a shift

from (x, y) to (x′, y′), where x′ = 1 + q/(y′ − 1). We compute the graph J by applying the

previous case to (x′, y′).

Now we deal with the case y ∈ (−1, 0). A 2-thickening gives us a shift from (x, y) to (a1, b1),

where b1 = y2 ∈ (0, 1) and a1 = 1 + q/(b1 − 1) < 1 − q ≤ −1. A 2-stretching gives us a shift

from (a1, b1) to (a2, b2), where a2 = a21 > 1 and b2 = 1 + q/(a2 − 1) > 1. We compute a positive

integer j such that bj2y < −q and, with the help of a j-thickening, construct a shift from (a2, b2)

to (a3, b3) with b3 = bj2. The transitivity property of shifts allows us to construct a shift from

(x, y) to (a3, b3). To conclude the proof, we apply a parallel composition between the latter shift

and the identity shift from (x, y) to (x, y), obtaining a shift from (x, y) to (x2, y2) with y2 = b3y.

Recall that b3y = bj2y < −q, so q/(y2 − 1) ∈ (−1, 0) and x2 = 1 + q/(y2 − 1) ∈ (0, 1).

Finally, note that the graphs considered in this proof are series-parallel.

2.4.3 An approximate shift to (0, 1− q)

In Lemma 2.27 and Corollary 2.28 we give a polynomial-time approximate series-parallel shift

from (x, y) to (0, 1− q) under certain conditions.

Lemma 2.27. Let q ∈ PR with q > 0. Let (x, y) ∈ Hq such that x, y ∈ PC and Re(y) < 1− q/2.

Then there is a polynomial-time approximate theta shift from (x, y) to (0, 1− q).

Page 55 of 212

Chapter 2. The complexity of approximating the complex-valued Potts model

Proof. Let x = 1 + q/(y − 1). In light of Remark 2.22, we have |x| < 1. Therefore, the weight

yj = 1 + q/(xj − 1) implemented by an j-stretch converges to 1− q as j →∞. We have

|q − 1 + yj | =
∣∣∣∣ qxj

xj − 1

∣∣∣∣ ≤ q |x|j

1− |x|j
≤ q |x|j

1− |x|
. (2.7)

We use (2.7) to give a a polynomial-time approximate theta shift from (x, y) to (0, 1− q). Let n

be a positive integer, so the desired accuracy of the quantity in (2.7) is 2−n. We are going to

return a path graph with j edges for j large enough. It remains to show how to compute j from

n. Since q, |x| ∈ PR, we can compute b, c ∈ Q such that q ≤ c and 0 < b ≤ 1− |x| (Lemma 2.13).

Hence, |x| ≤ 1− b < 1, and it suffices to compute j with j ≥ log1−b(2
−nb/c).

Corollary 2.28. Let q be a real algebraic number with q ≥ 2. Let x and y be algebraic numbers

such that (x, y) ∈ Hq, y ̸∈ (−∞,−1] ∪ [0,∞) and (x, y) ̸∈ {(−i, i), (i,−i), (ω2
3, ω3), (ω3, ω

2
3)},

where ω3 = exp(2πi/3). Then there is a polynomial-time approximate series-parallel shift from

(x, y) to (0, 1− q).

Proof. From Corollary 2.26 we obtain a shift from (x, y) to (x2, y2) with |x2| < 1 or, equivalently,

Re(y2) < 1− q/2. The result follows from applying Lemma 2.27 to (x2, y2) and the transitivity

property of shifts.

2.4.4 An approximate shift to (x′, y′) with y′ ∈ (0, 1)

In Lemma 2.31 we show that if a sequence zn of complex numbers has certain properties, then

there is w ∈ (0, 1) ∩ PR that is the limit of
∏n

j=1 z
ej
j for some non-negative integers e1, e2, . . .

that we can compute. Then we apply this result to a subsequence of {yn}, where (xn, yn) is

the pair implemented by an n-stretch of (x, y), obtaining a polynomial-time approximate theta

shift from (x, y) to some (x′, y′) with y′ ∈ (0, 1) (Lemma 2.32). First, we need the following

elementary results.

Lemma 2.29. We have sin(x) ≤ x ≤ π sin(x)/2 for every x ∈ [0, π/2].

Proof. First, we prove that sin(x) ≤ x for every x ∈ [0, π/2]. Let f(x) = x− sin(x). We have

f ′(x) = 1− cos(x) > 0 for every x ∈ [0, π/2]. Hence, f is strictly increasing in [0, π/2]. Since

f(0) = 0, we obtain x− sin(x) ≥ 0 for every x ∈ [0, π/2].

Now we prove that x ≤ π sin(x)/2 for every x ∈ [0, π/2]. Let g(x) = π sin(x)/2 − x for

every x ∈ [0, π/2]. We have g′(x) = π cos(x)/2 − 1. Let y ∈ [0, π/2] such that cos(y) = 2/π.

Note that g′(x) > 0 in [0, y), g(y) = 0 and g′(x) < 0 in (y, π/2]. Hence, g only reaches a

minimum at x ∈ {0, π/2}. Since g(0) = g(π/2) = 0, we conclude that 0 ≤ π sin(x)/2 − x for

every x ∈ [0, π/2].

Lemma 2.30. Let z ∈ C. Let {zn} be a sequence of algebraic complex numbers such that:

1. we can compute two rational numbers C and R such that C > 0, R ∈ (0, 1) and |z − zn| ≤
CRn for every positive integer n;

Page 56 of 212

Chapter 2. The complexity of approximating the complex-valued Potts model

2. we can compute the representation of the algebraic number zn in polynomial time in n.

Then z ∈ PC, i.e., z is polynomial-time computable.

Proof. Let n be an arbitrary positive integer. For j = ⌈logR
(
2−n−1/C

)
⌉ we have |z − zj | ≤

2−n−1. Note that j = Θ(n) and hence zj is an algebraic number whose representation we can

compute in time polynomial in n. So, we can also compute ẑj ∈ Q[i] such that |zj − ẑj | ≤ 2−n−1

in time polynomial in n. Then, we have that

|z − ẑn| ≤ |zn − z|+ |zn − ẑn| ≤ 2−n.

Since n was arbitrary, we have that z is polynomial-time computable.

Lemma 2.31. Let r, c ∈ (0, 1) ∩Q. Let {zn} be a sequence of algebraic complex numbers with:

1. |zn| < 1 for every positive integer n;

2. zn = 1− f(n) + ig(n) with f, g : Z+ → (0, 1);

3. crn ≤ f(n) ≤ rn/2 and crn ≤ g(n) ≤ rn/2 for every positive integer n.

Then there is w ∈ (0, 1) and a bounded sequence of positive integers {en} such that∣∣∣∏n

j=1
z
ej
j − w

∣∣∣ ≤ (π

2
+

π

c(1− r)

)
rn

for every positive integer n. Moreover, if the representation of the algebraic number zn can be

computed in polynomial time in n, then w ∈ PR and en can be computed in polynomial time in n.

Proof. We can write zn = ρne
iθn for some ρn ∈ (0, 1) and θn ∈ (0, π/2). Note that 1− f(n) < ρn.

Let h(n) = 1− ρn. We obtain

0 < h(n) < f(n) ≤ rn/2 (2.8)

for every positive integer n. We have

sin (θn) =
Im (zn)

ρn
=

g(n)

1− h(n)
.

In view of Lemma 2.29, we obtain

g(n)

1− h(n)
≤ θn ≤

πg(n)

2(1− h(n))
.

Since 0 < h(n) ≤ 1/2 (see (2.8)), it follows that

g(n) ≤ θn ≤ πg(n). (2.9)

As a consequence, we find that, for any integer n with n ≥ 2,

θn−1

θn
≤ π

g(n− 1)

g(n)
≤ π

2cr
, (2.10)

Page 57 of 212

Chapter 2. The complexity of approximating the complex-valued Potts model

where we used the fact that crn ≤ g(n) ≤ rn/2. The bounds (2.8), (2.9) and (2.10) will be used

several times in this proof.

Let τ0 = 0. We define τn and en by induction on n. Let en be the largest integer such that

τn−1 + enθn ≤ 2π and let τn = τn−1 + enθn. By definition, {τn} is an increasing sequence that

is bounded above by 2π. Moreover, we have 2π − θn < τn, since τn + θn ≤ 2π contradicts the

definition of en. That is, we have 0 ≤ 2π − τn < θn. We show that en is bounded. Note that

e1 ≤ 2π/θ1 ≤ 2π/(cr), where we used that cr ≤ g(1) ≤ θ1 (recall (2.9)). For n ≥ 2 we have

0 ≤ en =
τn − τn−1

θn
≤ 2π − τn−1

θn
<

θn−1

θn
≤ π

2cr
,

where we applied (2.10). By combining the latter inequality with the case n = 1 we conclude

that

0 ≤ en ≤
2π

cr
(2.11)

for every positive integer n.

The sequence {eiτn} converges to 1. In fact, we show that it does so exponentially fast.

Note that the derivative of eit has constant norm 1. Therefore, eit is a Lipschitz function with

constant 1, that is,
∣∣eit − eis

∣∣ ≤ |s− t| for every s, t ∈ R. It follows that∣∣1− eiτn
∣∣ =

∣∣ei2π − eiτn
∣∣ ≤ |2π − τn| < θn ≤ πg(n) ≤ π

2
rn (2.12)

for every positive integer n, where we applied (2.9).

Now we study the sequence {xn} for xn =
∏n

j=1 ρ
ej
j . Since ρj ∈ (0, 1), {xn} is decreasing

and has a limit w ∈ [0, 1). We claim that this is the real number in (0, 1) announced in the

statement. First, we prove that w > 0. Let b = ⌈2π/(cr)⌉. In view of (2.11), we have

xn ≥
n∏

j=1

ρbj =
(n∏

j=1

(1− h(j))
)b
.

Recall that a product of the form
∏n

j=1 (1− an) with an ∈ [0, 1) converges to a positive number

if and only if
∑n

j=1 an converges [111, Proposition 3.1]. From (2.8) we obtain

∞∑
n=1

h(n) ≤ 1

2

∞∑
n=1

rn =
r

2(1− r)

and, thus,
∏n

j=1 (1− h(j)) converges to a real number L with L > 0. We conclude that

w ≥ Lb > 0, as we wanted to prove. Now we show that {xn} converges exponentially fast to w.

Note that xn = (1− h(n))en xn−1 and, thus, for n ≥ 2, we have

0 ≤ xn−1 − xn = xn−1 (1− (1− h(n))en)

≤ 1− (1− h(n))en ≤ h(n)en ≤
π

cr
rn,

where we used the fact that (1− x)k ≥ 1− kx for every x ∈ (0, 1) and k ∈ Z+, and the bounds

on h(n) and en (see (2.8) and (2.11)). We obtain

|xn+q − xn| ≤
q∑

j=1

|xn+j − xn+j−1| ≤
π

cr

q∑
j=1

rn+j =
π (1− rq)

c(1− r)
rn

Page 58 of 212

Chapter 2. The complexity of approximating the complex-valued Potts model

for any positive integers n and q. Hence, by making q tend to ∞ we conclude that

|xn − w| ≤ π

c(1− r)
rn (2.13)

for every positive integer n.

In light of (2.12) and (2.13), we obtain for every positive integer n that∣∣∣∏n

j=1
z
ej
j − w

∣∣∣ ≤ ∣∣∣∏n

j=1
z
ej
j − xn

∣∣∣+ |xn − w| = |xn|
∣∣∣∏n

j=1
eiejθj − 1

∣∣∣+ |xn − w|

≤
∣∣∣∏n

j=1
eiejθj − 1

∣∣∣+ |xn − w| =
∣∣eiτn − 1

∣∣+ |xn − w| ≤ π

2
rn +

π

c(1− r)
rn.

Finally, we argue that if the representation of zn can be computed in polynomial time in

n, then en can be computed in polynomial time in n and we have w ∈ PR. Note that e1 is

the smallest positive integer such that Arg (ze11) ∈ [3π/2, 2π) ∪ {0} and Arg(ze1+1
1) ∈ (0, π/2]

and, thus, e1 can be computed by sequentially applying Lemma 2.17 with intervals [3π/2, 2π]

and [0, π/2], with the z of Lemma 2.17 equal to zk for every positive integer k ≤ e1 + 1. This

takes constant time since the quantities and objects involved are constant. For n ≥ 2, let us

assume that we have computed e1, . . . , en−1, and let yn−1 =
∏n−1

j=1 z
ej
j (so τn−1 = Arg (yn−1)).

Since the sequence {en} is bounded and the length of the representation of zn is bounded by a

polynomial in n, the computation of yn−1 takes polynomial time in n. Then en is the smallest

non-negative integer such that Arg (yn−1z
en
n) ∈ [3π/2, 2π) ∪ {0} and Arg

(
yn−1z

en+1
n

)
∈ (0, π/2],

and we can compute en again by sequentially applying Lemma 2.17 with intervals [3π/2, 2π] and

[0, π/2], with the z of Lemma 2.17 equal to zk for every positive integer k ≤ en + 1. There is a

bounded number of applications of Lemma 2.17 because en is bounded, and each application

takes polynomial time in n because the length of the representation of yn−1z
k
n is polynomial in

n for any k ∈ {1, 2, . . . , en}. We conclude that w is the limit of a sequence of algebraic numbers

that converges exponentially fast and the representation of its n-th element can be computed in

polynomial time in n. As a consequence, we have w ∈ PR by Lemma 2.30.

Lemma 2.32. Let q be a real algebraic number with q > 0. Let x and y be algebraic numbers

such that (x, y) ∈ Hq, y ̸∈ R and |x| > 1. Then there is a polynomial-time approximate theta

shift from (x, y) to (x′, y′) for some (x′, y′) ∈ Hq with y′ ∈ (0, 1) ∩ PR.

Proof. Since y ̸∈ R, we have x ̸∈ R (Remark 2.22). Let us write x = Reiθ for some R > 1 and

θ ∈ (0, 2π). An m-stretch gives a shift from (x, y) to (xm, ym) with ym = (xm + q − 1)/(xm − 1).

By plugging x = Reiθ in the definition of ym and multiplying by Rme−imθ − 1 in the numerator

and denominator, we obtain

ym =
R2m − q + 1 + (q − 2)Rm cos (mθ)− iqRm sin (mθ)

1 + R2m − 2Rm cos (mθ)
. (2.14)

If θ ∈ {π/2, 3π/2}, that is, x ∈ iR, then for m ≡ 2 (mod 4) we have cos (mθ) = −1, sin (mθ) = 0

and

ym =
(1 + Rm)2 − q (1 + Rm)

(1 + Rm)2
=

1 + Rm − q

1 + Rm
.

Page 59 of 212

Chapter 2. The complexity of approximating the complex-valued Potts model

Hence, for m ≡ 2 (mod 4) such that 1 + Rm > q, we have ym ∈ (0, 1), so we can choose y′ = ym

and we are done.

In the rest of the proof we assume that θ ̸∈ {π/2, 3π/2}. We are going to apply Lemma 2.31

to a subsequence of ym. First, we invoke Corollary 2.20 with z = x in order to find a sequence

σ(m), a positive integer k and a positive rational C that satisfies:

• σ(m) can be computed in polynomial time in m;

• k and C can be computed in constant time from x;

• m ≤ σ(m) ≤ m + k − 1 for every positive integer m;

• sin(σ(m)θ) ≤ −C and cos(σ(m)θ) ≤ −C for every positive integer m.

It follows that

Re
(
xσ(m)

)
= Re

(
Rσ(m)eiσ(m)θ

)
≤ −CRσ(m) ≤ −CRm.

Since R > 1, we can compute a positive integer m1 such that for m ≥ m1 we have Re(xσ(m)) <

1− q/2 and, thus,
∣∣yσ(m)

∣∣ < 1 (recall that ym = (xm + q − 1) / (xm − 1) and Remark 2.22). Let

am = 1− Re(ym) =
q − qRm cos (mθ)

1 + R2m − 2Rm cos (mθ)
;

bm = Im(ym) =
−qRm sin (mθ)

1 + R2m − 2Rm cos (mθ)
;

that is, ym = 1− am + ibm. We have

R2σ(m) ≤ 1 + R2σ(m) − 2Rσ(m) cos (σ(m)θ) ≤ 4R2σ(m).

Therefore, we obtain

qC

4
R−σ(m) ≤ aσ(m) ≤ 2qR−σ(m),

qC

4
R−σ(m) ≤ bσ(m) ≤ qR−σ(m). (2.15)

We compute a positive integer m2 such that m2 ≥ logR(4q) and m2 ≥ m1. We also compute

a rational number c with c ∈ (0, qCR−m2−k−1/4). Note that computing these quantities takes

constant time. Let f(m) = aσ(m+m2) and g(m) = bσ(m+m2). In view of (2.15) and the inequalities

R−m−k+1 ≤ R−σ(m) ≤ R−m, we find that

cR−m ≤ f(m) ≤ 1

2
R−m, cR−m ≤ g(m) ≤ 1

2
R−m, (2.16)

for any positive integer m. The sequence {zm} = {yσ(m+m2)} satisfies

•
∣∣zm∣∣ < 1 for every positive integer m;

• zm = 1− f(m) + ig(m) with f, g : Z+ → (0, 1);

• f and g are bounded as in (2.16).

Page 60 of 212

Chapter 2. The complexity of approximating the complex-valued Potts model

• zm is an algebraic number whose representation can be computed in polynomial time in

m. This is due to the facts that zm = (xσ(m+m2) + q − 1)/(xσ(m+m2) − 1), σ(m) can be

computed in polynomial time in m, and σ(m) = O(m).

Therefore, we can apply Lemma 2.31 to the sequence {zm} for r = R−1. There are y′ ∈ (0, 1)∩PR

and a bounded sequence of positive integers {em} such that∣∣∣∏m

j=1
z
ej
j − y′

∣∣∣ ≤ (π

2
+

π

c(1− 1/R)

)
R−m

for every positive integer m. Moreover, we can compute em in polynomial time in m. Let

M = π/2 + π/(c(1 − 1/R)). For any positive integer n, we can compute an integer m with

m ≥ log1/R (2−n/M) and m = Θ(n) in polynomial time in n. We obtain∣∣∣∏m

j=1
z
ej
j − y′

∣∣∣ ≤ 2−n.

This gives the following polynomial-time approximate theta shift from (x, y) to (x′, y′), where

x′ = 1 + q/(y′ − 1). For each positive integer n we return a graph Jn that is the parallel

composition of the path graphs that are used to implement the weights yσ(j+m2), each one

repeated ej times, for j ∈ {1, . . . ,m}. The graph Jn (x, y)-implements (x̂, ŷ) ∈ Hq for ŷ =∏m
j=1 z

ej
j =

∏m
j=1 y

ej
σ(j+m2)

.

Lemma 2.3. Let q be a real algebraic number with q ≥ 2. Let x and y be algebraic numbers

such that (x, y) ∈ Hq, y ∈ (−1, 0) ∪ (C\R) and (x, y) ̸∈ {(i,−i), (−i, i), (ω3, ω
2
3), (ω2

3, ω3)}, where
ω3 = exp(2πi/3). Then there is a polynomial-time approximate series-parallel shift from (x, y)

to (x′, y′) for some (x′, y′) ∈ Hq with x′, y′ ∈ PR and y′ ∈ (0, 1).

Proof. If y ∈ (−1, 0), then a 2-thickening of (x, y) gives the result. Hence, let us assume that

y ̸∈ (−1, 0) in the rest of the proof. There are two cases:

• q ≠ 2 or y ̸∈ iR. We apply either Lemma 2.23, Lemma 2.24 or Lemma 2.25, depending on

Arg(y), to find a shift from (x, y) to (x1, y1) ∈ Hq with y1 ̸∈ R and |x1| > 1. The graph

of this shift is series-parallel. Then we apply Lemma 2.32 to obtain a polynomial-time

approximate theta shift from (x1, y1) to some (x′, y′) ∈ Hq with y′ ∈ (0, 1)∩PR. The result

follows from the transitivity property of shifts.

• q = 2 and y ∈ iR. Since y ≠ ±i, Lemma 2.25 gives a shift from (x, y) to (x′, y′) for some

(x′, y′) ∈ Hq with y′ ∈ (−1, 0). A 2-thickening of (x′, y′) gives the result.

The fact that x′ ∈ PR follows from x′ = 1 + q/(y′ − 1) and y′ ∈ PR.

2.4.5 Approximate shifts for polynomial-time computable real numbers

In this subsection we show how we can obtain a polynomial-time approximate shift from (x, y)

to (x′, y′) for any (x, y), (x′, y′) ∈ Hq when q ≥ 2, y ∈ (0, 1) ∩ PR and y′ is a positive real

Page 61 of 212

Chapter 2. The complexity of approximating the complex-valued Potts model

algebraic number (Lemma 2.4). This extends a particular case of Lemma 2.7 to polynomial-time

computable numbers. Our proof follows the same approach as that of [60, Lemma 22] but we

have to overcome some difficulties that arise when working with the class of numbers PR. These

difficulties will become apparent in the proof, but the reader that is familiar with the literature

might want to skip the proof. Then we combine this result and Lemma 2.3 to prove Theorem 2.2,

the main result of Section 2.4.

Lemma 2.4. Let q, x, y ∈ PR such that q > 0, (x, y) ∈ Hq, y is positive and 1− q/2 < y < 1.

There is a polynomial-time algorithm that takes as an input:

• two positive integers k and n, in unary;

• a real algebraic number w ∈ [yk, 1].

The algorithm produces a theta graph J that (x, y)-implements (x̂, ŷ) such that
∣∣ŷ − w

∣∣ ≤ 2−n.

The size of J is at most a polynomial in k and n, independently of w.

Proof. If w = 1, then J is the graph with vertices s and t and no edges. In the rest of the proof

we focus on the case w ∈ (0, 1).

Recall that x = 1 + q/(y − 1). Since q > 0 and y ∈ (1− q/2, 1), we find that x ∈ (−∞,−1).

Let yj = 1 + q/(xj − 1). A j-stretch gives a shift from (x, y) to (xj , yj). If j is even, then xj > 1

and yj > 1. Otherwise, xj < −1 and yj ∈ (1 − q/2, 1). Moreover, the sequences {y2j+1} and

{y2j} are increasing and decreasing, respectively, and |yj − 1| can be made exponentially small as

a function of j. We use these properties of yj to show that we can compute y(e1,...,em) =
∏m

j=1 y
ej
j

such that
∣∣y(e1,...,em) − w

∣∣ ≤ 2−n. Let J be the parallel composition of the path graphs that

(x, y)-implement (xj , yj), each one repeated ej times, for j ∈ {1, . . . ,m}. Then J is a theta

graph and, in view of (2.4), we have w(G; q, y − 1) = y(e1,...,em) − 1, that is, J (x, y)-implements

(x̂, ŷ) ∈ Hq with ŷ = y(e1,...,em). The graph J is the theta graph output by our algorithm.

First, we define a sequence {dj} that will be related to the exponents e1, . . . , em. Since

q, x ∈ PR, we can compute rational upper bounds of q and x (Lemma 2.13) and, with the help of

these bounds, a positive integer j0 such that j0 > log|x| q. Let dj = 0 for every positive integer j

with j < j0 and let dj = 0 for every even positive integer j. For j odd with j ≥ j0 we define

dj recursively as the largest non-negative integer such that y(d1,...,dj) ≥ w. The integer dj is

well-defined because 0 < yj < 1 when j is odd and j ≥ j0. An equivalent definition is that {dj}
satisfies

yj < w/y(d1,...,dj) ≤ 1 (2.17)

for every odd integer j with j ≥ j0. A similar sequence {dj} is used in the proofs of [60,

Lemma 22] and [58, Lemma 3.28]. For any odd integer m with m ≥ log|x| (q2n − 1) we have

0 ≤ 1− ym ≤ 2−n and, in light of (2.17),

0 ≤ 1− w/y(d1,...,dm) ≤ 1− ym ≤ 2−n.

Page 62 of 212

Chapter 2. The complexity of approximating the complex-valued Potts model

Since 1 ≥ y(d1,...,dm) ≥ w, it follows that∣∣w − y(d1,...,dm)

∣∣ ≤ y(d1,...,dm)2
−n ≤ 2−n. (2.18)

Now we study the size of the integers d1, . . . , dm. We bound dj using an argument given

in [58, Lemma 3.28]. First, we show that dj0 is O(k). We have y
dj0
j0
≥ w. We obtain

dj0 ≤ logyj0
(w) = logy(w) logyj0

(y).

Since w ∈ [yk, 1) and logyj0
(y) > 0, it follows that 0 < logy(w) ≤ k and dj0 ∈ O(k). Now we

show that dj is bounded for any j > j0. By applying (2.17) twice, we find that

yj−2 < w/y(d1,...,dj−2) = wy
dj
j /y(d1,...,dj) ≤ y

dj
j

for every odd integer j with j > j0. It follows that dj ≤ log(yj−2)/ log(yj) (here and in the rest of

this chapter log is taken in base e). For every x ∈ (1, 5/4), we have 3(x− 1)/4 ≤ log(x) ≤ x− 1.

Hence, we obtain

dj ≤
log(yj−2)

log(yj)
=

log(1/yj−2)

log(1/yj)
≤ 4

3

1/yj−2 − 1

1/yj − 1

=
4yj

3yj−2

1− yj−2

1− yj
=

4yj
3yj−2

|x|j + 1

|x|j−2 + 1
≤ 4yj

3yj−2
|x|2 ,

where the last inequality is a consequence of |x|2 (|x|j−2 + 1) ≥ |x|j + 1. Since yj/yj−2 converges

to 1 and, thus, is bounded, it follows that dj is bounded. We conclude that
∑m

j=1 dj = O(k +m).

Let us assume that we can compute d1, . . . , dm for m = ⌈1+log|x| (q2n − 1)⌉. In light of (2.18),

we can return J as the theta graph that implements the weight w(J ; q, y − 1) = y(d1,...,dm) − 1.

Since
∑m

j=1 dj = O(k + m) and m = Θ(n), the size of J is at most a polynomial in k and n.

If y were algebraic, computing d1, . . . , dm in polynomial time would be straightforward from

their definition because we can efficiently check inequalities between real algebraic numbers as

explained in Section 2.4.1. This is the approach followed in [60, Lemma 22]. However, we only

know that y ∈ PR and, thus, it is not clear how to efficiently determine whether y(d1,...,dm−1,d) ≥ w

or not for any given d. In the rest of this proof, we show how to overcome this difficulty.

Let n be a positive integer, so 2−n is the desired accuracy for our algorithm. Let us assume

that we have computed the integers d1, . . . , dj−1 and we want to compute dj for an odd positive

integer j with j ≥ j0. We are going to sequentially try all the values d = 0, 1, . . . until we have

yj <
w

y(d1,...,dj−1,d)
≤ 1,

in which case we have found the value dj (see (2.17)). Recall that y(d1,...,dj−1,d) − 1 is the weight

implemented by a theta graph Jd whose size is bounded by a polynomial in k and j. Therefore,

by applying Lemma 2.15 with G = Jd and γ = y − 1, we can compute in polynomial time in n

and the size of Jd, a positive integer f(n + 2, Jd) with f(n + 2, Jd) = n + Θ(size(Jd)) such that

if |γ − γ̂| ≤ 2−f(n+2,Jd), then |w(G; q, γ)− w(G; q, γ̂)| ≤ 2−n−2. Since y ∈ PR, we can compute

Page 63 of 212

Chapter 2. The complexity of approximating the complex-valued Potts model

a rational number γ̂ such that |γ − γ̂| ≤ 2−f(n+2,Jd) in polynomial time in n and the size of Jd.

Let ŷ(d1,...,dj−1,d) = w(G; q, γ̂) + 1. Then we have computed in polynomial time in k, j and n a

rational number ŷ(d1,...,dj−1,d) such that∣∣∣ŷ(d1,...,dj−1,d) − y(d1,...,dj−1,d)

∣∣∣ ≤ 2−n−2.

Because
∣∣ŷ(d1,...,dj−1,d) − w

∣∣ is a real algebraic number, we can check if the following inequality

holds in polynomial time, ∣∣ŷ(d1,...,dj−1,d) − w
∣∣ ≤ 2−n−1. (2.19)

If that is the case, then∣∣∣y(d1,...,dj−1,d) − w
∣∣∣ ≤ ∣∣∣y(d1,...,dj−1,d) − ŷ(d1,...,dj−1,d)

∣∣∣+
∣∣∣ŷ(d1,...,dj−1,d) − w

∣∣∣ ≤ 3 · 2−n/4 < 2−n,

so y(d1,...,dj−1,d) is a good enough approximation of w and we can stop the algorithm (even

though we have not computed dj). Otherwise, we claim that ŷ(d1,...,dj−1,d) ≥ w if and only if

y(d1,...,dj−1,d) ≥ w. If ŷ(d1,...,dj−1,d) ≥ w and w > y(d1,...,dj−1,d), then∣∣ŷ(d1,...,dj−1,d) − w
∣∣ ≤ ∣∣ŷ(d1,...,dj−1,d) − y(d1,...,dj−1,d)

∣∣ ≤ 2−n−2

and (2.19) holds, a contradiction. The same reasoning applies when ŷ(d1,...,dj−1,d) < w and w ≤
y(d1,...,dj−1,d). Hence, we can check whether y(d1,...,dj−1,d) ≥ w or not by checking ŷ(d1,...,dj−1,d) ≥ w,

provided that (2.19) does not hold. This gives a procedure to compute dj for odd j with j ≥ j0:

1. Set d = 0.

2. If (2.19) holds, then return d. We have failed to compute dj , but we have succeeded in

finding an approximation of w.

3. If ŷ(d1,...,dj−1,d+1) ≥ w, then increase d by 1 and go to step 2. Else, we have dj = d.

We repeat this procedure to compute dj sequentially until (2.19) holds, in which case we

stop and return the graph J associated to y(d1,...,dj−1,d).

It remains to show that this procedure always halts and runs in polynomial time. In light of

(2.18), we find that, for odd m ≥ log|x|(q2n+2 − 1),∣∣ŷ(d1,...,dm) − w
∣∣ ≤ ∣∣ŷ(d1,...,dm) − y(d1,...,dm)

∣∣+
∣∣y(d1,...,dm) − w

∣∣ ≤ 2−n−1,

that is, (2.19) holds. Therefore, our procedure that computes non-negative integers d1, . . . , dm−1, d

with
∣∣y(d1,...,dm−1,d) − w

∣∣ ≤ 2−n halts for m = O(n). As a consequence, the whole procedure runs

in polynomial time in k and n.

The proof of Lemma 2.4 can be adapted to to the case w ∈ (1, y−k]. The main difference

is that this time we work with the decreasing sequence {y2j}. We set dj = 0 for odd j and,

for even j, we define dj recursively as the largest non-negative integer such that y(d1,...,dj) ≤ w.

The details of the proof are left to the reader. When studying the hardness of approximating

ZTutte(G; q, γ) we only need the version stated in Lemma 2.4.

Page 64 of 212

Chapter 2. The complexity of approximating the complex-valued Potts model

Theorem 2.2. Let q ≥ 2 be a real algebraic number. Let x and y be algebraic numbers

such that (x, y) ∈ Hq, y ∈ (−1, 0) ∪ (C\R) and (x, y) ̸∈ {(i,−i), (−i, i), (ω3, ω
2
3), (ω2

3, ω3)},
where ω3 = exp(2πi/3). Then, for any pair of real algebraic numbers (x′, y′) ∈ Hq there is a

polynomial-time approximate series-parallel shift from (x, y) to (x′, y′).

Proof. First, let us assume that y′ ∈ (0, 1]. By Lemma 2.3, there is a polynomial-time approximate

series-parallel shift from (x, y) to (x̃, ỹ) for some (x̃, ỹ) ∈ Hq with x̃, ỹ ∈ PR and ỹ ∈ (0, 1). Since

q ≥ 2, we have 1− q/2 ≤ 0 and ỹ ∈ (1− q/2, 1). Hence, Lemma 2.4 gives us a polynomial-time

approximate theta shift from (x̃, ỹ) to (x′, y′). Since ỹ ̸∈ 1 − q/2 + iR = 1 − q/2 + iqR and

x̃, ỹ ∈ PR, the transitivity property of polynomial-time approximate shifts, Lemma 2.16, for

(x1, y1) = (x, y), (x2, y2) = (x̃, ỹ) and (x3, y3) = (x′, y′) gives us a polynomial-time approximate

series-parallel shift from (x, y) to (x′, y′).

Now we treat the case y′ = 0. As a consequence of what we have just shown in the paragraph

above, there is a polynomial-time approximate series-parallel shift from (x, y) to (1−2q, 1/2) ∈ Hq.

An n-thickening gives a shift from (1 − 2q, 1/2) to (xn, 2
−n), where xn = 1 + q/(2−n − 1), so

there is also a polynomial-time approximate theta shift from (1 − 2q, 1/2) to (1 − q, 0). We

conclude that there is a polynomial-time approximate series-parallel shift from (x, y) to (1− q, 0)

by applying Lemma 2.16 with (x1, y1) = (x, y), (x2, y2) = (1− 2q, 1/2) and (x3, y3) = (1− q, 0).

Note that we can indeed apply Lemma 2.16 because 1− 2q, 1/2 ∈ PR and 1/2 ̸∈ 1− q/2 + iqR.

Now we deal with the case y′ > 1. We use again the polynomial-time approximate series-

parallel shift from (x, y) to (x1, y1) = (1 − 2q, 1/2) ∈ Hq. We use a 2-stretch to (1 − 2q, 1/2)-

implement (x2, y2) with x2 = (1 − 2q)2 ≥ 9 and y2 = 1 + q/(x2 − 1) > 1. Hence, there is

a polynomial-time approximate series-parallel shift from (x, y) to (x2, y2). Since x2 and y2

are real algebraic numbers with y2 > 1 and (x2 − 1)(y2 − 1) = q > 0, in view of Lemma 2.7,

we have a polynomial-time approximate theta shift from (x2, y2) to (x′, y′). Note that y2 ̸∈
{1} ∪ (1 − q/2 + iqR). Hence, we can apply the transitivity property shown in Lemma 2.16

with (x1, y1) = (x, y), (x2, y2) = (x2, y2) and (x3, y3) = (x′, y′) and find a polynomial-time

approximate series-parallel shift from (x, y) to (x′, y′).

Finally, we study the case y′ < 0. In light of Corollary 2.28, there is a polynomial-time

approximate series-parallel shift from (x, y) to (0, 1− q). Note that 1− q ≤ −1. In this proof

we have already shown that there is a polynomial-time approximate series-parallel shift from

(x, y) to (x3, y3) ∈ Hq for y3 = y′/(1 − q) > 0. Since y′ = y3(1 − q), by Lemma 2.11 with

parameters (x1, y1) = (x, y), (x2, y2) = (0, 1− q) and (x3, y3) = (x3, y3), we conclude that there

is a polynomial-time approximate series-parallel shift from (x, y) to (x′, y′).

2.5 Hardness results

We begin with obtaining lower bounds on ZTutte(G; q, γ) for algebraic numbers q and γ. In

Section 2.5.2, we review the algorithm of [78] for computing algebraic representations, and in

Section 2.5.3 the exact #P-hardness results that we will use. The rest of the section gives various

Page 65 of 212

Chapter 2. The complexity of approximating the complex-valued Potts model

ingredients that are needed in the reduction, which are put together in Section 2.5.8 where we

prove all of our main theorems of this chapter.

2.5.1 Properties of ZTutte(G; q, γ) for algebraic numbers q and γ

In this section we give a lower bound on ZTutte(G; q, γ) and study the degree and height of

ZTutte(G; q, γ) when q and γ are algebraic numbers. First, we have to introduce some concepts

and results from algebraic number theory. The degree of an algebraic number γ is the degree of its

minimal polynomial p, and we denote it by d(γ). Recall that the degree of a field extension F/K

is the dimension of F as a K-vector space, and it is denoted by [F : K]. It is well-known that if γ

is algebraic, then [K(γ) : K] is the degree of the minimal polynomial of γ over K [112, Chapter

5]. In particular, we have [Q(γ) : Q] = d(γ). The usual height of a polynomial f ∈ Z[x1, . . . , xm]

is the the largest value among the absolute values of its coefficients and it is denoted by H(f).

The usual height of γ is H(γ) = H(p). One can find several (non-equivalent) definitions of the

height of an algebraic number in the literature. Another one of these definitions is the absolute

logarithmic height. First, we have to introduce the Mahler’s measure of a polynomial f ∈ Z[x],

which is given by

M(f) = |ad|
d∏

i=1

max{1, |αi|},

where f(x) =
∑d

j=0 ajx
j , ad ̸= 0, and α1, . . . , αd are the roots of f . It is well-known that

2−d(f)H(f) ≤M(f) ≤ H(f)
√
d(f) + 1, (2.20)

see [118, Lemma 3.11]. The Mahler’s measure of an algebraic number γ with minimal polynomial

p is M(γ) = M(p). The absolute logarithmic height of γ is h(γ) = d(γ)−1 logM(γ). Note that

h(γ) ≥ 0 because M(γ) ≥ 1. Now we can state a lower bound for the evaluation of a polynomial

at algebraic numbers.

Lemma 2.33 ([118, Section 3.5.4]). Let f ∈ Z[x1, . . . , xm] be a polynomial in m variables and

let γ1, . . . , γm be algebraic numbers. If f(γ1, . . . , γm) ̸= 0, then we have

|f(γ1, . . . , γm)| ≥ e−cT ,

where T = deg f + logH(f), c = D(2 + h(γ1) + · · ·+ h(γm)) and D = [Q(γ1, . . . , γm) : Q].

Corollary 2.34. Let q and γ be algebraic numbers. We can compute a rational number Cq,γ with

Cq,γ > 1 such that, for any graph G, either ZTutte(G; q, γ) = 0 or |ZTutte(G; q, γ)| ≥ C
−size(G)
q,γ .

Proof. Recall that we represent an algebraic number γ as its minimal polynomial p and a

rectangle of the complex plane where γ is the only root of p. Let G = (V,E) be a graph. Let

n = |V | and m = |E|. Let us assume that ZTutte(G; q, γ) ̸= 0. We can apply Lemma 2.33

for f(q, γ) = ZTutte(G; q, γ) to find that |ZTutte(G; q, γ)| ≥ e−cT , where c and T are as in

Lemma 2.33. We have c = D(2 + h(q) + h(γ)) and D = [Q(q, γ) : Q], so c ≥ 2. Note

Page 66 of 212

Chapter 2. The complexity of approximating the complex-valued Potts model

that, by definition of ZTutte, we have H(f) ≤ 2m and deg f ≤ n + m. Hence, we find that

|ZTutte(G; q, γ)| ≥ e−2c size(G). It remains to compute a rational number Cq,γ in (e2c,∞) to

conclude the result. From D = [Q(q, γ) : Q], we can compute D exactly. Moreover, we can apply

(2.20) to upper bound h(q) and h(γ) in terms of the usual heights and degrees of q and γ, and

compute an appropriate rational number Cq,γ with the help of these upper bounds.

The case q = 2 (Ising model) of Corollary 2.34 has previously been shown in [55, Lemma

6.4]. Note that the approach followed in this section can be applied to obtain lower bounds for

other partition functions.

In the rest of this section we upper bound the degree and the usual height of the algebraic

number ZTutte(G; q, γ) in terms of the usual heights and degrees of q and γ. We will make use

of these bounds in the proof of Lemma 2.41.

Let q and γ be two algebraic numbers. By the tower law, we have [Q(q, γ) : Q] = [Q(q, γ) :

Q(q)][Q(q) : Q] ≤ d(q)d(γ), where we used that the degree of the minimal polynomial of γ over

Q(q) is bounded by d(γ). Since ZTutte(G; q, γ) is in Q(q, γ), it follows that its degree is bounded

by d(q)d(γ).

Now we argue how we can bound the usual height of ZTutte(G; q, γ). A well-known property

of the absolute logarithmic height is that h(αβ) ≤ h(α) + h(β), h(α + β) ≤ log 2 + h(α) + h(β)

and h(1/α) = h(α) [118, Property 3.3]. Moreover, if n is an integer, then h(n) = log |n|. A more

general property is the following one.

Lemma 2.35 ([118, Lemma 3.7]). Let f ∈ Z[x1, . . . , xt] be a non-zero polynomial in t variables

with integer coefficients. Let γ1, . . . , γt be algebraic numbers. Then

h (f (γ1, . . . , γt)) ≤ logL(f) +

t∑
j=1

degxj
(f)h(γj),

where L(f) is the sum of the absolute values of the coefficients of f and degxj
(f) is the degree

of f with respect to the j-th variable.

Corollary 2.36. Let q and γ be algebraic numbers. Then, for any graph G = (V,E) with

n = |V | and m = |E|, we have

d

(
Zs|t(G; q, γ)

Zst(G; q, γ)

)
≤ d (q) d (γ) and H

(
Zs|t (G; q, γ)

Zst (G; q, γ)

)
≤
(

2m+1/2enh(q)+mh(γ)
)2d(q)d(γ)

.

Proof. The degree bound on Zs|t(G; q, γ)/Zst(G; q, γ) follows from the fact that that it is in

Q(q, γ). For its absolute logarithmic height, we have

h

(
Zs|t(G; q, γ)

Zst(G; q, γ)

)
≤ h (Zst(G; q, γ)) + h

(
Zs|t(G; q, γ)

)
.

Note that L(Zst(G; q, γ)) +L(Zs|t(G; q, γ)) = 2m. As a consequence of Lemma 2.35, we find that

h (Zst(G; q, γ)) + h
(
Zs|t(G; q, γ)

)
≤ 2 (m log 2 + nh(q) + mh(γ)) .

Page 67 of 212

Chapter 2. The complexity of approximating the complex-valued Potts model

Recall that M(α) = exp(d(α)h(α)). Thus, the bounds on the Mahler’s measure (2.20) yield the

inequality H(α) ≤ (2 exp(h(α)))d(α). We conclude that

H

(
Zs|t(G; q, γ)

Zst(G; q, γ)

)
≤
(

2e2(m log 2+nh(q)+mh(γ))
)d(q)d(γ)

=
(

2m+1/2enh(q)+mh(γ)
)2d(q)d(γ)

.

One could derive analogous bounds to those of Corollary 2.36 for the algebraic number

ZTutte(G; q, γ) by applying the same argument.

2.5.2 Computing representations of algebraic numbers via approximations

Kannan, Lenstra and Lovász [78] showed how to reconstruct the minimal polynomial of an

algebraic number from a certain number of digits of its binary expansion, and we will use their

algorithm as a black-box in our reduction of Section 2.5.5, in the following form.

Lemma 2.37 ([78, Theorem 1.19]). Let α be an algebraic number and let d and U be upper

bounds on the degree and usual height, respectively, of α. Suppose that we are given a rational

approximation α to α such that |α− α| ≤ 2−b/(12d), where b is the smallest positive integer

such that

2b ≥ 2d
2/2(d + 1)(3d+4)/2U2d.

Then the minimal polynomial of α can be determined in O(d5(d + logU)) arithmetic operations

on integers having O(d2(d + logU)) binary bits.

The algorithm in Lemma 2.37 is based on the Lenstra–Lenstra–Lovász lattice basis reduction

algorithm, we refer the reader to [123] for more details.

2.5.3 Exact Hardness results

We will use the following hardness results from [73] regarding the problem of exactly evaluating

ZTutte(G; q, γ), given a graph G. We refer to this problem as Tutte(q, γ). Jaeger et al. [73]

identify the following 9 “special” points of the Tutte plane: (1,−1), (0, 0), (4,−2), (2,−2),

(2,−1), (2,−i− 1), (2, i− 1), (3, ω2
3 − 1), and (3, ω3 − 1), where i =

√
−1 and ω3 = exp(2πi/3).2

With these special points in mind, their main result on the complexity of Tutte(q, γ) can be

stated as follows.

Theorem 2.38 ([73, Proposition 1]). Let q and γ be algebraic numbers. Then Tutte(q, γ) is

#P-hard unless q = 1 or (q, γ) is a special point, in which case Tutte(q, γ) is in FP.

In [116], Vertigan studied the complexity of the problem PlanarTutte(q, γ), which also

turns out to be hard for most parameters q and γ.

Theorem 2.39 ([116, Theorem 5.1]). Let q and γ be algebraic numbers. Then PlanarTutte(q, γ)

is #P-hard unless q ∈ {1, 2} or (q, γ) is a special point, in which case PlanarTutte(q, γ) is in

FP.
2In the (x, y)-parametrisation, the special points are (0, 0), (1, 1), (−1,−1), (0,−1), (−1, 0), (i,−i), (−i, i),

(ω3, ω
2
3), and (ω2

3 , ω3).

Page 68 of 212

Chapter 2. The complexity of approximating the complex-valued Potts model

2.5.4 Computational problems

In this section, we define a few computational problems that will be useful in our reductions;

these were also considered in [55]. Let q be a real algebraic number, γ1, . . . , γk be algebraic

numbers, and K, ρ be real numbers with K > 1, ρ > 0.

Name: Sign-Tutte(q, γ1, . . . , γk) – here γ1, . . . , γk are real.

Instance: A (multi)graph G and a weight function γ̂ : E → {γ1, . . . , γk}.
Output: A correct statement of the form ZTutte(G; q, γ̂) ≥ 0 or ZTutte(G; q, γ̂) ≤ 0.

Name: Factor-K-NormTutte(q, γ1, . . . , γk).

Instance: A (multi)graph G and a weight function γ̂ : E → {γ1, . . . , γk}.
Output: If ZTutte(G; q, γ̂) = 0, the algorithm may output any rational number. Otherwise, it

must output N̂ ∈ Q such that N̂/K ≤ |ZTutte(G; q, γ̂)| ≤ KN̂ .

Name: Distance-ρ-ArgTutte(q, γ).

Instance: A (multi)graph G.

Output: If ZTutte(G; q, γ) = 0, the algorithm may output any rational number. Otherwise, it

must output Â ∈ Q such that, for some a ∈ arg(ZTutte(G; q, γ)), we have |Â− a| ≤ ρ.

We also consider these problems for the Potts model (with parameters q and y = γ + 1), and

we write Potts instead of Tutte in the name of these problems when we refer to the Potts

ones. We also consider all these problems restricted to planar graphs, in which case we write

PlanarTutte instead of Tutte in the name of the problem. It is a trivial observation that

the planar case reduces to the general case.

2.5.5 Reducing exact computation to sign and approximate computation

In this section, we first review the binary search technique of [55], which we will refer to as

“interval-shrinking”. Then, we use this to obtain several of our inapproximability theorems.

Let f(ε) = −εA + B be a linear function, where A and B are real algebraic numbers with

A ̸= 0. Let ε∗ = B/A be the zero of f . Let (ε′, ε′′) be an open interval with length l > 0 such

that ε∗ is in (ε′, ε′′) or, equivalently, f(ε′)f(ε′′) < 0. We want to find a small open subinterval of

(ε′, ε′′) that contains ε∗.

First, assume that we have an oracle that, on input ε, outputs the sign of f(ε), unless when

f(ε) = 0, in which case the output of the oracle is unreliable. Let ε0, ε1, . . . , ε4 be a partition

of the interval (ε′, ε′′) such that ε0 = ε′, ε4 = ε′′ and εi+1 − εi ≥ l/10 for every i ∈ {0, . . . , 3}.
We invoke the oracle with input εi to determine the sign of f(εi) for every i ∈ {0, . . . , 4}; let

si be the answer of the oracle. Then, we have a monotone sequence s0, . . . , s4 of positive and

negative signs with s0 ̸= s4. Hence, there are two possibilities: either s0 = s1 = s2, in which

case ε1 < ε∗ and we can recurse on (ε1, ε4), or s2 = s3 = s4, in which case ε∗ < ε3 and we can

recurse on (ε0, ε3). In any of these two cases, we can shrink the interval (ε′, ε′′) to at most 9/10

Page 69 of 212

Chapter 2. The complexity of approximating the complex-valued Potts model

of its original length. Then, recursively, we can find an open subinterval of arbitrarily small

length containing the zero of f .

Next, assume that we have an oracle that returns a multiplicative approximation to the

norm of f . More accurately, let η = 1/41 and suppose that we have an oracle that, on input ε,

returns a value f̂(ε) satisfying

(1− η) |f(ε)| < 1

1 + η
|f(ε)| ≤ f̂(ε) ≤ (1 + η) |f(ε)|

when f(ε) ̸= 0 (otherwise the value f̂(ε) is unreliable). The approach given in [55] by Goldberg

and Guo to shrink (ε′, ε′′) is as follows. First, let us assume that A > 0, so f is strictly

decreasing. Let ε0, ε1, . . . , ε10 be a partition of the interval (ε′, ε′′) such that ε0 = ε′, ε10 = ε′′

and εi+1 − εi ≥ l/20 for every i ∈ {0, . . . , 9}. These numbers are not chosen to be optimal

but they suffice. We invoke our oracle to compute f̂(εi) for i ∈ {0, . . . , 10}. Let si be the sign

(positive, negative, or zero) of f̂(εi)− f̂(εi+1) for each i ∈ {0, . . . , 9}. We analyse the signs si for

i ∈ {0, . . . , 9}. First, we consider the case εi < εi+1 < ε∗. Note that we have f(εi) > f(εi+1) > 0.

Moreover,

f̂ (εi)− f̂ (εi+1) ≥ (1− η) f (εi)− (1 + η) f (εi+1)

= A (εi+1 − εi − η (2ε∗ − εi − εi+1)) .

Note that ε∗ − εi and ε∗ − εi+1 are both at most l and, thus, we obtain 2ε∗ − εi − εi+1 ≤ 2l. So

since η = 1/41 and εi+1 − εi ≥ l/20, we conclude that si is positive. Now we consider the case

ε∗ < εi < εi+1. This time we have f(εi+1) < f(εi) < 0,

f̂ (εi)− f̂ (εi+1) ≤ (1 + η) (−f (εi))− (1− η) (−f (εi+1))

= −A (εi+1 − εi − η (εi + εi+1 − 2ε∗)) ,

and 0 < εi + εi+1 − 2ε∗ < 2l. We conclude that si is negative. If εi ≤ ε∗ and ε∗ ≤ εi+1, then we

do not know what the value of si will be. However, this is true for at most two consecutive values

of i. With these properties of the signs si in mind, let us study the sequence s0, . . . , s9. There

are two possibilities. The first one is that s0, s1, s2, s3 are all positive, in which case ε2 < ε∗ and

we can recurse on (ε2, ε10). The second possibility is that s6, s7, s8, s9 are all negative, in which

case ε∗ < ε8 and we can recurse on (ε0, ε8). In any of these two cases, we can shrink the interval

(ε′, ε′′) to at most 9/10 of its original length. Again using binary search it is possible to find a

small open subinterval containing the zero of f . Let us now assume that A < 0. In this case,

one can analogously prove that the sign si is positive when εi < εi+1 < ε∗ and negative when

ε∗ < εi < εi+1, so the same procedure allows us to shrink (ε′, ε′′).

Let q and γ be real algebraic numbers with q ̸∈ {0, 1} and γ > 0. Let H be a graph and let

s and t be two distinct connected vertices of H. We are going to apply these interval stretching

techniques to the linear function

f(ε;H, γ) = Zs|t(H; q, γ)

(
1− 1

q

)
+ ε

(
Zst(H; q, γ) +

1

q
Zs|t(H; q, γ)

)
. (2.21)

Page 70 of 212

Chapter 2. The complexity of approximating the complex-valued Potts model

Let us write this function as f(ε;H, γ) = B(H, γ)− εA(H, γ), where B(H, γ) = Zs|t(H; q, γ)(1−
1/q) and A(H, γ) = −Zst(H; q, γ)− q−1Zs|t(H; q, γ). We have

f(0;H, γ) = Zs|t(H; q, γ)

(
1− 1

q

)
;

f(1− q;H, γ) = (1− q)Zst(H; q, γ).

(2.22)

Under certain hypotheses, we are going to prove that f(0;H, γ)f(1−q;H, γ) < 0, so A(H, γ) ̸= 0

and f(−;H, γ) has a zero between 0 and 1− q. This allows us to find a suitable interval where

we can perform interval-shrinking. For this purpose we will also need Lemma 2.40, that tells us

that the zero of f(−;H, γ) is not close to either 0 or 1− q.

Lemma 2.40. Let q and γ be real algebraic numbers with q ̸∈ {0, 1} and γ > 0. Let H = (V,E)

be a graph and let s and t be two distinct connected vertices of H. Let n = |V |, m = |E|,
r = max{n,m} and c = 2 max{|q|, 1/|q|}max{γ, 1/γ}. Let ε∗ be the zero of the function

f(ε;H, γ) = B(H, γ) − A(H, γ), defined as in (2.21). Let us assume that |Zst(H; q, γ)| ≥ c−r,

|Zs|t(H; q, γ)| ≥ c−r and A(H, γ) ̸= 0. Then we have |1− q − ε∗| ≥ |1− q| c−2r and |ε∗| ≥
|1− 1/q| c−2r.

Proof. In view of the definition of f(ε;H, γ) and equation (2.22), we have

|1− q − ε∗| = |f (ε∗;H, γ)− f(1− q)|
|A(H, γ)|

=
|1− q| |Zst (H; q, γ)|

|A(H, γ)|
.

Note that

|A(H, γ)| ≤
∑
A⊆E

max{|q|, 1/|q|} |q|k(A)−1 |γ||A| ≤ cr. (2.23)

Moreover, we have |Zst(H; q, γ)| ≥ c−r by hypothesis, so we conclude that |1−q−ε∗| ≥ |1−q|c−2r.

Analogously, we find that

|ε∗| = |f (ε∗;H, γ)− f(0)|
|A(H, γ)|

=
|1− 1/q|

∣∣Zs|t (H; q, γ)
∣∣

|A(H, γ)|
≥
∣∣∣∣1− 1

q

∣∣∣∣ c−2r.

Lemma 2.41. Let K be a real number with K > 1. Let q, γ1 and γ2 be real algebraic numbers

such that q > 1, γ1 ∈ (−2,−1) and γ2 > 0. Let us assume that we have access to an oracle

for Factor-K-NormPlanarTutte(q, γ1, γ2). Then there exists an algorithm that takes as

input a positive integer ρ and a planar graph H along with two distinct connected vertices s and

t of H, and, for γ = (γ2 + 1)ρ − 1, this algorithm computes a representation of the algebraic

number Zs|t(H; q, γ)/Zst(H; q, γ) in polynomial time in ρ and the size of H. Moreover, if we

have access to the more powerful oracle Factor-K-NormTutte(q, γ1, γ2), then we can remove

the constraint that H is planar.

Proof. Since Factor-K-NormPlanarTutte(q, z) is equally hard for any K > 1 (see Sec-

tion 1.3), we may assume that K = 1 + η for η = 1/41.

Let ρ, H = (V,E) and s, t be the inputs of our algorithm. Let n = |V | and m = |E|. Let

c = 2 max{|q|, 1/|q|}max{γ, 1/γ}, so c ≥ 2, and let r = max{n,m}. Let H ′ be a copy of H with

Page 71 of 212

Chapter 2. The complexity of approximating the complex-valued Potts model

an extra edge from s to t. Let γ′ be a weight that we can implement and let ε = γ′ + 1, so the

pair (1 + q/(ε− 1), ε) is (q, γ′) written in (x, y) coordinates. We will choose γ′ and argue how we

can implement γ′ later in the proof. When we say we implement ε, we mean that we implement

the pair (1 + q/(ε− 1), ε) in (x, y) notation or, equivalently, γ′.

Let τ be the weight function on H ′ that assigns the weight γ to the edges of H and the

weight γ′ to the new edge. Then, as was observed in [59, Lemma 2], we have

ZTutte(H
′; q, τ) = Zst(H; q, γ)(1 + γ′) + Zs|t(H; q, γ)

(
1 +

γ′

q

)
= Zs|t(H; q, γ)

(
1− 1

q

)
+ ε

(
Zst(H; q, γ) +

1

q
Zs|t(H; q, γ)

)
= f(ε;H, γ),

(2.24)

where f(ε;H, γ) was introduced in (2.21). Hence, ZTutte(H
′; q, τ) can be seen as a function, with

variable ε, of the form f(ε;H, γ) = B(H, γ)− εA(H, γ), where B(H, γ) = Zs|t(H; q, γ)(1− 1/q)

and A(H, γ) = −Zst(H; q, γ) − q−1Zs|t(H; q, γ). This construction will be used several times

in this section. Now we analise f(−;H, γ) for our particular setting (q > 1). Since q and γ

are positive, the quantities Zst(H; q, γ) and Zs|t(H; q, γ) are positive, so A(H, γ) is negative.

From q > 1 and (2.22), it follows that f(0;H, γ) = B(H, γ) > 0 and f(1 − q;H, γ) < 0, so

f(0;H, γ)f(1 − q;H, γ) < 0 as we wanted. We conclude that the zero ε∗ of f(ε;H, γ) is in

(1− q, 0). Note that ε ∈ (1− q, 0) if and only if γ′ ∈ (−q,−1). Moreover, we have

Zst(H; q, γ) ≥ qγm ≥ c−r,

Zs|t(H; q, γ) ≥ qn ≥ c−r.
(2.25)

This allow us to apply Lemma 2.40. Once we have all these properties of f(ε;H, γ) at our disposal,

we can proceed to describe our algorithm. Our algorithm also works for q ∈ (−∞, 0) ∩ (0, 1) as

long as f(0;H, γ)f(1− q;H, γ) < 0 and the hypotheses of Lemma 2.40 hold. In the rest of the

proof we will only use the fact that q > 1 one more time, but this will be made explicit and can

easily be adapted to the case q < 1 as we will explain in Lemma 2.43.

Our algorithm computes a positive integer j0 such that c−j0 ≤ |q − 1|/2. Let j be an integer

with j ≥ j0. We will first show how to additively approximate Zs|t(H; q, γ)/Zst(H; q, γ) with

error at most 2|q|c−j/|q − 1|.
If we could efficiently implement the point (1− q/(ε− 1), ε) (in (x, y) coordinates) for any

ε ∈ [1− q, 0] using only planar graphs, then our algorithm could perform the interval-shrinking

technique explained at the beginning of this section. This would allow us to compute an interval

of length at most c−j−4r where the linear function f(ε) has a zero, which would, in turn, provide

us with the desired additive approximation, as we will see later. However, some difficulties arise

since we do not know how to implement any specific real algebraic weight. This difficulty was

overcome by Goldberg and Jerrum by developing Lemmas 2.7 and 2.8. Here we use the version

of these lemmas given in Corollary 2.9. Let y1 = γ1 + 1, x1 = 1 + q/(y1 − 1), y2 = γ2 + 1 and

x2 = 1 + q/(y2 − 1). Note that y1 ∈ (−1, 0), y2 > 1 and q ̸= 0. Hence, Corollary 2.9 allows

Page 72 of 212

Chapter 2. The complexity of approximating the complex-valued Potts model

us to efficiently implement approximations of real algebraic numbers when applied with the

parameters x1, y1, x2, y2. Every time we invoke Corollary 2.9 we will be using these parameters.

We are going to use this corollary to implement approximations of ε ∈ (1− q, 0). This is the

only point where our algorithm uses the fact that γ1 ∈ (−2,−1) or, equivalently, y1 ∈ (−1, 0).

In further lemmas where we study the case q < 1, we will have to implement approximations

of ε ∈ (0, 1 − q) and, hence, we will get away with the weaker hypothesis γ1 ∈ (−1, 0), or,

equivalently, y1 ∈ (0, 1). (This hypothesis is “weaker” in the sense that a 2-thickening of a

y1 ∈ (−1, 0) implements a y1 ∈ (0, 1).)

We want to implement numbers ε′ and ε′′ so that ε∗ ∈ (ε′, ε′′) ⊆ (1− q, 0). Note that here

we are using that q > 1. When q < 1 our algorithm would work on the interval (0, 1 − q)

instead of (1− q, 0). This paragraph is the last time that we use the hypothesis q > 1 in this

proof. The argument given in this paragraph will be revisited when we deal with the case

q < 1 in further lemmas. Our algorithm first applies the algorithm given in Corollary 2.9 with

y′ = −(1− 1/q)c−2r/2, k such that |y1|k < |y′| < |y1|−k and n = ⌈2r log2(c)− log2(1− 1/q) + 2⌉.
Note that k = O(r) and n = O(r). This procedure computes a theta graph and a weight function

taking weights in {γ1, γ2} that implement a point (1 + q/(ε′′− 1), ε′′) such that |y′− ε′′| ≤ 2−n ≤
(1 − 1/q)c−2r/4 in polynomial time in r = O(size(H)). We have −3(1 − 1/q)c−2r/4 ≤ ε′′ ≤
−(1−1/q)c−2r/4, so, by Lemma 2.40, we find that ε∗ < ε′′ < 0. Now our algorithm invokes again

Corollary 2.9, this time with inputs y′ = 1− q + (q − 1)c−2r/2, k such that |y1|k < |y′| < |y1|−k

and n = ⌈2r log2(c) − min{0, log2(q − 1)} + 2⌉. This implements (1 + q/(ε′ − 1), ε′) with

|y′ − ε′| ≤ (q − 1)c−2r/4, which gives 1− q + (q − 1)c−2r/4 ≤ ε′ ≤ 1− q + 3(q − 1)c−2r/4. Again

by Lemma 2.40, we find that 1− q < ε′ < ε∗. The interval (ε′, ε′′) is the starting interval for the

interval-shrinking procedure.

Let us assume that we are carrying out the interval-shrinking technique explained at the

beginning of this section, so we have an interval (ε′, ε′′) of length l where f changes sign.

Let us also assume that we can implement the endpoints ε′ and ε′′. We want to find a

subinterval of length at most 9l/10 where f changes sign. We can assume that l > c−j−4r,

since otherwise we do not need to shrink the interval further. Let p = 10 be the number of

subintervals into which (ε′, ε′′) is partitioned by the interval-shrinking technique. We want to

find numbers ε1, . . . , εp−1 such that we can implement the point (1 + q/(εi − 1), εi) for every

i ∈ {1, . . . , p− 1} and, for ε0 = ε′ and εp = ε′′, we have εi − εi−1 ≥ l/2p for every i ∈ {1, . . . , p},
which is what is required to perform interval-shrinking. For each i ∈ {1, . . . , p − 1}, our

algorithm computes ε′i = ε′ + il/p and then it applies the algorithm given in Corollary 2.9

with y′ = ε′i, k such that |y1|k < |y′| < |y1|−k and n = ⌈(j + 4r) log2(c) + log2(4p)⌉. This

procedure computes a graph and a weight function taking weights in {γ1, γ2} that implement

a point (1 + q/(εi − 1), εi) such that |ε′i − εi| ≤ 2−n ≤ c−j−4r/(4p). This application of

the procedure given in Corollary 2.9 takes polynomial time in j, r and k. Note that k is

polynomial in r and j because |1 − q| ≥ |ε′i| ≥ l/p ≥ c−j−4r/p for any i ∈ {1, . . . , p − 1}. The

algebraic numbers ε′, ε1, . . . , εp−1, ε
′′ form a partition the interval (ε′, ε′′). Our algorithm has

computed theta (and, thus, planar) graphs that implement (1 + q/(εi − 1), εi), so it can use

Page 73 of 212

Chapter 2. The complexity of approximating the complex-valued Potts model

the oracle Factor-K-NormPlanarTutte(q, γ1, γ2) to multiplicatively approximate f(εi) for

every i ∈ {0, . . . , p}. Note that

εi − εi−1 ≥ ε′i − ε′i−1 − c−j−4r 1

2p
≥ l

2p

for every i ∈ {1, . . . , p}. Therefore, our algorithm can apply the interval-shrinking technique

discussed at the beginning of this section to shrink (ε′, ε′′).

To guarantee that this interval-shrinking technique computes an interval of length at most

c−j−4r, it suffices to subdivide the original interval ⌈(j + 4r) log10/9(c) + log10/9 |1− q|⌉ times

due to the fact that each iteration shrinks the interval to 9/10 of its size. In [59] and [55] the

authors used the information provided by this interval-shrinking procedure to solve the problem

#Minimum Cardinality (s, t)-Cut for arbitrary graphs (not-necessarily planar). Here we fol-

low a different approach that allows us to compute the representation of Zs|t(H; q, γ)/Zst(H; q, γ).

Once our algorithm has computed an interval of length at most c−j−4r where f has a zero, it

implements a point (1 + q/(ε̂− 1), ε̂) such that ε̂ is in this interval. This can be done by applying

Corollary 2.9 with the same parameters as before other than y′, which is set as the middle point

of the computed interval. Let ε∗ be the zero of f . Note that |ε̂ − ε∗| ≤ c−j−4r. Recall that

f(ε;H, γ) = B(H, γ) − A(H, γ)ε. For a graph H ′ and a weight function τ as in (2.24), with

γ′ = ε̂− 1 (which we can now implement as promised before (2.24)), we obtain∣∣ZTutte

(
H ′; q, τ

)∣∣ = |f(ε̂)| = |f(ε̂)− f(ε∗)| ≤ |A(H, γ)|c−j−4r ≤ c−j−3r, (2.26)

where we used the elementary bound |A(H, γ)| ≤ cr, which has been established in (2.23). By

dividing by Zst (H; q, γ) in (2.24), which is non-zero, and rearranging the terms we find that

ZTutte (H ′; q, τ)

Zst (H; q, γ)
= ε̂ +

(
1 +

ε̂− 1

q

)
Zs|t (H; q, γ)

Zst (H; q, γ)
.

Dividing by 1 + (ε̂− 1)/q = (q − 1 + ε̂)/q yields

qZTutte (H ′; q, τ)

(q − 1 + ε̂)Zst (H; q, γ)
= − ε̂q

1− q − ε̂
+

Zs|t (H; q, γ)

Zst (H; q, γ)
. (2.27)

We claim that |1 − q − ε̂| ≥ |1 − q|c−2r/2. Recall that in view of Lemma 2.40, we have

|1− q − ε∗| ≥ |1− q|c−2r. Hence, we obtain

|1− q − ε̂| ≥ |1− q − ε∗| − |ε∗ − ε̂| ≥ |1− q| c−2r − c−j−4r ≥ |1− q|
2

c−2r,

where we used that c−j−4r ≤ c−j0c−4r ≤ |q − 1| c−4r/2 by definition of j0. Therefore, we can

apply this lower bound in conjunction with (2.25), (2.26) and (2.27) to conclude that∣∣∣∣Zs|t (H; q, γ)

Zst (H; q, γ)
− ε̂q

1− q − ε̂

∣∣∣∣ ≤ 2|q| |ZTutte (H ′; q, τ)|
|1− q|

c3r ≤ 2|q|
|1− q|

c−j .

Our algorithm then computes ε̂q/(1−q−ε̂) as an approximation of α = Zs|t (H; q, γ) /Zst (H; q, γ).

We have shown that α is a real algebraic number that we can additively approximate up to

Page 74 of 212

Chapter 2. The complexity of approximating the complex-valued Potts model

an error at most 2|q|c−j/|1 − q| in polynomial time in j and the size of H. Technically, our

approximation ε̂q/(1 − q − ε̂) is another algebraic number. For this reason, our algorithm

approximates ε̂q/(1− q− ε̂) by a rational number α (with additive error at most 2|q|c−j/ |q − 1|)
and uses this rational number as our approximation of α. The overall error that we make is

then |α− α| ≤ 4|q|c−j/ |1− q|.
In view of Corollary 2.36, we have d(α) ≤ d(q)d(γ) ≤ d(q)d(γ2), where we have used that

γ ∈ Q(γ2) and, thus, d(γ) ≤ d(γ2). Moreover, Corollary 2.36 yields

H(α) ≤
(

2m+1/2enh(q)+mh(γ)
)2d(q)d(γ)

.

Since h(γ) = h((γ2 − 1)ρ − 1) ≤ ρ(1 + h(γ2)) by Lemma 2.35, our algorithm can compute a

rational number Dq,γ2 with Dq,γ2 > 1 such that H(α) ≤ D
ρ size(H)
q,γ2 . The only non-trivial step of

this computation is upper bounding h(q) and h(γ2) in terms of the degrees and usual heights of

q and γ2 as in (2.20). Let d = d(q)d(γ2) = O(1) and U = D
ρ size(H)
q,γ2 . Let b be as in Lemma 2.37.

Then we have 2b = O(D
2d ρ size(H)
q,γ2), so b = O(ρ size(H)). By choosing j appropriately, we can

use the algorithm that we have developed in this proof to find a rational approximation α with

|α− α| ≤ 2−b/(12d). As we have argued, this takes polynomial time in b and size(H). Since

b = O(ρ size(H)), we conclude that the computation of α runs in polynomial time in ρ and

size(H). Once we have computed this approximation, our algorithm invokes the algorithm given

in Lemma 2.37 to determine the minimal polynomial of α in time O(d5(d+logU)) = O(ρ size(H)).

Finally, it remains to compute an interval of the real line where α is the only root of its minimal

polynomial. Since α is a real algebraic number and we know its minimal polynomial, our

algorithm can use Sturm sequences to isolate the real roots of this minimal polynomial. Then,

by approximating α it decides which one of the computed intervals corresponds to α.

Finally, note that our algorithm also works for arbitrary graphs (not-necessarily planar) as

long as our oracle provides us with reliable answers for any graph.

Lemma 2.42. Let q, γ1 and γ2 be real algebraic numbers such that q > 1, γ1 ∈ (−2,−1)

and γ2 > 0. Let us assume that we have access to an oracle for the computational problem

Sign-PlanarTutte(q, γ1, γ2). Then there exists an algorithm that takes as input a positive

integer ρ and a planar graph H along with two distinct connected vertices s and t of H,

and, for γ = (γ2 + 1)ρ − 1, this algorithm computes a representation of the algebraic number

Zs|t(H; q, γ)/Zst(H; q, γ) in polynomial time in ρ and the size of H. Moreover, if we have access

to the more powerful oracle Sign-Tutte(q, γ1, γ2), then we can remove the constraint that H is

planar.

Proof. The algorithm is exactly the same one of Lemma 2.41. The proof is analogous too. The

only difference is in the interval-shrinking technique, where we split (ε′, ε′′) into 4 intervals

instead of 10 (so p = 4 in the proof), but this has been discussed at the beginning of this

section.

Page 75 of 212

Chapter 2. The complexity of approximating the complex-valued Potts model

Lemma 2.43. Let K be a real number with K > 1. Let q, γ1 and γ2 be real algebraic numbers

such that 0 < q < 1, γ1 ∈ (−1, 0) and γ2 > 0. Let us assume that we have access to an oracle

for Factor-K-NormPlanarTutte(q, γ1, γ2). Then there exists an algorithm that takes as

input a positive integer ρ and a planar graph H along with two distinct connected vertices s and

t of H, and, for γ = (γ2 + 1)ρ − 1, this algorithm computes a representation of the algebraic

number Zs|t(H; q, γ)/Zst(H; q, γ) in polynomial time in ρ and the size of H. Moreover, if we

have access to the more powerful oracle Factor-K-NormTutte(q, γ1, γ2), then we can remove

the constraint that H is planar.

Proof. We claim that the algorithm presented in Lemma 2.41 also works in this setting. Let

f(ε;H, γ) = B(H, γ) − εA(H, γ) as in (2.21). As we pointed out in the proof of Lemma 2.41,

the algorithm works as long as f(0;H, γ)f(1− q;H, γ) < 0 and the hypothesis of Lemma 2.40

hold. First, since q and γ are positive, equations (2.25) hold. It follows that A(H, γ) =

−Zst(H; q, γ) − q−1Zst(H; q, γ) ̸= 0. Hence, the hypothesis of Lemma 2.40 hold. In view of

(2.22) and the fact that q ∈ (0, 1) and γ is positive, we have f(0;H, γ) < 0 and f(1− q;H, γ) > 0.

We conclude that f(0;H, γ)f(1− q;H, γ) < 0, as we wanted.

This time the interval-stretching technique applied in Lemma 2.41 runs on a subinterval (ε′, ε′′)

of (0, 1− q), so we only need to implement positive values of ε. For this reason, we can get away

with the hypothesis γ1 ∈ (−1, 0) instead of the hypothesis γ1 ∈ (−2,−1), as was announced in the

proof of Lemma 2.41. Finally, we must indicate how our algorithm implements the numbers ε′ and

ε′′ so that ε∗ ∈ (ε′, ε′′) ⊆ (0, 1−q), as this was only done in Lemma 2.41 for q > 1. The argument

that we give here also applies when q < 0. Let y1 = γ1 + 1, x1 = 1 + q/(y1 − 1), y2 = γ2 + 1 and

x2 = 1 + q/(y2−1). We have y1 ∈ (0, 1), y2 > 1, q < 1 and q ̸= 0. Our algorithm first applies the

algorithm given in Corollary 2.9 with y′ = |1− 1/q| c−2r/2, k such that |y1|k < |y′| < |y1|−k and

n = ⌈2r log2(c)−min{0, log2 |1− 1/q|}+ 2⌉. Note that k = O(r) and n = O(r). This procedure

computes a theta graph and a weight function taking weights in {γ1, γ2} that implement a point

(1+q/(ε′−1), ε′) such that |y′−ε′| ≤ 2−n ≤ |1−1/q|c−2r/4 in polynomial time in r = O(size(H)).

We obtain |1− 1/q|c−2r/4 ≤ ε′ ≤ 3|1− 1/q|c−2r/4, so, by Lemma 2.40, we find that 0 < ε′ < ε∗.

Next our algorithm invokes again Corollary 2.9, this time with inputs y′ = 1− q− (1− q)c−2r/2,

k such that |y1|k < |y′| < |y1|−k and n = ⌈2r log2(c)−min{0, log2(1− q)}+ 2⌉. This implements

(1 + q/(ε′′ − 1), ε′′) with |y′ − ε′′| ≤ (1 − q)c−2r/4, which gives 1 − q − 3(1 − q)c−2r/4 ≤ ε′′ ≤
1− q + (1− q)c−2r/4. Again by Lemma 2.40, we find that ε∗ < ε′′ < 1− q. The interval (ε′, ε′′)

is the starting interval for the interval-shrinking procedure that we needed.

Lemma 2.44. Let q, γ1 and γ2 be real algebraic numbers such that 0 < q < 1, γ1 ∈ (−1,−0)

and γ2 > 0. Let us assume that we have access to an oracle for the computational problem

Sign-PlanarTutte(q, γ1, γ2). Then there exists an algorithm that takes as input a positive

integer ρ and a planar graph H along with two distinct connected vertices s and t of H,

and, for γ = (γ2 + 1)ρ − 1, this algorithm computes a representation of the algebraic number

Zs|t(H; q, γ)/Zst(H; q, γ) in polynomial time in ρ and the size of H. Moreover, if we have access

to the more powerful oracle Sign-Tutte(q, γ1, γ2), then we can remove the constraint that H is

Page 76 of 212

Chapter 2. The complexity of approximating the complex-valued Potts model

planar.

Proof. The algorithm is exactly the same the one of Lemma 2.43, the only difference being in

the interval-stretching technique as we have already explained.

Lemma 2.45. Let K be a real number with K > 1. Let q, γ1 and γ2 be real algebraic numbers

such that q < 0, γ1 ∈ (−1, 0) and γ2 > 0. Let us assume that we have access to an oracle for

Factor-K-NormPlanarTutte(q, γ1, γ2). Then there exists an algorithm that takes as input:

• a positive integer ρ ;

• a planar graph H = (V,E) such that, for γ = (γ2+1)ρ−1, we have γ ≥ (8 max{|q|, 1/|q|})r,
where r = max{|V |, |E|};

• two distinct connected vertices s and t of H.

This algorithm computes a representation of the algebraic number Zs|t(H; q, γ)/Zst(H; q, γ)

in polynomial time in ρ and the size of H. Moreover, for such inputs ρ, H and s, t, we

have Zst(H; q, γ) ̸= 0 and ZTutte(H; q, γ) ̸= 0. If we have access to the more powerful oracle

Factor-K-NormTutte(q, γ1, γ2), then we can remove the constraint that H is planar.

Proof. We claim that the algorithm presented in Lemmas 2.41 and 2.43 also works in this

setting. Let n = |V | and m = |E|. Let c = 2 max{|q|, 1/|q|}γ. We may assume that r ≥ 2.

First, let us assume that H is connected. Let f(ε;H, ρ) = B(H, γ) − εA(H, γ) as in (2.21),

so B(H, γ) = Zs|t(H; q, γ)(1 − 1/q) and A(H, γ) = −Zst(H; q, γ) − q−1Zs|t(H; q, γ). Recall

that we have to prove that the conditions of Lemma 2.40 hold, as well as the inequality

f(0;H, γ)f(1 − q;H, γ) < 0. Let δ = (2 max{|q|, 1/|q|})r/γ. Note that 0 < δ ≤ 1/4 because

γ ≥ (8 max{|q|, 1/|q|})r. Each one of the (at most 2m) terms in Zst(H; q, γ), other than the

term with all edges in A, has absolute value at most γm−1|q|max{|q|, 1}n−1 ≤ δ2−mγm|q|. Since

H is connected, the term with all edges in A is qγm. Thus, we have the inequalities

γmq − δγm|q| ≤ Zst(H; q, γ) ≤ γmq + δγm|q| < 0. (2.28)

In particular, Zst(H; q, γ) ̸= 0. It also follows that

|Zst(H; q, γ)| ≥ γm|q|(1− δ) ≥ γm|q|3/4 ≥ c−r,

which is one of the conditions of Lemma 2.40. Recall that an (s, t)-cut of H is a subset A of

edges of H such that any path from s to t in H has an edge in A. The size of this (s, t)-cut is

the cardinality of A. Let k be the size of a minimum cardinality (s, t)-cut in H, and let C be the

number of (s, t)-cuts of size k. We study the terms qk(A)γ|A| appearing in Zs|t(H; q, γ), so A is a

subset of E such that s and t are not connected in (V,A). Note that such an A is the complement

of an (s, t)-cut and, hence, |A| ≤ m− k. Moreover, if A is not the complement of an (s, t)-cut of

size k, then the absolute value of qk(A)γ|A| is at most γm−k−1q2 max{1, |q|}n−2 ≤ δ2−mγm−kq2.

Thus, we have the inequalities

0 < Cγm−kq2 − δγm−kq2 ≤ Zs|t(H; q, γ) ≤ Cγm−kq2 + δγm−kq2. (2.29)

Page 77 of 212

Chapter 2. The complexity of approximating the complex-valued Potts model

The inequalities (2.28) and (2.29) have been previously given in the proof of [59, Lemma 2]. As

a consequence, we find that∣∣Zs|t(H; q, γ)
∣∣ ≥ Cγm−kq2(1− δ) ≥ Cγm−kq23/4 ≥ γm−kq23/4 ≥ c−r,

which is another one of the conditions of Lemma 2.40. In view of (2.22) and the facts that

q < 0 and we know the signs of Zs|t(H; q, γ) and Zst(H; q, γ), it follows that f(0;H, γ) > 0 and

f(1− q;H, γ) < 0. Hence, we find that f(0;H, γ)f(1− q;H, γ) < 0, as we wanted. Note that

A(H, γ) has to be non-zero because f(−;H, γ) is non-constant as f(0;H, γ)f(1− q;H, γ) < 0.

This is the last condition of Lemma 2.40 that we had to check. We conclude that we can apply the

algorithm given in the proof of Lemma 2.43 to compute Zs|t(H; q, γ)/Zst(H; q, γ) in polynomial

time in ρ and the size of H. Finally, we show that ZTutte(H; q, γ) ̸= 0. This is not needed for

the algorithm of Lemma 2.43, but is part of the statement of the current lemma. In light of

(2.28) and (2.29), we have |Zst(H; q, γ)| ≥ γm|q|(1 − δ) and
∣∣Zs|t(H; q, γ)

∣∣ ≤ Cγm−kq2(1 + δ).

Note that

γm|q|(1− δ) ≥ 3

4
γm|q| > 5

4
Cγm−kq2 ≥ γm−kq2(1 + δ),

where we used that γ ≥ (8 max{|q|, 1/|q|})r ≥ 8 · 2m|q| > 5C|q| since r ≥ 2. Therefore, we find

that |Zst(H; q, γ)| >
∣∣Zs|t(H; q, γ)

∣∣. We conclude that

ZTutte(H; q, γ) = Zst(H; q, γ) + Zs|t(H; q, γ) < 0.

It remains to consider the case where H is not connected. Let H1, . . . ,Hl be the connected

components of H, and let us assume that the vertices s and t are in H1 without loss of generality.

We have

Zst (H; q, γ) = Zst (H1; q, γ)ZTutte (H2; q, γ) · · ·ZTutte (Hl; q, γ) ;

Zs|t (H; q, γ) = Zs|t (H1; q, γ)ZTutte (H2; q, γ) · · ·ZTutte (Hl; q, γ) ;

ZTutte (H; q, γ) = ZTutte (H1; q, γ)ZTutte (H2; q, γ) · · ·ZTutte (Hl; q, γ) .

We have already shown that Zst (H1; q, γ), Zst (H1; q, γ) and ZTutte (Hj ; q, γ) are non-zero for all

j. Hence, we obtain Zs|t(H; q, γ)/Zst(H; q, γ) = Zs|t(H1; q, γ)/Zst(H1; q, γ), and we can apply

our algorithm to H1 instead of H. Moreover, we have Zst (H; q, γ) ̸= 0 and ZTutte(H; q, γ) ̸= 0

as we wanted. This finishes the proof.

Lemma 2.46. Let q, γ1 and γ2 be real algebraic numbers such that q < 0, γ1 ∈ (−1, 0) and

γ2 > 0. Let us assume that we have access to an oracle for Sign-PlanarTutte(q, γ1, γ2).

Then there exists an algorithm that takes as input:

• a positive integer ρ ;

• a planar graph H = (V,E) such that, for γ = (γ2+1)ρ−1, we have γ ≥ (8 max{|q|, 1/|q|})r,
where r = max{|V |, |E|};

Page 78 of 212

Chapter 2. The complexity of approximating the complex-valued Potts model

• two distinct connected vertices s and t of H.

This algorithm computes a representation of the algebraic number Zs|t(H; q, γ)/Zst(H; q, γ)

in polynomial time in ρ and the size of H. Moreover, for such inputs ρ, H and s, t, we

have Zst(H; q, γ) ̸= 0 and ZTutte(H; q, γ) ̸= 0. If we have access to the more powerful oracle

Sign-Tutte(q, γ1, γ2), then we can remove the constraint that H is planar.

Proof. The algorithm is the same one as that of Lemma 2.45, the only difference being in the

interval-stretching technique, as we have already explained.

Now we deal with the last part of our reduction, where we reduce the computation of

ZTutte(G; q, γ) to the computation of Zs|t(H; q, γ)/Zst(H; q, γ) on the subgraphs H of G. First,

let us introduce some notation.

Definition 2.47. We say that a pair (q, γ) of algebraic numbers is zero-free for a graph G if

q ̸= 0 and, for every subgraph H of G and every pair of distinct vertices s and t in the same

connected component of H, the quantities Zst(H, q, γ) and ZTutte(H, q, γ) are non-zero.

Note that if (q, γ) is zero-free for G, then (q, γ) is also zero-free for any subgraph of H. We

consider the following computational problems.

Name: RatioTutte(q, γ).

Instance: A (multi)graph G = (V,E) such that (q, γ) is zero-free for G and two distinct vertices

s and t in the same connected component of G.

Output: A representation of the algebraic number Zs|t(G; q, γ)/Zst(G; q, γ).

Name: ZeroFreeTutte(q, γ).

Instance: A (multi)graph G = (V,E) such that (q, γ) is zero-free for G.

Output: A representation of the algebraic number ZTutte(G; q, γ).

We also consider the planar versions of these problems, RatioPlanarTutte(q, γ) and

ZeroFreePlanarTutte(q, γ). Then we can express the last part of our reduction as a

reduction between these two computational problems.

Lemma 2.48. Let q and γ be algebraic numbers with q ̸= 0. Then we have the reductions

ZeroFreePlanarTutte(q, γ) ≤T RatioPlanarTutte(q, γ),

ZeroFreeTutte(q, γ) ≤T RatioTutte(q, γ).

Proof. First, we show ZeroFreePlanarTutte(q, γ) ≤T RatioPlanarTutte(q, γ). Let G

be the input of ZeroFreePlanarTutte(q, γ). The reduction computes a representation of

ZTutte(G; q, γ) as follows. We assume that G is not a tree since it is known how to compute the

Tutte polynomial of a tree in polynomial time [109, Example 2.1]. Then we can find an edge

e = (s, t) of G that is not a bridge. We are going to use the oracle for RatioPlanarTutte(q, γ)

Page 79 of 212

Chapter 2. The complexity of approximating the complex-valued Potts model

to reduce the computation of ZTutte(G; q, γ) to that of ZTutte(G \ e; q, γ), where G \ e is formed

from G by deleting e. Note that if G is planar, then G \ e is also planar. Since (q, γ) is zero-free

for G, we have Zst(G; q, γ) ̸= 0. Let α = Zs|t(G; q, γ)/Zst(G; q, γ). First, note that

ZTutte (G; q, γ) = Zst (G; q, γ) + Zs|t (G; q, γ) = Zst (G; q, γ) (1 + α) .

By calling the oracle the algorithm obtains a representation of the factor 1 + α. Since e is not a

bridge, s and t are connected in G \ e, so, by calling the oracle again, the algorithm has access

to a representation of the algebraic number β = Zs|t(G \ e; q, γ)/Zst(G \ e; q, γ). We have

Zst (G; q, γ) = Zst (G \ e; q, γ) (1 + γ) + γq−1Zs|t (G \ e; q, γ)

= ZTutte (G \ e; q, γ)

(
1 + γ

1 + β
+ γq−1 β

1 + β

)
,

where we multiplied and divided by ZTutte(G \ e; q, γ) = Zst(G \ e; q, γ)(1 + β), which is non-zero

since (q, γ) is zero-free for G. Note that the fact that ZTutte (G \ e; q, γ) ̸= 0 is equivalent to

β ̸= −1. We obtain

ZTutte (G; q, γ) = ZTutte (G \ e; q, γ)
(
1 + γ + γq−1β

) 1 + α

1 + β
. (2.30)

The algorithm then computes a representation of ZTutte(G \ e; q, γ) recursively. Note that this

reduction also works between the non-planar versions of the problems.

In the rest of this section we put our reduction together. There is one result for each one of

the cases q > 1, 0 < q < 1 and q < 0 (see Lemmas 2.49, 2.50 and 2.53).

Lemma 2.49. Let K be a real number with K > 1. Let q, γ1 and γ2 be real algebraic numbers

such that q > 1, γ1 ∈ (−2,−1) and γ2 > 0. Then we have the following reductions:

PlanarTutte(q, γ2) ≤T Factor-K-NormPlanarTutte(q, γ1, γ2)

PlanarTutte(q, γ2) ≤T Sign-PlanarTutte(q, γ1, γ2),

where ≤T denotes a Turing reduction. Moreover, these reductions also hold for the analogous

non-planar problems.

Proof. We claim that the problems PlanarTutte(q, γ2) and ZeroFreePlanarTutte(q, γ2)

are equivalent. This follows from the fact that (q, γ2) is zero-free for every graph G. Lemma 2.48

gives us a reduction from ZeroFreePlanarTutte(q, γ2) to RatioPlanarTutte(q, γ2). Re-

call that we have q > 0, γ1 ∈ (−2,−1) and γ2 > 0. Thus, we can apply Lemma 2.41 with

ρ = 1 to obtain a reduction from the problem RatioPlanarTutte(q, γ2) to the problem

Factor-K-NormPlanarTutte(q, γ1, γ2), which gives the first reduction of the statement.

The second reduction is derived analogously, but this time we apply Lemma 2.42 instead of

Lemma 2.41. Finally, note that our reductions also hold for the non-planar version of the

problems since the algorithms given in Lemma 2.41 and Lemma 2.42 work for arbitrary graphs

(non-necessarily planar) as long as the oracle does.

Page 80 of 212

Chapter 2. The complexity of approximating the complex-valued Potts model

Lemma 2.50. Let K be a real number with K > 1. Let q, γ1 and γ2 be real algebraic numbers

such that 0 < q < 1, γ1 ∈ (−1, 0) and γ2 > 0. Then we have the following reductions:

PlanarTutte(q, γ2) ≤T Sign-PlanarTutte(q, γ1, γ2),

PlanarTutte(q, γ2) ≤T Factor-K-NormPlanarTutte(q, γ1, γ2).

Moreover, these reductions also hold for the analogous non-planar problems.

Proof. The proof is analogous to that of Lemma 2.49; now, we instead combine Lemmas 2.48, 2.43

and 2.44.

So far we have obtained reductions when q > 1 or 0 < q < 1. To obtain a similar result when

q < 0 we have to introduce the following variant of Tutte(q, γ), where q is an algebraic number

and γ is a positive real algebraic number.

Name: ThickenedTutte(q, γ).

Instance: A (multi)graph G = (V,E).

Output: A representation of the algebraic number ZTutte(G; q, (γ+1)ρ(G)−1), where ρ(G) is the

smallest positive integer such that (γ + 1)ρ(G)− 1 > M(G) for M(G) = (8 max{|q|, 1/|q|})r

and r = max{|V |, |E|}.

We also consider the planar version of this problem, ThickenedPlanarTutte(q, γ), where

the input graph is promised to be planar.

Lemma 2.51. Let q be an algebraic number and let γ be a real algebraic number with γ > 0.

Then the problem ThickenedPlanarTutte(q, γ) is #P-hard unless q ∈ {1, 2}, and the problem

ThickenedTutte(q, γ) is #P-hard unless q = 1.

Proof. We are going to reduce PlanarTutte(q, 2) to ThickenedPlanarTutte(q, γ). The

result then follows from the #P-hardness of PlanarTutte(q, 2), cf. Theorem 2.39.

Let G be an m-edge instance of PlanarTutte(q, 2). For j = 1, . . . ,m, let Gj be the graph

obtained from G by j-thickening each of its edges. We have M(Gj) = (8 max{|q|, 1/|q|})max{n,jm}

so M(Gj), and therefore ρ(Gj), are non-decreasing in j. Let γj = (γ + 1)jρ(Gj)− 1 and note that

ZTutte(Gj ; q, (γ + 1)ρ(Gj) − 1) = ZTutte(G; q, γj). Note that the points γ1, . . . , γm are distinct

because jρ(Gj) ≤ jρ(Gj+1) < (j + 1)ρ(Gj+1) for every j. Moreover, their representation is

polynomial in the size of G, and hence so is the representation of ZTutte(G; q, γj).

The reduction constructs G1, . . . , Gm and computes ZTutte(G; q, γj) using the oracle for

ThickenedPlanarTutte(q, γ) with input Gj . By interpolation, we then recover the polyno-

mial ZTutte(G; q, x), whose degree is m when q is viewed as a constant, in time polynomial in

the size of G. The reduction is then completed by evaluating ZTutte(G; q, x) at x = 2.

Finally note that this reduction also works from Tutte(q, 2) to ThickenedTutte(q, γ).

The only difference is that Tutte(q, 2) is also #P-hard for q = 2 (see Theorem 2.38), so we also

get #P-hardness in this case.

Page 81 of 212

Chapter 2. The complexity of approximating the complex-valued Potts model

We are going to reduce the problem ThickenedPlanarTutte(q, γ2) to the problem

Factor-K-NormPlanarTutte(q, γ1, γ2) for appropriate γ1 and γ2. In order to do so, we need

to adapt Lemma 2.48 to this context. For this purpose, we consider the following computational

problems.

Name: RatioThickenedTutte(q, γ).

Instance: A (multi)graph G = (V,E), two distinct connected vertices s and t of G, and a

positive integer ρ such that, for γρ = (γ + 1)ρ− 1, (q, γρ) is zero-free for G and γρ > M(G),

where M(G) = (8 max{|q|, 1/|q|})r and r = max{|V |, |E|}.
Output: A representation of the algebraic number Zs|t(G; q, γρ)/Zst(G; q, γρ).

Name: ZeroFreeThickenedTutte(q, γ).

Instance: A (multi)graph G = (V,E) and a positive integer ρ such that, for γρ = (γ + 1)ρ − 1,

(q, γρ) is zero-free for G and γρ > M(G), where M(G) = (8 max{|q|, 1/|q|})r and r =

max{|V |, |E|}.
Output: A representation of the algebraic number ZTutte(G; q, γρ).

We also consider the planar versions of these problems, RatioThickenedPlanarTutte(q, γ)

and ZeroFreeThickenedPlanarTutte(q, γ).

Lemma 2.52. Let q and γ be algebraic numbers with q ̸= 0. Then we have the reductions

ZeroFreeThickenedPlanarTutte(q, γ) ≤T RatioThickenedPlanarTutte(q, γ),

ZeroFreeThickenedTutte(q, γ) ≤T RatioThickenedTutte(q, γ).

Proof. The reduction is almost exactly the one explained in Lemma 2.48. The only difference

is that, for an input (G, ρ), each call to the oracle has as parameters a subgraph H of G, two

vertices s and t determined in the reduction, and the same positive integer ρ.

Lemma 2.53. Let K be a real number with K > 1. Let q, γ1 and γ2 be real algebraic numbers

such that q < 0, γ1 ∈ (−1, 0) and γ2 > 0. Then we have the following reductions:

ThickenedPlanarTutte(q, γ2) ≤T Sign-PlanarTutte(q, γ1, γ2),

ThickenedPlanarTutte(q, γ2) ≤T Factor-K-NormPlanarTutte(q, γ1, γ2).

Moreover, these reductions also hold for the analogous non-planar problems.

Proof. Let G and ρ be the inputs of ThickenedPlanarTutte(q, γ2). Let H be a subgraph

of G and let s and t be two distinct connected vertices of H. By applying Lemma 2.45

we find that Zst(H; q, (γ2 + 1)ρ − 1) and ZTutte(H; q, (γ2 + 1)ρ − 1) are non-zero. Hence,

(q, (γ2 + 1)ρ − 1) is zero-free for G. This shows that ThickenedPlanarTutte(q, γ2) re-

duces to ZeroFreeThickenedPlanarTutte(q, γ2). Lemma 2.52 gives us a reduction from

ZeroFreeThickenedPlanarTutte(q, γ2) to RatioThickenedPlanarTutte(q, γ2). Re-

call that we have q < 0, γ1 ∈ (−1, 0) and γ2 > 0. Thus, Lemma 2.45 gives a reduction from

Page 82 of 212

Chapter 2. The complexity of approximating the complex-valued Potts model

RatioThickenedPlanarTutte(q, γ2) to Factor-K-NormPlanarTutte(q, γ1, γ2), which

completes the proof for the first reduction of the statement. The second reduction is analogous,

but this time we apply Lemma 2.46 instead of Lemma 2.45. Finally, note that our reductions

also hold for the analogous non-planar problems since the algorithms given in Lemma 2.45 and

Lemma 2.46 work for arbitrary graphs (non-necessarily planar) as long as the oracle does.

2.5.6 The connection between approximate shifts and reductions

In this section we show how a polynomial-time approximate shift from (q, γ1) to (q, γ2) may

allow us to reduce the problems of approximating the norm of the Tutte polynomial at (q, γ2) to

the same problem at (q, γ1) (see Lemma 2.5). We also derive a similar result for the problem

Distance-ρ-ArgTutte(q, γ) in Lemma 2.55.

Lemma 2.54. Let q, γ1 and γ2 be algebraic numbers with q ̸= 0 such that there is a polynomial-

time series-parallel approximate shift from (q, γ1) to (q, γ2). Then there is an algorithm that has

as input a graph G and a positive integer k and computes, in polynomial time in k and the size

of G, a graph H and a representation of an algebraic number D with D ̸= 0 such that∣∣∣ZTutte (G; q, γ2)−
ZTutte (H; q, γ1)

D

∣∣∣ ≤ 2−k.

Moreover, if the graph G is planar, then the graph H is also planar, and if q and γ1 are real,

then D is also real.

Proof. Let G = (V,E) and k be the inputs of the algorithm. Let n = |V | and m = |E|. By

the definition of series-parallel polynomial-time approximate shifts, for any positive integer

j, one can compute, in polynomial time in j, a series-parallel graph Jj that γ1-implements

γ̂ with |γ2 − γ̂| ≤ 2−j for terminals s and t. By definition of implementations, we have

γ̂ = qZst(Jj ; q, γ1)/Zs|t(Jj ; q, γ1) and Zs|t(Jj ; q, γ1) ̸= 0. We construct a graph Gj that is a copy

of G where every edge f in G has been replaced by a copy of Jj as in Lemma 2.6, identifying

the endpoints of f with s and t. In light of Lemma 2.6, we have

ZTutte (Gj ; q, γ1) =

(
Zs|t (Jj ; q, γ1)

q2

)m

ZTutte (G; q, γ̂) .

We can compute a representation of Dj = Zs|t (Jj ; q, γ1) /q
2 in polynomial time in the size of

Jj because Jj is a series-parallel graph. However, note that this hypothesis is not essential as

long as there is some way to compute a representation of Dj while constructing Jj . Note that

|γ̂| ≤ |γ2|+ 2−j , so |ZTutte(G; q, γ2)− ZTutte(G; q, γ̂)| is upper bounded by

∑
A⊆E

|q|k(A)
∣∣∣γ|A|

2 − γ̂|A|
∣∣∣ ≤ ∑

A⊆E

|q|k(A) |γ2 − γ̂|
|A|−1∑
t=0

∣∣∣γ|A|−1−t
2 γ̂t

∣∣∣
≤
∑
A⊆E

|q|k(A) |γ2 − γ̂| (|A| − 1)
(
|γ2|+

1

2

)|A|−1

≤ |γ2 − γ̂| |q|n 2m(m− 1)
(
|γ2|+

1

2

)m−1
.

Page 83 of 212

Chapter 2. The complexity of approximating the complex-valued Potts model

Hence, for j such that 2−j |q|n2m(m − 1)(|γ2| + 1/2)m−1 ≤ 2−k, which can be achieved for

j = O(size(G) + k), we obtain∣∣∣ZTutte (G; q, γ2)−
ZTutte (Gj ; q, γ1)

Dm
j

∣∣∣ = |ZTutte(G; q, γ2)− ZTutte(G; q, γ̂)| ≤ 2−k.

The algorithm returns H = Gj and D = Dm
j ̸= 0. Note that if G is planar, then H = Gj is also

planar by construction. If q and γ1 are real, then the number D = (Zs|t(Jj ; q, γ1)/q2)m is clearly

real too.

In the rest of this section we use Lemma 2.54 to translate information about the function

ZTutte(−; q, γ1) for certain graphs to information about ZTutte(G; q, γ2). This leads to the

reductions given in Lemmas 2.5 and 2.55. These results are stated for polynomial series-parallel

approximate shifts, but they would also hold even if the shifts are not series-parallel as long as, in

the proof of Lemma 2.54, the graphs Jj are planar and we can compute Dj = Zs|t (Jj ; q, γ1) /q
2

in polynomial time in the size of Jj .

We are now ready to prove Lemma 2.5, which was stated in the proof outline (Section 2.1)

and which we restate here for convenience.

Lemma 2.5. Let q ≠ 0, γ1 and γ2 ̸= 0 be algebraic numbers, and K > 1. For j ∈ {1, 2},
let yj = γj + 1 and xj = 1 + q/γj. If there is a polynomial-time series-parallel approximate

shift from (x1, y1) to (x2, y2), then we have a reduction from Factor-K-NormTutte(q, γ2) to

Factor-K-NormTutte(q, γ1). This reduction also holds for the planar version of the problem.

Proof. We are going to solve Factor-4K-NormTutte(q, γ2) in polynomial time with the help

of an oracle for Factor-K-NormTutte(q, γ1). Recall that hardness of these problems does

not depend on K (see Section 2.1). Let Cq,γ2 > 1 be the constant computed in Corollary 2.34

for the algebraic numbers q and γ = γ2; so, for any graph G, either ZTutte(G; q, γ2) = 0 or

|ZTutte(G; q, γ2)| ≥ C
−size(G)
q,γ2 . Let G = (V,E) be the input of the computational problem

Factor-4K-NormTutte(q, γ2). We assume that ZTutte(G; q, γ2) ̸= 0 since otherwise we can

output anything. Let k be the smallest integer such that 2−k ≤ C
−size(G)
q,γ2 /2. The reduction uses

the algorithm given in Lemma 2.54 to compute a graph H and a representation of an algebraic

number D with D ̸= 0 such that∣∣∣∣ZTutte (G; q, γ2)−
ZTutte (H; q, γ1)

D

∣∣∣∣ ≤ 2−k ≤ C
−size(G)
q,γ2

2
≤ |ZTutte (G; q, γ2)|

2
. (2.31)

Therefore, we have
1

2
≤ |ZTutte (H; q, γ1)|

D |ZTutte (G; q, γ2)|
≤ 3

2
.

By invoking the oracle for Factor-K-NormTutte(q, γ1), the reduction computes a rational

number N with N/K ≤ |ZTutte(H; q, γ1)| ≤ KN . The reduction also computes a non-zero

rational number D̂ such that 1/2 ≤ D/D̂ ≤ 2. Then N̂ = N/D̂ satisfies

N̂

4K
≤ |ZTutte (G; q, γ2)| ≤ 4KN̂,

Page 84 of 212

Chapter 2. The complexity of approximating the complex-valued Potts model

so the reduction outputs N̂ for Factor-4K-NormTutte(q, γ2). Note that this reduction

analogously applies to the planar case since the graph H is planar when G is planar (see

Lemma 2.54).

We next give the analogue of Lemma 2.5 for the argument.

Lemma 2.55. Let q, γ1 and γ2 be algebraic numbers with q ̸= 0. If there is a polynomial-time

series-parallel approximate shift from (q, γ1) to (q, γ2), then we have the following reduction,

Distance-5π/12-ArgTutte(q, γ2) ≤T Distance-π/3-ArgTutte(q, γ1). This reduction also

holds for the planar version of the problem.

Proof. Let Cq,γ2 be the constant computed in Corollary 2.34 for γ = γ2. Let G = (V,E) be the

input of Distance-π/2-ArgTutte(q, γ2). We assume that ZTutte(G; q, γ2) ̸= 0 since otherwise

we can output anything. The reduction proceeds again similarly to that of Lemma 2.5. First, it

applies Lemma 2.54 for appropriate k as in (2.31) to compute a graph H and a representation

of a real algebraic number D with D ̸= 0 such that∣∣∣∣ZTutte (G; q, γ2)−
ZTutte (H; q, γ1)

D

∣∣∣∣ ≤ 2−k−2 ≤ C
−size(G)
q,γ2

8
≤ |ZTutte (G; q, γ2)|

8
. (2.32)

Let α = ZTutte(G; q, γ2) and β = ZTutte(H; q, γ1)/D, so (2.32) can be rewritten as |α− β| ≤ |α| /8.

We claim that |Arg(α)−Arg(β)| ≤ π/24. Since β is in the disc of centre α and radius |α|/8, by

basic geometry, we have

0 α

β

|α| |α|/8

θ

π/2

so sin(θ) = 1/8, where θ is the angle between 0, α and the intersection of the circle of radius

|α|/8 and center α with the tangent line that goes through 0. Since sin(π/24) > 1/8, we

conclude that |Arg(α) − Arg(β)| ≤ θ ≤ π/24 as we claimed. By invoking the oracle for

Distance-π/3-ArgTutte(q, γ1), the reduction computes a rational number Â1 such that,

for some a1 ∈ arg(ZTutte(H; q, γ1)), we have |a1 − Â1| ≤ π/3. Since the reduction has at its

disposal a representation of the algebraic number D, it can compute (in polynomial time in the

length of this representation) a rational number Â2 such that, for some a2 ∈ arg(D), we have

|a2 − Â2| ≤ π/24. The reduction outputs Â = Â1 − Â2. We claim that there is an argument

a of α such that |a− Â| ≤ 5π/12. Note that b = a1 − a2 is an argument of β. By the triangle

inequality, we have |b − Â| ≤ |a1 − Â1| + |Â2 − a2| ≤ 9π/24. Let a = Arg(α) + (b − Arg(β)),

which is an argument of α. We conclude that

|a− Â| ≤ |b− Â|+ |a− b| = |b− Â|+ |Arg(α)−Arg(β)| ≤ 5π/12.

Page 85 of 212

Chapter 2. The complexity of approximating the complex-valued Potts model

This reduction analogously applies to the planar case since the graph H is planar when G is

planar (see Lemma 2.54).

One could actually change the angles ρ2 = 5π/12 and ρ1 = π/3 in the statement of

Lemma 2.55 as long as ρ1 < ρ2, but ρ2 = 5π/12 and ρ1 = π/3 will suffice for our purposes.

2.5.7 Hardness for the Tutte polynomial

In this section we use the reductions of Section 2.5.5 to obtain intermediate hardness results

that will be used to obtain our main theorems in the upcoming sections. We start with the

following corollary which strengthens previous results of [59] (that applied to general graphs

rather than planar).

Corollary 2.56. Let K > 1 be a real number. Let q ̸= 0, 2, and γ1, γ2 be real algebraic numbers

with γ2 ∈ (−∞,−2) ∪ (0,∞) and either

• q > 1, γ1 ∈ (−2,−1), or

• q < 1, γ1 ∈ (−1, 0).

Then, Factor-K-NormPlanarTutte(q, γ1, γ2) and Sign-PlanarTutte(q, γ1, γ2) are #P-

hard.

Proof. We consider first the case when γ2 > 0. For q, γ1, γ2 as in the first item, the conclusion

follows from Theorem 2.39 and the reductions given in Lemma 2.49. For the second item: when

q ∈ (0, 1), the result follows from the reductions given in Lemma 2.50 and Theorem 2.39, while

for q < 0, the result follows from Lemmas 2.51 and 2.53.

The other case is when γ2 < −2. Then, we can γ2-implement (γ2 + 1)2 − 1 > 0 with a

2-thickening and proceed as in the previous case.

Lemma 2.57. Let K be a real number with K > 1. Let x, y be a real algebraic numbers such

that (x, y) ̸= (−1,−1), min{x, y} ≤ −1 and max{x, y} < 0. Let q = (x−1)(y−1) and γ = y−1.

Then Factor-K-NormPlanarTutte(q, γ) and Sign-PlanarTutte(q, γ) are #P-hard.

Proof. Note that q > 2. We claim that we can (x, y)-implement (x1, y2) with y1 ∈ (−1, 0), and

(x2, y2) with |y2| > 1 using planar (in fact, series-parallel) graphs. The result then follows by

invoking Corollary 2.56 with γ1 = y1 − 1 and γ2 = y2 − 1.

The case min{x, y} < −1 is treated in [59, Lemmas 8–11]. Hence, we may assume that

−1 ≤ x < 0 and −1 ≤ y < 0. Since (x, y) ̸= (−1,−1) by hypothesis, there are two cases:

• x = −1 and −1 < y < 0. As pointed out in [59, Corollary 26], a 3-thickening from (x, y)

implements the point (x′, y′) =
(

1− 2
1+y+y2

, y3
)

with x′ < −1 and y′ ∈ (−1, 0), so the

point (x′, y′) has already been studied in this proof.

• −1 < x < 0 and y = −1. This time we perform a 3-stretching from (x, y) to implement a

point (x′, y′) with x′ ∈ (−1, 0) and y′ < −1.

Page 86 of 212

Chapter 2. The complexity of approximating the complex-valued Potts model

Lemma 2.58. Let K > 1 be a real number and q, x, y be real algebraic numbers with max{|x|, |y|} <
1 and q = (x− 1)(y − 1) > 32/27. Then, for γ = y − 1, Factor-K-NormPlanarTutte(q, γ)

and Sign-PlanarTutte(q, γ) are #P-hard, unless q = 2.

Proof. In view of [59, Lemmas 12 and 15], we can (x, y)-implement points (x1, y1) and (x2, y2)

with y1 ∈ (−1, 0) and y2 > 1. These implementations only use series-parallel graphs. Hence,

we can apply (the first item of) Corollary 2.56 with γ1 = y1 − 1 and γ2 = y2 − 1 to finish the

proof.

2.5.8 Proofs of the main theorems in this chapter

In this section we show how our main Theorems 1.1, 1.2, 1.3 and 1.4 follow from the #P-hardness

results of Section 2.5.7. We start with Theorem 1.4.

Theorem 1.4. Let q > 2 be a real, γ ∈ C\R be an algebraic number, and K > 1. Then,

Factor-K-NormPlanarTutte(q, γ) and Distance-π/3-ArgPlanarTutte(q, γ) are #P-

hard, unless q = 3 and γ + 1 ∈ {e2πi/3, e4πi/3} when both problems can be solved exactly in

polynomial time.

Proof. Let (x, y) ∈ Hq be such that y = γ + 1. Consider the point (x2, y2) ∈ Hq with y2 = −1/2

and x2 = 1 + q/(y2 − 1). Note that x2 = 1 − 2q/3 ≤ 1 − 4/3 < 0. There are two cases.

Either x2 ≤ −1 and the point (x2, y2) satisfies the hypothesis of Lemma 2.57, or −1 < x2 < 0

and the point (x2, y2) satisfies the hypothesis of Lemma 2.58. In any case, we conclude

that Sign-PlanarTutte(q, γ2) and Factor-K-NormPlanarTutte(q, γ2) are #P-hard for

γ2 = y2 − 1 when q > 2.

By Lemma 2.5 (for γ1 = γ and γ2 = γ2), we see that Factor-K-NormPlanarTutte(q, γ2)

reduces to Factor-K-NormPlanarTutte(q, γ), proving that the latter is #P-hard too.

The proof for Distance-π/3-ArgPlanarTutte(q, γ) is analogous: first observe that since

q, γ2 are real and 5π/12 < π/2, the problem Sign-PlanarTutte(q, γ2) reduces (trivially) to

Distance-5π/12-ArgPlanarTutte(q, γ2). Moreover, applying Theorem 2.2 with x and y as

above, y′ = y2 ∈ (−1, 0) and x′ = x2, we have a polynomial-time series-parallel approximate

shift from (x, y) to (x′, y′) or, equivalently, from (q, γ) to (q, γ2). Using Lemma 2.55 with

γ1 = γ and γ2 = γ2, we conclude that Distance-5π/12-ArgPlanarTutte(q, γ2) reduces to

Distance-π/3-ArgPlanarTutte(q, γ), proving that the latter is #P-hard, as wanted.

Theorem 1.3. Let y ∈ C\R be an algebraic number, and K > 1. Then, Factor-K-NormIsing(y)

and Distance-π/3-ArgIsing(y) are #P-hard, unless y = ±i when both problems can be solved

exactly in polynomial time.

Proof. Let q = 2, γ = y−1, y2 = −1/2, γ2 = y2−1. From the result of Goldberg and Guo [55], the

problems Factor-K-NormIsing(y2) and Distance-π/3-ArgIsing(y2) are #P-hard, hence

Factor-K-NormPlanarTutte(q, γ2) and Distance-π/3-ArgPlanarTutte(q, γ2) are #P-

hard as well, using that ZIsing(G; y2) = ZTutte(G; 2, γ2).

Page 87 of 212

Chapter 2. The complexity of approximating the complex-valued Potts model

By applying Lemma 2.5 and Theorem 2.2 analogously to the proof of Theorem 1.4, we conclude

that Factor-K-NormPlanarTutte(q, γ) and Distance-π/3-ArgPlanarTutte(q, γ) are

#P-hard, and hence Factor-K-NormIsing(y) and Distance-π/3-ArgIsing(y), using that

ZIsing(G; y) = ZTutte(G; 2, γ).

Theorem 1.1. Let q ≥ 3 be an integer, y ∈ C\R be an algebraic number, and K > 1. Then, the

problems Factor-K-NormPlanarPotts(q, y) and Distance-π/3-ArgPlanarPotts(q, y)

are #P-hard, unless q = 3 and y ∈ {e2πi/3, e4πi/3} when both problems can be solved exactly in

polynomial time.

Proof. Just apply Theorem 1.4 to the integer q, and use ZPotts(G; q, y) = ZTutte(G; q, y− 1).

Theorem 1.2. Let q ≥ 3 be an integer, y ∈ (−q + 1, 0) be a real algebraic number, and K > 1.

Then Factor-K-NormPlanarPotts(q, y) and Distance-π/3-ArgPlanarPotts(q, y) are

#P-hard, unless (q, y) = (4,−1) when both problems can be solved exactly in polynomial time.

Proof. Let y ∈ (−q + 1, 0). The point (x, y) with x = 1 + q/(y − 1) satisfies x ∈ (1 − q, 0),

(x, y) ̸= (−1,−1) and y < 0. If x ≤ −1 or y ≤ −1, #P-hardness follows from Lemma 2.57.

Otherwise, we have q ≥ 3 and x, y ∈ (−1, 0), so hardness follows from Lemma 2.58.

2.6 Further consequences of our results

In this final section, we discuss some further consequences of our techniques, as mentioned in

Section 1.3.3.1. First, in Section 2.6.1, we explain how our results can be used to obtain hardness

for Sign-PlanarTutte(q, γ) and Factor-K-NormPlanarTutte(q, γ) (and the non-planar

version of these problems) at other parameters than the ones studied in Section 2.5.7, building

on work of Goldberg and Jerrum [59]. Secondly, in Section 2.6.2, we apply our results to the

problem of approximating the Jones polynomial of an alternating link, which is connected to the

quantum complexity class BQP as explained in [20].

2.6.1 Hardness results for real algebraic parameters in the Tutte plane

The regions studied in Lemmas 2.57 and 2.58 have been studied by Goldberg and Jerrum [59],

where they showed #P-hardness of SignPlanarTutte(q, γ) at several regions of the real

algebraic plane. As we explained in Section 2.5.7, we obtain hardness at a point (q, γ) as long as

we can γ-implement algebraic numbers γ1 and γ2 as in Corollary 2.56. Goldberg and Jerrum came

up with multiple implementations that achieve the conditions of Corollary 2.56. By applying

their implementations, we obtain #P-hardness for Factor-K-NormTutte(q, y − 1) in the

same regions where they obtained #P-hardness of SignPlanarTutte(q, γ) in [59, Theorem 1].

Some of the implementations developed in [59] consist of planar graphs (as those used in

Lemmas 2.57 and 2.58), so we can extend their results to the planar version of the problems for

some of the previous regions.

Page 88 of 212

Chapter 2. The complexity of approximating the complex-valued Potts model

Theorem 2.59. Let q and γ be real algebraic numbers with q ̸= 0, 1, 2. Let y = γ+1 and x = 1+

q/(y−1). The problems Sign-PlanarTutte(q, γ) and Factor-K-NormPlanarTutte(q, γ)

are #P-hard when x, y are real algebraic numbers satisfying one of the following:

1. min(x, y) ≤ −1, max(x, y) < 0 and (x, y) ̸= (−1,−1),

2. |x| > 1, |y| > 1 and xy < 0,

3. max(|x|, |y|) < 1 and q > 32/27,

4. max(|x|, |y|) < 1, q ≤ 32/27 and x < −2y − 1,

5. max(|x|, |y|) < 1, q ≤ 32/27 and y < −2x− 1.

Proof. The proof follows from the following results of [59], which show how to implement γ1 and

γ2 with a planar (actually series-parallel) graph as in Corollary 2.56 for each of the regions in

the statement.

Item 1 follows from Lemma 2.57. For Item 2, note that q < 0, so we have to implement

γ1 ∈ (−1, 0) and γ2 ̸∈ [−2, 0]. We choose γ2 = y − 1 and γ1 as implemented in [59, Lemma 16].

Item 3 follows from Lemma 2.57. For Item 4, we implement γ1 ∈ (−1, 0) and γ2 ̸∈ [−2, 0]; the

implementations are as in [59, Lemmas 14 and 15]. For Item 5, we implement γ1 ∈ (−1, 0) and

γ2 ̸∈ [−2, 0]; the implementations are as in [59, Lemmas 13 and 15].

The complexity of approximating the Tutte polynomial of a planar graph has previously been

studied in [58] and [84]. Our result on this matter (Theorem 2.59) strengthens the results of [58]

in three directions. First, we also study the complexity of determining the sign of the Tutte

polynomial. Secondly, we find new regions where the approximation problem is hard. These

regions are 3, 4 and 5, as well as the points in region 1 such that q ≤ 5 and q ≠ 3. Finally, we

prove #P-hardness, whereas in [58] hardness was obtained under the hypothesis that RP ̸= NP.

For q ∈ Z+, let P (G; q) count the number of proper q-colourings of a graph G. The chromatic

polynomial of G is the only polynomial that agrees with P (G; q) on positive integers. It is well-

known that P (G; q) = ZTutte(G; q,−1), see for instance [109]. The value q = 32/27 appearing in

Theorem 2.59 is, in some sense, a phase transition for the complexity of computing the sign of

P (G, q): this sign depends upon G in an essentially trivial way for q < 32/27 [72, Theorem 5]

and its computation is #P-hard for q > 32/27, see [59] for an in detail discussion of the relevance

of the phase transition q = 32/27.

2.6.2 Hardness results for the Jones polynomial

We briefly review some relevant facts about links and the Jones polynomial that relate it to

the Tutte polynomial on graphs, see [121] for their definitions. Let VL(T) denote the Jones

polynomial of a link L. By a result of Thistlethwaite, when L is an alternating link with

associated planar graph G(L), we have VL(t) = fL(t)T (G(L);−t,−t−1), where fL(t) is an

easily-computable factor that is plus or minus a half integer power of t, and T (G;x, y) is the

Page 89 of 212

Chapter 2. The complexity of approximating the complex-valued Potts model

Tutte polynomial of G in the (x, y)-parametrisation [114, 121]. Moreover, every planar graph

is the graph of an alternating link [121, Chapter 2]. Hence, we can translate our results on

the complexity of approximating the Tutte polynomial of a planar graph to the complexity of

approximating the Jones polynomial of an alternating link, and obtain #P-hardness results for

approximating VL(t). More formally, we consider the following problems for K > 0 and ρ > 0.

Name: Factor-K-NormJones(t).

Instance: A link L.

Output: If VL(t) = 0, the algorithm may output any rational number. Otherwise, it must

output N̂ ∈ Q such that N̂/K ≤ |VL(t)| ≤ KN̂ .

Name: Distance-ρ-ArgJones(q, γ).

Instance: A link L.

Output: If VL(t) = 0, the algorithm may output any rational number. Otherwise, it must

output Â ∈ Q such that, for some a ∈ arg(VL(t)), we have |Â− a| ≤ ρ.

Corollary 2.60. Let K be a real number with K > 1. Let t be an algebraic number with

Re(t) > 0. Then Factor-K-NormJones(t) and Distance-π/3-ArgJones(t) are #P-hard

unless t ∈ {1,−e2πi/3,−e4πi/3} when both problems can be solved exactly.

Proof. Let us consider the point (x, y) = (−t,−t−1) in the Tutte plane. Note that t ∈
{1,−e2πi/3,−e4πi/3} if and only if (x, y) is one of the special points (−1,−1), (e4πi/3, e2πi/3) and

(e2πi/3, e4πi/3), where the Jones polynomial of a link can be exactly evaluated in polynomial

time in the size of the link [73]. Let us assume that t is not one of these three values. We

have q = (−t − 1)(−t−1 − 1) = 2 + 2Re(t) > 2. When t is non-real, in view of Theorem 1.4,

Factor-K-NormPlanarTutte(q, y − 1) and Distance-π/3-ArgPlanarTutte(q, y − 1)

are #P-hard and the result follows. When t is real, note that y < 0, x < 0 and q > 2. Thus,

either (x, y) is such that max{|x|, |y|} ≥ 1 and (x, y) ̸= (−1,−1), so hardness is covered in region

1 of Theorem 2.59, or max{|x|, |y|} < 1, so hardness is covered in region 3 of Theorem 2.59.

The case t = e2πi/5 of Corollary 2.60 is particularly relevant due to its connection with

quantum computation. This connection between approximate counting and the quantum

complexity class BQP was explored by Bordewich, Freedman, Lovász and Welsh in [20], where

they posed the question of determining the complexity of the following problem:

Name: Sign-Real-PlanarTutte(q, γ)

Instance: A planar (multi)graph G.

Output: Determine whether Re(ZTutte(G; q, γ)) ≥ 0 or Re(ZTutte(G; q, γ)) ≤ 0.

The non-planar version of Sign-Real-PlanarTutte(q, γ) has been studied in [55, Sec-

tion 5], where it was shown that determining the sign of the real part of the Tutte polyno-

mial is #P-hard in certain cases that include t = e2πi/5. Our results on the complexity of

Page 90 of 212

Chapter 2. The complexity of approximating the complex-valued Potts model

Sign-PlanarTutte(q, γ) allow us to adapt the argument in [55] to answer the question asked

in [20].

Corollary 2.61. Consider the point (x, y) = (exp(−aπi/b), exp(aπi/b)), where a and b are

positive integers such that 1/2 < a/b < 3/2 and a ̸= b. Let q = (x − 1)(y − 1) and γ = y − 1.

Then q ∈ (2, 4) and Sign-Real-PlanarTutte(q, γ) is #P-hard.

Proof. The proof is essentially the same one as that of [55, Theorem 1.7]. First, note that

q = (x− 1)(y − 1) = 2− x− y = 2− exp(−aπi/b)− exp(aπi/b) = 2− 2 cos(aπ/b),

which is real. Since 1/2 < a/b < 3/2 and a ̸= b, we have q ∈ (2, 4). A b-thickening allows us to

(x, y)-implement (1−q/2,−1). Since Sign-PlanarTutte(q,−2) is #P-hard (see Theorem 2.59),

we conclude that Sign-Real-PlanarTutte(q, γ) is #P-hard.

Corollary 2.61 includes the case where a = 3 and b = 5. In this case, we have x =

exp(−aπi/b) = − exp(πi) exp(−3πi/5) = − exp(2πi/5) and y = x−1. That is, (x, y) = (−t,−t−1)

for t = exp(2πi/5), which is the point of interest in [20].

Page 91 of 212

Chapter 3

The complexity of approximating the

complex-valued Ising model on

bounded degree graphs

◦ This chapter is based on the following publication:

Andreas Galanis, Leslie A. Goldberg, and Andres Herrera-Poyatos. The complexity of

approximating the complex-valued Ising model on bounded degree graphs. SIAM J. Discrete

Math., 36(3):2159–2204, 2022. doi:10.1137/21M1454043.

Organisation of this chapter

This chapter contains the proofs of the results stated in Section 1.4 on the approximability of the

partition function of the Ising model on bounded degree graphs, for non-real edge interactions.

This chapter is organised as follows. First, in Section 3.1 we provide a full outline of our proofs

so as to make it easier for the reader to follow this chapter. In Section 3.2 we introduce the

preliminary material needed in our proofs. In Section 3.3 we prove Theorem 1.5, which gives our

zero-free region for the partition function of the Ising model, and Corollary 1.6 on easiness of

approximation within this region. In Section 3.4 we prove Theorem 1.7 on inapproximability

of the partition function for most non-real edge interactions. In Section 3.5 we give explicit

evidence that zeros imply hardness of approximation and use these results to find more edge

interactions where the approximation problem is #P-hard. Finally, in Section 3.6 we generalise

the implementation results of [15] so that they can be applied to other two spin systems, including

the Ising model. This section is independent of the rest of this chapter, and the result presented

may have applications outside the scope of the Ising model.

3.1 Proof outline

In the proof of Theorem 1.5 we use the SAW tree construction of Godsil and Weitz [54, 120] to

reduce the study of zero-free regions of partition functions on graphs to the study of zero-free

regions of partition functions on trees (see Section 3.2.1 for details). The partition function of a

two-spin system on a tree admits a recurrence expression that can be studied to find zero-free

regions on trees. This approach has been successfully applied in the literature for the Ising

Page 92 of 212

https://doi.org/10.1137/21M1454043

Chapter 3. Approximating the complex-valued Ising model on bounded degree graphs

model and other partition functions [86, 13, 16]. We remark here that in this chapter we use β

instead of y (as we did in Chapter 2) to denote the edge interaction, following standard notation

in the Ising model literature. In our work we exploit the properties of the Mobius function

hβ(z) = (βz + 1)/(β + z) appearing in this recurrence for the Ising model with edge interaction

β. This Mobius function satisfies the equality

hβ(z)− 1

hβ(z) + 1
=

(β − 1)(z − 1)

(β + 1)(z + 1)
, (3.1)

which neatly relates properties of (β − 1)/(β + 1) to properties of the partition function of the

Ising model on trees, and greatly simplifies the derivation of our zero-free region. The translation

of Theorem 1.5 to an FPTAS for the partition function then follows from the work of Barvinok,

Patel and Regts [9, 101], see the proof of Corollary 1.6, via an approximation algorithm that

computes the first O(log size(G)) coefficients of the Taylor series of logZIsing(G;β).

In order to obtain our inapproximability results, we construct graphs H with maximum degree

at most ∆ and two distinguished vertices s, t with degree 1 such that substituting an edge in the

host graph with (H, s, t) has the effect of altering the edge interaction β of the original edge to

a new edge interaction β′. In this case, we say that H (β,∆)-implements β′, see Section 3.2.3 of

the preliminaries for a formal definition. The fact that the terminals s and t have degree 1 will be

important to preserve the maximum degree of graphs in our constructions; in fact, this bounded

degree restriction made the gadgets developed in Chapter 2 unapplicable in the current chapter,

as their maximum degree depends on size(G). As explained in Chapter 2, implementations

have played an important role in proofs of hardness of evaluating and approximating partition

functions, and they are the main tool to reduce exact computation to approximate computation

via a binary search [15, 59]. Initiated in [73, 121], these constructions have now become more

elaborate in recent inapproximability results [59, 15, 26], see also Chapter 2, using connections

to the iteration of complex dynamical systems. The following definition captures the relevant

framework for our implementations. We remark first, that in this chapter we also work with

algebraic numbers and computations are performed following the computational model described

in Section 2.2.3 of Chapter 2. In this chapter we denote by A the set of real algebraic numbers

and we denote by CA the set of complex algebraic numbers.

Definition 3.1. Let ∆ ≥ 3 be an integer and β ∈ CA. We say that the pair (∆, β) implements

the complex plane (resp. the real line) in polynomial time for the Ising model if there is an

algorithm such that, on input λ ∈ CA (resp. λ ∈ A) and rational ε > 0, computes a graph G that

(∆, β)-implements a complex number λ̂ with |λ − λ̂| ≤ ε. The running time of this algorithm

must be polynomial in the size of the representations of λ and ε.

Our main contribution is that we can (∆, β) implement the real line (and, in fact, the complex

plane), for those pairs (∆, β) given in the following lemma.

Lemma 3.2. Let ∆ be an integer with ∆ ≥ 3 and let β ∈ CA \ R with β ̸∈ {i,−i} and

1/
√

∆− 1 < |β − 1|/|β + 1|. Then the pair (∆, β) implements the complex plane in polynomial

time for the Ising model.

Page 93 of 212

Chapter 3. Approximating the complex-valued Ising model on bounded degree graphs

The requirement that it be possible to implement the real line is the main bottleneck

when reducing exact computation to approximate computation. Even though it is possible to

identify some parameter values which enable the implementation of the real line, the complete

determination of this set of parameter values which make this possible seems out of reach, see,

for instance, [59, 15]. Let us compare Lemma 3.2 to Theorem 2.2 of Chapter 2. We note that in

the unbounded degree setting we are able to implement part of the real line for all non-real edge

interactions (other than easy/exceptional points of the Potts model), whereas here we require

the added hypothesis that the edge interaction β satisfies 1/
√

∆− 1 < |β − 1|/|β + 1|. This

hypothesis arises when restricting the maximum degree of the gadgets in our constructions, as

we will see in the rest of this chapter.

The proof of Lemma 3.2 uses connections with complex dynamics (as opposed to the proofs

in Chapter 2), following recent developments in the area. The main idea in this line of works is to

analyse what can be implemented with trees, which can be done via understanding the properties

of the underlying dynamical system. A key difference in the case of the Ising model relevant to

previous works is that vertex-style implementations are useless; due to the perfect symmetry of

the Ising model nothing interesting can be implemented through that route. Instead, we have

to consider more elaborate edge gadgets, cf. Section 3.4.2, and obtain tree-style recursions for

them. Surprisingly, we are able to recover the tree-recursions for vertex activities (even though

our gadgets are not trees and simulate edge activities instead), albeit with a bit different value

of β which yields the square root in Lemma 3.2. We leave as a tantalising open problem how to

remove this square root, which seems inherent in our edge-style approach.

The good news is that once this edge-framework of the gadgets is in place, we can adapt

suitably the arguments given in [15]. We have in fact generalised these arguments in Section 3.6,

so that they are more amenable to be used for other spin systems. A quick summary of the main

idea behind Section 3.6 is as follows. We assume that we have access to a recursively-constructed

gadget that implements a weight f(z) assuming that we can implement z (for us, this is the

gadget given in Section 3.4.2). Then we apply results of complex dynamics to the function f in

order to understand which points we can implement by iterating f , which involves studying the

neighbourhood of fixed points of f . There are two steps in the constructions. In the first step,

we show how to implement approximations of any number near a fixed point of f . In the second

step, this implementation result is translated to implementing the complex plane in polynomial

time when the fixed point under consideration is repelling. As explained in Section 3.6, it is

important in this generalisation that the function f is of the form g(zd), where g is a Mobius map.

The results of [15] are derived for g(z) = 1/(1 + λz), where λ is an activity of the independent

set polynomial. As noted in Section 3.6 significant extra work is needed to generalise these

results to any Mobius map g.

To conclude this section, we comment on the connection between zeros of the partition

function and hardness. It turns out that our hardness and implementation results can be applied

to conclude hardness of approximation at some zeros of the partition function, such as the zero

β0 plotted in Figure 1.2, which satisfies 1/(∆− 1) < |β0 − 1|/|β0 + 1| < 1/
√

∆− 1. Our main

Page 94 of 212

Chapter 3. Approximating the complex-valued Ising model on bounded degree graphs

result on this matter is the following lemma.

Lemma 3.3. Let ∆ be an integer with ∆ ≥ 3. Let β ∈ CA\(R∪{i,−i}). Let us assume that (∆, β)

implements the edge interaction −1. Then IsingNorm(∆, β, 1.01) and IsingArg(∆, β, π/3) are

#P-hard.

Typically, if we have a graph G with maximum degree ∆ such that ZIsing(G;β) = 0, then

this can be used to (∆, β)-implement −1 (provided that we can make the terminals have degree

1) and conclude hardness. See Lemma 3.43, where we conclude hardness of approximation based

on Lemma 3.3 and appropriate graphs with zero partition function. This is the first result of

this style for the Ising model, though building a connection between zeros and inapproximability

for bounded-degree graphs has also been explored thoroughly in a recent work [37] for the

independence polynomial. These observations lead us to propose the following conjecture.

Conjecture 3.4. Let ∆ be an integer with ∆ ≥ 3 and let β ∈ CA with β ̸∈ R ∪ {i,−i}. If there

is a graph G with maximum degree at most ∆ such that ZIsing(G;β) = 0, then the problems

IsingNorm(β,∆, 1.01) and IsingArg(β,∆, π/3) are #P-hard.

We make progress toward Conjecture 3.4 in Corollary 3.45, where we have to weaken the

result, concluding hardness of IsingNorm(β,∆, 1.01) and IsingArg(β,∆, π/3) when the graph

G has maximum degree at most ∆ − 1. Unfortunately, our implementation results seem not

enough to prove the full conjecture.

3.2 Preliminaries

3.2.1 The tree of self-avoiding walks

In this section we recall some results concerning the self-avoiding walk tree (SAW tree) of a

graph and its connection to the partition function of the Ising model. SAW trees were introduced

in the study of partition functions by Godsil in [54] to study the matching polynomial. SAW

trees gained in popularity after the work of Weitz on the independent set polynomial [120]. The

idea of Godsil and Weitz was reducing the study of the partition function of a two-spin system

on graphs to the study of the same partition function on trees. This idea is at the core of our

proof of Theorem 1.5.

Intuitively the SAW tree T of a graph G = (V,E) and a vertex v ∈ V is constructed by

considering all of the self-avoiding walks from v in G and storing these in a tree T . The root of T

is the walk consisting of the single vertex v, and two self-avoiding walks are connected in T if

one of them is a strict sub-walk of the other with maximal length. We refer to [86, Appendix A]

for a formal construction. Some of the leaves of the tree T are pinned according to a systematic

procedure that is described in [86, Appendix A]; a description of this systematic procedure is

not needed for our proofs, hence we omit it here. It is important to note that if G has maximum

degree ∆, then every node of T has at most d := ∆ − 1 children, except possibly the root of

Page 95 of 212

Chapter 3. Approximating the complex-valued Ising model on bounded degree graphs

T , which might have ∆ children. We will use the following result that relates ZIsing(G;x) and

ZIsing(T ;x).

Proposition 3.5 ([86, Proposition B.1]). Let G be a connected graph and let v be a vertex of

G. Let T be the SAW tree of (G, v). Then the polynomial ZIsing(G;x) divides the polynomial

ZIsing(T ;x). In particular, if β ∈ C is such that ZIsing(T ;β) ̸= 0, then it also holds that

ZIsing(G;β) ̸= 0.

As a consequence of Proposition 3.5, we can translate zero-free results for trees to zero-free

results for graphs. Our proof of Theorem 1.5 uses this approach. In the rest of this section we

recall some tools to study the partition function of the Ising model of trees.

Definition 3.6. Let T be a tree (possibly with some pinned leaves) and let v be its root. For

each j ∈ {0, 1}, we define Zj
v(T ;β) as the sum of βm(σ) over the configurations σ of T that have

σ(v) = j, so ZIsing(T ;β) = Z0
v (T ;β) + Z1

v (T ;β). We define the ratio

R (T, v;β) =
Z1
v (T ;β)

Z0
v (T ;β)

.

The ratio R (T, v;β) is a rational function on β. If Z0
v (T ;β) ̸= 0, we note that ZIsing(T ;β) = 0

if and only if R (T, v;β) = −1, so we can study the zeros of the partition function by studying

these ratios. It turns out that the ratios R(T, v, β) can be computed recursively. Let us consider

the function

Fβ,k (z1, . . . , zk) =
k∏

j=1

hβ (zj) ,

where hβ(z) = (βz + 1)/(β + z) for any z ∈ C. Then if (T1, v1), . . . , (Td, vk) are the trees with

roots vj hanging from the root of T , one can check that

R(T, v;β) = Fβ,k(r1, . . . , rk), (3.2)

where rj = R(Tj , vj ;β) for all j ∈ [k] := {1, . . . , k}, see for instance [86]1.

3.2.2 Computing with algebraic numbers

Our algorithmic and hardness results (Corollary 1.6 and Theorem 1.7) involve algebraic edge

interactions. We refer to Section 2.2.3 of Chapter 2 for an explanation of how we represent

and compute with algebraic numbers. Here we need the folowing operation that we did not

use in Chapter 2. For x ∈ C and r > 0 real we denote B(x, r) = {z ∈ C : |z − x| < r},
B(x, r) = {z ∈ C : |z − x| ≤ r} and C(x, r) = {z ∈ C : |z − x| = r}. In some of our algorithms

we have to check, for z, x ∈ CA and r ∈ A with r > 0, if z ∈ B(z, x) or z ∈ B(z, x). Note

that |z − x| is a real algebraic number, and thus, we can check if |z − x| < r or |z − x| = r in

polynomial time in the sizes of x, z and r.

1In [86] the authors work with ZG(b) = ZIsing(G; 1/b)b|E(G)|, so they get hb(z) = (b+ z)/(bz + 1) instead.

Page 96 of 212

Chapter 3. Approximating the complex-valued Ising model on bounded degree graphs

3.2.3 Implementing weights, series compositions and parallel compositions

Here we define the concept of implementations and series and parallel compositions for the Ising

model. These concepts have been used several times to obtain hardness results for partition

functions, see Section 2.2.2 for definition for the Tutte polynomial or [40] for definitions for the

graph homomorphism partition function. In this chapter we restrict ourselves to the partition

function of the Ising model so that the notation is more straightforward to use, hence the

notation differs from that of Chapter 2.

We will make use of the following notation. Let H = (V,E) be a graph and let s and t be

two distinct vertices of H. For j, k ∈ {0, 1} we define

Zjk
st (H;β) =

∑
σ : V→{0,1}

σ(s)=j, σ(t)=k

βm(σ).

The interaction matrix of H at (s, t) is the matrix

Ist(H;β) =

[
Z00
st (H;β) Z01

st (H;β)

Z10
st (H;β) Z11

st (H;β)

]
. (3.3)

We say that the graph H β-implements the weight w if there are vertices s and t in H such

that the interaction matrix Ist(H;β) is of the form

C

[
w 1

1 w

]

for some complex number C with C ̸= 0 or, equivalently, Z01
st (H;β) ̸= 0 and we have

Z11
st (H;β)/Z01

st (H;β) = w. One can check that this is equivalent to the definition of im-

plementation given in Section 2.2.2 when q = 2. We recall here that the point of implementations

is that if we substitute an edge e with weight w of a graph G by the graph H (identifying the

endings of e with the vertices s and t), the value of the partition function stays the same up to

the factor C = Z01
st (H;β), see Lemma 2.6 in Chapter 2 for an accurate statement. Hence, if we

have an oracle to evaluate the partition function of the Ising model at β and we know C, we can

use this oracle to evaluate this partition function at w. This idea is exploited in many hardness

reductions, see Chapter 2 and the references therein. In this chapter we are interested in graphs

with bounded degree, so in order to use this construction while maintaining the maximum degree

of the graphs involved, the vertices s and t should have degree 1 in H. This is formalised in the

following definition.

Definition 3.7. Let ∆ ≥ 2 be an integer and β ∈ C \ {0}. Let G be a graph. We say that G

(∆, β)-implements the edge interaction β′ ∈ C if G has maximum degree at most ∆ and distinct

vertices s and t of degree 1 such that G β-implements β′ with the terminals s and t. We say

that (∆, β) implements the edge interaction β′ ∈ C if there is a graph G that (∆, β)-implements

β′. More generally, we say that (∆, β)-implements a set of edge interactions S ⊆ C if (∆, β)

implements β′ for any β′ ∈ S.

Page 97 of 212

Chapter 3. Approximating the complex-valued Ising model on bounded degree graphs

It is important to know that this bounded-degree of implementations also presents the

transitivity property, that is, if H (∆, β)-implements the weight w and J (∆, w)-implements the

weight γ, it is not difficult to construct a graph that (∆, β)-implements γ, which follows from

Lemma 2.6 in Section 2.2.2.

We now reintroduce the concepts of parallel composition and series composition following our

Ising notation, which allows us to express the implemented weights in terms of the interaction

matrix defined in (3.3). This will simplify some of the calculations in this chapter. Let

H1 = (V1, E1) and H2 = (V2, E2) be two graphs. For each j ∈ {1, 2}, let sj , tj ∈ Vj be two

distinct vertices.

1. Recall that the parallel composition of (H1, s1, t1) and (H2, s2, t2) is the graph H constructed

by considering the union of H1 and H2 and identifying s1 with s2 and t1 with t2. One

can easily check that the interaction matrix Is1t1(H; y) is the Hadamard product (or

component-wise product) of the interaction matrices Is1t1(H1; y) and Is2t2(H2; y). Hence,

if (Hj , sj , tj) implements wj for j ∈ {1, 2}, then (H, s1, t1) implements w = w1w2.

2. Recall that the series composition of (H1, s1, t1) and (H2, s2, t2) is the graph H constructed

by considering the union of H1 and H2 and identifying t1 with s2. One can easily check

that the interaction matrix Is1t2(H; y) is the product of the interaction matrices Is1t1(H1; y)

and Is2t2(H2; y). Hence, if (Hj , sj , tj) implements wj for j ∈ {1, 2}, (H, s1, t1) implements

the edge interaction w = (w1w2 + 1)/(w1 + w2). Note that this operation is commutative,

the series composition of (H1, s1, t1) and (H2, s2, t2) implements the same weight as the

series composition of (H2, s2, t2) and (H1, s1, t1).

Series compositions are particularly helpful when working with graphs with bounded degree.

In our constructions we usually consider the series composition of a graph H that β-implements

a weight w and a path of length 1 with edge interaction β. This allows us to have a terminal

vertex with degree 1 in the resulting graph. This construction implements the edge interaction

hβ(w) =
βw + 1

β + w
. (3.4)

The Mobius map hβ arises very frequently in this work and plays an important role in our

arguments, as we highlighted in the proof outline.

3.2.4 Iteration of complex rational maps

In Section 3.6 we extend the work on implementations for the independent set polynomial given

in [15] to a more general setting so that these results can be applied to other partition functions,

such as the partition function of the Ising model. The technique developed in [15] uses several

results from complex dynamics that we recall here. These complex dynamics results are also

used in this section when implementing edge interactions for the Ising model. We gather all

this material in this section. We refer to [100] for an introduction to Riemann surfaces and

to [11, 91] for an introduction to complex dynamics.

Page 98 of 212

Chapter 3. Approximating the complex-valued Ising model on bounded degree graphs

By Ĉ = C ∪ {∞} we denote the Riemann sphere. The Riemann sphere is a metric space

with the chordal metric d(·, ·), given by

d(z, w) =
2|z − w|(

1 + |z|2
)1/2 (

1 + |w|2
)1/2 , and d(z,∞) = lim

w→∞
d(z, w) =

2(
1 + |z|2

)1/2 .
The Riemann sphere is a Riemann surface, meaning that locally the Riemann sphere is homeomor-

phic to open subsets of C. One can translate several results from complex analysis to Riemann

surfaces. An example of such a result is the open mapping theorem, see, for example, [100,

Theorem 2.2.2].

Proposition 3.8 (Open mapping theorem for Riemann surfaces, [100, Theorem 2.2.2]). Let X

and Y be Riemann surfaces. If ϕ : X → Y is a non-constant holomorphic mapping, then ϕ is

open, that is, ϕ(O) is an open subset of Y for any open set O ⊆ X.

One can show that the set of holomorphic functions on the Riemann sphere is exactly the

set of rational functions. A rational function of degree d is a d-fold map on Ĉ. Hence, the

automorphisms on the Riemann sphere are precisely the rational functions of degree 1. These

are also known as Mobius maps or Mobius transformations. We use the following two properties

of Mobius maps.

Proposition 3.9 ([100, Theorem 5.7.3, part (f)]). If C is a circle in Ĉ (i.e., C is a circle in C
or C = L ∪ {∞} for some line L in C), then the image of C under any Mobius map is also a

circle in Ĉ.

Proposition 3.10 ([100, Proof of Theorem 5.8.2]). Let a ∈ C with |a| < 1, θ ∈ R and let

ϕ(z) = eiθ(az + 1)/(a + z). Then the Mobius map ϕ fixes the circle C(0, 1).

It is well-known that holomorphic complex maps are locally Lipschitz and this is exploited

in [15]. Here we use a global Lipschitz property on the Riemann sphere, see Lemma 3.11.

Lemma 3.11 ([11, Theorem 2.3.1]). Let f be a rational map. Then f is a Lipschitz map on the

Riemann sphere, that is, there is a constant L > 0 such that d(f(z), f(w)) ≤ Ld(z, w) for every

z, w ∈ Ĉ, where d is the chordal metric.

We conclude this section by introducing some results from complex dynamics. For a non-

negative integer n we denote by fn the n-fold iterate of n (for n = 0, f0 denotes the identity

map). Let f : Ĉ→ Ĉ be a rational map. Suppose that ω ∈ Ĉ is a fixed point of f . If ω ∈ C, the

multiplier of f at ω is defined as f ′(ω). If ω =∞, the multiplier of f at ω is defined as 1/f ′(∞).

The behaviour of the iterates fn near a fixpoint is characterised in terms of the multiplier q of

f at this fixpoint. With this in mind, there are three types of fixpoints: attracting if |q| < 1,

neutral or indifferent if |q| = 1, and repelling if |q| > 1. We also need to introduce the Julia set

of f . We refer to [11] for a definition, here we only use the two following properties of Julia sets,

Lemma 3.12 and Theorem 3.13.

Page 99 of 212

Chapter 3. Approximating the complex-valued Ising model on bounded degree graphs

Lemma 3.12 ([91, Lemma 4.6]). Let f : Ĉ→ Ĉ be a rational map. Every repelling fixpoint of f

belongs to the Julia set of f .

A set U is a neighbourhood of x if it contains a ball B(x, r) for some r > 0. The exceptional

set of a rational map f is the set of points z ∈ Ĉ such that [z] = {z′ ∈ Ĉ : fn(z′) =

fm(z) for some integers n,m ≥ 0} is finite.

Theorem 3.13 ([11, Theorem 4.2.5]). Let f : Ĉ → Ĉ be a rational map with exceptional

set Ef . Let z0 be a point in the Julia set of f and let U be a neighbourhood of z0. Then⋃∞
n=0 f

n(U) = Ĉ \ Ef .

The exceptional points of f can be characterised as follows.

Lemma 3.14 ([91, Lemma 4.9] and [11, Theorem 4.1.2]). Let f : Ĉ→ Ĉ be a complex rational

map of degree at least 2, and let Ef be its exceptional set. Then, |Ef | ≤ 2. Moreover,

• if Ef = {ζ}, then ζ is a fixed point of f with multiplier 0;

• if Ef = {ζ1, ζ2} where ζ1 ̸= ζ2, then ζ1, ζ2 have multiplier 0 and either they are fixed points

of f , or f(ζ1) = ζ2 and f(ζ2) = ζ1.

3.3 Easiness: a zero-free region for the Ising model

In this section we prove Theorem 1.5 and Corollary 1.6. We also compare Theorem 1.5 to the

zero-free regions appearing in Figure 1.1.

3.3.1 Proof of Theorem 1.5

First, we introduce some notation that will be used repeatedly in this work.

Definition 3.15. Let δ > 0. We define R(δ) as the set of complex numbers z such that

|(z − 1)/(z + 1)| ≤ δ.

Definition 3.15 allows us to conveniently restate Theorem 1.5 as ZIsing(G;β) ̸= 0 for any

graph G with maximum degree at most ∆ and any β ∈ R(ε∆), where ε∆ = tan(π/(4∆− 4)).

Proposition 3.16 gives some properties of the region R(δ) that we need in our proofs. See

Section 3.2.2 for a definition of B(x, r), B(x, r) and C(x, r).

Proposition 3.16. Let δ > 0. The region R(δ) satisfies the following properties:

1. We have 1 ∈ R(δ) and −1 ̸∈ R(δ).

2. If β ∈ R(δ), then β−1 ∈ R(δ).

3. The map ϕ(z) = (z − 1)/(z + 1) has the following property. We have ϕ(C(0, 1)) = iR =

ϕ−1(C(0, 1)), and {z ∈ C : Re(z) > 0} = ϕ−1(B(0, 1)). In particular, if δ = 1, then R(δ)

is the set of complex numbers z with Re(z) ≥ 0.

Page 100 of 212

Chapter 3. Approximating the complex-valued Ising model on bounded degree graphs

4. If δ ∈ (0, 1), then R(δ) is the closed disk B(cδ, rδ) with centre cδ = (1 + δ2)/(1− δ2) and

radius rδ = 2δ/(1− δ2). Moreover, in this case for every z ∈ R(δ) we have |z| ≤ cδ + rδ =

(1 + δ)/(1− δ).

Proof. We prove each property separately.

1. This property is trivial.

2. Note that (z−1 − 1)/(z−1 + 1) = (1− z)/(1 + z) = −(z − 1)/(1 + z), so β ∈ R(δ) if and

only if β−1 ∈ R(δ).

3. One can check that the inverse of ϕ(z) = (z − 1)/(z + 1) is the Mobius map ϕ−1(y) =

−(1 + y)/(y − 1). Hence, |ϕ(z)| = 1 if and only if |ϕ−1(z)| = 1, which happens exactly

when |z + 1| = |z− 1| or, equivalently, z ∈ iR. This proves ϕ(C(0, 1)) = iR = ϕ−1(C(0, 1)).

Note that |z − 1| < |z + 1| if and only if |Re(z)− 1| < |Re(z) + 1|. The latter is equivalent

to Re(z) > 0. This shows that {z ∈ C : Re(z) > 0} = ϕ−1(B(0, 1)), and the result follows.

4. We note that R(δ) = {z ∈ C : |ϕ(z)| ≤ δ} = ϕ−1(B(0, δ)). We claim that ϕ−1 sends the

circle C(0, δ) to the circle C(cδ, rδ), where cδ and rδ are as in the statement. As ϕ−1 is

a Mobius map, ϕ−1(C(0, δ)) is a circle or a line of C, see Section 3.2.4 on rational maps.

We take 3 points in the circle C(0, δ) and show that they are in C(cδ, rδ). The three

points are δ,−δ and δi. One can easily check that ϕ−1(δ) = (1 + δ)/(1− δ) = cδ + rδ and

ϕ−1(δ) = (1− δ)/(1 + δ) = cδ − rδ. We also have

ϕ−1(δi)− cδ =
i− δ

i + δ
− 1 + δ2

1− δ2
= −1 + iδ

i + δ

2δ

1− δ2
,

so |ϕ−1(δi)− cδ| = rδ as we wanted. We conclude that ϕ−1(C(0, δ)) = C(cδ, rδ). Since ϕ−1

is holomorphic in B(0, 1) and ϕ−1(0) = 1 ∈ B(cδ, rδ), we obtain ϕ−1(B(0, δ)) = B(cδ, rδ)

as we wanted. Finally, the point in B(cδ, rδ) with the largest norm is cδ + rδ = (1 + δ)/(1−
δ).

Remark 3.17. Let α, β ∈ [−π, π]. Then it is well-known that if α, β, α+β ̸∈ π/2 +πZ, we have

tan(α + β) =
tan(α) + tan(β)

1− tan(α) tan(β)
.

In particular, we obtain the equality

tan(2α) =
2 tan(α)

1− tan(α)2
.

Let f(x) = 2x/(1− x2). This function is strictly increasing in x ∈ [−1, 1]. Hence, if we have

α ∈ [−π/4, π/4] and tan(2α) = f(δ) for some δ ∈ (0, 1), we can conclude that tan(α) = δ. This

argument will be used in the proof of Theorem 1.5.

Lemma 3.18. Let δ, ε > 0, let β ∈ R(δ) and let hβ(z) = (βz + 1)/(β + z). Then hβ(R(ε)) ⊆
R(δε). Moreover, we have hβ(∞) = β ∈ R(δ).

Page 101 of 212

Chapter 3. Approximating the complex-valued Ising model on bounded degree graphs

Proof. It is straightforward to check that for any z ∈ C with z ̸= −1, we have Equation (3.1),

namely
hβ(z)− 1

hβ(z) + 1
=

(β − 1)(z − 1)

(β + 1)(z + 1)
.

The result now follows from (3.1) and the definition of R(ε),R(δε).

We are now ready to prove Theorem 1.5.

Theorem 1.5. Let ∆ be an integer with ∆ ≥ 3. Let G = (V,E) be a graph of maximum degree

at most ∆. Let ε∆ = tan(π/(4(∆ − 1))) ∈ (0, 1). Then ZIsing(G;β) ̸= 0 for all β ∈ C with

|β − 1|/|β + 1| ≤ ε∆.

Proof. Let β ∈ R(ε∆). In light of Proposition 3.5, we only have to prove that ZIsing(T ;β) ̸= 0

for all trees T with maximum degree at most ∆ with possibly some pinned leaves. Let v be the

root of such a tree T . We are going to prove that R(T, v;β) ̸= −1 and (unless T consists of a

single vertex, pinned to 1, in which case the Theorem is trivial) that Z0
v (T, v;β) ̸= 0. Note that

both assertions combined imply that

ZIsing(T ;β) = Z0
v (T, v;β)

(
1 +

Z1
v (T, v;β)

Z0
v (T, v;β)

)
= Z0

v (T, v;β) (1 + R(T, v;β)) ̸= 0

as we want.

First, we restrict ourselves to trees such that every node has at most d := ∆− 1 children

and possibly some its leaves are pinned. We claim that for such a tree T with root v we have

1. R(T, v;β) ∈ R(1) ∪ {∞}, that is, R(T, v;β) has non-negative real part or R(T, v;β) =∞
(Proposition 3.16);

2. if T has height at least 1, then Z0
v (T, v;β) ̸= 0 (a tree with only one vertex has height 0

by definition).

We carry out the proof by induction on the height of the tree. Let us consider the case when the

tree T consists of only one vertex. Depending on whether the vertex is pinned or not, either

R(T, v;β) = 1 and Z0
v (T ;β) = 1, or R(T, v;β) ∈ {0,∞} and Z0

v (T ;β) ∈ {1, 0}. In either case,

R(T, v;β) ∈ R(1) ∪ {∞}.
Now let T be a tree of height l > 0 and let us assume that our claim holds for any of the

desired trees with height at most l − 1. Let T be a tree of height l such that all nodes have at

most d children. Let v be its root and let (T1, v1), . . . , (Tk, vk) be the trees hanging from this

root. By assumption, k ≤ d. Let rj = R(Tj , vj ;β) for all j ∈ [k]. In view of (3.2), we have

R(T, v;β) =

k∏
j=1

hβ(rj). (3.5)

By our induction hypothesis, rj ∈ R(1) ∪ {∞} for all j ∈ [k]. In light of Lemma 3.18, we find

that hβ(rj) ∈ R(ε∆) for all j ∈ [k]. This property will be enough to ensure that the product

Page 102 of 212

Chapter 3. Approximating the complex-valued Ising model on bounded degree graphs

in (3.5) yields a complex number with non-negative real part. Let us study the argument of

any element of R(ε∆). By a trigonometry reasoning shown in Figure 3.1, the argument of any

element in R(ε∆) is in the interval [−θ, θ] for θ such that

tan(θ) =
rε∆√

c2ε∆ − r2ε∆

=
2ε∆

1− ε2∆
,

where rδ and cδ are defined in Proposition 3.16. In view of Remark 3.17 for α = θ/2, we conclude

that tan(θ/2) = ε∆ and, thus, θ/2 = arctan(ε∆) = π/(4d). Therefore, the complex number

R(T, v;β) is the product of k numbers with argument in [−θ, θ] = [−π/(2d), π/(2d)], so its

argument is in [−kθ, kθ] ⊆ [−π/2, π/2], where we used k ≤ d. This is equivalent to saying that

R(T, v;β) has non-negative real part as we wanted. Note that when l ≥ 1, we have also shown

that R(T, v;β) ∈ C.

0 cδ
cδ − rδ

β

lδ rδ

θ

Figure 3.1: The disk R(δ).

Let us now prove that Z0
v (T, v;β) ̸= 0. We have

Z0
v (T ;β) =

k∏
j=1

(
βZ0

vj (Tj ;β) + Z1
vj (Tj ;β)

)
. (3.6)

If Tj has height at least 1, then

βZ0
vj (Tj ;β) + Z1

vj (Tj ;β) = Z0
vj (Tj ;β) (β + R(Tj , vj ;β)) ̸= 0,

where we used that Z0
vj (Tj ;β) ̸= 0 and Re(β + R(Tj , vj ;β)) > 0 by the induction hypothesis

(recall that Re(β) > 0). If Tj has height 0, that is, Tj has only one vertex, then, depending on

whether this vertex is pinned or not,

βZ0
vj (Tj ;β) + Z1

vj (Tj ;β) ∈ {1, β, 1 + β}.

Therefore, the product in (3.6) is a product of complex numbers that are non-zero, so Z0
v (T ;β) ̸= 0

as we wanted.

Finally, to prove the Theorem, we consider a tree T with maximum degree at most ∆ and

possibly some pinned leaves. Let v be its root and let (T1, v1), . . . , (Tk, vk) be the trees hanging

from this root. By the claim, R(Tj , vj ;β) ∈ R(1) ∪ {∞} for all j ∈ [k]. By Lemma 3.18,

Page 103 of 212

Chapter 3. Approximating the complex-valued Ising model on bounded degree graphs

hβ(rj) ∈ R(ε∆) for all j ∈ [k], so the argument of hβ(rj) is in [−π/(2d), π/(2d)] for all j ∈ [k].

It follows from this fact, k ≤ ∆, and (3.5), that the argument of R(T, v;β) is in

[−kπ/(2d), kπ/(2d)] ⊆ [−∆π/(2d),∆π/(2d)] ⊆ [−3π/4, 3π/4],

where we used that ∆ ≥ 3. In particular, R(T, v;β) is not a negative real number, so R(T, v;β) ̸=
−1. The fact that Z0

v (T ;β) ̸= 0 follows analogously from (3.6), Z0
v (T ;β) is a product of non-zero

complex numbers.

Corollary 1.6. Let ∆ be an integer with ∆ ≥ 3. Let β be an algebraic number such that

|β − 1|/|β + 1| < ε∆, where ε∆ = tan(π/(4(∆− 1))). Then there is an algorithm that, on inputs

a graph G with maximum degree at most ∆ and a rational ε > 0, runs in time poly(size(G), 1/ε)

and outputs Ẑ = ZIsing(G;β)ez for some complex number z with |z| ≤ ε.

Proof. The proof follows from combining Theorem 1.5, the work of Patel and Regts [101] and

the work of Barvinok [8]2. Let G and ε > 0 be the inputs of our algorithm. We consider the

polynomial qG,β(z) = ZIsing(G; 1+z(β−1)). We want to give an FPTAS for qG;β(1) = ZIsing(G;β).

We claim that, on graphs with maximum degree at most ∆, we can compute the k-th coefficient of

qG,β(z) in polynomial time in 2k and the size of G. This claim is proved for the more general case

of the graph homomorphism partition function in the proof of [101, Theorem 6.1]. Recall that 1

and β are in the interior of the diskR(ε∆) (Proposition 3.16) so this is also true of an open interval

around the line segment between them. Hence, there is δ > 0 such that 1 + z(β − 1) ∈ R(ε∆)

for all z ∈ Rδ, where Rδ is a strip of the form Rδ = {z ∈ C : −δ ≤ Re(z) ≤ 1 + δ, |Im(z)| ≤ δ}.
In light of Theorem 1.5, we conclude that qG,β(z) ̸= 0 for all z ∈ Rδ. In [8, Section 2.2.2]

Barvinok constructs a polynomial ϕδ and a real number bδ > 1 such that ϕδ(0) = 0, ϕδ(1)

and ϕδ(z) ∈ Rδ for any z ∈ B(0, bδ). Note that the polynomial pG,β(z) = qG,β(ϕδ(z)) does not

vanish in B(0, bδ). Finally, we compute an approximation of pG,β(1) = ZIsing(G;β) as in [8,

Lemma 2.2.1] using the truncated Taylor series of log pG,β(z). The algorithm of Barvinok uses

O(log(deg(pG,β)/ε)) = O(log(size(G)/ε)) coefficients of the Taylor series of log pG,β(z). Here

the implicit “O” notation depends only on β. These coefficients can be computed using the

algorithm of Patel and Regts in polynomial time in size(G) and 1/ε. We conclude that [8,

Lemma 2.2.1] computes Y such that |log pG,β(1) − Y | ≤ ε in polynomial time in size(G) and

1/ε. Let z = log pG,β(1)− Y and Ẑ = exp(Y). Then we have Ẑ = ZIsing(G;β)ez and |z| ≤ ε as

we wanted.

3.3.2 Comparing Theorem 1.5 to the state of the art

In this section we gather all the results we are aware of on the zeros of the partition function of

the Ising model and compare them to Theorem 1.5. We show that our result extends the state

of the art significantly.

2The idea presented in the proof of Corollary 1.6 is known among experts, see for example, [86]; we include it

here for completeness. We note that the only properties of S = {z ∈ C : |z− 1|/|z +1| < ε∆} needed are that S is

open and {t+ (1− t)β : t ∈ [0, 1]} ⊆ S for all β ∈ S.

Page 104 of 212

Chapter 3. Approximating the complex-valued Ising model on bounded degree graphs

Results on the zeros of the graph homomorphism partition function can be particularised

to the Ising model. Let G = (V,E) be an undirected graph, possibly with multiple edges or

loops, and let A = (aij) be a k× k symmetric matrix of complex numbers. Recall that the graph

homomorphism partition function is defined as

hom(G;A) =
∑

ϕ : V→[k]

∏
{u,v}∈E

aϕ(u)ϕ(v),

where [k] denotes {1, . . . , k}, see (1.3). When k = 2 and a11 = a22 we have

hom(G;A) = a
|E|
12

∑
ϕ : V→{1,2}

∏
{u,v}∈E:
ϕ(u)=ϕ(v)

a11
a12

= a
|E|
12 ZIsing

(
G;

a11
a12

)
, (3.7)

recovering the partition function of the Ising model as a particular case.

To the best of our knowledge, the best result on the zeros of the graph homomorphism

partition function known up to date is the following result of Barvinok.

Theorem 3.19 ([8, Theorem 7.1.4]). For a positive integer ∆, let

δ∆ = max

{
sin
(α

2

)
cos
(

∆
α

2

)
: 0 < α <

2π

3∆

}
. (3.8)

Then for any graph G = (V,E) with maximum degree at most ∆, we have hom(G;A) ̸= 0

for any complex symmetric matrix A with dimension k × k such that |1 − aij | ≤ δ∆ for any

i, j ∈ {1, . . . , k}.

Theorem 3.19 can be naively translated to the Ising model by considering matrices of the

form [
β 1

1 β

]
.

For those matrices, Theorem 3.19 says that ZIsing(G, β) ̸= 0 when |1− β| ≤ δ∆. One can obtain

a stronger result for the Ising model if we apply (3.7) together with Theorem 3.19.

Corollary 3.20. Let ∆ be a positive integer, let δ∆ as in (3.8) and let

β ∈
⋃

a∈B(1,δ∆)

1

a
B(1, δ∆).

Then ZIsing(G, β) ̸= 0 for any graph G with maximum degree at most ∆.

Proof. We can write β = a11/a12 for a11, a12 ∈ B(1, δ∆). We consider the matrix

A =

[
a11 a12

a12 a11

]
.

By (3.7) and Theorem 3.19 we have ZIsing(G, β) = a
−|E|
12 hom(G;A) ̸= 0 for any graph G = (V,E)

with maximum degree at most ∆.

Page 105 of 212

Chapter 3. Approximating the complex-valued Ising model on bounded degree graphs

The case a = 1 is the naive application of Theorem 3.19 mentioned after Theorem 3.19.

Taking a = 1/
√
β in Corollary 3.20 gives the following corollary that can be found in the work

of Mann and Bremner [89].

Corollary 3.21 ([89, Corollary 7]). Let ∆ be a positive integer, let δ∆ as in (3.8) and let β ∈ C
such that |1 − 1/

√
β| ≤ δ∆ and |1 −

√
β| ≤ δ∆. Then ZIsing(G, β) ̸= 0 for any graph G with

maximum degree at most ∆.

Proof. This is a particular case of Corollary 3.20 where a is set to 1/
√
β.

In Lemma 3.22 we show that the sets
⋃

a∈B(1,δ)B(1, δ)/a and R(δ) are related.

Lemma 3.22. For any δ ∈ (0, 1/2], we have[
1− δ

1 + δ
,

1 + δ

1− δ

]
⊆

⋃
a∈B(1,δ)

1

a
B (1, δ) ⊆ R

(
2δ/
√

3
)
.

Proof. The first inclusion follows from the fact that[
1− δ

1 + δ
,
1 + δ

1− δ

]
⊆ 1

1 + δ
B (1, δ) +

1

1− δ
B (1, δ) .

In the rest of the proof we focus on the second inclusion. First, let us consider a of the

form a = 1 + δeiθ for some θ ∈ [0, 2π). We show that B(1, δ)/a ⊆ R(2δ/
√

3). Note that

B(1, δ)/a = B(1/a, δ/|a|). Since B(1, δ)/a and R(2δ/
√

3) are convex, we only have to show that

the border of B(1, δ)/a is contained in R(2δ/
√

3). Let β be in the border of B(1, δ)/a. We can

write β = (1 + δeτi)/a = (1 + δeτi)/(1 + δeθi) for some τ ∈ [0, 2π). We have

β − 1

β + 1
= δ

eτi − eθi

2 + δ(eτi + eθi)
. (3.9)

The norm of the right hand size of (3.9) is bounded by 2δ/
√

3 when δ ∈ (0, 1/2]. This can

be shown using Mathematica (see Section 3.3.3 for the code). We highlight that the fact that

δ ∈ (0, 1/2] is needed for this bound as the norm of the right hand size of (3.9) is unbounded

when δ gets close to 1. We conclude that β is in R(2δ/
√

3) as we wanted.

Now we consider the case when a = 1 + reiθ for some r ∈ (0, δ). Let f(z) = 1/z and

Ω = f(B(1, δ)). We claim that the set f(B(1, δ)) is convex. Let us finish the proof assuming

this claim. The map f maps the border of B(1, δ) to the border of f(B(1, δ)). Thus, we can

write 1/a = λf(a1) + (1− λ)f(a2) for some λ ∈ (0, 1) and a1 and a2 in the circle of centre 1 and

radius δ. We obtain,
1

a
B (1, δ) = λ

1

a1
B (1, δ) + (1− λ)

1

a2
B (1, δ) ,

which is contained in R(2δ/
√

3) due to the convexity of R(2δ/
√

3) (Proposition 3.16, R(2δ/
√

3)

is a closed disk) and the fact that B(1, δ)/a1 and B(1, δ)/a2 are contained in R(2δ/
√

3) as we

argued at the beginning of this proof.

Page 106 of 212

Chapter 3. Approximating the complex-valued Ising model on bounded degree graphs

Finally we prove that f(B(1, δ)) is a convex set. The map f(z) = 1/z is a Mobius map, so

it sends lines and circles to lines and circles, see Section 3.2.4 on rational maps. The points

f(1− δ), f(1 + δ), f(1 + iδ) are not aligned so f sends the circle of center 1 and radius δ to a

circle C determined by the points 1/(1− δ), 1/(1 + δ) and 1/(1 + iδ). Note that f(B(1, δ)) ⊆ C
as 0 ̸∈ B(1, δ). Moreover, f(1) = 1 is in the disk determined by the circle C that contains

1/(1− δ), 1/(1 + δ) and 1/(1 + iδ), so f(B(1, δ)) is precisely the smallest closed disk that contains

C and, in particular, convex.

As a consequence of Lemma 3.22, for δ∆ is as in (3.8), whenever δ∆ ≤ 1/2, the non-zero

regions of the partition function of the Ising model given by Corollaries 3.20 and 3.21 are contained

in R((2/
√

3)δ∆). Recall that the zero-free region given in Theorem 1.5 is R(ε∆), where ε∆ =

tan(π/(4∆− 4)). By the definition of R(δ) (see Definition 3.15), we have R(2δ∆/
√

3) ⊆ R(ε∆)

if and only if 2δ∆/
√

3 ≤ ε∆. In the remaining of this section we compare 2δ/
√

3δ∆ and ε∆.

Figure 3.2 shows that ε∆ is significantly larger than 2δ/
√

3δ∆ and that δ∆(∆− 1) < 1. Thus,

δ∆ > 1/2 when ∆ ≥ 3 and we can apply Lemma 3.22 to conclude that Theorem 1.5 improves

the results of Barvinok, Mann and Bremner (Corollaries 3.20 and 3.21) considerably, particularly

for the case ∆ = 3. See also Figure 1.1. The limit of ε∆(∆− 1) is π/4 = 0.785..., whereas we

have numerically checked that 2δ/
√

3δ∆(∆− 1) tends to 0.64789.... Thus, our result is stronger

for all ∆, and in the limit as ∆→∞.

4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

∆

ε∆(∆− 1)

2δ∆(∆− 1)/
√

3

δ∆(∆− 1)

Figure 3.2: Plot of the quantities ε∆(∆− 1), and δ∆(2/
√

3)(∆− 1).

We recall here for completeness the approximability of ZIsing(G;β) when β is a positive

real, see Section 1.2 of the introduction for a in-depth overview. The partition function of the

anti-ferromagnetic Ising model (corresponding to the case 0 < β < 1) has an FPTAS when β is

in the uniqueness region of the infinite ∆-regular tree [107]. This uniqueness region turns out to

be the interval ((∆− 2)/∆,∆/(∆− 2)). When β > 1 (corresponding to the ferromagnetic Ising

model) the partition function has an FPRAS on arbitrary graphs (with no restrictions on the

degree) by the work of Jerrum and Sinclair [76]. However, in the case of the anti-ferromagnetic

Ising model (β ∈ (0, 1)) this uniqueness/non-uniqueness phase transition is also a computational

Page 107 of 212

Chapter 3. Approximating the complex-valued Ising model on bounded degree graphs

transition for the complexity of approximating the partition function of the Ising model: unless

RP = NP, for all ∆ ≥ 3, there is no FPRAS for approximating the partition function on graphs

of maximum degree ∆ when β ∈ (0, (∆ − 2)/∆) [52]. Interestingly, the uniqueness interval

((∆− 2)/∆,∆/(∆− 2)) is contained in a complex zero-free region of the partition function of

the Ising model.

Theorem 3.23 ([86, Theorem 1.2]). Let ∆ be an integer with ∆ ≥ 3. For any β ∈ ((∆ −
2)/∆,∆/(∆ − 2)), there exists a δ > 0 such that for all β′ ∈ C with |β′ − β| < δ, we have

ZIsing(G;β′) ̸= 0 for any graph G with maximum degree at most ∆.

The argument given in the proof [86, Theorem 1.2] uses continuity to prove the existence

of δ > 0 as in the statement. Hence, the zero-free region is not given explicitly. We note that

Theorem 3.23 cannot be extended to include more edge interactions β ∈ (0, (∆− 2)/∆) unless

RP = NP as, by the work of Patel and Regts [101], this would imply easiness of approximating

ZIsing(G;β) on graphs with maximum degree ∆.

A recent paper of Barvinok and Barvinok gives another region where ZIsing(G;β) is non-

zero [9]. This result actually applies to the multivariate Ising model with a field but it can be

stated for our particular case as follows.

Theorem 3.24 ([9, Theorem 1.1]). Let ∆ be a positive integer with ∆ ≥ 3. Let a ∈ C and let

β = e2a. Suppose that for some 0 < δ < 1 we have |Re(a)| < (1− δ)/∆ and |Im(a)| ≤ δ2/(10∆).

Then ZIsing(G;β) ̸= 0 for any graph G with maximum degree at most ∆.

Generally Theorems 1.5 and 3.24 are incomparable for ∆ large enough, both of them cover

edge interactions that escape from the other result. However, for ∆ = 3 Barvinok’s region

is contained in the region R(tan(π/(4∆ − 4))) covered by Theorem 1.5. This is depicted in

Figure 1.1, where all the regions introduced in this section have been plotted for ∆ = 3.

3.3.3 Mathematica code for the proof of Lemma 3.22

The following Mathematica code shows that, for any δ ∈ (0, 1/2] and τ, θ ∈ [0, 2π), we have∣∣∣∣ eτi − eθi

2 + δ(eτi + eθi)

∣∣∣∣ ≤ 2√
3
, (3.10)

which was promised in the proof of Lemma 3.22. The output of the code is False. The code uses

the (rigorous) Resolve function of Mathematica. Here the variables cos1 and sin1 take all pair

of real values (cos1, sin1) such that cos12 + sin12 = 1. In the code, the variables cos1 and

sin1 are parametrised by a number t1 ∈ [−1, 1] and a sign s1 ∈ {1,−1}. The variables cos2 and

sin2 are defined analogously for a new set of parameters t2 ∈ [−1, 1] and s2 ∈ {1,−1}. Thus,

the variable Z represents all possible complex numbers of the form (eτi − eθi)/(2 + δ(eτi + eθi))

for τ, θ ∈ [0, 2π), and X and Y correspond to the real and imaginary parts of Z. Finally, the

variable delta of our code corresponds with δ ∈ (0, 1/2]. The method resolve shows that there

is no set of parameters t1, t2, s1, s2, delta such that X2 + Y2 > 4/3, thus, proving (3.10).

Page 108 of 212

Chapter 3. Approximating the complex-valued Ising model on bounded degree graphs

cos1 = 2 t1/(1 + t1^2);

sin1 = s1 (1 - t1^2)/(1 + t1^2);

cos2 = 2 t2/(1 + t2^2);

sin2 = s2 (1 - t2^2)/(1 + t2^2);

Z = ComplexExpand[((cos1 + I sin1) - (cos2 + I sin2))/(2 +

delta (cos1 + cos2 + I (sin1 + sin2)))];

X = Simplify[(Z + ComplexExpand[Conjugate[Z]])/2];

Y = Simplify[(Z - ComplexExpand[Conjugate[Z]])/(2 I)];

Resolve[Exists[{t1, t2, s1, s2, delta},

X^2 + Y^2 > 4/3 && -1 <= t1 <= 1 && -1 <= t2 <= 1 &&

0 < delta <= 1/2 && (s1 == 1 || s1 == -1) && (s2 == 1 || s2 == -1)]]

3.4 Hardness results: proof of Theorem 1.7

In this section we prove Theorem 1.7. Our hardness proof uses the reduction developed in

Chapter 2, based on the binary search technique of Goldberg and Jerrum [59]. Goldberg and

Jerrum developed this reduction to obtain #P-hardness results for determining the sign of the

Tutte polynomial, recall that the Tutte polynomial includes the partition function of the Ising

model as a particular case with the change of variables q = 2 and γ = β − 1. This reduction has

been further refined in [55] to obtain #P-hardness results for the problem of approximating the

norm of the Tutte polynomial. Further refinements have been obtained in Chapter 2, where

we give a reduction from exact evaluation of the Tutte polynomial to approximation of this

polynomial with complex edge interactions. This later refinement is particularly useful when

obtaining hardness results for restricted families of graphs for which exact evaluation of the

Tutte polynomial remains hard. Recall that in Chapter 2 we exploited this to prove hardness of

approximation for planar graphs whereas here we exploit this reduction to obtain hardness of

approximation for bounded-degree graphs for the partition function of the Ising model.

In order to apply the reduction given in Chapter 2 there are a few technical results that we

have to develop. The reduction is based on the binary search / interval shrinking technique of

Goldberg and Jerrum [59] and this requires us to be able to implement approximations of any

real edge interaction efficiently. We formalised this property in Definition 3.1 (recall that we

denote by A the set of real algebraic numbers and we denote by CA the set of complex algebraic

numbers).

Our work shows that we can implement the complex plane in polynomial time for most

pairs (∆, β). These pairs (∆, β) are those where β ̸∈ R and |(β − 1)/(β + 1)| > 1/
√

∆− 1, see

Lemma 3.2. If we could extend Lemma 3.2 to other pairs (∆, β), then we could automatically

extend Theorem 1.7 to these pairs. In other words, the limiting factor in the proof of Theorem 1.7

is being able to (∆, β) implement the real line. In fact, most of our work is devoted to this

task. The proof of Lemma 3.2 heavily uses the results of [15] as an input. In [15], the authors

Page 109 of 212

Chapter 3. Approximating the complex-valued Ising model on bounded degree graphs

(∆, λ) implement the complex plane in polynomial time for the independent set polynomial for

most complex activities λ3. Their arguments apply results of complex dynamics in conjunction

with the tree recurrence for the independent set polynomial. It turns out that the arguments

presented in [15] can be generalised so that they can be applied to other spin systems, and we do

so in Section 3.6. We refer to [15, Section 2] or our Section 3.6 for a description of this complex

dynamics approach.

This section is organised as follows First, in Section 3.4.1 we introduce the framework needed

to implement the real line in polynomial-time (using Section 3.6 as an input). We remark

that Section 3.6 is independent of the proofs presented here and can be read on its own. In

Section 3.4.2 we use this framework to prove Lemma 3.2. Then in Section 3.4.3 we use Lemma 3.2

in conjunction with the reductions of Chapter 2 to prove our hardness results.

3.4.1 Ising and Mobius programs

In this section we introduce the framework that we use to implement the real line in polynomial

time for the Ising model. Our proofs are based on the techniques developed in [15] for the

hardcore model. The idea behind the implementation results of [15] is the following one. First, we

have to come up with a recursively-constructed gadget that implements a weight f(z1, z2, . . . , zd)

assuming that we can implement z1, . . . , zd. Then we apply results of complex dynamics to the

function f in order to understand which points we can implement by iterating f . As we will

see, it is important that the function f is of the form g(z1z2 · · · zd), where g is a Mobius map.

In [15] the function f naturally arises from the tree-recurrence for vertex implementations in the

hardcore model. Unfortunately vertex-style implementations are useless in the Ising model; due

to the perfect symmetry nothing interesting can be implemented through that route. Hence, we

need to devise another way to obtain this type of recurrence in the Ising model. This is done in

Proposition 3.26 for the Mobius map gβ, which is introduced in Definition 3.25.

Definition 3.25. Let ∆ ≥ 3 and β ∈ C, and set d := ∆− 1. Let hβ(x) = (βx + 1)/(β + x) and

let gβ(x) = hβ(hβ(x)). An Ising-program for β is a sequence a0, a1, . . ., starting with a0 = β and

satisfying

ak = gβ(aik,1 · · · aik,dk) for k ≥ 1,

where dk ∈ [d] and ik,1, . . . , ik,dk ∈ {0, . . . , k − 1}. We say that the Ising program a0, a1, . . .

generates x ∈ C if there exists an integer k ≥ 0 such that ak = x.

We use these definitions for hβ and gβ several times in the rest of Section 3.4. We work

with Ising-programs from a computational point of view. We represent an element ak of an

Ising-program by the tuples (ij,1, . . . , ij,dj) for j ∈ {2, . . . , k}, so computing ak means computing

its representation as a sequence of tuples. Proposition 3.26 gives a gadget that implements the

edge-interactions generated by an Ising-program.

3Here λ is a vertex activity of the independent set polynomial, and a graph G with terminal v (∆, λ)-implements

λ′ if deg(v) = 1 and λ′ = R(G, v;λ)

Page 110 of 212

Chapter 3. Approximating the complex-valued Ising model on bounded degree graphs

Proposition 3.26. Let ∆ ≥ 3 and β ∈ C. Suppose that a0, a1, . . . is an Ising-program for

β. Then, for every k ≥ 0, we can compute from the representation of ak a graph Hk with

maximum degree at most ∆ that (∆, β)-implements the edge interaction ak. This computation

takes poly(∆, k) steps.

Proof. Set d := ∆− 1. We give a recursive algorithm for the task of the statement. For k = 0,

our algorithm outputs the graph with two vertices and one edge joining them. This graph

implements the edge interaction a0 = β. For k > 0, first our algorithm computes recursively

graphs H0, . . . ,Hk−1 such that Hj (∆, β)-implements aj for every j ∈ {0, . . . , k − 1}. Since

a0, a1, . . . is an Ising-program, we have ak = gβ(aik,1 · · · aik,dk) for dk ∈ [d] and some indexes

ik,1, . . . , ik,dk ∈ {0, . . . , k − 1}. We have access to these indexes since we have access to the

representation of ak. Our algorithm constructs Hk as the series composition of the following

graphs: H0, the parallel composition of the graphs Hik,1 , . . . ,Hik,dk
, and H0. The graph Hk

implements the same edge interaction as that implemented by the graph shown in Figure 3.3.

s ... t
β β

aik,1

aik,dk

Figure 3.3: The recursive construction for Hk.

By the properties of series and parallel compositions, see (3.4), the graph Hk implements

the edge interaction hβ(hβ(aik,1 · · · aik,dk)) = ak. Note that constructing Hk from H0, . . . ,Hk−1

takes poly(∆, k) steps, so in total our algorithm has performed at most k times that number of

steps.

Note that gβ is the composition of two Mobius maps and, thus, is a Mobius map. Hence,

Ising-programs can be viewed as a particular case of Mobius-programs (see Definition 3.27).

Definition 3.27. Let d ≥ 2 be an integer, g be a Mobius map and a0 ∈ C. A Mobius-program

for g and d starting at a0 is a sequence of complex numbers a0, a1, . . . of the form

ak = g(aik,1 · · · aik,dk) for k ≥ 1,

where dk ∈ [d] and ik,1, . . . , ik,dk ∈ {0, . . . , k − 1}. We say that the Mobius-program a0, a1, . . .

generates x ∈ C if there exists a non-negative integer k such that ak = x. We usually omit d

when its value is clear from the context.

In [15] the authors studied the points that can be generated by those Mobius-programs

starting at a0 = λ for

g(x) =
1

1 + λx
,

Page 111 of 212

Chapter 3. Approximating the complex-valued Ising model on bounded degree graphs

where λ is an activity for the independent set polynomial. They called this program a hardcore-

program. The study of hardcore-programs is at the core of the hardness results for the independent

set polynomial derived in [15]. It turns out that their results on hardcore-programs can be

generalised to our setting of Mobius-programs. In short, their techniques imply that under some

hypothesis we can efficiently generate approximations of any complex number with Mobius-

programs algorithmically. First, let us introduce some notation that we use to generalise their

results.

Definition 3.28. Let d ≥ 2 be an integer and let g be a Mobius map. Let a0 ∈ C. We say that

γ ∈ C \ R is program-approximable for g, d and a0 if for each ε > 0, there is a Mobius-program

for g and d starting at a0 that generates a number x ∈ C \ R with 0 < |γ − x| ≤ ε.

Definition 3.29. Let d ≥ 2 be an integer and let g be a Mobius map with coefficients in CA. Let

a0 ∈ CA. We say that γ ∈ C is densely program-approximable in polynomial time for g, d and

a0 if there is rγ ∈ A>0 such that for each positive integer k there is an algorithm whose inputs

are a rational ε > 0 and λ′ ∈ B(γ, rγ) ∩ CA that computes, in polynomial time in size(ε) and

size(λ′), k distinct complex numbers x1, x2, . . . , xk generated by Mobius-programs for g starting

at a0 with |λ′ − xj | ≤ ε for all j ∈ [k].

In both definitions, we usually omit d when its value is clear from the context.

In [15] the authors consider a fixed point of f(x) := g(xd) that is program-approximable

for their choice of g and a0 and show that this fixed point is densely program-approximable

in polynomial time for g and a0. Then they use this property in conjunction with results of

complex dynamics to generate approximations of any complex number when the fixed point

under consideration is repelling. This idea is made precise in Lemmas 3.30 and 3.31. We include

our proofs of Lemmas 3.30 and 3.31 in Section 3.6, which require significant extra work as the

versions of these results for the hardcore model given in [15] exploit the properties of the Mobius

function 1/(1 + λx) and, thus, cannot be directly generalised.

Lemma 3.30 ([15, Proposition 2.6 for Mobius-programs]). Let d be an integer with d ≥ 2 and

let g be a Mobius map with coefficients in CA. Let f(x) := g(xd) and let ω be a fixed point of f .

Let us assume that the following assumptions hold.

1. ω is program-approximable for g, d and a0 ∈ C;

2. ω ̸= 0, g′(ωd) ̸∈ {0,∞} and g′′(ωd) ̸=∞;

3. Let z := f ′(ω)/d = g′(ωd)ωd−1. We have 0 < |z| < 1 and z ̸∈ R.

Then ω is densely program-approximable in polynomial time for g, d and a0.

Lemma 3.31 ([15, Proposition 2.2 for Mobius-programs]). Let d be an integer with d ≥ 2 and

let g be a Mobius map with coefficients in CA such that g(∞) ∈ C. Let ω ∈ C be a repelling

fixed point of f(z) := g(zd) that is densely program-approximable in polynomial time for g and

Page 112 of 212

Chapter 3. Approximating the complex-valued Ising model on bounded degree graphs

a0 ∈ CA. Let Ef be the exceptional set of the rational map f . If 0,∞ ̸∈ Ef , then the following

holds.

There is a polynomial-time algorithm such that, on input λ ∈ CA and rational ε > 0, computes

an element ak of a Mobius-program for g starting at a0 with |λ− ak| ≤ ε.

In order to apply Lemmas 3.30 and 3.31, first one has to find a fixed point ω with the

properties described in Lemma 3.30. When applying this result to the Ising model, we will set

ω = 1. Then one has to find the region of activities / edge interactions where the fixed point is

repelling. All this work is carried out in Section 3.4.2.

3.4.2 Proof of Lemma 3.2

In this section we use the framework introduced in Section 3.4.1 to prove Lemma 3.2. This

proof strongly uses the properties of the map hβ, which naturally arises in the context of the

Ising model. The proof is divided into several technical lemmas. First, we show that ω = 1 is a

program-approximable fixed point for the Ising model (Lemma 3.33). Then we prove Lemma 3.2

when 1/
√

∆− 1 < |β − 1|/|β + 1| < 1. Finally, we address the cases |β − 1|/|β + 1| = 1 and

|β − 1|/|β + 1| > 1 separately, as they do not directly follow from the results of Section 3.4.1.

We will use the following remark.

Remark 3.32. Let β, x ∈ C \ {1,−1}. Then it is straightforward to check that

hβ(x)− 1

hβ(x) + 1
=

(β − 1)(x− 1)

(β + 1)(x + 1)
.

This equation was observed in (3.1) and plays a key role in the proof of Theorem 1.5. By

induction we conclude that, for any positive integer n,

hnβ(x)− 1

hnβ(x) + 1
=

(
β − 1

β + 1

)n(x− 1

x + 1

)
.

By rearranging this equation, we obtain, for any positive integer n,

hnβ(x) = −1− 2(
β−1
β+1

)n (
x−1
x+1

)
− 1

= 1 +
2(

β+1
β−1

)n (
x+1
x−1

)
− 1

.

Therefore, we have

gnβ (x) = −1− 2(
β−1
β+1

)2n (
x−1
x+1

)
− 1

= 1 +
2(

β+1
β−1

)2n (
x+1
x−1

)
− 1

.

Lemma 3.33. Let β ∈ C with β ̸∈ {i,−i} ∪ R. Then there is an Ising-program a0, a1, . . . such

that the following holds. For every ε > 0, there is a positive integer k such that 0 < |1− ak| ≤ ε

and ak ̸∈ R.

Page 113 of 212

Chapter 3. Approximating the complex-valued Ising model on bounded degree graphs

Proof. We note (x + 1)/(x− 1) = 1 + 2/(x− 1) ∈ R if and only if 2/(x− 1) ∈ R or, equivalently,

x ∈ R. Thus, we have (β + 1)/(β − 1) ̸∈ R. These facts are used repeatedly in this proof. There

are three cases:

Case 1: 0 < |β − 1|/|β + 1| < 1. First, let us describe the Ising-program. We define a0 = β

and aj = gβ(aj−1) for every j with j ≥ 1. Note that this is an Ising-program. Since aj = gjβ(β)

for j ≥ 1, by Remark 3.32 we obtain

aj − 1 =
2(

β+1
β−1

)2j+1
− 1

, (3.11)

By hypothesis we have |β + 1|/|β − 1| > 1, so the right hand side of (3.11) converges to 0.

Moreover, since (β + 1)/(β − 1) ̸∈ R, there are infinitely many positive integers j such that

the right hand side of (3.11) is not real. Therefore, we can find a positive integer k with

0 < |1− ak| ≤ ε and ak ̸∈ R.

Case 2: |β− 1|/|β + 1| > 1. First, we give an Ising-program b0, b1, . . . with the property that

bj converges to −1. We define b0 = β and bj = gβ(bj−1) for every j with j ≥ 1. By Remark 3.32

we have

bj + 1 = − 2(
β−1
β+1

)2j+1
− 1

,

so bj + 1 converges to 0 because |β − 1|/|β + 1| > 1. Once we have this Ising program, we define

a0 = β, a2j−1 = bj and a2j = gβ(a22j−1) = gβ(b2j) for all j ≥ 1. From Remark 3.32 we obtain

a2j − 1

a2j + 1
=

gβ(b2j)− 1

gβ(b2k) + 1
=

(
β − 1

β + 1

)2 b2j − 1

b2j + 1
. (3.12)

The right hand side of (3.12) converges to 0, so a2j converges to 1. Moreover, (3.12) in

combination with bj = gjβ(β) and Remark 3.32 gives (bj + 1)/(bj − 1) = ((β − 1)/(β + 1))−2j−1

and
a2j − 1

a2j + 1
=

(
β − 1

β + 1

)2 (bj + 1)(bj − 1)2

(bj − 1)(b2j + 1)
=

(
β − 1

β + 1

)−2j+1 (bj − 1)2

b2j + 1
.

Since (β − 1)(β + 1) is not real and (bj − 1)2/(b2j + 1) converges to 2, there are infinitely many

values of j such that (a2j − 1)/(a2j + 1) is not real. Equivalently, there are infinitely many values

of j such that a2j is not real. Hence, for every ε > 0, there is a positive integer k such that

0 < |1− a2k| ≤ ε and a2k ̸∈ R.

Case 3: |β − 1|/|β + 1| = 1. Then we note that β ∈ Ri (Proposition 3.16, Item 3). We can

write β = ci with c a real number with c ̸∈ {0, 1,−1}, where we used that β ̸∈ {0, i,−i}. We

consider γ = gβ(β2). We claim that γ ̸∈ {i,−i} ∪ R and |γ − 1|/|γ + 1| > 1. Assuming this, we

obtain our Ising-program as b0 = β, b1 = γ and bj = aj−1 for all j ≥ 2, where a0, a1, . . . is the

Ising-program of Case 2 with β = γ. We study γ to conclude the proof. We note that γ is the

edge interaction implemented by the series composition of three edges with edge interactions

β, β2 and β. Recall that series compositions are commutative when it comes to the weight they

implement (see Section 3.2.3) and that the weight implemented by the series composition of

Page 114 of 212

Chapter 3. Approximating the complex-valued Ising model on bounded degree graphs

two graphs implementing w1 and w2 is (w1w2 + 1)/(w1 + w2) = hw1(w2) = hw2(w1). Thus, we

have γ = hβ(hβ(β2)). This is also the edge interaction implemented by the series composition of

three edges with edge interactions β, β and β2, so we can also write γ = hβ2(hβ(β)). From the

expression γ = hβ(hβ(β2)) and Remark 3.32 we find that∣∣∣∣γ − 1

γ + 1

∣∣∣∣ =

∣∣∣∣gβ(β2)− 1

gβ(β2) + 1

∣∣∣∣ =

∣∣∣∣β − 1

β + 1

∣∣∣∣2 ∣∣∣∣β2 − 1

β2 + 1

∣∣∣∣ =

∣∣∣∣1 + c2

1− c2

∣∣∣∣ > 1,

where we used that c ̸= ±1. In particular, we have γ ̸= ±i. From the expression γ = hβ2(hβ(β))

we are going to show that γ ̸∈ R, which would complete the proof. We have

hβ2(x) = h−c2(x) =
−c2x + 1

−c2 + x
=

(
−c2x + 1

) (
x− c2

)
|x− c2|2

=
−c2|x|2 + x + c4x− c2

|x− c2|2
.

Since c4 ̸= 1 because c ̸= ±1, we find that hβ2(x) is non-real for any non-real x. In particular

this is the case for x = hβ(β) as hβ(β) = (1 + β2)/(2β) = −i(1 − c2)/(2c) ̸∈ R. We conclude

that γ = hβ2(hβ(β)) is not real as we wanted.

Using the notation of Section 3.6 (see Definition 3.28), the statement of Lemma 3.33 implies

“1 is program-approximable for gβ and a0 = β for any β ∈ C \ (R ∪ {i,−i})”. This is one of the

three conditions that we have to check to apply Lemma 3.30 with ω = 1 in our current setting.

Lemma 3.34 shows that the two other conditions hold for some edge interactions β.

Lemma 3.34. Let d be an integer with d ≥ 2 and let β ∈ C \ (R ∪ {i,−i}). Let fβ(x) = gβ(xd),

where gβ is as in Definition 3.25. Let z = f ′
β(1)/d. If 0 < |β − 1|/|β + 1| < 1 and |β| ≠ 1, then

1. g′β(1) ̸∈ {0,∞}, g′′β(1) ̸=∞;

2. 0 < |z| < 1 and z ̸∈ R.

Proof. Let us determine z, g′β(1) and g′′β(1). We have h′β(x) = (β2 − 1)/(β + x)2 and h′′β(x) =

2(1 − β2)/(β + x)3. Hence, we obtain g′β(1) = h′β(hβ(1))h′β(1) = (β − 1)2/(β + 1)2. Since

0 < |β − 1|/|β + 1| < 1, we have 0 < |g′β(1)| < 1, so g′β(1) ̸∈ {0,∞}. Moreover, from

z = f ′(1)/d = g′β(1), we obtain 0 < |z| < 1. Note that (β − 1)2/(β + 1)2 ∈ R if and only if

(β − 1)/(β + 1) ∈ R∪Ri. Also note that (β − 1)/(β + 1) = 1− 2/(β + 1), so (β − 1)/(β + 1) ∈ R
if and only if β ∈ R. If (β − 1)/(β + 1) = ci for some c ∈ (−1, 1), then we obtain

β =
1 + ci

1− ci
=

1− c2

1 + c2
+

2c

1 + c2
i,

so |β|2 = 1. Since β ̸∈ R and |β| ≠ 1 by hypothesis, we find that z = g′β(1) = (β−1)2/(β+1)2 ̸∈ R
as we wanted. Finally, let us determine g′′β(1). We have g′′β(1) = −4(β − 1)2b/β + 1)4 ̸∈ {0,∞},
where we used that β ̸∈ {1,−1}. This finishes the proof.

Remark 3.35. The map fβ(z) = gβ(zd) does not have exceptional points. To see this, we apply

Lemma 3.14. First, let us determine the points of fβ with multiplier 0. We have

fβ(z) =
(β2 + 1)zd + 2β

β2 + 1 + 2βzd
and f ′

β(z) = dz(d−1) (β2 − 1)2

(1 + 2βzd + β2)2
,

Page 115 of 212

Chapter 3. Approximating the complex-valued Ising model on bounded degree graphs

so the only point with multiplier 0 is z = 0. However, 0 is not a fixed point of fβ because

fβ(0) = 2β/(1 + β2), so fβ does not have any exceptional points.

Now we combine all the results obtained so far in this section obtaining Corollaries 3.36

and 3.37.

Corollary 3.36. Let ∆ be an integer with ∆ ≥ 3 and let β ∈ CA \ R with |β| ≠ 1 and

0 < |β − 1|/|β + 1| < 1. There is a rational number r ∈ (0, 1) and a polynomial-time algorithm

such that, on input λ ∈ B(1, r) ∩ CA and rational ε > 0, computes a graph G that (∆, β)-

implements a complex number λ̂ with |λ− λ̂| ≤ ε.

Proof. Set d := ∆ − 1. Lemma 3.33 and Lemma 3.34 provide us with the three conditions

that the fixed point ω = 1 of fβ(x) = gβ(xd) has to satisfy to apply Lemma 3.30. We find

that 1 is densely program-approximable in polynomial time for gβ, d and a0 = β. In terms of

Ising-programs, this gives (Definition 3.29 with k = 1) that there is r > 0 and an algorithm, on

inputs a rational ε > 0 and λ ∈ B(1, r) ∩ CA, that computes, in polynomial time in size(ε) and

size(λ) a complex number λ̂ generated by an Ising-program with |λ− λ̂| ≤ ε. This can be then

translated to the result given in the statement by applying Proposition 3.26.

Corollary 3.37. Let ∆ be an integer with ∆ ≥ 3 and let β ∈ CA \ R with |β| ≠ 1 and

1/
√

∆− 1 < |β − 1|/|β + 1| < 1. Then the pair (∆, β) implements the complex plane in

polynomial time for the Ising model.

Proof. Set d := ∆ − 1. The proof starts the same way as the proof of Corollary 3.36. The

difference here is that once we show that 1 is densely program-approximable in polynomial

time for gβ, d and a0 = β, we use this property to apply Lemma 3.31. First, we have two

check the other two hypothesis of Lemma 3.31. The first hypothesis that 1 is a repelling fixed

point of fβ or, equivalently, |f ′
β(1)| > 1. This follows from 1/

√
∆− 1 < |β − 1|/|β + 1| since

f ′
β(1) = d(β− 1)2/(β + 1)2. The second hypothesis is that 0 and ∞ are not exceptional points of

the rational map fβ , which holds because fβ does not have exceptional points, see Remark 3.35.

We conclude by Lemma 3.31 that there is a polynomial-time algorithm such that, on input

λ ∈ CA and rational ε > 0, computes an element ak of an Ising-program with |λ − ak| ≤ ε.

The result now follows by applying the algorithm of Proposition 3.26 to translate the obtained

Ising-program to a graph that (∆, β)-implements ak.

Finally, we extend Corollaries 3.36 and 3.37 to the rest of the complex plane when possible.

Lemma 3.38. Let ∆ be an integer with ∆ ≥ 3 and let β ∈ CA \ R with β ̸∈ {i,−i}. There is a

rational number r ∈ (0, 1) and a polynomial-time algorithm such that, on input λ ∈ B(1, r) ∩ CA

and rational ε > 0, computes a graph G that (∆, β)-implements a complex number λ̂ with

|λ− λ̂| ≤ ε.

Proof. We recall that |β − 1|/|β + 1| < 1 if and only if Re(β) > 0, and |β − 1|/|β + 1| = 1 if

and only if Re(β) = 0, see Proposition 3.16, Item 3. We distinguish three cases based on this

observation:

Page 116 of 212

Chapter 3. Approximating the complex-valued Ising model on bounded degree graphs

Case 1: |β| ≠ 1 and 0 < |β − 1|/|β + 1| < 1. This case is exactly Corollary 3.36.

Case 2: |β| = 1 and 0 < |β − 1|/|β + 1| < 1. We have Re(β) > 0. We consider the edge

interaction β′ = hβ(β) that is implemented by a path of length two with weights β. We have

β′ = (β2 + 1)/(2β) = (β + β−1)/2 = Re(β) ∈ (0, 1), where we used that |β| = 1 and Re(β) > 0.

We now consider the Mobius map hβ′(x) = (β′x+1)/(β′ +x) = (β′x+1)/(β′ +x), where we used

that β′ is real. It is well known that this Mobius map fixes {x ∈ C : |x| = 1} (Proposition 3.10).

Moreover, hβ′(0) = 1/Re(β) ∈ (1,∞). Hence, the Mobius map hβ′ sends the open unit disk

D := B(0, 1) to Ĉ\D and it sends Ĉ\D to D. We conclude that gβ′(D) = D. Therefore, β ·β′ ∈ D
and γ := gβ′(β · β′) ∈ D. We can implement the edge interaction γ using the graph given in

Figure 3.4. We have

hβ′(x) =
β′2x + β′ + β′|x|2 + x

|β′ + x|2
,

so, since β′ ∈ (0, 1), the Mobius map h′β(x) sends points with positive real part to points with

positive real part, and non-real points to non-real points. Hence, the Mobius map gβ′(x) =

hβ′(hβ′(x)) also has these properties. We conclude that γ = gβ′(β ·β′) has positive real part and is

not real. Putting all this together, γ is a non-real number with |γ| < 1 and 0 < |γ−1|/|γ+1| < 1,

so γ is in the first case of this proof. We can translate the algorithm of the first case of this

proof for γ to an algorithm for β because we can (∆, β)-implement γ, see Section 3.2.3 for the

transitivity property of implementations.

s t

Figure 3.4: A graph that (3, β)-implements γ.

Case 3: |β − 1|/|β + 1| ≥ 1. We can use the Ising program of Lemma 3.33 to generate

ak ∈ C \ R with |1− ak| < 1/2. We can (∆, β)-implement ak with the help of Proposition 3.26.

Note that 0 < |ak − 1|/|ak + 1| < 1, so the edge interaction ak is in one of the first two cases

of the proof. Again from the transitivity property of implementations, we can translate the

algorithm of the first two cases for ak to an algorithm for β, concluding the proof.

Lemma 3.2. Let ∆ be an integer with ∆ ≥ 3 and let β ∈ CA \ R with β ̸∈ {i,−i} and

1/
√

∆− 1 < |β − 1|/|β + 1|. Then the pair (∆, β) implements the complex plane in polynomial

time for the Ising model.

Proof. Set d := ∆−1. Let r be the positive real number given in Lemma 3.38. Let fβ(x) = gβ(xd).

As argued in Corollary 3.37, 1 is a repelling fixed point of fβ so, by Lemma 3.12, 1 belongs to

the Julia set of f and, thus, by Theorem 3.13,
⋃∞

n=0 f
n
β (B(1, r)) = Ĉ \Efβ , where Efβ is the set

of exceptional points of fβ. In view of Remark 3.35, Efβ is empty. Let γ = 10(1 + i). There

is a positive integer N such that γ ∈ fN
β (B(1, r)). Thus, there is x∗ ∈ B(1, r) ∩ CA such that

Page 117 of 212

Chapter 3. Approximating the complex-valued Ising model on bounded degree graphs

fN (x∗) = γ. By the continuity of the rational function fN at x∗, there is δ ∈ (0, r) such that

|fN (x∗)− fN (x)| ≤ 0.01 for every x ∈ B(x∗, δ). The constants γ and 0.01 are not chosen to be

optimal but to make the notation and proof simpler for the reader. In view of Lemma 3.38 we

can compute (in constant time) a graph G that (∆, β)-implements a complex number x̂ with

|x∗ − x̂| ≤ δ. Let γ̂ = fN
β (x̂). Note that we can (∆, β) implement γ̂ using the construction

from Proposition 3.26 and the fact that we can (∆, β) implement x̂. By continuity, we have

|γ − γ̂| ≤ 0.01. Note that γ̂ is in CA. Moreover, we have Re(γ̂) > 0, so |γ̂ − 1|/|γ̂ + 1| < 1. From

|γ − γ̂| ≤ 0.01 and the triangle inequality we have∣∣∣∣ γ̂ − 1

γ̂ + 1

∣∣∣∣ =

∣∣∣∣(γ̂ − γ) + γ − 1

(γ̂ − γ) + γ + 1

∣∣∣∣ ≥ |γ − 1| − 0.01

|γ + 1|+ 0.01
> 1/

√
2.

Hence, the edge interaction γ̂ is in the region covered by Corollary 3.37, so the pair (∆, γ̂)

implements the complex plane in polynomial time for the Ising model. We conclude that the

pair (∆, β) implements the complex plane in polynomial time for the Ising model thanks to the

transitivity property of implementations.

The complex dynamic argument presented in the proof of Lemma 3.2 is one of the main ideas

behind the results of [15] and is applied twice in Section 3.6. The proof of Lemma 3.2 is simpler

than the ones presented in Section 3.6 because here we are only trying to approximate γ instead

of approximating any number in a neighbourhood of γ. This allows us to use the continuity of

fN at x∗ instead of having to use Lipschitz properties of fN and careful approximations of the

quantities involved.

Remark 3.39. Lemma 3.2 can be extended to other points with 1/
√

∆− 1 > |β − 1|/|β + 1|.
However, we have not found a systematic way to do this. Rather we are aware of points β with

1/
√

∆− 1 > |β − 1|/|β + 1| > 1/(∆− 1) that can be used to (∆, β)-implement edges interactions

that are covered by Lemma 3.2. For example, this is the case of those points β such that there is

a “nice” graph G with ZIsing(G;β) = 0. This is made precise in Section 3.5.

3.4.3 Reducing exact computation to approximate computation

In this section we use our implementation results to prove the hardness of approximating the

partition function of the Ising model on bounded degree graphs. A basic building block for

the reduction is the binary search (interval-shrinking) technique developed by Goldberg and

Jerrum in the context of the Tutte polynomial [59]. Since the partition function of the Ising

model is a special case of the Tutte polynomial, this building block is also applicable here. The

interval-stretching technique requires us to be able to implement the real line in polynomial

time, and this is the motivation behind the results of Section 3.4.2.

We use the version of the interval-shrinking technique that we have developed on Chapter 2,

as it is the first such reduction that applies in the context of non-real edge interactions. Moreover,

the reduction developed in Chapter 2 is particularly relevant for us because the starting point

for the hardness result is the problem of exactly evaluating the Tutte polynomial, and crucially

Page 118 of 212

Chapter 3. Approximating the complex-valued Ising model on bounded degree graphs

this problem remains #P-hard even in the q = 2 case (corresponding to the Ising model) and

even when the input is restricted to be a 3-regular graph [82] (which we require here). In order

to apply this reduction, we have to re-define the computational problems considered including

the parameter ∆ corresponding to the maximum degree of the input graph, thus here we briefly

re-introduce the reduction given in Section 3.4.2 under our new notation, which should also help

the reader to follow this section. Then we show how this reduction applies to bounded degree

graphs.

First, let us recall some definitions. We have ZIsing(G;β) = ZTutte(G; 2, β − 1), where ZTutte

is the Tutte polynomial as in (1.5), see, for instance, [109]. Let s and t be two distinct vertices

of G. In Section 3.4.2 we defined

Zst(G; q, γ) =
∑
A⊆E:

s and t in the same component

qk(A)γ|A|

Analogously, we defined Zs|t as the contribution to ZTutte(G; q, γ) from the configurations

A ⊆ E such that s and t are in different connected components in (V,A). That is, Zs|t(G; q, γ) =

ZTutte(G; q, γ)−Zst(G; q, γ). We now introduce the computational problems that we are interested

in, for any rational numbers q > 0, γ > 0, any integer ∆ ≥ 3 and any β ∈ CA.

Name: Ising(∆, β).

Instance: A graph G = (V,E) with maximum degree at most ∆.

Output: The number ZIsing(G;β) ∈ CA.

Name: RatioTutte(∆, q, γ).

Instance: A graph G = (V,E) with maximum degree at most ∆ and an edge (s, t) of G.

Output: The rational number Zs|t(G; q, γ)/Zst(G; q, γ).

In Chapter 2 we defined RatioTutte(∆, q, γ) more generally; there are no restrictions

on the maximum degree of the input graph and the vertices s and t are only required to be

in the same connected component of G. Moreover, q and γ could be any non-zero algebraic

numbers (possibly non-real or negative real), so we had to study carefully the possibility that

Zst(G; q, γ) = 0. Thus, our simplified version of RatioTutte(∆, q, γ) requires a slightly simpler

argument to conclude Lemmas 3.40 and 3.41.

Lemma 3.40 (Bounded degree version of Lemmas 2.41 and 2.42 for the Ising model). Let K be

a real number with K > 1. Let ∆ ≥ 3 be an integer and let β ∈ CA such that (∆, β) implements

the real line in polynomial time. Let y ∈ C with y > 1. Then we have the reductions

RatioTutte(∆, 2, y − 1) ≤T IsingNorm(∆, β,K),

RatioTutte(∆, 2, y − 1) ≤T IsingArg(∆, β, π/3).

Page 119 of 212

Chapter 3. Approximating the complex-valued Ising model on bounded degree graphs

Proof. The proof is the almost the same as that of Lemmas 2.41 and 2.42. Here we indicate

how we adapt the reduction of Lemmas 2.41 and 2.42 to graphs with maximum degree ∆.

First, let us translate our Ising notation to the notation used in the proofs of Chapter 2. In

the original proof we have two weights γ1 ∈ (−2,−1) and γ2 > 0 and access to an oracle

that approximates the norm or determines the sign of the multivariate Tutte polynomial on

weighted graphs with weights in {γ1, γ2}. Note that determining the sign reduces to additively

approximating the argument of this polynomial with error at most π/3, so we can use our oracle

IsingArg(∆, β, π/3) instead. The purpose of the weights γ1 and γ2 is implementing the real line

in polynomial time for the Tutte polynomial (using Corollary 2.9). Here the role of these weights

is performed by β. Hence, every time Corollary 2.9 is used in the proof of Lemmas 2.41 and 2.42

we use the fact that (∆, β) implements the real line in polynomial time instead. The reduction

of Lemmas 2.41 and 2.42 computes the ratios Zs|t(H; q, γ)/Zst(H; q, γ) for some positive number

γ that can be implemented using γ1 and γ2. Here we set γ = y − 1 instead. The only relevant

properties of γ in the proof of Lemmas 2.41 and 2.42 are γ > 0 and the fact that γ can be

implemented exactly.

There are two differences between this proof and the proof of Lemmas 2.41 and 2.42. Let H

and (s, t) be the inputs of RatioTutte(∆, 2, y − 1). The first difference in the proof is that

we restrict ourselves to computing ratios Zs|t(H; q, γ)/Zst(H; q, γ) where (s, t) is an edge of H.

This is so that all the graphs considered in the reduction have maximum degree at most ∆.

The original proof applies one of the oracles IsingNorm(∆, β,K) and IsingArg(∆, β, π/3) to

a copy of H with an extra edge joining s and t. This extra edge has a weight γ′ that is updated

repeatedly during the binary search. The weight γ′ is implemented using Corollary 2.9 or, in

our case, using the fact that (∆, β) implements the real line in polynomial time. Instead of

adding an extra edge between s and t, here we modify the edge (s, t) so that its weight is γ · γ′,
producing the same effect as adding an extra edge from s to t with weight γ′. This time we have

to implement γ · γ′ instead. Let H ′ be the graph obtained by copying H and substituting the

edge (s, t) with an appropriate graph that (∆, β)-implements γ · γ′. Then the graph H ′ also has

maximum degree at most ∆. Moreover, for ε = γ′ + 1 we have, see (2.24),

ZTutte(H
′; q, γ) = Zst(H; q, γ)(1 + γ′) + Zs|t(H; q, γ)

(
1 +

γ′

q

)
= Zs|t(H; q, γ)

(
1− 1

q

)
+ ε

(
Zst(H; q, γ) +

1

q
Zs|t(H; q, γ)

)
= f(ε;H, γ),

where f(ε;H, γ) is the linear function to which the binary search will be performed. The

purpose of the binary search is finding a zero of f(ε;H, γ), which allows us to compute the ratio

Zs|t(H; q, γ)/Zst(H; q, γ).

The second difference is that we cannot implement γ exactly. We can bypass this by using

a very close approximation γ̂ of γ instead. We use the fact that we can (∆, β)-implement

γ̂ with |γ − γ̂| ≤ δ in polynomial time in the size of δ. We perform the binary search on

Page 120 of 212

Chapter 3. Approximating the complex-valued Ising model on bounded degree graphs

f(ε;H, γ̂) instead. This allows us to compute the number Zs|t(H; q, γ̂)/Zst(H; q, γ̂). We can

choose δ with size(δ) ∈ poly(size(ε), size(H)) such that |Zs|t(H; q, γ̂) − Zs|t(H; q, γ)| ≤ ε and

|Zst(H; q, γ̂) − Zst(H; q, γ)| ≤ ε, see for instance Lemma 2.54. Therefore, the error that we

make by outputting Zs|t(H; q, γ̂)/Zst(H; q, γ̂) instead of Zs|t(H; q, γ)/Zst(H; q, γ) can be made

to be at most ε by choosing δ with size(δ) ∈ poly(size(ε), size(H)) thanks to the lower and

upper bounds on |Zs|t(H; q, ·)| and |Zst(H; q, ·)|, see Section 2.5.1 for these bounds. We conclude

that we can compute Zs|t(H; q, γ)/Zst(H; q, γ) exactly. This can be done using the algorithm

of Kannan, Lenstra and Lovász stated in Lemma 2.37, as we did for algebraic numbers in the

proof of Lemma 2.41, or a simpler version of Lemma 2.37 if we restrict this lemma to rational

numbers.

Lemma 3.41 (Particular case of Lemma 2.48). Let ∆ ≥ 3 be an integer and let β ∈ Q with

β > 0. Then we have the reduction

Ising(∆, β) ≤T RatioTutte(∆, 2, β − 1).

Proof. The reduction given in the proof of Lemma 2.48 applies with the change of variables

q = 2 and γ = β − 1. It is important to note that this reduction only invokes the oracle for

RatioTutte(∆, 2, β−1) with inputs (G, s, t) such that e = (s, t) is an edge of G. The reduction

reduces the computation of ZTutte(G; q, γ) to that of ZTutte(G \ e; q, γ), Zs|t(G; q, γ)/Zst(G; q, γ)

and Zs|t(G \ e; q, γ)/Zst(G \ e; q, γ), where G \ e is the graph G without the edge e. Hence, all

the calls to the oracle RatioTutte(∆, 2, β − 1) involve subgraphs of G, that have maximum

degree at most ∆. Finally, because q > 0 and γ > 0 in our setting, we do not have to consider

the cases when Zst(G; q, γ) = 0, simplifying the result.

Now we have the tools to obtain the desired reductions and the proof of Theorem 1.7.

Lemma 3.42 (Lemma 2.49 for the Ising model). Let K be a real number with K > 1. Let

∆ ≥ 3 be an integer and let β ∈ CA such that (∆, β)-implements the real line in polynomial time.

Let y ∈ C with y > 1. Then we have the reductions

Ising(∆, y) ≤T IsingNorm(∆, β,K),

Ising(∆, y) ≤T IsingArg(∆, β, π/3).

Proof. This result follows directly from combining Lemmas 3.40 and 3.41. The proof of

Lemma 2.49 takes a bit more work than this lemma because one has to be careful about

possible zeros of Zst(G; q, γ).

Theorem 1.7. Let ∆ be an integer with ∆ ≥ 3 and let β ∈ C be an algebraic number such that

β ̸∈ R∪{i,−i} and |β− 1|/|β + 1| > 1/
√

∆− 1. Then the problems IsingNorm(β,∆, 1.01) and

IsingArg(β,∆, π/3) are #P-hard.

Proof. Our hardness theorem now follows from combining Lemmas 3.2 and 3.42 in conjunction

with the fact that Ising(3, y) is #P-hard for any y > 1 [82].

Page 121 of 212

Chapter 3. Approximating the complex-valued Ising model on bounded degree graphs

Since 1/
√

∆− 1 converges to 0 as ∆ diverges, Theorem 1.7 gives a new proof of Theo-

rem 1.3 which says that IsingNorm(β,∞, 1.01) and IsingArg(β,∞, π/3) (where there are no

restrictions on the maximum degree of the input graph) are #P-hard for any algebraic number

β ∈ C \ (R ∪ {i,−i}).

3.5 Zeros of the partition function and hardness

In this section we give explicit evidence that zeros of the partition function imply hardness of

approximation for the Ising model when the edge interaction β is not in R ∪ {i,−i}. These are

the first results that explicitly link zeros to hardness of approximation that we are aware of.

Our main technical result Lemma is 3.3, which shows that implementing −1 implies hardness of

approximation of the partition function of the Ising model. We then use zeros of the partition

function to implement −1 and conclude hardness in Lemma 3.43 and Corollary 3.45. Our proofs

use the hardness and implementation results of Section 3.4. Finally, in Corollary 3.44, we give an

example of an edge interaction β in the region R(1/
√

2) and a graph G with maximum degree 3

such that ZIsing(G;β) = 0, showing that the hardness region given in Theorem 1.7 is not optimal.

Lemma 3.3. Let ∆ be an integer with ∆ ≥ 3. Let β ∈ CA\(R∪{i,−i}). Let us assume that (∆, β)

implements the edge interaction −1. Then IsingNorm(∆, β, 1.01) and IsingArg(∆, β, π/3) are

#P-hard.

Proof. There are two cases. The first case is when |β − 1|/|β + 1| > 1/
√

∆− 1. Then, since

β ̸∈ R ∪ {i,−i}, we know that the problems IsingNorm(∆, β, 1.01) and IsingArg(β,∆, π/3)

are #P-hard (Theorem 1.7). In the rest of the proof we assume that |β− 1|/|β + 1| ≤ 1/
√

∆− 1.

We are going to reduce the approximation problems at (∆, γ) to the approximation problems at

(∆, β) for some γ such that IsingNorm(∆, γ, 1.01) and IsingArg(∆, γ, π/3) are #P-hard. In

this reduction we will use the fact that we can (∆, β) implement the edge interaction −1. Let

α ∈ C be some edge interaction that we can (∆, β)-implement. We fine-tune α later in the proof.

We consider the weighted graph J given in Figure 3.5. By the properties of series and parallel

compositions, this graph implements the edge interaction γ := hβ(hβ(−α)).

s t
β β

−1

α

Figure 3.5: The graph J in the proof of Lemma 3.3.

From Remark 3.32 it follows that

γ − 1

γ + 1
=

(
β − 1

β + 1

)2 −α− 1

−α + 1
. (3.13)

The idea to complete this proof is (∆, β)-implementing α so that the complex number in

(3.13) has norm larger than 1 (hence larger than 1/
√

∆− 1 so Theorem 1.7 applies). By

Page 122 of 212

Chapter 3. Approximating the complex-valued Ising model on bounded degree graphs

Item 3 of Proposition 3.16, the norm is larger than 1 if and only if Re(γ) < 0, which is

what we are aiming for. We also want γ to be non-real. Note that γ is real if and only if

1− 2/(γ + 1) = (γ − 1)/(γ + 1) is real. Let r ∈ (0, 1) be the rational number in the statement of

Lemma 3.38. Let ε = |(β − 1)/(β + 1)|2r/2, so ε is an algebraic number with ε ∈ (0, 1/(∆− 1))

and ε ≤ r/4. Let ξ ∈ CA such that

ξ − 1

ξ + 1
=

r(β − 1)2

4(β + 1)2
i.

We have |ξ − 1|/|ξ + 1| = ε/2, so ξ ∈ R(ε/2). From Proposition 3.16, we obtain Re(ξ) ≥ 0 and

|ξ| ≤ 1 + ε/2

1− ε/2
≤ 1 + 1/4

1− 1/4
= 5/3,

where we used that 0 < ε ≤ 1/(∆− 1) ≤ 1/2. Thus, we have

|ξ − 1| = |ξ + 1|ε
2
≤ (5/3 + 1)

ε

2
=

4

3
ε ≤ 1

3
r.

Therefore, we can use Lemma 3.38 to (∆, β)-implement α ∈ CA with |ξ − α| < ε/8. We have

|α− 1| ≤ |α− ξ|+ |ξ − 1| < (1/8 + 4/3)ε < 2ε < 1.

Hence, Re(α) > 0 and we find that∣∣∣∣ξ − 1

ξ + 1
− α− 1

α + 1

∣∣∣∣ = 2

∣∣∣∣ ξ − α

(ξ + 1)(α + 1)

∣∣∣∣ < 2|ξ − α| < ε/4.

Let a = (α− 1)/(α + 1), b = (β − 1)2/(β + 1)2r/2 and z = (ξ − 1)/(ξ + 1) = ib/2. The situation

is plotted in Figure 3.6.

0

ε

b

z
a

Figure 3.6: The quantities a, b, z in the proof of Lemma 3.3. We have |b| = ε, z = ib/2 and |a− z| < ε/4.

Let xy = {λ(y − x) : λ ∈ R} for any x, y ∈ C. Note that 0z and 0b are perpendicular, so 0 is

the closest point of the line 0b to z. Since 0 ̸∈ B(z, ε/4), we conclude that 0b∩B(z, ε/4) = ∅. In

particular, a is not in the line 0b. Also note that |a| < ε by the triangle inequality. Putting all

this together with equation (3.13), we find that

γ − 1

γ + 1
= −2

r
ba−1 ̸∈ R and

∣∣∣∣γ − 1

γ + 1

∣∣∣∣ =
2

r

ε

|a|
> 1

Page 123 of 212

Chapter 3. Approximating the complex-valued Ising model on bounded degree graphs

as we wanted. We have shown how to (∆, β)-implement γ ∈ CA with Re(γ) < 0 and γ ̸∈ R. In

particular, we have |γ − 1|/|γ + 1| > 1/
√

∆− 1. As a consequence of Theorem 1.7, the problems

IsingNorm(∆, γ, 1.01) and IsingArg(∆, γ, π/3) are #P-hard. These problems reduce to

IsingNorm(∆, β, 1.01) and IsingArg(∆, β, π/3) because we can (∆, β)-implement γ, and the

result follows.

The rest of this section exploits Lemma 3.3 to obtain hardness for zeros of the partition

function. Our approach uses a zero to implement −1 and conclude hardness with the help of

Lemma 3.3.

Lemma 3.43. Let ∆ be an integer with ∆ ≥ 3. Let β ∈ CA \ (R ∪ {i,−i}). Suppose that there

is a graph with maximum degree at most ∆ having terminals s, t such that

1. the degree of s and t is at most ∆− 1;

2. ZIsing(G;β) = 0;

3. Zij
st(G;β) ̸= 0 for some i, j ∈ {0, 1}.

Then IsingNorm(∆, β, 1.01) and IsingArg(∆, β, π/3) are #P-hard.

Proof. By symmetry of the spins 0 and 1 in the definition of ZIsing, for any vertex v of G we

have Z0
v (G;β) = Z1

v (G;β). Let i, j ∈ {0, 1} as in the statement. We obtain 0 = ZIsing(G;β) =

2Zi
s(G;β) so

0 = Zi0
st (G;β) + Zi1

st (G;β). (3.14)

Since either Zi0
st (G;β) or Zi1

st (G;β) is non-zero by hypothesis, both quantities are non-zero. Again,

by symmetry of the spins 0 and 1, we have Z00
st (G;β) = Z11

st (G;β) and Z01
st (G;β) = Z10

st (G;β).

Thus, by dividing by Z01
st (G;β) in (3.14) we find that

−1 =
Z11
st (G;β)

Z01
st (G;β)

.

We have shown that the graph G β-implements −1. Consider the graph H that is a copy of G

with two extra vertices, s′ and t′, and two extra edges, (s, s′) and (t, t′). By the properties of

series compositions, see (3.4), the graph H β-implements hβ(hβ(−1)) = −1 for the terminals s′

and t′ (both of which have degree 1). Moreover, H has maximum degree at most ∆ because G

has maximum degree at most ∆ and the vertices s and t have at most ∆− 1 neighbours in G.

We conclude that H (∆, β)-implements −1, and hardness follows from Lemma 3.3.

Corollary 3.44. Let ∆ = 3. There is a β ∈ CA \ (R∪ {i,−i}) with |β − 1|/|β + 1| < 1/
√

∆− 1

such that IsingNorm(∆, β, 1.01) and IsingArg(∆, β, π/3) are #P-hard.

Proof. Let us consider the graph G given in Figure 3.7 with distinguished vertices s and t.

Page 124 of 212

Chapter 3. Approximating the complex-valued Ising model on bounded degree graphs

s t

Figure 3.7: A graph that G with maximum degree 3 such that ZIsing(G;x) has a zero β ∈ R(1/
√

2).

One can check that Z01
st (G;x) = (1 + x2 + 2x3)2 and Z11

st (G;x) = x2(2 + x + x3)2. We have

ZIsing(G;x) = 2(1 + 6x2 + 8x3 + 2x4 + 8x5 + 6x6 + x8). Using Mathematica we have determined

that ZIsing(G;x) has a zero at β ≈ 0.396608 + 0.917988i. Moreover, we have |Z01
st (G;β)| > 2, so

β and G satisfy the hypothesis of Lemma 3.43. We conclude that IsingNorm(∆, β, 1.01) and

IsingArg(∆, β, π/3) are #P-hard. Finally, we have |β−1|/|β+1| < 1/
√

2 since |β−1|/|β+1| ≈
0.6572981.

We point out that one can use the approach that Buys developed for the independent set

polynomial to find more zeroes inside the region |β − 1|/|β + 1| ≤ 1/
√

∆− 1 [25].

Let β ∈ C \ (R∪{i,−i}). Lemma 3.43 uses the existence of a graph G with maximum degree

at most ∆ and ZIsing(G;β) = 0 to demonstrate the hardness of IsingNorm(β,∆, 1.01) and

IsingArg(β,∆, π/3). However, Lemma 3.43 relies on the additional condition that Zij
st(G;β) ̸= 0

for some i, j ∈ {0, 1} and two terminals s and t with degree at most ∆ − 1. In the following

conjecture, we conjecture that these additional conditions are not necessary.

Conjecture 3.4. Let ∆ be an integer with ∆ ≥ 3 and let β ∈ CA with β ̸∈ R ∪ {i,−i}. If there

is a graph G with maximum degree at most ∆ such that ZIsing(G;β) = 0, then the problems

IsingNorm(β,∆, 1.01) and IsingArg(β,∆, π/3) are #P-hard.

We make some progress on this conjecture in Corollary 3.45 (by changing the degree constraint

from ∆ to ∆− 1), but the full result seems to be out of reach for our implementation techniques.

Corollary 3.45. Let ∆ be an integer with ∆ ≥ 3 and let β ∈ CA\(R∪{i,−i}). Suppose that there
is a graph G of maximum degree at most ∆−1 with ZIsing(G;β) = 0. Then IsingNorm(β,∆, 1.01)

and IsingArg(β,∆, π/3) are #P-hard.

Proof. Let F = {G′ : G′ has maximum degree at most ∆ − 1 and Z(G′, β) = 0}, which is not

empty by our hypothesis. We can choose H ∈ F with the minimum possible number of edges.

Let e = (s, t) be an edge of H. Let H \ e be the graph obtained by deleting the edge e from H.

We have

Z00
st (H;β) = βZ00

st (H \ e;β),

Z01
st (H;β) = Z01

st (H \ e;β).

Therefore, if Z00
st (H;β) = Z01

st (H;β) = 0, then ZIsing(H \ e;β) = 2Z0
s (H \ e;β) = 2(Z00

st (H;β) +

Z01
st (H;β)) = 0, which contradicts the minimality of H. We conclude that either Z00

st (H;β) ̸= 0 or

Z01
st (H;β) ̸= 0. Since s and t have degree at most ∆−1, the result follows from Lemma 3.43.

Page 125 of 212

Chapter 3. Approximating the complex-valued Ising model on bounded degree graphs

In [37], a parallel work to this chapter, a similar conjecture to Conjecture 3.4 has actually

been shown for the independent set polynomial. A key element of the proof of [37] is establishing

an analogous result to Lemma 3.3 for the independent set polynomial. In such a setting, a

version of Lemma 3.3 turns out to be enough to prove that zeroes imply hardness: one can use

an argument similar to the proof of Corollary 3.45, so a zero for the independent set polynomial

implies that there is a tree that also achieves a zero and that implements −1 as a ratio. In

the Ising case we are restricted by the fact that trees without pinnings do not implement any

meaningful edge interactions due to the symmetry of the model and, thus, we can not use this

trick to guarantee that there is a vertex in the graph H (see proof of Conjecture 3.4) such that

H has two vertices with degree less than ∆.

3.6 Mobius-programs: proofs of Lemmas 3.30 and 3.31

In this section we prove Lemmas 3.30 and 3.31. These lemmas generalise the results on

implementations for the independent set polynomial given in [15] to a more general setting so

that they can be applied to other spin systems, including the Ising model. In fact, in a work

published after we made public the results in this chapter, these results have been applied in the

context of the Tutte polynomial [14]. Some of the definitions required in this section have been

stated in Section 3.4.1, so we ask the reader to read Section 3.4.1 before this section. This section

is organised as follows. In Section 3.6.1 we show how to generate approximations of any point

around a program-approximable fixed point as a first step towards the proof of Lemma 3.30. In

Section 3.6.2 we prove Lemma 3.30. Finally, in Section 3.6.3 we prove Lemma 3.31.

3.6.1 From program-approximable to densely program-approximable

In this section we generalise the results in [15, Section 7.2] on hardcore-programs to Mobius-

programs. The main result of this section is Lemma 3.49, where we show that program-

approximable fixed points are densely program-approximable under some hypothesis (see Sec-

tion 3.4.1 for definitions). The main idea behind the results given in [15, Section 7] is that,

locally around ω, hardcore-programs behave as straight-line-programs, which are much easier to

study. This property is not specific to hardcore-programs, as illustrated in Lemma 3.47.

Definition 3.46. Let z ∈ C with z ̸= 0. A straight-line-program with operation

(a1, . . . , ad) 7→ z

d∑
j=1

aj (3.15)

is a sequence of assignments starting with a0 = 0, a1 = 1 and

ak = z
(
aik,1 + · · ·+ aik,d

)
, for k = 2, 3, . . . ,

where ik,1, . . . , ik,d ∈ {0, . . . , k − 1}. We say that the straight-line-program generates x ∈ C if

there exists integer k ≥ 0 such that ak = x.

Page 126 of 212

Chapter 3. Approximating the complex-valued Ising model on bounded degree graphs

Lemma 3.47 ([15, Lemma 7.9 for Mobius-programs]). Let d be an integer with d ≥ 2 and let g

be a Mobius map. Let ω ∈ C be a fixed point of f(z) = g(zd) with ω ≠ 0 and g′(ωd), g′′(ωd) ̸=∞.

Set z := g′(ωd)ωd−1. There exist reals C0 := C0(g, d, ω) > 1 and δ0 := δ0(g, d, ω) > 0 such that

for any a1, . . . , ad ∈ C with |aj | ≤ δ0 (for j ∈ [d]) we have

g ((ω + a1) · · · (ω + ad)) = ω + z

(∑d

j=1
aj

)
+ τ,

where τ ∈ C with |τ | ≤ C0 maxj∈[d] |aj |2.

Proof. The proof is analogous to that of [15, Lemma 7.9]. The only difference is the determination

of the constants C0 and δ0. Here these constants are obtained by a continuity argument whereas

in [15, Lemma 7.9] C0 and δ0 are determined explicitly. We include this proof to illustrate this

continuity argument. Let b1, . . . , bd ∈ C with |bj | ≤ 1 for every j ∈ [d]. For t ∈ R, we define

F (t) = g ((ω + tb1) · · · (ω + tbd)) .

Note that F (0) = g(ωd) = ω. To simplify our notation, for each j ∈ [d], let xj(t) = ω + tbj , and

set y(t) = x1(t) · · ·xd(t), so F (t) = g(y(t)). We have

F ′(t) = g′ (y (t))

d∑
j=1

bj

d∏
i=1, i ̸=j

xi(t).

In particular, we obtain

F ′(0) = g′
(
ωd
) d∑

j=1

bjω
d−1 = z

d∑
j=1

bj . (3.16)

We have

F ′′(t) = g′′ (y (t))

(∑d

j=1
bj
∏d

i=1
i ̸=j

xi(t)

)2

+ 2g′ (y (t))
∑

1≤j<i≤d

bjbi

d∏
l=1
l ̸=i,j

xl(t). (3.17)

Since g′(ωd), g′′(ωd) ̸=∞ (by assumption) and y(0) = ωd, from the continuity of the maps y, g′

and g′′ we find that there is δ0 := δ0(g, d, ω) ∈ (0, 1) such that g′(y(t)) and g′′(y(t)) are bounded

when |t| ≤ δ0. Note that |xj(t)| ≤ |ω|+ 1 when |t| ≤ δ0. Therefore, (3.17) can be upper bounded

when |t| ≤ δ0 by a constant C0 := C0(g, d, ω) > 1. By Taylor’s formula we conclude that, for

every t ∈ R with |t| ≤ δ0, ∣∣F (t)− F (0)− F ′(t)t
∣∣ ≤ C0t

2. (3.18)

Finally, let a1, . . . , ad with |aj | ≤ δ0. We choose t = maxj∈[d] |aj |. The result for t = 0 is

equivalent to F (0) = ω. Hence, we can assume that t > 0 and define bj = aj/t for j ∈ [d]. The

result then follows from F (0) = ω, (3.16) and (3.18).

Remark 3.48. If the Mobius map g of Lemma 3.47 is given explicitly, then the constants

δ0(g, d, ω) and C0(g, d, ω) can be determined explicitly as it is done for g(x) = 1/(1 + λx) in the

proof of [15, Lemma 7.9].

Page 127 of 212

Chapter 3. Approximating the complex-valued Ising model on bounded degree graphs

As noted in [15, Section 7], straight-line-programs can generate evaluations of any polynomial

p(z) with positive coefficients, up to a factor zn. This property of straight-line-programs is used

in [15, Lemma 2.10] in conjunction with a density result on evaluations of polynomials to come

up with hardcore-programs that generate approximations of any number near a fixed point of

f(x) = 1/(1 + λxd). Here we extend this result to Mobius-programs in Lemma 3.49. Apart

from differences in notation, the proof is the same as that of [15, Lemma 2.10]; hence, we omit

this proof and only highlight the notation differences. We also note that the difference between

Lemmas 3.49 and 3.30 is that the latter gives an algorithm whereas the former only proves

existence of these Mobius-programs.

Lemma 3.49 ([15, Lemma 2.10] for Mobius-programs). Let d be an integer with d ≥ 2 and let

g be a Mobius map. Let f(x) := g(xd) and let ω be a fixed point of f . Let us assume that the

following assumptions hold.

1. ω is program-approximable for g and a0 ∈ C;

2. ω ̸= 0 and g′(ωd), g′′(ωd) ̸=∞;

3. Let z := f ′(ω)/d = g′(ωd)ωd−1. We have 0 < |z| < 1 and z ̸∈ R.

Then, for any ε, κ > 0 there exists a radius ρ ∈ (0, κ) such that the following holds. For every

x ∈ B(ω, ρ) there is a Mobius-program for g starting at a0 that generates ak with |x− ak| ≤ ερ.

Proof. The proof is the same one as that of [15, Lemma 2.10] apart from a few differences in

notation. Here we point out these differences in notation so that the reader can translate the

proof to our setting if needed. First of all, in our version we have an arbitrary Mobius map g

whereas [15, Lemma 2.10] sets g(z) = 1/(1 +λz) for some activity λ ∈ QC \R of the independent

set polynomial. The particular choice of g does not affect the proof, so every instance of

“hardcore-program” in [15, Lemma 2.10] can be effectively replaced by “Mobius-program for g

and a0”, and every time that the proof invokes [15, Lemma 7.9] we can use the more general

Lemma 3.47 instead.

The second main difference is that our statement adds a layer of generality in the choice of

the fixed point ω ∈ C. In [15, Lemma 2.10] ω is chosen as the fixed point of f(z) = 1/(1 + λzd)

with the smallest norm. It turns out that such a fixed point satisfies the hypothesis of our

statement. First, ω is program-approximable for g(z) = 1/(1 + λz) and a0 = λ (see [15, Lemma

2.7]). Secondly, we have ω and g′(ωd), g′′(ωd) ̸= ∞. Thirdly, 0 < |z| < 1 and z ̸∈ R, see [15,

Lemma 7.4] (we should point out that in [15] the authors set z = ω − 1, which agrees with

z = g′(ωd)ωd−1 for their choice of g). These are all the properties of ω needed to carry out the

proof of [15, Lemma 2.10].

Finally, it is useful to note that if a hardcore-program generates a number ak, then there is a

tree of maximum degree at most d + 1 that implements λak. This explains why in the proof

and statement of [15, Lemma 2.10] there is an extra factor λ when activities of the independent

set polynomial are considered. Here we can omit this factor because we are not translating

programs to gadgets.

Page 128 of 212

Chapter 3. Approximating the complex-valued Ising model on bounded degree graphs

3.6.2 Proof of Lemma 3.30

In this section we translate the results given in [15, Section 7.3] to Mobius-programs. The main

result of this section is Lemma 3.30, which gives an algorithmic version of Lemma 3.49. First,

we need some technical results, Lemmas 3.50 and 3.51, which extend [15, Lemmas 7.10 and 7.11]

to our more general setting.

Lemma 3.50 ([15, Lemma 7.10 for Mobius-programs]). Let d be an integer with d ≥ 2 and let

g be a Mobius map. Let ω ∈ C be a fixed point of f(z) = g(zd) with ω ̸= 0, g′(ωd) ̸∈ {0,∞} and
g′′(ωd) ̸=∞. Set z := g′(ωd)ωd−1. There exist reals C1 := C1(g, d, ω) > 1 and δ1 := δ1(g, d, ω) >

0 such that for any a1, . . . , ad ∈ C with |aj | ≤ δ1 (for j ∈ [d]) we have

Φ−1 (ω + ad) = ω +
ad
z
−

d−1∑
j=1

aj + τ,

where

Φ (x) = g

(
x
∏d−1

j=1
(ω + aj)

)
and τ ∈ C with |τ | ≤ C0 maxj∈[d] |aj |2.

Proof. First, note that

Φ−1 (x) = g−1 (x)
d−1∏
j=1

(ω + aj)
−1 .

Let b1, . . . , bd ∈ C with |bj | ≤ 1 for every j ∈ [d]. For t ∈ (−|ω|, |ω|), note that ω + tbj ̸= 0, so

we can define

F (t) = g−1 (ω + tbd)
d−1∏
j=1

(ω + tbj)
−1 .

We note that when g is particularised to g(x) = 1/(1 + λx), F coincides with the definition of F

given in [15, Lemma 7.10]. Moreover, F (t) agrees with Φ−1(ω + ad) for t = maxj∈{1,...,d}|aj | and

bj = aj/t. Note that F (0) = g−1(ω)ω−d+1 = ω. One can check that F ′(0) = bd/z −
∑d−1

j=1 bj .

The proof is now analogous to that of [15, Lemma 7.10], with the difference that the constants

C1 := C1(g, d, ω) > 1 and δ1 := δ1(g, d, ω) > 0 are not explicitly determined but rather obtained

by a continuity argument as in Lemma 3.47 that uses the hypotheses ω ≠ 0, g′(ωd) ̸∈ {0,∞}
and g′′(ωd) ̸=∞. Hence, we do not repeat the rest of the proof here.

Lemma 3.51 ([15, Lemma 7.11 for Mobius-programs]). Let d be an integer with d ≥ 2 and let

g be a Mobius map. Let ω ∈ C be a fixed point of f(z) = g(zd) with g′(ωd), g′′(ωd) ̸= ∞. Set

z := g′(ωd)ωd−1. There exist reals C2 := C2(g, d, ω) > 1 and δ2 := δ2(g, d, ω) > 0 such that for

any a1, . . . , ad ∈ C with |aj | ≤ δ2 (for j ∈ [d]) we have

Φ′ (ω + ad) = z + τ,

where

Φ (x) = g

(
x
∏d−1

j=1
(ω + aj)

)
Page 129 of 212

Chapter 3. Approximating the complex-valued Ising model on bounded degree graphs

and τ ∈ C with |τ | ≤ C0 maxj∈[d] |aj |.

Proof. First, note that

Φ′ (x) = g′
(
x
∏d−1

j=1
(ω + aj)

) d−1∏
j=1

(ω + aj) .

Let b1, . . . , bd ∈ C with |bj | ≤ 1 for every j ∈ [d]. For t ∈ R, we define

F (t) = g′
(∏d

j=1
(ω + tbj)

) d−1∏
j=1

(ω + tbj) ,

so F (t) agrees with Φ′(ω + ad) for t = maxj∈{1,...,d}|aj | and bj = aj/t. Note that F (0) =

g′(ωd)ωd−1 = z. At this point the proof is analogous to that of Lemma 3.47, so we are not

repeating it again. The only difference is that this time we have to bound F ′(t), instead of F ′′(t),

in a neighbourhood of t = 0, obtaining δ2 := δ2(g, d, ω) ∈ (0, 1) and C2 := C2(g, d, ω) > 1 such

that |F ′(t)| ≤ C2 for all t ∈ (−δ2, δ2). In [15, Lemma 7.11] the constants δ2 and C2 are made

precise for the choice g(x) = 1/(1 + λx), whereas here we obtain them by continuity of F ′(t)

and the fact that g′(ωd), g′′(ωd) ̸=∞.

Lemma 3.52 ([15, Lemma 7.12 for Mobius-programs]). Let d be an integer with d ≥ 2 and let

g be a Mobius map. Let f(x) := g(xd) and let ω be a fixed point of f . Let us assume that the

following assumptions hold.

1. ω is program-approximable for g and a0 ∈ C;

2. ω ̸= 0 and g′(ωd), g′′(ωd) ̸∈ {0,∞};

3. Let z := f ′(ω)/d = g′(ωd)ωd−1. We have 0 < |z| < 1 and z ̸∈ R.

Then there are Mobius-programs for g starting at a0 that generate {λ0, λ1, . . . , λt} ⊆ C, and a

real r > 0 such that the following hold for all ω̂ ∈ B(ω, r).

1. For i = 0, λ0 ∈ B(ω̂, 2r).

2. For i = 1, . . . , t, the map Φi given by Φi(x) = g(xλiλ
d−2
0) is contracting on the ball

B(ω̂, 2r).

3. B(ω̂, 2r) ⊆
⋃t

i=1 Φi(B(ω̂, 2r)).

Proof. The proof is exactly the same one as that of [15, Lemma 7.12] apart from the differences

in notation mentioned in the proof of Lemma 3.49, and the fact that we use the more general

Lemma 3.50 instead of [15, Lemma 7.10] and the more general Lemma 3.51 instead of [15,

Lemma 7.11].

When one has maps Φ1, . . . ,Φt with the properties 2 and 3 of Lemma 3.52, there is an

efficient algorithm to approximate numbers using sequential applications of the maps Φ1, . . . ,Φt,

see Lemma 3.53.

Page 130 of 212

Chapter 3. Approximating the complex-valued Ising model on bounded degree graphs

Lemma 3.53 ([15, Lemma 2.8]). Let z0 ∈ CA, r ∈ A>0 and U be the ball B(z0, r). Further,

suppose that Φ1, . . . ,Φt are Mobius maps (with coefficients in CA) that satisfy the following:

1. for each i ∈ [t], Φi is contracting on the ball U ,

2. U ⊆
⋃t

i=1 Φi(U).

Then there is a polynomial-time algorithm which, on input (i) a starting point x0 ∈ U ∩ CA, (ii)

a target x ∈ U ∩ CA, and (iii) a rational ε > 0, outputs a number x̂ ∈ U ∩ CA and a sequence

i1, i2, . . . , ik ∈ [t] such that

x̂ = Φik

(
Φik−1

(· · ·Φi1 (x0) · · ·)
)
and |x− x̂| ≤ ε.

Even though [15, Lemma 2.8] is stated for particular maps Φi that arise in the context of the

independent set polynomial, its proof is more general and works in the setting of Lemma 3.53.

Now Lemma 3.30 follows from combining Lemmas 3.52 and 3.53.

Lemma 3.30 ([15, Proposition 2.6 for Mobius-programs]). Let d be an integer with d ≥ 2 and

let g be a Mobius map with coefficients in CA. Let f(x) := g(xd) and let ω be a fixed point of f .

Let us assume that the following assumptions hold.

1. ω is program-approximable for g, d and a0 ∈ C;

2. ω ̸= 0, g′(ωd) ̸∈ {0,∞} and g′′(ωd) ̸=∞;

3. Let z := f ′(ω)/d = g′(ωd)ωd−1. We have 0 < |z| < 1 and z ̸∈ R.

Then ω is densely program-approximable in polynomial time for g, d and a0.

Proof. The proof is the same as that of [15, Proposition 2.6], the main differences being that

we invoke the more general Lemmas 3.52 and 3.53 instead of [15, Lemmas 7.12 and 2.8]. We

also we stop the proof once we have obtained the desired program instead of translating the

program to a gadget for the independent set polynomial. Finally, in the definition of densely

program-approximable in polynomial time we ask the algorithm to compute k approximations

x1, . . . , xk of λ′. This can be done by running k versions of the algorithm given in the proof of [15,

Proposition 2.6] and setting a different value for x0 in each version when applying Lemma 3.53.

In the proof of [15, Proposition 2.6] the value x0 is a good approximation of the fixed point ω.

These distinct values for x0 are obtained by generating a better approximation of the fixed point

ω each time. The generated elements x1, . . . , xk will be of the form Φij

(
Φij−1 (· · ·Φi1 (x0) · · ·)

)
,

so all of them are distinct because the starting points for x0 are distinct and the maps Φi are

bijective.

3.6.3 Proof of Lemma 3.31

In this section we prove Lemma 3.31, that is, we show how to generate approximations of any

complex number with a Mobius-program. This generalises [15, Proposition 2.2] to Mobius-

programs. Up to this point the results of [15] on hardcore-programs have been generalised to

Page 131 of 212

Chapter 3. Approximating the complex-valued Ising model on bounded degree graphs

Mobius-programs without much effort. In this section we have to refine the arguments given in

the proof of [15, Proposition 2.2] to make it work for any Mobius map g, although the main idea

stays the same: starting from a repelling fixed point and applying results of complex dynamics

(see Section 3.2.4) to come up with an appropriate Mobius-program.

First, let us make some remarks about the proof of [15, Proposition 2.2]. This result shows

how to efficiently implement approximations of any complex activity of the independent set

polynomial via a hardcore-program. The proof is divided into three steps. First, the authors

show how to generate approximations of any activity sufficiently large. Then they use the fact

that g(x) = 1/(1 + λx) tends to 0 when x diverges to generate approximations of any complex

number near 0. Finally, they combine both results to generate an approximation of any complex

number. Unfortunately, the second step breaks for arbitrary Mobius maps and, in particular,

for the Mobius maps that we use when particularising these results to the Ising model. This

motivates the work presented in this section.

This section is organised as follows. In Lemma 3.54 we show that if a repelling fixed point

of f(z) := g(zd) is densely program-approximable in polynomial-time, then any complex point

is densely program-approximable in polynomial-time. In particular, this includes the point 0

that escapes from the arguments given in [15], which rely heavily on the fact that complex

holomorphic maps are locally Lipschitz. Instead of this local property, here we use the fact

that rational maps are Lipschitz on the Riemann sphere with respect to the chordal metric

(Lemma 3.11), which simplifies the proofs because we do not have to deal so carefully with

the poles of the rational map. In Lemma 3.55 we show how to generate approximations of any

complex number that is sufficiently large. Although Lemma 3.55 could follow from the technical

proof given in [15, Proposition 2.2], we include a simpler proof that goes along the same lines as

the proof of Lemma 3.54. Finally, we combine Lemmas 3.54 and 3.55 to prove Lemma 3.31.

Lemma 3.54. Let d be an integer with coefficients in CA. Let ω ∈ C be a repelling fixed point

of f(z) := g(zd) that is densely program-approximable in polynomial time for g and a0 ∈ CA.

Let Ef be the exceptional set of the rational map f and let γ ∈ C \ Ef . Then γ is densely

program-approximable in polynomial time for g and a0.

Proof. Let rω > 0 from the definition of densely program-approximable point for ω (Defini-

tion 3.29). Since ω is a repelling fixed point of f , by Lemma 3.12 it belongs to the Julia

set of f and, thus, by Theorem 3.13,
⋃∞

n=0 f
n(B(ω, rω)) = Ĉ \ Ef . Let N be the smallest

non-negative integer such that γ ∈ fN (B(ω, rω)). If N = 0, then the fact that γ is densely

program-approximable in polynomial time for g and a0 is trivial: let rγ be any positive real

number with B(γ, rγ) ⊆ B(ω, rω) and use the algorithm from the definition of densely program-

approximable (in polynomial time) point for ω on the inputs λ′ ∈ B(γ, rγ) ∩ CA and ε > 0

rational. In the rest of the proof we deal with the case N ≥ 1.

Let x ∈ B(ω, rω) such that fN (x) = γ ∈ C. Let

P = {z ∈ C : z is a pole of fn for some n ∈ [N]}.

Page 132 of 212

Chapter 3. Approximating the complex-valued Ising model on bounded degree graphs

Note that P is a finite set so there is r > 0 such that

B(x, r) ⊆ B(ω, rω) and B(x, 2r) ∩ P ⊆ {x}. (3.19)

We point out here that x ∈ P if and only if there is n ∈ [N − 1] such that fn(x) = ∞. Since

fN (B(x, 2r)) is a compact set of complex numbers (fN is continuous on B(x, 2r) as a complex

function due to the lack of poles), there is a rational constant C > 0 depending on γ such that

|fN (z)| ≤ C for every z ∈ B(x, 2r). (3.20)

Since fN is a rational function, fN (B(x, r)) is an open set in Ĉ by the open mapping theorem

(Proposition 3.8). Hence, there is a rational rγ > 0 with B(γ, rγ) ⊆ fN (B(x, r)) (here we used

that γ ≠ ∞). This is the radius in the definition of densely program-approximable point for

γ (Definition 3.29). By Lemma 3.11, there is a rational L ≥ 1 such that fN is Lipschitz with

constant L in Ĉ with respect to the chordal metric.

Now we proceed to give the polynomial-time algorithm. Let k be a positive integer. Let

λ ∈ B(γ, rγ)∩CA and ε > 0 rational be the inputs of the algorithm. We are going to compute k

elements of Mobius-programs that approximate λ up to an error ε. We set

ε′ =
ε

1 + C2
and ε′′ = min

{
ε′/L, r

}
. (3.21)

We can write fN (z) = P (z)/Q(z) where P and Q are polynomials with coefficients in CA.

Note that the equation P (z)/Q(z) = λ in z ∈ B(x, r) ∩ CA is equivalent to P (z) = λQ(z) in

z ∈ B(x, r) ∩ CA because Q has no zeros in B(x, r). We can solve this polynomial equation

numerically as described in the proof of [15, Proposition 2.2, case I] to compute x′ ∈ B(x, r)∩CA

with |x∗−x′| ≤ ε′′/2 for some solution x∗ of P (z) = λQ(z) with x∗ ∈ B(x, r)∩CA, so fN (x∗) = λ.

Since x′ ∈ B(x, r)∩CA ⊆ B(ω, rω), we can use the algorithm of the definition of densely program-

approximable in polynomial time for ω to compute k + 1 distinct elements x̂1, . . . , x̂k+1 of a

Mobius-program for g and a0 with |x′ − x̂j | ≤ ε′′/2. Let x̂ be any of these k + 1 elements and

let us analyse how close fN (x̂) is to λ. We have |x∗ − x̂| ≤ ε′′ by the triangle inequality. We

claim that |λ− fN (x̂)| ≤ ε. In view of the Lipschitz property of fN and (3.21), we have

d
(
λ, fN (x̂)

)
≤ Ld (x∗, x̂) = L

|x∗ − x̂|
((1 + |x∗|2) (1 + |x̂|2))1/2

≤ L |x∗ − x̂| ≤ Lε′′ ≤ ε′.

Note that by the triangle inequality, |x− x̂| ≤ |x− x′|+ |x′ − x̂| ≤ r + ε′′ ≤ 2r. We can now use

the upper bound (3.20) with z = x̂ and z = x∗ to conclude that |fN (x∗)| = |λ| ≤ C and∣∣λ− fN (x̂)
∣∣ =

((
1 + |fN (x̂)|2

) (
1 + |λ|2

))1/2
d
(
λ, fN (x̂)

)
≤
(
1 + C2

)
d
(
λ, fN (x̂)

)
= ε.

The algorithm chooses k numbers in {fN (x̂1) , . . . , f
N (x̂k+1)} in conjunction with its represen-

tation as a sequence of tuples (which comes from the representation of x̂ and the corresponding

applications of f). Recall that N does not depend on the inputs ε and λ, so computing fN (x̂)

from x̂ only adds a constant factor to the running time. In order to conclude the proof, we have

Page 133 of 212

Chapter 3. Approximating the complex-valued Ising model on bounded degree graphs

to ensure that f1(x̂), f2(x̂), . . . , fN (x̂) is a sequence of complex numbers, that is, ∞ does not

appear in the sequence. It is enough to show that this is the case for at least k of the k + 1

outputs fN (x̂1) , . . . , f
N (x̂k+1), since we only wanted k outputs to begin with. This follows

from (3.19) and the fact that at most one of the numbers x̂1, . . . , x̂k+1 is equal to x.

Lemma 3.55 ([15, Proposition 2.2, case I]). Let d be an integer with d ≥ 2 and let g be a

Mobius map with coefficients in CA. Let ω ∈ C be a repelling fixed point of f(z) := g(zd) that is

densely program-approximable for g and a0 ∈ CA. Let Ef be the exceptional set of the rational

map f . If ∞ ̸∈ Ef , then there exists a rational number M > 1 such that the following holds.

There is a polynomial-time algorithm such that, on input λ ∈ CA with |λ| > M and rational

ε > 0, computes an element ak of a Mobius-program for g starting at a0 with |λ− ak| ≤ ε.

Proof. This lemma can be proven following the argument given in the first case of the proof

of [15, Proposition 2.2] for the independent set polynomial. Here we give a simpler proof that

works even when g is just a rational function. The original proof is significantly more technical

because the authors first get close to a pole and then apply one more iteration of f to get near

the desired point λ. To do this, they have to make sure that the poles of f1, . . . , fN are excluded

from the all the domains considered and that all the applications of f are locally Lipschitz.

Our proof follows the same structure as that of Lemma 3.54 with γ = ∞, but it requires

a slightly different analysis because in the proof x is a pole of fN . Let rω > 0 from the

definition of densely program-approximable fixed point for ω. Since ω is a repelling fixed

point of f , by Lemma 3.12 it belongs to the Julia set of f and, thus, by Theorem 3.13,⋃∞
n=0 f

n(B(ω, rω)) = Ĉ \ Ef . Since ∞ ̸∈ Ef , we can consider the smallest non-negative integer

N such that ∞ ∈ fN (B(ω, rω)). Note that N ≥ 1 because ∞ ̸∈ B(ω, rω).

Let x ∈ B(ω, rω) such that fN (x) =∞. Let

P = {z ∈ C : z is a pole of fn for some n ∈ [N]}

and

Z = {z ∈ C : z is a zero of fn for some n ∈ [N]}.

Note that P and Z are finite sets and x ∈ P because fN (x) = ∞. Let δ be the minimum

distance between any two distinct numbers in P ∪ Z. There is 0 < r < δ/4 such that

B(x, r) ⊆ B(ω, rω) and B(x, 2r) ∩ (P ∪ Z) = {x}. (3.22)

Since fN is a rational function, fN (B(x, r)) is an open set in Ĉ, see Section 3.2.4. Hence, by

the topology of the Riemann sphere and the fact that ∞ ∈ fN (B(x, r)), there is M > 1 with

U = {z ∈ C : |z| > M} ⊆ fN (B(x, r)). This is the constant given in the statement. We can

write fN (z) = P (z)/Q(z) where P and Q are polynomials with coefficients in CA that do not

share any root, so the set of roots of P is Z and the set of roots of Q is P. We are going to

bound |P (z)| and |Q(z)| in B(x, r). First, let us bound |P (z)|. Let k be the multiplicity of the

Page 134 of 212

Chapter 3. Approximating the complex-valued Ising model on bounded degree graphs

pole x of fN . For any z ∈ B(x, 2r) and ζ ∈ Z ∪P with ζ ̸= x, in view of r < δ/4 and (3.22), we

have

|z − ζ| ≤ |x− ζ|+ |z − x| ≤ |x− ζ|+ 2r ≤ 2r + max
ζ′∈Z∪P

∣∣x− ζ ′
∣∣

and

|z − ζ| ≥ |x− ζ| − |x− z| ≥ δ − 2r ≥ δ/2.

Hence, there are real numbers C0, C1 > 0 such that, for any z ∈ B(x, 2r),

C0(δ/2)degP ≤ |P (z)| ≤ C1 and C0(δ/2)(degQ)−k |x− z|k ≤ |Q(z)| ≤ C1 |x− z|k . (3.23)

Combining the bounds in (3.23) and setting D0 = C0(δ/2)degP /C1 and D1 = C1(δ/2)k−(degQ)/C0

we find that, for any z ∈ B(x, 2r),

D0 |x− z|−k ≤
∣∣fN (z)

∣∣ ≤ D1 |x− z|−k . (3.24)

Note that D0 and D1 are positive. The bounds (3.24) play an important role in our algorithm.

We also need Lemma 3.11, which gives a rational L ≥ 1 such that fN is Lipschitz with constant

L in Ĉ.

Now we proceed to give the polynomial-time algorithm. Let λ ∈ CA with |λ| > M and ε > 0

rational be the inputs. We set τ = D1
D0

2k|λ| and

ε′ =
ε

((1 + |τ |2) (1 + |λ|2))1/2
and ε′′ = min

{
ε′/L, r,

1

2
(D0/|λ|)1/k

}
. (3.25)

Note that size(ε′′) = poly(size(ε), size(λ)) since L,D0, D1, r, k are constants that do not depend

on the inputs. The equation P (z)/Q(z) = λ in z ∈ B(x, r) ∩ CA is equivalent to P (z) = λQ(z)

in z ∈ B(x, r) ∩ CA because Q has no zeros in B(x, r) other than x. We can solve this

polynomial equation numerically as described in the proof of [15, Proposition 2.2, case I] to

compute x′ ∈ B(x, r) ∩ CA with |x∗ − x′| ≤ ε′′/2 for some solution x∗ of P (z) = λQ(z) with

x∗ ∈ B(x, r)∩CA, so fN (x∗) = λ. Since x′ ∈ B(x, r)∩CA ⊆ B(ω, rω), we can use the algorithm

of the definition of densely program-approximable in polynomial time for ω to compute 2 distinct

elements x̂1, x̂2 of a Mobius-program for g and a0 with |x′− x̂j | ≤ ε′′/2 for any j ∈ {1, 2}. By the

triangle inequality, we have |x∗− x̂j | ≤ ε′′ and |x− x̂j | ≤ |x−x∗|+ |x∗− x̂j | ≤ r+ε′′ ≤ 2r, where

we used (3.25). In light of the choice of r in (3.22), for any z ∈ B(x, 2r), we have fN (z) =∞
if and only if z = x. Hence, we can check if x̂j is x by evaluating fN (x̂j) and checking if the

result is ∞ or not. Since x̂1 and x̂2 are distinct, at least one of the two is not x, so we can pick

x̂ ∈ {x̂1, x̂2} with x̂ ≠ x. We work with x̂ in the rest of the proof. We claim that |λ−fN (x̂)| ≤ ε.

Recall that x∗, x̂ ∈ B(x, 2r). In view of the bounds (3.24) and (3.25) we have

1

2
|x− x∗| ≥ 1

2

(
D0

|fN (x∗)|

)1/k

=
1

2

(
D0

|λ|

)1/k

≥ ε′′,

so |x− x̂| ≥ |x− x∗| − |x∗ − x̂| ≥ |x− x∗| − ε′′ ≥ |x− x∗| /2 and

∣∣fN (x̂)
∣∣ ≤ D1

|x− x̂|k
≤ D1

(
2

|x− x∗|

)k

≤ D1

D0
2k|λ| = |τ |. (3.26)

Page 135 of 212

Chapter 3. Approximating the complex-valued Ising model on bounded degree graphs

In view of the Lipschitz property of fN and (3.25), we have

d
(
λ, fN (x̂)

)
≤ Ld (x∗, x̂) = L

|x∗ − x̂|
((1 + |x∗|2) (1 + |x̂|2))1/2

≤ L |x∗ − x̂| ≤ Lε′′ ≤ ε′,

which in combination with (3.26) yields∣∣λ− fN (x̂)
∣∣ =

((
1 + |fN (x̂)|2

) (
1 + |λ|2

))1/2
d
(
λ, fN (x̂)

)
≤
((

1 + |τ |2
) (

1 + |λ|2
))1/2

ε′ = ε

as we wanted to prove. The algorithm outputs fN (x̂) in conjunction with its representation

as a sequence of tuples (which comes from the representation of x̂ and the corresponding

applications of f). In order to conclude the proof, we have to guarantee that the sequence

f1(x̂), f2(x̂), . . . , fN (x̂) does not contain the point ∞. In light of (3.22), x̂ is a pole of fn for

some n ∈ [N] if and only if x̂ = x. But we chose x̂ ∈ {x̂1, x̂2} with x̂ ̸= x, concluding the

proof.

Now we can combine Lemmas 3.54 and 3.55 to prove Lemma 3.31. The proof follows the

same idea as that of [15, Proposition 2.2, case I] with the difference that we can not use the

particular shape of g to simplify some steps. Hence, we have again to use the Lipschitz property

of rational functions on the Riemann sphere (Lemma 3.11).

Lemma 3.31 ([15, Proposition 2.2 for Mobius-programs]). Let d be an integer with d ≥ 2 and

let g be a Mobius map with coefficients in CA such that g(∞) ∈ C. Let ω ∈ C be a repelling

fixed point of f(z) := g(zd) that is densely program-approximable in polynomial time for g and

a0 ∈ CA. Let Ef be the exceptional set of the rational map f . If 0,∞ ̸∈ Ef , then the following

holds.

There is a polynomial-time algorithm such that, on input λ ∈ CA and rational ε > 0, computes

an element ak of a Mobius-program for g starting at a0 with |λ− ak| ≤ ε.

Proof. By Lemma 3.11 there is a rational L ≥ 1 such that fN is Lipschitz with constant L in Ĉ.

Note that g only has one complex pole because g is a Mobius map with g(∞) ∈ C. Let p ∈ C
be the pole of g, so g(p) =∞. We can write g as g(z) = a/(z − p) + b for some a, b ∈ CA with

a ≠ 0. Let r0 ∈ (0, 1) be rational number as in Lemma 3.54 for γ = 0. Let M > 1 be a rational

number as in Lemma 3.55. There is a rational r > 0 such that

|g(z)| > 2M for all z ∈ B(p, r). (3.27)

Since g(∞) = b ∈ C and p is the only pole of g, we find that g is bounded on C \B(p, r/2). Let

C be a positive real number with

|g(z)| ≤ C for all z ∈ C \B(p, r/2). (3.28)

We can now specify the algorithm announced in the statement. Let λ ∈ CA and ε > 0

rational be its inputs. Our algorithm distinguishes two cases depending on λ ∈ B(p, rp).

Page 136 of 212

Chapter 3. Approximating the complex-valued Ising model on bounded degree graphs

1. |λ| > M . Then we can use the algorithm of Lemma 3.55 to compute an element ak of a

Mobius-program for g starting at a0 with |λ− ak| ≤ ε.

2. |λ| ≤M . Let x∗ = g−1(λ). We have x∗ ̸∈ B(p, r) because |g(x∗)| = |λ| < 2M , see (3.27).

Let

ε′ = min

{
ε

L(1 + C2)
, r/2

}
(3.29)

Our algorithm computes x∗ and distinguish two more cases depending on x∗. In each of

the two cases the algorithm is going to compute an element x̂ of a Mobius-program for g

starting at a0 with |x∗ − x̂| ≤ ε′.

• |x∗| > M . Our algorithm uses the algorithm of Lemma 3.55 with inputs x∗ and ε′ to

compute an element x̂ of a Mobius-program for g starting at a0 with |x∗ − x̂| ≤ ε′,

and returns ak.

• |x∗| ≤ M . Note that 2M/r0 > M . Our algorithm first uses the algorithm of

Lemma 3.55 with inputs λ = 2M/r0 and ε = 1 to compute an element λ4 of a Mobius-

program for g starting at a0 with |2M/r0 − λ4| ≤ 1, so |λ4| > M/r0. This step takes

constant time since all the quantities involved are constants stored in our algorithm.

The idea for this part of the proof is borrowed from [15, Proposition 2.2, case III].

Here λ4 plays the same role as the activity λ4 implemented in [15, Proposition 2.2,

case III], hence the choice of the name. We have |x∗/λ4| < r0, so we can use the

algorithm of Lemma 3.54 for γ = 0 with inputs x∗/λ4 and ε′/|λ4| to compute an

element ŷ of a Mobius-program for g starting at a0 with |x∗/λ4 − ŷ| ≤ ε′/|λ4|. We

set x̂ = λ4ŷ and note that |x∗ − x̂| ≤ ε′.

From the definition of ε′ (3.29) and the triangle inequality we have

|p− x̂| ≥ |p− x∗| − |x∗ − x̂| ≥ r − ε′ ≥ r/2.

Hence, (3.28) yields

|g (x̂)| ≤ C. (3.30)

In view of the Lipschitz property of fN we have

d (λ, g (x̂)) ≤ Ld
(
g−1(λ), x̂

)
= L

|x∗ − x̂|
((1 + |x∗|2) (1 + |x̂|2))1/2

≤ L |x∗ − x̂| ≤ Lε′ ≤ ε

L(1 + C2)

which in combination with (3.30) and |λ| ≤M ≤ C yields

|λ− g (x̂)| =
((

1 + |g (x̂)|2
) (

1 + |λ|2
))1/2

d (λ, g (x̂)) ≤ L(1 + C2)d (λ, g (x̂)) ≤ ε.

Our algorithm returns the representation of g(x̂) as an element of a Mobius-program.

Remark 3.56. The hypothesis g(∞) ∈ C can be removed from Lemma 3.31. This would require

us to study the case g(∞) =∞ in the proof of Lemma 3.31. Note that g(z) =∞ if and only if

g is of the form az + b for a, b ∈ Q with a ̸= 0. This case is not relevant for this work, hence

why we left it out of the statement. Also, for convenience, [15] restricted attention to complex

numbers whose real and imaginary parts are rational, but it suffices for them to be algebraic.

Page 137 of 212

Chapter 4

Fast sampling of satisfying

assignments from random k-SAT

◦ This chapter is based on the following publication:

Andreas Galanis, Leslie Ann Goldberg, Heng Guo, and Andrés Herrera-Poyatos. Fast sampling

of satisfying assignments from random k-sat. arXiv preprint, 2022. arXiv:2206.15308

◦ This chapter also includes results on the geometry of the space of satisfying assignments

of random k-CNF formulas, that have been developed in conjunction with Zongchen Chen,

Nitya Mani and Ankur Moitra. The proofs of these geometry results presented here are my

own. An extended version of [48] containing these geometry results has been submitted to

Random Structures and Algorithms.

Organisation of this chapter

In this chapter we introduce our almost-uniform sampler for satisfying assignments of random k-

CNF formulas and prove its correctness. This chapter is organised as follows. First, in Section 4.1

we describe our algorithm and provide an outline of our proof. Given the amount of notation

and background needed to state and explain our algorithms and main technical lemmas, the

preliminary material is presented across the proof outline, as opposed to previous chapters. Our

proofs are then split into 9 sections, proving our main theorem on the correctness of our sampling

algorithm in Section 4.7 and our results on the geometry of the space of satisfying assignments

of random k-CNF formulas in Section 4.8. Since the titles and content of these sections are

technical and require some notation and definitions before introducing them, we provide a more

detailed organisation of this chapter at the end of the proof outline, see Section 4.1.5.

4.1 Proof outline and preliminaries

Our nearly linear-time sampling algorithm is based on running a Markov chain; this is a standard

technique in approximate counting, where typically one runs a Markov chain on the whole state

space that converges to the desired distribution. The twist in k-SAT is that the state space of the

Markov chain needs to be carefully selected in order to avoid certain bottleneck phenomena that

impede fast convergence. This approach has been recently applied to bounded-degree k-CNF

formulae [43, 75, 44, 74] building on the work of Moitra [93] and using the Markov chain known

as single-site Glauber dynamics. The main difficulties in all of these works are that the usual

Page 138 of 212

http://arxiv.org/abs/2206.15308

Chapter 4. Fast sampling of satisfying assignments from random k-SAT

distribution properties that are typically used to obtain fast algorithms (such as correlation decay

and spatial mixing) fail on the set of all SAT solutions, and in fact even ensuring a connected

state space is a major problem. Working around this is one of the main challenges for us too,

and in the random k-SAT setting it is further aggravated by the fact that a linear number of

variables have degrees much higher than average. In fact, w.h.p., a good portion of vertices have

degrees depending on n, with the maximum degree of the formula scaling as (log n)/(log log n);

this can be shown by analysing a bins and balls experiments where variables identify with bins

and you throw k⌊αn⌋ balls (one for each literal of the random formula), see [92, Chapter 5] for

details.

This poses several new challenges for the Markov chain approach to work in our setting. First

of all, we have to ensure that the set of satisfying assignments that our Markov chain considers

has good connectivity properties. We address this problem in Section 4.1.1 of this proof outline,

where we find a suitable subset of marked variables where we can run the Glauber dynamics;

this part is inspired by Moitra’s “marking” approach, though here we need to add an extra layer

of marking to facilitate later the analysis of the Markov chain. Second and more importantly,

state-of-the-art arguments for bounding the mixing time of the single-site Glauber dynamics on

k-CNF formulae, such as [75, 43] break under the presence of high-degree variables. We focus

on this in Section 4.1.2, where we outline a novel argument that analyses the mixing time of the

uniform-block Glauber dynamics using recent advances in spectral independence [5, 79, 7, 28].

This is the first application of the spectral-independence framework for k-CNF formulae, where

the absence of correlation decay limits the application of standard techniques (based on self-

avoiding walk trees [7, 28]). A reader unfamiliar with spectral independence is encouraged to read

Section 4.1.2.1 before continuing reading this proof outline. To obtain our spectral-independence

bounds we need to combine the probabilistic structure of satisfying assignments with the local

sparsity properties of the random formula. The third challenge in our approach is simulating

the individual steps of the uniform-block Glauber dynamics since they involve updating a linear

number of variables, making the computation of the transition probabilities more challenging.

To this end, we need to initialise our block Glauber dynamics to random values (instead of

an arbitrary assignment that is typically used as initialisation), and show that the formula

breaks into small tree-like connected components that allows us to do the relevant computations

throughout the algorithm’s execution (cf. Section 4.1.3). Based on these pieces, the full algorithm

is presented in Section 4.1.4.

The fact that the formula breaks into small tree-like connected components when marked

variables are assigned random values will also allow to analyse the geometry of the space

of satisfying assignment of the random formula, and we will delve into this connection in

Section 4.1.3.

Page 139 of 212

Chapter 4. Fast sampling of satisfying assignments from random k-SAT

4.1.1 Marking variables in the random k-SAT model

In order to ensure good connectivity properties which are essential for fast convergence of the

relevant Markov chain, our algorithm runs Glauber dynamics on a large subset Vm of so-called

“marked” variables of the random formula, leaving the rest of the variables unassigned. The

variables in Vm are chosen in a way that ensures that their marginals are near 1/2, which is

important for ensuring rapid mixing. Moitra [93] introduced a random “marking” procedure

to identify such a subset of variables in the bounded-degree case. The presence of high-degree

variables impedes a direct application of this technique in the random-formula setting, but in [49]

the authors show that by temporarily removing a small linear number of “bad” clauses that

contain high-degree variables, one can also achieve marginals near 1/2 for an appropriate set of

variables in the random k-SAT model. Here, we further refine these arguments, as we need more

control over the high-degree variables of the formula in order to conclude rapid mixing of the

Glauber dynamics. Recall that the degree of a variable v is the number of occurrences of literals

involving the variable v in Φ and that the maximum degree of the formula Φ is the maximum

degree among its variables. The following important definitions will be used throughout the

paper. We usually use V to denote the set of variables and C to denote the set of clauses of a

k-CNF formula Φ. For any c ∈ C we denote by var(c) the set of variables appearing in c, and for

any S ⊆ C we denote var(S) =
⋃

c∈S var(c).

Definition 4.1 (high-degree, ∆r). Let r ∈ (0, 1) and let k ≥ 3 be an integer. Let Φ = (V, C)
be a k-CNF formula. We say that a variable v ∈ V is high-degree if the degree of v is at least

∆r := ⌈2rk⌉.

We refer to Section 4.2 for details on our procedure to determine the bad variables/clauses of

the formula Φ. Roughly, bad variables consist of high-degree variables (as in Definition 4.1), plus

those variables that appear in a clause with at least two other bad variables (recursively); bad

clauses are those clauses that contain at least three bad variables. We use Vbad(r) and Cbad(r)

to denote the sets of bad variables and clauses. We use Vgood(r) = V \ Vbad(r) to denote the set

of good variables, and Cgood(r) = C \ Cbad(r) to denote the set of good clauses. The following

proposition, proved in Section 4.2, summarises the main properties of the above sets.

Proposition 4.2. Let Φ = (V, C) be a k-CNF formula. For any c ∈ Cgood(r), we have

|var(c) ∩ Vbad(r)| ≤ 2, and for any c ∈ Cbad(r), we have |var(c) ∩ Vgood(r)| = 0. Moreover, every

good variable has degree less than ∆r. There is a procedure to determine Cbad that runs in time

O(n + mk), where n is the number of variables of Φ and m is the number of clauses of Φ.

It turns out that, w.h.p. over the choice of Φ, most clauses (and variables) in the random

formula Φ are good, see Lemma 4.15 for a precise statement. At this stage, it would be natural

to try to rework the Markov chain approach of [43]. To do this, we would split the set of good

variables into marked variables and control variables in such a way that marked variables have

marginals close to 1/2. To ensure this bound on these marginal probabilities, it turns out that it

is enough to find a marking such that each good clause has a high enough number of marked

Page 140 of 212

Chapter 4. Fast sampling of satisfying assignments from random k-SAT

variables. Then we run the Glauber dynamics on the set of marked variables. However, as

we explain in Section 4.1.2, the state-of-the-art techniques used to analyse the mixing time of

the single-site Glauber dynamics on bounded-degree formulae do not generalise to the random

k-SAT setting; the main reason for this is that they fail to capture the effect that the high-degree

variables have on the marginal probabilities of other variables. Therefore, we need to develop

an alternative approach that is robust against the presence of high-degree variables. Our main

contribution is an argument to apply the spectral independence framework [28, 29] to the random

k-SAT model that leads to nearly linear sampling algorithms. To do this, it is important to

introduce a third type of good variables, which we call the auxiliary variables. This motivates

the following definition of marking.

Definition 4.3 (ρ-distributed, (r, rm, ra, rc)-marking, r0, r1, δ). Let r ∈ (0, 1). Let Φ = (V, C)
be a k-CNF formula and let V be a subset of Vgood(r). We say that V is ρ-distributed if for

each c ∈ Cgood(r) we have |var(c) ∩ V | ≥ ρ(k − 3). An (r, rm, ra, rc)-marking of Φ is a partition

(Vm,Va,Vc) of the variables of Φ such that

1. the set of good variables Vm is rm-distributed;

2. the set of good variables Va is ra-distributed.

3. Vc contains all the bad variables and the set Vc \ Vbad(r) is rc-distributed;

The variables in Vm are called marked variables, the variables in Va are called auxiliary variables,

and the variables in Vc are called control variables.

In our sampling algorithm we work with r = r0 − δ for r0 := 0.117841 and δ := 0.00001, and

work with an (r, r0, r0, 2r0)-marking. In our connectivity results (Theorems 1.10 and 1.12) we

choose r = r1 − δ for r1 := 0.227092 and work with an (r, r1, 0, r1)-marking in order to achieve

the larger density threshold.

In Section 4.3 we show that random k-CNF formulae have (r0 − δ, r0, r0, 2r0)-markings when

the density α is below the threshold 2(r0−δ)k/k3, and that the marginals of good variables are

close to 1/2; this is where the value of r0 becomes important in the argument. We also show

that random k-CNF formulae have (r1 − δ, r1, 0, r1)-markings when the density α is below the

threshold 2(r1−δ)k/k3. We state this result for r0 in Proposition 4.5 below; first we give some

relevant definitions.

Definition 4.4 (Ω∗, µA, Ω, ΦΛ, CΛ, VΛ, ΩΛ). Let Φ = (V, C) be a k-CNF formula. Let Ω∗

be the set of all assignments V → {F,T}. Given any subset A ⊆ Ω∗, let µA be the uniform

distribution on A. Let Ω be the set of satisfying assignments of Φ. For any partial assignment Λ

we denote by ΦΛ the formula obtained by simplifying Φ under Λ, i.e., removing the clauses which

are already satisfied by Λ, and removing false literals from the remaining clauses. We denote

by CΛ and VΛ the sets of clauses and variables of ΦΛ. Moreover, we denote by ΩΛ the set of

satisfying assignments of ΦΛ.

Page 141 of 212

Chapter 4. Fast sampling of satisfying assignments from random k-SAT

Recall that we say that an event E regarding the choice of the random formula Φ holds with

high probability (abbreviated w.h.p.) if Pr(E) = 1 − o(1) as n → ∞, see Section 1.1.3 for the

definition of random formula used in this probability distribution.

Proposition 4.5. There is an integer k0 such that for any k ≥ k0 and any density α with

α ≤ 2(r0−δ)k/k3 the following holds w.h.p. over the choice of the random k-CNF formula

Φ = Φ(k, n, ⌊αn⌋). There exists an (r0 − δ, r0, r0, 2r0)-marking (Vm,Va,Vc) of Φ. Moreover,

for any such marking, for any v ∈ Vgood(r0 − δ), any V ⊆ Vm ∪ Va with v ̸∈ V , and any

Λ: V → {F,T}, we have

max
{

Prµ
ΩΛ (v 7→ F) ,Prµ

ΩΛ (v 7→ T)
}
≤ 1

2
exp

(
1

k2r0k

)
.

Proof. This follows directly by combining Lemmas 4.21 and 4.23, which are stated and proved

in Section 4.3.

We note that the density threshold of Theorem 1.8 is 20.039k, which is significantly smaller

than the threshold 2(r0−δ)k/k3 in Proposition 4.5. The bottleneck for the threshold Theorem 1.8

comes from our mixing time results, see Section 4.1.2.

The bound given in Proposition 4.5 on the marginal probabilities of the marked and auxiliary

variables is exploited several times in this work, and we will explain some of these applications in

this proof outline. We remark that the bound on the marginals of good variables holds for any

pinning of any subset of marked and auxiliary variables, which will be relevant in the spectral

independence argument.

Definition 4.6 (µ|V). Let V be a finite set and let Ω ⊆ {F,T}V . Let µ be a distribution over Ω.

For a set V ⊆ V, we denote by µ|V the marginal distribution of µ on V .

Proposition 4.5 implies that the distribution µΩ|Vm∪Va
is very close to the uniform distribution

over all assignments Vm ∪ Va → {F,T}. This concept is formalised in the following definition.

Definition 4.7 (ε-uniform). Let V be a set of variables and µ be a probability distribution over

the assignments V → {F,T}. Let Λ: S → {F,T} be an assignment of some subset of variables

S ⊆ V . We denote by Prµ(Λ) the probability under µ of the event that the variables in S are

assigned values according to Λ, and by Prµ(·|Λ) the corresponding conditional distribution of µ.

For ε ∈ (0, 1), we say that the distribution µ is ε-uniform if for any variable v ∈ V and any

partial assignment Λ: V \ {v} → {F,T}, we have

max {Prµ (v 7→ F|Λ) ,Prµ (v 7→ T|Λ)} ≤ 1

2
eε.

From Proposition 4.5, it follows that the distribution µΩ|Vm
is ε-uniform for ε = (2−r0k/k),

so for any Λ: Vm → {F,T}, the probability that the assignment of the marked variables is Λ

is at least (1− eε/2)|Vm|. The ε-uniform property also (trivially) guarantees that the space of

assignments Λ: Vm → {F,T} with PrµΩ(Λ) > 0 is connected via single-variable updates, so we

can indeed consider the Glauber dynamics over Vm. This leads to the main challenge of this

work: does this chain mix rapidly?

Page 142 of 212

Chapter 4. Fast sampling of satisfying assignments from random k-SAT

4.1.2 Mixing time of the Glauber dynamics on the marked variables

Recently, there has been significant progress in showing that the single-variable Glauber dynamics

on appropriately chosen subsets of variables mixes quickly for k-CNF formulae with bounded

degree [43, 74]. These approaches carefully execute a union bound over paths of clauses connecting

marked variables in order to bound the coupling time between two copies of the chain. However,

these union bound arguments break under the presence of high-degree variables that are present

in random k-SAT; this is because the number of paths connecting marked variables is very

sensitive to the max degree of the formula and in particular grows too fast in our setting. We

give a more detailed discussion in Section 4.6.1.

Instead, we apply the spectral independence framework to show rapid mixing of a uniform-

block Glauber dynamics, which we review briefly below. Applications of spectral independence

usually exploit decay of correlations to show that the spectral independence condition holds,

see [7, 28, 17] for examples. As we have mentioned in the introduction, correlation decay fails

to hold for densities exponential in k in the random k-SAT model [95] and therefore, we have

to develop a different approach to conclude that the spectral-independence condition holds in

our setting. This is our main contribution in this work; we show that the marginal distribution

on the marked variables, i.e., µΩ|Vm
, is (ε log n)-spectrally independent for some ε > 0 that can

be made arbitrarily small for sufficiently large k. Our argument builds on the coupling idea of

Moitra [93] (as refined in [49] for random k-SAT) and relates the spectral independence condition

to the expected number of failed clauses in this coupling process. This allows us to exploit the

local sparsity properties of the random k-SAT model to analyse the mixing time of the Glauber

dynamics.

A caveat here is that the spectral independence of µΩ|Vm
is not enough on its own to conclude

fast mixing of the single-site Glauber dynamics. The most direct way to work around this is to

analyse instead the so-called ρ-uniform-block Glauber dynamics that updates ρ vertices at a

time for some ρ that scales linearly in n; the main missing ingredient there is to show that the

modified chain can be implemented efficiently which we discuss in Section 4.1.3. We next give a

quick overview of the relevant ingredients of the spectral-independence literature that we will

need.

4.1.2.1 The ρ-uniform-block Glauber dynamics, spectral independence, and the

mixing time

Let V be a finite set of size M and µ be a distribution over the assignments V → {F,T}. Let

Ω be the set of assignments V → {F,T} with positive probability under µ. For an integer

ρ ∈ {1, 2, . . . , |V |}, the ρ-uniform-block Glauber dynamics for µ is a Markov chain Xt where

X0 ∈ Ω is an arbitrary configuration and, for t ≥ 1, Xt is obtained from Xt−1 by first picking a

subset S ⊆ V of size ρ uniformly at random, letting Λt be the restriction of Xt to V \ S, and

updating the configuration on S according to the probability distribution µ(·|Λt). This chain

satisfies the detailed balance equation for µ. Hence, when the chain is irreducible, for ε > 0, we

Page 143 of 212

Chapter 4. Fast sampling of satisfying assignments from random k-SAT

can consider its mixing time Tmix(ρ, ε) = maxσ∈Ω min{t : dTV(Xt, µ) ≤ ε | X0 = σ}. We say that

µ is b-marginally bounded if for all v ∈ V , S ⊆ V \ {v}, Λ: S → {F,T} with Prµ(Λ) > 0, and

ω ∈ {F,T}, it either holds that Prµ(v 7→ ω|Λ) = 0 or Prµ(v 7→ ω|Λ) ≥ b. Spectral independence

results have recently been used in the b-marginally bounded setting to obtain fast mixing time of

the uniform-block Glauber dynamics [19, 29]. For S ⊂ V , Λ: S → {F,T} with Prµ(Λ) > 0, and

u, v ∈ V \ S and 0 < Prµ(u 7→ T|Λ) < 1, the influence of u on v (under µ and Λ) is defined as

IΛ(u→ v) = Prµ (v 7→ T|u 7→ T,Λ)− Prµ (v 7→ T|u 7→ F,Λ) . (4.1)

The influence matrix conditioned on Λ is the (two-dimensional) matrix whose entries consist

of IΛ(u→ v) over all relevant u and v. We denote by IΛ the matrix and by λ1(IΛ) its largest

absolute value of its eigenvalues. For a real η > 0, we say that µ is η-spectrally independent

if for all S ⊂ V and Λ: S → {F,T} with Prµ(Λ) > 0 we have λ1(IΛ) ≤ η. From the results

of [29], one can conclude the following bound for the mixing time of the uniform-block Glauber

dynamics, see Section 4.10 for details.

Lemma 4.8. The following holds for any reals b, η > 0, any κ ∈ (0, 1) and any integer M

with M ≥ 2
κ(4η/b2 + 1). Let V be a set of size M , let µ be a distribution over the assignments

V → {F,T}, let Ω = {Λ: V → {F,T} : µ(Λ) > 0} and let µmin = minΛ∈Ω µ(Λ). If µ is

b-marginally bounded and η-spectrally independent, then, for ρ = ⌈κM⌉ and Cρ = (2/κ)4η/b
2+1,

we have

Tmix(ρ, ε) ≤
⌈
Cρ

M

ρ

(
log log

1

µmin
+ log

1

2ε2

)⌉
.

We are going to consider the uniform-block Glauber dynamics on the marked variables of

Φ, so V = Vm, and the set of states coincides with the set of assignments Vm → {F,T} as

all of them have positive probability. In this setting, the target distribution is µΩ|Vm
. The

distribution µΩ|Vm
is (1/e)-marginally-bounded as a straightforward consequence of the fact that

it is (1/k)-uniform, see Remark 4.49 for details. Hence, in order to conclude rapid mixing it

remains to establish spectral independence. For this, we are going to use the well-known fact

(see for instance [28]) that, for S ⊂ V and Λ: S → {F,T}, we have

λ1(IΛ) ≤ max
u∈V \S

∑
v∈V \S

|IΛ(u→ v)|. (4.2)

4.1.2.2 Spectral independence in the random k-SAT model

In this section we state our spectral independence results in the random k-SAT model. The

results stated in this section are proved in Section 4.6. Our main technical result is the following.

Lemma 4.9. There is an integer k0 ≥ 3 such that for any integer k ≥ k0 and any density α

with α ≤ 2r0k/3/k3 the following holds. W.h.p. over the choice of the random k-CNF formula

Φ = Φ(k, n, ⌊αn⌋), for any (r0 − δ, r0, r0, 2r0)-marking (Vm,Va,Vc) of Φ, the distribution µΩ|Vm

is (2−(r0−δ)k log n)-spectrally independent.

Page 144 of 212

Chapter 4. Fast sampling of satisfying assignments from random k-SAT

We are going to describe some of the ideas behind the proof of Lemma 4.9. First, we highlight

the fact that, due to the presence of high-degree variables (which form logarithmically-sized

connected components), current techniques seem unable to conclude η-spectral independence

with η = O(1). This has also been the case in recent work on 2-spin systems on random

graphs [17], where instead correlation decay is exploited to prove η-spectral independence for

some η = o(log n). Here, our η-spectral independence bound for η = ok(log n) will be based on

an appropriate coupling. Note, in light of Lemma 4.8, η = O(log n) is good enough for proving

polynomial mixing time of the uniform-block Glauber dynamics, but we need the improved

bound of Lemma 4.9 in order to conclude the following fast mixing-time result from Lemma 4.8

(as illustrated Section 4.6).

Lemma 4.10. There is a function k0(θ) = Θ(log(1/θ)) such that, for any θ ∈ (0, 1), for any

integer k ≥ k0(θ) and any density α with α ≤ 20.039k the following holds. W.h.p. over the choice

of the random k-CNF formula Φ = Φ(k, n, ⌊αn⌋), for any (r0− δ, r0, r0, 2r0)-marking (Vm,Va,Vc)
of Φ and for ρ = ⌈2−k−1|Vm|⌉, the ρ-uniform-block Glauber dynamics for updating the marked

variables has mixing time Tmix(ρ, ε/2) ≤ T := ⌈22k+3nθ log 2n
ε2
⌉.

Lemma 4.10 is stated for the block size ρ = ⌈2−k−1|Vm|⌉, but it could be proved more

generally when ρ = c|Vm| and c ∈ (0, 1). The fact that ρ ≤ |Vm|/2k in the statement will be

relevant in implementing efficiently the dynamics, discussed in Section 4.1.3.

We remark that the more restrictive density threshold α ≤ 2r0k/3/k3 in the statement of

Lemma 4.9 arises in the union bound given in the proof of this lemma, and that for large enough

k we have 20.039k ≤ 2r0k/3/k3, the former being the density threshold given in Lemma 4.10 and

Theorem 1.8.

Our approach to prove η-spectral independence significantly differs from those that in two-

spin systems, where it is enough to study sum of influences over trees (thanks to the tree of

self-avoiding walks) and exploit decay of correlations in this setting (very roughly, the further

away two vertices are in the tree, the smaller the influence that one vertex has in the other).

Here we relate influences to the structure of the dependency graph GΦ by running a coupling

process on the auxiliary variables, and we state this connection in the upcoming Lemma 4.40.

First we define more formally the dependency graph GΦ.

Definition 4.11 (GΦ). Let Φ = (V, C) be a k-CNF formula. We define the graph GΦ as follows.

The vertex set of GΦ is C and two clauses c1 and c2 are adjacent if and only if var(c1)∩var(c2) ̸= ∅.
A set C ⊆ C is connected if C is connected in the graph GΦ. We say that two variables u and v

are connected in Φ if there is a path c1, c2, . . . , cℓ in GΦ with u ∈ var(c1) and v ∈ var(cℓ).

Let u ∈ Vm, S ⊂ Vm and Λ: S → {F,T}. The aim of the coupling process is bounding

the sum
∑

v∈Vm\(S∪{u})|IΛ(u → v)| in terms of the expected size of a connected set of failed

clauses, where the expectation is over the choices made in the coupling process. We refer to

Section 4.6 for a definition of failed clauses, as it is not relevant in this discussion. Here we give

a brief overview of how the coupling process on the auxiliary variables works. First, we start

Page 145 of 212

Chapter 4. Fast sampling of satisfying assignments from random k-SAT

with two assignments X = Λ ∪ (u 7→ T) and Y = Λ ∪ (u 7→ F), where Λ ∪ (u 7→ ω) denotes

the assignment defined on S ∪ {u} that agrees with Λ on S and sends u to ω. The process

progressively extends X and Y on some auxiliary variables v1, v2, . . . following the optimal

coupling between the marginals PrµΩ(v 7→ ·|X) and PrµΩ(v 7→ ·|Y), see Section 4.6 for the

definition of optimal coupling. The main property of this process is that with high probability

over the choices made, at some point the graphs GΦX and GΦY factorise in small connected

components in spite of the presence of bad variables and, on top of that, ΦX and ΦY share most

of these connected components. Then we can bound influences between marked variables by

analysing the connected components where ΦX and ΦY differ, which turn out to be poly(k) log n

in size after enough steps of the process.

One of the key ideas behind our analysis is exploiting the fact that, in the random k-SAT

model, w.h.p. over the choice of the random formula Φ, any logarithmic-sized set of clauses Z

that is connected in GΦ has constant tree-excess, that is, the number of edges connecting a pair

of clauses in Z is |Z|+ O(1). This saves a factor of ∆r0−δ in the spectral independence bound

by ensuring that there is a large independent set of clauses in the set of failed clauses. We also

obtain improved analysis by restricting the coupling process to auxiliary variables. This enables

us to get exponentially small bounds (in k) on the influences between marked variables, which

leads to our (2−(r0−δ)k log n)-spectral independence result.

4.1.3 Analysis of the connected components of ΦΛ

In this section we deal with the third challenge mentioned at the beginning of Section 4.1: can we

determine the transition probabilities of the Glauber dynamics so that we can actually simulate

this Markov chain? In fact, simulating the single-site Glauber dynamics on the marked variables

was one of the main challenges even in the bounded-degree case. In that case this was resolved

using a method that is restricted to the bounded-degree setting (and whose bottleneck is the

analysis of a rejection sampling procedure). A different procedure is required for the random

k-SAT setting.

One of the key ideas to simulate this chain is starting the chain on an assignment X0 : Vm →
{F,T} drawn from the uniform distribution over all assignments of Vm. Since the distribution

µΩ|Vm
is (1/k)-uniform (Proposition 4.5), the transition probabilities of the Glauber dynamics

are close to uniform. This allows us to show that the probability distribution of the assignment

Xt that is output by the uniform-block Glauber dynamics after t steps is also (1/k)-uniform

(Corollary 4.24), which will be important in what follows.

In order to run the ρ-uniform-block Glauber dynamics we need to be able to sample from the

distribution µΩΛ for any set S ⊆ Vm with |S| = ρ and any assignment Λ: Vm \ S → {F,T} that

arises. Unless we can restrict Λ, sampling from µΩΛ could potentially be as hard as sampling

from µΩ. Fortunately for us, the assignment Λ is not completely arbitrary; Λ is determined

by the random choice of S and the current state of the Glauber dynamics (which follows a

(1/k)-uniform distribution as discussed above). We show that we can efficiently sample from µΩΛ

Page 146 of 212

Chapter 4. Fast sampling of satisfying assignments from random k-SAT

w.h.p. over the choice of Λ. An important observation is that we can efficiently sample from µΩΛ

when the connected components of GΦΛ are logarithmic in size, for example, by applying brute

force. This raises the following question: does GΦΛ break into small connected components w.h.p.

over the choice of Λ? Lemma 4.12 gives a positive answer when 0 ≤ ρ ≤ |V |/2k. Here the reader

can see V as the set of marked variables. The proof of Lemma 4.12 exploits sparsity properties

of logarithmic-sized connected sets of clauses in random formulae in conjunction with the fact

that µ is (1/k)-uniform. Lemma 4.12 is stated with an added layer of generality, as we will also

apply it to analyse the geometry of the space of satisfying assignments of Φ with r = r1 − δ. In

our sampling algorithm setting we consider r = r0 − δ. Recall that r0 = 0.117841, r1 = 0.227092

and δ = 0.00001. The restriction r ∈ (2δ, 1/(2 log 2)] in the statement of Lemma 4.12 is not

optimal, but it is enough for our purposes.

Lemma 4.12. Let r ∈ (2δ, 1/(2 log 2)]. There is an integer k0 ≥ 3 such that, for any integer

k ≥ k0, any density α ≤ 2(r−2δ)k, and any real number b with a := 2k4 < b, the following holds

w.h.p. over the choice of Φ = Φ(k, n, ⌊αn⌋).
Let L be an integer satisfying a log n ≤ L ≤ b log n. Let V be a set of good variables of

Φ that is (r + δ)-distributed (Definition 4.3), let µ be a (1/k)-uniform distribution over the

assignments V → {F,T}, and let ρ be an integer with 0 ≤ ρ ≤ |V |/2k. Consider the following

experiment. First, draw S ⊆ V from the uniform distribution τ over subsets of V with size

ρ. Then, sample an assignment Λ from µ|V \S. Denote by F the event that that there is a

connected set of clauses Y of Φ with |Y | ≥ L such that all clauses in Y are unsatisfied by Λ.

Then PrS∼τ

(
PrΛ∼µ|V \S

(F) ≤ 2−δkL
)
≥ 1− 2−δkL.

Proof sketch. The proof is in Section 4.4. For the sake of exposition, we first sketch the proof in

the case ρ = 0, where the conclusion in the statement reads PrΛ∼µ|V (F) ≤ 2−δkL. At the end of

this proof sketch we explain how we extend the proof to any ρ with 0 ≤ ρ ≤ |V |/2k.

The first step is exploiting local sparsity properties of random k-CNF formulae to find many

variables from V in any sufficiently large connected set of clauses. Our sparsity results hold for

connected sets of clauses with size at least 2k4 log n, and let us conclude the following result

(stated as Lemma 4.28 in Section 4.4): w.h.p. over the choice of Φ, for every connected set of

clauses Z ⊆ C we have

if 2k4 log(n) ≤ |Z| ≤ b log(n), then |var(Z) ∩ V | ≥ rk|Z|. (4.3)

The proof of Lemma 4.28 counts the variables from V in Z by using the fact that Z does

not contain many bad clauses (Lemma 4.15, which gives the restriction on r) and the fact

that there are not many edges joining clauses in Z. In fact, for such a set Z, we show that

the number of edges is of order |Z|+ O(1), that is, Z has constant tree-excess (Lemma 4.26).

We also need the following result on random k-CNF formulae. For each clause c ∈ C, let

Z(c, L) = {Z ⊆ C : c ∈ Z,Z is connected in GΦ, |Z| = L}. Then, w.h.p. over the choice of

Φ, [49, Lemma 40] shows that, as long as L ≥ log n,

for any clause c ∈ C we have |Z(c, L)| ≤ (9k2α)L. (4.4)

Page 147 of 212

Chapter 4. Fast sampling of satisfying assignments from random k-SAT

Once we have established (4.3) and (4.4), the proof exploits the fact that µ is close to the uniform

distribution. First, we introduce some notation. Let L be an integer with a log n ≤ L ≤ b log n.

Let S = ∅ as we are dealing with the case ρ = 0. For c ∈ C and Z ∈ Z(c, L), we denote by

E1(Z, S) the event that none of the clauses of Z are satisfied by assignment Λ (Definition 4.4),

where Λ is drawn from µ|V \S , see Definition 4.6. We keep track of S in the notation here as

this is relevant in the general case. The first observation is that the event F from the statement

satisfies F =
⋃

c∈C,Z∈Z(c,L) E1(Z, S). We then claim that for any c ∈ C and Z ∈ Z(c, L) we have

PrΛ∼µ|V \S
(E1(Z, S)) ≤ 2−δkL

|C| · |Z(c, L)|
, (4.5)

so the result would follow from a union bound over c and Z. Let us give some insight on how we

prove (4.5). Let c ∈ C and Z ∈ Z(c, L). The main idea is that, if all clauses in Z are unsatisfied

by Λ then, when we sampled Λ ∼ µ|V \S , for each variable v in var(Z) ∩ (V \ S) we picked the

value that does not satisfy the clauses of Z containing v. Thus, we can bound the probability that

all clauses in Z are unsatisfied as a product, over the variables in var(Z)∩(V \S), of probabilities,

each factor corresponding to the probability that a variable is assigned a certain value (under

some careful conditioning, see the proof in Section 4.4 for details). Since the distribution µ is

(1/k)-uniform, each one of these factors can be bounded by exp(1/k)/2, obtaining

PrΛ∼µ|V \S
(E1(Z, S)) ≤

(
1

2
exp

(
1

k

))|var(Z)∩(V \S)|
. (4.6)

In (4.3) we gave a lower bound on |var(Z) ∩ V |, which can be applied in conjunction with (4.4)

to conclude, after some calculations, that the bound given in (4.5) holds.

The case ρ > 0 is more technical and one has to be more careful in these calculations. We

show that (4.5) holds when S does not contain many variables in var(Z)∩V . A slightly different

argument is needed when going from (4.6) to (4.5); here we have to bound |var(Z) ∩ (V \ S)|
instead of |var(Z)∩V |. It turns out that, as long as the bound |var(Z)∩V ∩S| ≤ |var(Z)∩V |/k
holds, the calculations to go from (4.6) to (4.5) also hold in this setting. Finally, we show

that the probability that |var(Z) ∩ V ∩ S| ≤ |var(Z) ∩ V |/k occurs when picking S is at least

1− 2δkL. The proof of this fact is purely combinatorial, and requires the hypothesis ρ ≤ |V |/2k,

see Section 4.4 for details.

Once we have established Lemma 4.12, we can use it to implement the ρ-uniform-block

Glauber dynamics on the marked variables for 0 < ρ ≤ |Vm| and complete our sampling algorithm,

which we explicitly state in Section 4.1.4.

Before concluding this section, we mention how we apply Lemma 4.12 to analyse the geometry

of the space of satisfying assignments of Φ in order to conclude the O(log n)-connectivity and

O(log n)-looseness results given in Theorems 1.10 and 1.12. First, we need the following definition.

Definition 4.13 (HΦ). Let Φ = (V, C) be a k-CNF formula. We define the graph HΦ as follows.

The vertex set of HΦ is V and two variables v1 and v2 are adjacent in HΦ if there is a clause

c ∈ C with v1, v2 ∈ var(c).

Page 148 of 212

Chapter 4. Fast sampling of satisfying assignments from random k-SAT

We apply Lemma 4.12 with r = r1 − δ and a density α ≤ 2(r1−3δ)k/k3. For an (r, r1, 0, r1)-

marking (Vm, ∅,Vc) of Φ, we let V = Vm and µ = µΩ|Vm
. In this setting, for ρ = 0, Lemma 4.12

allows us to conclude that, w.h.p. over the choice of Λ ∼ µΩ|Vm
, the graph GΦΛ consists of

connected components with size at most O(log n). Thus, the connected components of HΦΛ

have size at most O(log n) as each clause contains at most k variables. This leads to the main

idea behind the proof of Theorem 1.10: we can construct O(log n)-paths between satisfying

assignments by progressively updating the variables in each one of the connected components

of HΦΛ . As an example, let E1, E2, . . . , Et be these connected components and let σ1 and σ2

be two satisfying assignments that agree with Λ on Vm. Then we can find an O(log n)-path

σ1 = ζ0 ↔ ζ1 ↔ · · · ↔ ζt = σ2 as follows: the assignment ζj is the satisfying assignment that

agrees with Λ, agrees with σ1 on the variables in V \
(⋃j

i=1 Ej
)

and agrees with σ2 on the

variables in
⋃j

i=1 Ej . The case when σ1 and σ2 differ on some marked variables builds on the

same idea though it is more technical and requires applying Lemma 4.12 with ρ = 1. We refer

to Section 4.8.1 for this argument and the proof of Theorem 1.10.

The fact that the connected components of HΦΛ are O(log n) in size with high probability

over Λ ∼ µΩ|Vm
is also related to the looseness of the formula Φ. Let v ∈ V \ Vm. For any

satisfying assignment σ that agrees with Λ on the marked variables, we can construct a satisfying

assignment τ with τ(v) ̸= σ(v) and ∥σ − τ∥1 = O(log n) by updating the variables in the

connected component of v in HΦΛ , provided that there is a way to satisfy this connected

component when giving v the value τ(v). In Section 4.8.2 we formalise this idea and give all the

details of this argument to prove Theorem 1.12.

4.1.4 The sampling algorithm

To complete this proof outline, we explicitly describe Algorithm 1, our algorithm for sampling

satisfying assignments of k-CNF formulae. The algorithm uses a method Sample(ΦΛ, S) to

sample an assignment τ : S → {F,T} from the distribution µΩΛ |S . This method exploits the fact

that logarithmic-sized connected set of clauses have constant tree-excess, which does not hold

in the bounded-degree case. This tree-like property enables us to efficiently sample satisfying

assignments on the connected components of ΦΛ by a standard dynamic programming argument,

see Section 4.5. Lemma 4.14 is our main result on Sample(ΦΛ, S).

Lemma 4.14. There is an integer k0 ≥ 3 such that, for any integers k ≥ k0, b ≥ 2k4 and any

density α > 0, the following holds w.h.p. over the choice of Φ = Φ(k, n, ⌊αn⌋). Let V be a subset

of variables and let Λ: V → {F,T} be a partial assignment such that all the connected components

in GΦΛ have size at most b log(n). Then, there is an algorithm that, for any S ⊆ V \ V , samples

an assignment from µΩΛ |S in time O(|S| log n).

The method Sample(ΦΛ, S) is used in Algorithm 1 to implement each step of the ρ-uniform-

block Glauber dynamics on the marked variables. It is also used to extend the assignment of

marked variables computed by the Glauber dynamics to a satisfying assignment of Φ. As a

Page 149 of 212

Chapter 4. Fast sampling of satisfying assignments from random k-SAT

design choice, this method returns error when the connected components of GΦΛ have size larger

than 2k4(1 + ξ) log(n). We remark that the probability that Sample(ΦΛ, S) returns error is

very small when running the Glauber dynamics thanks to Lemma 4.12. We can now introduce

Algorithm 1, which has two parameters θ ∈ (0, 1) and ξ ≥ 1 as in Theorem 1.8.

Algorithm 1 The approximate sampling algorithm for satisfying assignments of random k-CNF

formulae.

Input: A k-CNF formula Φ = (V, C) with n variables

1: Compute the sets of bad/good variables and bad/good clauses for Φ as in Proposition 4.2.

2: Let ε = n−ξ. Compute an (r0− δ, r0, r0, 2r0)-marking (Vm,Va,Vc) for Φ as in Proposition 4.5

(see Lemma 4.21 for the algorithm, use p = ε/4). This succeeds with probability at least

1− ε/4. If this does not succeed, the algorithm returns error.

3: For each v ∈ Vm, sample X0(v) ∈ {F,T} uniformly at random.

4: for t from 1 to T := ⌈22k+3nθ log 2n
ε2
⌉ do

5: Choose uniformly at random a set of marked variables S ⊆ Vm with size ρ := ⌈2−k−1|Vm|⌉.
6: Let Λt be the assignment Xt−1 restricted to Vm \ S.

7: Y ← Sample(ΦΛt , S).

8: Xt ← Λt ∪ Y .

9: end for

10: Y ← Sample(ΦXT ,Va ∪ Vc).
11: return XT ∪ Y .

We remark here that Algorithm 1 only works for large enough k, and this hypothesis will be

used several times in our arguments. The quantity T defined in this algorithm corresponds to

the mixing time of the ρ-uniform-block Glauber dynamics given in Lemma 4.10.

4.1.5 Organisation of the rest of this chapter

The rest of this chapter is organised as follows. In Section 4.2 we introduce a procedure for

determining bad clauses of a k-CNF formula. In Section 4.3 we prove Proposition 4.5 on markings

of random formulae. In Section 4.4 we prove our technical result on the connected components

of ΦΛ, Lemma 4.12. In Section 4.5 we give the method Sample and prove Lemma 4.14. In

Section 4.6 we prove the results on spectral independence stated in Section 4.1.2 of this proof

outline. In Section 4.7 we complete the proof of Theorem 1.8 by combining our mixing time

results (Lemma 4.10), our algorithm to sample from small connected components (Lemma 4.14)

and our result on the size of the connected components of ΦΛ (Lemma 4.12). In Section 4.8

we prove Theorems 1.10 and 1.12 on the geometry of the space of satisfying assignments of Φ.

Finally, in Sections 4.9 and 4.10 we prove three lemmas that are independent of the rest of

this work. More precisely, in Section 4.10 we bound the number of bad clauses in a random

k-CNF formula, both globally and for sufficiently large connected subsets of clauses. Finally, in

Section 4.10 we prove Lemma 4.8 on the uniform-block Glauber dynamics, which follows from

Page 150 of 212

Chapter 4. Fast sampling of satisfying assignments from random k-SAT

combining some result of [29].

4.2 High-degree and bad variables in random CNF formulae

As we noted in Section 1.5 and in our proof outline, one of the keys to sampling satisfying

assignments in the unbounded-degree setting is to “sacrifice” a few variables per clause (treating

them separately in the sampling algorithm) and to (temporarily) remove a small linear number

of clauses that contain these. The point of this is to ensure that the remaining (“good”) clauses

have mostly low-degree variables (at most two bad ones) and also that the rest of the clauses

(the “bad” ones) form small connected components that interact with the good clauses in a

manageable way.

Recall that, for r ∈ (0, 1), high-degree variables were introduced in Definition 4.1 as those

variables with at least ∆r := ⌈2kr⌉ occurrences in the formula. In this work we consider two

possible values for r here, r = r0 − δ and r = r1 − δ, where r0 = 0.117841, r1 = 0.227092 and

δ = 0.00001. The values r0 and r1 arise as solutions of an optimisation problem in Section 4.3

when we establish the markings that we use in our proofs. The marking used in our algorithmic

results requires the more restrictive definition of high-degree variable with r = r0 − δ than

the marking used in our connectivity results with r = r1 − δ. Subtracting δ will make our

calculations easier without affecting our results.

By standard arguments about random graphs, one can determine that, w.h.p. over the choice

of Φ, the number of high-degree variables of Φ is bounded. We want to identify the clauses of

Φ that have at most 2 high-degree variables, since clauses with a lot of high-degree variables

will interfere with our sampling algorithms. This motivates the following construction. The bad

variables and bad clauses of Φ are identified by running the process given in Algorithm 2. Here

Vbad(r) denotes the set of bad variables and Cbad(r) denotes the set of bad clauses.

Algorithm 2 Computing bad variables and bad clauses for r ∈ (0, 1)

Input: A k-CNF formula Φ = (V, C)
1: V0(r) ← the set of high-degree variables, i.e., variables with at least ∆r =

⌈2rk⌉ occurrences in Φ.

2: C0(r)← the set of clauses with at least 3 variables in V0(r)

3: i← 0

4: while i = 0 or Vi(r) ̸= Vi−1(r) do

5: i← i + 1

6: Vi(r)← Vi−1(r) ∪ var(Ci−1(r))

7: Ci(r)← {c ∈ C : |var(c) ∩ Vi(r)| ≥ 3}
8: end while

9: Cbad(r)← Ci(r) and Vbad ← Vi(r)

10: return Vbad(r), Cbad(r)

Page 151 of 212

Chapter 4. Fast sampling of satisfying assignments from random k-SAT

We define the good clauses of Φ as Cgood(r) = C \ Cbad(r) and the good variables of Φ as

Vgood(r) = C \ Vbad(r). The sets Vgood(r),Vbad(r), Cgood(r), Cbad(r) depend on the parameter

r ∈ (0, 1). The value of r here will be r0−δ except in Section 4.8 where we prove our connectivity

results for r = r1 − δ, and in some of the marking results in Section 4.3. We will use the

observations given in Proposition 4.2 several times in this work.

Proposition 4.2. Let Φ = (V, C) be a k-CNF formula. For any c ∈ Cgood(r), we have

|var(c) ∩ Vbad(r)| ≤ 2, and for any c ∈ Cbad(r), we have |var(c) ∩ Vgood(r)| = 0. Moreover, every

good variable has degree less than ∆r. There is a procedure to determine Cbad that runs in time

O(n + mk), where n is the number of variables of Φ and m is the number of clauses of Φ.

Proof. In this proof we briefly explain the implementation of Algorithm 2. First, for each clause

c we keep track of the number of bad variables in var(c), denoted bad(c). We also have a stack of

bad variables SV that are yet to be processed by the algorithm. At the start of the algorithm, we

set SV ← V0. While SV is non-empty, we take the variable v on the top of the stack and increase

bad(c′) by 1 for those clauses c′ where v appears. If any of these updates gives bad(c′) ≥ 3, we

add var(c′) to the stack SV , set the variables in var(c′) as bad and set the clause c′ as bad. At

the end of this process, SV is empty and we have found all the bad variables and bad clauses of

Φ. As every variable is added to the stack at most once and the list bad(·) is updated at most

mk times (once per literal in Φ), the running time is O(n + mk).

In our work we need a variation of result of [49] that controls the number of bad clauses in

connected subgraphs of GΦ. We state this result in Lemma 4.15 and prove it in Section 4.9.

Lemma 4.15 (Modified version of [49, Lemma 8.16]). Let r ∈ (0, 1/(2 log 2)]. There is a positive

integer k0 such that for any integer k ≥ k0, ∆r = ⌈2rk⌉, and any density α with α ≤ ∆r/k
3, the

following holds w.h.p. over the choice of Φ = Φ(k, n, ⌊αn⌋). For every connected set of clauses

Y in GΦ such that |var(Y)| ≥ 2k4 log n, we have |Y ∩ Cbad(r)| ≤ |Y |/k.

We also need a bound on the number of bad clauses of Φ, which is also proved in Section 4.9.

Lemma 4.16 (Modified version of [49, Lemma 8.12]). Let r ∈ (0, 1/(2 log 2)]. There is a positive

integer k0 such that for any integer k ≥ k0, ∆r = ⌈2rk⌉, and any density α with α ≤ ∆r/k
3, the

following holds w.h.p. over the choice of Φ = Φ(k, n, ⌊αn⌋). We have |Cbad(r)| ≤ 2(α/∆r)n/2k
10

and |Vbad(r)| ≤ 2(k + 1)(α/∆r)n/2k
10
.

Lemmas 4.15 and 4.16 guarantee that, w.h.p. over the choice of Φ, bad clauses are a

minority among all the clauses of Φ. This will be used to show that bad clauses do not affect

significantly the behaviour of our sampling algorithm. We point out that the definitions of

Vgood(r),Vbad(r), Cgood(r) and Cbad(r) given in [49] have r = 1/300 and, in Algorithm 2, use the

condition |var(c) ∩ Vi(r)| ≥ k/10 instead of |var(c) ∩ Vi(r)| ≥ 3

Hence, our definitions of good clauses and good variables are more restrictive. However, it

turns out that, with minor changes, the proof of Lemma 4.15 given in [49] can be extended to

our setting. These changes are explained in Section 4.9.

Page 152 of 212

Chapter 4. Fast sampling of satisfying assignments from random k-SAT

4.3 Identifying a set of “marked” variables with good marginals

A property that is useful for sampling satisfying assignments is having a high proportion of

variables in each good clause such that the marginals of these variables are fairly close to 1/2.

That is, having variables which are roughly equally likely to be true or false in a random satisfying

assignment. The marginals of high-degree variables do vary. However, even in the random

k-SAT model it turns out that there are enough variables with marginals near 1/2. Following

the basic approach of Moitra [93], we partition the good variables of a random k-CNF formula

into types. Here we have three types of variables (instead of two): marked, auxiliary and control

variables. The high-level goal is to do this in such a way that each clause has a good proportion

of each one of these types of variables. We call this construction a marking, see Definition 4.3 of

the proof outline for the precise definition. For such a marking, we will show that as long as

the control variables are left unassigned/unpinned, the marginals of the marked and auxiliary

variables are all near 1/2 as a consequence the Lovász local lemma [42]. We first set up the

notation and results that we need.

It is not difficult to show that in the random k-SAT model, w.h.p. over the choice of the

formula Φ, two distinct clauses share at most 2 variables (see Lemma 4.17). Previous work on

counting/sampling satisfying assignments of bounded degree formulae had to analyse subsets

of disjoint clauses in order to deal with the fact that small sets of clauses might share most of

their variables. The restriction to disjoint subsets imposes further restrictions on the maximum

degree of the formula and on the density of the formula in the random k-SAT model setting.

Here we manage to exploit Lemma 4.17 to avoid these restrictions.

Lemma 4.17. For any k ≥ 3 and any density α > 0 (possibly depending on k), the following

holds w.h.p. over the choice of the random k-CNF formula Φ = Φ(k, n, ⌊αn⌋). We have

|var(c)| ≥ k − 1 and |var(c) ∩ var(c′)| ≤ 2 for all c, c′ ∈ C with c ̸= c′.

Proof. First, let us prove that, for k ≥ 3, w.h.p. over the choice of Φ, |var(c)| ≥ k−1 for all c ∈ C.
Let us denote by Rc the event that a clause c has at least two repetitions among its variables, that

is, |var(c)| ≤ k − 2. We claim that Pr(Rc) ≤ q(k)/n2, where q =
(
k
3

)
+ k(k − 1)(k − 2)(k − 3)/4.

To prove this statement we note that the probability that a variable appears at least 3 times

in c is at most
(
k
3

)
nk−2/nk, and the probability that two distinct variables are repeated in c is

at most p(k)n(n− 1)nk−4/nk for p(k) = k(k − 1)(k − 2)(k − 3)/4. Hence, by adding up both

cases, we find that Pr(Rc) ≤ q(k)/n2, and Pr(
⋃

c∈CRc) ≤ q(k)m/n2 ≤ q(k)α/n = O(1/n), so

the result follows.

Let c, c′ ∈ C with c ̸= c′. We study |var(c) ∩ var(c′)|,

Pr
(∣∣var(c) ∩ var(c′)

∣∣ ≥ 3
)
≤ n(n− 1)(n− 2)n2(k−3)(k(k − 1)(k − 2))2

n2k
≤ k6

n3
.

Therefore, the probability that there is a pair of clauses c, c′ with |var(c)∩var(c′)| ≥ 3 is bounded

from above by m(m−1)
2

k6

n3 ≤ α2

2
k6

n = O
(
1
n

)
, which finishes the proof.

Page 153 of 212

Chapter 4. Fast sampling of satisfying assignments from random k-SAT

We will use the asymmetric version of the Lovász local lemma (LLL), proved by Lovász and

originally published in [110]. Before stating this result, let us introduce some notation. Let

P be a finite collection of mutually independent random variables. Let B an event that is a

function of the random variables in P . Let A be a collection of events that are a function of the

random variables in P. We define Γ(B) as the set of events A ∈ A such that A ̸= B and A and

B are not independent. In this setting, PrP (B) is the probability that the event B holds when

sampling all the random variables in P.

Theorem 4.18 (Asymmetric Lovász local lemma, [64, Theorems 1.1 and 2.1]). Let P be a finite

collection of mutually independent random variables. Let A be a collection of events that are a

function of the random variables in P. If there exists a function x : A → (0, 1) such that, for all

A ∈ A, we have

PrP (A) ≤ x(A)
∏

N∈Γ(A)

(1− x(N)) ,

then PrP
(⋂

A∈AA
)
> 0. Furthermore, for any event B that is a function of the random

variables in P, we have

PrP

(
B
∣∣∣⋂

A∈A
A
)
≤ PrP (B)

∏
A∈Γ(B)

(
1− x(A)

)−1
.

We are going to apply the LLL in Lemma 4.21 to find an (r0 − δ, r0, r0, 2r0)-marking of Φ

(Definition 4.3), w.h.p. over the choice of the random formula, for some appropriate r0 ∈ (0, 1).

Before proving Lemma 4.21, let us highlight how strong the properties of a marking are. First,

the fact that a set of marked variables is ρ-distributed (Definition 4.3) will allow us to find,

w.h.p. over the choice of Φ, a good amount of marked variables in any set of clauses, even if

the set includes bad clauses, see Lemma 4.28 for a precise statement. This result is an essential

ingredient in our proofs. Secondly, as long as the control variables are left unassigned, the

marginals of the marked and auxiliary variables will be near 1/2 as a consequence of the LLL, as

we show later in this section (Lemma 4.23). We remark that, in the definition of ρ-distributed

set of variables, we ask for |var(c) ∩ V | ≥ ρ(k − 3) instead of |var(c) ∩ V | ≥ ρk to account for

the fact that w.h.p. a good clause has at most a repeated variable (Lemma 4.17) and at most

two bad variables (Proposition 4.2), which will come up in the proofs presented in this section.

First, we need the following definition.

Definition 4.19 (Φgood(r), Φbad(r)). Let r ∈ (0, 1). Let Φ = (V, C) be a k-CNF formula. Let

Φgood(r) = (Vgood(r), Cgood(r)) be the CNF formula obtained by taking the good clauses of Φ and

ignoring the bad variables appearing in them. Let Φbad(r) be the k-CNF formula with variables

Vbad(r) and clauses Cbad(r).

Note that in GΦgood(r) two clauses c1 and c2 in Cgood are adjacent if and only if var(c1) ∩
var(c2)∩ Vgood ̸= ∅. By definition of good variables, the maximum degree in GΦgood(r) is at most

k(∆r − 1), which will be important when applying the LLL. We also need the following version

of Chernoff’s bounds.

Page 154 of 212

Chapter 4. Fast sampling of satisfying assignments from random k-SAT

Lemma 4.20 (Chernoff’s bounds - [98, Theorem 2.1 and Corollary 4.1]). Let n ∈ N, p ∈ [0, 1],

and let X1, . . . , Xn be n independent random variables with Xj ∈ {0, 1} and Pr(Xj = 1) = p

for all j = 1, . . . , n. Let X =
∑n

j=1Xj. Then, for any t ∈ (p, 1) and any s ∈ (0, p), we have

Pr (X ≥ tn) ≤ e−D(t,p)n and Pr (X ≤ sn) ≤ e−D(s,p)n, where, for reals x, y ∈ (0, 1), D(x, y) :=

x log (x/y) + (1− x) log ((1− x)/(1− y)) is the Kullback-Leibler divergence.

We can now state the main result of this section. The Lovász local lemma ideas in the proof

of Lemma 4.21 are standard in the literature since the work of Moitra [93] but the quantities

involved are adapted to our setting.

Lemma 4.21. There is a positive integer k0 such that for any k ≥ k0 and any density α

with α ≤ 2(r0−δ)k/k3 the following holds w.h.p. over the choice of the random k-CNF formula

Φ = Φ(k, n, ⌊αn⌋):

1. there exists a partial assignment of bad variables that satisfies all bad clauses;

2. there exists an (r0 − δ, r0, r0, 2r0)-marking of Φ. Furthermore, for any p ∈ (0, 1), such

an (r0 − δ, r0, r0, 2r0)-marking can be computed with probability at least 1 − p in time

O(n log(1/p)).

Proof. In this proof we set r = r0 − δ. We note that for any k ≥ 4 our density α ≤ 2(r0−δ)k/k3

is below the threshold ck > 1.3836 · 2k/k established in [46, Theorem 1.3]. For densities below

this threshold, w.h.p. over the choice of Φ, there is a satisfying assignment for Φ. When Φ is

satisfiable, we claim that there is an assignment of the bad variables that satisfies all bad clauses.

Indeed, all the variables in bad clauses are bad (Proposition 4.2) and, thus, the restriction of a

satisfying assignment to Vbad(r) must satisfy all the bad clauses. In the rest of this proof we

show that assertion 2 also holds.

In view of Lemma 4.17, we may assume that |var(c)| ≥ k − 1 for all c ∈ C. Let us find

the (r, r0, r0, 2r0)-marking (Vm,Va,Vc). If all clauses are bad, then we set Vc = V, Vm = ∅ and

Va = ∅. This is trivially an (r, r0, r0, 2r0)-marking for Φ. In the rest of the proof we assume that

there are good variables. We study the following probability space. For each good variable v, we

set v as “marked” with probability β ∈ (0, 1/2), “auxiliary” with probability β and “control”

with probability 1 − 2β. This decision is made independently for each good variable. Each

bad variable is set as “control”. Let P be the set {Pv : v ∈ Vgood(r)}, where Pv is the random

choice made in this experiment for v. Let Vm be the set of marked variables, let Va be the set of

auxiliary variables, and let Vc be the set of control variables obtained by running this experiment.

For each clause c ∈ Cgood(r), let Ac be the event that c has less than r0(k − 3) marked variables

or less than r0(k − 3) auxiliary variables or less than 2r0(k − 3) good control variables. We

are going to apply the LLL on the formula Φgood(r) so as to show that Pr(
⋂

c∈Cgood(r)Ac) > 0.

For each c ∈ Cgood(r), in view of Proposition 4.2 and the fact that |var(c)| ≥ k − 1, we have

|var(c) ∩ Vgood(r)| ≥ k − 3. Hence, we can apply the Chernoff bound given in Lemma 4.20 with

n = |var(c) ∩ Vgood(r)|, p = β and s = r0 to obtain, for any choice V ∈ {Vm,Va},

PrP (|var(c) ∩ V | < r0(k − 3)) ≤ e−D(r0,β)(k−3).

Page 155 of 212

Chapter 4. Fast sampling of satisfying assignments from random k-SAT

When V = Vc \ Vbad, n = |var(c) ∩ Vgood(r)|, p = 1− 2β and s = 2r0 we obtain

PrP (|var(c) ∩ V | < 2r0(k − 3)) ≤ e−D(2r0,1−2β)(k−3).

We have chosen r0 to be as large as possible under the restrictions that D(r0, β) ≥ r0 log 2 and

D(2r0, 1− 2β) ≥ r0 log 2. The values β = 0.571027 and r0 = 0.117841 satisfy these restrictions.

We conclude that

PrP (Ac) ≤ 2 · e−D(r0,β)(k−3) + e−D(2r0,1−2β)(k−3) ≤ 3 · 2−r0(k−3).

Let ∆′ = 2r0(k−3)/(3e2k) and let x(Ac) = 1/(k∆′) for all c ∈ Cgood(r). We check that x satisfies

the condition of the LLL for P and A = {Ac : c ∈ Cgood(r)}. For k ≥ 43, 1/(k∆′) ∈ (0, 1)

and thus x(Ac) ∈ (0, 1) for all c ∈ Cgood(r). We note that Γ(Ac) = {Ac′ : c′ ∈ Cgood(r), c′ ̸=
c, var(c′) ∩ var(c) ∩ Vgood(r) ̸= ∅}. The graph GΦgood(r), given in Definition 4.11, has maximum

degree at most k(∆r − 1), so |Γ(Ac)| ≤ k(∆r − 1) ≤ k∆′, where the latter inequality holds for

large enough k as ∆r = ⌈2rk⌉ and r = r0 − δ. Therefore, we have

x(Ac)
∏

N∈Γ(Ac)

(1− x(N)) ≥ 1

k∆′

(
1− 1

k∆′

)k∆′

≥ 1

e2k∆′ = 3 · 2−r0(k−3), (4.7)

where we used (1− 1/z)z ≥ e−2 for all z ≥ 2 in the second inequality. Thus,

x(Ac)
∏

N∈Γ(Ac)

(1− x(N)) ≥ 3 · 2−r0(k−3) ≥ PrP (Ac) .

We conclude that, by the LLL, PrP

(⋂
c∈Cgood(r)Ac

)
> 0, so there exists a partition (Vm,Va,Vc)

of the variables of Φ such that Vbad(r) ⊆ Vc and each good clause contains at least r0(k − 3)

marked variables, r0(k − 3) auxiliary variables and 2r0(k − 3) good control variables. That is,

(Vm,Va,Vc) satisfies Definition 4.3 for r = r0 − δ, rm = r0, ra = r0, and rc = 2r0. Moreover,

with probability at least 1− δ, this partition can be computed in 4nα∆′k log(1/δ) steps with

the algorithm of Moser and Tardos [97].

We now give the marking result that we use in our connectivity results, which holds for

densities at most 2(r1−δ)k/k3, where r1 = 0.227092. The larger density threshold comes from

the fact that the marking result is less strong – we do not require auxiliary variables nor a high

number of good control variables in every clause.

Lemma 4.22. There is a positive integer k0 such that for any k ≥ k0 and any density α

with α ≤ 2(r1−δ)k/k3 the following holds w.h.p. over the choice of the random k-CNF formula

Φ = Φ(k, n, ⌊αn⌋):

1. there exists a partial assignment of bad variables that satisfies all bad clauses;

2. there exists an (r1 − δ, r1, 0, r1)-marking of Φ. Furthermore, for any p ∈ (0, 1), such an

(r1−δ, r1, 0, r1)-marking can be computed with probability at least 1−p in time O(n log(1/p)).

Page 156 of 212

Chapter 4. Fast sampling of satisfying assignments from random k-SAT

Proof. The proof is analogous to that of Lemma 4.21. Here we explain the main differences.

First, we set r = r1−δ instead of r = r0−δ. The second difference is that we study the following

probability space: each good variable v is set as “marked” with probability β and “control” with

probability 1− β. We let Ac be the event that c has less than r1(k − 3) marked variables or less

than r1(k − 3) good control variables. A Chernoff bound as in the proof of Lemma 4.21 gives

PrP (Ac) ≤ e−D(r1,β)(k−3) + e−D(r1,1−β)(k−3) ≤ 2 · 2−r1(k−3),

where we chose r1 as large as possible so that D(r1, β) ≥ r1 log 2 and D(r1, 1−β) ≥ r1 log 2. The

choices β = 1/2 and r1 = 0.227092 satisfy these restrictions. We let ∆′ = 2r1(k−3)/(3e2k) and

let x(Ac) = 1/(k∆′) for all c ∈ Cgood(r). It remains to check that we can apply the asymmetric

LLL on the formula Φgood(r) to conclude that Pr(
⋂

c∈Cgood(r)Ac) > 0. This was done in equation

(4.7) in Lemma 4.21. We note that the bound given in (4.7) also holds in our current setting

if we replace r0 by r1. We find that x(Ac)
∏

N∈Γ(Ac)
(1− x(N)) ≥ 3 · 2−r1(k−3) ≥ PrP (Ac) and,

thus, there exists a partition (Vm,Va,Vc) of the variables of Φ such that Vbad(r) ⊆ Vc, Va = ∅,
and each good clause contains at least r1(k − 3) marked variables and at least r1(k − 3) good

control variables.

In the remaining of this section we bound the marginals of µΩ (recall that µΩ is the uniform

distribution over the satisfying assignments of the formula Φ, Definition 4.4) on any marked and

auxiliary variable. In fact, we prove the stronger result that the marginal distribution of µΩ on

Vm ∪ Va is ε-uniform, i.e., very close to the uniform distribution, see Definition 4.7. We give a

bound for each one of the markings established in Lemmas 4.21 and 4.22. Here we write Λ1 ∪Λ2

for the combined assignment of Λ1 and Λ2.

Lemma 4.23. Let Φ = (V, C) be a satisfiable k-CNF formula. The following claims hold.

1. Let r = r0−δ and let (Vm,Va,Vc) be a (r, r0, r0, 2r0)-marking of Φ. Then for any satisfying

assignment Λbad of Φbad(r), any assignment Λ: S → {F,T} where S ⊆ Vm ∪ Va, and any

v ∈ Vgood(r) \ S we have

max {PrµΩ (v 7→ F|Λ ∪ Λbad) ,PrµΩ (v 7→ T|Λ ∪ Λbad)} ≤ 1

2
exp

(
1

k2r0k

)
.

In particular, the distribution µΩ|Vm∪Va
is (2−r0k/k)-uniform.

2. Let r = r1 − δ and let (Vm, ∅,Vc) be a (r, r1, ∅, r1)-marking of Φ. Then, for any satisfying

assignment Λbad of Φbad(r), any assignment Λ: S → {F,T} where S ⊆ Vm, and any

v ∈ Vgood(r) \ S we have

max {PrµΩ (v 7→ F|Λ ∪ Λbad) ,PrµΩ (v 7→ T|Λ ∪ Λbad)} ≤ 1

2
exp

(
1

k

)
.

In particular, the distribution µΩ|Vm
is (1/k)-uniform.

Page 157 of 212

Chapter 4. Fast sampling of satisfying assignments from random k-SAT

Proof. We prove each one of the claims separately. The proofs are analogous so for the second

claim we only highlight the differences in the proof.

1. Here r = r0 − δ. Let Λbad be an assignment of bad variables that satisfies all bad clauses.

Let S ⊆ Vm ∪ Va, let Λ be an assignment of S to {F,T}, and let v ∈ Vgood(r) \ S. We

note that PrµΩτ (·) = PrµΩ (· |τ) for any assignment τ of some variables. In light of this

observation, we are going to prove that

max
{

Prµ
ΩΛ∪Λbad

(v 7→ F) ,Prµ
ΩΛ∪Λbad

(v 7→ T)
}
≤ 1

2
exp

(
1

k2r0k

)
. (4.8)

We apply the LLL to the formula Φ′ := ΦΛ∪Λbad as follows. Let V ′ and C′ be the sets

of variables and clauses of Φ′. Note that, V ′ ⊆ Vgood(r), C′ ⊆ Cgood(r) and GΦ′ is a

subgraph of GΦgood(r) as all bad variables have been assigned a value and all bad clauses

have been satisfied. We set Pv = σ(v) for all v ∈ V ′, where σ : V ′ → {F,T} is chosen

uniformly at random from the set of assignments V ′ → {F,T}, and P = {Pv : v ∈ V ′}.
We define the set A as the set containing for all c ∈ C′ the event Ac = “the clause c

is not satisfied by the random assignment σ”. By the definition of (Vm,Va,Vc), there

are at least 2r0(k − 3) good control variables in c. Since good control variables are not

assigned a value by Λ ∪ Λbad and, thus, they are in V ′, we have PrP (Ac) ≤ 2−2r0(k−3).

Recall that ∆r = ⌈2(r0−δ)k⌉ (Definition 4.1). Let ∆′ = 22r0(k−3)/(e2k) and let x(Ac) = 1
k∆0

for all c ∈ C′. Let us show that x satisfies the LLL condition in this setting. In view of

Γ(Ac) = {Ac′ : c′ ∈ C′, c′ ̸= c, var(c) ∩ var(c′) ∩ V ′ ̸= ∅}, which can be identified with a

subset of the neighbours of c in GΦgood(r), and |Γ(Ac)| ≤ k∆r ≤ k∆′ for large enough k,

we find that

x(Ac)
∏

N∈Γ(Ac)

(1− x(N)) ≥ 1

k∆′

(
1− 1

k∆′

)k∆′

≥ 1

e2k∆′ = 2−2r0(k−3) ≥ PrP (Ac) ,

where we used (1 − 1/z)z ≥ e−2 for all z ≥ 2. Let A = {v 7→ T} := {σ : V ′ →
{F,T} with σ(v) = T}. In Φ′, we have Γ(A) = {Ac : c ∈ C′, v ∈ var(c)}, so |Γ(A)| < ∆r.

By the LLL, we obtain

PrP

(
v 7→ T

∣∣∣⋂
c∈C′

Ac

)
≤ 1

2

∏
N∈Γ(A)

(
1− x(N)

)−1 ≤ 1

2

(
1− 1

k∆′

)−(∆r−1)

.

For x > 1, we have (1− 1/x)−1 = 1 + 1/(x− 1) ≤ exp(1/(x− 1)). We find that

PrP

(
v 7→ T

∣∣∣⋂
c∈C′

Ac

)
≤ 1

2
exp

(
∆r − 1

k∆′ − 1

)
≤ 1

2
exp

(
1

k2r0k

)
,

where in the latter inequality we used (p− j)/(q − j) ≤ p/q for all 0 < j < p ≤ q and the

fact that ∆r = ⌈2(r0−δ)k⌉ ≤ 2−r0k · 22r0(k−3)/(e2k) = 2−r0k∆′ for large enough k. We note

that Prµ
ΩΛ∪Λbad

(·) = PrP
(
· |
⋂

c∈C′ Ac

)
, which completes the proof of one of the upper

bounds of (4.8). The other upper bound is proved analogously by applying the LLL with

A = {v 7→ F}. Finally, we conclude that the distribution µΩ|Vm∪Va
is (2−r0k/k)-uniform by

the arbitrary choice of Λbad and the law of total probability, see Definition 4.7.

Page 158 of 212

Chapter 4. Fast sampling of satisfying assignments from random k-SAT

2. The proof is analogous. The only changes are r = r1 − δ, ∆′ = 2r1(k−3)/(e2k), and the

fact that, since each good clause has at least r1(k − 3) good control variables, we have

PrP (Ac) ≤ 2−r1(k−3). This time we have x(Ac)
∏

N∈Γ(Ac)
(1− x(N)) ≥ 1

e2k∆′ ≥ PrP (Ac),

which justifies our choice of ∆′. Thus, we can apply the LLL, and the conclusion this time

becomes

PrP

(
v 7→ T

∣∣∣⋂
c∈C′

Ac

)
≤ 1

2
exp

(
∆r − 1

k∆′ − 1

)
≤ 1

2
exp

(
1

k

)
,

where in the latter inequality we used (p− j)/(q − j) ≤ p/q for all 0 < j < p ≤ q and the

fact that ∆r = ⌈2(r1−δ)k⌉ ≤ 2r1(k−3)/(e2k) = ∆′ for large enough k.

The (1/k)-uniform property proved in Lemma 4.23 is remarkably strong: as long as the

control variables are left unassigned, the rest of the variables have marginals close to 1/2, even

if some of the marked and auxiliary variables are pinned / have already been assigned a value.

This property is used several times in this work and will allow us to prove that, for any pinning

of some marked variables, the influences between marked variables are bounded. In the following

corollary we extend Lemma 4.23 to the distributions computed by the Glauber dynamics on the

marked variables.

Corollary 4.24. Let r = r0 − δ. Let Φ = (V, C) be a satisfiable k-CNF formula that has an

(r, r0, r0, 2r0)-marking (Vm,Va,Vc). Let ρ be an integer with 1 ≤ ρ < |Vm|. Let t be a non-negative

integer and let Xt be the (random) assignment obtained after running the ρ-uniform-block Glauber

dynamics on the marked variables for t steps, starting on an assignment X0 that is chosen

uniformly at random. Then the probability distribution of Xt is (2−r0k/k)-uniform.

Proof. Let ε = (2−r0k/k). Let V1, V2, . . . , be a possible choice of sets of marked variables to

be updated when running the ρ-uniform-block Glauber dynamics. We are going to prove that,

conditioning on this choice of sets of variables, the probability distribution of Xt is ε-uniform.

Note that by the law of total probability and the fact that the choice of V1, V2, . . . is arbitrary,

this is enough to conclude the result. We carry out the proof by induction on t. Let πt be the

probability distribution of Xt. As π0 is the uniform distribution over assignments on Vm, the

claim holds for t = 0. Let us now assume that πt−1 is ε-uniform and let us prove that this is

also the case for πt. To show the desired uniformity of πt (cf. Definition 4.7), consider arbitrary

v ∈ Vm and Λ: Vm \ {v} → {F,T}, we need to bound Prπt (v 7→ F|Λ) and Prπt (v 7→ T|Λ). We

distinguish two cases:

• Case v ∈ Vt. By definition of the Glauber dynamics, the values of Xt on Vt are obtained

by sampling from the distribution µΩ conditioned on the restriction of Xt−1 to Vm \ Vt.

Thus, we have Prπt (v 7→ F|Λ) = Prµ
ΩΛ (v 7→ F) since the conditioning involving Λ sets all

the marked variables other than v. As µΩ|Vm∪Va
is ε-uniform by Lemma 4.23, we conclude

that Prπt (v 7→ F|Λ) = Prµ
ΩΛ (v 7→ F) ≤ 1

2 exp(ε). The same bound holds for v 7→ T.

• Case v ̸∈ Vt. If v is not updated in steps 1 through t, then Prπt (v 7→ F|Λ) = Prπ0 (v 7→ F) =

1/2. Otherwise, let j be the largest integer with j < t such that v ∈ Vj . Let Λj be the

Page 159 of 212

Chapter 4. Fast sampling of satisfying assignments from random k-SAT

restriction of Λ to Vm \
⋃

i∈{j+1,j+2,...,t} Vi. By the induction hypothesis, Prπt (v 7→ F|Λ) =

Prπj (v 7→ F|Λj) ≤ (1/2) exp(ε). The same bound holds for v 7→ T.

As both cases are exhaustive, the proof is concluded.

Previous work on counting/sampling satisfying assignments of k-CNF formulae does not

require the use of auxiliary variables, so the marking used is of the form (Vm,Vc). Here auxiliary

variables play an essential role in bounding the influences between marked variables as we

illustrated in Section 4.1. In order for this approach to be successful, we have to show that a

large proportion of the variables are marked. We conclude this section with the following bound

on the size of Vm.

Corollary 4.25. Let r ∈ (0, 1/(2 log 2)). There is an integer k0 such that for any k ≥ k0

and any density α with α ≤ ∆r/k
3 the following holds w.h.p. over the choice of the random

k-CNF formula Φ = Φ(k, n, ⌊αn⌋). For any ρ ∈ (0, 1) and any set of good variables V that is

ρ-distributed we have |V | ≥ (ρ− δ)(kα/∆r)n.

Proof. W.h.p. over the choice of Φ, by Lemma 4.16 we have |Cbad(r)| ≤ 2(α/∆r)n/2k
10 ≤ αn/4k,

so |Cgood(r)| ≥ |C| − αn/4k ≥ αn − 1 − αn/4k = αn(1 − 1/4k) − 1. Since V is ρ-distributed,

counting repetitions, there are at least ρ(k− 3)|Cgood(r)| occurrences of the variables of V in the

good clauses of Φ. Each good variable occurs in at most ∆r good clauses, so we find that

|V | ≥
ρ(k − 3)|Cgood(r)|

∆r
≥ ρ(k − 3)

∆r

(
αn

(
1− 1

4k

)
− 1

)
≥ ρ(k − 4)

∆r
(αn− 1),

which is at least (ρ− δ)(kα/∆r)n for large enough k.

4.4 Analysis of the connected components of ΦΛ

In this section we prove Lemma 4.12, which bounds the size of the connected components

of ΦΛ, where Λ is drawn from a (1/k)-uniform distribution over an (r + δ)-distributed set

of good variables. In order to carry out this proof, we have to understand the structure of

logarithmic-sized sets of clauses of the random k-CNF formula Φ. Section 4.4.1 is devoted to

this purpose. In Section 4.4.2 we apply the results of Section 4.4.1 to obtain a lower bound

of the number of marked/auxiliary variables in logarithmic-sized sets of clauses. Finally, in

Section 4.4.3 we complete the proof of Lemma 4.12.

4.4.1 Logarithmic-sized sets of clauses in the random k-SAT model

A connected graph H = (V,E) has tree-excess c ∈ Z≥0 if |E| = c + |V | − 1. It turns out that,

w.h.p. over the choice of Φ, small connected sets of clauses of Φ have tree-excess bounded by a

quantity that only depends on k and the density α. This property is established in Lemma 4.26

and is essential to our proofs.

Page 160 of 212

Chapter 4. Fast sampling of satisfying assignments from random k-SAT

Lemma 4.26. Let k ≥ 3 be an integer. Let b > 0 and α > 0 be real numbers. W.h.p. over the

choice of the random k-CNF formula Φ = Φ(k, n, ⌊αn⌋), every connected subset of clauses with

size at most b log(n) has tree-excess at most c := max{1, 2b log(ek2α)}.

Proof. Let n be the number of variables and m be the number of clauses of Φ, so m/n ≤ α.

Note that the probability that two clauses of Φ are not disjoint is at most k2/n. Let ℓ ∈
{1, 2, . . . , ⌊b log(n)⌋}. We upper bound the probability that there is a connected subset of clauses

of size ℓ with tree-excess at least c + 1 by(
m

ℓ

)
ℓℓ−2

(
ℓ(ℓ− 1)/2

c + 1

)(
k2

n

)ℓ+c

, (4.9)

where the factors appearing are the following ones:

•
(
m
ℓ

)
is the number of subsets of clauses of size ℓ;

• ℓℓ−2 is the number of trees on ℓ labelled vertices;

•
(
ℓ(ℓ−1)/2

c+1

)
is the number of ways to pick c + 1 pairs of distinct clauses of a set of size ℓ;

•
(
k2/n

)ℓ+c
is an upper bound of the probability that all the edges chosen in the two previous

items appear in the graph GΦ.

We are going to show that the probability given in (4.9) is O(n−c/4), where the hidden constant

only depends on k. If this holds, by a union bound over ℓ ∈ {1, 2, . . . , ⌊b log(n)⌋}, we would find

that the probability that there is a connected subset of clauses of Φ with size at most b log(n)

and tree-excess at least c + 1 is O(b log(n)n−c/4) = o(1). This would complete the proof. Using

the inequality
(
p
q

)
≤ (ep/q)q and m/n ≤ α we can bound (4.9) by

(em
ℓ

)ℓ
ℓℓ−2

(
eℓ(ℓ− 1)/2

c + 1

)c+1(k2

n

)ℓ+c

≤
(em

ℓ

)ℓ
ℓℓ−2

(
eℓ2/2

c + 1

)c+1(
k2

n

)ℓ+c

=

(
e

2c + 2

)c+1(emk2

n

)ℓ(
k2ℓ2

n

)c

≤
(

e

2c + 2

)c+1 (
ek2α

)ℓ(k2ℓ2

n

)c

.

(4.10)

Now we distinguish two cases:

• Case when ek2α ≤ 1 . We have c = 1 by definition. Thus, (4.10) can be further bounded

by (
e

2c + 2

)c+1(k2ℓ2

n

)c

= O

(
(log n)2

n

)
= O

(
n−c/4

)
as we wanted.

• Case when ek2α > 1. Then, as ℓ ≤ b log n and b log(ek2α) ≤ c/2 by definition, we have(
ek2α

)ℓ ≤ (ek2α)b logn = nb log(ek2α) ≤ nc/2.

Page 161 of 212

Chapter 4. Fast sampling of satisfying assignments from random k-SAT

We conclude that (4.10) can be further bounded by(
e

2c + 2

)c+1(k2ℓ2√
n

)c

=

(
e

2c + 2

)c+1(k4ℓ4

n

)c/2

= O
(
n−c/4

)
as we wanted, where we used c > 0.

Recall that in Lemma 4.15 we established that, in sets of clauses that have at least 2k4 log n

variables, the number of bad clauses of Φ is not too large. We aim to apply Lemma 4.15 to

logarithmic-sized sets of clauses. In general, |Y | might be significantly larger than |var(Y)|, so

it is not clear how to apply Lemma 4.15. However, in the random k-CNF formula setting the

following holds.

Lemma 4.27. Let k ≥ 3 be an integer and let a > 0 and α > 0 be real numbers. W.h.p.

over the choice of Φ = Φ(k, n, ⌊αn⌋), for every set of clauses Y with |Y | ≥ a log n, we have

|var(Y)| ≥ a log n.

Proof. Let ℓ := ⌈a log n⌉ − 1 and let m = ⌊αn⌋. We prove the equivalent statement that, w.h.p.

over the choice of Φ, for every set of clauses Y with |var(Y)| ≤ ℓ, we have |Y | ≤ ℓ. We note that

if there is a set of clauses Y with |var(Y)| ≤ ℓ and |Y | > ℓ, then for any subset Y ′ of Y with

|Y ′| = ℓ + 1 we have |var(Y ′)| ≤ |var(Y)| ≤ ℓ. Hence, it suffices to prove that there is no set Y

of clauses with | var(Y)| ≤ ℓ and |Y | = ℓ + 1. We can assume n is large enough so that ℓ ≤ e · n.

Let E be the event that there is a set of clauses Y of size ℓ + 1 and a set of variables X of

size ℓ such that all clauses in Y have all variables in X. Then by a union bound

Pr (E) ≤
(

m

ℓ + 1

)(
n

ℓ

)(
ℓ

n

)(ℓ+1)k

,

where the first factor is the number of sets Y , the second factor is the number of sets X and

the third factor is the probability that all variables in the clauses of Y are in X. From the

well-known bound
(
p
q

)
≤ (ep/q)q, we obtain

Pr (E) ≤
(

em

ℓ + 1

)ℓ+1 (en
ℓ

)ℓ(ℓ

n

)(ℓ+1)k

≤
(em

ℓ

)ℓ+1 (en
ℓ

)ℓ+1
(
ℓ

n

)(ℓ+1)k

≤
(eαn

ℓ

)ℓ+1 (en
ℓ

)ℓ+1
(
ℓ

n

)(ℓ+1)k

=

(
e2α

ℓk−2

nk−2

)ℓ+1

,

which is O(log(n)/n) because k ≥ 3 and ℓ = O(log n).

4.4.2 Number of marked variables in logarithmic-sized sets of clauses

Our results on random k-CNF formulae can now be combined to give a lower bound on the

number of marked / auxiliary variables in logarithmic-sized sets of clauses. We prove this result

in a more general setting by considering a set of good variables V that is r′-distributed for the

formula Φ. The reader can think of V as the set of marked variables or the set of auxiliary

variables for one of the markings established in Section 4.3.

Page 162 of 212

Chapter 4. Fast sampling of satisfying assignments from random k-SAT

Lemma 4.28. Let r ∈ (0, 1/(2 log 2)], r′ ∈ (0, 1) and δ̂ ∈ (0, r). There is a positive integer

k0 such that, for any integer k ≥ k0, any density α ≤ ∆r/k
3 and any real number b with

2k4 < b, the following holds w.h.p. over the choice of Φ = Φ(k, n, ⌊αn⌋). Let V be a set of good

variables that is r′-distributed. Then, for every set of clauses Y that is connected in GΦ such

that 2k4 log(n) ≤ |Y | ≤ b log(n), we have |var(Y) ∩ V | ≥ (r′ − δ̂)k|Y |.

Proof. Let a = 2k4. We apply Lemma 4.15 to find that there is k1 such that for k ≥ k1, w.h.p.

over the choice of Φ, for every set of clauses Y that is connected in GΦ,

if |var(Y)| ≥ a log(n), then |Y ∩ Cbad(r)| ≤ |Y |/k. (4.11)

We apply Lemma 4.27 with a = 2k4 to find that, w.h.p. over the choice of Φ, for every set of

clauses Y , we have

if |Y | ≥ a log(n), then |var(Y)| ≥ a log(n). (4.12)

Finally, for any b > 0, we apply Lemma 4.26, obtaining that, w.h.p. over the choice of Φ, for

every set of clauses Y that is connected in GΦ,

if |Y | ≤ b log n, then Y has tree-excess at most c = max{1, 2b log(ek2α)} = O(1). (4.13)

Let Y be a set of clauses that is connected in GΦ such that a log(n) ≤ |Y | ≤ b log(n). Then,

by (4.12) and (4.11), we have |Y ∩ Cgood(r)| ≥ |Y |(1 − 1/k). By definition of r′-distributed

(Definition 4.3), each good clause has at least r′(k − 3) variables in V . As there are at most

|Y | − 1 + c edges in GΦ joining clauses in Y , see (4.13), and two distinct clauses only share at

most two variables by Lemma 4.17, we have

|var(Y) ∩ V | ≥ r′(k − 3)

(
1− 1

k

)
|Y | − 2(|Y |+ c− 1)

≥ (r′(k − 4)− 2)|Y | − 2(c− 1).

There is k0 ≥ k1 such that for k ≥ k0, we find that, for any set of clauses Y that is connected in

GΦ and has a log(n) ≤ |Y | ≤ b log(n), |var(Y)∩ V | ≥ (r′− δ̂/2)k|Y | − 2(c− 1). Therefore, using

2(c− 1) = O(1), for large enough n we conclude that |var(Y) ∩ V | ≥ (r′ − δ̂)k|Y | and the result

follows.

4.4.3 Proof of Lemma 4.12

We use the following result of [49] on the number of connected sets of clauses in GΦ.

Lemma 4.29 ([49, Lemma 8.6]). Let α > 0. W.h.p. over the choice of Φ = Φ(k, n, ⌊αn⌋), for
any clause c, the number of connected sets of clauses in GΦ with size ℓ ≥ log n containing c is at

most (9k2α)ℓ.

We can now complete the proof of Lemma 4.12. Recall that we will apply this result with

r = r0 − δ or r = r1 − δ, where δ = 0.00001.

Page 163 of 212

Chapter 4. Fast sampling of satisfying assignments from random k-SAT

Lemma 4.12. Let r ∈ (2δ, 1/(2 log 2)]. There is an integer k0 ≥ 3 such that, for any integer

k ≥ k0, any density α ≤ 2(r−2δ)k, and any real number b with a := 2k4 < b, the following holds

w.h.p. over the choice of Φ = Φ(k, n, ⌊αn⌋).
Let L be an integer satisfying a log n ≤ L ≤ b log n. Let V be a set of good variables of

Φ that is (r + δ)-distributed (Definition 4.3), let µ be a (1/k)-uniform distribution over the

assignments V → {F,T}, and let ρ be an integer with 0 ≤ ρ ≤ |V |/2k. Consider the following

experiment. First, draw S ⊆ V from the uniform distribution τ over subsets of V with size

ρ. Then, sample an assignment Λ from µ|V \S. Denote by F the event that that there is a

connected set of clauses Y of Φ with |Y | ≥ L such that all clauses in Y are unsatisfied by Λ.

Then PrS∼τ

(
PrΛ∼µ|V \S

(F) ≤ 2−δkL
)
≥ 1− 2−δkL.

Proof. We apply Lemma 4.28 with our choices of b and with δ̂ = δ to conclude that, w.h.p. over

the choice of Φ, for every connected set of clauses Z ⊆ C we have

if a log(n) ≤ |Z| ≤ b log(n), then |var(Z) ∩ V | ≥ rk|Z|. (4.14)

We also need the following result on random k-CNF formulae. For each clause c ∈ C, let

Z(c, L) = {Z ⊆ C : c ∈ Z,Z is connected in GΦ, |Z| = L}.

Then, w.h.p. over the choice of Φ, Lemma 4.29 shows that, as long as L ≥ log n,

for any clause c ∈ C we have |Z(c, L)| ≤ (9k2α)L. (4.15)

The facts that we have just established using Lemma 4.28 and Lemma 4.29 are all the properties

of random formulae that we need in this proof. The hypothesis α ≤ ∆r is used when calling

Lemma 4.15 in the proof of Lemma 4.28.

Let L be an integer with a log n ≤ L ≤ b log n. First, we are going to fix S ⊆ V with |S| = ρ

and study the event F described in the statement. For c ∈ C and Z ∈ Z(c, L), we denote by

E1(Z, S) the event that Z ⊆ CΛ, where Λ is drawn from µ|V \S , see Definition 4.6. Recall that

Z ⊆ CΛ means that none of the clauses in Z are satisfied by the assignment Λ (Definition 4.4).

We note that F =
⋃

c∈C,Z∈Z(c,L) E1(Z, S). We are going to show that, for large enough n,

PrS∼τ

(
PrΛ∼µ|V \S

(⋃
c∈C,Z∈Z(c,L)

E1(Z, S)

)
> 2−δkL

)
≤ 2−δkL, (4.16)

which is equivalent to the result stated in this lemma. Using the union bound

PrΛ∼µ|V \S

(⋃
c∈C,Z∈Z(c,L)

E1(Z, S)

)
≤
∑

c∈C
PrΛ∼µ|V \S

(⋃
Z∈Z(c,L)

E1(Z, S)

)
,

we note that if PrΛ∼µ|V \S

(⋃
c∈C,Z∈Z(c,L) E1(Z, S)

)
> 2−δkL, then there is a clause c ∈ C with

PrΛ∼µ|V \S

(⋃
Z∈Z(c,L) E1(Z, S)

)
> 2−δkL/|C|. Repeating the same argument, now with a union

bound on Z ∈ Z(c, L), if there is c ∈ C with PrΛ∼µ|V \S

(⋃
Z∈Z(c,L) E1(Z, S)

)
> 2−δkL/|C|,

Page 164 of 212

Chapter 4. Fast sampling of satisfying assignments from random k-SAT

then there is Z ∈ Z(c, L) such that PrΛ∼µ|V \S
(E1(Z, S)) > 2−δkL/(|C| · |Z(c, L)|). We have

shown that the event
[
PrΛ∼µ|V \S

(⋃
c∈C,Z∈Z(c,L) E1(Z, S)

)
> 2−δkL

]
is contained in the event[

∃c ∈ C, Z ∈ Z(c, L) : PrΛ∼µ|V \S
(E1(Z, S)) > 2−δkL(|C| · |Z(c, L)|)

]
. Therefore, the left-hand

side of (4.16) can be upper bounded by

PrS∼τ

(
∃c ∈ C, Z ∈ Z(c, L) : PrΛ∼µ|V \S

(E1(Z, S)) >
2−δkL

|C| · |Z(c, L)|

)
≤

∑
c∈C,Z∈Z(c,L)

PrS∼τ

(
PrΛ∼µ|V \S

(E1(Z, S)) >
2−δkL

|C| · |Z(c, L)|

)
.

(4.17)

We are going to show that, for any c ∈ C and Z ∈ Z(c, L),

PrS∼τ

(
PrΛ∼µ|V \S

(E1(Z, S)) >
2−δkL

|C| · |Z(c, L)|

)
≤
(

2ek · 2−rk
)L

. (4.18)

Before proving (4.18), let us complete the proof assuming that this inequality holds. In light

of (4.15), we have |Z(c, L)| ≤ (9k22(r−2δ)k)L. We use the following observation,

for k > 1/(δ log 2) and for large enough n, |C| ≤ nα ≤ nδk5 log 2 ≤ 2(δ/2)kL. (4.19)

Combining (4.17), (4.18) and (4.19), we conclude that, for large enough k, the left-hand size

of (4.16) is bounded above by∑
c∈C,Z∈Z(c,L)

(
2ek · 2−rk

)L
≤ nα ·

(
9k22(r−2δ)k

)L
·
(

2ek · 2−rk
)L

= nα
(

18ek32−2δk
)L
≤ 2−δkL,

which completes the proof of (4.16), and hence the proof of the lemma, subject to (4.18).

To prove (4.18), we are going to find many S for which PrΛ∼µ|V \S
(E1(Z, S)) ≤ 2−δkL/(|C| ·

|Z(c, L)|) holds. With this in mind, we introduce an event that may occur when sampling S:

E2(Z) :=“the random set S ⊆ V that we select contains fewer

than ℓ := ⌈|var(Z) ∩ V |/k⌉ variables in var(Z) ∩ V ”.
(4.20)

We will show (in equation (4.24)) that the event E2(Z) holds for most choices of S. Before proving

this claim, let us assume that E2(Z) holds for S and let us prove that PrΛ∼µ|V \S
(E1(Z, S)) ≤

2−δkL/(|C| · |Z(c, L)|). If there are c1, c2 ∈ Z and v ∈ var(c1)∩var(c2)∩ (V \S) such that c1 ̸= c2

and the literal of v in c1 is the negation of the literal of v in c2, then at least one of c1 and c2 is

satisfied by the assignment Λ: V \ S → {F,T}. In this case we have PrΛ∼µ|V \S
(E1(Z, S)) = 0.

Let us now consider the complementary case:

for all c1, c2 ∈ Z with c1 ̸= c2 and v ∈ var(c1) ∩ var(c2) ∩ (V \ S),

the literal of v in c1 is the same as the literal of v in c2.
(4.21)

In this setting, we call ω(v) the value of v that does not satisfy the clauses in Z that contain v.

Note that ω(v) is well-defined by assumption (4.21). Let u1, u2, . . . , ut be the list of variables in

Page 165 of 212

Chapter 4. Fast sampling of satisfying assignments from random k-SAT

(var(Z) ∩ V) \ S. We denote by Wj the event that uj is assigned the value ω(uj) by Λ when

sampling Λ ∼ µ|V \S . Then, by definition of Wj , we have

PrΛ∼µ|V \S
(E1(Z, S)) =

t∏
j=1

PrΛ∼µ|V \S

(
Wj

∣∣∣ ⋂j−1

i=1
Wi

)
.

As µ is (1/k)-uniform, we find that PrΛ∼µ|V \S
(Wj |

⋂j−1
i=1 Wi) ≤ (1/2) exp(1/k) for all j ∈

{1, 2, . . . , t}. We conclude that

PrΛ∼µ|V \S
(E1(Z, S)) ≤

(
1

2
exp

(1

k

))t

.

From (4.14) and the fact that E2(Z) holds for S, we have

t = |var(Z)∩(V \S)| ≥ |var(Z)∩V |−⌈|var(Z)∩V |/k⌉ ≥ |var(Z)∩V |(1−1/k)−1 ≥ rL(k−1)−1.

It follows that

PrΛ∼µ|V \S
(E1(Z, S)) ≤

(
1

2
exp

(1

k

))r(k−1)L−1

≤ 2

(
2 · 2−rk exp

(r(k − 1)

k

))L

≤
(

4e · 2−rk
)L

,

where we used that 1/2 ≤ (1/2) exp(1/k) < 1 in the second and third inequality. For large

enough k, we find that(
4e · 2−rk

)L
=

(
9 · 4ek2 · α · 2−rk

9k2α

)L

≤
(

9 · 4ek2 · 2−2δk

9k2α

)L

≤ 2−(3/2)δkL

|Z(c, L)|
≤ 2−δkL

|C| · Z(c, L)|
,

(4.22)

where in the second to last inequality we applied 9 · 4ek2 ≤ 2(δ/2)k and the bound on the size of

Z(c, L) given in (4.15), and in the last inequality we used (4.19). As S was picked as any subset

of V with |S| = ρ such that E2(Z) holds, it follows that

PrS∼τ

(
PrΛ∼µ|V \S

(E1(Z, S)) >
2−δkL

|C| · |Z(c, L)|

)
≤ PrS∼τ

(
E2(Z)

)
. (4.23)

In order to prove (4.18), which finishes the proof, we need to show PrS∼τ

(
E2(Z)

)
≤ (2ek ·2−rk)L.

The probability of E2(Z) can be bounded as follows. Recall that |S| = ρ. If ρ < ℓ, then, by the

definition of E2(Z) in (4.20), we obtain PrS∼τ (E2(Z)) = 1. Otherwise, the number of choices of

S (with |S| = ρ) such that |S ∩ var(Z) ∩ V | ≥ ℓ is at most
(|var(Z)∩V |

ℓ

)(|V |−ℓ
ρ−ℓ

)
. Hence, we have

PrS∼τ

(
E2(Z)

)
≤
(
|V |
ρ

)−1(|var(Z) ∩ V |
ℓ

)(
|V | − ℓ

ρ− ℓ

)
=

ρ(ρ− 1) · · · (ρ− ℓ + 1)

|V |(|V | − 1) · · · (|V | − ℓ + 1)

(
|var(Z) ∩ V |

ℓ

)
≤
(

ρ

|V |

)ℓ(e|var(Z) ∩ V |
ℓ

)ℓ

≤
(

ρ

|V |
ek

)ℓ

,

Page 166 of 212

Chapter 4. Fast sampling of satisfying assignments from random k-SAT

where we used ℓ := ⌈|var(Z)∩V |/k⌉ ≥ |var(Z)∩V |/k, (p− i)/(q− i) ≤ p/q for any 0 < i < p < q

and
(
p
q

)
≤ (ep/q)q. Combining this with the hypothesis ρ ≤ |V |/2k and the bound ℓ ≥ rL,

see (4.14), we obtain

PrS∼τ

(
E2(Z)

)
≤
(
ek2−k

)ℓ
≤
(

(ek)r · 2−rk
)L
≤
(

2ek · 2−rk
)L

. (4.24)

The bound (4.18) follows from combining (4.23) and (4.24), which completes the proof.

4.5 Sampling from small connected components

In this section we prove Lemma 4.14. Recall that Lemma 4.14 claims the existence of a procedure

to sample from marginals of the uniform distribution on the satisfying assignments of ΦΛ when

the connected components of GΦΛ have small size. Here we make this procedure explicit. Our

algorithm exploits the fact that the tree-excess of logarithmic-sized subsets of GΦ is bounded

by a constant depending only on k, see Lemma 4.26, and the fact that when GΦ is acyclic, we

can exactly count and sample satisfying assignments efficiently via a dynamic programming

algorithm (Proposition 4.30).

Proposition 4.30. There is an algorithm that, for any k-CNF formula Φ = (V, C) such that

GΦ is a tree, computes the number of satisfying assignments of Φ in time O(4k|C|).

Proof. We give an algorithm based on dynamic programming. Let us fix a vertex / clause c of GΦ

as the root and consider the corresponding directed tree structure T := (GΦ, c). For any clause

c′ of Φ, let Tc′ be the subtree of T hanging from c′. For any assignment σ : var(c′) → {F,T},
let sa(c′, σ) denote the number of satisfying assignments of the formula determined by Tc′ that

extend σ. Our goal is computing the number of satisfying assignments of Φ, which, under this

notation, is equal to

sa(Φ) :=
∑

σ : var(c)→{F,T}

sa(c, σ). (4.25)

We do this by computing sa(c′, σ) for any clause c′ and any assignment σ : var(c′) → {F,T}.
Using the tree structure of T , we show that sa(c′, σ) satisfies a recurrence. There are two cases:

1. c′ is a leaf. Then sa(c′, σ) = 1 if c′ is satisfied by σ and 0 otherwise.

2. c′ is not a leaf. Let T1, . . . , Tl be the trees hanging from c′ in T and let c1, . . . , cl be their

roots. Then, since T1, . . . , Tl do not share variables as GΦ is acyclic, we have

sa(c′, σ) =

l∏
j=1

∑
τ∈A(cj ,σ)

sa(cj , τ),

where A(cj , σ) is the set of assignments of the variables in var(cj) that agree with σ on

var(c′) ∩ var(cj).

Page 167 of 212

Chapter 4. Fast sampling of satisfying assignments from random k-SAT

We can apply this recurrence with dynamic programming to compute sa(c, σ) for any assignment

σ : var(c) → {F,T}. More explicitly, we compute sa(c′, σ) by levels of the tree, starting from

the deepest level, where all nodes are leaves, and ending at the root c. This involves computing

at most 2k entries sa(c′, ·) per clause c′ of Φ. After computing all the entries appearing in this

recurrence, we compute the number of satisfying assignments of Φ, sa(Φ), as in equation (4.25).

The overall procedure takes at most O(4k|C|) steps since each entry sa(c′, σ) is accessed at most

2k times when computing the corresponding entries for the parent of c′, and there are at most

2k|C(T)| entries.

In Algorithm 3 we give an algorithm based on Proposition 4.30 to count satisfying assignments

of a k-CNF formula. Recall the folklore fact that if we can count satisfying assignments then we

can sample from the marginal of µΩ on v by counting the satisfying assignments of Φv 7→F and

Φv 7→T.

Algorithm 3 Counting satisfying assignments via trees

Input: a k-CNF formula Φ = (V, C)
Output: The number of satisfying assignments of Φ.

1: Find a spanning forest T of GΦ.

2: Let VT be the set of variables that gives rise to edges of GΦ that are not in T .

3: count← 0.

4: for all Λ: VT → {F,T} do
5: Note that the graph GΦΛ is acyclic. Hence, we can count the number of satisfying

assignments of ΦΛ in time O(4k|C(ΦΛ)|) by applying Proposition 4.30 to each connected

component of GΦΛ and taking the product of the numbers obtained. Let sa(ΦΛ) be the

result of this computation.

6: count← count + sa(ΦΛ).

7: end for

8: return count

Proposition 4.31. Let Φ = (V, C) be a k-CNF formula and let c be the tree-excess of GΦ. Then

Algorithm 3 counts the number of satisfying assignments of Φ in time O(2k(c+2)|C|).

Proof. We note that, in the execution of Algorithm 3, we have |VT | ≤ kc. Hence, there are at

most 2kc iterations of the for loop and each one takes O(4k|C|) steps, so the running time follows.

The fact that the algorithm is correct follows from the correctness of the procedure presented in

Proposition 4.30.

Even though the running time of Algorithm 3 is not polynomial in the size of the formula Φ

(in fact, it is exponential in general), we obtain linear running time when the formulae considered

have constant tree-excess. As shown in Lemma 4.26, this is the case for logarithmic-sized subsets

of clauses of random formulae. We can now finish the proof of Lemma 4.14.

Page 168 of 212

Chapter 4. Fast sampling of satisfying assignments from random k-SAT

Lemma 4.14. There is an integer k0 ≥ 3 such that, for any integers k ≥ k0, b ≥ 2k4 and any

density α > 0, the following holds w.h.p. over the choice of Φ = Φ(k, n, ⌊αn⌋). Let V be a subset

of variables and let Λ: V → {F,T} be a partial assignment such that all the connected components

in GΦΛ have size at most b log(n). Then, there is an algorithm that, for any S ⊆ V \ V , samples

an assignment from µΩΛ |S in time O(|S| log n).

Proof. We apply Lemma 4.26, so, w.h.p. over the choice of Φ = Φ(k, n, ⌊αn⌋), any connected set

of clauses in GΦ with size at most b log(n) has tree-excess at most c = max{1, 2b log(eαk2)} =

O(1). First, we give an algorithm for the case |S| = 1. Let Φ, V and Λ as in the statement,

and let S = {v}. Let H be the connected component of the clauses that contain v in GΦΛ ,

and let Φ′ = (V ′, C′) be the subformula of ΦΛ with GΦ′ = H. The formula Φ′ has size at most

b log(n). Moreover, the graph GΦ′ = H has tree-excess at most c as H is a subgraph of GΦ with

size at most b log(n). Thus, we can apply Proposition 4.31 to count the number of satisfying

assignments of Φ′v→F and Φ′v→T in time O(2k(c+2)|C′|) = O(log n). Let these numbers be t0

and t1 respectively. It is straightforward to use t0 and t1 to sample from the marginal of the

distribution µΩΛ for v; we only have to sample an integer t ∈ [0, t0 + t1) and output F if t < t0

and T otherwise. The whole process takes time O(log n).

Finally, we argue how to extend this algorithm to the case |S| > 1. For this, first, we give

an order to the variables in S, say u1, u2, . . . , uℓ. We then call the algorithm described in the

paragraph above once for each variable in u1, u2, . . . , uℓ. The inputs of the algorithm in the j-th

call are the variable uj and the assignment Λj = Λ∪ τj−1, where τj−1 is the assignment obtained

in the previous calls for u1, . . . , uj−1. After this process, τℓ is an assignment of all the variables

in S that follows the distribution µΩΛ |S . This assignment has been computed in O(|S| log n)

steps as we wanted.

4.6 Mixing time of the Markov chain

In this section we study the mixing time of the ρ-uniform-block Glauber dynamics on the marked

variables and prove Lemma 4.10. As explained in Section 4.1.2, in order to conclude rapid

mixing of this Markov chain we apply the spectral independence framework, which has recently

been extended to the ρ-uniform-block Glauber dynamics [29]. Traditionally in path coupling or

spectral independence arguments one has to bound a sum of influences by a constant in order

to obtain rapid mixing of the single-site Glauber dynamics. However, due to the presence of

high-degree variables, an O(1) upper bound seems unattainable in the random k-SAT formula

setting; in the worst case paths of high-degree variable may significantly affect influences. This

seems also to be the case for other random models, such as the hardcore model on random

graphs [17]. Here we show that that sums of influences are at most ε log n for small ε (Lemma 4.9).

Even though this is generally not enough to conclude rapid mixing of the single-site Glauber

dynamics, it turns out to be enough to conclude rapid mixing of the ρ-uniform-block Glauber

dynamics for ρ = Θ(n). An essential ingredient in our argument is exploiting the auxiliary

Page 169 of 212

Chapter 4. Fast sampling of satisfying assignments from random k-SAT

variables in introduced in Section 4.3. Therefore, in this section we will work with r = r0 − δ

and a (r, r0, r0, 2r0)-marking (Vm,Va,Vc). Since r is fixed, we drop it from the notation and

write, for instance, Vgood instead of Vgood(r), in order to simplify the reading of this section.

This section is divided as follows. In Section 4.6.1, we explain why bounded-degree methods

to bound the mixing time of the Glauber dynamics fail to generalise from the bounded-degree

k-SAT model to the random k-SAT model. In Section 4.6.2 we prove Lemmas 4.40 and 4.9. In

Section 4.6.3 we prove Lemma 4.10.

4.6.1 Previous work

In this section we explain why previously known arguments for showing rapid mixing of the

Glauber dynamics on bounded-degree k-SAT formulae do not extend to the random k-SAT

model. This section is not used in our work and may be skipped by a reader who just wants

to understand our approach and result. The best result currently known on bounded-degree

formulae is [74], where the authors show, for large enough k, how to efficiently sample satisfying

assignments of k-CNF formulae in which their variables have maximum degree ∆̂ ≤ C 20.1742·k/k3,

where C > 0 is a constant that does not depend on k.1 Their result actually holds in the more

general setting of atomic constrain satisfaction problems (albeit with a different bound on ∆̂).

As part of their work, they show that the single-site Glauber dynamics on a set of marked

variables mixes quickly. Their argument is restricted to atomic CSPs with bounded-degree and

strongly exploits the properties of the Glauber dynamics in this setting. They study the optimal

coupling of the single-site Glauber dynamics, we refer to [92] for the definition of coupling of

Markov chains. In such a coupling the goal is to show that two copies of the chain starting from

truth assignments differing in at least a marked variable (a so-called discrepancy) can be coupled

in a small number of steps. Here it is crucial that the marginals of the marked variables are

near 1/2, so the optimal coupling generates new discrepancies with small probability. At this

stage, the high-level idea to conclude rapid mixing of the Glauber dynamics is bounding the

probability that the dynamics has not coupled by a product of probabilities, each corresponding

to the event that a clause is unsatisfied at a certain time, and aggregating over all possible

discrepancy sequences.

The fundamental observation in [74], based on the work on monotone k-CNF formulae

presented in [70], is that if there is an update of a marked variable that generates a discrepancy

in the chains, then there is another marked variable where the chains disagree that is connected

to the former variable through a path of clauses, where consecutive clauses in the path share at

least a variable. Moreover, each one of the clauses in this path is unsatisfied by at least one

of the two copies of the chain. As a consequence, from a discrepancy at time t one can find a

sequence of discrepancies going back to time 0, and these discrepancies are joined by a path of

clauses. Thus, the union bound over discrepancy sequences is essentially a union bound over

1In [74] the maximum degree ∆̂ of Φ is defined as the maximum over c ∈ C of the number of clauses that share

a variable with c. Under this definition of ∆̂, their result holds for ∆̂ ≤ C20.1742·k/k2.

Page 170 of 212

Chapter 4. Fast sampling of satisfying assignments from random k-SAT

paths of clauses with a particular time structure, where the same clause can be appear in the

path several times. Extending this idea to the random k-SAT model presents two main issues.

First of all, the number of discrepancy sequences of any given length may be too large due to the

presence of bad clauses and the fact that they can repeatedly appear in the sequence. Moreover,

it may be the case that these discrepancy sequences mostly consist of bad clauses, which are

always unsatisfied in both chains and, thus, the probability that they are unsatisfied is not

small. Interestingly, similar issues arise when directly extending the bounded-degree approach

based on the coupling process of [93, 43] to our setting. In [43] the mixing time argument only

succeeds when ∆̂ ≤ 2k/20/(8k) and is also based on a union bound over path of clauses that are

unsatisfied or contain discrepancies after running a coupling process. However, very importantly,

these paths of clauses are simple (clauses are not repeated) and the combinatorial structures

appearing in the coupling process are less complex than the discrepancy sequences of [74]. This

allowed the authors of [49] to exploit the expansion properties of random k-CNF formulae to

analyse the coupling process of [93] on the random setting. Here we incorporate novel ideas to

the work of [49] in order to obtain a tighter analysis that leads to nearly linear running time of

our sampling algorithm.

4.6.2 Spectral independence in the k-SAT model

In this section we prove Lemma 4.9. In order to bound the sum of influences of marked variables,

we follow the coupling process technique that is standard in the literature [49, 93, 43]. In this

work we introduce the concept of auxiliary variables in the coupling process and exploit the

sparsity properties of logarithmic-sized sets of clauses, which allows us to conclude a 2−r0k log n

spectral independence bound. The key idea is that if we progressively extend two assignments

X and Y on auxiliary variables following the optimal coupling, with high probability over X

and Y , at some point the formulae ΦX and ΦY factorise in small connected components in

spite of the presence of bad variables and, on top of that, ΦX and ΦY share most of these

connected components. Then we can bound influences between marked variables by analysing

the connected components where ΦX and ΦY differ. First, let us introduce the notation and

results on couplings that we need.

Let µ and ν be two distributions over the same space Ω̂. A coupling τ of µ and ν is a

joint distribution over Ω̂× Ω̂ such that the projection of τ on the first coordinate is µ and the

projection on the second coordinate is ν. Recall that the total variation distance of µ and ν is

defined by dTV(µ, ν) = 1
2

∑
x∈Ω̂|µ(x)− ν(x)|. If a random variable X has distribution µ, we also

write dTV(X, ν) to mean dTV(µ, ν). An important property of couplings is the coupling lemma.

Proposition 4.32 (Coupling lemma). Let τ be a coupling of µ and ν. Then dTV(µ, ν) ≤
Pr(X,Y)∼τ (X ̸= Y). Moreover, there exists a coupling that achieves equality.

The coupling τ of µ and ν that minimises Pr(X,Y)∼τ (X ≠ Y) is called optimal. Let us now

assume that µ and ν are Bernoulli distributions with parameters 0 ≤ p ≤ q ≤ 1 respectively,

so Prµ(X = 1) = p and Prν(Y = 1) = q. The monotone coupling τ of µ and ν is defined as

Page 171 of 212

Chapter 4. Fast sampling of satisfying assignments from random k-SAT

follows. We pick U uniformly at random in [0, 1] and set X = 1 only when U ≤ p and Y = 1

only when U ≤ q. For this coupling we have Pr(X,Y)∼τ (X ̸= Y) = q−p = dTV(X,Y) and, hence,

the monotone coupling is optimal. This optimal coupling will come up in the coupling process

when sampling from the marginals of auxiliary variables.

Before presenting our coupling process, we show how we can bound a sum of influences

between marked variables with the help of the coupling lemma. In all this section we fix a

k-CNF formula Φ and a (r, r0, r0, 2r0)-marking (Vm,Va,Vc) of Φ. Given two assignments Λ1 and

Λ2 on disjoint sets of variables, recall that we denote by Λ1 ∪ Λ2 the combined assignment on

the union of their domains.

Proposition 4.33. Let u ∈ Vm and Λ: S → {F,T} with S ⊆ Vm \ {u}. Let (X,Y) be a coupling

where X follows the distribution µΩΛ∪u7→T |Vm
and Y follows the distribution µΩΛ∪u7→F |Vm

. Then∑
v∈Vm\(S∪{u})

∣∣IΛ(u→ v)
∣∣ ≤ ∑

v∈Vm\(S∪{u})

Pr (X(v) ̸= Y (v)) . (4.26)

Proof. Let v ∈ Vm. Then for any ω ∈ {F,T}, we have Pr(v 7→ ω|Λ, u 7→ T) = Pr(X(v) = ω) and

Pr(v 7→ ω|Λ, u 7→ F) = Pr(Y (v) = ω). Thus, by the coupling lemma,∣∣IΛ(u→ v)
∣∣ = |Pr(X(v) = T)− Pr(Y (v) = T)| = dTV(X(v), Y (v)) ≤ Pr (X(v) ̸= Y (v)) ,

and the proof follows by adding over v ∈ Vm \ (S ∪ {u}).

For two assignments X and Y on a subset of variables V , we say that X and Y have a

discrepancy at v ∈ V when X(v) ̸= Y (v). In [43] the authors manage to bound (4.26) by a

constant that does not depend on n when the considered formula has bounded degree. However,

their argument breaks under the presence of high-degree variables due to the fact that we cannot

control the number of bad clauses in a path of clauses unless the path has length at least Ω(log n).

Here instead we perform the coupling process developed in [49] over auxiliary variables, which

accounts for the presence of bad clauses.

Before presenting our algorithm for the coupling process on auxiliary variables, let us

describe some of the notation and structures that are used in this algorithm. Let u ∈ Vm
and Λ: S → {F,T} with S ⊆ Vm \ {u}. We start with two assignments X̂ and Ŷ that have a

discrepancy at u and agree with Λ on S. In the coupling process we identify a set of failed

clauses, denoted Fd ∪Fu. At each step of the process, we check if a clause is failed or extend the

coupling to an auxiliary variable. It is important in our arguments that all clauses containing

a discrepancy are failed, and that we make sure that the set of failed clauses is connected in

GΦ at all times. In order to achieve connectivity of failed clauses, at each step of the coupling

process we only consider clauses that are adjacent to failed clauses in GΦ. For ease of reading,

here we present a list of the structures that appear in our algorithm.

1. Vd. Set of discrepancies, i.e., variables v with X̂(v) ̸= Ŷ (v).

2. Fd. Set of all clauses containing a variable in Vd. These are failed clauses.

Page 172 of 212

Chapter 4. Fast sampling of satisfying assignments from random k-SAT

3. Vset. Set of variables that are assigned a value in the coupling.

4. Fu. Set of clauses that have been considered by the coupling process, and are either bad,

or are unsatisfied by at least one of X̂ and Ŷ and have all their auxiliary variables in Vset.
These are failed clauses.

5. Crem. Set of clauses that have unassigned auxiliary variables or have not been explored yet.

Our coupling process on auxiliary variables is given in Algorithm 4.

Algorithm 4 The coupling process on auxiliary variables

Input: A k-CNF formula Φ = (V, C), an (r, r0, r0, 2r0)-marking M = (Vm,Va,Vc), u ∈ Vm and

Λ: S → {F,T} with S ⊆ Vm \ {u}.
Output: a pair of assignments X̂, Ŷ : Vset → {F,T} for some set of variables Vset such that:

◦ S ∪ {u} ⊆ Vset ⊆ S ∪ {u} ∪ Va,
◦ X̂ and Ŷ agree with Λ on S, X̂(u) = T and Ŷ (u) = F.

1: We fix two total orders ≤V and ≤C over the variables and clauses of Φ. These are only

relevant to have a pre-determined order in which clauses and variables are considered in this

algorithm.

2: Initialise X̂ and Ŷ as Λ, and set X̂(u) = T and Ŷ (u) = F.

3: Vset ← S ∪ {u}, Vd ← {u}, Fd ← {c ∈ C : u ∈ var(c)}, Fu ← ∅, Crem ← C.
4: while ∃c ∈ Crem : var(c) ∩ (Vd ∪ var(Fu)) ̸= ∅ do
5: Let c be smallest clause according to ≤C with var(c) ∩ (Vd ∪ var(Fu)) ̸= ∅.
6: if c is a bad clause then

7: Remove c from Crem and add c to Fu.

8: end if

9: if c is a good clause and (var(c) ∩ Va) \ Vset = ∅ then
10: Remove c from Crem (as all auxiliary variables in c have been set).

11: if c is unsatisfied by at least one of X̂ and Ŷ then

12: Add c to Fu.

13: end if

14: end if

15: if c is a good clause and (var(c) ∩ Va) \ Vset ̸= ∅ then

16: Let v be the smallest variable in (var(c) ∩ Va) \ Vset (according to ≤V).

17: Extend X̂ and Ŷ to v by sampling from the optimal coupling between the marginal

distributions of µ
ΩX̂ and µ

ΩŶ on v, and add v to Vset.
18: if X̂(v) ̸= Ŷ (v) then

19: Add v to Vd. Add all clauses containing v to Fd.

20: end if

21: end if

22: end while

23: return (X̂, Ŷ).

Page 173 of 212

Chapter 4. Fast sampling of satisfying assignments from random k-SAT

First, we analyse the sets Vset, Vd, Fd, Fu and Crem and prove the connectivity property of

Fd ∪ Fu. In the rest of this section we fix the inputs of Algorithm 4 unless stated otherwise.

Proposition 4.34 (Properties of the coupling process). The coupling process in Algorithm 4

terminates eventually and, at the end of the process, the sets Vset, Vd, Fd, Fu and Crem present

the following properties:

1. We have S ∪ {u} ⊆ Vset ⊆ Va ∪ S ∪ {u}, Vd = {v ∈ Vset : X̂(v) ̸= Ŷ (v)}, and Fd is the set

of clauses containing a variable in Vd.

2. For all c ∈ Fu we have var(c) ∩ Va ⊆ Vset and c is unsatisfied by at least one of X̂ and Ŷ .

3. For all c ∈ Crem, we have var(c) ∩ (Vd ∪ var(Fu)) = ∅.

4. For all c ∈ C \ (Crem ∪ Fu), we have var(c) ∩ (Vd ∪ var(Fu)) ̸= ∅, var(c) ∩ Va ⊆ Vset and c

is satisfied by X̂ and Ŷ .

5. The set Fd ∪ Fu is connected in GΦ.

Proof. Each iteration of the coupling procedure either removes a clause from Crem, or samples

the values X̂(v) and Ŷ (v) for an auxiliary variable v and adds v to Vset ⊆ V . As Crem and V are

finite, the coupling terminates after a finite number of iterations. We prove the five properties

in the statement separately. First, we note that the sets Vset, Vd, Fd, Fu never decrease in size

during the execution of Algorithm 4, whereas the set Crem never increases in size.

Property 1. Note that at the start of Algorithm 4 (line 3) this property holds. The result

then follows from the fact that the sets Vset, Vd and Fd are only updated from line 15 to line 20

of Algorithm 4, and these steps preserve Property 1.

Property 2. This follows from the facts that the set Fu is originally empty, it is only extended

in lines 7 and 12, and bad clauses do not contain auxiliary variables.

Property 3. This property follows from the fact that clauses that satisfy var(c) ∩ (Vd ∪
var(Fu)) ̸= ∅ at some point are eventually removed from Crem in either line 7 (if they are bad)

or in line 10 (if they are good, once all the auxiliary variables of the clause are in Vset).
Property 4. If c ∈ C \ (Crem ∪ Fu), then c has been removed from Crem in line 10 but it has

not been added to Fu in line 12, which proves this property.

Property 5. We note that at the start of the coupling process (line 3) Fd ∪ Fu is connected.

Let us analyse every line of the algorithm where the sets Fd and Fu are enlarged. When it

comes to Fd, this occurs in line 19 if this line is executed. Let c be the clause considered in that

iteration of the coupling process and let v be the variable of c considered in line 16. We recall

that var(c) ∩ (Vd ∪ var(Fu)) ̸= ∅ and v ∈ (var(c) ∩ Va) \ Vset. In line 19 we add all to Fd all the

clauses containing v. Let Cv be the set of such clauses. Since ∅ ≠ var(c) ∩ (Vd ∪ var(Fu)) ⊆
var(c) ∩ var(Fd ∪ Fu) and c ∈ Cv, we conclude that Fd ∪ Fu ∪ Cv is connected as we wanted.

When it comes to Fu, we add clauses in lines 7 and 12. In this case, we add a clause c such that

var(c) ∩ (Vd ∪ var(Fu)) ̸= ∅, so Fd ∪ Fu ∪ {c} is connected in GΦ.

Page 174 of 212

Chapter 4. Fast sampling of satisfying assignments from random k-SAT

We can now prove our main result concerning the structure of ΦX̂ and ΦŶ .

Lemma 4.35. Let X̂ and Ŷ be the assignments returned by Algorithm 4 and let Crem and

Fu be as in Proposition 4.34. There are sets of clauses C1 ⊆ Crem and C2, C3 ⊆ Fu such that

ΦX̂ = (V \ Vset, C1 ∪ C2) and ΦŶ = (V \ Vset, C1 ∪ C3), where the variables in Vset are removed

from the clauses in C1, C2, C3.

Proof. We determine the set of clauses that are unsatisfied by X̂ or Ŷ with the help of Proposi-

tion 4.34. We distinguish 3 disjoint cases:

• c ∈ Crem. Then var(c) ∩ Vd = ∅, so X̂ and Ŷ agree in all the variables in var(Crem) ∩ Vset.
As a consequence, the restrictions of ΦX̂ and ΦŶ to Crem give rise to the same CNF formula.

Note that some of the clauses in Crem might be satisfied by both X̂ and Ŷ , but they are

never satisfied by only one of the two assignments.

• c ∈ Fu. Then c is unsatisfied by at least one of X̂ and Ŷ and, thus, it appears in at least

one of ΦX̂ and ΦŶ . The clause c may contain a variable v ∈ Vd.

• c ∈ C \ (Crem ∪ Fu). By Proposition 4.34, we have var(c) ∩ (Vd ∪ var(Fu)) ̸= ∅ and

var(c) ∩ Va ⊆ Vset. Since c ̸∈ Fu, it follows that c is satisfied by both X̂ and Ŷ and, thus,

c does not appear in any of the formulae ΦX̂ and ΦŶ .

We conclude that we can write CX̂ = C1 ∪ C2 and CŶ = C1 ∪ C3, where C1 ⊆ Crem and

C2, C3 ⊆ Fu as we wanted.

In order to further analyse the probability distribution of the output of Algorithm 4, we

introduce the following definition.

Definition 4.36 (run, R(Φ,M, u,Λ), τR(Φ,M, u,Λ), Vset(R), Vd(R), Fu(R), Fd(R), Crem(R)).

A run of Algorithm 4 is a sequence of all the random choices (X̂(v), Ŷ (v)) made in line 17

when executing Algorithm 4. Let R(Φ,M, u,Λ) be the set of all possible runs of Algorithm 4

for the inputs Φ,M, u,Λ and let τR(Φ,M, u,Λ) be the probability distribution that Algorithm 4

yields on R(Φ,M, u,Λ). Each run R ∈ R(Φ,M, u,Λ) determines the output (X̂, Ŷ) and the

sets Vset(R),Vd(R),Fu(R),Fd(R), Crem(R) that are computed in Algorithm 4.

With the aim of applying Proposition 4.33, we extend the coupling (X̂, Ŷ) to all marked and

auxiliary variables.

Definition 4.37 (The coupling (X,Y)). Let R ∈ R(Φ,M, u,Λ) and let (X̂, Ŷ) be the corre-

sponding output of the run R. Let ≤V be a total order on the variables of Φ and let v1 ≤V v2 ≤V

· · · ≤V vt be the variables in (Vm ∪ Va) \ Vset. We extend the assignments X̂, Ŷ : Vset → {F,T}
to v1, v2, . . . , vt inductively (as follows) to obtain a coupling (X,Y) such that X follows the

distribution µΩΛ∪u7→T |(Vm∪Va)\Vset
and Y follows the distribution µΩΛ∪u7→F |(Vm∪Va)\Vset

. Assume

that X and Y are defined on Vset ∪ {v1, v2, . . . , vj−1} for j ∈ {1, 2, . . . , t}. Then we sample

(X(vj), Y (vj)) from the optimal/monotone coupling of the marginal distributions (on vj) of µΩX

and µΩY .

Page 175 of 212

Chapter 4. Fast sampling of satisfying assignments from random k-SAT

Remark 4.38. When R ∈ R(Φ,M, u,Λ) follows the probability distribution τR(Φ,M, u,Λ)

(Definition 4.36), the pair of random assignments (X,Y) of Definition 4.37 is a coupling of the

distributions µΩΛ∪u7→T |Vm∪Va
and µΩΛ∪u7→F |Vm∪Va

.

In Lemma 4.39 we bound the probabilities Pr(X(v) ̸= Y (v)|R) for any R ∈ R(Φ,M, u,Λ)

and v ∈ (Vm ∪ Va) \ Vset(R).

Lemma 4.39. Let R ∈ R(Φ,M, u,Λ). Let (X,Y) be the coupling of Definition 4.37. Then for

any v ∈ (Vm ∪ Va) \ Vset(R) we have Pr(X(v) ̸= Y (v)|R) ≤ 2−r0k+1/k.

Proof. Let X̂ and Ŷ be the output of Algorithm 4 for the run R. Let v1, v2, . . . , vt be the

variables in (Vm ∪ Va) \ Vset(R) in the order that they are considered in Definition 4.37. Let

j ∈ {1, 2, . . . , t} and let Λ′,Λ′′ : Vset(R) ∪ {v1, v2, . . . , vj−1} → {F,T} be two assignments such

that Λ′|Vset
= X̂ and Λ′′|Vset

= Ŷ . When X agrees with Λ′ and Y agrees with Λ′′, the values

X(vj) and Y (vj) are sampled from the optimal/monotone coupling between the marginals on vj

of the distributions µΩΛ′ and µΩΛ′′ . Let us denote these marginals by νX and νY respectively.

Thus, by the coupling lemma (Proposition 4.32) and Proposition 4.5 (or Lemma 4.23) on the

marginals of marked and auxiliary variables, we have

Pr
(
X(vj) ̸= Y (vj)|Λ′,Λ′′) = dTV(νX , νY) =

∣∣Pr(X(vj) = T|Λ′)− Pr(Y (vj) = T|Λ′′)
∣∣

≤ |Pr(X(vj) = T|Λ′)− 1/2|+ |1/2− Pr(Y (vj) = T|Λ′′)|

≤ exp

(
1

k2r0k

)
− 1.

Applying the inequality ez ≤ 1 + 2z for z ∈ (0, 1), we find that Pr (X(vj) ̸= Y (vj)|Λ′,Λ′′) ≤
2−r0k+1/k. Thus, from the arbitrary choice of Λ′,Λ′′ and the law of total probability we conclude

that the bound Pr (X(vj) ̸= Y (vj)|R) ≤ 2−r0k+1/k holds.

Combining all the results presented up to this stage in the current section allows us relate

the sum
∑

v∈Vm\(S∪{u})
∣∣IΛ(u→ v)

∣∣ to the coupling process over auxiliary variables. In fact, we

bound this sum of influences between marked variables by the expected number of failed clauses

in the coupling process on auxiliary variables. Recall that here r = r0 − δ.

Lemma 4.40. There is an integer k0 such that for any k ≥ k0 and any density α with

α ≤ 2(r0−δ)k/k3 the following holds w.h.p. over the choice of the random k-CNF formula

Φ = Φ(k, n, ⌊αn⌋). Let (Vm,Va,Vc) be an (r0 − δ, r0, r0, 2r0)-marking of Φ, and let u ∈ Vm and

Λ: S → {F,T} with S ⊆ Vm \ {u}. Then for a random run R of the coupling process on the

auxiliary variables (Algorithm 4), we have∑
v∈Vm\(S∪{u})

∣∣IΛ(u→ v)
∣∣ ≤ 2−r0k+1E [|Fu(R)|] .

Proof. Let (X,Y) be the coupling in Definition 4.37 for a (random) run R ∼ τR(Φ,M, u,Λ) of

Algorithm 4. We are going to show that

Pr(X(v) = Y (v)|R) = 1 for all v ∈ V := (Vm ∪ Va) \ (Vset(R) ∪ var(Fu(R))). (4.27)

Page 176 of 212

Chapter 4. Fast sampling of satisfying assignments from random k-SAT

Let X̂, Ŷ : Vset(R) → {F,T} be the output of Algorithm 4 for the run R. By Lemma 4.35

we conclude that we can write CX̂ = C1 ∪ C2 and CŶ = C1 ∪ C3, where C1 ⊆ Crem(R) and

C2, C3 ⊆ Fu(R). Thus, the variables in V (see (4.27) for a definition of V) either appear in

a clause in C1 or they are not present in any of the formulae ΦX̂ and ΦŶ . Moreover, by

Proposition 4.34, we have var(c) ∩ var(c′) = ∅ for all c ∈ Crem(R) and c′ ∈ Fu(R). We conclude

that the distributions µ
ΩX̂

∣∣
V

and µ
ΩŶ

∣∣
V

agree – both are the uniform distribution over the

satisfying assignments of the CNF formula (V, C1). Let v1, v2, . . . , vt be the variables in V

in the order they are considered in the definition of the coupling (X,Y). By induction on

j ∈ {1, 2, . . . , t}, the marginals on vj in Definition 4.37 are the same when coupling X(vj) and

Y (vj). Thus, we have X(vj) = Y (vj) for all j ∈ {1, 2, . . . , t}.
Since S ∪ {u} ⊆ Vset(R) ⊆ S ∪ {u} ∪ Va, we have Vm \ V = S ∪ {u} ∪ (Vm ∩ var(Fu(R))). In

light of Lemma 4.39 and (4.27), we find that∑
v∈Vm\(S∪{u})

Pr(X(v) ̸= Y (v)|R) ≤
∑

v∈Vm∩var(Fu(R))

Pr(X(v) ̸= Y (v)|R) ≤ 2

k
2−r0k|var(Fu(R))|.

From |var(Fu(R))| ≤ k|Fu(R)| we conclude that∑
v∈Vm\(S∪{u})

Pr(X(v) ̸= Y (v)|R) ≤ 2−r0k+1|Fu(R)|. (4.28)

In the rest of this proof we are going to aggregate (4.28) over R ∈ R(Φ,M, u,Λ) with the aim

of applying Proposition 4.33. Let (X,Y) be the coupling in Definition 4.37 for a (random) run

R ∼ τR(Φ,M, u,Λ) of Algorithm 4. We have∑
v∈Vm\(S∪{u})

Pr(X(v) ̸= Y (v)) =
∑

v∈Vm\(S∪{u})

∑
R∈R(Φ,M,u,Λ)

Pr(R) Pr(X(v) ̸= Y (v)|R)

=
∑

R∈R(Φ,M,u,Λ)

Pr(R)
∑

v∈Vm\(S∪{u})

Pr(X(v) ̸= Y (v)|R)

≤ 2−r0k+1
∑

R∈R(Φ,M,u,Λ)

Pr(R)|Fu(R)|

= 2−r0k+1E [|Fu(R)|] .

Finally, we note that we can indeed apply Proposition 4.33 to the restriction of X and Y on Vm
as (X,Y) is a coupling of the distributions µΩΛ∪u7→T |Vm∪Va

and µΩΛ∪u7→F |Vm∪Va
(Remark 4.38).

This finishes the proof.

In the remainder of this section we bound E [|Fu(R)|], which would complete our proof of

Lemma 4.9 when combined with Lemma 4.40. In order to do this we exploit the fact that

Fu(R) ∪ Fd(R) is connected in GΦ (Proposition 4.34), the local sparsity properties of random

CNF formulae and the properties of the marking (Vm,Va,Vc). It is important that the bound

on E [|Fu(R)|] is poly(k) log n in order to conclude fast mixing time of the ρ-uniform-block

Glauber dynamics when applying the spectral independence framework. First, we bound the

probability that some good clauses are failed in Algorithm 4. At first glance this seems to be a

Page 177 of 212

Chapter 4. Fast sampling of satisfying assignments from random k-SAT

straightforward task thanks to the fact that the marginals of marked and auxiliary variables

are close to 1/2 (see Proposition 4.5). However, for any good clauses c1 and c2, the events that

c1 ∈ Fd(R) ∪ Fu(R) and c2 ∈ Fd(R) ∪ Fu(R) may not be independent; any value given to the

variables in c1 may affects the marginals of the variables in c2 and whether these variables are

considered by the coupling process or not. However, we show that, as long as c1 and c2 do

not share good variables, these dependencies are not very strong and we can indeed bound the

probability that c1, c2 ∈ Fd(R) ∪ Fu(R) with a careful probability argument that analyses the

coupling process step by step, see Lemma 4.44. With this in mind, we introduce the following

definitions.

Definition 4.41 (Rt(Φ,M, u,Λ), A≤t). For a positive integer t, we let Rt(Φ,M, u,Λ) be the

set containing for each R ∈ R(Φ,M, u,Λ) a tuple with the first min{t, length(R)} entries of the

sequence R. That is, Rt(Φ,M, u,Λ) is the set containing all possible sequences of the first t

choices that Algorithm 4 makes in line 17. Note that if R ∈ R(Φ,M, u,Λ) has length(R) ≤ t,

then R ∈ Rt(Φ,M, u,Λ). Each Rt ∈ Rt(Φ,M, u,Λ) determines two partial assignments Λ′

and Λ′′ of marked and auxiliary variables that correspond to the assignments X̂ and Ŷ after

length(Rt) iterations of line 17 following Rt. Let A≤t be the σ-algebra containing all the subsets

of Rt(Φ,M, u,Λ).

Intuitively, A≤t contains all the possible events that may occur in the first t iterations of

line 17, which is the only randomised operation in Algorithm 4. When bounding the probability

that a clause is failed, we will express this event in terms of events concerning the values that X̂

and Ŷ take on its variables. This motivates Definition 4.42.

Definition 4.42 (Dv(j)). We define the following events for variable v ∈ Va and a random run

R ∼ τR(Φ,M, u,Λ) of Algorithm 4. Let Dv(1) be the event that v ∈ Vset(R) and X̂(v) ̸= Ŷ (v).

Let Dv(2) be the event that v ∈ Vset(R) and X̂(v) = F. Let Dv(3) be the event that v ∈ Vset(R)

and X̂(v) = T. Let Dv(4) be the event that v ∈ Vset(R) and Ŷ (v) = F. Let Dv(5) be the event

that v ∈ Vset(R) and Ŷ (v) = T.

Finally, in order to study the events Dv(j) for v ∈ V we will have to reason about the first

time that a variable in V is added to Vset(R), which motivates the following definition.

Definition 4.43 (τ(V), f(V)). For a set of auxiliary variables V , we let τ(V) be the random

variable that takes the value t if the first time that a variable in V is added to Vset(R) in

Algorithm 4 is the t-th time line 17 is executed, and we denote by f(V) this variable. We set

τ(V) =∞ if V ∩ Vset(R) = ∅, in which case f(V) is not defined.

We now have all the tools that we need to analyse the coupling process step by step.

Lemma 4.44. Let V ⊆ Va and let iv ∈ {1, 2, 3, 4, 5} for each v ∈ V . Let h(1) = 2−r0k+1/k and

h(i) = exp(1/k)
2 for i ∈ {2, 3, 4, 5}. Then, we have

PrR∼τR(Φ,M,u,Λ)

(⋂
v∈V

Dv(iv)
)
≤
∏
v∈V

h(iv).

Page 178 of 212

Chapter 4. Fast sampling of satisfying assignments from random k-SAT

Proof. We are going to prove, for any positive integer t and A ∈ A≤t,

Pr
(⋂

v∈V
Dv(iv)

∣∣∣A, τ(V) = t
)
≤
∏
v∈V

h(iv). (4.29)

The lemma will then follow from the arbitrary choice of A and t and the law of total probability.

We carry out the proof of (4.29) by induction on M = |V |. Equation (4.29) holds when V is

empty. Let us assume that (4.29) holds when |V | < M . Let V be a set of auxiliary variables

with M = |V | and indexes iv for all v ∈ V , let t be a positive integer and let A ∈ A≤t. To

simplify the notation, for each w ∈ V we define At(w, V) = A ∩ [τ(V) = t] ∩ [f(V) = w]. Then,

we have

Pr
(⋂

v∈V
Dv(iv)

∣∣∣A, τ(V) = t
)
≤
∑
w∈V

Pr (f(V) = w|A, τ(V) = t) · Pr (Dw(iw)|At(w, V))

· Pr

(⋂
v∈V \{w}

Dv(iv)

∣∣∣∣At(w, V), Dw(iw)

)
.

We note that τ(V \ {w}) > t when conditioning on τ(V) = t and f(V) = w. Let A′ =

At(w, V) ∩Dw(iw). We have

Pr

(⋂
v∈V \{w}

Dv(iv)

∣∣∣∣A′
)

=
∞∑

j=t+1

Pr
(
τ(V \ {w}) = j|A′)

· Pr

(⋂
v∈V \{w}

Dv(iv)

∣∣∣∣A′, τ(V \ {w}) = j

)
.

By our induction hypothesis for V \ {w}, the condition τ(V \ {w}) = j and the event A′ ∈ A≤j ,

we find that

Pr

(⋂
v∈V \{w}

Dv(iv)

∣∣∣∣A′
)
≤

∞∑
j=t+1

Pr
(
τ(V \ {w}) = j|A′) ∏

v∈V \{w}

h(iv) ≤
∏

v∈V \{w}

h(iv).

As a consequence, we obtain

Pr
(⋂

v∈V
Dv(iv)

∣∣∣A, τ(V) = t
)
≤
∑
w∈V

Pr (f(V) = w|A, τ(V) = t) · Pr (Dw(iw)|At(w, V))

·
∏

v∈V \{w}

h(iv).

We are going to show that Pr(Dw(iw)|At(w, V)) ≤ h(iw). Once we have proved this, the proof

of (4.29) is completed by noting that
∑

w∈V Pr (f(V) = w|A, τ(V) = t) = 1.

Let us now bound Pr(Dw(iw)|At(w, V)). Recall here that At(w, V) implies the event w ∈
Vset(R). Recall also that At(w, V) ∈ A≤t, see Definition 4.41. For each Rt ∈ At(w, V) ⊆
Rt(Φ,M, u,Λ), we are going to apply Proposition 4.5 and the fact that X̂(w) and Ŷ (w) follow

the optimal coupling between two marginal distributions on v of the form µΩΛ′ and µΩΛ′′ for

some assignments Λ′,Λ′′ on some marked and auxiliary variables that are determined by Rt.

Here it is important for applying Proposition 4.5 that the event At(w, V) is in A≤t, so every

Page 179 of 212

Chapter 4. Fast sampling of satisfying assignments from random k-SAT

partial run Rt ∈ At(w, V) only gives information about what has happened in Algorithm 4

before w is added to Vset(R). Thus, aggregating over all possible runs Rt ∈ At(w, V), we find

that

max
{

Pr
(
X̂(w) = F

∣∣∣At(w, V)
)
,Pr

(
X̂(w) = T

∣∣∣At(w, V)
)}
≤ 1

2
exp

(
1

k2r0k

)
≤ 1

2
exp

(1

k

)
,

(4.30)

where the probability is over the random run R ∼ τR(Φ,M, u,Λ). The bound (4.30) also applies

with Ŷ instead of X̂. In particular, we conclude that Pr(Dw(j)|At(w, V)) ≤ exp(1/k)/2 = h(j)

for all j ∈ {2, 3, 4, 5}. Moreover, using the definition of optimal coupling for two Bernoulli

distributions, the probability that X̂(w) ̸= Ŷ (w) can be bounded as

Pr
(
X̂(w) ̸= Ŷ (w)

∣∣∣At(w, V)
)

=
∣∣∣Pr
(
X̂(w) = T

∣∣∣At(w, V)
)
− Pr

(
Ŷ (w) = T

∣∣∣At(w, V)
)∣∣∣

≤
∣∣∣Pr
(
X̂(w) = T

∣∣∣At(w, V)
)
− 1/2

∣∣∣
+
∣∣∣1/2− Pr

(
Ŷ (w) = T

∣∣∣At(w, V)
)∣∣∣

≤ exp

(
1

k2r0k

)
− 1.

Hence, applying the bound ez ≤ 1 + 2z for z ∈ (0, 1) and the definition of the event Dvj (1),

we have Pr(Dvj (1)|At(w, V)) ≤ 2/(k2r0k) = h(1). This finishes the proof of (4.29). From the

arbitrary choice of A and t and the law of total probability, the statement follows.

We can now bound the probability that some good clauses are failed with the help of

Lemma 4.44.

Lemma 4.45. Let Φ, u,Λ be the input of Algorithm 4. Let c1, . . . , cℓ ∈ Cgood such that the

variable u does not appear in any of the clauses in c1, . . . , cℓ, and var(ci) ∩ var(cj) ∩ Vgood = ∅
for all 1 ≤ i < j ≤ ℓ. Then, for R ∼ τR(Φ,M, u,Λ), we have Pr(c1, . . . , cℓ ∈ Fd(R) ∪ Fu(R)) ≤
2(−r0k+4)ℓ.

Proof. Let c1, . . . , cℓ be some good clauses of Φ as in the statement. The hypothesis that

u does not appear in any of these clauses is necessary as if u ∈ var(c) then c ∈ Fd(R) by

definition. We consider a random run R ∼ τR(Φ,M, u,Λ) of Algorithm 4 and let X̂, Ŷ be

the (random) output of Algorithm 4 for the run R. For j ∈ {1, 2, . . . , ℓ}, let Fj(1) be the

event that there is v ∈ var(cj) ∩ Va such that v ∈ Vset(R) and X̂(v) ̸= Ŷ (v), let Fj(2) be

the event that var(cj) ∩ Va ⊆ Vset(R) and cj is unsatisfied by X̂, and let Fj(3) be the event

that var(cj) ∩ Va ⊆ Vset(R) and cj is unsatisfied by Ŷ . In light of Proposition 4.34, we have

[c1, . . . , cℓ ∈ Fd(R) ∪ Fu(R)] =
⋂ℓ

j=1(Fj(1) ∪ Fj(2) ∪ Fj(3)). We obtain

Pr

(⋂ℓ

j=1
(Fj(1) ∪ Fj(2) ∪ Fj(3))

)
≤

∑
(i1,i2,...,iℓ)∈{1,2,3}ℓ

Pr

(⋂ℓ

j=1
Fj(ij)

)
. (4.31)

Page 180 of 212

Chapter 4. Fast sampling of satisfying assignments from random k-SAT

We note that Fj(1) =
⋃

v∈var(cj)∩Va
Dv(1), see Definition 4.42. Let (i1, i2, . . . , iℓ) ∈ {1, 2, 3}ℓ, and

let I1 = {j : ij = 1}, I2 = {j : ij = 2} and I3 = {j : ij = 3}. If the event
⋂

j∈I1 Fj(ij) holds,

then, for each j ∈ I1 there is a variable uj ∈ var(cj) ∩ Va such that Duj (1) holds. Thus, for the

set of tuples T =
∏

j∈I1(var(cj) ∩ Va), where
∏

here denotes the cartesian product of sets, we

have ⋂
j∈I1

Fj(ij) =
⋃

(u1,u2,...,u|I1|)∈T

⋂
j∈I1

Duj (1). (4.32)

Now we explain how we bound the probability of the event
(⋂

j∈I2∪I3 Fj(ij)
)
∩
(⋂

j∈I1 Duj (1)
)

for a tuple (u1, u2, . . . , u|I1|) ∈ T . We are going to show that

Pr
((⋂

j∈I2∪I3
Fj(ij)

)
∩
(⋂

j∈I1
Duj (1)

))
≤
(

exp(1/k)

2

)(k−3)r0|I2∪I3|(2

k2r0k

)|I1|
. (4.33)

The proof of (4.33) is not as straightforward as it may seem at first glance due to the dependencies

among the events Fj(ij), Duj (1). The key idea is re-writing the LHS of (4.33) as in the statement

of Lemma 4.44. Indeed we note that for each j ∈ I2 and for each variable v ∈ var(cj) ∩ Va,
the event Fj(2) implies that there is iv ∈ {2, 3} such that Dv(iv) holds, concluding Fj(2) =⋂

v∈var(cj)∩Va
Dv(iv), see Definition 4.42. Analogously, for each j ∈ I3 and for each variable

v ∈ var(cj) ∩ Va, we find iv ∈ {4, 5} such that Fj(3) =
⋂

v∈var(cj)∩Va
Dv(iv). Therefore, we have(⋂

j∈I2∪I3
Fj(ij)

)
∩
(⋂

j∈I1
Duj (1)

)
=
⋂
v∈Vf

Dv(iv), (4.34)

where Vf contains exactly all the auxiliary variables in the clauses cj with j ∈ I2 ∪ I3 and the

variables u1, u2, . . . , u|I1|. Recall now that each good clause contains at least r0(k − 3) auxiliary

variables, and, thus, the bound given in (4.33) follows from (4.34) and Lemma 4.44. Combining

(4.33), (4.32) and (4.31), and counting the number of tuples in T , we conclude that

Pr

(⋂ℓ

j=1
(Fj(1) ∪ Fj(2) ∪ Fj(3))

)
≤

∑
(i1,i2,...,iℓ)∈{1,2,3}ℓ

k|I1|
(

exp(1/k)

2

)(k−3)r0|I2∪I3|(2

k2r0k

)|I1|

≤
∑

(i1,i2,...,iℓ)∈{1,2,3}ℓ

(
e23r0

2kr0

)|I2∪I3|(2

2r0k

)|I1|

=

(
e23r0

2kr0
+

e23r0

2kr0
+

2

2r0k

)ℓ

,

where we used the multinomial theorem. The result now follows from 2e23r0 + 2 ≤ 24.

Following [49] and motivated by Lemma 4.45, we introduce the combinatorial structure that

we use in our proof of Lemma 4.9 to bound the expected number of failed clauses.

Definition 4.46 (G≤k, D3(GΦ, c, ℓ)). For a graph G = (V,E) and a positive integer k, let G≤k

be the graph with vertex set V in which vertices u and v are connected if and only if there is a

path from u to v in G of length at most k. Given the graph GΦ, a clause c and a positive integer

ℓ, let D3(GΦ, c, ℓ) be the set of subsets T ⊆ V (GΦ) such that the following holds:

Page 181 of 212

Chapter 4. Fast sampling of satisfying assignments from random k-SAT

1. |T | = ℓ and c ∈ T ;

2. for any c1, c2 ∈ T , var(c1) ∩ var(c2) ∩ Vgood = ∅;

3. the graph G≤3
Φ [T], which is the subgraph of G≤3

Φ induced by T , is connected;

4. we have |T ∩ Cgood| ≥ (1− 8/k)ℓ.

In [49] the authors consider connected sets in G≤4
Φ instead of G≤3

Φ . Here we manage to

perform our union bound on D3(GΦ, c, ℓ) thanks to the fact that the set of failed clauses is

connected in our refinement of the coupling process.

Lemma 4.47 ([49, Corollary 8.19] for G≤3). Let G = (V,E) be a connected graph, let v ∈ V

and let ℓ be a positive integer. Let nG,ℓ(v) denote the number of connected induced subgraphs of

G with size ℓ containing v. Then, for ℓ′ = min{3ℓ, |V |}, we have nG≤3,ℓ(v) ≤ 2ℓ
′
nG,ℓ′(v).

Proof. Let T be a connected subgraph of G≤3 with size ℓ containing v. We claim that, for all

positive ℓ, we can find a connected subset H of G with size ℓ′ = min{3ℓ, |V |} containing T . The

proof is straightforward by induction on ℓ, see [49, Lemma 8.18] for the analogous result on

G≤4. We note that there are at most
(

ℓ′

ℓ−1

)
≤ 2ℓ

′
subsets T of H containing v that could be

mapped to H by the previous construction. Hence, we conclude that nG≤3,ℓ(v) ≤ 2ℓ
′
nG,ℓ′(v) as

we wanted.

Lemma 4.48 ([49, Lemma 7.9] for D3(GΦ, c, ℓ)). Let ℓ be an integer which is at least log n.

W.h.p. over the choice of Φ, every clause c ∈ Cgood has the property that the size of D3(GΦ, c, ℓ)

is at most (18k2α)3ℓ.

Proof. This follows from bounding the number of connected sets of size ℓ in G≤3
Φ that contain c

by combining Lemmas 4.29 and 4.47.

We have now all the tools that we need to bound the expected number of failed clauses in

the coupling process given in Algorithm 4 and complete the proof of Lemma 4.9.

Lemma 4.9. There is an integer k0 ≥ 3 such that for any integer k ≥ k0 and any density α

with α ≤ 2r0k/3/k3 the following holds. W.h.p. over the choice of the random k-CNF formula

Φ = Φ(k, n, ⌊αn⌋), for any (r0 − δ, r0, r0, 2r0)-marking (Vm,Va,Vc) of Φ, the distribution µΩ|Vm

is (2−(r0−δ)k log n)-spectrally independent.

Proof. Let u ∈ Vm and Λ: S → {F,T} with S ⊆ Vm \ {u}. First of all, we apply Lemma 4.40 to

bound
∑

v∈Vm\(S∪{u})
∣∣IΛ(u→ v)

∣∣ by 2−r0k+1E [|Fu(R)|], where R ∼ τR(Φ,M, u,Λ). In the rest

of this proof we show that Pr(|Fu(R)| ≥ 2k4 log n) ≤ O(1/n) and, thus, for large enough n, using

the fact that |Fu(R)| ≤ m ≤ αn, we have E [|Fu(R)|] =
∑

R∈R(Φ,M,u,Λ) Pr(R)|Fu(R)| ≤ 4k4 log n.

Putting all this together, and using the fact that 8k4 ≤ 2δk for large enough k (here δ = 0.00001)

we would obtain the bound
∑

v∈Vm\(S∪{u})
∣∣IΛ(u→ v)

∣∣ ≤ 8 · 2−r0kk4 log n ≤ 2−(r0−δ)k log n and,

thus, the result would follow.

Page 182 of 212

Chapter 4. Fast sampling of satisfying assignments from random k-SAT

So to finish we just need to show that, w.h.p. over the choice of Φ, Pr(|Fu(R)| ≥ 2k4 log n) ≤
O(1/n). Let L = ⌈2k4 log n⌉ and let ℓ = ⌈0.5k4 log n⌉. First, we are going to show that, w.h.p.

over the choice of Φ, the following holds:

if Z ⊆ C is connected and |Z| = L, then ∃c ∈ Z ∩ Cgood and T ∈ D3(GΦ, c, ℓ) with T ⊆ Z.

(4.35)

In order to prove (4.35), we are going to find a large independent set of Z ∩ Cgood, and we are

going to extend it with some clauses in Z ∩ Cbad to obtain T ∈ D3(GΦ, c, ℓ). We need three

results that hold w.h.p. over the choice of Φ: Lemmas 4.15, 4.27 and 4.26. We note that we can

apply Lemma 4.15 for r = r0 − δ as our density satisfies α ≤ 2r0k/3/k3 ≤ ⌈2(r0−δ)k⌉/k3 = ∆r/k
3,

where δ = 0.00001. For Z as in (4.35) we have |Z| ≥ 2k4 log n, so by Lemma 4.27 with

a = 2k4, we find that |var(Z)| ≥ 2k4 log n and, thus, in light of Lemma 4.15, we conclude that

|Z ∩ Cgood| ≥ (1− 1/k)|Z| and |Z ∩ Cbad| ≤ |Z|/k. From Lemma 4.26 with b = 4k4, w.h.p. over

the choice of Φ, all connected sets of clauses with size at most 4k4 log n have tree-excess at most

t := max{1, 8k4 log(ek2α)}. Thus, we can find U ⊆ Z ∩ Cgood such that U is a forest (disjoint

union of trees) and |U | ≥ (1− 1/k)|Z| − t. In particular, U is bipartite, so there is I ⊆ U such

that var(c)∩ var(c′) = ∅ for all c, c′ ∈ I and |I| ≥ |U |/2 ≥ (1− 1/k)L/2− t/2 ≥ 1
2k

4 log n, where

the last inequality holds for large enough n. Let I ′ be an independent set of Z ∩ Cgood with the

largest possible size. Then we have shown that |I ′| ≥ ℓ = ⌈12k
4 log n⌉.

We claim that the set T ′ := I ′ ∪ (Z ∩ Cbad) is connected in (GΦ[Z])≤3, where GΦ[Z] is the

subgraph of GΦ induced by Z. Assume for contradiction that T ′ is not connected in (GΦ[Z])≤3.

In this case, we can write T ′ = S1 ∪ S2 such that for all c1 ∈ S1 and c2 ∈ S2, the shortest path

between c1 and c2 through clauses in Z has length at least 4. Let (c1, c2) ∈ S1 × S2 be the

pair with the shortest path in Z, and let this path be c1 = e1, e2, . . . , ej = c2. Then j ≥ 5 and

e2, . . . , ej−1 ∈ Z \ T ′. Moreover, we find that var(e3) ∩ var(c) = ∅ for all c ∈ T ′ as otherwise

e1, e2, . . . , ej would not be the shortest path between S1 and S2. Moreover, since T ′ contain all

bad clauses in Z, we conclude that e3 is a good clause. It follows that I ′∪{e3} is an independent

set of good clauses of Z, which contradicts the fact that I ′ has largest possible size among such

sets.

Finally, as |T ′| ≥ ℓ, we can find a good clause c and a subset T of T ′ with size ℓ such that

c ∈ T , T is connected in G≤3
Φ and |T ∩ Cbad| ≤ |Z ∩ Cbad| ≤ L/k ≤ 8ℓ/k. We conclude that

T ∈ D3(GΦ, c, ℓ). This finishes the proof of (4.35).

In the rest of the proof we use (4.35) to bound Pr(|Fu(R)| ≥ L). Recall that the set of

failed clauses Fd(R) ∪ Fu(R) is connected (Proposition 4.34). If |Fu(R)| ≥ L, then there is

Z ⊆ Fd(R) ∪ Fu(R) with |Z| = L such that Z is connected in GΦ, and, thus, we can find c and

T as in (4.35). We have shown that the event |Fu(R)| ≥ L is contained in the event that there

Page 183 of 212

Chapter 4. Fast sampling of satisfying assignments from random k-SAT

is a good clause c and T ∈ D3(Φ, c, ℓ) such that T ⊆ Fd(R)∪Fu(R). As a consequence, we have

Pr [|Fu(R)| ≥ L] ≤
∑
c∈C

∑
T∈D3(Φ,c,ℓ)

Pr [T ⊆ Fd(R) ∪ Fu(R)]

≤
∑
c∈C

∑
T∈D3(Φ,c,ℓ)

Pr [T ∩ Cgood ⊆ Fd(R) ∪ Fu(R)] .

We note that for any T ∈ D3(Φ, c, ℓ) there is at most one good clause c′ that contains the marked

variable u. Thus, by definition of D3(Φ, c, ℓ), there are at least (1− 8/k)ℓ− 1 good clauses in T

that do not contain the variable u. Hence, we can apply Lemma 4.48 on the size of D3(Φ, c, ℓ)

and Lemma 4.45 on the probability of good clauses (that do not share good variables) failing to

further obtain

Pr [|Fu(R)| ≥ L] ≤ m
(
18k2α

)3ℓ
2−(r0k−4)[(1−8/k)ℓ−1].

In what follows it is essential that α ≤ 2r0k/3/k3, and this is the only proof in this paper

where we need this bound on the density – other proofs only require the less restrictive bounds

α ≤ 2(r0−δ)k/k3 or α ≤ 2(r0−3δ)k/k3. Thus, we conclude that

Pr [|Fu(R)| ≥ L] ≤ m

(
18

2r0k/3

k

)3ℓ

2−(r0k−4)(1−8/k)ℓ 2r0k−4 = m

(
183

k3
28r0+4(1−8/k)

)ℓ

2r0k−4.

Finally, for large enough k we find that Pr [|Fu(R)| ≥ L] ≤ me−ℓ2r0k ≤ mn−0.5k42r0k = O(1/n)

as we wanted.

4.6.3 Mixing time of the ρ-uniform-block Glauber dynamics

Finally, we combine the results in this section with Lemma 4.8 to complete the proof of

Lemma 4.10.

Remark 4.49. The distribution µΩ|Vm
on assignments of the marked variables (Definition 4.6) is

b-marginally bounded for b = 1−(1/2) exp(1/k) by Proposition 4.5 (or, equivalently, Lemmas 4.21

and 4.23). Since exp(1/k) ≤ 1 + 2/k, we have b ≥ 1/2− 1/k ≥ 1/e for k ≥ 8.

Lemma 4.10. There is a function k0(θ) = Θ(log(1/θ)) such that, for any θ ∈ (0, 1), for any

integer k ≥ k0(θ) and any density α with α ≤ 20.039k the following holds. W.h.p. over the choice

of the random k-CNF formula Φ = Φ(k, n, ⌊αn⌋), for any (r0− δ, r0, r0, 2r0)-marking (Vm,Va,Vc)
of Φ and for ρ = ⌈2−k−1|Vm|⌉, the ρ-uniform-block Glauber dynamics for updating the marked

variables has mixing time Tmix(ρ, ε/2) ≤ T := ⌈22k+3nθ log 2n
ε2
⌉.

Proof. In view of Lemma 4.9, as α ≤ 20.039k ≤ 2r0k/3/k3 for large enough k, w.h.p. over the

choice of Φ, the distribution µΩ|Vm
is η-spectrally independent for η = 2−(r0−δ)k log n. Moreover,

this distribution is b-marginally bounded for b = 1/e when k ≥ 8. We are going to apply

Lemma 4.8 with V = Vm, µ = µΩ|Vm
, M = |Vm| and κ = 2−k−1. First, we check that the

hypothesis M ≥ 2
κ(4η/b2 + 1) of Lemma 4.8 holds. By Corollary 4.25 with r = r0 − δ and

Page 184 of 212

Chapter 4. Fast sampling of satisfying assignments from random k-SAT

V = Vm, we have M ≥ (r0 − δ)(kα/∆r)n = Ω(n), so M ≥ 2
κ(4η/b2 + 1) holds for large enough

n as 2
κ(4η/b2 + 1) = O(log n). Hence, we can apply Lemma 4.8 to obtain

Tmix(ρ, ε/2) ≤
⌈
Cρ

M

ρ

(
log log

1

µmin
+ log

2

ε2

)⌉
,

where ρ = ⌈κM⌉ and Cρ = (2/κ)4η/b
2+1. We have

Cρ = exp

(
(log 2)(k + 2)

(4η

b2
+ 1
))
≤ 2k+2 exp

(
(log 2)(logn)(k + 2)4e2

2(r0−δ)k

)
,

so there exists a function k0(θ) = Θ(log(1/θ)) such that when k ≥ k0(θ), we have Cρ ≤ 2k+2nθ.

In light of Remark 4.49, we have µmin ≥ bM , so log log(1/µmin) ≤ log(M log(1/b)) = logM as

b = 1/e. Thus, we conclude that

Tmix(ρ, ε/2) ≤
⌈

22k+3nθ

(
logM + log

2

ε2

)⌉
≤
⌈

22k+3nθ log
2n

ε2

⌉
.

4.7 Proof of Theorem 1.8

In this section we complete the proof of Theorem 1.8. The proofs in this section do not present

any challenging steps. In fact, they amount to combining the main technical results that have

already been proved in this work. We start by showing that the calls to the method Sample in

Algorithm 1 are unlikely to ever return error, that is, the connected components of GΦΛ have size

at most 2k4(1 + ξ) log(n) almost every time the method is called. As pointed out in our proof

outline, this is a straightforward consequence of Lemma 4.12 and the fact that the probability

distribution of the output of the Glauber dynamics is (1/k)-uniform (Corollary 4.24).

Lemma 4.50. Let θ ∈ (0, 1). There is an integer k0 ≥ 3 such that, for any integers k ≥ k0, ξ ≥ 1

and any density α ≤ 2(r0−3δ)k/k3, the following holds w.h.p. over the choice of Φ = Φ(k, n, ⌊αn⌋).
In the execution of Algorithm 1 with input Φ, with probability at least 1− n−3ξ over the random

choices made by Algorithm 1, every time that the algorithm calls the method Sample(ΦΛ, S), the

connected components of GΦΛ have size at most 2k4(1 + ξ) log(n).

Proof. Let ε = n−ξ and let T = ⌈22k+3nθ log 2n
ε2
⌉ be the mixing time established in Lemma 4.10.

Note that α ≤ 2(r0−3δ)k/k3 ≤ 2(r0−δ)k/k3, so we an indeed compute the marking (Vm,Va,Vc)
in Algorithm 1 with the help of Lemma 4.21. We need α ≤ 2(r0−3δ)k/k3 so that we can apply

Lemma 4.12 with r = r0 − δ. Algorithm 1 calls the method Sample exactly T + 1 times in total:

T times in line 7 (when simulating the ρ-uniform-block Glauber dynamics) and one time in

line 10 to extend the assignment XT of marked variables to all variables.

Let t ∈ {0, 1, . . . , T} and let πt be the probability distribution of Xt, where Xt is the state

of the ρ-block-uniform Glauber dynamics on the marked variables described in Algorithm 1

after t steps. Recall that ρ = ⌈2−k−1|Vm|⌉ and that X0 is chosen uniformly at random. First,

we focus on the case t < T . We are going to apply Lemma 4.12 with r = r0 − δ, a = 2k4,

Page 185 of 212

Chapter 4. Fast sampling of satisfying assignments from random k-SAT

b = 2a(1 + ξ), V = Vm, µ = πt and this choice of ρ. The set Vm is r0-distributed by the definition

of (r0 − δ, r0, r0, 2r0)-marking (Definition 4.3). Moreover, πt is (1/k)-uniform by Corollary 4.24,

and we have ρ ≤ |Vm|/2k. Hence, we can indeed apply Lemma 4.12. Consider the following

experiment described in Lemma 4.12 for L = ⌈a(1+ξ) log n⌉, which satisfies a log n ≤ L ≤ b log n.

First, draw S ⊆ Vm from the uniform distribution τ over subsets of Vm with size ρ. Then, sample

an assignment Λt+1 from πt|Vm\S , the marginal of πt on Vm \S. Denote by F the event that that

there is a connected set of clauses Y of Φ with |Y | ≥ L such that all clauses in Y are unsatisfied

by Λt+1. Then we have

PrS∼τ

(
PrΛt+1∼πt|Vm\S

(F) ≤ 2−δkL
)
≥ 1− 2−δkL. (4.36)

Alternatively, this experiment is the same as first sampling an assignment Xt of all variables

in Vm from πt, and then restricting the assignment to a random set S ∼ τ , obtaining Λt+1.

Note that this exact experiment occurs before calling the method Sample in the t-th step of

the ρ-uniform-block Glauber dynamics in Algorithm 1. Thus, in light of (4.36), the probability

that in step t + 1 of the execution of Algorithm 1 the graph GΦΛt+1 has a connected component

with size at least L is at most 2−δkL + 2−δkL, where the first 2−δkL comes from the probability

of choosing a wrong set S ∼ τ in (4.36) and the second 2−δkL comes from the bound on the

probability of the event F once we have chosen S. We have shown that with probability at

least 1− 2·2−δkL, all the connected components of the graph GΦΛt appearing in step t + 1 of

the execution of Algorithm 1 have size less than L. We have 2·2−δkL ≤ 2·n−δka(1+ξ) log 2 ≤ n−5ξ

for large enough k, so the probability that Sample returns error at step t + 1 is at most n−5ξ.

The case t = T is analogous, the only difference here is that we call Sample on ΦXT , where

XT ∼ πT is an assignment of all marked variables, so we apply Lemma 4.12 with ρ = 0 instead

of ρ = ⌈2−k−1|Vm|⌉.
Finally, we carry out a union bound over t ∈ {0, 1, . . . , T}, so the probability that any

of the calls to Sample returns error is at most (T + 1)n−5ξ ≤ n−3ξ for large enough n as

T = O(nθ log n) = O(n log n).

Once we have established Lemmas 4.10, 4.14, and 4.50, the proof of Theorem 1.8 follows as

below.

Theorem 1.8. For any real θ ∈ (0, 1), there is k0 ≥ 3 with k0 = O(log(1/θ)) such that, for any

integers k ≥ k0 and ξ ≥ 1, and for any positive real α ≤ 20.039k, the following holds.

There is an efficient algorithm to sample from the satisfying assignments of a random k-CNF

formula Φ = Φ(k, n, ⌊αn⌋) within n−ξ total variation distance of the uniform distribution. The

algorithm runs in time O(n1+θ), and succeeds w.h.p. over the choice of Φ.

Proof. Let k0(θ) = Θ(log(1/θ)) be large enough so that, for all integers k ≥ k0(θ), ξ ≥ 1 and all

densities α ≤ 20.039·k, the conclusions of Lemmas 4.21, 4.10, 4.14, and 4.50 hold w.h.p. over the

choice of the random k-CNF formula Φ = Φ(k, n, ⌊αn⌋). These lemmas are enough to analyse

Algorithm 1 and tackle this proof. We analyse the distribution µalg of the output of Algorithm 1.

Page 186 of 212

Chapter 4. Fast sampling of satisfying assignments from random k-SAT

This distribution outputs either a satisfying assignment of the input formula Φ or error. Let

ε = n−ξ. Let E be the event that running Algorithm 1 outputs error. This happens with

probability at most ε/4 when computing the marking (Vm,Va,Vc) in line 2 of the algorithm, and

in lines 7 and 10 if the method Sample(Φ̂, S) returns error, which occurs when GΦ̂ has a connected

component with size more than 2k4(1 + ξ) log(n). In view of Lemma 4.50, the probability that

Algorithm 1 outputs error due to the failure of the method Sample is at most n−3ξ = ε3. We

conclude that the probability that the algorithm outputs error is bounded above by ε/4+ε3 ≤ ε/2 .

Let µGlauber be the distribution that Algorithm 1 would output if there were no errors (that is, the

distribution assuming that the method Sample always outputs from the appropriate distribution).

Then dTV(µalg, µGlauber) is the probability that an error occurs, which is at most ε/2. Let πGlauber

be the distribution output by the ρ-uniform-block Glauber dynamics on Vm after T steps. By

Lemma 4.10 on the mixing time of the Glauber dynamics, we have dTV(πGlauber, µΩ|Vm
) ≤ ε/2.

As µGlauber comes from sampling an assignment XT from πGlauber and then completing XT

to all V by sampling from µΩ(·|XT), we have dTV(µGlauber, µΩ) ≤ dTV(πGlauber, µΩ|Vm
) ≤ ε/2.

We find that dTV(µalg, µΩ) ≤ dTV(µalg, µGlauber) + dTV(µGlauber, µΩ) ≤ ε/2 + ε/2 = ε as we

wanted. The running time of Algorithm 1 is now easily obtained by adding up the running

times of the following subroutines. The good clauses and good variables are computed in time

O(n + km) = O(n), see Proposition 4.2. The marking (Vm,Va,Vc) is computed with probability

at least 1 − ε/4 in time O(n∆rk
2 log(4/ε)) = O(n log n), see Lemma 4.21. Recall that there

are T + 1 = O(nθ log(n/ε2)) = O(nθ log n) calls to the method Sample(Φ′, S), and each call

takes time O(|S| log n) = O(n log n) by Lemma 4.14. We conclude that the running time of

Algorithm 1 is O(n1+θ log(n)2). The result now follows by choosing k1 = k0(θ/2), so the running

time for k ≥ k1 is O(n1+θ/2 log(n)2) = O(n1+θ).

We have now proved that it is possible to (approximately) sample uniformly at random

from the satisfying assignments of Φ = Φ(k, n, ⌊αn⌋). At this point, standard techniques

can be applied to obtain a randomised approximation scheme for counting the satisfying

assignments of Φ. These techniques are based on the self-reducibility of k-SAT [77]. The

following remark shows how to obtain a randomised approximation scheme that runs in time

O(nθ(n/ε)2) following [43, Chapter 7], where the authors base their counting algorithm on the

simulated annealing method [117, 71, 81].

Remark 4.51 (Approximate counting for random k-SAT formulae). Let k0(θ) be the integer

depending on θ ∈ (0, 1) obtained in Theorem 1.8. Let k1 = k0(θ/2), let k ≥ k1(θ) be an integer,

let ξ be a positive integer and let α ≤ 20.039k be a density. We apply Theorem 1.8 to obtain

an algorithm to sample from the satisfying assignments of Φ = Φ(k, n, ⌊αn⌋) within n−4ξ total

variation distance from the uniform distribution. This algorithm runs in time O(n1+θ/2) and

succeeds w.h.p. over the choice of Φ.

Let ε ∈ (0, 1) with ε ≥ n−ξ. A modified version of the approximate counting algorithm of [43,

Section 7], using O(ε−2n log(n/ε)) samples from the sampling algorithm above, approximates

the number of satisfying assignments of the k-CNF formula Φ with multiplicative error ε, thus,

Page 187 of 212

Chapter 4. Fast sampling of satisfying assignments from random k-SAT

achieving running time O(nθ/2(n/ε)2 log(n/ε)) = O(nθ(n/ε)2). Here we describe these minor

modifications.

Let Ωbad be the set of assignments X : V → {F,T} that satisfy the bad clauses of Φ. For

X ∈ Ωbad, we define F (X) to be the set of good clauses that are not satisfied by X. For κ ∈ R,
we define wκ(X) = exp(−κ|F (X)|) and we define the partition function Z(κ) =

∑
X∈Ωbad

wκ(X),

which was introduced in Section 1.1.3 of this thesis. The simulated annealing algorithm of [43,

Section 7] uses Z(κ) (with Ω∗ from Definition 4.4 in place of Ωbad) to approximate the number of

satisfying assignments of Φ. We note that Z(0) = |Ωbad|, which can be computed in linear time

in n using the exact counting algorithm given in Proposition 4.31. Here one has to use the fact

that the connected components of GΦ′ for the formula Φ′ = (V, Cbad) have size at most 2k4 log n,

see Lemma 4.64 from Section 4.9 and Lemma 4.27, and the fact that these connected component

have tree-excess upper bounded as a function of k (Lemma 4.26). Once one has performed these

modifications, the algorithm given in [43, Section 7] applies without any difficulties.

4.8 Proof of Theorems 1.10 and 1.12

In this section we exploit Lemma 4.12 to prove Theorems 1.10 and 1.12 on the connectivity and

looseness of the solution space of random k-CNF formulae. We recall that the density threshold

in Theorems 1.10 and 1.12 is α ≤ 20.227k, significantly larger than our algorithmic threshold in

Theorem 1.8, which is α ≤ 20.039k. In order to conclude connectivity for densities up to 20.227k,

we let r1 = 0.227092 and consider the threshold ∆r = ⌈2rk⌉ for r = r1 − δ in the definition of

high-degree variables instead of ∆r0−δ = ⌈2(r0−δ)k⌉. In all this section we set r = r1 − δ, so we

omit r in the notation and we write Vgood instead of Vgood(r) in order to improve the reading

experience. We work with an (r, r1, 0, r1)-marking (Vm, ∅,Vc) (the set of auxiliary variables is

empty), which we can find w.h.p. over the choice of Φ = Φ(k, n, ⌊αn⌋) as in Lemma 4.22. Let us

briefly recall some of the properties of this marking. First of all, by definition, the set Vm is

r1-distributed and is a subset of Vgood. Moreover, the distribution µΩ|Vm
is (1/k)-uniform by

Lemma 4.23. In light of Lemma 4.12 for r = r1− δ, these properties allow us to show that, when

sampling Λ ∼ µΩ|Vm
, the connected components of ΦΛ are logarithmic in size with probability

1 − o(1) over the choice Λ ∼ µΩ|Vm
. In fact, this is also the case when Λ ∼ µΩ|Vm\{v} for any

variable v.

Corollary 4.52. There is an integer k0 ≥ 3 such that, for any integer k ≥ k0, any density

α ≤ α1 := 2(r1−3δ)k, the following holds w.h.p. over the choice of Φ = Φ(k, n, ⌊αn⌋).
Let V be a set of good variables of Φ that is r1-distributed, let µ be a (1/k)-uniform distribution

over the assignments V → {F,T} and let v ∈ V . Then, with probability at least 1− n−k over the

choice Λ ∼ µ|V \{v}, the connected components of ΦΛ have size at most 2k4 log n.

Proof. The result is an application of Lemma 4.12 with r = r1 − δ, b = 4k4, ρ = 1 and

L = ⌈2k4 log n⌉. We need large enough k0 such that 2−δkL ≤ 2−δ2k5 logn ≤ n−k for all k ≥ k0.

For these parameters, in the setting of Lemma 4.12, the distribution τ is the uniform distribution

Page 188 of 212

Chapter 4. Fast sampling of satisfying assignments from random k-SAT

over the variables in V . The experiment in the statement of Lemma 4.12 consists in sampling

v ∼ τ and then sampling Λ ∼ µ|V \{v}. Let Fv be the event, concerning the choice Λ ∼ µ|V \{v},

that there is a connected set of clauses Y of Φ with |Y | ≥ ⌈2k4 log n⌉ such that all clauses in

Y are unsatisfied by Λ. Then by Lemma 4.12 we have Prv∼τ

(
PrΛ∼µ|V \{v}

(Fv) ≤ 2−δkL
)
≥

1−2−δkL. From 2−δkL ≤ n−k, we obtain the bound Prv∼τ

(
PrΛ∼µ|V \{v}

(Fv) ≤ 2−δkL
)
≥ 1−n−k.

Since τ is the uniform distribution over the variables in V , for v ∼ τ , either the event that

PrΛ∼µ|V \{v}
(Fv) ≤ 2−δkL has probability 1 or it has probability at most 1 − 1/|V | ≤ 1 − 1/n.

The latter option is not possible due to Prv∼τ

(
PrΛ∼µ|V \{v}

(Fv) ≤ 2−δkL
)
≥ 1 − n−k and

k ≥ 3. Thus, we conclude that Prv∼τ

(
PrΛ∼µ|V \{v}

(Fv) ≤ 2−δkL
)

= 1, so for any v ∈ V

we have PrΛ∼µ|V \{v}
(Fv) ≤ 2−δkL ≤ n−k. That is, for any v ∈ V , with probability at least

1 − n−k over the choice of Λ ∼ µ|V \{v} the connected components of ΦΛ have size at most

L− 1 = ⌈2k4 log n⌉ − 1 < 2k4 log n as we wanted to prove.

Our connectivity and looseness results will follow from Corollary 4.52. In Section 4.8.1 we

prove Theorem 1.10 and in Section 4.8.2 we prove Theorem 1.12.

4.8.1 Proof of Theorem 1.10

We consider Algorithm 5 that receives two satisfying assignments of a k-CNF formula Φ as the

input and constructs a path between them. Before introducing this algorithm, recall that the

graph HΦ is the dependency graph of the variables of Φ introduced in Definition 4.13.

Algorithm 5 Finding a (poly(k) log n)-path between two satisfying assignments

Input: a k-CNF formula Φ = (V, C) with n variables, an (r, r1, 0, r1)-marking (Vm, ∅,Vc) of Φ,

and two satisfying assignments σ, σ′.

1: Let v1, v2, . . . , vℓ be the variables in Vm.

2: ζ0 ← σ.

3: for i ∈ [ℓ] do

4: Find ζi ∈ Ω with marked variables specified by ζi(vj) =

σ′(vj), j ≤ i;

σ(vj), j > i;

such that ∥ζi − ζi−1∥1 is minimised.

5: end for

6: ξ0 = ζℓ

7: Let τ ′ = σ′|Vm
and suppose that HΦτ ′ has connected components E1, E2, . . . , Et.

8: for i ∈ [t] do

9: Let ξi ∈ Ω be defined as ξi(v) =

σ′(v), v ∈
(
V \

⋃t
j=1 Ej

)
∪
(⋃i

j=1 Ej
)

;

ζℓ(v), v ∈
⋃t

j=i+1 Ej .
10: end for

11: return The path σ = ζ0 ↔ · · · ↔ ζℓ = ξ0 ↔ · · · ↔ ξr = σ′.

Page 189 of 212

Chapter 4. Fast sampling of satisfying assignments from random k-SAT

To prove Theorem 1.10, it suffices to show that the output of Algorithm 5 is with high

probability a D-path in the solution space for D = 2k5 log n for the inputs σ ∼ µΩ and σ′ ∼ µΩ.

We will not actually require σ ∼ µΩ and σ′ ∼ µΩ in the proof; instead we will just use the fact

that the restrictions of σ and σ′ on Vm follow a (1/k)-uniform distribution as guaranteed by

Lemma 4.23, see the proof of Lemma 4.54 for details.

We need the following two lemmas to establish Theorem 1.10. The first lemma (Lemma 4.53)

shows that all the truth assignments ζi, ξi in the algorithm exist and satisfy the formula (i.e.

the algorithm is well-defined), implying our constructed path is indeed a valid path comprising

only satisfying assignments. The second lemma (Lemma 4.54) shows that w.h.p., two adjacent

assignments differ by at most 2k5 log n variables. This result is an application of Corollary 4.52.

Lemma 4.53. For any k-CNF formula Φ with n variables, any (r, r1, 0, r1)-marking (Vm, ∅,Vc)
of Φ, and any two satisfying assignments σ, σ′, Algorithm 5 on these inputs is well-defined in the

following sense:

1. It is always possible to implement Line 4 such that ζi ∈ Ω.

2. We have ξi ∈ Ω for each i ∈ [t].

Proof. To prove item 1, we are going to show that for any partial assignment X : Vm → {F,T},
we have PrµΩ(X) > 0 and, thus, can extend X to some satisfying assignment. If this claim

holds, then we can indeed compute the satisfying assignments ζ1, ζ2, . . . , ζℓ in Algorithm 5.

Recall that the distribution µΩ|Vm
is (1/k)-uniform, see Lemma 4.23. From the definition of

(1/k)-uniform distribution, we find that an analogous statement to Proposition 4.5 holds for our

(r, r1, 0, r1)-marking (here r = r1 − δ): for any v ∈ Vgood(r), any V ⊆ Vm with v ̸∈ V , and any

Λ: V → {F,T}, we have

max
{

Prµ
ΩΛ (v 7→ F|Λ) ,PrµΩ (v 7→ T|Λ)

}
≤ 1

2
exp

(
1

k

)
.

Thus, by induction on the size of a set S ⊆ Vm, we conclude that any assignment Λ: S → {F,T}
has PrµΩ(Λ) > 0, finishing the proof of item 1.

Next consider item 2. Let τ ′ = σ′|Vm
as in Algorithm 5. All clauses that do not appear

in GΦτ ′ are satisfied by the partial assignment τ ′. Now consider two satisfying assignments

Λ,Λ′ such that Λ(Vm) = Λ′(Vm) = τ ′. Let GΦτ ′ have connected components C1, C2, . . . , Ct′ .
In particular, Λ|var(Ci) and Λ′|var(Ci) each satisfy all clauses in Ci. Each clause in Φτ ′ is in

exactly one connected component Ci. Consequently, any assignment X such that X|Vm
= τ ′ and

X|var(Ci) ∈ {Λ|var(Ci),Λ
′|var(Ci)} for all i ∈ [t′] is a satisfying assignment (any variables that do not

appear in Vm ∪
(⋃t′

i=1 var(Ci)
)

can be chosen arbitrarily). We note that there are two types of

connected components of HΦτ . The first type are those corresponding to var(Ci) for some i ∈ [t′].

The second type are those connected components with variables in V \
(
Vm ∪

(⋃t′

i=1 var(Ci)
))

.

These connected components are singleton and consist of one variable v that does not appear in

Φτ or, equivalently, every clause of Φ containing v is satisfied by τ . As a consequence, taking

Page 190 of 212

Chapter 4. Fast sampling of satisfying assignments from random k-SAT

Λ = ζℓ, Λ′ = σ′ and X = ξi in the argument above, we conclude that ξ0, ξ1, . . . , ξt are satisfying

assignments by construction in Algorithm 5 and item 2 holds.

Lemma 4.54. There is an integer k0 ≥ 3 such that, for any integer k ≥ k0, any density

α ≤ 2(r1−3δ)k, the following holds w.h.p. over the choice of Φ = Φ(k, n, ⌊αn⌋). In Algorithm 5

with inputs the formula Φ, an (r, r1, 0, r1)-marking of Φ and the two satisfying assignments σ

and σ′, with probability at least 1− 1/n over the choices σ ∼ µΩ, σ
′ ∼ µΩ, we have

1. ∥ζi − ζi−1∥1 ≤ 2k5 log n for all i ∈ [ℓ];

2. ∥ξi − ξi−1∥1 ≤ 2k5 log n for all i ∈ [t].

Proof. Let Φ and (Vm, ∅,Va) be the first two inputs of Algorithm 5, and let v1, v2, . . . , vℓ be

the variables in Vm in the order considered in Algorithm 5. Let σ ∼ µΩ and σ′ ∼ µΩ. Let

σ = ζ0 ↔ · · · ↔ ζℓ = ξ0 ↔ · · · ↔ ξr = σ′ be the path between σ and σ′ output by Algorithm 5.

In light of Lemma 4.53, the assignments ζ0, ζ1, . . . , ζℓ, ξ1, . . . , ξr are satisfying assignments of Φ.

We also note that the set of marked variables Vm is r1-distributed and does not contain bad

variables by Definition 4.3. We are going to apply Corollary 4.52 with V = Vm several times

in this proof. In view of Lemma 4.23, the distribution µΩ|Vm
is (1/k)-uniform, and this will be

relevant when applying Corollary 4.52. We prove that Item 1 holds with probability at least

1− 1/(2n) and that Item 2 holds with probability 1− 1/(2n), so the result follows from a union

bound.

Item 1. Let i ∈ [ℓ] and let τi be the restriction of ζi to Vm. By construction, τi agrees with

σ′ on v1, v2, . . . , vi and it agrees with σ on vi+1, vi+2, . . . , vℓ. Let Λi denote the restriction of

τi on Vm \ {vi}, which agrees with ζi and ζi−1 on Vm \ {vi}. Recall that, by definition, ζi is

the satisfying assignment that extends τi that minimises ∥ζi − ζi−1∥1, see Algorithm 5. We

consider the connected components of GΦΛi , which can be seen as CNF formulae with variables

in Vc ∪ {vi} due to the fact that all marked variables other than vi are set by Λi. Each one of

these connected components are satisfied as CNF formulae by the assignments ζi and ζi−1. We

conclude that ζi and ζi−1 agree on the variables of all these connected components except for

those variables in the connected component of the clauses containing vi, where ζi and ζi−1 may

disagree. Let us denote this connected component by Cvi , which is empty when all the clauses

containing vi are satisfied by Λi. We have ∥ζi − ζi−1∥1 ≤ k|Cvi |, where the factor k comes from

the fact that each clause has at most k variables. We now bound the size of Cvi . Since the

restrictions of σ and σ′ to Vm follow µΩ|Vm
, which is (1/k)-uniform, we find, by Definition 4.7,

that τi also follows an (1/k)-uniform distribution over the assignments Vm → {F,T}. Let us

denote this distribution by µi. Then Λi ∼ µi|Vm\{vi} and, by Corollary 4.52 with V = Vm, Λ = Λi

and µ = µi, with probability at least 1 − n−k over the choice Λi ∼ µi|Vm\{vi}, the connected

component Cvi ⊂ GΦΛi containing vi has at most 2k4 log n clauses. Thus, with probability at

least 1 − n−k, we have ∥ζi − ζi−1∥1 ≤ k|Cvi | ≤ 2k5 log n. By a union bound over i ∈ [ℓ] and

the fact that k ≥ 3 and ℓ ≤ n, we conclude that, with probability at least 1 − 1/n2, we have

∥ζi − ζi−1∥1 ≤ 2k5 log n for all i ∈ [ℓ].

Page 191 of 212

Chapter 4. Fast sampling of satisfying assignments from random k-SAT

Item 2. Let τ ′ = σ′|Vm as in Algorithm 5. By construction, ξ0 = ζℓ and ξt = σ′ agree with

τ ′ on Vm. Since σ′ ∼ µΩ, we have τ ′ ∼ µΩ|Vm
, which is (1/k)-uniform by Lemma 4.23. In

view of Corollary 4.52 for V = Vm, Λ = τ ′ and µ = µΩ|Vm
, with probability at least 1 − n−k,

all of the connected components of GΦτ ′ , have size at most 2k4 log n. Thus, all the connected

components of HΦτ ′ have size at most 2k5 log n. By construction, see Line 9 in Algorithm 5, the

assignments ξi−1 and ξi agree on the variables in all the connected components of HΦτ ′ except

for the variables in the i-th connected component, where they may disagree. Thus, they disagree

on at most 2k5 log n variables. This gives the desired result.

We can now complete the proof of Theorem 1.10.

Theorem 1.10. There is k0 ≥ 3 and a polynomial p(k) with non-negative integer coefficients

such that, for any integer k ≥ k0, and for any positive real α ≤ 20.227k, the following claim

holds with high probability over the choice of a random k-CNF formula Φ = Φ(k, n, ⌊αn⌋). Two

satisfying assignments chosen uniformly at random are p(k) log(n)-connected with probability at

least 1− 1/n.

Proof. Since α ≤ 20.227k ≤ 2(r1−3δ)k/k3 ≤ 2(r1−δ)k/k3 for large enough k, w.h.p. over the choice

of Φ, there is an (r, r1, 0, r1)-marking (Vm, ∅,Vc) of Φ, see Lemma 4.22. We run Algorithm 5

with inputs Φ, and the associated marking (Vm, ∅,Vc). W.h.p. over the choice of Φ, Lemma 4.54

holds. Therefore, with probability at least 1 − 1/n over the choice of two random satisfying

assignments σ ∼ µΩ and σ′ ∼ µΩ, the output path of Algorithm 5 is well-defined by Lemma 4.53

and satisfies that ∥ζi − ζi−1∥1 ≤ 2k5 log n for all i ∈ [ℓ] and ∥ξi − ξi−1∥1 ≤ 2k5 log n for all

i ∈ [t] by Lemma 4.54. Hence, it is a D-path in the solution space Ω for D = 2k5 log n as we

wanted.

4.8.2 Proof of Theorem 1.12

We next show O(log n)-looseness for all variables with high probability over (Φ, σ) for random

k-CNF instances Φ and uniformly random satisfying assignment σ ∈ Ω. Consequently, in an

algorithmic regime where α ≪ 2ck for some c < 1, we resolve a conjecture of [1]. Our proof

exploits Corollary 4.52 on the size of the connected components of ΦΛ. It is important in our

arguments that every variable in the formula is flippable.

Definition 4.55. Let Φ = Φ(k, n,m) be a random k-CNF. A variable v ∈ V is flippable if there

exists a pair of satisfying assignments (X,Y) to Φ, in one of which X(v) = F and in the other

Y (v) = T.

Lemma 4.56. For α < 2k−2, with high probability over the choice of Φ = Φ(k,m, n), all

variables in Φ are flippable.

Proof. Observe that we can define an NAE-SAT problem based on Φ. By definition, any

NAE-satisfying assignment ensures that every clause contains at least one satisfied literal and at

Page 192 of 212

Chapter 4. Fast sampling of satisfying assignments from random k-SAT

least one unsatisfied literal. By Theorem 2 in [4], with high probability Φ is NAE-satisfiable.

Consequently, we can find some assignment σ that NAE-satisfies Φ with high probability, and

then the opposite assignment σ also NAE-satisfies Φ by the symmetry of NAE-SAT solutions.

In particular, both σ and σ are solutions to the original SAT formula Φ. Observe that for every

variable v ∈ V we have X(v) = T and X(v) = F in exactly one of σ, σ and thus, with high

probability, every variable in Φ is flippable.

Lemma 4.57. For any variable v ∈ V and any partial assignment X : Vm \ {v} → {F,T}, we
have

PrµΩ(v 7→ F|X) > 0 and PrµΩ(v 7→ T|X) > 0.

Proof. We prove PrµΩ(v → F|X) > 0; the proof of PrµΩ(v → T|X) > 0 is analogous. We

distinguish two cases.

The first case is when v is a good variable. Lemma 4.23 gives PrµΩ (v 7→ F|X,Λbad) ≥
1 − exp(1/k)/2 > 0 for any satisfying assignment of the bad clauses Λbad. Thus, we have

PrµΩ (v 7→ F|X) > 0.

The second case is when v is a bad variable. By Lemma 4.56 there exists a satisfying

assignment σ with σ(v) = F. Let Λbad = σ|Vbad
be the assignment on bad variables and so in

particular PrµΩ(Λbad) > 0. Then by Lemma 4.23 we have PrµΩ (X|Λbad) ≥ (1−exp(1/k)/2)|Vm| >

0. This implies that PrµΩ(X,Λbad) > 0 and in particular PrµΩ(v 7→ F, X) > 0, so PrµΩ(v 7→
F|X) > 0.

We can now prove Theorem 1.12 with the help of Corollary 4.52.

Theorem 1.12. There is k0 ≥ 3 such that, for any integer k ≥ k0, and for any positive real

α ≤ 20.227k, the random k-CNF formula Φ(k, n, ⌊αn⌋) is poly(k) log(n)-loose.

Proof. Note that 20.227k ≤ 2(r1−3δ)k ≤ 2(r1−δ)k/k3 for large enough k. Thus, w.h.p. over the

choice of Φ, there is an (r, r1, ∅, r1)-marking (Vm, ∅,Vc) of Φ, see Lemma 4.21. The distribution

µΩ|Vm
is (1/k)-uniform by Lemma 4.23. Hence, Corollary 4.52 holds for V = Vm and µ = µΩ|Vm

.

Let v be a variable of Φ. Let σ ∼ µΩ and let Λ be the restriction of σ to Vm \ {v}. Then, with

probability at least 1− n−k, the connected components of GΦΛ have size at most 2k4 log n. Let

CΛj be the connected component containing the variable v, which is empty if all clauses containing

v are satisfied. Let ω be the negation of σ(v). By Lemma 4.57, we have PrµΩ(v 7→ ω|Λ) > 0.

Therefore, there is an assignment Y of the variables in var(CΛj) that satisfies the clauses in CΛj
and has Y (v) = ω. We construct the assignment σ′ that has σ′(v) = ω, agrees with Y in var(CΛj)

and agrees with σ in the rest of the variables of Φ. In particular, this assignment agrees with Λ

and satisfies each one of the connected components of ΦΛ. Thus, σ′ is a satisfying assignment of

Φ. Moreover, w.h.p. σ′ differs with σ in at most 2k5 log n variables (the variables in var(CΛj)).

We have shown that, w.h.p. over the choice of Φ, with probability at least 1− n−k a random

assignment σ ∼ µΩ is (2k5 log n)-loose, so the statement follows.

Page 193 of 212

Chapter 4. Fast sampling of satisfying assignments from random k-SAT

4.9 Proofs of Lemmas 4.15 and 4.16

In this section we prove Lemmas 4.15 and 4.16. The proofs of these results are independent of

the rest of this chapter and, in fact, follow from slightly modifying some results in [49], without

involving any other material. We include the proofs here for completeness.

Recall that Lemmas 4.15 is [49, Lemma 8.16] with a less restrictive bound on the density

of the formula and a more restrictive definition of good variables/clauses, see Section 4.2 for

details. Moreover, the obtained upper bound on the number of bad clauses in our version of [49,

Lemma 8.16] is tighter. The original proof of Lemma 4.15 given in [49, Section 8] is split into a

sequence of results on random formulae. Here we restate some of these results — only those

whose statement needs to change as a consequence of our definition of good variables/clauses and

the tighter upper bound. We also explain how these changes affect the proofs if any modifications

are necessary.

Let us fix some notation first. The results stated in this section only hold for large enough k

unless we say otherwise. We note that in [49] the density α is at most 2k/300/k3 and ∆ = 2k/300,

where ∆ is the threshold in the definition of high-degree variables, and the proofs are carried

out for these particular values. It turns out that, following the proofs in [49, Section 8], the only

properties of α and ∆ needed in order to proof Lemma 4.15 are that, for r ∈ (0, 1/(2 log 2)), we

have ∆r = ⌈2rk⌉ and α is bounded above by ∆r/k
3 (note the subscript r here to indicate that

∆r depends on r). First, we need some definitions. For any set of variables S ⊆ V of Φ, we

denote by HD(S, r) the set of high-degree variables in S (recall that a variable is of high-degree

if the degree of v is at least ∆r).

Lemma 4.58 ([49, Lemma 8.1]). Let r ∈ (0, 1). There is a positive integer k0 such that for any

integer k ≥ k0, ∆r = ⌈2rk⌉, and any density α with α ≤ ∆r/k
3, the following holds w.h.p. over

the choice of Φ = Φ(k, n, ⌊αn⌋). The size of V0(r) := HD(V, r) is at most (α/∆r)n/2k
10
.

Proof. The proof is the same to that of [49, Lemma 8.1], apart from one change that we highlight

here. The degrees of the variables in Φ have the same distribution as a balls-and-bins experiment

with km balls and n bins. Let D1, D2, . . . , Dn be independent variables following the Poisson

distribution Poi(µ) with parameter µ = kα. The degrees of the variables of Φ have the same

distribution as {D1, D2, . . . , Dn} conditioned on the event E that D1 + D2 + · · ·+ Dn = m, see

for instance [92, Chapter 5.4]. Let U = {i ∈ [n] : Di ≥ ∆r}. We want to show that Pr(|U | >
(α/∆r)n/2k

10 |E) = o(1). In [49, Lemma 8.1] the authors show that Pr(|U | > n/2k
10 |E) = o(1).

Their bound is not tight, but it is enough for their purposes. In fact, one can change k10 by any

polynomial and the result would still hold for large enough k. Here we obtain the extra factor

α/∆r by slightly modifying the application of the tail bound Pr(Poi(µ) ≥ x) ≤ e−µ(eµ)x/xx. For

x = ∆r, instead of using the bound e−µ(eµ)x/xx ≤ e−∆r ≤ 2−k10−1, which holds for large enough

k as µ/x ≤ k−2 and ∆r is exponential in k, we use the bound e−µ(eµ)x/xx ≤ (eµ/x)e−x+1 ≤
(α/∆r)2

−k10−1. The rest of the proof is analogous; we have E[|U |] ≥ n(α/∆r)2
−k10−1, so by

a Chernoff bound we find that Pr(|U | ≥ (α/∆r)n/2k
10

) ≤ exp(−Ω(n)). From the connection

Page 194 of 212

Chapter 4. Fast sampling of satisfying assignments from random k-SAT

between a balls-and-bins experiment and the Poisson distribution, see [92, Theorem 5.7], we

conclude that Pr(|U | ≥ (α/∆r)n/2k
10 |E) ≤ exp(−Ω(n)) as we wanted.

Corollary 4.59 ([49, Corollary 8.4]). There is a positive integer k0 such that for any integer

k ≥ k0 and any density α with α ≤ 2k/(ek3) the following holds w.h.p. over the choice of

Φ = Φ(k, n, ⌊αn⌋). For every set of variables Y such that 2 ≤ |Y | ≤ n/2k, the number of clauses

that contain at least 3 variables from Y is at most |Y |.

Proof. This is a consequence of [49, Lemma 35] with b = 3 and t = 2/(b− 1) = 1, whose proof

only requires α ≤ 2k/(ek3).

Recall that the graph HΦ is the dependency graph of the variables of Φ, see Definition 4.13.

Lemma 4.60 ([49, Lemma 8.8]). Let r ∈ (0, 1). There is a positive integer k0 such that for

any integer k ≥ k0, ∆r = ⌈2rk⌉, and any density α with α ≤ ∆r/k
3, the following holds w.h.p.

over the choice of Φ = Φ(k, n, ⌊αn⌋). Every connected set U of variables in HΦ with size at least

2k4 log n satisfies that |HD(U, r)| ≤ 1
2k3
|U |.

Proof. The proof is that of [49, Lemma 8.8], with the difference that δ0 = 1/(2k3) instead

of δ0 = 1/21600, as the exact value of δ0 does not play a role in the proof as long as, for

θ0 = ∆r − 2(k + 1), we have δ0θ0 log θ0
k2α
≥ 3 log k + logα, which holds for large enough k when

δ0 = poly(k). Moreover, the only restriction on α is that of Corollary 4.59, and the fact that

α ≤ ∆r/k
3.

Lemma 4.61 ([31, Lemma 2.4] and [49, Lemma 8.10]). Let k ≥ 3 be an integer and let α

be a positive real number with α ≤ ek/2/(2e2k2). For any ε ∈ [1/n, 1) (depending on n) such

that ε < e−3k for all n, the following holds w.h.p. over the choice of the random formula

Φ = Φ(k, n, ⌊αn⌋). Let Z be a set of clauses with size at most εn and let c1, . . . , cl ∈ C \ Z be

distinct clauses. For s ∈ {1, 2, . . . , ℓ}, let Ns := var(Z) ∪
⋃s−1

j=1 var(cj). If |var(cs) ∩Ns| ≥ 3 for

all s ∈ {1, 2, . . . , ℓ}, then ℓ ≤ εn.

Proof. The proof is almost identical to the proof of [31, Lemma 2.4]. There are four differences.

First, here, as it is also the case in [49, Lemma 44], ε can depend on n. This will arise later in this

proof. Second, the proof of [31, Lemma 2.4] is carried out for the condition |var(cs) ∩Ns| ≥ λ,

where λ is an integer with λ > 4. Here we set λ = 3 and impose stricter hypotheses on α and ε

to compensate for a smaller λ. Their (more relaxed) hypotheses on α and ε are α ≤ 2k log 2,

ε ≤ k−3 and ελ ≤ (2e)−4k/e. Third, we substitute the last inequality of [31, Equation 4], which

is [(
em/n

ε

)2

exp(2k)(2kε)λ

]εn
≤
[
(2e)2k ελ/2

]εn
,

by the inequality [(
em/n

ε

)2

exp(2k)(2kε)λ

]εn
≤
[
(em/n)2 exp(2k)(2k)3ε

]εn
≤ [exp(3k − 1)ε]εn ,

(4.37)

Page 195 of 212

Chapter 4. Fast sampling of satisfying assignments from random k-SAT

where we used λ = 3 and m/n ≤ α ≤ ek/2/(2e2k2). Now, as it is done in [49, Lemma 8.10],

we distinguish two cases depending on ε. If ε ≥ 10(log n)/n, then using this in conjunction

with ε < e−3k, the right hand size of (4.37) is bounded by e−εn ≤ 1/n10 = o(1/n). If

1/n ≤ ε < 10(log n)/n, then, for large enough n, the right hand size of (4.37) is bounded above

by exp(3k − 1)ε = o(1). The last difference between the proofs is that our argument works for

all k ≥ 3, whereas the bound [31, Equation 4] only holds for large k.

The remaining results in this section do not need any changes in their original proofs, other

than that every time Corollary 8.4, Lemma 8.8 and Lemmas 8.10-8.16 are invoked in [49, Section

8], we use the version given in this section instead. We note that the statements of these results

are slightly different to their [49, Section 8] versions, and these changes are again due to the fact

that we use λ = 3 instead of λ = k/10 in the definition of good variables/clauses.

Corollary 4.62 ([49, Corollary 8.11]). Let r ∈ (0, 1/(2 log 2)]. There is a positive integer k0 such

that for any integer k ≥ k0, ∆r = ⌈2rk⌉, and any density α with α ≤ ∆r/k
3, the following holds

w.h.p. over the choice of Φ = Φ(k, n, ⌊αn⌋). Let Z be a set of clauses with size at most 2n/2k
10

and let c1, . . . , cl ∈ C\Z be distinct clauses. For s ∈ {1, 2, . . . , ℓ}, let Ns := var(Z)∪
⋃s−1

j=1 var(cj).

If |var(cs) ∩Ns| ≥ 3 for all s ∈ {1, 2, . . . , ℓ}, then ℓ ≤ |Z|.

Proof. The proof given in [49, Corollary 8.11] also applies here. We note that the density α is at

most ek/2/(2e2k2) so we can indeed apply Lemma 4.61 when the proof given in [49, Corollary

8.11] invokes [49, Lemma 8.10].

Lemma 4.63 ([49, Lemma 8.13]). Let r ∈ (0, 1/(2 log 2)]. There is a positive integer k0 such

that for any integer k ≥ k0, ∆r = ⌈2rk⌉, and any density α with α ≤ ∆r/k
3, the following holds

w.h.p. over the choice of Φ = Φ(k, n, ⌊αn⌋). For any bad component S of variables, we have

|S| ≤ 2k|HD(S, r)|.

Proof. The proof given in [49, Lemma 8.13] applies using our versions of [49, Lemma 8.1,

Corollary 8.4 and Corollary 8.11].

Lemma 4.64 ([49, Lemma 8.14]). Let r ∈ (0, 1/(2 log 2)]. There is a positive integer k0 such

that for any integer k ≥ k0, ∆r = ⌈2rk⌉, and any density α with α ≤ ∆r/k
3, the following holds

w.h.p. over the choice of Φ = Φ(k, n, ⌊αn⌋). Every bad component S has size at most 2k4 log n.

Proof. The proof given in [49, Lemma 8.14] applies using our versions of [49, Lemma 8.8 and

Lemma 8.13].

Lemma 4.65 ([49, Lemma 8.15]). Let r ∈ (0, 1/(2 log 2)]. There is a positive integer k0 such

that for any integer k ≥ k0, ∆r = ⌈2rk⌉, and any density α with α ≤ ∆r/k
3, the following holds

w.h.p. over the choice of Φ = Φ(k, n, ⌊αn⌋). For every connected set of S variables with size at

least 2k4 log n, we have |S ∩ Vbad| ≤ |S|/k2.

Page 196 of 212

Chapter 4. Fast sampling of satisfying assignments from random k-SAT

Proof. The proof is analogous to that given in [49, Lemma 8.15]. The only differences are that

we apply Lemma 4.60 instead of [49, Lemma 8.8], we apply Lemma 4.63 instead of [49, Lemma

8.13], and we have δ0 = 1/(2k3) instead of δ0 = 1/21600.

Lemma 4.15 ([49, Lemma 8.16]). Let r ∈ (0, 1/(2 log 2)]. There is a positive integer k0 such

that for any integer k ≥ k0, ∆r = ⌈2rk⌉, and any density α with α ≤ ∆r/k
3, the following holds

w.h.p. over the choice of Φ = Φ(k, n, ⌊αn⌋). For every connected set of clauses Y in GΦ such

that |var(Y)| ≥ 2k4 log n, we have |Y ∩ Cbad(r)| ≤ |Y |/k.

Proof. The same proof applies using our versions of [49, Corollary 8.4 and Lemma 8.15].

Lemma 4.16 ([49, Lemma 8.12]). Let r ∈ (0, 1/(2 log 2)]. There is a positive integer k0 such

that for any integer k ≥ k0, ∆r = ⌈2rk⌉, and any density α with α ≤ ∆r/k
3, the following

holds w.h.p. over the choice of Φ = Φ(k, n, ⌊αn⌋). We have |Cbad(r)| ≤ 2(α/∆r)n/2k
10

and

|Vbad(r)| ≤ 2(k + 1)(α/∆r)n/2k
10
.

Proof. We consider the set of high-degree variables V0(r) = HD(V, r), which w.h.p. over the

choice of Φ has |V0(r)| ≤ (α/∆r)n/2k
10

by Lemma 4.58. In view of Corollary 4.59 with Y = V0(r),

we have |C0(r)| ≤ |V0(r)| ≤ n/2k
10

, where C0(r) is the set of clauses with at least 3 variables in

V0(r), see Algorithm 2. From Corollary 4.62 and the construction of Cbad(r) in Algorithm 2,

we find that |Cbad(r)| ≤ 2|C0(r)| ≤ 2|V0(r)| ≤ 2(α/∆r)n/2k
10

. By construction of Vbad(r), see

Algorithm 2, we conclude that |Vbad(r)| ≤ |V0(r)|+ k|Cbad(r)| ≤ 2(k + 1)(α/∆r)n/2k
10

.

4.10 Proof of Lemma 4.8

In this section we collect the results from [29] that one needs to combine to obtain Lemma 4.8

on the mixing time of the ρ-uniform-block Glauber dynamics. The proof is independent from

the rest of this chapter and we include it here for completeness.

Definition 4.66. Let µ be a distribution supported on Ω ⊆ [q]V . Let f : Ω→ R≥0. We denote

the entropy of f by Entµ(f), that is, Entµ(f) = Eµ(f log f))−Eµ(f) log(Eµ(f)) when Eµ(f) > 0,

and Entµ(f) = 0 when Eµ(f) = 0. For S ⊆ V , we denote EntSµ(f) = Eτ∼µ|V \S
Entµ(f | τ), where

Entµ(f | τ) is the entropy of f conditioning to the event that the assignment drawn from µ agrees

with τ in V \ S.
Let ρ ∈ {1, 2, . . . , n}. We say that µ satisfies the ρ-uniform block factorisation of entropy

(with constant Cρ) if for all f : Ω→ R≥0 we have

ρ

n
Entµ(f) ≤ Cρ

1(
n
ρ

) ∑
S∈(Vρ)

EntSµ(f).

One of the main results of [29] is showing that µ satisfies the ρ-uniform block factorisation of

entropy when the distribution µ is η-spectrally independent and b-marginally bounded. In the

proof of [17, Corollary 19] the authors observe that the proof of Lemma 4.67 also holds when η

depends on n and, in particular, in the case η = ε log n.

Page 197 of 212

Chapter 4. Fast sampling of satisfying assignments from random k-SAT

Lemma 4.67 ([29, Lemma 2.4]). The following holds for any reals b, η > 0, any κ ∈ (0, 1) and

any integer n with n ≥ 2
κ(4η/b2 + 1).

Let q ≥ 2 be an integer, let V be a set of size n and let µ be a distribution over [q]V . If µ

is b-marginally bounded and η-spectrally independent, then µ satisfies the ⌈κn⌉-uniform block

factorisation of entropy with constant C = (2/κ)4η/b
2+1.

It turns out that one can bound the mixing time of the ρ-uniform-block Glauber dynamics

when the target distribution µ satisfies the ρ-uniform block factorisation of entropy.

Lemma 4.68 (See, e.g., [29, Lemma 2.6 and Fact 3.5(4)] or [17, Lemma 17]). Let q ≥ 2, ρ ≥ 1

be integers and V be a set of size n ≥ ρ + 1. Let µ be a distribution supported on Ω ⊆ [q]V that

satisfies the ρ-uniform-block factorisation of entropy with multiplier Cρ. Then, for any ε > 0, the

mixing time of the ρ-uniform-block Glauber dynamics on µ satisfies, for µmin = minΛ∈Ω µ(Λ),

Tmix(ε) ≤
⌈
Cρ

n

ρ

(
log log

1

µmin
+ log

1

2ε2

)⌉
.

We can now prove Lemma 4.8.

Lemma 4.8. The following holds for any reals b, η > 0, any κ ∈ (0, 1) and any integer M

with M ≥ 2
κ(4η/b2 + 1). Let V be a set of size M , let µ be a distribution over the assignments

V → {F,T}, let Ω = {Λ: V → {F,T} : µ(Λ) > 0} and let µmin = minΛ∈Ω µ(Λ). If µ is

b-marginally bounded and η-spectrally independent, then, for ρ = ⌈κM⌉ and Cρ = (2/κ)4η/b
2+1,

we have

Tmix(ρ, ε) ≤
⌈
Cρ

M

ρ

(
log log

1

µmin
+ log

1

2ε2

)⌉
.

Proof of Lemma 4.8. The proof of Lemma 4.8 follows directly from combining Lemmas 4.67

and 4.68.

Page 198 of 212

Chapter 5

Conclusion and open questions

This thesis has established several computational complexity results for counting problems

arising in statistical mechanics. The research conducted in this thesis demonstrates the interplay

between approximate counting and statistical mechanics. This interplay has garnered considerable

attention from the research community in the past years, and has lead to several fundamental

questions in both fields. As we have illustrated, one of these remarkable questions is that of

understanding the computational complexity of sampling from the distribution of spin systems.

This problem is intricately linked, via self-reducibily arguments, to approximating the partition

function of the model, a question that naturally emerges in the complexity of counting due to

its connections to combinatorics.

In this thesis, we have capitalised on recent advancements in approximate counting. These

recent breakthroughs have showcased connections between approximate counting and various

areas of mathematics, such as complex analysis, complex dynamics, and the revival of Markov

Chain Monte Carlo algorithms for efficiently sampling in spin systems. We have delved into

these connections to obtain both inapproximability and tractability results, focusing primarily

on the Ising and Potts models, as well as the random k-SAT model.

In Chapter 2 we have studied the complexity of approximating the partition function of

the q-state Potts model and the closely related Tutte polynomial on planar graphs. Following

recent trends in both statistical physics and algorithmic research, we have allowed the edge

interaction y to be any complex number. We have established a complete classification of the

complexity of approximating the partition function of the Potts model for all non-real values

of the parameters (Theorem 1.1), concluding #P-hardness of approximation for almost all

parameters. Our techniques apply to all q ≥ 2 in the Tutte world, and further complement/refine

previous results for the real Tutte plane. Moreover, we have answered a question raised by

Bordewich, Freedman, Lovász and Welsh in the context of quantum computation (Section 2.6.2).

In order to do this, we have introduced the concept of approximate shifts in the complex-plane

and shown how we can implement approximations of real edge interactions starting with non-real

parameters. Another key development of our work is a reduction from exact evaluation of the

Tutte polynomial to approximate computation.

Even though we have fully resolved the complexity map of approximating the partition

function of the Potts model, several questions remain regarding more general models. These

questions seem to require the development of new techniques, both from the perspective of finding

novel approximate shifts and further refining our current reductions. First of all, our results

on non-real edge interactions for the Tutte polynomial only hold for q ≥ 2, and it is interesting

Page 199 of 212

Chapter 5. Conclusion and open questions

to find new ideas to analyse other values of q. Regarding real parameters, the complexity map

of approximating and determining the sign of the Tutte polynomial at real (q, γ) is still not

fully understood, including famous points such as q = 5, γ = −q (recall that γ = y − 1 in this

notation). The evaluation of the Tutte polynomial at q = 5 and γ = −q counts the number of

nowhere-zero 5-flows in a graph (up to an easily computable factor), which is conjectured to

be non-zero in the famous Tutte’s 5-flow conjecture. Another direction worth studying is the

complexity of approximating the graph homomorphism polynomial, which also generalises the

Potts model. A complete classification is known for exact evaluation of this partition function,

but an approximate counting version of this result seems still out of reach.

The situation becomes even more interesting when one consider bounded-degree graphs. In

Chapter 3 we have studied the complexity of approximating the partition function ZIsing(G;β)

in terms of the relation between the edge interaction β and a parameter ∆ which is an upper

bound on the maximum degree of the input graph G. We have established both new tractability

results and new intractability results. Our tractability results show that ZIsing(−;β) has an

FPTAS when |β− 1|/|β + 1| < tan(π/(4∆− 4)), and we have reached this result by proving that

there are no inputs G that make the partition function 0 when β is in this range (Theorem 1.5).

Our result significantly extends the known zero-free region of the Ising model (and hence the

known approximation results). Regarding intractability, we have shown that it is #P-hard to

approximate ZIsing(−;β) when β ∈ C is an algebraic number such that β ̸∈ R ∪ {i,−i} and

|β− 1|/|β + 1| > 1/
√

∆− 1 (Theorem 1.7). Moreover, we have demonstrated situations in which

zeros of the partition function imply hardness of approximation in the Ising model.

These are the first results to show intractability of approximating ZIsing(−, β) on bounded

degree graphs with complex β, and several questions remain. Here we leave the tantalising

problem of improving our restriction |β−1|/|β+1| < 1/
√

∆− 1 in Theorem 1.7 to |β−1|/|β+1| <
1/(∆− 1), which is unreachable with our constructions due to the symmetry of the Ising model

without a field, see Section 3.4. In fact, a complete complexity map of approximability seems

out of reach using the current knowledge in this area of research, as there is currently no

technique that allows us to find the largest zero-free region of the partition function. This is

the case even for other extremely well-studied models in statistical mechanics and approximate

counting, such as the hardcore model. Another important open question is showing that a zero

of the partition function at an edge interaction β imply hardness of approximation for this

edge interaction (Conjecture 3.4). This question has actually been resolved in the case of the

hardcore model/independent set polynomial. However, in the Ising model we are restricted by

the fact that trees without pinnings do not implement any meaningful edge interactions due to

the symmetry of the model and, thus, current techniques are not enough to prove Conjecture 3.4

as we have discussed in Section 3.5.

Finally, in Chapter 4 we have delved into the random k-SAT model, providing the first

almost-uniform sampler for satifying assignments in this model that runs in almost-linear time.

Our algorithm holds even when the density of the formula scales exponentially with k, where

correlation decay arguments fail. In our proofs we have shown how to relate local sparsity

Page 200 of 212

Chapter 5. Conclusion and open questions

properties of the random k-SAT model to the geometry of the space of satisfying assignments via

marking techniques, thus, leading also to results about connectivity and looseness of satisfying

assignments of random k-CNF formulas. These arguments have also allowed us to provide

spectral independence bounds for the Glauber dynamics, this being the first instance of an

application of spectral independence that does not rely on correlation decay or spatial mixing.

An open problem is finding the optimal density threshold for sampling in the random k-SAT

model (recall that the threshold for our algorithm is α ≤ 20.039k). At the moment there is no

strong reason to believe that this threshold should not be close to the satisfiability threshold of

the random k-SAT model, which is α⋆(k) = 2k log 2 +O(1). In fact, algorithms to find satisfying

assignment have managed to succeed for densities up to (1 + ok(1))2k(log k)/k, though going

beyond such densities is a major open problem in the area. In the case of random monotone

k-CNF formulas (i.e. the case when every literal is positive), fast sampling has been shown to

be feasible when α = O(1)2k/k, see [70]. In this line of thought, another open area of research is

analysing the situation in related models such as NAE-SAT. On another note, recall that our

algorithm requires k to be large enough. We leave the open problem of finding a fast sampling

algorithm for small k. Recall that our techniques build on marking approaches that have been

highly successful in the literature; in these the large k condition is needed when applying the

Lóvasz Local lemma to find a marking. A novel technique to find such markings may lead

to further progress in the area. A place to start this line of research is the random 2-SAT

model, where there is a formula for the free energy of the model, see [2]. However, the sampling

problem is not straightforward even for 2-SAT, as correlation decay results that hold for the

whole satisfiability spectrum are unknown. In conclusion, our results open the door to study a

wide range of fundamental sampling problems in approximate counting and random models.

Page 201 of 212

Bibliography

[1] Dimitris Achlioptas and Amin Coja-Oghlan. Algorithmic barriers from phase transitions.

In 49th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2008, pages

793–802. IEEE Computer Society, 2008. doi:10.1109/FOCS.2008.11.

[2] Dimitris Achlioptas, Amin Coja-Oghlan, Max Hahn-Klimroth, Joon Lee, Noëla Müller,

Manuel Penschuck, and Guangyan Zhou. The number of satisfying assignments of random

2-SAT formulas. Random Structures Algorithms, 58(4):609–647, 2021. doi:10.1002/rsa.

20993.

[3] Dimitris Achlioptas, Amin Coja-Oghlan, and Federico Ricci-Tersenghi. On the solution-

space geometry of random constraint satisfaction problems. Random Structures Algorithms,

38(3):251–268, 2011. doi:10.1002/rsa.20323.

[4] Dimitris Achlioptas and Cristopher Moore. The asymptotic order of the random k-SAT

threshold. In The 43rd Annual IEEE Symposium on Foundations of Computer Science,

2002. Proceedings., pages 779–788. IEEE, 2002. doi:10.1109/SFCS.2002.1182003.

[5] Vedat Levi Alev and Lap Chi Lau. Improved analysis of higher order random walks and

applications. In STOC ’20—Proceedings of the 52nd Annual ACM SIGACT Symposium on

Theory of Computing, pages 1198–1211. ACM, New York, 2020. doi:10.1145/3357713.

3384317.

[6] Konrad Anand and Mark Jerrum. Perfect sampling in infinite spin systems via strong

spatial mixing. SIAM J. Comput., 51(4):1280–1295, 2022. doi:10.1137/21M1437433.

[7] Nima Anari, Kuikui Liu, and Shayan Oveis Gharan. Spectral independence in high-

dimensional expanders and applications to the hardcore model. In 2020 IEEE 61st

Annual Symposium on Foundations of Computer Science, pages 1319–1330. 2020. doi:

10.1109/FOCS46700.2020.00125.

[8] Alexander Barvinok. Combinatorics and complexity of partition functions, volume 30 of

Algorithms and Combinatorics. Springer, Cham, 2016. doi:10.1007/978-3-319-51829-9.

[9] Alexander Barvinok and Nicholas Barvinok. More on zeros and approximation of the Ising

partition function. Forum Math. Sigma, 9:Paper No. e46, 18, 2021. doi:10.1017/fms.

2021.40.

[10] Alexander Barvinok and Guus Regts. Weighted counting of solutions to sparse sys-

tems of equations. Combin. Probab. Comput., 28(5):696–719, 2019. doi:10.1017/

s0963548319000105.

Page 202 of 212

https://doi.org/10.1109/FOCS.2008.11
https://doi.org/10.1002/rsa.20993
https://doi.org/10.1002/rsa.20993
https://doi.org/10.1002/rsa.20323
https://doi.org/10.1109/SFCS.2002.1182003
https://doi.org/10.1145/3357713.3384317
https://doi.org/10.1145/3357713.3384317
https://doi.org/10.1137/21M1437433
https://doi.org/10.1109/FOCS46700.2020.00125
https://doi.org/10.1109/FOCS46700.2020.00125
https://doi.org/10.1007/978-3-319-51829-9
https://doi.org/10.1017/fms.2021.40
https://doi.org/10.1017/fms.2021.40
https://doi.org/10.1017/s0963548319000105
https://doi.org/10.1017/s0963548319000105

Bibliography

[11] Alan F. Beardon. Iteration of rational functions, volume 132 of Graduate Texts in

Mathematics. Springer-Verlag, New York, 1991. Complex analytic dynamical systems.

doi:10.1007/978-1-4612-4422-6.

[12] Ioana Bena, Michel Droz, and Adam Lipowski. Statistical mechanics of equilibrium and

nonequilibrium phase transitions: the Yang-Lee formalism. Internat. J. Modern Phys. B,

19(29):4269–4329, 2005. doi:10.1142/S0217979205032759.

[13] Ferenc Bencs and Péter Csikvári. Note on the zero-free region of the hard-core model.

arXiv preprint, 2020. arXiv:1807.08963.

[14] Ferenc Bencs, Jeroen Huijben, and Guus Regts. Approximating the chromatic polynomial

is as hard as computing it exactly. arXiv preprint, 2022. arXiv:2211.13790.

[15] Ivona Bezáková, Andreas Galanis, Leslie Ann Goldberg, and Daniel Štefankovič. Inap-

proximability of the independent set polynomial in the complex plane. SIAM J. Comput.,

49(5):STOC18–395–STOC18–448, 2020. doi:10.1137/18M1184485.

[16] Ivona Bezáková, Andreas Galanis, Leslie Ann Goldberg, and Daniel Štefankovič. The

complexity of approximating the matching polynomial in the complex plane. ACM Trans.

Comput. Theory, 13(2):Art. 13, 37, 2021. doi:10.1145/3448645.

[17] Ivona Bezáková, Andreas Galanis, Leslie Ann Goldberg, and Daniel Štefankovič. Fast

sampling via spectral independence beyond bounded-degree graphs. In 49th EATCS

International Conference on Automata, Languages, and Programming, volume 229 of

LIPIcs. Leibniz Int. Proc. Inform., pages Art. No. 21, 16. Schloss Dagstuhl. Leibniz-Zent.

Inform., Wadern, 2022. doi:10.4230/lipics.icalp.2022.21.

[18] Ivona Bezáková, Daniel Štefankovič, Vijay V. Vazirani, and Eric Vigoda. Accelerating

simulated annealing for the permanent and combinatorial counting problems. SIAM J.

Comput., 37(5):1429–1454, 2008. doi:10.1137/050644033.

[19] Antonio Blanca, Pietro Caputo, Zongchen Chen, Daniel Parisi, Daniel Štefankovič, and

Eric Vigoda. On mixing of Markov chains: coupling, spectral independence, and entropy

factorization. volume 27, pages Paper No. 142, 42, 2022. doi:10.1214/22-ejp867.

[20] M. Bordewich, M. Freedman, L. Lovász, and D. Welsh. Approximate counting and

quantum computation. Combin. Probab. Comput., 14(5-6):737–754, 2005. doi:10.1017/

S0963548305007005.

[21] Russell J. Bradford and James H. Davenport. Effective tests for cyclotomic polynomials.

In Symbolic and algebraic computation (Rome, 1988), volume 358 of Lecture Notes in

Comput. Sci., pages 244–251. Springer, Berlin, 1989. URL: https://doi.org/10.1007/

3-540-51084-2_22, doi:10.1007/3-540-51084-2_22.

Page 203 of 212

https://doi.org/10.1007/978-1-4612-4422-6
https://doi.org/10.1142/S0217979205032759
http://arxiv.org/abs/1807.08963
http://arxiv.org/abs/2211.13790
https://doi.org/10.1137/18M1184485
https://doi.org/10.1145/3448645
https://doi.org/10.4230/lipics.icalp.2022.21
https://doi.org/10.1137/050644033
https://doi.org/10.1214/22-ejp867
https://doi.org/10.1017/S0963548305007005
https://doi.org/10.1017/S0963548305007005
https://doi.org/10.1007/3-540-51084-2_22
https://doi.org/10.1007/3-540-51084-2_22
https://doi.org/10.1007/3-540-51084-2_22

Bibliography

[22] Andreas Brandstädt, Van Bang Le, and Jeremy P. Spinrad. Graph classes: a survey.

SIAM Monographs on Discrete Mathematics and Applications. Society for Industrial and

Applied Mathematics (SIAM), Philadelphia, PA, 1999. doi:10.1137/1.9780898719796.

[23] Michael Brin and Garrett Stuck. Introduction to dynamical systems. Cambridge University

Press, Cambridge, 2002. doi:10.1017/CBO9780511755316.

[24] Jason I. Brown, Carl Hickman, Alan D. Sokal, and David G. Wagner. On the chromatic

roots of generalized theta graphs. J. Combin. Theory Ser. B, 83(2):272–297, 2001. doi:

10.1006/jctb.2001.2057.

[25] Pjotr Buys. Cayley trees do not determine the maximal zero-free locus of the independence

polynomial. Michigan Math. J., 70(3):635–648, 2021. doi:10.1307/mmj/1599206419.

[26] Pjotr Buys, Andreas Galanis, Viresh Patel, and Guus Regts. Lee-Yang zeros and the

complexity of the ferromagnetic Ising model on bounded-degree graphs. Forum Math.

Sigma, 10:Paper No. e7, 43, 2022. doi:10.1017/fms.2022.4.

[27] Jin-Yi Cai, Xi Chen, and Pinyan Lu. Graph homomorphisms with complex values: a

dichotomy theorem. volume 42, pages 924–1029, 2013. doi:10.1137/110840194.

[28] Zongchen Chen, Kuikui Liu, and Eric Vigoda. Rapid mixing of Glauber dynamics up to

uniqueness via contraction. In 2020 IEEE 61st Annual Symposium on Foundations of

Computer Science, pages 1307–1318. 2020. doi:10.1109/FOCS46700.2020.00124.

[29] Zongchen Chen, Kuikui Liu, and Eric Vigoda. Optimal mixing of glauber dynamics:

entropy factorization via high-dimensional expansion. In STOC ’21—Proceedings of the

53rd Annual ACM SIGACT Symposium on Theory of Computing, pages 1537–1550. ACM,

New York, 2021. doi:10.1145/3406325.3451035.

[30] Amin Coja-Oghlan. A better algorithm for random k-SAT. SIAM J. Comput., 39(7):2823–

2864, 2010. doi:10.1137/09076516X.

[31] Amin Coja-Oghlan and Alan Frieze. Analyzing Walksat on random formulas. SIAM J.

Comput., 43(4):1456–1485, 2014. doi:10.1137/12090191X.

[32] Amin Coja-Oghlan, Noela Müller, and Jean B. Ravelomanana. Belief propagation on

the random k-SAT model. Ann. Appl. Probab., 32(5):3718–3796, 2022. doi:10.1214/

21-aap1772.

[33] Amin Coja-Oghlan and Angelica Y. Pachon-Pinzon. The decimation process in random

k-SAT. SIAM J. Discrete Math., 26(4):1471–1509, 2012. doi:10.1137/110842867.

[34] Amin Coja-Oghlan and Konstantinos Panagiotou. The asymptotic k-SAT threshold. Adv.

Math., 288:985–1068, 2016. doi:10.1016/j.aim.2015.11.007.

Page 204 of 212

https://doi.org/10.1137/1.9780898719796
https://doi.org/10.1017/CBO9780511755316
https://doi.org/10.1006/jctb.2001.2057
https://doi.org/10.1006/jctb.2001.2057
https://doi.org/10.1307/mmj/1599206419
https://doi.org/10.1017/fms.2022.4
https://doi.org/10.1137/110840194
https://doi.org/10.1109/FOCS46700.2020.00124
https://doi.org/10.1145/3406325.3451035
https://doi.org/10.1137/09076516X
https://doi.org/10.1137/12090191X
https://doi.org/10.1214/21-aap1772
https://doi.org/10.1214/21-aap1772
https://doi.org/10.1137/110842867
https://doi.org/10.1016/j.aim.2015.11.007

Bibliography

[35] Amin Coja-Oghlan and Daniel Reichman. Sharp thresholds and the partition function. In

Journal of Physics: Conference Series, volume 473, page 012015. IOP Publishing, 2013.

doi:10.1088/1742-6596/473/1/012015.

[36] Amin Coja-Oghlan and Nick Wormald. The number of satisfying assignments of random

regular k-SAT formulas. Combin. Probab. Comput., 27(4):496–530, 2018. doi:10.1017/

S0963548318000263.

[37] David de Boer, Pjotr Buys, Lorenzo Guerini, Han Peters, and Guus Regts. Zeros, chaotic

ratios and the computational complexity of approximating the independence polynomial.

arXiv preprint, 2021. arXiv:2104.11615.

[38] Jian Ding, Allan Sly, and Nike Sun. Proof of the satisfiability conjecture for large k. Ann.

of Math. (2), 196(1):1–388, 2022. doi:10.4007/annals.2022.196.1.1.

[39] Martin Dyer, Leslie Ann Goldberg, Catherine Greenhill, and Mark Jerrum. The rela-

tive complexity of approximate counting problems. Algorithmica, 38(3):471–500, 2004.

Approximation algorithms. doi:10.1007/s00453-003-1073-y.

[40] Martin Dyer and Catherine Greenhill. The complexity of counting graph homomorphisms.

Random Structures Algorithms, 17(3-4):260–289, 2000. doi:10.1002/1098-2418(200010/

12)17:3/4<260::AID-RSA5>3.3.CO;2-N.

[41] Ioannis Z. Emiris, Bernard Mourrain, and Elias P. Tsigaridas. Real algebraic numbers:

Complexity analysis and experimentation. In Peter Hertling, Christoph M. Hoffmann,

Wolfram Luther, and Nathalie Revol, editors, Reliable Implementation of Real Number Al-

gorithms: Theory and Practice, pages 57–82. Springer Berlin Heidelberg, Berlin, Heidelberg,

2008. doi:10.1007/978-3-540-85521-7_4.

[42] Paul Erdős and László Lovász. Problems and results on 3-chromatic hypergraphs and

some related questions. In Infinite and finite sets (Colloq., Keszthely, 1973; dedicated to

P. Erdős on his 60th birthday), Vol. II, pages 609–627. Colloq. Math. Soc. János Bolyai,

1975. URL: https://www.renyi.hu/~p_erdos/1975-34.pdf.

[43] Weiming Feng, Heng Guo, Yitong Yin, and Chihao Zhang. Fast sampling and counting

k-SAT solutions in the local lemma regime. J. ACM, 68(6):Art. 40, 42, 2021. doi:

10.1145/3469832.

[44] Weiming Feng, Kun He, and Yitong Yin. Sampling constraint satisfaction solutions in

the local lemma regime. In STOC ’21—Proceedings of the 53rd Annual ACM SIGACT

Symposium on Theory of Computing, pages 1565–1578. ACM, New York, 2021. doi:

10.1145/3406325.3451101.

Page 205 of 212

https://doi.org/10.1088/1742-6596/473/1/012015
https://doi.org/10.1017/S0963548318000263
https://doi.org/10.1017/S0963548318000263
http://arxiv.org/abs/2104.11615
https://doi.org/10.4007/annals.2022.196.1.1
https://doi.org/10.1007/s00453-003-1073-y
https://doi.org/10.1002/1098-2418(200010/12)17:3/4<260::AID-RSA5>3.3.CO;2-N
https://doi.org/10.1002/1098-2418(200010/12)17:3/4<260::AID-RSA5>3.3.CO;2-N
https://doi.org/10.1007/978-3-540-85521-7_4
https://www.renyi.hu/~p_erdos/1975-34.pdf
https://doi.org/10.1145/3469832
https://doi.org/10.1145/3469832
https://doi.org/10.1145/3406325.3451101
https://doi.org/10.1145/3406325.3451101

Bibliography

[45] Jacob Focke, Leslie Ann Goldberg, and Stanislav Zivny. The complexity of counting

surjective homomorphisms and compactions. SIAM J. Discrete Math., 33(2):1006–1043,

2019.

[46] Alan Frieze and Stephen Suen. Analysis of two simple heuristics on a random instance of

k-SAT. J. Algorithms, 20(2):312–355, 1996. doi:10.1006/jagm.1996.0016.

[47] Andreas Galanis, Leslie A. Goldberg, and Andres Herrera-Poyatos. The complexity of

approximating the complex-valued Ising model on bounded degree graphs. SIAM J.

Discrete Math., 36(3):2159–2204, 2022. doi:10.1137/21M1454043.

[48] Andreas Galanis, Leslie Ann Goldberg, Heng Guo, and Andrés Herrera-Poyatos. Fast

sampling of satisfying assignments from random k-sat. arXiv preprint, 2022. arXiv:

2206.15308.

[49] Andreas Galanis, Leslie Ann Goldberg, Heng Guo, and Kuan Yang. Counting solutions

to random CNF formulas. SIAM J. Comput., 50(6):1701–1738, 2021. doi:10.1137/

20M1351527.

[50] Andreas Galanis, Leslie Ann Goldberg, and Andrés Herrera-Poyatos. The complexity

of approximating the complex-valued potts model. In 45th International Symposium on

Mathematical Foundations of Computer Science (MFCS 2020), volume 170 of Leibniz

International Proceedings in Informatics (LIPIcs), pages 36:1–36:14, Dagstuhl, Germany,

2020. Schloss Dagstuhl–Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.MFCS.2020.

36.

[51] Andreas Galanis, Leslie Ann Goldberg, and Andrés Herrera-Poyatos. The complexity of

approximating the complex-valued potts model. Comput. Complexity, 31(1):Paper No. 2,

2022. doi:10.1007/s00037-021-00218-x.

[52] Andreas Galanis, Daniel Štefankovič, and Eric Vigoda. Inapproximability of the partition

function for the antiferromagnetic Ising and hard-core models. Combin. Probab. Comput.,

25(4):500–559, 2016. doi:10.1017/S0963548315000401.

[53] Hans-Otto Georgii. Gibbs measures and phase transitions, volume 9 of De Gruyter

Studies in Mathematics. Walter de Gruyter & Co., Berlin, second edition, 2011. doi:

10.1515/9783110250329.

[54] Christopher D. Godsil. Matchings and walks in graphs. J. Graph Theory, 5(3):285–297,

1981. doi:10.1002/jgt.3190050310.

[55] Leslie Ann Goldberg and Heng Guo. The complexity of approximating complex-valued

Ising and Tutte partition functions. Comput. Complexity, 26(4):765–833, 2017. doi:

10.1007/s00037-017-0162-2.

Page 206 of 212

https://doi.org/10.1006/jagm.1996.0016
https://doi.org/10.1137/21M1454043
http://arxiv.org/abs/2206.15308
http://arxiv.org/abs/2206.15308
https://doi.org/10.1137/20M1351527
https://doi.org/10.1137/20M1351527
https://doi.org/10.4230/LIPIcs.MFCS.2020.36
https://doi.org/10.4230/LIPIcs.MFCS.2020.36
https://doi.org/10.1007/s00037-021-00218-x
https://doi.org/10.1017/S0963548315000401
https://doi.org/10.1515/9783110250329
https://doi.org/10.1515/9783110250329
https://doi.org/10.1002/jgt.3190050310
https://doi.org/10.1007/s00037-017-0162-2
https://doi.org/10.1007/s00037-017-0162-2

Bibliography

[56] Leslie Ann Goldberg and Mark Jerrum. Approximating the partition function of the

ferromagnetic Potts model. J. ACM, 59(5):Art. 25, 31, 2012. doi:10.1145/2371656.

2371660.

[57] Leslie Ann Goldberg and Mark Jerrum. Inapproximability of the Tutte polynomial of a pla-

nar graph. Comput. Complexity, 21(4):605–642, 2012. doi:10.1007/s00037-012-0046-4.

[58] Leslie Ann Goldberg and Mark Jerrum. Inapproximability of the Tutte polynomial of a pla-

nar graph. Comput. Complexity, 21(4):605–642, 2012. doi:10.1007/s00037-012-0046-4.

[59] Leslie Ann Goldberg and Mark Jerrum. The complexity of computing the sign of the

Tutte polynomial. SIAM J. Comput., 43(6):1921–1952, 2014. doi:10.1137/12088330X.

[60] Leslie Ann Goldberg and Mark Jerrum. Approximating pairwise correlations in the Ising

model. ACM Trans. Comput. Theory, 11(4):Art. 23, 20, 2019. doi:10.1145/3337785.

[61] Heng Guo, Mark Jerrum, and Jingcheng Liu. Uniform sampling through the Lovász local

lemma. J. ACM, 66(3):Art. 18, 31, 2019. doi:10.1145/3310131.

[62] Heng Guo, Chao Liao, Pinyan Lu, and Chihao Zhang. Zeros of Holant problems: locations

and algorithms. ACM Trans. Algorithms, 17(1):Art. 4, 25, 2021. doi:10.1145/3418056.

[63] Heng Guo, Jingcheng Liu, and Pinyan Lu. Zeros of ferromagnetic 2-spin systems. In

Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms, pages 181–192.

SIAM, Philadelphia, PA, 2020. URL: https://dl.acm.org/doi/abs/10.5555/3381089.

3381100.

[64] Bernhard Haeupler, Barna Saha, and Aravind Srinivasan. New constructive aspects of the

Lovász local lemma. J. ACM, 58(6):Art. 28, 28, 2011. doi:10.1145/2049697.2049702.

[65] Aram W. Harrow, Saeed Mehraban, and Mehdi Soleimanifar. Classical algorithms, corre-

lation decay, and complex zeros of partition functions of quantum many-body systems. In

STOC ’20—Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Com-

puting, pages 378–386. ACM, New York, [2020] ©2020. doi:10.1145/3357713.3384322.

[66] Kun He, Chunyang Wang, and Yitong Yin. Sampling Lovász local lemma for general

constraint satisfaction solutions in near-linear time. In 2022 IEEE 63rd Annual Symposium

on Foundations of Computer Science—FOCS 2022, pages 147–158. IEEE Computer Soc.,

Los Alamitos, CA, 2022. doi:10.1109/FOCS54457.2022.00021.

[67] Kun He, Chunyang Wang, and Yitong Yin. Deterministic counting Lovász local lemma

beyond linear programming. In Proceedings of the 2023 Annual ACM-SIAM Symposium

on Discrete Algorithms (SODA), pages 3388–3425. SIAM, Philadelphia, PA, 2023. doi:

10.1137/1.9781611977554.ch130.

Page 207 of 212

https://doi.org/10.1145/2371656.2371660
https://doi.org/10.1145/2371656.2371660
https://doi.org/10.1007/s00037-012-0046-4
https://doi.org/10.1007/s00037-012-0046-4
https://doi.org/10.1137/12088330X
https://doi.org/10.1145/3337785
https://doi.org/10.1145/3310131
https://doi.org/10.1145/3418056
https://dl.acm.org/doi/abs/10.5555/3381089.3381100
https://dl.acm.org/doi/abs/10.5555/3381089.3381100
https://doi.org/10.1145/2049697.2049702
https://doi.org/10.1145/3357713.3384322
https://doi.org/10.1109/FOCS54457.2022.00021
https://doi.org/10.1137/1.9781611977554.ch130
https://doi.org/10.1137/1.9781611977554.ch130

Bibliography

[68] Kun He, Kewen Wu, and Kuan Yang. Improved bounds for sampling solutions of random

CNF formulas. In Proceedings of the 2023 Annual ACM-SIAM Symposium on Discrete

Algorithms (SODA), pages 3330–3361. SIAM, Philadelphia, PA, 2023. doi:10.1137/1.

9781611977554.ch128.

[69] Ole J. Heilmann and Elliott H. Lieb. Theory of monomer-dimer systems. Comm. Math.

Phys., 25:190–232, 1972. URL: http://projecteuclid.org/euclid.cmp/1103857921.

[70] Jonathan Hermon, Allan Sly, and Yumeng Zhang. Rapid mixing of hypergraph independent

sets. Random Structures Algorithms, 54(4):730–767, 2019. doi:10.1002/rsa.20830.

[71] Mark Huber. Approximation algorithms for the normalizing constant of Gibbs distributions.

Ann. Appl. Probab., 25(2):974–985, 2015. doi:10.1214/14-AAP1015.

[72] Bill Jackson. A zero-free interval for chromatic polynomials of graphs. Combinatorics,

Probability and Computing, 2(3):325–336, 1993. doi:10.1017/S0963548300000705.

[73] François Jaeger, Dirk L. Vertigan, and Dominic J. A. Welsh. On the computational

complexity of the Jones and Tutte polynomials. Math. Proc. Cambridge Philos. Soc.,

108(1):35–53, 1990. doi:10.1017/S0305004100068936.

[74] Vishesh Jain, Huy Tuan Pham, and Thuy-Duong Vuong. On the sampling Lovász

local lemma for atomic constraint satisfaction problems. arXiv preprint, 2021. arXiv:

2102.08342.

[75] Vishesh Jain, Huy Tuan Pham, and Thuy Duong Vuong. Towards the sampling Lovász

Local Lemma. In 2021 IEEE 62nd Annual Symposium on Foundations of Computer

Science—FOCS 2021, pages 173–183. IEEE Computer Soc., Los Alamitos, CA, 2022.

doi:10.1109/FOCS52979.2021.00025.

[76] Mark Jerrum and Alistair Sinclair. Polynomial-time approximation algorithms for the

Ising model. SIAM J. Comput., 22(5):1087–1116, 1993. doi:10.1137/0222066.

[77] Mark R. Jerrum, Leslie G. Valiant, and Vijay V. Vazirani. Random generation of combi-

natorial structures from a uniform distribution. Theoret. Comput. Sci., 43(2-3):169–188,

1986. doi:10.1016/0304-3975(86)90174-X.

[78] R. Kannan, A. K. Lenstra, and L. Lovász. Polynomial factorization and nonrandomness of

bits of algebraic and some transcendental numbers. Math. Comp., 50(181):235–250, 1988.

doi:10.2307/2007927.

[79] Tali Kaufman and Izhar Oppenheim. High order random walks: beyond spectral gap.

Combinatorica, 40(2):245–281, 2020. doi:10.1007/s00493-019-3847-0.

[80] Ker-I Ko. Complexity theory of real functions. Progress in Theoretical Computer Science.

Birkhäuser Boston, Inc., Boston, MA, 1991. doi:10.1007/978-1-4684-6802-1.

Page 208 of 212

https://doi.org/10.1137/1.9781611977554.ch128
https://doi.org/10.1137/1.9781611977554.ch128
http://projecteuclid.org/euclid.cmp/1103857921
https://doi.org/10.1002/rsa.20830
https://doi.org/10.1214/14-AAP1015
https://doi.org/10.1017/S0963548300000705
https://doi.org/10.1017/S0305004100068936
http://arxiv.org/abs/2102.08342
http://arxiv.org/abs/2102.08342
https://doi.org/10.1109/FOCS52979.2021.00025
https://doi.org/10.1137/0222066
https://doi.org/10.1016/0304-3975(86)90174-X
https://doi.org/10.2307/2007927
https://doi.org/10.1007/s00493-019-3847-0
https://doi.org/10.1007/978-1-4684-6802-1

Bibliography

[81] Vladimir Kolmogorov. A faster approximation algorithm for the Gibbs partition function.

In Proceedings of the 31st Conference On Learning Theory, volume 75 of Proceedings

of Machine Learning Research, pages 228–249. PMLR, 06–09 Jul 2018. URL: https:

//proceedings.mlr.press/v75/kolmogorov18a.html.

[82] Michael Kowalczyk and Jin-Yi Cai. Holant problems for 3-regular graphs with complex edge

functions. Theory Comput. Syst., 59(1):133–158, 2016. doi:10.1007/s00224-016-9671-7.

[83] Florent Krza̧ka l a, Andrea Montanari, Federico Ricci-Tersenghi, Guilhem Semerjian, and

Lenka Zdeborová. Gibbs states and the set of solutions of random constraint satisfaction

problems. Proc. Natl. Acad. Sci. USA, 104(25):10318–10323, 2007. doi:10.1073/pnas.

0703685104.

[84] Greg Kuperberg. How hard is it to approximate the Jones polynomial? Theory Comput.,

11:183–219, 2015. doi:10.4086/toc.2015.v011a006.

[85] Elliott H. Lieb and Alan D. Sokal. A general Lee-Yang theorem for one-component

and multicomponent ferromagnets. Comm. Math. Phys., 80(2):153–179, 1981. URL:

http://projecteuclid.org/euclid.cmp/1103919874.

[86] Jingcheng Liu, Alistair Sinclair, and Piyush Srivastava. Fisher zeros and correlation decay

in the Ising model. J. Math. Phys., 60(10):103304, 12, 2019. doi:10.1063/1.5082552.

[87] Jingcheng Liu, Alistair Sinclair, and Piyush Srivastava. The Ising partition function: zeros

and deterministic approximation. J. Stat. Phys., 174(2):287–315, 2019. doi:10.1007/

s10955-018-2199-2.

[88] Jingcheng Liu, Alistair Sinclair, and Piyush Srivastava. A deterministic algorithm for

counting colorings with 2∆ colors. In 2019 IEEE 60th Annual Symposium on Foundations

of Computer Science, pages 1380–1404. IEEE Comput. Soc. Press, Los Alamitos, CA,

[2019] ©2019. doi:10.1109/FOCS.2019.00085.

[89] Ryan L. Mann and Michael J. Bremner. Approximation Algorithms for Complex-Valued

Ising Models on Bounded Degree Graphs. Quantum, 3:162, July 2019. doi:10.22331/

q-2019-07-11-162.

[90] Marc Mézard, Thierry Mora, and Riccardo Zecchina. Clustering of solutions in the

random satisfiability problem. Physical Review Letters, 94(19):197205, 2005. doi:10.

1103/PhysRevLett.94.197205.

[91] John Milnor. Dynamics in one complex variable, volume 160 of Annals of Mathematics

Studies. Princeton University Press, Princeton, NJ, third edition, 2006.

[92] Michael Mitzenmacher and Eli Upfal. Probability and computing. Cambridge University

Press, Cambridge, 2005. Randomized algorithms and probabilistic analysis. doi:10.1017/

CBO9780511813603.

Page 209 of 212

https://proceedings.mlr.press/v75/kolmogorov18a.html
https://proceedings.mlr.press/v75/kolmogorov18a.html
https://doi.org/10.1007/s00224-016-9671-7
https://doi.org/10.1073/pnas.0703685104
https://doi.org/10.1073/pnas.0703685104
https://doi.org/10.4086/toc.2015.v011a006
http://projecteuclid.org/euclid.cmp/1103919874
https://doi.org/10.1063/1.5082552
https://doi.org/10.1007/s10955-018-2199-2
https://doi.org/10.1007/s10955-018-2199-2
https://doi.org/10.1109/FOCS.2019.00085
https://doi.org/10.22331/q-2019-07-11-162
https://doi.org/10.22331/q-2019-07-11-162
https://doi.org/10.1103/PhysRevLett.94.197205
https://doi.org/10.1103/PhysRevLett.94.197205
https://doi.org/10.1017/CBO9780511813603
https://doi.org/10.1017/CBO9780511813603

Bibliography

[93] Ankur Moitra. Approximate counting, the Lovász local lemma, and inference in graphical

models. J. ACM, 66(2):Art. 10, 25, 2019. doi:10.1145/3268930.

[94] Rémi Monasson and Riccardo Zecchina. Statistical mechanics of the random K-satisfiability

model. Phys. Rev. E (3), 56(2):1357–1370, 1997. doi:10.1103/PhysRevE.56.1357.

[95] Andrea Montanari and Devavrat Shah. Counting good truth assignments of random k-SAT

formulae. In Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete

Algorithms, pages 1255–1264. ACM, New York, 2007. URL: https://dl.acm.org/doi/

abs/10.5555/1283383.1283518.

[96] Thierry Mora, Marc Mézard, and Riccardo Zecchina. Pairs of sat assignments and

clustering in random boolean formulae. arXiv preprint, 2007. URL: https://arxiv.org/

abs/cond-mat/0506053.

[97] Robin A. Moser and Gábor Tardos. A constructive proof of the general Lovász local lemma.

J. ACM, 57(2):Art. 11, 15, 2010. doi:10.1145/1667053.1667060.

[98] Wolfgang Mulzer. Five proofs of Chernoff’s bound with applications. Bull. Eur. Assoc.

Theor. Comput. Sci. EATCS, 1(124):59–76, 2018. URL: http://bulletin.eatcs.org/

index.php/beatcs/article/view/525.

[99] Danny Nam, Allan Sly, and Youngtak Sohn. One-step replica symmetry breaking of

random regular NAE-SAT. In 2021 IEEE 62nd Annual Symposium on Foundations of

Computer Science—FOCS 2021, pages 310–318. IEEE Computer Soc., Los Alamitos, CA,

2022. doi:10.1109/FOCS52979.2021.00039.

[100] Terrence Napier and Mohan Ramachandran. An introduction to Riemann surfaces. Cor-

nerstones. Birkhäuser/Springer, New York, 2011.

[101] Viresh Patel and Guus Regts. Deterministic polynomial-time approximation algorithms

for partition functions and graph polynomials. SIAM J. Comput., 46(6):1893–1919, 2017.

doi:10.1137/16M1101003.

[102] Viresh Patel, Guus Regts, et al. Approximate counting using taylor’s theorem: a sur-

vey. Bulletin of EATCS, 138(3), 2022. URL: http://150.140.5.98/index.php/beatcs/

article/view/725.

[103] Han Peters and Guus Regts. On a conjecture of Sokal concerning roots of the independence

polynomial. Michigan Math. J., 68(1):33–55, 2019. doi:10.1307/mmj/1541667626.

[104] Han Peters and Guus Regts. Location of zeros for the partition function of the Ising

model on bounded degree graphs. J. Lond. Math. Soc. (2), 101(2):765–785, 2020. doi:

10.1112/jlms.12286.

Page 210 of 212

https://doi.org/10.1145/3268930
https://doi.org/10.1103/PhysRevE.56.1357
https://dl.acm.org/doi/abs/10.5555/1283383.1283518
https://dl.acm.org/doi/abs/10.5555/1283383.1283518
https://arxiv.org/abs/cond-mat/0506053
https://arxiv.org/abs/cond-mat/0506053
https://doi.org/10.1145/1667053.1667060
http://bulletin.eatcs.org/index.php/beatcs/article/view/525
http://bulletin.eatcs.org/index.php/beatcs/article/view/525
https://doi.org/10.1109/FOCS52979.2021.00039
https://doi.org/10.1137/16M1101003
http://150.140.5.98/index.php/beatcs/article/view/725
http://150.140.5.98/index.php/beatcs/article/view/725
https://doi.org/10.1307/mmj/1541667626
https://doi.org/10.1112/jlms.12286
https://doi.org/10.1112/jlms.12286

Bibliography

[105] Renfrey B. Potts. Some generalized order-disorder transformations. Proc. Cambridge

Philos. Soc., 48:106–109, 1952.

[106] J. Scott Provan and Michael O. Ball. The complexity of counting cuts and of computing

the probability that a graph is connected. SIAM J. Comput., 12(4):777–788, 1983.

doi:10.1137/0212053.

[107] Alistair Sinclair, Piyush Srivastava, and Marc Thurley. Approximation algorithms for

two-state anti-ferromagnetic spin systems on bounded degree graphs. J. Stat. Phys.,

155(4):666–686, 2014. doi:10.1007/s10955-014-0947-5.

[108] Allan Sly, Nike Sun, and Yumeng Zhang. The number of solutions for random reg-

ular NAE-SAT. Probab. Theory Related Fields, 182(1-2):1–109, 2022. doi:10.1007/

s00440-021-01029-5.

[109] Alan D. Sokal. The multivariate Tutte polynomial (alias Potts model) for graphs and

matroids. In Surveys in combinatorics 2005, volume 327 of London Math. Soc. Lecture

Note Ser., pages 173–226. Cambridge Univ. Press, Cambridge, 2005. doi:10.1017/

CBO9780511734885.009.

[110] Joel Spencer. Asymptotic lower bounds for Ramsey functions. Discrete Math., 20(1):69–76,

1977/78. doi:10.1016/0012-365X(77)90044-9.

[111] Elias M. Stein and Rami Shakarchi. Complex analysis, volume 2 of Princeton Lectures in

Analysis. Princeton University Press, Princeton, NJ, 2003.

[112] Ian Stewart. Galois theory. CRC Press, Boca Raton, FL, fourth edition, 2015.

[113] Adam Wojciech Strzeboński. Computing in the field of complex algebraic numbers. J.

Symbolic Comput., 24(6):647–656, 1997. doi:10.1006/jsco.1997.0158.

[114] Morwen B. Thistlethwaite. A spanning tree expansion of the Jones polynomial. Topology,

26(3):297–309, 1987. doi:10.1016/0040-9383(87)90003-6.

[115] Leslie G. Valiant. The complexity of computing the permanent. Theoret. Comput. Sci.,

8(2):189–201, 1979. doi:10.1016/0304-3975(79)90044-6.

[116] Dirk Vertigan. The computational complexity of Tutte invariants for planar graphs. SIAM

J. Comput., 35(3):690–712, 2005. doi:10.1137/S0097539704446797.

[117] Daniel Štefankovič, Santosh Vempala, and Eric Vigoda. Adaptive simulated annealing: a

near-optimal connection between sampling and counting. J. ACM, 56(3):Art. 18, 36, 2009.

doi:10.1145/1516512.1516520.

[118] Michel Waldschmidt. Diophantine approximation on linear algebraic groups, volume 326 of

Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical

Page 211 of 212

https://doi.org/10.1137/0212053
https://doi.org/10.1007/s10955-014-0947-5
https://doi.org/10.1007/s00440-021-01029-5
https://doi.org/10.1007/s00440-021-01029-5
https://doi.org/10.1017/CBO9780511734885.009
https://doi.org/10.1017/CBO9780511734885.009
https://doi.org/10.1016/0012-365X(77)90044-9
https://doi.org/10.1006/jsco.1997.0158
https://doi.org/10.1016/0040-9383(87)90003-6
https://doi.org/10.1016/0304-3975(79)90044-6
https://doi.org/10.1137/S0097539704446797
https://doi.org/10.1145/1516512.1516520

Bibliography

Sciences]. Springer-Verlag, Berlin, 2000. Transcendence properties of the exponential

function in several variables. doi:10.1007/978-3-662-11569-5.

[119] Dror Weitz. Combinatorial criteria for uniqueness of Gibbs measures. Random Structures

Algorithms, 27(4):445–475, 2005. doi:10.1002/rsa.20073.

[120] Dror Weitz. Counting independent sets up to the tree threshold. In STOC’06: Proceedings

of the 38th Annual ACM Symposium on Theory of Computing, pages 140–149. ACM, New

York, 2006. doi:10.1145/1132516.1132538.

[121] Dominic J. A. Welsh. Complexity: knots, colourings and counting, volume 186 of London

Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 1993.

doi:10.1017/CBO9780511752506.

[122] Chen N. Yang and T. D. Lee. Statistical theory of equations of state and phase transitions.

I. Theory of condensation. Phys. Rev. (2), 87:404–409, 1952.

[123] Chee Keng Yap. Fundamental problems of algorithmic algebra. Oxford University Press,

New York, 2000.

[124] Lenka Zdeborová. Statistical physics of hard optimization problems. arXiv preprint, 2008.

arXiv:0806.4112.

Page 212 of 212

https://doi.org/10.1007/978-3-662-11569-5
https://doi.org/10.1002/rsa.20073
https://doi.org/10.1145/1132516.1132538
https://doi.org/10.1017/CBO9780511752506
http://arxiv.org/abs/0806.4112

	Introduction and contributions
	Partition functions: from statistical mechanics to approximate counting
	The Potts model and the Tutte polynomial
	Hardness of exact computation of partition functions
	Constraint satisfaction problems, statistical mechanics and the random k-SAT model

	Fully polynomial approximation schemes in spin systems
	Phase transitions on bounded-degree graphs
	Why complex numbers?

	Approximating the partition function of the Potts model
	Overview of previous work
	Results
	Brief proof outline

	Approximating the partition funtion of the Ising model on bounded-degree graphs
	Overview of previous work
	Results
	Brief proof outline

	Sampling satisfying assignments from the random k-SAT model
	Overview of previous work
	Results
	Brief proof outline
	The geometry of the space of satisfying assignments

	Organisation of this thesis

	The complexity of approximating the complex-valued Potts model
	Proof outline
	Shifts in the Tutte plane
	Polynomial-time approximate shifts
	The reductions

	Preliminaries
	The multivariate Tutte polynomial
	Implementing weights, series compositions and parallel compositions
	Computing with algebraic numbers

	Polynomial-time approximate shifts
	Polynomial-time approximate shifts with complex weights
	Some algorithms for algebraic numbers
	Some shifts for non-real algebraic numbers
	An approximate shift to (0, 1-q)
	An approximate shift to (x',y') with y' (0,1)
	Approximate shifts for polynomial-time computable real numbers

	Hardness results
	Properties of ZTutte(G; q,) for algebraic numbers q and
	Computing representations of algebraic numbers via approximations
	Exact Hardness results
	Computational problems
	Reducing exact computation to sign and approximate computation
	The connection between approximate shifts and reductions
	Hardness for the Tutte polynomial
	Proofs of the main theorems in this chapter

	Further consequences of our results
	Hardness results for real algebraic parameters in the Tutte plane
	Hardness results for the Jones polynomial

	The complexity of approximating the complex-valued Ising model on bounded degree graphs
	Proof outline
	Preliminaries
	The tree of self-avoiding walks
	Computing with algebraic numbers
	Implementing weights, series compositions and parallel compositions
	Iteration of complex rational maps

	Easiness: a zero-free region for the Ising model
	Proof of Theorem 1.5
	Comparing Theorem 1.5 to the state of the art
	Mathematica code for the proof of Lemma 3.22

	Hardness results: proof of Theorem 1.7
	Ising and Mobius programs
	Proof of Lemma 3.2
	Reducing exact computation to approximate computation

	Zeros of the partition function and hardness
	Mobius-programs: proofs of Lemmas 3.30 and 3.31
	From program-approximable to densely program-approximable
	Proof of Lemma 3.30
	Proof of Lemma 3.31

	Fast sampling of satisfying assignments from random k-SAT
	Proof outline and preliminaries
	Marking variables in the random k-SAT model
	Mixing time of the Glauber dynamics on the marked variables
	Analysis of the connected components of
	The sampling algorithm
	Organisation of the rest of this chapter

	High-degree and bad variables in random CNF formulae
	Identifying a set of ``marked'' variables with good marginals
	Analysis of the connected components of
	Logarithmic-sized sets of clauses in the random k-SAT model
	Number of marked variables in logarithmic-sized sets of clauses
	Proof of Lemma 4.12

	Sampling from small connected components
	Mixing time of the Markov chain
	Previous work
	Spectral independence in the k-SAT model
	Mixing time of the -uniform-block Glauber dynamics

	Proof of Theorem 1.8
	Proof of Theorems 1.10 and 1.12
	Proof of Theorem 1.10
	Proof of Theorem 1.12

	Proofs of Lemmas 4.15 and 4.16
	Proof of Lemma 4.8

	Conclusion and open questions
	Bibliography

