Approximate counting via complex
zero-free regions and spectral

independence

Andrés Herrera poyatos
Balliol College

University of Oxford

A thesis submitted for the degree of
Doctor of Philosophy

Trinity 2023

To my parents and my brothers.

Acknowledgements

First and foremost, I would like to express my deepest gratitude to my supervisors, Leslie
Goldberg and Andreas Galanis, for introducing me to the fascinating field of approximate
counting and for their invaluable time, guidance and expertise. Working under the supervision
of such exceptionally talented researchers has been an enlightening opportunity that I am truly
grateful for.

I would also like to extend my thanks to Stefan Kiefer and Standa Zivny for serving as
examiners for my various DPhil examinations, and their excellent questions and feedback during
those. Additionally, I would like to thank in advance my DPhil viva examiners for taking the
time to review this thesis.

On a personal note, I am deeply grateful to my office mates for creating an uplifting and
stimulating environment in our shared space. A special thanks goes to Marc, with whom I have
shared countless of maths discussions, coffee breaks and board games nights during the four
years that we have been office mates. I would also like to acknowledge the incredible friends
that I have made during my time in Oxford, with a special thanks to my Balliol friends for their
constant support, particularly as housemates during the pandemic.

Last but not the least, I would like to express my deepest gratitude to my parents, for their
never-ending support and instilling in me their passion for mathematics, and to my brothers,
David and Sergio. Your presence in my life has been a constant source of inspiration and

encouragement and I have missed you dearly since I moved to Oxford.

Page 1 of 212

Abstract

This thesis investigates fundamental problems in approximate counting that arise in the field
of statistical mechanics. Building upon recent advancements in the area, our research aims to
enhance our understanding of the computational complexity of sampling from the Ising and
Potts models, as well as the random k-SAT model.

The g-state Potts model is a spin model in which each particle is randomly assigned a spin
(out of g possible spins), where the probability of a certain assignment depends on how many
adjacent particles present the same spin. The edge interaction of the model is a parameter
that quantifies the strength of interaction between two adjacent particles. The Ising model
corresponds to the Potts model with ¢ = 2. Sampling from these models is inherently connected
to approximating the partition function of the model, a graph polynomial that encodes several
aggregate thermodynamic properties of the system. In addition to classical connections with
quantum computing and phase transitions in statistical physics, recent work in approximate
counting has shown that the behaviour in the complex plane of these partition functions, and more
precisely the location of zeros, is strongly connected with the complexity of the approximation
problem, even for positive real-valued parameters. Thus, following this trend in both statistical
physics and algorithmic research, we allow the edge interaction to be any complex number.

First, we study the complexity of approximating the partition function of the g-state Potts
model and the closely related Tutte polynomial for complex values of the underlying parameters.
Previous work in the complex plane by Goldberg and Guo focused on ¢ = 2; for ¢ > 2, the
behaviour in the complex plane is not as well understood and most work applies only to the
real-valued Tutte plane. Our main result is a complete classification of the complexity of the
approximation problems for all non-real values of the parameters, by establishing #P-hardness
results that apply even when restricted to planar graphs. Our techniques apply to all ¢ > 2
and further complement /refine previous results both for the Ising model and the Tutte plane,
answering in particular a question raised by Bordewich, Freedman, Lovéasz and Welsh in the
context of quantum computations.

Secondly, we investigate the complexity of approximating the partition function Ziging (G 5)
of the Ising model in terms of the relation between the edge interaction [and a parameter
A which is an upper bound on the maximum degree of the input graph G. In this thesis we
establish both new tractability and inapproximability results. Our tractability results show that
Zising(—;) has an FPTAS when 5 € C and |8 — 1|/|5 + 1| < tan(w/(4A — 4)). The core of
the proof is showing that there are no inputs G that make the partition function 0 when g is
in this range. Our result significantly extends the known zero-free region of the Ising model
(and hence the known approximation results). Our intractability results show that it is #P-hard
to approximate Zigng(—;) when 5 € C is an algebraic number such that § ¢ RU {i, —i} and
|8 —1|/|8 + 1| > 1/v/A — 1. These are the first results to show intractability of approximating

Page 2 of 212

Abstract

Zising(—, B) on bounded degree graphs with complex . Moreover, we demonstrate situations in
which zeros of the partition function imply hardness of approximation in the Ising model.
Finally, we exploit the recently successful framework of spectral independence to analyse
the mixing time of a Markov chain, and we apply it in order to sample satisfying assignments
of k-CNF formulas. Our analysis leads to a nearly linear-time algorithm to approximately
sample satisfying assignments in the random k-SAT model when the density of the random
formula o = m/n scales exponentially with k&, where n is the number of variables and m is the
number of clauses. The best previously known sampling algorithm for the random k-SAT model
applies when the density a = m/n of the formula is less than 2k/300 and runs in time nPOK),
Our algorithm achieves a significantly faster running time of n!*2() and samples satisfying
assignments up to density o < 29939 The main challenge in our setting is the presence of many
variables with unbounded degree, which causes significant correlations within the formula and

impedes the application of relevant Markov chain methods from the bounded-degree setting.

Page 3 of 212

Declaration of authorship

If not explicitly stated otherwise, all the results presented in this thesis are new contributions.
Parts of this thesis have been published in peer-reviewed academic journals and conference
proceedings. Some parts are available as preprints and are currently submitted to journals.
Chapters 2 and 3 are based on the following papers, which are co-authored with my supervisors
Andreas Galanis and Leslie Ann Goldberg:

[51] Andreas Galanis, Leslie Ann Goldberg, and Andrés Herrera-Poyatos. The complexity of

approximating the complex-valued potts model. Comput. Complezity, 31(1):Paper No. 2,
2022. doi:10.1007/s00037-021-00218-x.
o A preliminary version of this work appeared in MFCS: Andreas Galanis, Leslie Ann
Goldberg, and Andrés Herrera-Poyatos. The complexity of approximating the complex-
valued potts model. In 45th International Symposium on Mathematical Foundations
of Computer Science (MFCS 2020), volume 170 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 36:1-36:14, Dagstuhl, Germany, 2020. Schloss Dagstuhl—
Leibniz-Zentrum fiir Informatik. doi:10.4230/LIPIcs.MFCS.2020.36.

[47] Andreas Galanis, Leslie A. Goldberg, and Andres Herrera-Poyatos. The complexity of
approximating the complex-valued Ising model on bounded degree graphs. SIAM J.
Discrete Math., 36(3):2159-2204, 2022. doi:10.1137/21M1454043.

Chapter 4 is based on an updated version of the following work, which is co-authored with

my suvervisors and Heng Guo.

[48] Andreas Galanis, Leslie Ann Goldberg, Heng Guo, and Andrés Herrera-Poyatos. Fast
sampling of satisfying assignments from random k-sat. arXiv preprint, 2022. arXiv:
2206.15308.

The version of [48] presented in this thesis includes results on the geometry of the space of
satisfying assignments of random k-CNF formulas, that have been developed in conjunction with
Zongchen Chen, Nitya Mani and Ankur Moitra. The proofs of these geometry results presented
here are my own. This extended version of [48] has been submitted to Random Structures and

Algorithms.

Page 4 of 212

https://doi.org/10.1007/s00037-021-00218-x
https://doi.org/10.4230/LIPIcs.MFCS.2020.36
https://doi.org/10.1137/21M1454043
http://arxiv.org/abs/2206.15308
http://arxiv.org/abs/2206.15308

Contents

1 Introduction and contributions 12
1.1 Partition functions: from statistical mechanics to approximate counting 14
1.1.1 The Potts model and the Tutte polynomial 15

1.1.2 Hardness of exact computation of partition functions 16

1.2

1.3

1.4

1.5

1.6

2 The
2.1

2.2

2.3
2.4

1.1.3 Constraint satisfaction problems, statistical mechanics and the random

E-SAT model 17
Fully polynomial approximation schemes in spin systems 18
1.2.1 Phase transitions on bounded-degree graphs 19
1.2.2 Why complex numbers? L L 21
Approximating the partition function of the Potts model 21
1.3.1 Overview of previous work oo 21
1.3.2 Results e 22
1.3.3 Brief proof outline 24
Approximating the partition funtion of the Ising model on bounded-degree graphs 25
1.4.1 Overview of previous worko 26
1.4.2 Results o e 26
1.4.3 Brief proof outline 29
Sampling satisfying assignments from the random k-SAT model 30
1.5.1 Overview of previous work oL 30
1.5.2 Results o e 31
1.5.3 Brief proof outline 31
1.5.4 The geometry of the space of satisfying assignments 32
Organisation of this thesis oo 34
complexity of approximating the complex-valued Potts model 35
Proof outline 35
2.1.1 Shifts in the Tutte plane 36
2.1.2 Polynomial-time approximate shifts 37
2.1.3 Thereductions 39
Preliminarieso L 40
2.2.1 The multivariate Tutte polynomial 40
2.2.2 Implementing weights, series compositions and parallel compositions . . . 40
2.2.3 Computing with algebraic numbers L. 42
Polynomial-time approximate shifts 0L, 43
Polynomial-time approximate shifts with complex weights 49
2.4.1 Some algorithms for algebraic numbers. 50

Page 5 of 212

Table of contents

3

2.5

2.6

2.4.2 Some shifts for non-real algebraic numbers 52
2.4.3 An approximate shift to (0,1 —¢q) 55
2.4.4 An approximate shift to (z/,9") with ¢/ € (0,1) 56
2.4.5 Approximate shifts for polynomial-time computable real numbers 61
Hardness results Lo 65
2.5.1 Properties of Zyue(G;q,y) for algebraic numbers g and v 66
2.5.2 Computing representations of algebraic numbers via approximations . . . 68
2.5.3 Exact Hardnessresults oo 68
2.5.4 Computational problems 69
2.5.5 Reducing exact computation to sign and approximate computation 69
2.5.6 The connection between approximate shifts and reductions 83
2.5.7 Hardness for the Tutte polynomial 86
2.5.8 Proofs of the main theorems in this chapter 87
Further consequences of our results 88
2.6.1 Hardness results for real algebraic parameters in the Tutte plane 88
2.6.2 Hardness results for the Jones polynomial 89

The complexity of approximating the complex-valued Ising model on bounded

degree graphs 92
3.1 Proofoutline 92
3.2 Preliminaries e e e 95
3.2.1 The tree of self-avoiding walks L. 95
3.2.2 Computing with algebraic numbers 0L 96
3.2.3 Implementing weights, series compositions and parallel compositions . . . 97
3.2.4 Tteration of complex rational maps 98
3.3 [Easiness: a zero-free region for the Ising model 100
3.3.1 Proof of Theorem 1.5 100
3.3.2 Comparing Theorem 1.5 to the state of theart 104
3.3.3 Mathematica code for the proof of Lemma 3.22 108
3.4 Hardness results: proof of Theorem 1.7 109
3.4.1 Ising and Mobius programs Lo oo 110
3.4.2 Proofof Lemma 3.2 113
3.4.3 Reducing exact computation to approximate computation 118
3.5 Zeros of the partition function and hardness 122
3.6 Mobius-programs: proofs of Lemmas 3.30 and 3.31 126
3.6.1 From program-approximable to densely program-approximable 126
3.6.2 Proofof Lemma 3.30 129
3.6.3 Proofof Lemma 3.31 131

Page 6 of 212

Table of contents

4 Fast sampling of satisfying assignments from random k-SAT 138
4.1 Proof outline and preliminaries L. 138
4.1.1 Marking variables in the random k-SAT model 140

4.1.2 Mixing time of the Glauber dynamics on the marked variables 143

4.1.3 Analysis of the connected components of ®* 146

4.1.4 The sampling algorithm o L L 149

4.1.5 Organisation of the rest of this chapter. 150

4.2 High-degree and bad variables in random CNF formulae 151
4.3 Identifying a set of “marked” variables with good marginals 153
4.4 Analysis of the connected components of ®* L. 160
4.4.1 Logarithmic-sized sets of clauses in the random k-SAT model 160

4.4.2 Number of marked variables in logarithmic-sized sets of clauses 162

4.4.3 Proofof Lemma 4.12 oo 163

4.5 Sampling from small connected components L. 167
4.6 Mixing time of the Markov chain o L. 169
4.6.1 Previouswork. L Lo 170

4.6.2 Spectral independence in the k-SAT model 171

4.6.3 Mixing time of the p-uniform-block Glauber dynamics 184

4.7 Proof of Theorem 1.8 185
4.8 Proof of Theorems 1.10 and 1.12 188
4.8.1 Proof of Theorem 1.10 189

4.8.2 Proof of Theorem 1.12 192

4.9 Proofs of Lemmas 4.15and 4.16o 194
4.10 Proof of Lemma 4.8 197

5 Conclusion and open questions 199
Bibliography 202

Page 7 of 212

List of definitions and notation

Here we gather the notation and definitions that are used repeatedly in each chapter of this
thesis. If some notation or definition is not here, then it is only used in one specific section of a

chapter (and it is defined in that section).

Chapter 1
Notation Description Reference
#P o The class of counting problems Page 12
hom The graph homomorphism partition function Eq. (1.3), page 15
Y/ The independent set polynomial Page 15
size(G) The size of agraph G Page 15
ZPotts « o veennn The Potts model partition function Eq. (1.4), page 15
Llsing «vvvvenn- The Ising model partition function Page 16
ZTutte ~vveeve- The Tutte polynomial Eq. (1.5), page 16
®(k,n,m) A random k-CNF formula with n var. and m clauses . Page 18
Q o The density of the formula ®, soa=m/n Page 18
FPRAS Fully-polynomial randomised approximation scheme .. Page 19
FPTAS Fully-polynomial deterministic approximation scheme Page 19
arg The principal argument of a complex number Page 22
Arg ... The set of arguments of a complex number Page 22
EA veieain The number tan(7m/(4(A —=1))) oo, Theorem 1.5
N The number max {sin (%) oS (A%) 0<a< g—g Page 26
hg .o.......... The Mobius function hg(z) = (Bz+1)/(B+2) Page 29
w.h.p. Stands for “with high probability” Page 31
dry oo, The total variation distance between two distributions Page 31
[N R Hamming weightcooiiiiiiiiiiia.., Definition 1.9
D-connectivity ~ Connectivity of assignments of a k-CNF formula Definition 1.9
f(n)-loose Looseness in a k-CNF formula Definition 1.11
Computational problems
Notation Description Reference
FACTOR-K-NORMPOTTS(q,y) -...... Norm approx. problem for Potts Page 22
FACTOR-K-NORMPLANARPOTTS(q,y) Same restricted to planar graphs Page 22
DISTANCE-p-ARGPOTTS(q,y) Argument approx. problem for Potts Page 22

Page 8 of 212

List of definitions and notation

DISTANCE-p-ARGPLANARPOTTS(q, y) Same restricted to planar graphs Page 22
FACTOR-K-NORMISING(Y) «...onvnn... Norm approx. problem for Ising Page 22
DISTANCE-p-ARGISING(q,y) «.ovvnnn.. Argument approx. problem for Ising. Page 22
FACTOR-K-NORMTUTTE(q,7y) Norm approx. problem for Tutte Page 22
FACTOR-K-NORMPLANARTUTTE(q,y) Same restricted to planar graphs Page 22
DISTANCE-p-ARGTUTTE(q,y) «.ovn.... Argument approx. problem for Tutte Page 22
DISTANCE-p-ARGPLANARTUTTE(q,y) Same restricted to planar graphs Page 22
SIGNTUTTE(q,) «veveiinininannn Sign problem for Tutte polynomial .. Page 22
SIGNPLANARTUTTE(q,7y) «vvvvvvennnn. Same restricted to planar graphs Page 22
ISINGNORM(B, A, K) oovoiiiiiann Norm approx. problem for b.d. Ising Page 28
ISINGARG(B, A, p) wvviiiiiainan. Same problem for argument Page 28
Chapter 2

Notation Description Reference
theta graph Graph with two terminals joined by paths Definition 2.1
series-parallel graph ... Graph constructed from series-parallel operations Definition 2.1
Pe oo Set of poly-time computable numbers Page 38

PR o The set Pc MR oo Page 38
Zsa(G5q,7y) coviiint Tutte poly. for connected terminals s and ¢ Page 40
Zp(G3q,7) v Tutte poly. for non-connected terminals s and ¢ . Page 40
~v-implement See definition oo Page 40
shift ... See definition oo Page 41
parallel composition ... Operation between two graphs Page 41
series composition Operation between two graphs Page 41

O olm) wrrrrrreeees Theta graph with m paths of lengths [y,...,l,, .. Page 42
W) e Weight implemented by a Theta graph Page 42
Root of unity Complex root of zF =1 for some k Page 43
poly-time approx. shift See definitionl Definition 2.10
Chapter 3
Notation Description Reference
A Cy oooiinit. The sets of real and complex algebraic numbers Page 93
SAW tree Tree of self-avoiding walks of a graph Page 95
ZZ(G; B) ... Ising model partition function with a pinning on vertex v Definition 3.6
R(T,v;B) Theratio Z(T;B)/Z%T;p) foratree T Definition 3.6
Fg(z1,...,2,) Recursion for Ising model on trees Page 96

Page 9 of 212

List of definitions and notation

B(z,r) oo, Open disk with centre z and radius r Page 96
B(z,7) e Closed disk with centre z and radius r Page 96
Cz,m) v Circle with centre z and radius r Page 96
ng (H;B) coviinaann. Ising model p.f. with two pinnings Page 97
Tq(H;B) coviiiiinine.. The interaction matrix of the Ising model Page 97
(A, B)-implements See definitioncoiiiiiiiiiii Definition 3.7
C oo The Riemann sphere Page 99
d(zy,w) covoiiiiiiii Cordal metric ...l Page 99
Mobius map Rational map of degree one Page 99
multiplier Derivative at a fixpoint Page 99
fixpoint Point w with f(w) =w ... Page 99
Juliaset See definiton Page 99
neighbourhood of = Set containing a ball with centre x Page 100
exceptional point Point with finite number of iterations on f ... Page 100
R(E) coeiiai Set of z € Cwith [(z —1)/(z4+1)| <§ Definition 3.15
Ising program See the definitionol Definition 3.25
GB e The map gg(z) = hg(hg(2)) ..o Definition 3.25
Mobius program See the definitionol Definition 3.27
program-approximable .. See definition Definition 3.28
desenly program-approx. See definition Definition 3.29
Chapter 4
Notation Description Reference
Vo The set of variables of @, Page 140
Covi The set of clauses of @ Page 140
var(c) ..o The variables in the clause ¢ Page 140
var(S) ... The union of var(c) over c€ S Page 140
E Our sampling algorithm has error at most n=¢ Theorem 1.8
Ap The high-degree threshold, set to [2(70=9k] . Definition 4.1
high-degree See definition o i Definition 4.1
r-distributed See definitiono Definition 4.3
(r, "m, Ta, rc)-marking See definition i Definition 4.3
T S ro = 0.117841, r; = 0.227092 and § = 0.00001 Definition 4.3
Vi, Va, Ve ovvvvvnnt. The sets of marked, auxiliary and control variables Definition 4.3
O The set of all assignments V — {F, T} Definition 4.4
Q The set of satisfying assignments of ® Definition 4.4
175 The uniform distribution over A C Q% Definition 4.4
A . The formula ® simplified under A Definition 4.4

Page 10 of 212

List of definitions and notation

VA CA The variables and clauses of ®» Definition 4.4
QN The set of satisfying assignments of ®* Definition 4.4
Py oo The marginal distribution of pon V' Definition 4.6
e-uniform See definition oo Definition 4.7
Tnixc(Py€) wvvvviaiii. Mixing time of the block Glauber dynamics Page 143
b-marginally bounded .. See definitiono Page 143
TANu—=v) .o The influence of w on v (under A) Page 144
n-spectrally independent See definition il Page 144

Go oo The dependency graph of C Definition 4.11
Hy oo The dependency graph of V Definition 4.13
Coo0d(T), Crad(r) - Good and bad clauses, a partition of C Page 151
Veood () Voad(r) Good and bad variables, a partition of V Page 151
Doood(T) v The formula with all good var. and clauses of ® Definition 4.19
Dpag(T) e The formula with all bad var. and clauses of ® . Definition 4.19

Page 11 of 212

Chapter 1

Introduction and contributions

Approximate counting is a branch of computational complexity and randomised algorithms that
has seen a growing interest in the past decade due to its connections to sampling, statistical
mechanics and random systems. Before delving into approximate counting, let us briefly introduce
the class of counting problems, which can be understood as the counting analogue to NP. Formally,
an exact counting problem is a computational problem of the form “compute f(z)”, where f(x)
is the number of accepting paths (on input x) of a non-deterministic Turing machine that runs in
polynomial time. We use #P to denote the class of all counting problems, which was introduced
by Valiant [115]. As an example, a canonical counting problem is #SAT, the problem of counting
the number of satisfying assignments of a boolean formula in conjunctive normal form (CNF).
By the celebrated Cook-Levin theorem, any counting problem has a polynomial-time reduction
to #SAT. Thus, we say that #SAT is #P-complete. Other relevant #P-complete problems
are counting the number of independent sets of a graph or counting the number of satisfying
assignments of a formula in disjunctive normal form, denoted #DNF, see, for instance, [121].
Several more #P-complete (or #P-hard) problems will come up in this thesis.

The goal of approximate counting is understanding the inherent difficulty of computing
approximate answers to counting problems that would be #P-hard to solve exactly. For a precise
notion of approximability, we refer to Section 1.2. A classic example of fundamental relevance in
theoretical computer science is, for k£ > 3, the problem of approximately counting the number of
satisfying assignments of a k-CNF formula (a formula in conjunctive normal form where every
clause has exactly k literals), which is hard unless NP = RP. Interestingly, this contrasts to the
complexity of the problem of approximating the number of satisfying assignments of a formula
in disjunctive normal form (#DNF), which turns out to have an elementary polynomial-time
algorithm. The complexity of several relevant approximate counting problems still remains
elusive see, for instance, [39].

Some of the most famous problems in approximate counting arise in statistical mechanics.
This is the case of some of the problems that we study in this thesis, including the problems
of approximating the partition function of spin systems such as the hard-core, Ising and Potts
models, which we will formally introduce in Section 1.1. As we will see, approximating partition
functions is inherently connected to sampling from the distributions of these spin systems, which
is of particular importance in statistical mechanics. Abstractly, for a finite set V' of “particles”
and an integer ¢ > 2, we want to sample from a probability distribution over the configurations
o:V — [q], where [q] :={1,2,...,q} is the set of possible spins. We highlight that this abstract

setting also includes as a particular case the problem of uniformly sampling satisfying assignments

Page 12 of 212

Chapter 1. Introduction and contributions

of CNF formulas. In fact, we will work in this general setting at some stages in this thesis
as some of our methods exploit properties of spin distributions with local constrains. The
computational complexity of approximating these partition functions turns out to be related to
the physical phase transitions that these models present on bounded-degree graphs, which has
drawn a lot of attention to approximate counting and has motivated a lot of work in the area.
We will briefly delve into this connection in Section 1.2 of this introduction. Interestingly, these
partition functions occasionally admit fully-polynomial randomised approximation algorithms,
serving as examples of problems whose exact version is #P-hard but the approximate version is
tractable [8]. Other times the problem of approximating a partition function can be shown to be
hard, sometimes even as hard as the exact version. The study of the complexity of approximating
partition functions is a growing area where new techniques to envisage efficient approximation
algorithms or to show hardness are being developed.

The recent increasing interest in approximate counting has led to a remarkable progress,
and a number of innovative approaches have emerged, sometimes connecting approximate
counting to other seemingly unrelated areas of mathematics such as complex analysis and
complex dynamics [101, 8, 15, 16], or sometimes promoting a resurgence of classic techniques
such as Markov Chain Monte Carlo algorithms for spin systems via the spectral independence
method [7, 28]. As a consequence of these new techniques, a lot of old open problems have
started to fall. This thesis is devoted to exploiting some of these exciting approaches to further
understand some of the classic problems in approximate counting, including the complexity of
approximating the partition functions of the Ising and Potts model on complex parameters, as
well as developing approximate counting algorithms for the number of satisfying assignments
of random k-CNF formulas, and understanding the boundaries of efficient computation within
these models.

The rest of this introduction is organised as follows. In Section 1.1, we further motivate the
work presented in this thesis from the point of view of statistical mechanics, and introduce the
approximate counting problems for which we present new results in this work. In Section 1.2 we
introduce the concept of approximation schemes and briefly describe some of the most powerful
techniques to obtain such algorithms or prove hardness of approximation, highlighting the con-
nection between physical phase transitions and computational phase transitions in spin systems.
In Section 1.3 we state our results on the Potts model on complex parameters, where we give a
complete map of approximability of the partition function. In Section 1.4 we state our results on
the Ising model on bounded degree graphs, including novel tractability and inapproximability
results. In Section 1.5 we state our results on random k-CNF formulas, including the first
almost-uniform sampler of satisfying assignments based on spectral independence arguments.

Finally, in Section 1.6 we present the organisation of the rest of this thesis.

Page 13 of 212

Chapter 1. Introduction and contributions

1.1 Partition functions: from statistical mechanics to approxi-

mate counting

Partition functions arise naturally in physics, mathematics and computer science, and their study
has revealed connections among all these disciplines. The exact definition of partition function
varies depending on the area of study; in approximate counting we are interested in partition
functions from a combinatorial perspective. Before introducing the combinatorial definition of
the partition functions that we consider in this thesis, let us motivate this concept from the
lenses of statistical mechanics.

In statistical mechanics of discrete systems we model particles as vertices of an undirected
graph G = (V, E) (possibly with loops or multiple edges between the same vertices) that captures
the interactions among them. These particles may correspond, for example, to magnets, the
molecules of a gas, or atoms in spin glasses. Each particle is in one out of ¢ possible states/spins,
where ¢ > 2. For instance, in the case of ferromagnetic systems, these states corresponds to plus
or minus (¢ = 2). A configuration is a map o: V — [q], assigning each particle to a spin. Let 2
be the set of all configurations. The Gibbs distribution of the system is a probability distribution
over {) that assigns to each state a probability that is a function of that state’s energy, denoted
H (o), and the temperature of the system 7". We also call H (o) the Hamiltonian of the state, and
we will define it explicitly later in this section. More precisely, the probability of a configuration
o under the Gibbs distribution, denoted p (o), is proportional to exp(—H (0)/(cT)), where T is
the temperature of the system and c is the Boltzmann constant. The partition function of the
system is the normalising factor of the Gibbs distribution, that is,

Z(G) =) _exp(—H(a)/(cT)). (1.1)

oen

The Hamiltonian/energy of a configuration depends on two interactions: the interaction energies
between adjacent particles based on their spins, and the interaction between the system particles
and an external field, which acts on each particle based on the particle’s spin. The interaction
energies are represented by a symmetric ¢ x ¢ matrix K, so the entry K;; € R measures the
interaction energy between the spins ¢ and j. The external field has associated a vector M,
whose entry M; € R indicates how the field acts on spin ¢. The overall energy of a configuration
o is then H(0) = 3, e p Ko(w),o(w) T 2vev Mo(w)-

This definition of the Gibbs distribution arises as the solution of an optimisation problem:;
the Gibbs distribution is the distribution that maximises the entropy of the system, subject to
certain normalisation constraints. For more information about the Gibbs distribution from a
statistical mechanics point of view we refer to [53]. Some relevant aggregate thermodynamic
variables of the system, such as the entropy, total energy or free energy, can be expressed
in terms of the partition function and its derivatives. Moreover, if we can approximate the
partition function Z(QG) efficiently, we can approximate efficiently any probability u(o) and, as
a consequence, we can strongly simulate the system. Thus, the problems of computing and

approximating partition functions are of particular relevance in statistical mechanics.

Page 14 of 212

Chapter 1. Introduction and contributions

By setting Y; ; = exp(—K; ;/(cT)) and Z; = exp(—M;/(cT)), from (1.1) we find that

= > II Yowow I Zow: (1.2)

o: V—=lql {uv}eE veV

Even though in our derivation Y; ;, Z; are positive numbers, generally the partition function
Z(G) can be seen as a multivariate graph polynomial with variables Yj; and Z;, which may take
complex values. In fact, (1.2) comprises many well-known graph polynomials as particular cases.

For example, when Z is a vector of ones, we obtain the graph homomorphism partition function

[8, Chapter 7],
hom(G;Y) Z H () (v)s (1.3)
o: V—=lql {uw}€eE

which is of particular interest in theoretical computer science, see, for instance, [45, 40]. Another

relevant example is the case when ¢ = 2 and, for A € C,

13 [}

This instance is famously known as the independent set polynomial or the partition function of
the hard-core model [15], and is denoted Zz (G;). One can easily find that

Z A

IeZ(G

where Z(G) is the set of all the independent sets of a graph G. The parameter \ is known
as the activity of the model. Note that Z7(G;1) counts the number of independent sets of
the graph GG, whose computation is known to be #P-hard. Hence, computing the polynomial
Z7(G; \) is #P-hard. Under typical circumstances this is the case with partition functions, it
is unrealistic to write Z as a sum of monomials in a polynomial number of computations on

size(G) == |V(G)| + |E(G)|.

1.1.1 The Potts model and the Tutte polynomial

The ¢-state Potts model is a classic model of ferromagnetism in statistical mechanics [105, 121]
that can be seen as a particular example of the graph homomorphism partition function. From
a physics point of view, this model arises when the energy between interacting particles behaves
as follows: for a constant 6 > 0, the energy between two adjacent particles is 6 if the particles’
spins are the same, and the energy is —6 if they are different. It is not difficult to check that
under our combinatorial notation, following a derivation along the lines of (1.1) and letting
y = exp(—26/(cT)), this model is equivalent to the case when Z is a vector of ones and the
matrix Y is such that Yj; = y and Yj; = 1 for every 4, j with i # j, see [121] for details. We
denote by Zpotts (G; q,y) the partition function of the Potts model with parameter y € C, and

we find that
ZPotts (G, q, 3/) = Z ym(a)’ (14)

Page 15 of 212

Chapter 1. Introduction and contributions

where m(o) denotes the number of monochromatic edges of G under o. The parameter y is
known as the edge interaction; note that the Gibbs distribution of the model is only defined when
y is a positive real. This partition function includes several relevant combinatorial quantities
as a particular case. For example, Zpos (G q,0) counts the number of proper g-colourings of
the graph G (recall that these are the g-colourings such that two adjacent vertices have distinct
colours), that is, Zpetts (G; ¢, 0) is the evaluation of the chromatic polynomial of G on a positive
integer q. We refer to [121] for more connections between the chromatic polynomial and the
Potts model. The case ¢ = 2 is commonly known as the Ising model, and we write Zising(G;y)
to denote its partition function.

The Ising/Potts models have an extremely useful generalisation to non-integer values of ¢
via the so-called “random-cluster” formulation of the Tutte polynomial. For complex numbers ¢

and v, the Tutte polynomial of a graph G = (V| E) is given by

ZTutte(G; q?’}/) = Z qk(A)7|A|7 (15)
ACE

where k(A) denotes the number of connected components in the graph (V, A) (isolated vertices
do count). When ¢ is an integer with ¢ > 2, we have Zpotts(G; q,y) = Zmutte(G5q,y — 1), see,
for instance, [109]. From a computational point of view, the Tutte polynomial encompasses
other relevant combinatorial quantities, such as the number of nowhere-zero ¢-flows of G (which
corresponds to Zruste(G; ¢, —q) up to an easily computable factor) or the number of spanning
subgraphs of G, that is, the number of subgraphs (V,A) of G with k(A) = k(E) (which
coincides with the limit limg—0 Z1utte(G; ¢, 1)/ ¢"®). The Tutte polynomial on planar graphs is
particularly relevant in quantum computing since it corresponds to the Jones polynomial of an
“alternating link” [121, Chapter 5], and polynomial-time quantum computation can be simulated
by additively approximating the Jones polynomial at certain roots of unity. This connection
between the Tutte polynomial and quantum computation will be relevant in Section 1.3 and
Chapter 2, see also [20] for details.

1.1.2 Hardness of exact computation of partition functions

Due to the combinatorial relevance of the Tutte polynomial and its connections to fundamental
problems in theoretical computer science, computational complexity questions involving the Tutte
polynomial have been the focus of a long series of publications, see [109] for a state of the art.
For example, an interesting question that will come up in Chapter 2 of this thesis is the problem
of determining the sign of Zmye(G;q,y) [59]. From the point of view of counting complexity,
one of the most natural questions is the following one: for a fixed pair (¢,7) € C?, how hard is
it to evaluate Zmyute(G;q,7) at (¢,7) and an input graph G7 This question was addressed by
Jaeger, Vertigan and Welsh [73], concluding that the evaluation problem is #P-hard for almost
all pairs (g,7), see Section 2.5.3 for the precise result. For example, evaluating Zigng (G;y) is
#P-hard except when y € {0, £1,+i}, where evaluation can be performed in polynomial time.

This kind of dichotomy also applies to the Potts model, where a few more exceptions / easy

Page 16 of 212

Chapter 1. Introduction and contributions

points arise. Similar results exist for the graph homomorphism partition function, although the
reductions are significantly more convoluted. This led researchers to focus on real parameters
first [40], and it took a lot of work to fully resolve the complexity of evaluation on complex
parameters, see [27]. Further questions arise, such as if these hardness results hold for certain
relevant families of graphs, for instance, planar graphs [116], or for certain modifications of
the partition function, see, for example, [45]. When it comes to approximate counting, the
complexity map for these partition functions is, at the time of writing, not fully resolved. In

this thesis we make significant progress on the Ising and Potts model.

1.1.3 Constraint satisfaction problems, statistical mechanics and the random
k-SAT model

We finish this section by highlighting the connections between k-SAT and statistical mechanics,
which have been exploited several times in the specialised literature to obtain predictions about
phase transitions in satisfiability problems [94]. To introduce this connection, first we consider
the concept of constraint satisfaction problem. Let V = {vy,...,v,} denote a collection of
variables and let D = {D1, Ds, ..., D, } be the set of the respective domains. A constraint C' is a
pair (¢, p) where ¢ is a tuple of variables, called the constraint scope, and p is a relation on their
corresponding domains, called the constraint relation. A constraint satisfaction problem (CSP)
is a triple (V,D,C), where V and D are as above and C = {C1,Cy,...,Cy,} is set of constraints.
A solution to (V,D,C) is a mapping that assigns to each variable v; a value from D; so that
the mapping satisfies all constraints, that is, for each constraint C;, the image of the constraint
scope is a member of the constraint relation. For example, we can see the problem of finding a
proper g-colouring as a CSP; for a graph G = (V, E), let the domain of the variables be [¢] and
consider for each edge (u,v) € E the constraint {(i,7) : 4,5 € [q],i # j}. Then a g-colouring is a
solution of the CSP if and only if it is a proper g-colouring. Another obvious example is k-SAT,
where each constraint of the CSP is determined by a clause of the k-CNF formula.

We remark that the derivation of partition function given in (1.1) can be reproduced in the
setting of CSPs with a different definition of Hamiltonian. Let ® = (V,D,C) be a CSP. For an
assignment o of each variable to an element in its respective domain, which can be seen as a
tuple in H?Zl D;, we let Hg (o) be the number of constraints of ® that are not satisfied by o.

e~0H2(9) When & corresponds to

This gives rise to the partition function Z(®;6) = >_ o€l D;
the problem of finding a proper g-colouring of a graph G, we note that Z(®;6) coincides with the
partition function of the Potts model on G with change of variables y = exp(—#). On a different
note, the quantity Z(®;6) converges to the number of solutions of ® as 6 converges to co. As
a consequence, certain methods of statistical mechanics that were developed to analyse Gibbs
distributions and partition functions can be applied to gain information about the number of
solutions of a CSP and, in particular, the number of satisfying assignments of a k-CNF formula.
We will see an example of this in Chapter 4, where we use a version of the simulated annealing

method originated in statistical mechanics [18, 71] to approximate the number of satisfying

Page 17 of 212

Chapter 1. Introduction and contributions

assignments of a k-CNF & under certain conditions.

Methods and predictions from statistical mechanics have been particularly successful when
analysing the random k-SAT model, which has played a key role as foundational model in the
study of randomised algorithms. For integers k,n,m > 2, the random formula ® = ®(k,n,m) is
a k-CNF formula chosen uniformly at random from the set of formulae with n Boolean variables
and m clauses, where each clause has k literals (repetitions allowed). Here, we consider the
sparse regime where the density of the formula, & = m/n, is bounded by an absolute constant.
An important question is determining the probability that the random formula is satisfiable
as a function of its density (in the limit n — o0). Interestingly, for all sufficiently large k,
the probability that & is satisfiable drops abruptly from 1 to 0 when the density « crosses
a certain threshold ay (k). Recently there has been tremendous progress in establishing this
phase transition (which was originally predicted by the replica symmetric method of statistical
mechanics), concluding that a. (k) = 2log2 — $(1 4 log 2) 4 o5 (1) as k — oo [38, 34]. Despite
the good progress on pinning down this phase transition, finding satisfying assignments for
densities up to o, poses severe challenges. In fact, the best known algorithm [30] for finding a
satisfying assignment of a random formula ® succeeds up to densities (1 + ok(l))% log k, and
going beyond such densities is a major open problem with links to phase transitions [1].

From a probabilistic viewpoint, the analysis of the partition function of the random k-SAT
model (i.e. the number of satisfying assignments of the formula) depends on subtle properties of
the solution set 2 = Qg consisting of the satisfying assignments of ® [2, 32, 108, 95]. In this
direction, there has been substantial work on finding the so-called free energy of the model,
i.e., the asymptotic value of the quantity %E[log(l +192])]. Computing the k-SAT free energy
is a difficult problem which is still open (roughly, the difficulty comes from the asymmetry of
the model and the unbounded degrees), but there have been results for closely related models
including the permissive version of the model [32, 95, 35], the regular k-SAT model [36], and the
regular NAE-SAT model [99, 108]. Very recently, a formula for the free energy of the 2-SAT
model was given in [2]. In this thesis one of our goals is understanding the geometry of the space
of solutions of random k-CNF formulas with the aim of developing fast sampling algorithms
that lead to an efficient approximation of the partition function for densities below the threshold

o, (k). Before presenting our results, we introduce the concept of approximation schemes.

1.2 Fully polynomial approximation schemes in spin systems

In this section we briefly overview some of the most successful techniques to come up with
approximation algorithms for partition functions, which serves as a motivation for the work
presented in this thesis. First, let us define the notion of approximation that we use in
approximate counting. Let f be a function from {0,1}* to the positive real numbers. A
randomised approximation scheme for f is a probabilistic algorithm that takes as an input a
string « and a rational number ¢ € (0, 1), and produces as output a random variable Y such
that Ple™® <Y/f(x) < e°] > 3/4. The choice of 3/4 in this definition is only due to convenience

Page 18 of 212

Chapter 1. Introduction and contributions

— via a standard bootstrapping argument we can swap 3/4 by any § € (0,1). This definition of
approximation scheme can be extended to the case when f: {0,1}* — C by requiring instead
that, with probability at least 3/4, the output Y of the algorithm is a complex number with
Y = f(z)e* for some z € C with |z| < ¢, see for instance [16]. If this algorithm runs in
polynomial time in |z| and 1/e, we say that it is a fully polynomial randomised approximation
scheme (usually abbreviated as FPRAS). If, moreover, this algorithm is actually deterministic,
that is, it always computes y € C with y = f(x)e* for some z € C with |z| < e, we call it fully
polynomial-time approximation scheme (abbreviated as FPTAS). A reader that is not familiar
with approximate counting may be surprised that multiplicative approximations are chosen
when defining approximation schemes. We remark that this definition arises naturally in the
area both from an algorithmic perspective — Monte Carlo methods naturally yield multiplicative
approximations — and a hardness perspective — this notion of approximability leads to a rich
hierarchy of computational classes of counting problems via approximation preserving reductions,
see [39]. Moreover, it is worth noting that we can recover an evaluation of the partition function
(even on non-real parameters) from an accurate enough additive approximation, thus making
additive approximations not very interesting from a complexity point of view — in fact we will
exploit this idea in Chapter 2 of this thesis in some of our reductions.

One of the most relevant FPRAS for partition functions is that of Jerrum and Sinclair on the
Ising model when the edge interaction y is real, y > 1 and there is no external field [76]. This
setting is known as the ferromagnetic Ising model. The case when y € (0,1) is known as the
antiferromagnetic Ising model, and it is not difficult to show that approximating the partition
function on these edge interactions is NP-hard [61]. Thus, the edge interaction y presents a
computational phase transition at y = 1. A more difficult problem is that of showing #P-hardness
of approximation of the partition function, and we address this problem in Chapter 2.

The algorithm of Jerrum and Sinclair is a Monte Carlo Markov Chain algorithm whose
analysis is based on the analysis of the conductance of a certain Markov chain. At the time of
writing this thesis we do not know other FPRAS that succeeds at approximating the partition
function of the Potts model on any input graph G (other than exact evaluation algorithms at
exceptional /easy points). A more promising field of research is that of finding an FPRAS for a

partition function when the graphs considered have bounded degree.

1.2.1 Phase transitions on bounded-degree graphs

The study of spin systems on bounded degree graphs has lead to the discovery of several
connections between statistical mechanics and approximate counting, and it has motivated
the development of several novel techniques to come up with fast approximation schemes. To
illustrate this connection, let us focus on the Ising model, keeping in mind that the ideas
mentioned here apply to other two-spin systems such as the hard-core model. Let A > 3 be
an integer. We are interested in the problem of approximating Zine(G; 3) when the input

graph G has maximum degree at most A. In his seminal work on the independent set polynomial,

Page 19 of 212

Chapter 1. Introduction and contributions

Weitz discovered a connection between the physical behaviour of 2-spin systems on the infinite
(A — 1)-regular tree [120], which had already been the focus of previous studies from the point
of view of statistical mechanics, and the complexity of approximating the partition function on
graphs with maximum degree at most A. Before introducing these ideas, let us briefly describe
the concept of Gibb measure. Roughly speaking, a Gibbs measure is a probability measure p over
all configurations of an infinite tree such that the marginal of p on any finite subtree T' (possibly
with some vertices pinned to spins) agrees with the Gibbs distribution of the Ising model on 7.
The infinite (A — 1)-regular tree experiences a physical phase transition at . = (A — 2)/A: for
edge interactions in (S, 1) there is a unique Gibbs measure u, whereas for edges interactions
in (0, 8.) more than one Gibbs measure arise. This phase transition is related to the number
of macroscopic equilibrium of the spin system, see [119] for details. Uniqueness of the Gibbs
measure p occurs when there is decay of correlations in (A — 1)-regular trees, which essentially
means that the correlation or influence of a vertex v on the marginal of the root r, defined
as u(r — +Jv — +) — pu(r — +|v — —), where + and — are the two possible spins, decays
exponentially on the distance from the root to the vertex v (even if some vertices of the tree are
pinned to certain spins). Conversely, in the non-uniqueness regime, decay of correlations does
not hold and a boundary condition on a set of vertices can continue to have an effect on the
marginals of the root, even as the distance tends to infinity.

A key idea in the argument of Weitz is noting that correlations between two vertices r and v
on a finite graph G corresponds to correlations in the tree of self-avoiding walk of G starting at
r, thus, linking the partition function of the Ising model on graphs with maximum degree A
to Gibbs measures of the inifite (A — 1)-regular tree. With this connection in place, one can
exploit decay of correlations to approximate marginals of the Gibbs distribution of the Ising
model on G, see [120] for details. As a consequence, when 8 > (A — 2)/A there is an FPRAS
for Ziging(—; B) on graphs with maximum degree at most A [76, 107]. On the other hand, when
0 < < (A—-2)/A, there is no FPRAS for Zising(—; 3) on graphs with maximum degree at most
A unless NP = RP [52]. Thus, 5. = (A — 2)/A also behaves as a computational phase transition
for the Ising model. One issue with Weitz algorithm is that even if the running time is polynomial
in n, the exponent of the polynomial is O(log A). Very recently there has been a resurgence of
the Markov Chain Monte Carlo method based on spectral independence that leads to almost
linear sampling algorithms for spin systems in the uniqueness region (on bounded-degree graphs),
including the Ising model [7, 28, 19, 17]. Applications of spectral independence require us to
show that certain sums of correlations/influences are bounded. These applications usually rely
on decay of correlations ideas to prove this bound. The obtained sampling results can be then
used to obtain to approximation schemes via self-reducibility arguments [77]. In this thesis, we
exploit spectral independence arguments in the context of the random k-SAT model, obtaining
the first application of spectral independence that holds even when decay of correlation fails. We
will come back to our spectral independence results in Section 1.5, where we give more details
about the ideas behind this technique.

Page 20 of 212

Chapter 1. Introduction and contributions

1.2.2 Why complex numbers?

Due to the difficulty of determining the complexity of the approximation problem, most approxi-
mate counting publications on these partition functions restrict their attention to real parameters.
However, given their origin in statistical mechanics, partition functions were studied on non-real
parameters since the very beginning. In fact, the framework of viewing partition functions
as polynomials in the complex plane of the underlying parameters has been well-explored in
statistical physics [121, 69, 85, 122, 12]. Indeed, as pointed out in [109], the possible points of
physical phase transitions are precisely the real limit points of complex zeros of the partition
function, and, thus, complex zeroes of partition functions have long been studied in the context
of statistical mechanics [122]. This problem has recently gained traction in computer science
in the context of approximate counting. On the positive side, zero-free regions in the complex
plane translate into efficient algorithms for approximating the partition function [8, 101] and this
scheme has lead to a broad range of new algorithms even for positive real values of the underlying
parameters [88, 103, 87, 104, 10, 62, 63, 65]. On the negative side, the presence of zeros poses a
barrier to this approach and, in fact, it has sometimes been demonstrated that zeros mark the
onset of computational hardness for the approximability of the partition function [59, 55, 16, 15].
A key approach in all of these applications, and one that we will also develop in this thesis, is
the connection to complex dynamics, we give more details in Section 1.4 of this introduction.
Coming back to approximation schemes based on zero-free regions, as noted by Barvinok
[8], one can exploit the analytic properties of the partition function to obtain an analytic
approximation of log Z via its Taylor series, which in turns yields a multiplicative approximation
of the partition function. This tool turns out to be particularly powerful in the context of
bounded-degree graphs, where we can compute the first O(logn) coefficients of the Taylor series
of log Z in polynomial time for a multitude of partition functions, see [101, 102], including the
Ising model among others. We exploit these promising ideas in Chapter 3, where we give a
novel zero-free region for the Ising model on bounded degree graphs (see Section 1.4 of this
introduction for more details). With this background and motivation in mind, we are ready to

describe the main results of this thesis.

1.3 Approximating the partition function of the Potts model

In Chapter 2 we study the complexity of approximating the partition function of the Potts
model and the Tutte polynomial on planar graphs as the parameter y ranges in the complex

plane. In this section we describe previous work as well as our novel results on this question.

1.3.1 Overview of previous work

Traditionally, this problem has been mainly considered in the case where y is a positive real,
however as explained in Section 1.2, recent developments have shown that for various models,

including the Ising and Potts models, there is a close interplay between the location of zeros of

Page 21 of 212

Chapter 1. Introduction and contributions

the partition function in the complex plane and the approximability of the problem, even for
positive real values of y.

The only known hardness of approximation result that applies for general values y in the
complex plane is by Goldberg and Guo [55], which addresses the case ¢ = 2 (the Ising model) on
non-real edge interactions. For general (non-planar) graphs and non-real y, Goldberg and Guo
show #P-hardness on the non-real unit circle (|y| = 1) with y # =+, and establish NP-hardness
elsewhere. The case ¢ > 3 is largely open apart from the case when y is real which has been
studied extensively even for planar graphs [76, 57, 56, 59, 84, 55]. We will review all these results

more precisely in the next section, where we also state our main theorems.

1.3.2 Results

In this thesis, we completely classify the complexity of approximating Zpus(G; q,y) for ¢ > 2
and non-real y, even on planar graphs G; in fact, our results also classify the complexity of
approximating the Tutte polynomial on planar graphs for reals ¢ > 2 and non-real . Along the
way, we also answer a question for the Jones polynomial raised by Bordewich, Freedman, Lovasz,
and Welsh [20].

To formally state our results, we define the computational problems we consider. Let K and
p be real algebraic numbers with K > 1 and p € (0,7/2). We investigate the complexity of the

following problems for any integer ¢ with ¢ > 2 and any algebraic number g.!

Name: FACTOR-K-NORMPOTTS(q,y)

Instance: A (multi)graph G.

Output: If Zpys(G;q,y) = 0, the algorithm may output any rational number. Otherwise, it
must output a rational number N such that N/K < |Zpous(G;q,y)| < KN.

Name: DISTANCE-p-ARGPOTTS(q,y)

Instance: A (multi)graph G.

Output: If Zpys(G; q,y) = 0, the algorithm may output any rational number. Otherwise, it
must output a rational A such that, for some a € arg(Zpows(G;q,7)), |A —a| < p .

A well-known fact is that the difficulty of the problems FACTOR-K-NORMPOTTS(q,) and
DISTANCE-p-ARGPOTTS(q,y) does not depend on the constants K > 1 and p € (0,7/2). This
can be proved using standard powering techniques (see [55, Lemma 11] for a proof when ¢ = 2).
In fact, the complexity of FACTOR-K-NORMPOTTS(q,y) is the same even for K = 27 for any
constant € > 0 where n is the size of the input.

In the special case that ¢ equals 2, we omit the argument ¢ and write ISING instead of
PoTTS in the name of the problem. Similarly, when the input of the problems is restricted
to planar graphs, we write PLANARPOTTS instead of POTTs. We also consider the problems

'For z € C\{0}, we denote by |z| the norm of z, by Arg(z) € [0,27) the principal argument of z and by arg(z)
the set {Arg(z) + 27j : j € Z} of all the arguments of z, so that for any a € arg(z) we have z = |z| exp(ia).

Page 22 of 212

Chapter 1. Introduction and contributions

FACTOR-K-NORMTUTTE(q,vy) and DISTANCE-p-ARGTUTTE(q,7y) for the Tutte polynomial
when ¢, are algebraic numbers. Note also that, when ¢, are real, the latter problem is
equivalent to finding the sign of the Tutte polynomial, and we sometimes write SIGNTUTTE(q, 7)
(and SIGNPLANARTUTTE(q,) for the planar version of the problem).

Our first and main result of Chapter 2 is a full resolution of the complexity of approximating

Zpotts(G; q,y) for ¢ > 3 and non-real y. More precisely, we show the following.

Theorem 1.1. Let ¢ > 3 be an integer, y € C\R be an algebraic number, and K > 1. Then, the
problems FACTOR-K-NORMPLANARPOTTS(q,y) and DISTANCE-7/3- ARGPLANARPOTTS(q, y)
are #P-hard, unless g =3 and y € {ezﬂi/3, 64’”/3} when both problems can be solved exactly in

polynomial time.

We remark that, for real y > 0, the complexity of approximating Zputts(G; q,y) on planar
graphs is not fully known, though on general graphs the problem is #BIS-hard [56] and NP-hard
for y € (0,1) [57], for all ¢ > 3. For real y < 0, the problem is NP-hard on general graphs when
y € (—00,1—¢] for all ¢ > 3 ([59])? and #P-hard on planar graphs when y € (1 —¢,0) and ¢ > 5
([84], see also [58]). Our techniques for proving Theorem 1.1 allow us to resolve the remaining
cases ¢ = 3,4 for y € (1 — ¢,0) on planar graphs, as a special case of the following theorem that

applies for general ¢ > 3. This is our second main result of Chapter 2.

Theorem 1.2. Let ¢ > 3 be an integer, y € (—q + 1,0) be a real algebraic number, and K > 1.
Then FACTOR-K-NORMPLANARPOTTS(q,y) and DISTANCE-7/3-ARGPLANARPOTTS(q,y) are
#P-hard, unless (q,y) = (4,—1) when both problems can be solved exactly in polynomial time.

Our third main contribution is a full classification of the range of the parameters where
approximating the partition function of the Ising model is #P-hard. On planar graphs G,
Zising (G y) can be computed in polynomial time for all y, see, for instance, [116]. For general
(non-planar) graphs and non-real y, our next result shows that the NP-hardness results of [55]

can be elevated to #P-hardness.

Theorem 1.3. Lety € C\R be an algebraic number, and K > 1. Then, FACTOR-K-NORMISING(y)
and DISTANCE-7/3-ARGISING(y) are #P-hard, unless y = +i when both problems can be solved

exactly in polynomial time.

For real y, we remark that the problems of approximating Zising(G;y) and determining
its sign (when non-trivial) are well-understood:® the problem is FPRASable for y > 1, NP-
hard for y € (0,1) ([76]), #P-hard for y € (—1,0) [55, 59], and equivalent to approximating

*Note, for y € (—00,1 — q) U [0,00), #P-hardness is impossible (assuming NP # #P): finding the sign
of Zpows(G;q,y) is easy, even on non-planar graphs ([59]), and Zpows(G;q,y) can be approximated using an
NP-oracle. For y = 1 — ¢, the same applies when g > 6; the cases q € {3,4,5} are not fully resolved though [59]
shows that ¢ = 3,4 are NP-hard, whereas ¢ = 5 should be easy unless Tutte’s 5-flow conjecture is false [121,
Section 3.5].

3 Analogously to Footnote 2, for y € (—oo,—1) U (0,1) #P-hardness is unlikely since the problem can be

approximated with an NP-oracle.

Page 23 of 212

Chapter 1. Introduction and contributions

#PERFECTMATCHINGS for y < —1 [57]. For y = 0, £1, Z1ing(G;y) can be computed exactly in

polynomial time.

1.3.3 Brief proof outline

In previous #P-hardness results for approximating the Tutte polynomial, the main technique was
to reduce the problem of counting the number of (s, t)-cuts with minimum possible cardinality
(denoted #MINIMUMCARDINALITY (s,t)-CUT, see [59, 55] for a definition) to the problem of
approximating Zmute(G; ¢,7y) using an elaborate binary search based on suitable oracle calls.
Key to these oracle calls are gadget constructions which are mainly based on planar graphs
which “implement” points (¢’,~’); this means that, by pasting the gadgets appropriately onto the
input graph G, the computation of Zyytte(+; ¢',7’) reduces to the computation of Zmytte(-; ¢, 7y)-
Much of the work in [59, 55], and for us as well, is understanding what values (¢’,+’) can be
implemented starting from (g,).

For planar graphs, while the binary-search technique from [55] is still useful, we have to use a
different overall reduction scheme since the problem #MINIMUMCARDINALITY (s,t)-CUT is not
#P-hard when the input is restricted to planar graphs [106]. To obtain our #P-hardness results
our plan instead is to reduce the problem of exactly evaluating the Tutte polynomial for some
appropriately selected parameters ¢’,’ to the problem of computing its sign and the problem
of approximately evaluating it at parameters ¢,; note, this gives us the freedom to use any
parameters ¢’,7 we wish as long as the corresponding exact problem is #P-hard. Then, much

of the work consists of understanding what values (¢’,~’) can be *

¢ approximately implemented”
starting from (g,), with the added difficulty that « here may be non-real. We conclude that for
g > 2 and ~ non-real we can indeed implement an arbitrarily close approximation to any (g,%)
for any 4 € R. The gadgets constructed in our results are planar; we give more details about

these constructions in an extended proof outline in Section 2.1.

1.3.3.1 Consequences of our techniques for the Tutte/Jones polynomials

While our main results are on the Ising/Potts models, in order to prove them it is convenient
to work in the “Tutte world”; this simplifies the proofs and has also the benefit of allowing
us to generalise our results to non-integer q. The following result generalises Theorem 1.1 to

non-integer q > 2.

Theorem 1.4. Let ¢ > 2 be a real, v € C\R be an algebraic number, and K > 1. Then,
FACTOR-K-NORMPLANARTUTTE(q,y) and DISTANCE-7/3-ARGPLANARTUTTE(q, v) are #P-
hard, unless ¢ = 3 and v+ 1 € {62’”/3,64”/3} when both problems can be solved exactly in

polynomial time.

After the results in this section were made public, our Theorem 1.4 has been reproved in [14],
extending the range of ¢ and y where it applies. More precisely, [14, Corollary 13] shows that
FACTOR-K-NORMPLANARTUTTE(q,y — 1) and DISTANCE-7/3-ARGPLANARTUTTE(q,y — 1)

Page 24 of 212

Chapter 1. Introduction and contributions

are #P-hard for all pairs (¢,y) € C?\ R? with ¢ € {0,1,2} such that one of the following

conditions hold:
L[yl >1;
2. |1 —q| > 1 or Re(q) > 3/2, except when y = 1 or (¢,y) € {(3,€27/3), (3, e*™/3)}.

Note that the exceptions y = 1 and (q,y) € {(3,e2™/3), (3,e*™/3)} given in Ttem 2 are included
in our Theorem 1.4 as the Tutte polynomial Zrytte(+; ¢,y — 1) can be evaluated in polynomial
time at these points. The proof given in [14] uses our reduction from exact evaluation of the
Tutte polynomial to approximating the norm or the argument of the partition function. The
main difference between both works is the techniques used to develop the implementation results;
[14] exploits the connection between complex dynamics and partition functions that we present in
Chapter 3 whereas our proof of Theorem 1.4 carefully constructs these implementations exploiting
the fact that ¢ > 2. In particular, in the proofs of [14] the authors apply the constructions of
series-parallel graphs presented in Section 3.6.3 with some modifications.

Our techniques can further be used to elevate previous NP-hardness results of [59, 57] in the
Tutte plane to #P-hardness for planar graphs, and answer a question on the Jones polynomial
at roots of unity, raised by Bordewich et al. in [20]. Regarding the latter application, in [20]
the authors show that polynomial-sized quantum circuits can be simulated by determining
the sign of the real part of the Jones polynomial of a link at certain roots of unity and, thus,
wondered about the hardness of the latter problem. We show that determining this sign is

actually #P-hard. A more detailed discussion can be found in Section 2.6.

1.4 Approximating the partition funtion of the Ising model on

bounded-degree graphs

In Chapter 3 we present further work on the complexity of approximating the partition function
of the Ising model, this time in terms of the interaction between the edge interaction (denoted [
in this section following standard notation for the Ising model) and a parameter A > 3 which
is an upper bound on the maximum degree of the input graph G. Recall that for arbitrary
graphs (A = o0), we have shown that the approximation problem is #P-hard except at the
easy points 5 € {0,+1,+i} (Theorem 1.3). As we have mentioned in Section 1.2, the situation
changes for bounded-degree graphs, where approximation schemes based on Barvinok method
on zero-free regions can be found for edge interactions close to § = 1. Motivated by these
recent techniques and the powerful connection between complex dynamics and 2-spin systems
on complex parameters developed in [16], we explore the complexity picture for graphs with

maximum degree A.

Page 25 of 212

Chapter 1. Introduction and contributions

1.4.1 Overview of previous work

Before describing our results, we briefly describe existing work on the problem of approximating
the partition function of the Ising model. Let A > 3 be an integer. When the input graph G has
maximum degree at most A, this problem has already been well studied in the case where (5 is a
positive real. As described in Section 1.2, when 8 > (A—2)/A there is an FPRAS for Ziging(—; 3)
on graphs with maximum degree at most A [76, 107]. When 0 < 5 < (A —2)/A, there is no
FPRAS for Ziging(—;) on graphs with maximum degree at most A unless NP = RP [52].

The complexity of approximation is mostly not understood when § is complex. Prior to
this work, there was no inapproximability result for any non-real edge interactions. Indeed, the
reductions developed in Chapter 2 do not hold when the set of graphs is restricted to those
having maximum degree at most A; the main issue with these reductions is that most of the
gadgets used blow up the degree of the vertices of the graph. Therefore, a different approach is
needed. Regarding tractability results, zero-free regions of the partition function of the Ising
model have been the focus of recent publications [9, 86, 89]. Nonetheless, these regions turn out
to be far from optimal as we will see in Section 3.3.2 (see Figure 1.1 in this introduction for the
case A = 3).

1.4.2 Results

In this thesis we shed some light on this approximability problem by significantly extending the
known zero-free regions (leading to approximation schemes) and by giving an inapproximability
result that covers most of the complex plane. Our zero-free region for the Ising model is stated

in Theorem 1.5.

Theorem 1.5. Let A be an integer with A > 3. Let G = (V, E) be a graph of mazimum degree
at most A. Let en = tan(m/(4(A —1))) € (0,1). Then Zising(G;3) # 0 for all € C with
1B =1|/|8+1| < ea.

Theorem 1.5 can be applied in conjunction with the algorithms of Barvinok, and Patel and
Regts [8, 101] to obtain an FPTAS for Ziging(—; 3), giving the following corollary. Note that our
approximability results are stated for algebraic edge interactions, as we did in Section 1.3, since

they allow for efficient computation, see Section 2.2 and the references therein for more details.

Corollary 1.6. Let A be an integer with A > 3. Let B be an algebraic number such that
|8 —1|/|8+ 1| < ea, where ea = tan(w/(4(A —1))). Then there is an algorithm that, on inputs
a graph G with mazimum degree at most A and a rational € > 0, runs in time poly(size(G), 1/¢)

and outputs Z = Zising (G B)€* for some complex number z with |z| < e.

Page 26 of 212

Chapter 1. Introduction and contributions

Im(53)

—1

Figure 1.1: Zero-free regions for the partition function of the Ising models on graphs with maximum
degree A = 3. The following four regions have been plotted:
e The large disk corresponds to the region given in Theorem 1.5.
e The small dotted disk corresponds to |5 — 1|/|8 + 1] < da, where da is as in (3.8), and it contains the
regions stated in Corollaries 3.20 and 3.21 due to Barvinok, Mann and Bremner [8, 89].

The diamond-shaped region corresponds to the zero-free region given in [9] by Barvinok and Barvinok
(see Theorem 3.24 for the statement).

The segment joining (A —2)/A and A/(A — 2) corresponds to the region given in [86] by Liu, Sinclair
and Srivastava (see Theorem 3.23 for the statement).

Theorem 1.5 significantly extends the zero-free regions given in [9, 8, 86, 89]. The case
A = 3 is depicted in Figure 1.1. In fact, the zero-free regions of Barvinok, and Mann and
Bremner [8, 89] are contained in our result for any A > 3, see Section 3.3.2 for a detailed
description of these zero-free regions. In [89] the authors also discuss how an FPRAS for the
partition function of the Ising model on bounded-degree graphs can be used to strongly simulate
certain classes of IQP circuits. We note that their quantum simulation results are also extended
as a consequence of Theorem 1.5.

When it comes to hardness results on complex edge interactions, we are not aware of any
hardness result in the literature that covers non-real edge interactions. Our hardness result is given
in Theorem 1.7. First, let us introduce some notation. We consider the problem of multiplicatively
approximating the norm of Zine(G; 3) and the problem of additively approximating the principal
argument of Ziging(G;) for a fixed algebraic number 3. These computational problems can be
formally stated as follows. Let K > 1 and p € (0,7/2) be real numbers.

Name: ISINGNORM(, A, K)

Instance: A (multi)graph G with maximum degree at most A.

Output: If Zyne (G; 8) = 0, then the algorithm may output any rational number. Otherwise,
it must output a rational number N such that N/K < | Z1sing (G B)| < KN.

Page 27 of 212

Chapter 1. Introduction and contributions

Name: ISINGARG(S, A, p)

Instance: A (multi)graph G with maximum degree A.

Output: If Zigng(G; B) = 0, then the algorithm may output any rational number. Otherwise,
it must output a rational number A such that for some a € arg(Zising(G; 8)) we have
la — Al < p.

It is important to note that each choice of the parameters g, A, K, p gives a different
computational problem. As noted in Section 1.3, by a standard powering argument of the
partition function, the choice of K and p does not change the hardness of the problem (as long
as K > 1 and p € (0,7/2)), see [55, Lemma 3.2].

Theorem 1.7. Let A be an integer with A > 3 and let 5 € C be an algebraic number such that
B¢ RU{i,—i} and |B—1|/|8+1] > 1/v/A — 1. Then the problems ISINGNORM(3, A, 1.01) and
ISINGARG(S, A, w/3) are #P-hard.

L4
.0

-~
.O'.
=
O

—_
o
“‘-llll...

[
:‘.‘

Figure 1.2: The complexity of approximating the partition function of the Ising model on graphs with
maximum degree A =3 and § € C\ R.
e Theorem 1.7: when |3 — 1|/|8 + 1] > 1/V/A—T1 and B8 ¢ {i,—i}, ISINGNORM(B,A,1.01) and
ISINGARG(S, A, 7/3) are #P-hard (region outside the large dotted red circle).
e Corollary 3.44: there are points 8y € C\ R with |8y — 1|/|80 + 1| < 1/v/A =1 such that
Zising (G; Bo) = 0 for some graph G with maximum degree A. The problems ISINGNORM(Sp, A, 1.01) and
ISINGARG(Sy, A, 7/3) are #P-hard.
e Theorem 1.5: there is an FPTAS for Ziging(—; 8) when |3 —1|/|3 + 1| < tan(w/(4A — 4)) (region inside
the small green circle).

Theorem 3.23 by Liu, Sinclair and Srivastava [86]: the interval ((A —2)/A, A/(A —2)) is contained in
an open zero-free region (thick segment on the real line), so there is an FPTAS for Ziging(—; 5).
o The points 0,1, —1,7 and —i are easy points of the Ising model: the partition function can be evaluated

at these points in polynomial time in the size of the input graph [73].

Corollary 1.6 and Theorem 1.7 leave the complexity of the problems ISINGNORM(S, A, 1.01)

Page 28 of 212

Chapter 1. Introduction and contributions

and ISINGARG(f, A, 7/3) unaddressed for those edge interactions 3 ¢ R such that

T < 6—1 < 1
4(A—1))_ B+1‘_ A-1

tan ((1.6)

It turns out that the partition function has zeros inside the region given by (1.6) (see Corol-
lary 3.44). Moreover, we show that if there is a “nice” graph G such that Zine(G;) = 0,
then ISINGNORM(f, A, 1.01) and ISINGARG(f, A, 7/3) are #P-hard, see Lemma 3.43 and Corol-
lary 3.45. This allows us to find points 8 as in (1.6) such that the approximation problems are
#P-hard, as depicted in Figure 1.2.

1.4.3 Brief proof outline

In the proof of Theorem 1.5 we use the SAW tree construction of Godsil and Weitz [54, 120] to
reduce the study of zero-free regions of partition functions on graphs to the study of zero-free
regions of partition functions on trees (see Section 3.2.1 for details). The partition function of
a two-spin system on a tree admits a recurrence expression that can be studied to find such
zero-free regions. This approach has been successfully applied in the literature for the Ising
model and other partition functions [86, 13, 16]. In our work we exploit the properties of the
Mobius function hg(z) = (82 +1)/(8 + z) appearing in this recurrence for the Ising model. This

Mobius function satisfies the equality

ha(z) =1 _ (B-1)(z 1)
he(z)+ 1 (B DG+ 1)

which neatly relates properties of (5 — 1)/(8 + 1) to properties of the partition function of the
Ising model on trees, and greatly simplifies the derivation of the zero-free region of Theorem 1.5.

In order to obtain our inapproximability results, we construct graphs H with maximum
degree at most A and two distinguished vertices s,t with degree 1 such that substituting an
edge in the host graph with (H,s,t) has the effect of altering the edge interaction 3 of the
original edge to a new edge interaction §’. In this case, we say that H (8, A)-implements ', see
Section 3.2.3 for a formal definition. As explained in Section 1.3, implementations have played
an important role in proofs of hardness of evaluating and approximating partition functions,
and they are the main tool to reduce exact computation to approximate computation via a
binary search [15, 59]. Here we take advantage of our results developed in Chapter 2 to reduce
approximate computation of the partition function to exact computation. Then we exploit
arguments from complex dynamics to (3, A)-implement approximations of any complex edge
interaction. The key idea is coming up with a recurrent construction, so that starting at an
edge interaction z, we can implement g(zAfl) for some Mobius map ¢g. Then we can analyse
which points we can reach by iteratively applying g(zAfl). The technical details are quite
convoluted as we can not afford the size of our gadgets to blow up, we refer to the full proof
outline presented in Section 3.1 for more details. After we made this work public, our results

on the connection between complex dynamics and implementations have been applied in the

Page 29 of 212

Chapter 1. Introduction and contributions

context of the Tutte and Chromatic polynomials in [14], where the authors analyse the Mobius
map fq(z) =14 ¢/(z — 1) and include several improvements to our approach that allow them to
conclude hardness for of approximation for planar graphs (maximum degree is not bounded)
for a large family of parameters of the Tutte polynomial, improving Theorem 1.4 of this thesis
significantly as a consequence (see the paragraph after Theorem 1.4 for a statement of their

result).

1.5 Sampling satisfying assignments from the random k-SAT

model

In Chapter 4 we study the random k-SAT model, which we have introduced in Section 1.1.3 from
the point of view of statistical mechanics. We are motivated by the increasing interest in the
computational problem of sampling satisfying assignments of a k-CNF formula @ uniformly at
random and the recent progress in the spectral independence framework to prove fast mixing of
certain Markov chains. Sampling is closely connected to the problem of estimating the number
of satisfying assignments of ®, which corresponds to the partition function of the model, see

Section 1.1.3, and we will delve into this connection in this section.

1.5.1 Overview of previous work

Regarding the algorithmic problem of sampling satisfying assignments uniformly at random,
in the random k-SAT model progress has been slower relative to other well-studied models on
random graphs (such as k-colourings or independent sets). One of the main reasons for this is
that the usual distribution properties that are typically used to obtain fast algorithms (such as
correlation decay and spatial mixing) fail to hold for densities as low as a = 0x(1) [95]. These
issues are in fact present already in the bounded-degree k-SAT setting, where the formulae are
worst-case but every variable is constrained to have a bounded number of occurrences. For
random formulae, these issues are further aggravated by the fact that the degrees of a linear
number of variables are unbounded. Very recently, [49] gave an approximate counting algorithm
(FPTAS) for the number of satisfying assignments of ® when k is large enough and a < 2/300
(where < hides a polynomial factor in 1/k). This algorithm elevates Moitra’s counting method
for bounded-degree k-SAT [93] to the random formula setting, and is the first polynomial-time
approximate-counting algorithm to achieve an exponential-in-£ bound on . However, its running
time is n®P(©*)) hecause the algorithm repeatedly has to enumerate local structures (including
solving LPs as a subroutine), which does not scale well with k. Hence, the problem of finding a
fast algorithm for sampling the satisfying assignments in the random k-SAT model has remained

open.

Page 30 of 212

Chapter 1. Introduction and contributions

1.5.2 Results

In this work we give a fast algorithm that in time n'to(1) approximately samples satisfying
assignments of a random k-SAT formula of density o < 29039 within arbitrarily small polynomial
error. Our work also delves into the connections between the solution space geometry of k-CNF
® and algorithms for efficiently sampling from the solutions of ®.

To formally state our main result, we say that an event £ regarding the choice of the random
formula ® holds with high probability (abbreviated w.h.p.) if Pr(£) =1 — o(1) as n — oo, see
Section 1.1.3 for the definition of random formula used in this probability distribution. The
total variation distance between two probability distributions p and v over the same space 2 is
given by 3 >, olp(z) — v(z)| and is denoted by drv (g, v). Our main result can now be stated

as follows.

Theorem 1.8. For any real 6 € (0,1), there is ko > 3 with ko = O(log(1/0)) such that, for any
integers k > ko and & > 1, and for any positive real o < 20939 the following holds.

There is an efficient algorithm to sample from the satisfying assignments of a random k-CNF
formula ® = ®(k,n, |an]) within n~¢ total variation distance of the uniform distribution. The

1+€)

algorithm runs in time O(n , and succeeds w.h.p. over the choice of ®.

Using standard techniques from the literature, this O(n'*?) uniform sampling algorithm can
be used to obtain a randomised approximation scheme for counting satisfying assignments of @
in time O(n?*? /&%), where ¢ is the multiplicative error, see [43, Section 7] and Remark 4.51 for
details.

1.5.3 Brief proof outline

A unifying theme of previous approaches to counting and sampling CSP solutions is a tool called
marking, first introduced in [93], which finds a set of “marked” variables such that the set of
satisfying assignments projected on these variables is connected. Marking is also an essential
step in the developing of our sampling algorithm. Our algorithm first runs a Markov chain to
sample assignments of a judiciously-chosen subset of marked variables of ® (from the relevant
marginal distribution), and subsequently extending this random assignment to all the variables.
This has the advantage that it avoids the enumeration of local structures, and in fact achieves
a nearly-linear running time. We give a high-level overview of the techniques developed in
our proofs in Section 4.1. Roughly, our Markov chain is a uniform-block Glauber dynamics
which, interestingly, mixes quickly despite the presence of high-degree variables in the random
formula. The main point of departure from similar approaches that have been applied to the
bounded-degree setting is that we completely circumvent sophisticated coupling arguments that
have been used there and which are unfortunately severely constricted by the unbounded degrees
in our setting (and made inapplicable). Instead, our main technical contribution is to show that
the stationary distribution of our chain is (c¢* logn)-spectrally independent for some constant

c € (0,1), allowing us to apply recently-developed tools in the analysis of Markov chains. Unlike

Page 31 of 212

Chapter 1. Introduction and contributions

most applications of spectral independence, our proof does not rely on correlation decay (which,
as we mentioned, fails to hold for densities exponential in k). We show our spectral-independence
bounds by relating the probabilistic properties of the solution space with the structure of the
formula using coupling techniques, so that we can exploit local sparsity properties of random

k-SAT. We refer to Section 4.1 for an extended proof outline.

1.5.4 The geometry of the space of satisfying assignments

Our results can be applied to analyse the solution space geometry of random k-CNF formulae
for the densities under consideration. Many involved heuristics in statistical physics make
predictions about the geometry of the solution space of a random k-CNF instance, often
depicted in diagrams like Figure 1.3. Some phases and transitions in this diagram are precisely
understood. For example, as mentioned above, the satisfiability threshold (pictured in the
transition to the rightmost image in Figure 1.3) was determined by [38]. Another transition of
interest is the clustering threshold, above which the solution space of a random k-CNF shatters
into exponentially many linearly separated connected components, each of which contains an
exponentially small fraction of the satisfying assignments of the formula, as rigorously understood
in [33, 3, 90, 96].

Figure 1.3: Heuristic phase diagrams such as above [83] depict the predicted evolution of the structure of
the solution space of a random k-CNF as the density a of the formula increases from left to right. We

primarily study the leftmost regime.

In the lower-density regime, the solution space geometry of random k-CNFs appears poorly
understood. It is widely believed that beneath a critical clause density, the solution space of a
random k-CNF is “connected.” However, from the literature, it is not even clear what “connected”
means. Connectivity is sometimes used in the statistical physics literature as a characterization
of the entropy or energy profile of the solution space of a random k-CNF formula as in [124]. In
such settings, connectivity is often characterized by an absence of clustering behavior, leaving
somewhat of a mystery as to the graphical properties of the solution space of a low density
random k-CNF.

Conjectures about connectivity take different forms, and different notions of what connectivity
might mean are articulated in [124, 83, 33]. The most common precise notion of connectivity is
with respect to Hamming distance, i.e. understanding connectivity properties of the graph of
solutions to a random k-CNF, where solutions are f(n)-connected if their Hamming distance

is at most f(n). At lower densities, random k-CNFs can still have isolated solutions far in

Page 32 of 212

Chapter 1. Introduction and contributions

Hamming distance from other satisfying assignments. However, the prevailing belief is that
below some threshold, the overwhelming majority of solutions to a random k-CNF lie in a giant
component that is o(n)-connected.

Much more is known about related notions and local versions of connectivity, like looseness,
which characterises how rigid a particular satisfying assignment is. Roughly speaking, a satisfying
assignment to a formula is f(n)-loose if any variable can be flipped to yield a new satisfying
assignment by changing at most f(n) additional variable assignments. In [1], the authors showed
o(n)-looseness holds in the connectivity regime for related, simpler random models, random
g-coloring, and hypergraph 2-coloring, conjecturing that o(n)-looseness holds for random k-CNF
instances below the clustering threshold. This conjecture was partially resolved in [33], where
in an analysis of the decimation process for random k-SAT, the authors observed that with
high probability over formulae and satisfying assignments, at least 99% of the variables were
O(logn)-loose. Looseness, however, is a local notion, not a global one. The set of elements in
{0,1}" that have Hamming weight at least 2n/3 or at most n/3 is 1-loose, but Q(n)-connected.

We will concern ourselves with the following precise notion of connectivity.

Definition 1.9 (D-Connectivity). Let ® = (V,C) be a k-CNF formula. For any assignment
A:V — {F, T}, let ||Al|1 be the number of variables A assigns to be T. Throughout, we implicitly
consider variable assignments in F3, so || - ||1 encodes Hamming weight and ||[A1 — Asl|1 encodes
Hamming distance.

We say a sequence of satisfying assignments (g <> (1 <> -+ < (of ® is a D-path if
16 — Gi—1ll1 < D for each i € [t]. We say two satisfying assignments of ®, A, A" € Q, are
D-connected if there exists a D-path connecting A and A’ (that is, (o = A and {; = N\).

Marking-based deterministic and MCMC algorithms are mysterious at first glance, as they
enable counting and sampling of k-CNF solutions even in regimes where the solution space is
disconnected (i.e. not 1-connected). In this work, we leverage the idea of marking in a novel way
to construct paths that certify global connectivity properties of the solution space of k-CNFs at

densities close to where counting algorithms are known.

Theorem 1.10. There is ko > 3 and a polynomial p(k) with non-negative integer coefficients
such that, for any integer k > ko, and for any positive real o < 20227F the following claim
holds with high probability over the choice of a random k-CNF' formula ® = ®(k,n, [an]). Two
satisfying assignments chosen uniformly at random are p(k)log(n)-connected with probability at
least 1 — 1/n.

In fact, we show it suffices to take p(k) = 2k°. Our new applications of marking also
have implications for other, more local, structural properties of the k-CNF solution space, like

looseness.

Definition 1.11. Given a k-CNF formula ® = (V,C) and a satisfying assignment A, a variable
v €V is f(n)-loose with respect to A if there exists a satisfying assignment to ®, T € Q, with

7(v) # A(v) and [|A — 7]y < f(n).

Page 33 of 212

Chapter 1. Introduction and contributions

For a random k-CNF formula ® = ®(k,n, m) and a satisfying assignment A chosen uniformly
at random, we say that ® is f(n)-loose if with high probability over (®,A), all variables v € V

are f(n)-loose with respect to A.

We observed earlier that looseness does not imply connectivity; in fact, the other direction of
implication is also false as looseness is an incomparable goal to connectivity. Looseness requires
that locally, we are able to flip any variable and get to a nearby solution rather than merely the
existence of a path away from a solution. Nonetheless, we are able to deduce some nontrivial

results about the looseness of the solution space of random k-CNF's.

Theorem 1.12. There is kg > 3 such that, for any integer k > ko, and for any positive real
a < 20227k " the random k-CNF formula ®(k,n, |an]) is poly(k)log(n)-loose.

We note here that, independently of this work, He, Wu, and Wang [68] also obtained sampling
algorithms for random k-CNF formulae. The approach of [68] is based on bounding chains
following the recursive sampler method developed in [6, 67, 66]. Their algorithm works up
to densities roughly equal to 2¥/3 and samples satisfying assignments within ¢ total variation

distance of the uniform distribution in time (n/ g)IHO*™?)

1.6 Organisation of this thesis

The rest of this thesis is organised as follows. In Chapter 2 we prove our results on the hardness
of approximating the partition function of the Potts model on complex edge interactions, which
we have stated in Section 1.3. In Chapter 3 we study the complexity map of approximating the
partition function of the Ising model on bounded-degree graphs, proving the results plotted in
Figure 1.2, see Section 1.4. In Chapter 4 we describe our almost linear sampler for satisfying
assignments of random k-CNF formulas and prove its correctness, yielding an almost quadratic
algorithm to approximate the partition function of the random k-SAT model. Finally, in
Chapter 5 we present the conclusions and open questions derived from this thesis. Chapters 2, 3
and 4 follow the following organisation. Fach chapter starts with a detailed outline of the proof
approach, which extends the proof outline given in this introduction and should help the reader
to follow the chapter. This proof outline contains informal definitions of the concepts used, that
will be formalised later in the chapter, and states the main technical lemmas of each chapter.
Then, the second section of each chapter contains the preliminary material needed to follow our
proofs. Chapter 4 is an exception to this rule, as the preliminaries and the proof outline are
presented at the same time for ease of reading, as our technical lemmas require us to provide a
lot of notation in order to state them. After the proof outline and preliminary material, each
chapter delves into the technical aspects of our work following the proof outline, the main results

of each chapter have been stated in this introduction.

Page 34 of 212

Chapter 2

The complexity of approximating the

complex-valued Potts model

o This chapter is based on the following publication:

Andreas Galanis, Leslie Ann Goldberg, and Andrés Herrera-Poyatos. The complexity of
approximating the complex-valued potts model. Comput. Complexity, 31(1):Paper No. 2,
2022. doi:10.1007/s00037-021-00218-x.

o A preliminary version of this work appeared in MFCS:

Andreas Galanis, Leslie Ann Goldberg, and Andrés Herrera-Poyatos. The complexity of
approximating the complex-valued potts model. In 45th International Symposium on Mathe-
matical Foundations of Computer Science (MFCS 2020), volume 170 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 36:1-36:14, Dagstuhl, Germany, 2020. Schloss
Dagstuhl-Leibniz-Zentrum fiir Informatik. doi:10.4230/LIPIcs.MFCS.2020.36.

Organisation of this chapter

This chapter contains the proofs of the results presented in Section 1.3 on the hardness of
approximating the partition function of the Potts model on complex edge interactions. The
organisation of this chapter is as follows. First, in Section 2.1 we provide a full outline of our
proof so as to make it easier to the reader to follow this chapter. Secondly, in Section 2.2 we
present some of the preliminary material that we need in our proofs. In Section 2.3 we formalise
the concept of approximate shifts, which will play a key role in our reductions. In Section 2.4 we
study approximate shifts in the complex plane, proving our main technical results. In Section 2.5
we prove our hardness results via a binary search approach that builds on the approximate
shifts developed in the previous sections. Finally, in Section 2.6 we gather some of the relevant
consequences of our results, extending hardness results of approximating the Tutte polynomial
on planar graphas in the real plane, and answering a question raised by Bordewich, Freedman,
Lovéasz and Welsh in [20] on the connection between quantum computation and approximating

the Jones polynomial at roots of unity.

2.1 Proof outline

In this section we provide some insight on the proofs of Theorems 1.1, 1.2, 1.3 and 1.4, introduced

in Section 1.3. The proofs presented here are performed in the context of the Tutte polynomial.

Page 35 of 212

https://doi.org/10.1007/s00037-021-00218-x
https://doi.org/10.4230/LIPIcs.MFCS.2020.36

Chapter 2. The complexity of approrimating the complez-valued Potts model

In previous #P-hardness results [59, 55] for approximating the Tutte polynomial, the main
technique was to reduce the exact counting #MINIMUMCARDINALITY (s,t¢)-CUT problem to
the problem of approximating Zrute(G; ¢,) using an elaborate binary search based on suitable
oracle calls. Key to these oracle calls are gadget constructions which are mainly based on planar
graphs which “implement” points (¢’,~’); this means that, by pasting the gadgets appropriately
onto a graph G, the computation of Zryutte(G;q',7') reduces to the computation of Zrytte(+;q,7)-
Much of the work in [59, 55], and for us as well, is understanding what values (¢’,+’) can be
implemented starting from (q, 7).

For planar graphs, while the binary-search technique from [55] is still useful, we have to use
a different overall reduction scheme since the problem #MINIMUMCARDINALITY (s,t)-CUT is
not #P-hard when the input is restricted to planar graphs [106]. To obtain our #P-hardness
results our plan instead is to reduce the problem of exactly evaluating the Tutte polynomial
for some appropriately selected parameters ¢, to the problem of computing its sign and the
problem of approximately evaluating it at parameters ¢, y; note, this gives us the freedom to use
any parameters ¢’,y we wish as long as the corresponding exact problem is #P-hard. Then,
much of the work consists of understanding what values (¢’,7’) can be implemented starting
from (q,7), so we focus on that component first.

We first review previous constructions in the literature, known as shifts, and then introduce
our refinement of these constructions, which we call polynomial-time approximate shifts, and

state our main result about them.

2.1.1 Shifts in the Tutte plane

We say that that there is a shift from (g, 71) to (g,72) if there is a graph H = (V, E) and vertices

s,t such that
Zst(H;q,m)
Zg(H; q,m)’

where Zg(H;q,7v1) is the contribution to Zmytte(H; g, 1) from configurations A C E in which

Y2 =

s,t belong to the same connected component in (V, A), while Z,(H;q,71) is the contribution
from all other configurations A. In the following, we will usually encounter shifts in the (z,y)-
parametrisation of the Tutte plane, rather than the (g,~)-parameterisation which was used for
convenience here. To translate between these, set y = v+ 1 and (z — 1)(y — 1) = g, see [121,
Chapter 3]. We denote by H, the hyperbola {(z,y) € C?: (z — 1)(y — 1) = ¢}, and we will use
both parametrisations as convenient. Section 2.2.2 has a more detailed description of shifts that
apply to the multivariate Tutte polynomial.

As described earlier, shifts can be used to “move around” the complex plane. If one knows
hardness for some (x2,y2) € Hy, and there is a shift from (z1,y1) € Hy to (22, y2), then one also
obtains hardness for (x1,y;). This approach has been very effective when attention is restricted
to real parameters [57, 58, 59], however, when it comes to non-real parameters, the success of
this approach has been limited. To illustrate this, in [55], the authors established #P-hardness
of the Ising model when ys € (—1,0), and used this to obtain #P-hardness for y; on the unit

Page 36 of 212

Chapter 2. The complexity of approrimating the complez-valued Potts model

circle by constructing appropriate shifts. However, their shift construction does not extend to

general complex numbers, and this kind of result seems unreachable with those techniques.

2.1.2 Polynomial-time approximate shifts

To obtain our main theorems, we instead need to consider what we call polynomial-time

approximate shifts. First, we need the following definitions.

Definition 2.1 (theta graph, series-parallel graph). A theta graph consists of two terminals s
and t joined by internally disjoint paths [24]. A series-parallel graph with terminals s and t can
be obtained from the single-edge graph with edge (s,t) by repeatedly subdividing edges or adding
parallel edges [22, Chapter 11].

An polynomial-time approximate shift from (x1,11) € Hq to (z2,y2) € H, is an algorithm
that, for any positive integer n, computes in time polynomial in n a graph G, that (z1,y1)-
implements (22, §2) with |y — g2 < 27", In fact, our constructions need to maintain planarity,
and we will typically ensure this by either making every G,, a series-parallel graph, in which case
we call the algorithm a polynomial-time approximate series-parallel shift, or by making every G,
a theta graph, in which case we call the algorithm a polynomial-time approxzimate theta shift.

These generalised shifts allow us to overcome the challenges mentioned above and are key

ingredients in our reduction. Our main technical theorem about them is the following.

Theorem 2.2. Let ¢ > 2 be a real algebraic number. Let x and y be algebraic numbers
such that (z,y) € Mg, y € (~1,0) U (C\R) and (2,5) & {05, —1), (~i,0), (ws,w3), (wd n)},
where wy = exp(2mi/3). Then, for any pair of real algebraic numbers (x',y') € H, there is a

polynomial-time approzimate series-parallel shift from (x,y) to (2',y').

The exceptions {(i, —4), (—i,1), (w3, w3), (w3, ws3)} are precisely the non-real points of the
(z,y) plane where the Tutte polynomial of a graph can be evaluated in polynomial time (see
Section 2.5.3). As we will see, being able to (x, y)-implement approximations of any number in
(—1,0) is essentially the property that makes the approximation problem #P-hard at (z,y).

We remark that the idea of implementing approximations of a given weight or edge interaction
has been explored in the literature, though only when all the edge interactions involved are real.
We review these results in Section 2.3.

We study the properties of polynomial-time approximate shifts in Section 2.3 and prove

Theorem 2.2 in Section 2.4. In the next section, we describe some of the techniques used.

2.1.2.1 Proof Outline of Theorem 2.2

Shifts, as defined in Section 2.1.1, have a transitivity property: if there is a shift from (z1,y1) to
(2,y2) and from (z2, y2) to (z3,ys3), then there is a shift from (z1,y1) to (z3,ys3), see Section 2.2.2

for more details.

Page 37 of 212

Chapter 2. The complexity of approrimating the complez-valued Potts model

The polynomial-time approximate shift given in Theorem 2.2 is constructed in a similar way.
First, we construct a polynomial-time approximate shift from (z,y) to some (z3,y2) such that
y2 € (—1,0), where x2 and y2 depend on x,y. Then, we construct a polynomial-time approximate

’4y). Finally, we combine both polynomial-time approximate shifts using

shift from (x2,ys2) to (=
an analogue of the transitivity property.

However, when this approach is put into practice, there is a difficulty that causes various
technical complications: we only have mild control in our constructions over the intermediate
shift (x2,y2). In particular, even if the numbers = and y are algebraic, we cannot guarantee
that zo and yo are algebraic, and this causes problems with obtaining the required transitivity
property. Instead, we have to work with a wider class of numbers, the set P¢ of polynomial-time
computable numbers. These are numbers that can be approximated efficiently, i.e., for y € P¢
there is an algorithm that computes ¢, € Q[i] with |y — §,,| < 27" in time polynomial in n [80,
Chapter 2]. We denote by Pr = R N P¢ the set of polynomial-time computable real numbers.

Our polynomial-time approximate shifts are constructed in Section 2.4. The first of these

polynomial-time approximate shifts is provided by Lemma 2.3.

Lemma 2.3. Let q be a real algebraic number with ¢ > 2. Let x and y be algebraic numbers
such that (x,y) € /H% ye <_1a 0) U (C\R) and (l’,y) g {(Z’ _Z')a (_i’i)a <UJ3,W?2)), (w§>w3)}7 where
ws = exp(2mi/3). Then there is a polynomial-time approrimate series-parallel shift from (x,y)

to (2',y') for some (2',y') € Hq with 2',y" € Pr and y' € (0,1).

The construction in Lemma 2.3 is obtained using a theta graph and trying to get a shift
that is very close to the real line. However, we cannot control the point (2/,y") that we are
approximating, and as mentioned, z’, 3/ might not be algebraic. The proof of Lemma 2.3 requires
the most technical work in this chapter and is given in Section 2.4.4.

Using Lemma 2.3, we have a series-parallel polynomial-time approximate shift from (z,y) to
some (z',y") € Hq with 2/, y" € Pr and ' € (0,1). Next, we have to construct a polynomial-time
approximate shift from (z/,4") to (Z,7), where (Z,9) is the point that we want to shift to in
Theorem 2.2. In fact, we actually use a theta shift, which also facilitates establishing the required
transitivity property later on. Note that since 3’ is not necessarily algebraic, we can not directly
apply the results that have already appeared in the literature on implementing approximations of
edge interactions. In the next lemma, we generalise these results to the setting of polynomial-time
computable numbers, where we need to address some further complications that arise from
computing with polynomial-time computable numbers instead of algebraic numbers. The proof

of the lemma is given in Section 2.4.5.

Lemma 2.4. Let q,z,y € Pr such that ¢ > 0, (x,y) € Hq, y is positive and 1 — q/2 <y < 1.

There is a polynomial-time algorithm that takes as an input:
o two positive integers k and n, in unary;

e a real algebraic number w € [y*, 1].

Page 38 of 212

Chapter 2. The complexity of approrimating the complez-valued Potts model

The algorithm produces a theta graph J that (x,y)-implements (Z,y) such that

g)—w} <27m,

The size of J is at most a polynomial in k and n, independently of w.

Then, we are able to combine the shifts in Lemmas 2.3 and 2.4 via a transitivity property
for polynomial-time approximate shifts (see Lemma 2.16 in Section 2.3), and therefore prove
Theorem 2.2, see Section 2.4 for the details.

2.1.3 The reductions

In Section 2.5.6 we show how to use a polynomial-time approximate shift from (z1,y1) to (z2,y2)
to reduce the problem of approximating the Tutte polynomial at (z2,y2) to the same problem
at (z1,y1). The following lemma gives such a reduction for the problem of approximating the

norm, we also give an analogous result for approximating the argument.

Lemma 2.5. Let ¢ # 0, 71 and 2 # 0 be algebraic numbers, and K > 1. For j € {1,2},
let yj = v +1 and z; = 1+ q/v;. If there is a polynomial-time series-parallel approzimate
shift from (x1,y1) to (x2,y2), then we have a reduction from FACTOR-K-NORMTUTTE(q, v2) to
FACTOR-K-NORMTUTTE(q,y1). This reduction also holds for the planar version of the problem.

In order to prove Lemma 2.5, we need some lower bounds on the norm of the partition
function Zrytte(G; q,). This kind of lower bound plays an important role in several hardness
results on the complexity of approximating partition functions [55, 15]. Here, we have to work a
bit harder than usual since we have two (algebraic) underlying parameters (in the case of Tutte),
and we need to use results in algebraic number theory, see Section 2.5.1 for details.

By combining Theorem 2.2 and Lemma 2.5 with existing hardness results, we obtain our
hardness results for non-real edge interactions in Section 2.5.8. On the way, we collect some
hardness on real parameters as well that strengthen previous results in the literature, and part
of Section 2.5 is devoted to this. The main reason behind these improvements is that previous
work on real parameters used reductions from approximately counting minimum cardinality
(s,t)-cuts [59, 55], the minimum 3-way cut problem [57], or maximum independent set for planar
cubic graphs [58], which are either easy on planar graphs or the parameter regions they cover are
considerably smaller or cannot be used to conclude #P-hardness. We instead reduce the exact
computation of Zmyite(G; q,7y) to its approximation, which has the advantage that the problem
that we are reducing from is #P-hard for planar graphs [116]. Interestingly, our reduction
requires us to apply an algorithm of Kannan, Lenstra and Lovasz [78] to reconstruct the minimal
polynomial of an algebraic number from an additive approximation of the number. The lower
bounds on the partition function Zryte(G;q,y) that are gathered in Section 2.5.1 also play a

role in this reduction, the details will be given in Section 2.5.5.

Page 39 of 212

Chapter 2. The complexity of approrimating the complez-valued Potts model

2.2 Preliminaries

2.2.1 The multivariate Tutte polynomial

The random cluster formulation of the multivariate Tutte polynomial is particularly convenient
when working with implementations (as we will see in Section 2.2.2), and is defined as follows.
Let G = (V, E) be a graph. For any weight function v: E — C and ¢q € C, the multivariate
Tutte polynomial of G is
Zrue(Gia:7) = D "V] e (2.1)
ACE e€A

We will make use of the following notation. Let s and ¢ be two distinct vertices of G. We define

Z(Gq,7) = > sl | B

ACE: ecA
s and t in the same component

Analogously, let Z,; be the contribution to Zrye(G;q,7) from the configurations A C F
such that s and t are in different connected components in (V, A). That is, Z5|t(G; q,7) =
Zrune(G34,7) — Zat(G: 4,7).

2.2.2 Implementing weights, series compositions and parallel compositions

In this section, we define implementations, shifts, series compositions and parallel compositions.
The definitions and results that we give are standard and can also be found, for instance, in [73,
Section 4], [58, Section 2.1] or [109, Section 4].

Let ¢ € C with ¢ # 0. The value of ¢ is fixed across all this section. Let H be a weighted
graph with weight function 4. Let s and t be two distinct vertices of H, which are usually
referred to as terminals. We say that the graph H A-implements the weight w with respect to

the terminals s and ¢ if .
Zst(H3q,7)

ARG
We say that H 4-implements the weight w if there are terminals s and ¢ such that H 4-implements
the weight w with respect to s and t. These definitions are motivated by Lemma 2.6, whose
proof is a straightforward computation involving the definitions of implementations and the

multivariate Tutte polynomial.

Lemma 2.6 ([58, Equation 2.2]). Let G and H be two graphs with weight functions v and 4
respectively. Let f be an edge of G with weight vy such that H #-implements vy with respect
to terminals s and t. Let Gy be the graph constructed by considering the union of G and H,
identifying the terminals s and t with the endpoints of f in G and removing f. Let v be the
weight function on Gy that inherits the weights from v and 4. Then

Zg (H;q,%) Zy (H;q,%)
Za (Gyiq,7') = S‘Tzst (G54,7), Zsy (Griq,7) = “TZSH (G5q,7)-

Page 40 of 212

Chapter 2. The complexity of approrimating the complez-valued Potts model

In particular, we have Zryue (G q,7') = Wzﬂme (G;q,7). Moreover, if G ~-implements

a weight w, then Gy also ' -implements w.

Therefore, if we can compute Z,,(H;q,%) efficiently and Z,,(H;q,¥) # 0, then computing
Ztutte(G; q,7y) is as hard as computing Zryite(Gr; ¢,7'). This observation leads to some of the
reductions that appear in this chapter.

In the remaining sections we usually assume that the weights are constant, that is, each edge
of the graph has the same weight, and we will make it clear when this is not the case. In the
constant weight function case Lemma 2.6 can be applied to each edge of the graph constructed
by copying G and substituting each edge f in G by a copy of H (identifying the endpoints of
f with s and t). Let aj,as € C. We say that there is a shift from (q, 1) to (g, a2) if there
is a graph H that aj-implements ao. An important property of shifts is transitivity; if there
are shifts from (¢, a1) to (¢, a2) and from (q, a2) to (g, as), then there is a shift from (g, a1) to
(g, a3). This is a consequence of Lemma 2.6. Let y; = a1 + 1 and yo = ag + 1. We define z; and
xg by ¢ = (x1 —1)(y1 — 1) = (22 — 1)(y2 — 1), which is the change of variables that relates the
Tutte polynomial and Zmyge. We equivalently refer to the shift from (g, a1) to (g, a2) as a shift
from (z1,y1) to (x2,y2), and we also say that H (z1,y;)-implements (x2,y2). This notation is
convenient to express many of the shifts considered in this chapter.

To conclude this section we introduce two tools that will provide us with many examples of
implementations and shifts: parallel compositions and series compositions. For each j € {1,2},
let G; be a graph, let s; and ¢; be two terminals of G, and let «; be a weight function such
that Gj ~vj-implements a weight w; with respect to s; and t;.

Parallel compositions. The parallel composition of (G1, s1,t1) and (Gg, s2,t2) is the graph G
constructed by considering the union of G; and G2 and identifying s; with s and ¢; with ts.
Let 4 be the weight function on G inherited from v; and 2. It is well-known and easy to check
that G 4-implements the weight

w = (1+w1)(1+w2)—1 (22)

with respect to the terminals s; and ;1. Let (x1,y1) and (z2,y2) be the Tutte coordinates of
(¢,w1) and (q,ws) respectively (so y; = w; + 1 and (x; — 1)(y; — 1) = ¢q). Then the Tutte
coordinates of (¢, w) are (x,y) with y = y1y2 and (z — 1)(y — 1) = ¢. Let T be a graph with two
vertices s,t and one edge joining them, and let Y™ be the parallel composition of n copies of
(T,s,t) (so Y™ has two vertices and n edges joining them). Then T" (x,y)-implements (z',y’)
with ¥/ = y™ and (2’ — 1)(y — 1) = ¢. This is known as an n-thickening of (z,y) and it yields a
shift from (z,y) to (2/,y").

Series compositions. The series composition of (Gy, s1,t1) and (Ge, s2,t2) is the graph G

constructed by considering the union of G; and G2 and identifying ¢; with sa. Let 4 be the

weight function on G inherited from ~; and vyy. It is well-known and easy to check that G

Page 41 of 212

Chapter 2. The complexity of approrimating the complez-valued Potts model

A-implements the weight

wi1w2
w1 + we + q

with respect to the terminals s; and t2. Note that w satisfies

(1+3}>:<1+£1> <1+u‘)12>. (2.3)

Let (x1,y1) and (22, y2) be the Tutte coordinates of (¢, w1) and (g, w2) respectively (so y; = w;j+1
and (z; —1)(y; — 1) = q). Then, in view of (2.3), the Tutte coordinates of (¢, w) are (z,y) with
x=xx9 and (x — 1)(y — 1) = ¢q. Let T be a graph with two vertices s,¢ and one edge joining
them, and let T, be the series composition of n copies of (Y, s,t) (so T, is a path graph with n
edges). Then T, (z,y)-implements (z’,y’) with 2/ = 2™ and (2’ — 1)(y/ — 1) = ¢. This is known
as an n-stretching of (x,y) and it yields a shift from (x,y) to (z",y").

For series-parallel and theta graphs (see Definition 2.1), these constructions give that either
Z44(G;q,7) = 0, or the series-parallel graph G (with terminals s and t) y-implements a weight
w(G, s,t;q,7) that can be computed from the recursive definition of series-parallel graphs in
polynomial time. In particular, let ©;, ;) be the theta graph with m internal paths of lengths

li,..., L. In this case,! we have that

w (@(ll,‘..,lm)a s, 1; Q77) = H (1 + q) -1, (24)

I _
il T 1

where x = 1 4 ¢/~. Series-parallel graphs can be built using series and parallel compositions.
The following definition is equivalent to the one in Definition 2.1. A graph G is series-parallel
(with terminals s and t) if either G is the graph with two vertices s and ¢ and one edge joining
them, or G is the parallel or series composition of (G1,s1,t1) and (Ga, s2,t2), where s = s1,
t =ty and G is a series-parallel graph with terminals s; and ¢; [22, Chapter 11].

Finally, accross all this thesis the size of a graph G = (V, E) is the integer size(G) = |V|+ |E|.
Note that the size of ©,) is 2370, lj —m + 2.

2.2.3 Computing with algebraic numbers

Our reductions will work when the partition functions under consideration are evaluated on
algebraic numbers. Here we overview how we algorithmically perform computations in the field
of algebraic numbers. We represent an algebraic number z as its minimal polynomial p and
a rectangle R of the complex plane such that z is the only root of p in R. We can compute
the addition, subtraction, multiplication, division and conjugation of algebraic numbers in
polynomial time in the length of their representations, see [113] for details. As a consequence,

we can also compute the real and imaginary parts of z and the norm of z, which are algebraic

We should mention that we will make use of the ©® asymptotic notation in this chapter and this notation

should not be confused with that of theta graphs.

Page 42 of 212

Chapter 2. The complexity of approrimating the complez-valued Potts model

numbers themselves, in polynomial time. Note that an algebraic number is 0 if and only if its
minimal polynomial is z, which can be easily checked in this representation. Hence, we can also
determine in polynomial time whether two algebraic numbers z; and 2o are equal by checking if
z1 — 29 is 0.

When z is a real algebraic number, we can simply represent it as its minimal polynomial p
and an interval I with rational endpoints such that z is the only root of p in I. If we are given a
real algebraic number z with this representation, then we can approximate it as closely as we
want by applying Sturm sequences and binary search [41]. In fact, for z; and 2z real algebraic
numbers, Sturm sequences also allow us to check whether z; > zo in time polynomial in the
length of the representations of z; and z3. See [41] for more details and complexity analysis.

A root of unity is a complex number z such that z*¥ = 1 for some positive integer k. The
smallest positive integer n such that z” = 1 is the order of z. Note that roots of unity are
algebraic numbers. The roots of unity of order n share the same minimal polynomial, known as
the n-th cyclotomic polynomial, whose degree is ¢(n), the Euler phi function. We can determine
whether an algebraic number z is a root of unity by checking whether its minimal polynomial is
cyclotomic, see [21] for a polynomial-time algorithm. If z is a root of unity, then we can easily
compute its order from its representation; we compute the smallest n such that the minimal
polynomial of z divides 2™ — 1. This computation runs in polynomial time in the length of the

representation of z as a consequence of the elementary bound ¢(n) > y/n/2.

2.3 Polynomial-time approximate shifts

Implementing a specific weight cannot always be achieved. Nonetheless, sometimes we can
implement an approximation of the desired weight with as much precision as we need. These
implementations have been exploited several times in the literature on Tutte polynomials and
the Ising model; see [57, 58, 59, 60]. Here we collect some of these results appearing in [59],
which in turn are based on arguments in [58]; here, we follow the presentation in [60] (that was
stated for ¢ = 2).

Lemma 2.7 ([60, Lemma 22], [59, Lemma 5]). Let x and y be real algebraic numbers such that
y & [—1,1] and (x —1)(y — 1) = ¢ > 0. There is a polynomial-time algorithm that takes as an

mput:
e two positive integers n and k, in unary;

e a real algebraic number y' € [1, y|*].

This algorithm produces a theta graph G that (x,y)-implements (&,7) such that ‘y’ —gl <27

The size of G is at most a polynomial in n and k, independently of v .

In Lemma 2.4 (Section 2.4), we give a similar result to Lemma 2.7 where the numbers x and

y may not be algebraic. The fact that the graph G computed in Lemma 2.7 is a theta graph

Page 43 of 212

Chapter 2. The complexity of approrimating the complez-valued Potts model

is not directly stated in the statement of [59, Lemma 5] but it can easily be inferred from the

proof. This also applies to Lemma 2.8.

Lemma 2.8 ([60, Lemma 22|, [59, Lemma 7]). Let x1,y1,x2,y2 be real algebraic numbers such
that y1 € (=1,1), ya & [-1,1], and (x1 — 1)(y1 — 1) = (xa — 1)(y2 — 1) = ¢ < 0. There is a

polynomial-time algorithm that takes as an input:
e two positive integers n and k, in unary;
e a real algebraic number y' € [1, |y1|7*].

This algorithm produces a theta graph G = (V, E) and a weight function 4: E — {y1 — 1,y2 — 1}

such that G y-implements (Z,q) with ‘y’ —g| < 27™. The size of G is at most a polynomial in n

and k, independently of v/'.

Corollary 2.9. Let x1,y1,22,y2 be real algebraic numbers such that y; € (—1,0) U (0, 1),
y2 & [—1,1], (z1—1)(y1 —1) = (x2 —1)(y2 — 1) = q, ¢ # 0. There is a polynomial-time algorithm
that takes as an input:

e two positive integers n and k, in unary;

e a positive real algebraic number y' such that |y'| € [Jy1|*, ly1|7¥].

This algorithm produces a theta graph G = (V, E) and a weight function 4: E — {y1 — 1,y2 — 1}

such that G y-implements (&,) with ‘y’ —qg| <27™. The size of G is at most a polynomial in n
and k, independently of y'. Moreover, if either y; < 0 or y2 < 0, then the restriction that y' is

positive can be replaced with a restriction that y' is non-zero.

Proof. This result easily follows from Lemmas 2.7 and 2.8 by an argument of Goldberg and
Jerrum (see the proof of [59, Lemma 2]). We include here their argument for completeness.
The case when 3/ > 1 has been covered in Lemmas 2.7 and 2.8. First, let us assume that

"€ (0,1). We have 1 </ - y;%* < |y;|~?* and using Lemmas 2.7 and 2.8 we can implement
with | — -y 2% < 27", We have |y?*§ — /| < 27", so we set § = y¥. The graph G is the
parallel composition of the graph used to implement § and 2k edges with weight y;. Finally,
let us assume that there is i € {1, 2} such that y; < 0, and let us consider the case where y’ is

negative. We implement an approximation ¢ of y'/y; > 0, and return § = §y;. O

The graphs G produced by the algorithms given in Lemma 2.7, Lemma 2.8 and Corollary 2.9
are theta graphs. One may wonder which weights can be approximated as in these results.
This leads to the following definition, which was informally introduced in the proof outline

(Section 2.1); we state it formally here for ease of reading.

Definition 2.10 (polynomial-time approximate shift). Let (z1,y1), (z2,92) € Hq. Let 1 = y1—1
and vo = y2 — 1. We say that there is a polynomial-time approximate shift from (q,v1) to
(q,72) or, equivalently, from (x1,y1) to (z2,y2), if there is an algorithm that, for any positive

Page 44 of 212

Chapter 2. The complexity of approrimating the complez-valued Potts model

integer n, computes in polynomial time in n a graph G, that (x1,y1)-implements (&2, y2) with
ly2 — go| < 27™. If the graph G, computed by this algorithm is always a theta graph (resp. a
series-parallel graph), then we say that this is a polynomial-time approximate theta shift (resp.

polynomial-time approximate series-parallel shift).

Lemma 2.7 gives polynomial-time approximate theta shifts from (x1,y1) to (x2,y2) when the
considered numbers are real algebraic, y; € [—1,1], y2 € [1,00) and ¢ > 0. Note that shifts are a
particular case of polynomial-time approximate shifts. Moreover, due to the transitivity property
of shifts, if there is a shift from (x1,y1) to (z2,y2) and there is a polynomial-time approximate
shift from (z9,y2) to (x3,ys), then there is a polynomial-time approximate shift from (x1,y1) to
(z3,y3). In fact, polynomial-time approximate shifts exhibit some of the properties of shifts; in
Lemma 2.11 we show that they behave well with respect to parallel and series compositions and
in Lemma 2.16 we show that they are transitive under certain conditions. In Section 2.4 we
give more examples of polynomial-time approximate shifts, some of which will be constructed by

transitivity. These approximate shifts play an important role in our hardness proofs.

Lemma 2.11. Let ¢ € C\ {0} and let (z;,y;) € Hq for each j € {1,2,3}. Let us assume
that there are polynomial-time approximate shifts from (x1,y1) to (x2,y2), and from (x1,y1) to

(z3,93). Let (x4, ya), (x5, y5) € Hq with ys = yays and x5 = xox3. Then:
1. there is a polynomial-time approzimate shift from (x1,y1) to (x4,y4);
2. there is a polynomial-time approximate shift from (x1,y1) to (z5,ys).

Moreover, if the polynomial-time approzimate shifts from (x1,y1) to (z2,y2) and (x3,y3) are

series-parallel, then the obtained polynomial-time approximate shifts are also series-parallel.

Proof. For j € {2,3}, let Gy, ; be the graph computed by the polynomial-time approximate shift
from (z1,y1) to (z4,y;), so Gnj (x1,y1)-implements (Z;,9;) with |y; — g;| < 27", for certain
terminals ¢; and s;.

For Item 1, let P, be the parallel composition of (Gy, 2, s2,t2) and (G 3, s3,t3). The graph
P, gives a shift from (z1,y1) to (24, 9293) € Hq. Since |yz — g3 < 27", we have |g3| < |yz| + 1

and

lyoyz — 9293 < |y2 — el 193] + |y3 — U3l ly2] < 27" (Jyz| + 1 + [y2]) .

Therefore, for k large enough, the graphs P, give a polynomial-time approximate shift from
(w1,91) to (24,y4) With ys = yoys.

For Item 2, the proof is analogous but now we define the graph .S,, as the series composition
of (Gp,z2, s2,t2) and (G 3, s3,t3), which gives a shift from (x1,y1) to (Zads3,91) € Hy-

Note that if the original polynomial-time approximate shifts are series-parallel, then the

obtained ones are also series-parallel by the definition of series-parallel graphs. O

Page 45 of 212

Chapter 2. The complexity of approrimating the complez-valued Potts model

When it comes to hardness results, we are only interested in algebraic numbers. However,
we will have to consider polynomial-time approximate shifts from (z1,y1) to (x2,y2) such that
the numbers involved are not algebraic. This is due to the fact that, even if z; and y; are
algebraic, ro9 and ys might not be. Nonetheless, in that case we can ensure that xo and o are

polynomial-time computable.

Definition 2.12 (polynomial-time computable number). A real number = is polynomial-time
computable if there is a function ¢: N — Q that is computable in polynomial time (with the
input written in unary notation, i.e., 0") such that |x — ¢(n)| < 27" for all n € N, see [80,

Chapter 2] for a treatment on these numbers.

The definition of polynomial-time computable number given in [80, Chapter 2] uses dyadic
rational numbers instead of rational numbers, but these two definitions are easily seen to be
equivalent. We denote the set of polynomial-time computable real numbers by Pg. One can easily
show that the set Py is a field. Real algebraic numbers are in Pg because we can approximate
them as closely as we want by applying Sturm sequences and binary search [41]. We say that a
complex number z is polynomial-time computable if z = = + iy for some x,y € Pr. We denote
the set of polynomial-time computable complex numbers by Pc. Algebraic numbers are in
Pc (their real and imaginary parts are real algebraic numbers). It turns out that P¢ is an
algebraically-closed field [80, Chapter 2]. In particular, for z € P¢, we have |z| € Pg.

If there is a polynomial-time approximate theta shift from (z1,y1) to (z2,y2) and z; and y;
are algebraic, then we can compute in polynomial time in n an algebraic number that additively
approximates yo up to an additive error 27". Since we can approximate algebraic numbers by
rational numbers efficiently, it follows that x5 and yo are polynomial-time computable. However,
if we only know that x; and y; are polynomial-time computable, then it is not clear if 9 and s
are polynomial-time computable or not. Lemma 2.15 gives a partial answer to this question and
plays a key role in our transitivity result for polynomial-time approximate shifts (Lemma 2.16).

First, we need to prove some lemmas on polynomial-time computable numbers.

Lemma 2.13. Let z € Pc. There is an algorithm that computes by € Q with |z| < by. Moreover,
if z # 0, then there is an algorithm that computes by € Q with 0 < by < |z|.

Proof. Let = |z|. From x € Py, it follows that we can compute a sequence Z,, € Q such that
|z — &, <277, that is, we have z € [Z,, — 27", &, + 27"]. This computation for n = 1 gives the
upper bound #; + 1/2. Note that the sequences Z,, — 27" and &,, + 27" converge to x. Hence, if
x # 0, then there must be n such that 0 < &, — 27" < z. We compute Z,, until this inequality

happens, obtaining the desired lower bound. O

Lemma 2.14. Let z € Pc with |z| # 1. There is a polynomial-time algorithm that takes as

inputs two positive integers n and k and computes a positive integer r(n, k) such that
1. r(n, k) is increasing in k;

2. r(n,k) =n+0O(k);

Page 46 of 212

Chapter 2. The complexity of approrimating the complez-valued Potts model

L<o

1 p—
zk—1 zk—1

3. if |z — 2| < 277(R) | then
Proof. By Lemma 2.13, we can compute an integer ¢ > 0 such that 27¢ < ||z| — 1| and |z| < 2!
Note that for every integer k > 1 we have the bound ’zk - 1| > 27t Indeed, if |z| < 1, then

270 <1 [z < 1—[ofF <[5 -1

and when |z| > 1, we analogously find that 27t < [z] =1 < |z[F =1 < }zk - 1‘.
Let n and k be the inputs of our algorithm. Let r(n,k) =n+ (t+ 1)(k + 1), and note that r

is increasing in k and r(n, k) = n + © (k), establishing Items 1 and 2.
For Ttem 3, consider 2 such that |z — 2| < 277("%), Since |2| < |z| +277(™F) < 2!+1 for every

j€40,... . k—1} we have |2 |27 < 2tk=D+J and hence
k=1 . . k—1 . .
T CEE D S| PR) S i
J:]:
k—1)
< ‘Z _ 2’ ijo 2t(k71)+j < |Z _ 2,’ 2t(k71)+k < 27(n+2t+1)'

< 27+ and, thus,

CEE 1] < o

Moreover, we have that sz - 1‘
sk 1} 2 ‘Zk o 1‘ o 2*(t+1) 2 2*(t+1)7

where we used that |zk — 1| > 27!, Therefore, we find that

k_ sk
20— Z .
< 2% 1|zk — 3k]

F-DEF 1)

<27

1 1|
k-1 zk—1|
Lemma 2.15. Let g € Pc with ¢ # 0 and let v € Pc with v ¢ {0} U —q/2 + iqR. There is a

polynomial-time algorithm that takes as an input:

® a positive integer n;

e a theta graph G = ©(, ;. with terminals s and t.
This algorithm computes f(n,G) such that

1. f(n,G) =n+ O (size(Q));
2. for any % with |y — 4| < 27509, we have [w(G, 5, t:0,7) — w(Gy5,t:q,9)] < 27,

Proof. Let y =~ + 1 and 2 = 1+ ¢/v. Note that |z| = 1 if and only if |y + ¢| = |y|. By basic
geometry, the latter statement is equivalent to v € —¢/2 + igR. Hence, by hypothesis, |z| # 1.

There are two cases:

e |z| < 1. Then for any positive integer k we have

lg| lq|

q lq]
1 <14+ —X<1 = .
\+xk_1_ B T A O P R TR P

Page 47 of 212

Chapter 2. The complexity of approrimating the complez-valued Potts model

e |z| > 1. Then for any positive integer k we have

q

lal . 4] 4]
k-1

<1+ =14 —.
¥ =1 |z -1 1= []]

1y <1

Since ¢,z € P¢, we can apply Lemma 2.13 along with the above bounds to compute a non-
negative integer t, such that ‘1 +q/(z* — 1)‘ < 2%« for every positive integer k. Lemma 2.13
also allows us to compute non-negative integers ¢, and ¢, such that |¢| < 2% and 27" < ||.
Let n and G = O, ;,,) be the inputs of our algorithm. Let k = max{l,...,l;,}. Since
|z| # 1, we can compute g(n,G) =r(n+ (t; +1)(m + 1) + t4, k), where r is as in Lemma 2.14
for the polynomial-time computable number . We compute f(n,G) = g(n,G) +t, + 2ty + 1.

We claim that f satisfies the statement. In view of the properties of r, we have
f(n,G) =g(n,G)+ 0O (1) =n+ O (size(Q)) .

We define y; = 1+ ¢/ (25 — 1) for every j € {1,...,m}. Recall that in (2.4) we argued that
m
w(@, s, t:0,7) = [Jws -1
j=1
Let 4 with |y —4| < 27/6) Let j =4+ 1and & =1+ q/(j — 1). Then
m
’UJ(G,S,t; Q7’?) = Hg] - 17
j=1

where §; = 1 + ¢/ (#% — 1). Since |y — 4| < 27/ < 274~1 we have 3| > |y| — 27071 >

2-t=1 and

22t7+1 S 2tq+2t,y+1—f(n,G) — 2—g(n,G)

. q q y— .
3| = ‘z’q - '§|Q\|77|
vy

In light of the properties of (Lemma 2.14) and the fact that I; < k, it follows that

|yj_yj|: 2 — 1 il _

q q ' < |g| 27 et DOt ~ty < g=n—(tet1)(m+1)
7| = <
for every j € {1,...,m}. Thus, we have |g;| < |y;| + 1 < 2=+, We obtain
m
mo moo m S J=1 m 4 ote(m=1)+j—1
‘H]‘:l Yi— Hj:l Yi| = ’Zj:l (v; = 45) Hs:1 Ys Hs:j+1 Ys| < 2:1 lv; = 9512
]:

m m
< 2t,;(m—1) Z 2—n—(tx+1)(m+1)+j—1 < 2—n—m—2 Z 2j <9 ",
j=1 j=1

Equivalently, |w(G, s,t;q,7) — w(G, s,t;q,9)| < 2™™ as we wanted to prove. O

We now prove the main transitivity property of polynomial-time approximate shifts that we

will use in our constructions.

Page 48 of 212

Chapter 2. The complexity of approrimating the complez-valued Potts model

Lemma 2.16. Let q € Pc with ¢ # 0 and let (x,y;) € Hq for each j € {1,2,3}. Let us assume
that the following hypotheses hold:

1. xo and yo are polynomial-time computable;

2. yo {1} U (1 — q/2 + iqR);

3. there is a polynomial-time approximate shift from (z1,y1) to (x2,y2);

4. there is a polynomial-time approzimate theta shift from (x2,y2) to (x3,y3).

Then there is a polynomial-time approzimate shift from (x1,y1) to (xs,ys). Moreover, if the
polynomial-time approximate shift from (x1,y1) to (x2,y2) is series-parallel, then the polynomial-

time approximate shift from (x1,y1) to (x3,ys3) is also series-parallel.

Proof. Let ; = y; — 1 for every j € {1,2,3}. Let n be a positive integer. We give an algorithm
that constructs a graph J,, in polynomial time in n, such that J, vi-implements 43 with
|vs — 43| < 27", This algorithm is as follows. First, we use the approximate theta shift from
(z2,y2) to (x3,ys3) to compute a theta graph Go with terminals sy and t2 such that

3 — w(Ga, 52, t25.4,72)| < 27" (2.5)

The size of G5 is at most polynomial in n. In light of Lemma 2.15, we can compute, in polynomial

time in n, a positive integer f(n + 1,Gs) such that for any 4, with |yo — 49| < 27 /(2F1.G2)

, we
have

lw(Ga, s2,t2; q,72) — w(Ga, s2,t2; ¢, 42)| <2771 (2.6)

We also have f(n+1,G2) =n+ O (size(G2)), so f(n + 1,G2) is bounded by a polynomial in n.
Now we use the approximate shift from (x1,y1) to (z2,y2) to compute, in polynomial time in n,
a graph Gy such that Gy ~vi-implements 45 with |y2 — 42| < 2—/(n+1,G2) - Combining (2.5) and
(2.6) with the triangle inequality, we obtain |'yg — w(Ge, s2,t2; q, %2)‘ <2™m

Finally, we construct a graph J,, as a copy of Gy where every edge is substituted by a copy
of (G1 as in Lemma 2.6. Since the sizes of G; and G4 are polynomial in n, the size of J,, also is
polynomial in n. Recall that G2 42-implements 43 = w(Ga, s2, t2; ¢,¥2) and G y1-implements
Ao. Therefore, the graph J,, vi-implements 43, and |y3 — 43| < 27", as we wanted to obtain.
Finally, if the polynomial-time approximate shift from (z1,y1) to (z2,y2) is series-parallel, then

the graphs J,, are easily seen to be series-parallel, and the result follows. O

2.4 Polynomial-time approximate shifts with complex weights

In this section we show how to implement approximations of real weights when the original
weight is a non-real algebraic number. As a consequence of our results, for any real algebraic
number ¢ with ¢ > 2 and any pair of algebraic numbers (z,y) € H, with y € R and (z,y) &

{(—4,1), (i—1), (W3, w3), (w3,w3)}, where w3 = exp(27i/3), there is a polynomial-time approximate

Page 49 of 212

Chapter 2. The complexity of approrimating the complez-valued Potts model

shift from (z,y) to any pair of real algebraic numbers (2/,y") € H, (see Theorem 2.2). Our
approach to prove Theorem 2.2 is as follows. First, we show that there is (2/,y) € H, with
y' € (0,1) such that there is a polynomial-time approximate theta shift from (z,y) to (z/,y’)
(see Lemma 2.32). Since z and y are algebraic, it follows that 2’ and y’ are polynomial-time
computable. Secondly, we extend part of Lemma 2.7 to the case where the numbers involved are
only known to be polynomial-time computable (see Lemma 2.4). Finally, we use the transitivity

property given in Lemma 2.16 to combine both results in the proof of Theorem 2.2.

2.4.1 Some algorithms for algebraic numbers

In our proofs we use and develop some specific algorithms on algebraic numbers. We gather
these algorithms in this section. The first non-trivial operation that we can perform (other than
the standard ones described in the preliminaries - Section 2.2.3) is checking if the argument of

an algebraic number is in a fixed interval.

Lemma 2.17. Let a,b € QN [0, 1] with a < b. Then for any algebraic number z we can check
whether Arg(z) € [2ma, 27b] in time polynomial in the length of the representation of z.

Proof. We can split the interval [27a, 27b] into intervals of length at most 7/2 and check if
Arg(z) belongs to any of those intervals. Hence, let us assume for the sake of simplicity that

[27a, 2mb] C [0,7/2]. The other cases are analogous. Note that €™ and €?™ are roots of

—27ia 2mi(1/4-0)

unity and, in particular, algebraic. Thus, we can compute z, = ze and z, = ze
We have Arg(z,) € [0,7/2] if and only if Arg(z) € [2ma, /2 + 2ma], and Arg(z) € [0,7/2] if
and only if Arg(z) € [—7/2 4 27b, 2wb]. We conclude that Arg(z) € [2ma, 27b] if and only if
Arg(z,) € [0,7/2] and Arg(z) € [0,7/2]. Finally, note that, for any algebraic number y, since
Re(y) and Im(y) are algebraic, we can determine if Arg(y) € [0,7/2] or not by checking the

inequalities Re(y) > 0 and Im(y) > 0. O

In the rest of this section we show how to efficiently compute a sequence o(n) such that
Arg(2°™) € [27a, 27b] for every n. We will use the following well-known result, see, e.g., [23,
Section 1.2]: if z € C is not a root of unity and |z| = 1, then {27 : j € N} is dense in the unit

circle.

Lemma 2.18. Let a,b € QN [0, 1] with a <b. Let z be an algebraic number such that |z| = 1
and z is not a root of unity. Then there exists a sequence of positive integers {o(n)} and a

positive integer k such that such that:
1. k can be computed from z;
2. o(n) can be computed in polynomial time in n;
3. n<o(n)<n+k-—1 for every positive integer n;

4. Arg(2°") € [2am, 2bn] + 27Z for every positive integer n.

Page 50 of 212

Chapter 2. The complexity of approrimating the complez-valued Potts model

Proof. Our algorithm to compute o(n) is as follows. Set ¢(0) = 0. We compute o(n) as
the smallest integer such that n < o(n) and Arg(z°(") € [2am,2bn]. We can check whether
Arg(z°() € [2am, 2br] or not by applying the procedure given in Lemma 2.17.

We show that o(n) is well-defined. Let § = Arg(z). Since z is not a root of unity, {27 : j € N}
is dense in the unit circle, as we have discussed in the previous paragraph. Therefore, there is
q € N such that Arg(z?) € [0,2(b — a)7]. Note that we can compute ¢ in constant time with the
help of Lemma 2.17. Let 7 = Arg(z%). Since z is not a root of unity, we find that 7 # 0. Let
t = [2m/7]. Since t is the smallest positive integer such that ¢7 > 2x, ¢ can be computed by
sequentially determining which of the following intervals contains the argument of z97: (0, 7/2),
(r/2,7), (m,3w/2) or (3m/2,27). Hence, we can compute k = tq. For each positive integer n,
since t7 > 2w and 7 < 2(b—a)m, there is p,, € {0, ...,t—1} such that n0+p,7 € [2ar, 2b7]+27Z.
The integer m,, = n + p,q satisfiesn <m, <n+k—1 and

mp0 € nO + p,7 + 277 C [2am, 2b7] + 27Z.

We conclude that o(n) is well-defined and n < o(n) < my, < n+k—1, so our algorithm computes

o(n) in polynomial time in n. O

Lemma 2.19. Let z be a root of unity of order k with k & {1,2,4}. Then there exists a sequence

of positive integers {o(n)} and an integer I such that:
1. o(n) can be computed in polynomial time in n;
2. n<o(n) <n+k—1 for every positive integer n;
3. 20 = 2™k for every positive integer n;
4. m<2ml/k < 37m/2.

Proof. Let 6 = Arg(z). Since 6 # 0, we can write § = 275 /k for some integer j coprime with k.
We consider two cases.

Case I: k = 3. Then either we have § = 27/3 and we compute o(n) € {n,n + 1,n + 2}
with o(n) = 2 (mod 3), or we have § = 47/3 and we compute o(n) € {n,n + 1,n + 2} with
o(n) =1 (mod 3). In any case, we have o(n)f € 47/3 + 2n7Z, that is, 27" = e*™/3 for any
positive integer n.

Case II: k > 5. Then there is an integer [such that k/2 < | < 3k/4, that is, 2nl/k €
(m,3mw/2). The Euclidean algorithm gives two integers t1, to such that t1j + tok = 1. We compute
o(n) € {n,...,n+k—1} such that o(n) = t;l (mod k). We can write o(n) = t;l+ g,k for some
integer q,. We have

9 2 27l
o(n)f = tll% Fogn2mj = 1(1— tgk)% t gu2mj = % + (gnj — lt2)27

o(n) —

and, equivalently, z e2mil/k for every positive integer n. O

Page 51 of 212

Chapter 2. The complexity of approrimating the complez-valued Potts model

Corollary 2.20. Let z be an algebraic number such that z ¢ R UiR. Let 6 = Arg(z). Then
there exists a sequence of positive integers {o(n)}, a positive integer k and a positive rational
number C' such that such that:

1. k and C can be computed from z;

2. o(n) can be computed in polynomial time in n;

3. n<o(n) <n+k-—1 for every positive integer n;

4. cos(o(n)f) < —C and sin(o(n)f) < —C' for every positive integer n.

Proof. We may assume that |z| = 1 since, otherwise, we can compute the algebraic number z/|z|
and apply the following algorithm to this quantity. We invoke either Lemma 2.18 for a = 7/12
and b = 8/12 or Lemma 2.19, depending on whether z is a root of unity or not, which can be
checked as explained at the beginning of this section. In any case, we find a sequence ¢ and
a positive integer k that satisfy the first three assertions announced in the statement. In the
non-root of unity case, we have cos(c(n)f) < cos(27b) < 0 and sin(o(n)f) < sin(27a) < 0 for
every positive integer n. In the root of unity case, the sequences cos(o(n)f) and sin(o(n)d)
are negative constants. In any case, we can compute a positive rational number C' such that

cos(o(n)f) < —C and sin(o(n)f) < —C for every positive integer n. O

Corollary 2.21. Let z be an algebraic number with |z| > 1. Then for any x € Q with x > 0,
we can compute n such that Re (2™) > x. Moreover, if z ¢ [0,00), then we can compute m such
that Re (2™) < —x.

Proof. Let z = Re" for some § € [0,2r) and R > 1. We determine if z/|z| = € is a
root of unity or not, and compute its order as explained before. If ¢ is a root of unity
of order k, then z* € (1,00), so computing n is straightforward. If e is not a root of
unity, then, in view of Lemma 2.19 for ¢ = 1/12 and b = 1/6, we can compute a sequence
o such that o(j) > j and o(j)0 € [r/6,7/3] + 2nZ for every positive integer j. We find
that Re(2°¢)) > R%U) cos(w/3) > R’//2. Hence, we can compute j large enough such that
Re(270)) > z and we choose n = o ().

Now let us assume that z ¢ [0,00). Note that ¥ # 1. If €% is a root of unity of order 2 or 4,
then the result is trivial. If 6 ¢ {0, 7/2, 7,37 /2}, then, by invoking Corollary 2.20, we compute
o and a positive rational number C such that o(j) > j and cos(c(j)0) < —C for every positive
integer j. We find that Re(z"(j)) < —CR°U) < —CRJ. Hence, we can compute j large enough
such that Re(2°()) < —z and we choose m = o(j). O

2.4.2 Some shifts for non-real algebraic numbers

In this section we gather some of the shifts that we use in our proofs. Let ¢ be a real algebraic
number with ¢ > 2 and let (x,y) € H, be a pair of algebraic numbers. We are interested in

computing a shift from (z,y) to (z1,y1) € Hq with 1 € R and |z;| > 1 whenever possible.

Page 52 of 212

Chapter 2. The complexity of approrimating the complez-valued Potts model

The existence of this shift turns out to be closely related to the hardness of approximating
| Z1utte (G q,7y)| with v =y — 1; when we can compute such a shift the approximation problem
is #P-hard, as we will see in Section 2.5. Recall that one can evaluate the Tutte polynomial
of a graph in polynomial time at any of the points in {(—4,14), (i, —i), (w3, w3), (w3,w3)}, where
ws = exp(2mi/3) (see Section 2.5.3). These are the points for which our results fail to construct
the desired shift.

The results of this section involve computations that might not run in polynomial time in
the length of the representation of the algebraic numbers ¢, x and y involved. However, when
applying these results, the numbers ¢, x and y are constants and, hence, this will not affect the

complexity of our algorithms.

Remark 2.22. Let q be a positive real number and let (z,y) € Hq. From (x —1)(y —1) =q it
follows that x is real if and only if y is real. Note that x =1+q/(y—1)=(y+q—1)/(y—1).
As noted in the proof of Lemma 2.15, we find that |x| = 1 if and only if [y +q — 1| = |y — 1],
that is, y is on the line 1 — q/2 + iR. Moreover, |x| > 1 if and only if Re(y) > 1 — q/2. Note
that when g > 2 and Re(y) > 0, we have Re(y) > 1 —q/2 and, thus, |x| > 1. These observations

will be applied several times in this section.

Lemma 2.23. Let q be a real algebraic number with ¢ > 2. Let x and y be algebraic numbers
such that (x,y) € Hq and Arg(y) & {0,7/2,27/3, 7,47 /3,37/2}. Then we can compute a theta
graph J that (x,y)-implements (z1,y1) with |z1| > 1 and 1 € R.

Proof. We show how to compute n such that Re(y™) > 0 and Im(y™) > 0. For such a n, we
let y1 =y" and 1 =1+ ¢q/(y1 — 1), so Remark 2.22 ensures that |z1| > 1 and z; ¢ R. Hence,
we can return J as the graph with two vertices and n edges joining them. Since y and |y| are
algebraic numbers, we can compute the algebraic number y/ |y|. We can detect if y/ |y| is a root

of unity or not as explained in Section 2.4.1. There are two cases:

(i) y/|y| is not a root of unity. Then we can apply Lemma 2.18 with a =1/12,b = 1/6 and
z = y" to compute the smallest positive integer n such that Arg(y") € [7/6,7/3]. Recall
that such an integer exists because {(y/|y|)’ : j € N} is dense in the unit circle. Finally,
since Arg(y") € [r/6,7/3], we have Re(y™) > 0 and Im(y™) > 0.

(ii) y/|y| is a root of unity of order r with » > 5. Recall that we can compute r by sequentially
computing the powers of 3/ |y| until we obtain 1. Then we have (y/ |y|)" ™ = ’27/". Note

27 /7

that the real and imaginary parts of e = cos(27/r) + isin(27/r) are positive. O

Note that the argument given in Lemma 2.23 strongly uses the fact that ¢ > 2, that is,
1—¢/2 < 0. A proof of a version of Lemma 2.23 with g € (0, 2) is unknown to us. Now we deal with
the cases Arg(y) € {m/2,2n/3,4n /3,37 /2}, where the exemptions (—i, i), (i, —i), (w3, ws), (w3, w3)
arise. Note that (—i,i), (i, —i) € H2 and (w3,ws), (ws,w3) € Hs. In fact, one can easily check
that these are the only pairs (z,y) such that |y| =1 and g € {2, 3}.

Page 53 of 212

Chapter 2. The complexity of approrimating the complez-valued Potts model

Lemma 2.24. Let q be a real algebraic number with ¢ > 2. Let x and y be algebraic numbers
such that (z,y) € Hq, y # 0 and Arg(y) € {2n/3,4n/3}. If ¢ # 3 or |y| # 1, then we can
compute a series-parallel graph J that (x,y)-implements (x1,y1) with |z1| > 1 and x1 € R.

Proof. Note that y/ |y| is a root of unity of order 3. We have Re(y) = |y| cos(27/3) = — |y| /2 < 0.
Let z =1+ q/(y — 1). We consider three cases.

Case I: Re(y) > 1 —¢/2. Then, by Remark 2.22, |z| > 1. We return J as the graph with 2
vertices and one edge joining them.

Case II: Re(y) < 1—¢/2. Then |z| < 1. Let y, = 1+ ¢/(z™ — 1). An n-stretch gives a
shift from (z,y) to (x™,y,). Since x ¢ R, there are infinitely many values of n such that y, ¢ R.
Note that y, converges to 1 — ¢q € (—oo0, —1], and the distance between 1 — ¢ and the set of
complex points {z € C : Arg(z) € {n/2,27/3,4mw/3,3w/2}} is larger than 0. Hence, we can
compute n such that Arg(y,) & {0,7/2,27/3, 7,47 /3,3w/2}. Since (2", y,) € Hgq, the result
follows from applying Lemma 2.23 to (2", y,), the transitivity property of shifts and noticing
that the obtained graph is series-parallel.

Case III: Re(y) =1 — ¢/2. Note that ¢ > 2 because for ¢ = 2 we would obtain Re(y) = 0.

We distinguish three subcases:

e |y| > 1. We compute the smallest positive integer n such that Arg(y™) = 27/3 and
Re(y"™) = —|y|" /2 < 1 — q/2. The proof is concluded by applying Case II to (z,,y"),
where x,, = 1+¢/(y™ — 1), the transitivity property of shifts and noticing that the obtained

graph is series-parallel.

e |y| < 1. We compute the smallest positive integer n such that |y|" < ¢ — 2 and Arg(y") =
27 /3. We have Re(y™) > 1 — ¢/2 (otherwise by applying Re(y") = — |y|" /2 we would find
that |y|" > ¢ —2), so |z,| > 1 for 2, =1+ ¢q/(z™ —1). We return J as the graph with two

vertices and n edges joining them.

e |y =1. Then 1 — ¢q/2 = Re(y) = — |y| /2 = —1/2. It follows that ¢ = 3, but this case
(lyl =1 and ¢ # 3) was excluded in the hypothesis.

This finishes the proof. O

Lemma 2.25. Let q be a real algebraic number with ¢ > 2. Let y be an algebraic number such
that y # 0 and Arg(y) € {mr/2,37/2}.

1. If ¢ > 2, then we can compute a theta graph J that (z,y)-implements (x1,y1) with |z1| > 1
and r1 € R.

2. If g =2 and |y| # 1, then we can compute a series-parallel graph J that (z,y)-implements
(2, y2) with y2 € (—1,0).

Proof. The hypotheses y # 0 and Arg(y) € {n/2,37/2} are equivalent to y # 0 and Re(y) = 0.
Let x =1+ ¢q/(y—1). If ¢ > 2, then 1 — ¢/2 < 0 = Re(y) and |z| > 1 as a consequence of

Page 54 of 212

Chapter 2. The complexity of approrimating the complez-valued Potts model

Remark 2.22; so we return the graph with two vertices and one edge joining them as J. The
second claim (case ¢ = 2) has been studied in [55, Lemma 3.15], where the graph constructed is

a 2-thickening of a k-stretching. O

Corollary 2.26. Let q be a real algebraic number with ¢ > 2. Let x and y be algebraic numbers
such that (2,) € Hq, y & (—00,—1] U [0,00) and (2,) & {(i, 1), (~i, 1), (ws, w3), (whs)},
where wg = exp(2mi/3). Then we can compute (x2,y2) € Hy and a series-parallel graph J such
that |x2| <1 and J (z,y)-implements (z2,y2).

Proof. First, we assume that y € R. The case ¢ = 2 and y € Ri is covered in Lemma 2.25, so
we assume that ¢ # 2 or y € Ri. By applying Lemmas 2.23, 2.24 or 2.25 (depending on the
argument of y), we can compute a graph J that (z,y)-implements (z1,y;) with |z1| > 1 and
z1 ¢ R. We apply Corollary 2.21 with z = z; in order to compute n such that Re(z}) > 1. A
n-stretching of (x1,y1) gives a shift from (z1,y1) to (£,7), where £ =27 and § =1+ ¢/(Z — 1).
We have Re(jj) = 1 + q(Re(z) — 1)/ |2 — 1> > 1, so |[§| > 1. There are two cases:

e i ¢ R. We apply Corollary 2.21 with z = § to compute ¢ such that Re(j!) < 1 — ¢/2 < 0.
We set yo = ' and 29 = 1+¢/(y2—1). By the transitivity property of shifts, we have a shift
from (z,y) to (x2,y2). Since Re(y2) < 1 — ¢/2, we conclude that |z2| < 1 (Remark 2.22).

e § € R. Hence, we have § € (1,00). We can compute a positive integer [such that the norm
of 3/ = jly is larger than 1. Note that 3/ = §'y & R. A parallel composition yields a shift
from (z,y) to (¢/,y), where 2’ =1+ ¢/(y' — 1). We compute the graph J by applying the

previous case to (z/,y').

Now we deal with the case y € (—1,0). A 2-thickening gives us a shift from (z,y) to (a1, b1),
where by = 3% € (0,1) and a; = 1 +¢q/(by — 1) <1 —¢q < —1. A 2-stretching gives us a shift
from (ag,b1) to (ag,bz), where ag = a? > 1 and by = 1 + q/(ag — 1) > 1. We compute a positive
integer j such that bgy < —q and, with the help of a j-thickening, construct a shift from (ag, bs)
to (as, bs) with bg = bJQ The transitivity property of shifts allows us to construct a shift from
(z,y) to (as,bs). To conclude the proof, we apply a parallel composition between the latter shift
and the identity shift from (z,y) to (z,y), obtaining a shift from (z,y) to (z2,y2) with yo = bsy.
Recall that bsy = b;y < —q,%0 q/(y2—1) € (—=1,0) and 22 = 1+ ¢q/(y2 — 1) € (0, 1).

Finally, note that the graphs considered in this proof are series-parallel.]

2.4.3 An approximate shift to (0,1 — q)

In Lemma 2.27 and Corollary 2.28 we give a polynomial-time approximate series-parallel shift

from (z,y) to (0,1 — g) under certain conditions.

Lemma 2.27. Let q € Pr with ¢ > 0. Let (x,y) € Hq such that z,y € Pc and Re(y) <1 —q/2.
Then there is a polynomial-time approzimate theta shift from (x,y) to (0,1 —q).

Page 55 of 212

Chapter 2. The complexity of approrimating the complez-valued Potts model

Proof. Let © =14 ¢q/(y — 1). In light of Remark 2.22, we have || < 1. Therefore, the weight
y; =1+ q/(2) — 1) implemented by an j-stretch converges to 1 — g as j — co. We have

qlzl’ _ qlaf
Tl xf T 1]

qz?
xl —1

g = 1+y;l = (2.7)

We use (2.7) to give a a polynomial-time approximate theta shift from (z,y) to (0,1 —q). Let n
be a positive integer, so the desired accuracy of the quantity in (2.7) is 27". We are going to
return a path graph with j edges for j large enough. It remains to show how to compute j from
n. Since g, |z| € Pr, we can compute b, ¢ € Q such that ¢ <cand 0 < b <1 —|z| (Lemma 2.13).
Hence, |z| <1 —b < 1, and it suffices to compute j with j > log; _,(27"b/c). O

Corollary 2.28. Let g be a real algebraic number with ¢ > 2. Let x and y be algebraic numbers
such that (z,y) € Hq, y & (=00, —1] U [0,00) and (z,y) & {(—i,4), (i, —i), (w}, w3), (w3, w3)},
where w3 = exp(2mi/3). Then there is a polynomial-time approximate series-parallel shift from
(z,y) to (0,1 —q).

Proof. From Corollary 2.26 we obtain a shift from (z,y) to (z2,y2) with |z2] < 1 or, equivalently,
Re(y2) < 1 — q/2. The result follows from applying Lemma 2.27 to (x2,y2) and the transitivity
property of shifts. O

2.4.4 An approximate shift to (z/,y') with ¢’ € (0,1)

In Lemma 2.31 we show that if a sequence z, of complex numbers has certain properties, then
there is w € (0,1) N Pg that is the limit of H?Zl z;j for some non-negative integers eq,es, ...
that we can compute. Then we apply this result to a subsequence of {y,}, where (z",y,) is
the pair implemented by an n-stretch of (x,y), obtaining a polynomial-time approximate theta
shift from (z,y) to some (2/,y") with ¢’ € (0,1) (Lemma 2.32). First, we need the following

elementary results.
Lemma 2.29. We have sin(z) < z < wsin(x)/2 for every x € [0,7/2].

Proof. First, we prove that sin(z) < z for every x € [0,7/2]. Let f(z) = x — sin(z). We have
f'(x) =1 —cos(xz) > 0 for every = € [0,7/2]. Hence, f is strictly increasing in [0, 7/2]. Since
f(0) = 0, we obtain z — sin(z) > 0 for every x € [0, 7/2].

Now we prove that = < wsin(z)/2 for every x € [0,7/2]. Let g(z) = mwsin(z)/2 — x for
every = € [0,7/2]. We have ¢/(z) = mcos(x)/2 — 1. Let y € [0,7/2] such that cos(y) = 2/x.
Note that ¢'(z) > 0 in [0,y), g(y) = 0 and ¢'(z) < 0 in (y,7/2]. Hence, g only reaches a
minimum at z € {0,7/2}. Since g(0) = g(7/2) = 0, we conclude that 0 < 7sin(z)/2 — x for
every x € [0,7/2]. O

Lemma 2.30. Let z € C. Let {z,} be a sequence of algebraic complex numbers such that:

1. we can compute two rational numbers C and R such that C >0, R € (0,1) and |z — z,| <

CR" for every positive integer n;

Page 56 of 212

Chapter 2. The complexity of approrimating the complez-valued Potts model

2. we can compute the representation of the algebraic number z, in polynomial time in n.
Then z € Pc, i.e., z is polynomial-time computable.

Proof. Let n be an arbitrary positive integer. For j = [logg (27"71/C)] we have |z — z;| <
271 Note that j = ©(n) and hence z; is an algebraic number whose representation we can
compute in time polynomial in n. So, we can also compute £; € Q[i] such that |z; — 2;] < 27!

in time polynomial in n. Then, we have that
|z = Zn| <zn — 2|+ |2n — 2n| <277
Since n was arbitrary, we have that z is polynomial-time computable. O
Lemma 2.31. Letr,c € (0,1) N Q. Let {z,} be a sequence of algebraic complex numbers with:
1. |zn| < 1 for every positive integer n;
2. zn=1— f(n) +ig(n) with f,g: Z* — (0,1);
3. er™ < f(n) <r™/2 and er™ < g(n) < r™/2 for every positive integer n.

Then there is w € (0,1) and a bounded sequence of positive integers {e,} such that

‘Hn chj—w‘< AN
j=1 "7 “\2 c¢1-7)

for every positive integer n. Moreover, if the representation of the algebraic number z, can be

computed in polynomial time in n, then w € Pr and e, can be computed in polynomial time in n.

Proof. We can write z, = pne’* for some p,, € (0,1) and 6,, € (0,7/2). Note that 1 — f(n) < py.
Let h(n) =1 — p,. We obtain
0<h(n) < f(n) <r"/2 (2.8)

for every positive integer n. We have

: _Im(z) g(n)
sin (0,,) = o T h(n)’

In view of Lemma 2.29, we obtain

g(n) mg(n)
T—hm) =S 5= hmyy

Since 0 < h(n) < 1/2 (see (2.8)), it follows that
g(n) < 0, < mg(n). (2.9)

As a consequence, we find that, for any integer n with n > 2,

s < S 1Ght) <,
O, g(n) 2cr

(2.10)

Page 57 of 212

Chapter 2. The complexity of approrimating the complez-valued Potts model

where we used the fact that er™ < g(n) < r"/2. The bounds (2.8), (2.9) and (2.10) will be used
several times in this proof.

Let 79 = 0. We define 7, and e, by induction on n. Let e, be the largest integer such that
Tn—1 + enby < 27 and let 7, = 7,—1 + €, 0,,. By definition, {7,,} is an increasing sequence that
is bounded above by 2w. Moreover, we have 27 — 8,, < 7,, since 7, + 0, < 27 contradicts the
definition of e,. That is, we have 0 < 27 — 7,, < 0,,. We show that e, is bounded. Note that
e1 < 27 /60y < 27/(cr), where we used that cr < g(1) < 6y (recall (2.9)). For n > 2 we have

Tn — Tn—1 2T — T On—1 < 7T

0, - On 0, — 2cr’
where we applied (2.10). By combining the latter inequality with the case n = 1 we conclude
that

0<e, =

2
0<e,<— (2.11)
cr

for every positive integer n.
The sequence {e!™} converges to 1. In fact, we show that it does so exponentially fast.

t

Note that the derivative of e has constant norm 1. Therefore, e is a Lipschitz function with

constant 1, that is, |e" — e’*| < |s — t| for every s,t € R. It follows that
[1— ™| = | — ™| < [2r — 7| < 60 < mg(n) < Z0" (2.12)

for every positive integer n, where we applied (2.9).
Now we study the sequence {x,} for z, = [[_, p;j . Since p; € (0,1), {z,} is decreasing
and has a limit w € [0,1). We claim that this is the real number in (0,1) announced in the

statement. First, we prove that w > 0. Let b = [27/(cr)]. In view of (2.11), we have

Recall that a product of the form [[7_; (1 — a,,) with a,, € [0,1) converges to a positive number
if and only if 377, a, converges [111, Proposition 3.1]. From (2.8) we obtain

Zh(n)§§ZT :m

n=1 n=1
and, thus, J[7_; (1 —h(j)) converges to a real number L with L > 0. We conclude that
w > LY > 0, as we wanted to prove. Now we show that {zn} converges exponentially fast to w.
Note that z, = (1 — h(n))" x,_1 and, thus, for n > 2, we have

0<xp1—xp=axp-1(1—(1—=nh(n)))
<1—(1-="h(n)"™ <h(n)e, < :—Tr",
where we used the fact that (1 —z)* > 1 — kx for every x € (0,1) and k € Z*, and the bounds
on h(n) and e, (see (2.8) and (2.11)). We obtain
q q

- - om(1—=r9)
|Tppq — 2n| < Z |Tntj — Tnpj1] < cr Zrn+] B mrn
J=1 =

Page 58 of 212

Chapter 2. The complexity of approrimating the complez-valued Potts model

for any positive integers n and gq. Hence, by making ¢ tend to oo we conclude that

T

for every positive integer n.

In light of (2.12) and (2.13), we obtain for every positive integer n that

n e n e
T, o] <[TL, = o
j=1"1J - j=1 J

n vy iTh T m
<|TL, % = e ol = 67 1] o=l < 57+ g

ol = wl = [l [T, €% = 1| + |20 — w]
J:

Finally, we argue that if the representation of z, can be computed in polynomial time in
n, then e, can be computed in polynomial time in n and we have w € Pgr. Note that e; is
the smallest positive integer such that Arg (2¢') € [37/2,27) U {0} and Arg(2$'*1) € (0,7/2]
and, thus, e; can be computed by sequentially applying Lemma 2.17 with intervals [37/2, 27]
and [0, /2], with the z of Lemma 2.17 equal to z* for every positive integer k < e; + 1. This
takes constant time since the quantities and objects involved are constant. For n > 2, let us
(80 Th—1 = Arg (yn—1))-
Since the sequence {e,} is bounded and the length of the representation of z, is bounded by a

- €
assume that we have computed eq,...,e,_1, and let y,_1 = H;;ll z;’

polynomial in n, the computation of y,_1 takes polynomial time in n. Then e, is the smallest
non-negative integer such that Arg (y,—125") € [37/2,27) U {0} and Arg (yn—12&7t1) € (0,7/2],
and we can compute e, again by sequentially applying Lemma 2.17 with intervals [37/2, 27| and
[0, 7/2], with the z of Lemma 2.17 equal to z* for every positive integer k < e,, + 1. There is a
bounded number of applications of Lemma 2.17 because e, is bounded, and each application
takes polynomial time in n because the length of the representation of v, 12" is polynomial in
n for any k € {1,2,...,e,}. We conclude that w is the limit of a sequence of algebraic numbers
that converges exponentially fast and the representation of its n-th element can be computed in

polynomial time in n. As a consequence, we have w € Pgr by Lemma 2.30.]

Lemma 2.32. Let q be a real algebraic number with ¢ > 0. Let x and y be algebraic numbers
such that (z,y) € Hq, y € R and |x| > 1. Then there is a polynomial-time approximate theta
shift from (z,y) to (2',y') for some (2',y’) € Hq with y' € (0,1) N Pg.

Proof. Since y € R, we have x ¢ R (Remark 2.22). Let us write z = Re? for some R > 1 and
0 € (0,27). An m-stretch gives a shift from (z,y) to (", ym) With y,, = (2™ +¢—1)/(a™ —1).
—im@

By plugging # = Re* in the definition of ¥, and multiplying by R™e — 1 in the numerator

and denominator, we obtain

R?™ — g+ 1+ (¢ —2)R™ cos (mf) — igR™ sin (m0)
14 R?m — 2R™ cos (m#) '

Ym = (2.14)
If 0 € {n/2,37/2}, that is, x € iR, then for m = 2 (mod 4) we have cos (mf) = —1, sin (m#) =0

and)
(1+Rm) —q(l—i—Rm):l—i-Rm—q
(1+ Rm)? 1+Rm

m =

Page 59 of 212

Chapter 2. The complexity of approrimating the complez-valued Potts model

Hence, for m = 2 (mod 4) such that 1+ R™ > ¢, we have y,, € (0,1), so we can choose ¢y = y,
and we are done.

In the rest of the proof we assume that 6 ¢ {mw/2,37/2}. We are going to apply Lemma 2.31
to a subsequence of y,,. First, we invoke Corollary 2.20 with z = z in order to find a sequence

o(m), a positive integer k and a positive rational C' that satisfies:
e o(m) can be computed in polynomial time in m;
e k and C can be computed in constant time from z;
e m < o(m) <m+k—1 for every positive integer m;
e sin(o(m)f) < —C and cos(c(m)f) < —C for every positive integer m.

It follows that
Re (z"(m)) — Re (Rff(m)ew(m)@) < _CR°™ < _CR™.

Since R > 1, we can compute a positive integer m1 such that for m > m; we have Re(:ng(m)) <
1 — ¢/2 and, thus, yg(m)} < 1 (recall that y, = (z™ +¢q—1) /(™ — 1) and Remark 2.22). Let

q — qR™ cos (m0)
m=1— m) = ;
a Re(ym) 14 R2m — 9R™ cos (m@)
—qR™ sin (m0)
by, =1 m) = ;
m(Ym) 1+ R2Zm — 2R™ cos (m#)

that is, ¥, = 1 — a,, + tb,,,. We have
R2(m) < 1 4 R20(m) _ 9R7(™) o5 (0(m)f) < 4R* ™).

Therefore, we obtain

¢

1 Rom) < A (m) < 2qR~7M), I Rpom) <y

) < qR7M). (2.15)

We compute a positive integer ma such that mg > logr(4q) and my > m;. We also compute
a rational number ¢ with ¢ € (0,qCR™™27%=1/4). Note that computing these quantities takes
constant time. Let f(m) = ag(mqmy) and g(1M) = bg(14m,)- In view of (2.15) and the inequalities
R—m—k+1l < R=0(m) < R=™ e find that

cRTM < f(m) <SR, R < g(m) < SR (2.16)
for any positive integer m. The sequence {2} = {Yo(mtms)} satisfies
° ‘zm’ < 1 for every positive integer m;

e 2z, =1— f(m)+ig(m) with f,g: ZT — (0,1);

e f and g are bounded as in (2.16).

Page 60 of 212

Chapter 2. The complexity of approrimating the complez-valued Potts model

e 2z, is an algebraic number whose representation can be computed in polynomial time in
m. This is due to the facts that z, = (z7m+m2) 4 ¢ —1)/(z7(m+m2) 1) o(m) can be

computed in polynomial time in m, and o(m) = O(m).

Therefore, we can apply Lemma 2.31 to the sequence {z,,} for r = R~1. There are 3y € (0,1)NPg

and a bounded sequence of positive integers {e,,} such that

"oyl < (DT g
‘szlzj 4 _<2+c(1—1/R)>R

for every positive integer m. Moreover, we can compute e, in polynomial time in m. Let

M =n/2+4+ 7/(c(1 — 1/R)). For any positive integer n, we can compute an integer m with

m > logy/p (27"/M) and m = ©(n) in polynomial time in n. We obtain

m e
i
‘Hj:l Zj Yy

This gives the following polynomial-time approximate theta shift from (z,y) to (2/,vy’), where

<27

2 =1+ q/(y —1). For each positive integer n we return a graph J, that is the parallel

composition of the path graphs that are used to implement the weights ys(jj.m,), each one

repeated e; times, for j € {1,...,m}. The graph J, (x,y)-implements (&,y) € H, for § =
m €j m €j

Hj:l ZjJ - Hj:l yaj(j+m2).]

Lemma 2.3. Let q be a real algebraic number with ¢ > 2. Let x and y be algebraic numbers
such that (z,y) € Hq, y € (=1,0) U (C\R) and (z,y) & {(i, —i), (—i,1), (w3, w3), (w3, ws3)}, where
w3 = exp(27mi/3). Then there is a polynomial-time approrimate series-parallel shift from (z,vy)
to (2',y') for some (2',y') € Hq with 2’y € Pr and y' € (0,1).

Proof. If y € (—1,0), then a 2-thickening of (z,y) gives the result. Hence, let us assume that
y & (—1,0) in the rest of the proof. There are two cases:

e g+ 2ory¢iR. We apply either Lemma 2.23, Lemma 2.24 or Lemma 2.25, depending on
Arg(y), to find a shift from (z,y) to (z1,y1) € Hq with y1 € R and |z1]| > 1. The graph
of this shift is series-parallel. Then we apply Lemma 2.32 to obtain a polynomial-time
approximate theta shift from (x1,y1) to some (2/,y’) € Hq with 3 € (0,1) NPg. The result
follows from the transitivity property of shifts.

e ¢ =2and y € iR. Since y # +i, Lemma 2.25 gives a shift from (z,y) to (2/,1’) for some
(«',y') € Hq with 3y € (—1,0). A 2-thickening of (2/,y’) gives the result.

The fact that 2’ € Py follows from 2’ =1+ ¢/(y’ — 1) and ¢’ € Pg. O

2.4.5 Approximate shifts for polynomial-time computable real numbers

In this subsection we show how we can obtain a polynomial-time approximate shift from (z,y)

to (2/,y') for any (z,y),(2',y') € Hy when ¢ > 2, y € (0,1) N Pr and ¢/ is a positive real

Page 61 of 212

Chapter 2. The complexity of approrimating the complez-valued Potts model

algebraic number (Lemma 2.4). This extends a particular case of Lemma 2.7 to polynomial-time
computable numbers. Our proof follows the same approach as that of [60, Lemma 22] but we
have to overcome some difficulties that arise when working with the class of numbers Pg. These
difficulties will become apparent in the proof, but the reader that is familiar with the literature
might want to skip the proof. Then we combine this result and Lemma 2.3 to prove Theorem 2.2,

the main result of Section 2.4.

Lemma 2.4. Let q,z,y € Pr such that ¢ > 0, (x,y) € Hq, y is positive and 1 — q/2 <y < 1.

There is a polynomial-time algorithm that takes as an input:
o two positive integers k and n, in unary;
e a real algebraic number w € [y, 1].

The algorithm produces a theta graph J that (x,y)-implements (Z,y) such that ‘g) — fw} <277,

The size of J is at most a polynomial in k and n, independently of w.

Proof. If w =1, then J is the graph with vertices s and ¢ and no edges. In the rest of the proof
we focus on the case w € (0,1).

Recall that x =1+ ¢q/(y — 1). Since ¢ > 0 and y € (1 — ¢/2,1), we find that x € (—o0, —1).
Let y; = 1+¢/(27 —1). A j-stretch gives a shift from (z,y) to (z7,y;). If j is even, then 27 > 1
and y; > 1. Otherwise, 27 < —1 and y; € (1 — ¢/2,1). Moreover, the sequences {y2;+1} and
{y2;} are increasing and decreasing, respectively, and |y; — 1| can be made exponentially small as
a function of j. We use these properties of y; to show that we can compute y, . ¢,.) = H;nzl yjj
such that |y(el,...,em) . w‘ < 27™. Let J be the parallel composition of the path graphs that
(z,y)-implement (27,y;), each one repeated e; times, for j € {1,...,m}. Then J is a theta
graph and, in view of (2.4), we have w(G;q,y — 1) = Y(e,,....e,,) — 1, that is, J (z,y)-implements
(#,9) € Hq With § = y(¢,, . e,)- The graph J is the theta graph output by our algorithm.

First, we define a sequence {d;} that will be related to the exponents ey, ...,en. Since
g,z € Pg, we can compute rational upper bounds of ¢ and = (Lemma 2.13) and, with the help of
these bounds, a positive integer jo such that jo > log, ¢. Let dj =0 for every positive integer j
with j < jo and let d; = 0 for every even positive integer j. For j odd with j > jo we define
dj recursively as the largest non-negative integer such that yg, . q;) = w. The integer d; is
well-defined because 0 < y; < 1 when j is odd and j > jo. An equivalent definition is that {d;}
satisfies

Yi <W0/Ydy,.dy) <1 (2.17)

for every odd integer j with j > jo. A similar sequence {d;} is used in the proofs of [60,
Lemma 22| and [58, Lemma 3.28]. For any odd integer m with m > log, (¢2" — 1) we have
0<1-—yp, <27"and, in light of (2.17),

0<1—w/yug,. dw <1 —ym <27

Page 62 of 212

Chapter 2. The complexity of approrimating the complez-valued Potts model

Since 1 > y(q,,....d,) = w, it follows that

|0 = Yy d) | < Yidrnd)2”" <277 (2.18)

Now we study the size of the integers di,...,d,,. We bound d; using an argument given
in [58, Lemma 3.28]. First, we show that d;, is O(k). We have yjéo > w. We obtain

dj, <log, (w) =log,(w)log, (y).

Since w € [y*,1) and log, (y) > 0, it follows that 0 < log,(w) < k and dj, € O(k). Now we
show that d; is bounded for any j > jo. By applying (2.17) twice, we find that

d_ .
Yj—2 < w/y(dl,---,dj—2) = wyj]/y(dl -----) <Y

for every odd integer j with j > jo. It follows that d; < log(y;—2)/log(y;) (here and in the rest of
this chapter log is taken in base e). For every = € (1,5/4), we have 3(x — 1)/4 < log(x) < x — 1.

Hence, we obtain
_ log(yj—2) _ log(1/y;j—2) _ 41/yj—2—1
77 log(yy) log(1/y;) =3 1/y;—1
_ 4yj 1_yj—2 _ 4yj ’ZU|]+1 < 4yj
Byj2 1—y; Byj2xf T +1 7 3yj2

j2l?,
where the last inequality is a consequence of |z|* (|z]? 2 +1) > |z + 1. Since Yj/yj—2 converges
to 1 and, thus, is bounded, it follows that d; is bounded. We conclude that 37", d; = O(k +m).

Let us assume that we can compute di, . . ., dp, for m = [1+log, (¢2" — 1)]. In light of (2.18),
we can return J as the theta graph that implements the weight w(J;q,y — 1) = Y(dy,osdy) — 1-
Since » ', dj = O(k +m) and m = ©(n), the size of J is at most a polynomial in k and n.

If y were algebraic, computing dy,...,d,, in polynomial time would be straightforward from
their definition because we can efficiently check inequalities between real algebraic numbers as
explained in Section 2.4.1. This is the approach followed in [60, Lemma 22]. However, we only
know that y € Pg and, thus, it is not clear how to efficiently determine whether y(q, . 4, .4 = w
or not for any given d. In the rest of this proof, we show how to overcome this difficulty.

Let n be a positive integer, so 27" is the desired accuracy for our algorithm. Let us assume
that we have computed the integers dy,...,d;j—1 and we want to compute d; for an odd positive

integer j with j > jo. We are going to sequentially try all the values d = 0,1, ... until we have

w
yj < ——— <1,

Y(du,...,d;j—1,d)

in which case we have found the value d; (see (2.17)). Recall that y, . 4, ,4) — 1 is the weight
implemented by a theta graph J; whose size is bounded by a polynomial in k and j. Therefore,
by applying Lemma 2.15 with G = J; and v = y — 1, we can compute in polynomial time in n
and the size of Jg, a positive integer f(n + 2, Jy) with f(n+ 2, J3) = n + O(size(Jy)) such that
if |y — 4| < 27/ F290) then |w(G;q,7) — w(G;q,%)| < 27" 2. Since y € Pg, we can compute

Page 63 of 212

Chapter 2. The complexity of approrimating the complez-valued Potts model

n+2.J4) in polynomial time in n and the size of Jj.

a rational number 4 such that |y — 4| < 2=
Let (ay,..d;j_1,d) = w(G;q,%) + 1. Then we have computed in polynomial time in k,j and n a

rational number gj(d17.._7dj717d) such that

~ —n—2
Y(di,....dj—1,d) — y(dlr-wdj—lvd)‘ <2 :

Because ‘g(dl7.,,7dj71,d) — w‘ is a real algebraic number, we can check if the following inequality

holds in polynomial time,

Ddyody 1ty — W] <2777 (2.19)

If that is the case, then

Y(dy,....dj_r,d) — w‘ <)y(dl,l..,dj_l,d) — Q(dl,..l,dj_l,d)‘ + ‘Q(dl,.‘.,dj_l,d) —w| <3-27"/4 <27,

SO Y(dy,....d;_1,d) 18 @ good enough approximation of w and we can stop the algorithm (even

though we have not computed d;). Otherwise, we claim that Y(dy,....d;_1,d) = w if and only if
Y(dy,....dj—1,d) >w. If @(dlw-wdjflyd) > w and w > Y(dy,....dj—1,d)» then

\Z)(dl,...,dj,hd) —w| < \ﬁ(dl,...,dj,hd) — y(d1,...,dj,1,d)‘ <o 2

and (2.19) holds, a contradiction. The same reasoning applies when Y(dy,odj_1,d) < w and w <
Y(dy,oondj_1,d)- Hence, we can check whether Y(dy,..d;_1,d) = W Or NOt by checking Q(dl,...,dj_l,d) > w,
provided that (2.19) does not hold. This gives a procedure to compute d; for odd j with j > jo:

1. Set d = 0.

2. If (2.19) holds, then return d. We have failed to compute d;, but we have succeeded in

finding an approximation of w.
3. If Y(dy,....d;_1,d+1) = W, then increase d by 1 and go to step 2. Else, we have d; = d.

We repeat this procedure to compute d; sequentially until (2.19) holds, in which case we
stop and return the graph J associated to (4, .. d;_;.4)-

It remains to show that this procedure always halts and runs in polynomial time. In light of
(2.18), we find that, for odd m > log,(¢2"* — 1),

|Gy = W] < |Ddrrsdm) = Yoo + Yy — 0] <2777

that is, (2.19) holds. Therefore, our procedure that computes non-negative integers dy, . .., dyn—1,d
with ’y(dl,_“’dmil,d) — w‘ < 27" halts for m = O(n). As a consequence, the whole procedure runs

in polynomial time in k£ and n. O

The proof of Lemma 2.4 can be adapted to to the case w € (1,y~*]. The main difference
is that this time we work with the decreasing sequence {y2;}. We set d; = 0 for odd j and,
for even j, we define d; recursively as the largest non-negative integer such that y,, . 4, < w.
The details of the proof are left to the reader. When studying the hardness of approximating

Zrutte(G5 q,y) we only need the version stated in Lemma 2.4.

Page 64 of 212

Chapter 2. The complexity of approrimating the complez-valued Potts model

Theorem 2.2. Let ¢ > 2 be a real algebraic number. Let x and y be algebraic numbers
such that (z,y) € Hq, y € (—1,0) U (C\R) and (z,y) & {(i,—1), (—i,7), (w3, w3), (w3, w3)},
where wy = exp(2mi/3). Then, for any pair of real algebraic numbers (z',y') € H, there is a

polynomial-time approzimate series-parallel shift from (x,y) to (2',y').

Proof. First, let us assume that y' € (0, 1]. By Lemma 2.3, there is a polynomial-time approximate
series-parallel shift from (x,y) to (Z,7) for some (z,7) € H, with Z,§ € Pgr and g € (0,1). Since
q>2,wehave 1l —¢q/2<0and g€ (1—¢q/2,1). Hence, Lemma 2.4 gives us a polynomial-time
approximate theta shift from (Z,9) to (z/,y'). Since § € 1 — q/2+ iR =1 — ¢q/2 + iqR and
Z,7 € Pg, the transitivity property of polynomial-time approximate shifts, Lemma 2.16, for
(x1,y1) = (2,9), (x2,92) = (Z,7) and (z3,y3) = (2/,y’) gives us a polynomial-time approximate
series-parallel shift from (z,y) to (2/,/).

Now we treat the case y' = 0. As a consequence of what we have just shown in the paragraph
above, there is a polynomial-time approximate series-parallel shift from (z,y) to (1—2¢,1/2) € H,.
An n-thickening gives a shift from (1 — 2¢,1/2) to (z,,27 "), where z,, = 1+ ¢/(27" — 1), so
there is also a polynomial-time approximate theta shift from (1 — 2¢,1/2) to (1 — ¢,0). We
conclude that there is a polynomial-time approximate series-parallel shift from (z,y) to (1 —¢,0)
by applying Lemma 2.16 with (z1,y1) = (z,v), (z2,y2) = (1 — 2¢,1/2) and (z3,y3) = (1 — ¢,0).
Note that we can indeed apply Lemma 2.16 because 1 — 2¢,1/2 € Pg and 1/2 ¢ 1 — q/2 + igR.

Now we deal with the case 3/ > 1. We use again the polynomial-time approximate series-
parallel shift from (x,y) to (x1,11) = (1 — 2¢,1/2) € H,. We use a 2-stretch to (1 — 2¢,1/2)-
implement (z2,y2) with 29 = (1 —2¢)?> > 9 and yo = 1 + ¢/(z2 — 1) > 1. Hence, there is
a polynomial-time approximate series-parallel shift from (z,y) to (x2,y2). Since xo and ys
are real algebraic numbers with yo > 1 and (z2 — 1)(y2 — 1) = ¢ > 0, in view of Lemma 2.7,
we have a polynomial-time approximate theta shift from (x2,92) to (2/,y"). Note that yo &
{1} U (1 — q/2 + igR). Hence, we can apply the transitivity property shown in Lemma 2.16
with (z1,y1) = (z,v), (z2,y2) = (z2,y2) and (x3,y3) = (2/,9') and find a polynomial-time
approximate series-parallel shift from (z,y) to (2/,7/).

Finally, we study the case ¢y < 0. In light of Corollary 2.28, there is a polynomial-time
approximate series-parallel shift from (z,y) to (0,1 — ¢). Note that 1 — ¢ < —1. In this proof
we have already shown that there is a polynomial-time approximate series-parallel shift from
(x,y) to (x3,y3) € Hq for y3 = y'/(1 —¢q) > 0. Since y' = y3(1 — ¢), by Lemma 2.11 with
parameters (x1,y1) = (2,9), (x2,y2) = (0,1 — ¢q) and (x3,y3) = (x3,y3), we conclude that there

is a polynomial-time approximate series-parallel shift from (z,y) to (2/,y'). O

2.5 Hardness results

We begin with obtaining lower bounds on Zrye(G;q,7) for algebraic numbers ¢ and v. In
Section 2.5.2, we review the algorithm of [78] for computing algebraic representations, and in

Section 2.5.3 the exact #P-hardness results that we will use. The rest of the section gives various

Page 65 of 212

Chapter 2. The complexity of approrimating the complez-valued Potts model

ingredients that are needed in the reduction, which are put together in Section 2.5.8 where we

prove all of our main theorems of this chapter.

2.5.1 Properties of Zrute(G; q,7y) for algebraic numbers ¢ and ~

In this section we give a lower bound on Zyyie(G;q,y) and study the degree and height of
Zrutte(G5 q,y) when ¢ and «y are algebraic numbers. First, we have to introduce some concepts
and results from algebraic number theory. The degree of an algebraic number - is the degree of its
minimal polynomial p, and we denote it by d(y). Recall that the degree of a field extension F/K
is the dimension of F' as a K-vector space, and it is denoted by [F': K]|. It is well-known that if
is algebraic, then [K(v) : K] is the degree of the minimal polynomial of v over K [112, Chapter
5]. In particular, we have [Q(7) : Q] = d(vy). The usual height of a polynomial f € Z[x1,...,zy]
is the the largest value among the absolute values of its coefficients and it is denoted by H(f).
The usual height of v is H(y) = H(p). One can find several (non-equivalent) definitions of the
height of an algebraic number in the literature. Another one of these definitions is the absolute
logarithmic height. First, we have to introduce the Mahler’s measure of a polynomial f € Z[x],

which is given by]
M(f) = Jaa [max{1, aul}.
i=1
where f(x) = Z;'lzo a;jx?, ag # 0, and ay, ..., aq are the roots of f. It is well-known that
27D H(f) < M(f) < H(OVA(F) + 1, (2:20)

see [118, Lemma 3.11]. The Mahler’s measure of an algebraic number v with minimal polynomial
pis M(y) = M(p). The absolute logarithmic height of v is h(vy) = d() " log M (7). Note that
h(y) > 0 because M(vy) > 1. Now we can state a lower bound for the evaluation of a polynomial

at algebraic numbers.

Lemma 2.33 ([118, Section 3.5.4]). Let f € Z[x1,...,zn] be a polynomial in m variables and
let y1,...,vm be algebraic numbers. If f(y1,...,vm) # 0, then we have

|f(71a s 7'Ym)| > e_CTv

where T =deg f +1log H(f), c= D24+ h(y) + -+ h(ym)) and D = [Q(71,...,vm) : Q].

Corollary 2.34. Let g and vy be algebraic numbers. We can compute a rational number Cy , with
Cyry > 1 such that, for any graph G, either Zrue(G; 0,7) = 0 or | Zgue(G; 4,7)| > Cg57.

Proof. Recall that we represent an algebraic number 7 as its minimal polynomial p and a
rectangle of the complex plane where ~ is the only root of p. Let G = (V, E) be a graph. Let
n = |V| and m = |E|. Let us assume that Zmue(G;q,77) # 0. We can apply Lemma 2.33

for f(a,7) = Zruwe(G;q,7) to find that |Zrue(Giq,7)] = €~
Lemma 2.33. We have ¢ = D(2 + h(q) + h(v)) and D = [Q(q,7v) : Q], so ¢ > 2. Note

I where ¢ and T are as in

Page 66 of 212

Chapter 2. The complexity of approrimating the complez-valued Potts model

that, by definition of Zmye, we have H(f) < 2™ and deg f < n + m. Hence, we find that
| Z1utte (G5 q,7)| > e 257¢(G) Tt remains to compute a rational number C, . in (€%, 00) to
conclude the result. From D = [Q(q,~) : Q], we can compute D exactly. Moreover, we can apply
(2.20) to upper bound h(gq) and h(7) in terms of the usual heights and degrees of ¢ and ~, and

compute an appropriate rational number C,, with the help of these upper bounds. O

The case ¢ = 2 (Ising model) of Corollary 2.34 has previously been shown in [55, Lemma
6.4]. Note that the approach followed in this section can be applied to obtain lower bounds for
other partition functions.

In the rest of this section we upper bound the degree and the usual height of the algebraic
number Zryite(G; q,y) in terms of the usual heights and degrees of ¢ and . We will make use
of these bounds in the proof of Lemma 2.41.

Let ¢ and ~y be two algebraic numbers. By the tower law, we have [Q(q,7) : Q] = [Q(q,7) :
Q(9)][Q(q) : Q] < d(q)d(~y), where we used that the degree of the minimal polynomial of ~ over
Q(gq) is bounded by d(v). Since Ztutte(G; g,) is in Q(q,7y), it follows that its degree is bounded
by d(q)d(7).

Now we argue how we can bound the usual height of Zmyute(G;q,7y). A well-known property
of the absolute logarithmic height is that h(af) < h(a) + h(8), h(a+ B) <log2+ h(a) + h(5)
and h(1/a) = h(a) [118, Property 3.3]. Moreover, if n is an integer, then h(n) = log|n|. A more

general property is the following one.

Lemma 2.35 ([118, Lemma 3.7]). Let f € Z[z1, ..., 2] be a non-zero polynomial in t variables

with integer coefficients. Let v1,...,v be algebraic numbers. Then

h(f (v, m) <log L(f) + Y deg,. (f)h(v)),
j=1

where L(f) is the sum of the absolute values of the coefficients of f and degmj(f) is the degree
of f with respect to the j-th variable.

Corollary 2.36. Let g and v be algebraic numbers. Then, for any graph G = (V,E) with

n = |V| and m = |E|, we have

Z (G;q,’y)> (Z (G;q,’y)> 2d(g)d(v)
st st m+1/2 _nh(q)+mh(vy)
dl ——) <d(g)d and H| =— 2| < (2 e .
<Zst(G;q,v) (@)d() Zst (G 4,7) ()

Proof. The degree bound on Z,,(G;q,7)/Zst(G;q,7) follows from the fact that that it is in
Q(q,7). For its absolute logarithmic height, we have

(Zst(G; 4,7)
Zs(Gq,7)

Note that L(Zs(G5q,7)) + L(Zs:(G;q,77)) = 2™. As a consequence of Lemma 2.35, we find that

) < h(Zst(G54,7) + b (Zg4(G54,7)) -

h(Zs(G5q,7)) + h (Zs‘t(G; 4,7)) < 2(mlog2+ nh(q) + mh(v)).

Page 67 of 212

Chapter 2. The complexity of approrimating the complez-valued Potts model

Recall that M («) = exp(d(a)h(«)). Thus, the bounds on the Mahler’s measure (2.20) yield the
inequality H(a) < (2exp(h(a))) ™). We conclude that

<Zs|t(G§ qu)) - (262<m10g2 nh(g) +mh(7))>d(Q)d(’Y) _ <2m 172 (o) +mh(7))2d(Q)d(’Y)‘ -
Zs(Gia.7))~
One could derive analogous bounds to those of Corollary 2.36 for the algebraic number

Zrutte(G5 q,) by applying the same argument.

2.5.2 Computing representations of algebraic numbers via approximations

Kannan, Lenstra and Lovész [78] showed how to reconstruct the minimal polynomial of an
algebraic number from a certain number of digits of its binary expansion, and we will use their

algorithm as a black-box in our reduction of Section 2.5.5, in the following form.

Lemma 2.37 ([78, Theorem 1.19]). Let a be an algebraic number and let d and U be upper
bounds on the degree and usual height, respectively, of a. Suppose that we are given a rational
approzimation @ to « such that |a —@| < 27°/(12d), where b is the smallest positive integer
such that

ob > 2d2/2(d + 1)(3d+4)/2U2d‘

Then the minimal polynomial of o can be determined in O(d®(d +logU)) arithmetic operations
on integers having O(d*(d + logU)) binary bits.

The algorithm in Lemma 2.37 is based on the Lenstra—Lenstra—Lovész lattice basis reduction

algorithm, we refer the reader to [123] for more details.

2.5.3 Exact Hardness results

We will use the following hardness results from [73] regarding the problem of exactly evaluating
Zrutte(G5 q,7), given a graph G. We refer to this problem as TUTTE(q,y). Jaeger et al. [73]
identify the following 9 “special” points of the Tutte plane: (1,-1), (0,0), (4,-2), (2,-2),
(2,-1), (2,—i—1), (2,i — 1), (3,w? — 1), and (3,w3 — 1), where i = /=1 and w3 = exp(2mi/3).2
With these special points in mind, their main result on the complexity of TUTTE(q,~y) can be

stated as follows.

Theorem 2.38 ([73, Proposition 1]). Let g and v be algebraic numbers. Then TUTTE(q,~) is
#P-hard unless ¢ =1 or (q,7) is a special point, in which case TUTTE(q,~y) is in FP.

In [116], Vertigan studied the complexity of the problem PLANARTUTTE(q,), which also

turns out to be hard for most parameters g and ~.

Theorem 2.39 ([116, Theorem 5.1]). Let ¢ and v be algebraic numbers. Then PLANARTUTTE(q,)
is #P-hard unless g € {1,2} or (q,7) is a special point, in which case PLANARTUTTE(q, ") is in
FP.

2In the (z,y)-parametrisation, the special points are (0,0), (1,1), (=1, —1), (0,—1), (=1,0), (i, —i), (—i,1),

(wg,wg), and (wg,wg).

Page 68 of 212

Chapter 2. The complexity of approrimating the complez-valued Potts model

2.5.4 Computational problems

In this section, we define a few computational problems that will be useful in our reductions;
these were also considered in [55]. Let ¢ be a real algebraic number, ~1,...,7; be algebraic

numbers, and K, p be real numbers with K > 1, p > 0.

Name: SIGN-TUTTE(q, 71, ...,7%) — here v1,..., v are real.
Instance: A (multi)graph G and a weight function 4: E — {vy1,..., 7}
Output: A correct statement of the form Zmyite(G5q,%) > 0 or Zmutte(G;q,5) < 0.

Name: FACTOR-K-NORMTUTTE(q, V1, ..., 7k)-

Instance: A (multi)graph G and a weight function 4: E — {y1,...,7%}-

Output: If Zyue(G; q,%) = 0, the algorithm may output any rational number. Otherwise, it
must output N € Q such that N/K < | Zrutte (G q,9)| < KN.

Name: DISTANCE-p-ARGTUTTE(q, 7).

Instance: A (multi)graph G.

Output: If Zyute(G; q,v) = 0, the algorithm may output any rational number. Otherwise, it
must output A € Q such that, for some a € arg(Zmutte (G q,7)), we have |A —al < p.

We also consider these problems for the Potts model (with parameters ¢ and y = v+ 1), and
we write POTTS instead of TUTTE in the name of these problems when we refer to the Potts
ones. We also consider all these problems restricted to planar graphs, in which case we write
PLANARTUTTE instead of TUTTE in the name of the problem. It is a trivial observation that

the planar case reduces to the general case.

2.5.5 Reducing exact computation to sign and approximate computation

In this section, we first review the binary search technique of [55], which we will refer to as
“interval-shrinking”. Then, we use this to obtain several of our inapproximability theorems.

Let f(¢) = —eA + B be a linear function, where A and B are real algebraic numbers with
A #0. Let ¢* = B/A be the zero of f. Let (¢/,¢”) be an open interval with length [> 0 such
that * is in (¢/,€”) or, equivalently, f(g')f(e”) < 0. We want to find a small open subinterval of
(¢’,€") that contains *.

First, assume that we have an oracle that, on input &, outputs the sign of f(¢), unless when
f(e) =0, in which case the output of the oracle is unreliable. Let €g,¢1,...,e4 be a partition
of the interval (¢/,&"”) such that eg = &', &4 = &” and ;41 — g; > /10 for every i € {0,...,3}.
We invoke the oracle with input &; to determine the sign of f(g;) for every i € {0,...,4}; let
s; be the answer of the oracle. Then, we have a monotone sequence sy, ..., s4 of positive and
negative signs with sy # s4. Hence, there are two possibilities: either sg = s1 = s9, in which
case €1 < £* and we can recurse on (€1,£4), Or So = S3 = 84, in which case ¢* < £3 and we can

recurse on (g9,€3). In any of these two cases, we can shrink the interval (¢/,&”) to at most 9/10

Page 69 of 212

Chapter 2. The complexity of approrimating the complez-valued Potts model

of its original length. Then, recursively, we can find an open subinterval of arbitrarily small
length containing the zero of f.

Next, assume that we have an oracle that returns a multiplicative approximation to the
norm of f. More accurately, let n = 1/41 and suppose that we have an oracle that, on input €,

returns a value f (¢) satisfying
(=17 < 3 FE1 <) < 1+) IfE)

when f(g) # 0 (otherwise the value f(e) is unreliable). The approach given in [55] by Goldberg
and Guo to shrink (¢/,&"”) is as follows. First, let us assume that A > 0, so f is strictly
decreasing. Let €g,¢1,...,c10 be a partition of the interval (¢',¢") such that g = &', e19 = £”
and €41 —g; > 1/20 for every ¢ € {0,...,9}. These numbers are not chosen to be optimal
but they suffice. We invoke our oracle to compute f(az) for i € {0,...,10}. Let s; be the sign
(positive, negative, or zero) of f(sl) - f(€i+1) for each ¢ € {0,...,9}. We analyse the signs s; for
i €{0,...,9}. First, we consider the case €; < g;41 < €*. Note that we have f(g;) > f(gi+1) > 0.
Moreover,

A~

fle)) = fleiv1) =@ —n) fle) = (L+n) f (1)
—4

(8i+1 —& —nN (28* —&; — 51'4_1)) .

Note that €* — ¢; and €* — g;41 are both at most [and, thus, we obtain 2¢* —¢; — g;4.1 < 2l. So
since n = 1/41 and ¢;41 — ¢; > /20, we conclude that s; is positive. Now we consider the case

e* < g; < gi+1. This time we have f(g;41) < f(eg;) <0,

A~

fe) = Ffleim) <@ +n) (=f (@) — 1 =n) (= f (i11))
= —A(eiy1 —ei—n(ei +eiy1 — 267)),

and 0 < g; + €41 — 2¢* < 2l. We conclude that s; is negative. If ¢; < &* and €* < g;41, then we
do not know what the value of s; will be. However, this is true for at most two consecutive values
of 7. With these properties of the signs s; in mind, let us study the sequence sg, ..., sg. There
are two possibilities. The first one is that sg, s1, s2, s3 are all positive, in which case €9 < €* and
we can recurse on (£2,£19). The second possibility is that sg, s7, g, sg are all negative, in which
case €* < eg and we can recurse on (g9, eg). In any of these two cases, we can shrink the interval
(e',e") to at most 9/10 of its original length. Again using binary search it is possible to find a
small open subinterval containing the zero of f. Let us now assume that A < 0. In this case,
one can analogously prove that the sign s; is positive when ¢; < £,41 < €* and negative when
e* < &; < €41, so the same procedure allows us to shrink (¢/,&").

Let ¢ and v be real algebraic numbers with g ¢ {0,1} and 7 > 0. Let H be a graph and let
s and t be two distinct connected vertices of H. We are going to apply these interval stretching

techniques to the linear function

flesH,v) = Zg(H; q,7) <1 - 2) +¢ (Zst(H§ 4,7) + CllZsu(H;qry)) : (2.21)

Page 70 of 212

Chapter 2. The complexity of approrimating the complez-valued Potts model

Let us write this function as f(e; H,v) = B(H,v) —€A(H,~), where B(H,v) = Zy,(H;q,7)(1—
1/q) and A(H,~v) = —Zu(H;q,7) — ¢ ' Zg(H; q,). We have

1
f(0:H,) = Zy(H; q,7) (1 - q> ;
fl=qH,v) = (1= q)Zs(H;q,7).
Under certain hypotheses, we are going to prove that f(0; H,~)f(1—q; H,v) < 0,s0 A(H,~y) # 0

and f(—; H,7) has a zero between 0 and 1 — ¢g. This allows us to find a suitable interval where

(2.22)

we can perform interval-shrinking. For this purpose we will also need Lemma 2.40, that tells us
that the zero of f(—; H,~) is not close to either 0 or 1 — q.

Lemma 2.40. Let g and v be real algebraic numbers with g ¢ {0,1} and v > 0. Let H = (V, E)
be a graph and let s and t be two distinct connected vertices of H. Let n = |V|, m = |E|,
r = max{n,m} and ¢ = 2max{|qg|,1/|q|} max{vy,1/~v}. Let * be the zero of the function
f(esH,v) = B(H,v) — A(H,~), defined as in (2.21). Let us assume that |Zs(H;q,v)| > ¢,
|Zg(H;q,7)| > ¢ and A(H,v) # 0. Then we have |1 —q—e*| > [1—q| ¢ and |¢*] >
[1—1/q|c™?".

Proof. In view of the definition of f(e; H,~) and equation (2.22), we have

q o MEHY) = fA= ol _ L= allZs (Hig,7)]

|ACH,)] - |A(H,)]

1—qg—c¢

Note that
JAH,)] <Y max{|ql, 1/]q]} [g/* D |y < e (2.23)
ACE

r

Moreover, we have | Z4(H; q,7)| > ¢~ by hypothesis, so we conclude that |1 —q—¢&*| > |1—q|c™?".
Analogously, we find that

e = FEHY) = FO _ L= Vel |Zae (Hig)] ‘1_

> 7, O
|A(H,7)| |A(H,)|

Lemma 2.41. Let K be a real number with K > 1. Let q, v1 and 2 be real algebraic numbers
such that ¢ > 1, v1 € (=2,—1) and 72 > 0. Let us assume that we have access to an oracle
for FACTOR-K-NORMPLANARTUTTE(q,v1,72). Then there exists an algorithm that takes as
input a positive integer p and a planar graph H along with two distinct connected vertices s and
t of H, and, for v = (y2 + 1) — 1, this algorithm computes a representation of the algebraic
number Zy(H; q,7)/Zst(H; q,7) in polynomial time in p and the size of H. Moreover, if we
have access to the more powerful oracle FACTOR-K-NORMTUTTE(q, v1,72), then we can remove

the constraint that H is planar.

Proof. Since FACTOR-K-NORMPLANARTUTTE(q, z) is equally hard for any K > 1 (see Sec-
tion 1.3), we may assume that K =1+ n for n = 1/41.

Let p, H = (V, E) and s,t be the inputs of our algorithm. Let n = |V| and m = |E|. Let
¢ = 2max{|q|,1/|q|} max{~y,1/~}, so ¢ > 2, and let »r = max{n, m}. Let H' be a copy of H with

Page 71 of 212

Chapter 2. The complexity of approrimating the complez-valued Potts model

an extra edge from s to t. Let 7/ be a weight that we can implement and let £ =+’ + 1, so the
pair (1+¢/(e —1),¢) is (¢,7) written in (z,y) coordinates. We will choose 7" and argue how we
can implement 4/ later in the proof. When we say we implement ¢, we mean that we implement
the pair (1+ ¢/(¢ — 1),¢) in (z,y) notation or, equivalently, +'.

Let 7 be the weight function on H’ that assigns the weight v to the edges of H and the

weight 7' to the new edge. Then, as was observed in [59, Lemma 2], we have
/
Zruwwe(H';4,7) = Zst(H; ¢,7) (1 +7') + Zg(H; ¢,7) (1 + z>

1 1
= f(e;:H,7),

where f(g; H,~) was introduced in (2.21). Hence, Zrue(H'; ¢, T) can be seen as a function, with
variable ¢, of the form f(e; H,v) = B(H,~) — ¢A(H,~), where B(H,v) = Zy,(H;q,7)(1 —1/q)
and A(H,v) = —Zy(H;q,7) — ¢ *Zs:(H; q,7). This construction will be used several times
in this section. Now we analise f(—; H,~) for our particular setting (¢ > 1). Since ¢ and ~
are positive, the quantities Zg(H;q,v) and Zy,(H;q,) are positive, so A(H,~) is negative.
From ¢ > 1 and (2.22), it follows that f(0; H,v) = B(H,~v) > 0 and f(1 — ¢q; H,7v) < 0, so
fO;H,v)f(1 —q; H,v) < 0 as we wanted. We conclude that the zero £* of f(e; H,~) is in
(1 —¢,0). Note that € € (1 — ¢,0) if and only if 4" € (=g, —1). Moreover, we have

Zg(Hs;q,v) > gy >,

_ (2.25)
Zg(H;q,v) > q" > ¢

This allow us to apply Lemma 2.40. Once we have all these properties of f(e; H,~y) at our disposal,
we can proceed to describe our algorithm. Our algorithm also works for ¢ € (—o00,0) N (0,1) as
long as f(0; H,v)f(1 —q; H,v) < 0 and the hypotheses of Lemma 2.40 hold. In the rest of the
proof we will only use the fact that ¢ > 1 one more time, but this will be made explicit and can
easily be adapted to the case ¢ < 1 as we will explain in Lemma 2.43.

Our algorithm computes a positive integer jo such that ¢=7 < |g — 1|/2. Let j be an integer
with j > jo. We will first show how to additively approximate Zy,(H;q,v)/Zst(H;q,7) with
error at most 2|glc™7/|q — 1].

If we could efficiently implement the point (1 —¢/(e — 1),¢) (in (x,y) coordinates) for any
e € [1 — ¢, 0] using only planar graphs, then our algorithm could perform the interval-shrinking
technique explained at the beginning of this section. This would allow us to compute an interval
of length at most ¢=/~4" where the linear function f(g) has a zero, which would, in turn, provide
us with the desired additive approximation, as we will see later. However, some difficulties arise
since we do not know how to implement any specific real algebraic weight. This difficulty was
overcome by Goldberg and Jerrum by developing Lemmas 2.7 and 2.8. Here we use the version
of these lemmas given in Corollary 2.9. Let y3 =y + 1, 21 =1+ ¢q/(y1 — 1), y2 =72 + 1 and
x9 = 14 ¢q/(y2 — 1). Note that y; € (—1,0), y2 > 1 and g # 0. Hence, Corollary 2.9 allows

Page 72 of 212

Chapter 2. The complexity of approrimating the complez-valued Potts model

us to efficiently implement approximations of real algebraic numbers when applied with the
parameters x1,y1, X2, y2. Every time we invoke Corollary 2.9 we will be using these parameters.
We are going to use this corollary to implement approximations of ¢ € (1 — ¢,0). This is the
only point where our algorithm uses the fact that v; € (=2, —1) or, equivalently, y; € (—1,0).
In further lemmas where we study the case ¢ < 1, we will have to implement approximations
of e € (0,1 — ¢q) and, hence, we will get away with the weaker hypothesis v; € (—1,0), or,
equivalently, y; € (0,1). (This hypothesis is “weaker” in the sense that a 2-thickening of a
y1 € (—1,0) implements a y; € (0,1).)

We want to implement numbers &’ and €” so that ¢* € (¢/,£"”) C (1 — ¢,0). Note that here
we are using that ¢ > 1. When ¢ < 1 our algorithm would work on the interval (0,1 — q)
instead of (1 — ¢,0). This paragraph is the last time that we use the hypothesis ¢ > 1 in this
proof. The argument given in this paragraph will be revisited when we deal with the case
g < 1 in further lemmas. Our algorithm first applies the algorithm given in Corollary 2.9 with
y = —(1—1/q)c™?"/2, k such that |y1|* < || < |y1]7F and n = [2rlogy(c) —logy(1 —1/q) +2].
Note that & = O(r) and n = O(r). This procedure computes a theta graph and a weight function
taking weights in {1,72} that implement a point (1+¢/(¢” —1),£"”) such that |y —&"| <27 <
(1 —1/q)c™?" /4 in polynomial time in r = O(size(H)). We have —3(1 — 1/q)c 2" /4 < " <
—(1—1/q)c™?" /4, so, by Lemma 2.40, we find that £* < £” < 0. Now our algorithm invokes again
Corollary 2.9, this time with inputs 3’ =1 — ¢ + (¢ — 1)c=27/2, k such that |y1|¥ < || < |y1|7*
and n = [2rlogy(c) — min{0,logy(q — 1)} + 2]. This implements (1 + ¢/(¢' — 1),¢&’) with
|y’ — €| < (q—1)c™? /4, which gives 1 —q+ (¢ — 1) 2" /4 <&’ <1—q+3(q—1)c"?" /4. Again
by Lemma 2.40, we find that 1 — g < &’ < ¢*. The interval (¢/,£") is the starting interval for the
interval-shrinking procedure.

Let us assume that we are carrying out the interval-shrinking technique explained at the
beginning of this section, so we have an interval (¢/,¢”) of length | where f changes sign.
Let us also assume that we can implement the endpoints & and &’. We want to find a
subinterval of length at most 91/10 where f changes sign. We can assume that [> ¢ 774",
since otherwise we do not need to shrink the interval further. Let p = 10 be the number of
subintervals into which (&’,¢”) is partitioned by the interval-shrinking technique. We want to
find numbers €1, ...,e,—1 such that we can implement the point (1 + ¢/(e; — 1),¢;) for every
ie{l,....,p—1} and, for ¢g = &’ and ¢, = ", we have ¢; —g;_1 > 1/2p for every i € {1,...,p},
which is what is required to perform interval-shrinking. For each i € {1,...,p — 1}, our
algorithm computes ¢, = ¢’ + il/p and then it applies the algorithm given in Corollary 2.9
with 3/ = &}, k such that |y1|* < |y/| < |y1|™* and n = [(j + 47)logy(c) + logy(4p)]. This
procedure computes a graph and a weight function taking weights in {71, v2} that implement
a point (1 + ¢/(g; — 1),&;) such that |} — ;]| < 27 < ¢ 7% /(4p). This application of
the procedure given in Corollary 2.9 takes polynomial time in j, » and k. Note that k is
polynomial in 7 and j because |1 —q| > |¢}| > I/p > ¢ 74 /p for any i € {1,...,p — 1}. The
algebraic numbers ¢’,¢1,...,p_1,€” form a partition the interval (¢/,&”). Our algorithm has

computed theta (and, thus, planar) graphs that implement (1 + ¢/(e; — 1),¢€;), so it can use

Page 73 of 212

Chapter 2. The complexity of approrimating the complez-valued Potts model

the oracle FACTOR-K-NORMPLANARTUTTE(q, 71,72) to multiplicatively approximate f(g;) for
every i € {0,...,p}. Note that

Ei—Eil1> €& —€E_q — c_j_4r21p > 2lp
for every ¢ € {1,...,p}. Therefore, our algorithm can apply the interval-shrinking technique
discussed at the beginning of this section to shrink (¢’,£").

To guarantee that this interval-shrinking technique computes an interval of length at most
c¢~7=4 it suffices to subdivide the original interval [(j + 47) log1g/9(c) +10g19/9 |1 — g[] times
due to the fact that each iteration shrinks the interval to 9/10 of its size. In [59] and [55] the
authors used the information provided by this interval-shrinking procedure to solve the problem
#MINIMUM CARDINALITY (s,t)-CuUT for arbitrary graphs (not-necessarily planar). Here we fol-
low a different approach that allows us to compute the representation of Z,;(H; q,7v)/Zst(H; q,7).

Once our algorithm has computed an interval of length at most ¢=7~%" where f has a zero, it
implements a point (14 ¢q/(£ —1),€) such that £ is in this interval. This can be done by applying
Corollary 2.9 with the same parameters as before other than ¢, which is set as the middle point
of the computed interval. Let * be the zero of f. Note that |¢ — £*| < ¢7=%". Recall that
f(e;H,v) = B(H,~) — A(H,v)e. For a graph H' and a weight function 7 as in (2.24), with

v/ = & —1 (which we can now implement as promised before (2.24)), we obtain
| Zrutee (H'q,7)| = [f(E)] = |£(€) = (") < [A(H, 7)™ <7077, (2.26)

where we used the elementary bound |A(H,v)| < ¢", which has been established in (2.23). By
dividing by Zg (H;q,7) in (2.24), which is non-zero, and rearranging the terms we find that

ZTutte (Hl§ QaT) é + (1 é - 1> Zs\t (H7 Q77>

Zst (H;q,7) q) Za(H;q,7)
Dividing by 1+ (¢ = 1)/q = (¢ — 1 + &) /q yields
qZTutte (Hl;% T) o éq Zs\t (H7 Qary)

: - _ : 2.27
(q—14+8)Zs (H;q,7) l—-qg—¢ Zg(H;q,7) ()

We claim that [1 —q — | > |1 — g/ /2. Recall that in view of Lemma 2.40, we have

|1 —q—¢e*| > |1 —g|c?". Hence, we obtain

. 1—
l—g—&>1—g—e—|"—¢ 2\1—Q\c_2r—c_]_4’”2’2q‘c‘2’1

where we used that ¢=/=%" < ¢Joc=4" < |¢ — 1| ¢=%"/2 by definition of jo. Therefore, we can
apply this lower bound in conjunction with (2.25), (2.26) and (2.27) to conclude that

Zs|t (H,q,’)/) . éq _ S 2’CI‘ ’ZTutte (H/;q77)|c37" S 2|Q’ C_j.
Za(H;q,v) 1—q—¢ [1—q 1 —q

Our algorithm then computes £q/(1—¢—¢) as an approximation of o = Zy), (H;q,7) /Zst (H; q,7).

We have shown that « is a real algebraic number that we can additively approximate up to

Page 74 of 212

Chapter 2. The complexity of approrimating the complez-valued Potts model

an error at most 2|glc™//|1 — ¢| in polynomial time in j and the size of H. Technically, our
approximation £q/(1 — ¢ — €) is another algebraic number. For this reason, our algorithm
approximates £q/(1 — q — €) by a rational number @ (with additive error at most 2|g|c™/ |q¢ — 1])
and uses this rational number as our approximation of a. The overall error that we make is
then |a —a| < 4lq|c7/ |1 — q|.

In view of Corollary 2.36, we have d(«) < d(q)d(v) < d(q)d(7y2), where we have used that
v € Q(v2) and, thus, d(v) < d(v2). Moreover, Corollary 2.36 yields

H(a) < <2m+1/26”h(Q)+mh(7))Qd(Q)d(v).

Since h(y) = h((y2 —1)» — 1) < p(1 + h(72)) by Lemma 2.35, our algorithm can compute a
rational number D, ., with D, > 1 such that H(a) < Dg;izze(m. The only non-trivial step of
this computation is upper bounding h(g) and h(7y2) in terms of the degrees and usual heights of
q and 72 as in (2.20). Let d = d(q)d(y2) = O(1) and U = Dg,i,i;e(H). Let b be as in Lemma 2.37.
Then we have 20 = O(Dg%g Size(H)), so b= O(psize(H)). By choosing j appropriately, we can
use the algorithm that we have developed in this proof to find a rational approximation @ with
lo —@| < 27%/(12d). As we have argued, this takes polynomial time in b and size(H). Since
b = O(psize(H)), we conclude that the computation of @ runs in polynomial time in p and
size(H). Once we have computed this approximation, our algorithm invokes the algorithm given
in Lemma 2.37 to determine the minimal polynomial of a in time O(d°(d+log U)) = O(psize(H)).
Finally, it remains to compute an interval of the real line where « is the only root of its minimal
polynomial. Since « is a real algebraic number and we know its minimal polynomial, our
algorithm can use Sturm sequences to isolate the real roots of this minimal polynomial. Then,
by approximating « it decides which one of the computed intervals corresponds to «.

Finally, note that our algorithm also works for arbitrary graphs (not-necessarily planar) as

long as our oracle provides us with reliable answers for any graph. O

Lemma 2.42. Let q, v1 and 7y be real algebraic numbers such that ¢ > 1, v1 € (—=2,-1)
and vo > 0. Let us assume that we have access to an oracle for the computational problem
SIGN-PLANARTUTTE(q, 71,72). Then there exists an algorithm that takes as input a positive
integer p and a planar graph H along with two distinct connected vertices s and t of H,
and, for v = (y2 4+ 1)? — 1, this algorithm computes a representation of the algebraic number
Zy(H;q,7)/Zst(H;q,7) in polynomial time in p and the size of H. Moreover, if we have access
to the more powerful oracle SIGN-TUTTE(q,v1,72), then we can remove the constraint that H is

planar.

Proof. The algorithm is exactly the same one of Lemma 2.41. The proof is analogous too. The
only difference is in the interval-shrinking technique, where we split (¢’,e”) into 4 intervals
instead of 10 (so p = 4 in the proof), but this has been discussed at the beginning of this

section. O

Page 75 of 212

Chapter 2. The complexity of approrimating the complez-valued Potts model

Lemma 2.43. Let K be a real number with K > 1. Let q, v1 and 72 be real algebraic numbers
such that 0 < g < 1, v1 € (—1,0) and 2 > 0. Let us assume that we have access to an oracle
for FACTOR-K-NORMPLANARTUTTE(q,v1,72). Then there exists an algorithm that takes as
input a positive integer p and a planar graph H along with two distinct connected vertices s and
t of H, and, for v = (y2 + 1) — 1, this algorithm computes a representation of the algebraic
number Zy(H;q,7)/Zst(H; q,7) in polynomial time in p and the size of H. Moreover, if we
have access to the more powerful oracle FACTOR-K-NORMTUTTE(q, v1,72), then we can remove

the constraint that H is planar.

Proof. We claim that the algorithm presented in Lemma 2.41 also works in this setting. Let
f(e;H,v) = B(H,vy) —cA(H,~) as in (2.21). As we pointed out in the proof of Lemma 2.41,
the algorithm works as long as f(0; H,7)f(1 — ¢; H,v) < 0 and the hypothesis of Lemma 2.40
hold. First, since ¢ and ~ are positive, equations (2.25) hold. It follows that A(H,vy) =
—Zg(H;q,7) — q ' Zs(H; q,v) # 0. Hence, the hypothesis of Lemma 2.40 hold. In view of
(2.22) and the fact that ¢ € (0, 1) and y is positive, we have f(0; H,v) < 0 and f(1—g¢; H,v) > 0.
We conclude that f(0; H,v)f(1 —¢; H,7y) < 0, as we wanted.

This time the interval-stretching technique applied in Lemma 2.41 runs on a subinterval (&', ")
of (0,1 — q), so we only need to implement positive values of . For this reason, we can get away
with the hypothesis 1 € (—1,0) instead of the hypothesis v; € (=2, —1), as was announced in the
proof of Lemma 2.41. Finally, we must indicate how our algorithm implements the numbers &’ and
e’ so that e¢* € (¢/,¢") C (0,1—q), as this was only done in Lemma 2.41 for ¢ > 1. The argument
that we give here also applies when ¢ < 0. Let y1 =v1+ 1, 21 =14+¢/(y1 — 1), y2 =12+ 1 and
29 =1+¢q/(y2—1). We have y; € (0,1), y2 > 1, ¢ < 1 and ¢ # 0. Our algorithm first applies the
algorithm given in Corollary 2.9 with ¢ = |1 — 1/q| ¢™2"/2, k such that |y1|* < |y/| < |y1|7% and
n = [2rlogy(c) — min{0,log, |1 — 1/q|} + 2]. Note that £ = O(r) and n = O(r). This procedure
computes a theta graph and a weight function taking weights in {71,72} that implement a point
(1+q/(g'—1),€") such that |y —&’| < 27" < [1—1/g|c™?" /4 in polynomial time in r = O(size(H)).
We obtain |1 —1/g|c™?"/4 < &’ < 3|1 — 1/q|c2" /4, so, by Lemma 2.40, we find that 0 < ¢/ < *.
Next our algorithm invokes again Corollary 2.9, this time with inputs ¢/ =1 —q — (1 — ¢)c2"/2,
k such that |y1|¥ < |¢/| < |y1]7% and n = [2rlogy(c) — min{0,logy(1 — ¢)} 4 2]. This implements
(1+q/(e" —1),&") with |y —&"| < (1 —q)c=?"/4, which gives 1 — ¢ —3(1 — q)c 2 /4 < " <
1—q+(1—gq)c /4. Again by Lemma 2.40, we find that e* < ¢” < 1 — ¢q. The interval (¢’,¢")

is the starting interval for the interval-shrinking procedure that we needed. O

Lemma 2.44. Let q, v1 and 2 be real algebraic numbers such that 0 < ¢ < 1, y1 € (—1,-0)
and vo > 0. Let us assume that we have access to an oracle for the computational problem
SIGN-PLANARTUTTE(q, 71,72). Then there exists an algorithm that takes as input a positive
integer p and a planar graph H along with two distinct connected vertices s and t of H,
and, for v = (y2 + 1)? — 1, this algorithm computes a representation of the algebraic number
Zg(H;q,7)/Zst(H;q,7) in polynomial time in p and the size of H. Moreover, if we have access
to the more powerful oracle SIGN-TUTTE(q,v1,72), then we can remove the constraint that H is

Page 76 of 212

Chapter 2. The complexity of approrimating the complez-valued Potts model

planar.

Proof. The algorithm is exactly the same the one of Lemma 2.43, the only difference being in

the interval-stretching technique as we have already explained. O

Lemma 2.45. Let K be a real number with K > 1. Let q, v1 and 72 be real algebraic numbers
such that ¢ < 0, v1 € (—1,0) and 2 > 0. Let us assume that we have access to an oracle for

FACTOR-K-NORMPLANARTUTTE(q, 71,72). Then there exists an algorithm that takes as input:
® a positive integer p ;

e a planar graph H = (V, E) such that, for v = (y2+1)” —1, we have v > (8 max{|q[, 1/|q|})",
where r = max{|V|, |E|};

e two distinct connected vertices s and t of H.

This algorithm computes a representation of the algebraic number Zy,(H;q,v)/Zst(H;q,7)
in polynomial time in p and the size of H. Moreover, for such inputs p, H and s,t, we
have Zg(H;q,7v) # 0 and Zpue(H;q,7v) # 0. If we have access to the more powerful oracle
FACTOR-K-NORMTUTTE(q, 71, 72), then we can remove the constraint that H is planar.

Proof. We claim that the algorithm presented in Lemmas 2.41 and 2.43 also works in this
setting. Let n = |V| and m = |E|. Let ¢ = 2max{|q|,1/|¢q|}y. We may assume that r > 2.
First, let us assume that H is connected. Let f(e; H,p) = B(H,~v) — cA(H,~) as in (2.21),
so B(H,7) = Zy(H;q,7)(1 = 1/q) and A(H,v) = —Zu(H;q,7) — ¢ ' Zs:(H; ¢, 7). Recall
that we have to prove that the conditions of Lemma 2.40 hold, as well as the inequality
fO; H,v)f(1—q;H,v) < 0. Let 6 = (2max{|qg|,1/|q|})"/y. Note that 0 < § < 1/4 because
v > (8max{|q|,1/|q|})". Each one of the (at most 2™) terms in Zy(H;q,7), other than the
term with all edges in A, has absolute value at most Y™~ 1|q| max{|q|, 1}"~1 < §27™~™|q|. Since

H is connected, the term with all edges in A is ¢7y"*. Thus, we have the inequalities
Y"'q —0v"q| < Za(H;q,7) < 7v™q+07™]q| < 0. (2.28)
In particular, Zg(H;q,7v) # 0. It also follows that
| Zst(H;q,7)[2 7™"ql(1 = 0) = 7™[q[3/4 = ¢,

which is one of the conditions of Lemma 2.40. Recall that an (s,t)-cut of H is a subset A of
edges of H such that any path from s to ¢t in H has an edge in A. The size of this (s, t)-cut is
the cardinality of A. Let k be the size of a minimum cardinality (s,t)-cut in H, and let C be the
number of (s, t)-cuts of size k. We study the terms "W ~IAl appearing in Zyi(H;q,7), 80 Ais a
subset of F such that s and ¢ are not connected in (V, A). Note that such an A is the complement
of an (s, t)-cut and, hence, |A| < m — k. Moreover, if A is not the complement of an (s, t)-cut of
size k, then the absolute value of ¢"*)~I4l is at most 4%~ 1¢2 max{1, |¢|}" 2 < 627"y Fg2.

Thus, we have the inequalities

0<Cy™ kg — 5y < Zy(Hyq,7) < Cy™Fg? + 6y kg (2.29)

Page 77 of 212

Chapter 2. The complexity of approrimating the complez-valued Potts model

The inequalities (2.28) and (2.29) have been previously given in the proof of [59, Lemma 2]. As

a consequence, we find that
| Zg(H; q,7)] = CY"*¢*(1 = 6) > Cy™*¢?3/4 > 7" *¢?3/4 > 7,

which is another one of the conditions of Lemma 2.40. In view of (2.22) and the facts that
q < 0 and we know the signs of Z,,(H;q,v) and Zs(H;q,7), it follows that f(0; H,v) > 0 and
f(1—¢;H,v) < 0. Hence, we find that f(0; H,v)f(1 —q; H,v) < 0, as we wanted. Note that
A(H,~) has to be non-zero because f(—; H,~) is non-constant as f(0; H,v)f(1 —q; H,v) < 0.
This is the last condition of Lemma 2.40 that we had to check. We conclude that we can apply the
algorithm given in the proof of Lemma 2.43 to compute Z,.(H;q,7)/Zst(H;q,) in polynomial
time in p and the size of H. Finally, we show that Zrue(H;q,y) # 0. This is not needed for
the algorithm of Lemma 2.43, but is part of the statement of the current lemma. In light of
(2.28) and (2.29), we have |Zy(H;q,7)| = v™|q|(1 — 8) and |Zy,(H;q,7)| < Cy™*¢?(1 +).
Note that

3 5 _
Y lal(t = 0) > 9"lal > SCv™ Fo? > "R (1 +6),

where we used that v > (8 max{|q|, 1/|¢|})" > 8 -2™|q| > 5C|q| since r > 2. Therefore, we find
that |Zg(H;q,7v)| > ‘Z5|t(H; q,fy)!. We conclude that

Zrutee(H;q,7) = Zst(H; q,7) + Zgp(H; q,77) < 0.

It remains to consider the case where H is not connected. Let Hy,..., H; be the connected
components of H, and let us assume that the vertices s and ¢ are in H; without loss of generality.
We have

Zs (H;q,7) = Zgt (H134,7) Zutte (H23¢,7) -+ Zrutte (Hi3 ¢,7) 5
Zs\t (H;q,7) = Zs|t (H1;4,7) Zrutte (H2; ¢,7) * + + Z1utte (H15¢,7) 5
Zutte (H3¢,7) = Z1uste (H1; ¢57Y) ZTuste (H2;¢,7Y) - - - ZTutte (Hi3 ¢,7) -

We have already shown that Zy (H1;q,7), Ze (H1;q,7) and Zrue (Hj; q,7) are non-zero for all
j. Hence, we obtain Zy,(H;q,7v)/Zst(H;q,7) = Zgs(H1;4,7)/Zst(Hi;¢,7), and we can apply
our algorithm to H; instead of H. Moreover, we have Zg (H;q,v) # 0 and Zrue(H;q,77) # 0

as we wanted. This finishes the proof. O

Lemma 2.46. Let q, v1 and 2 be real algebraic numbers such that ¢ < 0, v € (—=1,0) and
vo > 0. Let us assume that we have access to an oracle for SIGN-PLANARTUTTE(q, y1,72)-

Then there exists an algorithm that takes as input:
® a positive integer p ;

e a planar graph H = (V, E) such that, for v = (y2+1)” —1, we have v > (8 max{|q|,1/|q|})",
where r = max{|V|,|E|};

Page 78 of 212

Chapter 2. The complexity of approrimating the complez-valued Potts model

e two distinct connected vertices s and t of H.

This algorithm computes a representation of the algebraic number Zy,(H;q,v)/Zst(H;q,7)
in polynomial time in p and the size of H. Moreover, for such inputs p, H and s,t, we
have Zg(H;q,v) # 0 and Zpuue(H;q,7y) # 0. If we have access to the more powerful oracle
SIGN-TUTTE(q, 71,72), then we can remove the constraint that H is planar.

Proof. The algorithm is the same one as that of Lemma 2.45, the only difference being in the

interval-stretching technique, as we have already explained. O

Now we deal with the last part of our reduction, where we reduce the computation of
Zutte(G5 ¢,) to the computation of Z,,(H;q,7)/Zst(H;q,v) on the subgraphs H of G. First,

let us introduce some notation.

Definition 2.47. We say that a pair (q,7) of algebraic numbers is zero-free for a graph G if
q # 0 and, for every subgraph H of G and every pair of distinct vertices s and t in the same

connected component of H, the quantities Zs;(H,q,~) and Zrue(H, q,7y) are non-zero.

Note that if (q,7) is zero-free for G, then (q,) is also zero-free for any subgraph of H. We

consider the following computational problems.

Name: RATIOTUTTE(q, 7).
Instance: A (multi)graph G = (V, E) such that (g,) is zero-free for G and two distinct vertices
s and t in the same connected component of G.

Output: A representation of the algebraic number Zy,(G;q,7)/Zx(G; g, 7).

Name: ZEROFREETUTTE(q, 7).
Instance: A (multi)graph G = (V, E) such that (¢,) is zero-free for G.
Output: A representation of the algebraic number Zmyie (G q,7).

We also consider the planar versions of these problems, RATIOPLANARTUTTE(q,) and
ZEROFREEPLANARTUTTE(q,y). Then we can express the last part of our reduction as a

reduction between these two computational problems.

Lemma 2.48. Let q and v be algebraic numbers with q # 0. Then we have the reductions

ZEROFREEPLANARTUTTE(q,7) <7 RATIOPLANARTUTTE(q, 7),

ZEROFREETUTTE(q,v) <7 RATIOTUTTE(q,).

Proof. First, we show ZEROFREEPLANARTUTTE(q,y) <7 RATIOPLANARTUTTE(q,~). Let G
be the input of ZEROFREEPLANARTUTTE(q,). The reduction computes a representation of
Zrutte(G5 q,v) as follows. We assume that G is not a tree since it is known how to compute the
Tutte polynomial of a tree in polynomial time [109, Example 2.1]. Then we can find an edge
e = (s,t) of G that is not a bridge. We are going to use the oracle for RATIOPLANARTUTTE(q,)

Page 79 of 212

Chapter 2. The complexity of approrimating the complez-valued Potts model

to reduce the computation of Zmyite(G; q,7y) to that of Zruie(G \ €;¢,7), where G \ e is formed
from G by deleting e. Note that if G is planar, then G \ e is also planar. Since (g,~) is zero-free
for G, we have Zy(G;q,7) # 0. Let a = Zy,(G;q,7)/Zst(G; ¢, 7). First, note that

Zutte (G56,7) = Zst (G50,7) + Zgi (G50,7) = Zst (G5¢,7) (1 +).

By calling the oracle the algorithm obtains a representation of the factor 1 + . Since e is not a
bridge, s and t are connected in G \ e, so, by calling the oracle again, the algorithm has access

to a representation of the algebraic number 8 = Z,(G \ €;q,7)/Zst(G \ €;q,7). We have
Zst (G;¢,7) = Zst (G\ €;0,7) (1 4+7) +7¢ ' Zy (G \ €5¢,7)

1+ 1B
= Ztutte (G'\ €5.¢,7) (14_; 7 11—1—5) ’

where we multiplied and divided by Zrute(G \ €;4,7) = Zst(G \ €;¢,7v)(1 +), which is non-zero
since (g,7) is zero-free for G. Note that the fact that Zpue (G \ €;¢,7) # 0 is equivalent to
8 # —1. We obtain

1+«
1+

The algorithm then computes a representation of Zyyte(G \ €; q,) recursively. Note that this

Ztutte (G5 ¢,7) = Z1utte (G \ €;¢,7) (1 ++ ’Yq_lﬁ) (2.30)

reduction also works between the non-planar versions of the problems. O

In the rest of this section we put our reduction together. There is one result for each one of
the cases ¢ > 1, 0 < ¢ < 1 and ¢ < 0 (see Lemmas 2.49, 2.50 and 2.53).

Lemma 2.49. Let K be a real number with K > 1. Let q, v1 and 2 be real algebraic numbers
such that ¢ > 1, y1 € (—=2,—1) and v2 > 0. Then we have the following reductions:

PLANARTUTTE(q, 72) <7 FACTOR-K-NORMPLANARTUTTE(q, 1, 72)

PLANARTUTTE(q, 72) <7 SIGN-PLANARTUTTE(q, 1, 72),

where <p denotes a Turing reduction. Moreover, these reductions also hold for the analogous

non-planar problems.

Proof. We claim that the problems PLANARTUTTE(q, 72) and ZEROFREEPLANARTUTTE(q, 72)
are equivalent. This follows from the fact that (q,~2) is zero-free for every graph G. Lemma 2.48
gives us a reduction from ZEROFREEPLANARTUTTE(q, v2) to RATIOPLANARTUTTE(q,72). Re-
call that we have ¢ > 0, y1 € (—2,—1) and 72 > 0. Thus, we can apply Lemma 2.41 with
p = 1 to obtain a reduction from the problem RATIOPLANARTUTTE(q,72) to the problem
FACTOR-K-NORMPLANARTUTTE(q, 71,72), which gives the first reduction of the statement.
The second reduction is derived analogously, but this time we apply Lemma 2.42 instead of
Lemma 2.41. Finally, note that our reductions also hold for the non-planar version of the
problems since the algorithms given in Lemma 2.41 and Lemma 2.42 work for arbitrary graphs

(non-necessarily planar) as long as the oracle does. O

Page 80 of 212

Chapter 2. The complexity of approrimating the complez-valued Potts model

Lemma 2.50. Let K be a real number with K > 1. Let q, v1 and 72 be real algebraic numbers
such that 0 < ¢ <1, y1 € (=1,0) and 2 > 0. Then we have the following reductions:

PLANARTUTTE(q, 72) <7 SIGN-PLANARTUTTE(q, 71,72),

PLANARTUTTE(q, v2) <7 FACTOR-K-NORMPLANARTUTTE(q, v1,72)-

Moreover, these reductions also hold for the analogous non-planar problems.

Proof. The proof is analogous to that of Lemma 2.49; now, we instead combine Lemmas 2.48, 2.43
and 2.44.]

So far we have obtained reductions when ¢ > 1 or 0 < ¢ < 1. To obtain a similar result when
q < 0 we have to introduce the following variant of TUTTE(q,), where ¢ is an algebraic number

and « is a positive real algebraic number.

Name: THICKENEDTUTTE(q,).

Instance: A (multi)graph G = (V, E).

Output: A representation of the algebraic number Zyue(G; ¢, (7+1)P(%) —1), where p(G) is the
smallest positive integer such that (y+1)?(%) —1 > M(G) for M(G) = (8 max{|q|,1/|q|})"
and r = max{|V|, |E|}.

We also consider the planar version of this problem, THICKENEDPLANARTUTTE(q,), where
the input graph is promised to be planar.

Lemma 2.51. Let q be an algebraic number and let v be a real algebraic number with v > 0.
Then the problem THICKENEDPLANARTUTTE(q,) is #P-hard unless g € {1,2}, and the problem
THICKENEDTUTTE(q,) is #P-hard unless ¢ = 1.

Proof. We are going to reduce PLANARTUTTE(q,2) to THICKENEDPLANARTUTTE(q,y). The
result then follows from the #P-hardness of PLANARTUTTE(q, 2), cf. Theorem 2.39.

Let G be an m-edge instance of PLANARTUTTE(q,2). For j =1,...,m, let G; be the graph
obtained from G by j-thickening each of its edges. We have M(G;) = (8 max{|q|, 1/|q|})max{mim}
so M(G}), and therefore p(G;), are non-decreasing in j. Let y; = (y+1)77(¢5) — 1 and note that
Ztutte (G5, (v + PG —1) = Ztutte(G;q,7;). Note that the points v1,..., vy, are distinct
because jp(G;) < jp(Gjt1) < (§ + 1)p(Gj41) for every j. Moreover, their representation is
polynomial in the size of G, and hence so is the representation of Zmye(G;q,7;)-

The reduction constructs G, ...,Gy, and computes Zryie(G;q,7;) using the oracle for
THICKENEDPLANARTUTTE(q, v) with input G;. By interpolation, we then recover the polyno-
mial Zyytte(G; q,), whose degree is m when ¢ is viewed as a constant, in time polynomial in
the size of G. The reduction is then completed by evaluating Zyyite(G; q,) at x = 2.

Finally note that this reduction also works from TUTTE(q,2) to THICKENEDTUTTE(q, 7).
The only difference is that TUTTE(q, 2) is also #P-hard for ¢ = 2 (see Theorem 2.38), so we also
get #P-hardness in this case. O

Page 81 of 212

Chapter 2. The complexity of approrimating the complez-valued Potts model

We are going to reduce the problem THICKENEDPLANARTUTTE(q,72) to the problem
FACTOR-K-NORMPLANARTUTTE(q, 71, 72) for appropriate v, and 7,. In order to do so, we need
to adapt Lemma 2.48 to this context. For this purpose, we consider the following computational

problems.

Name: RATIOTHICKENEDTUTTE(q,).

Instance: A (multi)graph G = (V, E), two distinct connected vertices s and ¢ of G, and a
positive integer p such that, for v, = (vy+1)? —1, (q,,) is zero-free for G and v, > M(G),
where M (G) = (8 max{|q|,1/|¢|})" and r = max{|V|, |E|}.

Output: A representation of the algebraic number Z,,(G;q,7,)/Zst(G; q,7,)-

Name: ZEROFREETHICKENEDTUTTE(q, 7).

Instance: A (multi)graph G = (V, E) and a positive integer p such that, for v, = (y+ 1) — 1,
(q,7,) is zero-free for G and v, > M(G), where M(G) = (8 max{|q|,1/|q|})" and r =
max{|V], | El}.

Output: A representation of the algebraic number Zryte (G5 q,7,)-

We also consider the planar versions of these problems, RATIOTHICKENEDPLANARTUTTE(q, 7)
and ZEROFREETHICKENEDPLANARTUTTE(q,).

Lemma 2.52. Let q and ~y be algebraic numbers with ¢ # 0. Then we have the reductions

ZEROFREETHICKENEDPLANARTUTTE(q, v) <7 RATIOTHICKENEDPLANARTUTTE(q,),

ZEROFREETHICKENEDTUTTE(q,v) <7 RATIOTHICKENEDTUTTE(q,).

Proof. The reduction is almost exactly the one explained in Lemma 2.48. The only difference
is that, for an input (G, p), each call to the oracle has as parameters a subgraph H of G, two

vertices s and t determined in the reduction, and the same positive integer p. O

Lemma 2.53. Let K be a real number with K > 1. Let q, v1 and 72 be real algebraic numbers
such that ¢ <0, v1 € (—1,0) and v2 > 0. Then we have the following reductions:

THICKENEDPLANARTUTTE(q, v2) <7 SIGN-PLANARTUTTE(q, 71, V2),

THICKENEDPLANARTUTTE(q, 72) <7 FACTOR-K-NORMPLANARTUTTE(q, 71, 72).

Moreover, these reductions also hold for the analogous non-planar problems.

Proof. Let G and p be the inputs of THICKENEDPLANARTUTTE(q,72). Let H be a subgraph
of G and let s and t be two distinct connected vertices of H. By applying Lemma 2.45
we find that Zg(H;q,(v2 + 1) — 1) and Zrue(H;q, (72 + 1)? — 1) are non-zero. Hence,
(q,(y2 + 1)? — 1) is zero-free for G. This shows that THICKENEDPLANARTUTTE(q, y2) re-
duces to ZEROFREETHICKENEDPLANARTUTTE(q, 72). Lemma 2.52 gives us a reduction from
ZEROFREETHICKENEDPLANARTUTTE(q, 72) to RATIOTHICKENEDPLANARTUTTE(q, 72). Re-
call that we have ¢ < 0, v; € (—1,0) and 2 > 0. Thus, Lemma 2.45 gives a reduction from

Page 82 of 212

Chapter 2. The complexity of approrimating the complez-valued Potts model

RATIOTHICKENEDPLANARTUTTE(q, 72) to FACTOR-K-NORMPLANARTUTTE(q, 71, 72), which
completes the proof for the first reduction of the statement. The second reduction is analogous,
but this time we apply Lemma 2.46 instead of Lemma 2.45. Finally, note that our reductions
also hold for the analogous non-planar problems since the algorithms given in Lemma 2.45 and

Lemma 2.46 work for arbitrary graphs (non-necessarily planar) as long as the oracle does. [

2.5.6 The connection between approximate shifts and reductions

In this section we show how a polynomial-time approximate shift from (q,v1) to (g,72) may
allow us to reduce the problems of approximating the norm of the Tutte polynomial at (g,2) to
the same problem at (q,71) (see Lemma 2.5). We also derive a similar result for the problem
DISTANCE-p-ARGTUTTE(q,y) in Lemma 2.55.

Lemma 2.54. Let q, v1 and o be algebraic numbers with ¢ # 0 such that there is a polynomial-

time series-parallel approzimate shift from (q,v1) to (q,72). Then there is an algorithm that has

as input a graph G and a positive integer k and computes, in polynomial time in k and the size

of G, a graph H and a representation of an algebraic number D with D # 0 such that

Z putte (H; q,71)
D

Moreover, if the graph G is planar, then the graph H is also planar, and if ¢ and v are real,

<27k

ZTutte (G7 q, ’72) -

then D is also real.

Proof. Let G = (V, E) and k be the inputs of the algorithm. Let n = |V| and m = |E|. By
the definition of series-parallel polynomial-time approximate shifts, for any positive integer
J, one can compute, in polynomial time in j, a series-parallel graph J; that -;-implements
4 with |y2 —4| < 277 for terminals s and t. By definition of implementations, we have
¥ =qZst(Jj59:1)/ Zs)e(Jj50,71) and Zg(Jj; ¢, 71) # 0. We construct a graph G that is a copy
of G where every edge f in G has been replaced by a copy of J; as in Lemma 2.6, identifying
the endpoints of f with s and ¢. In light of Lemma 2.6, we have
. m
ZTutte (GjS %’71) = (W) ZTutte (G; Qﬁ) .

We can compute a representation of D; = Z, (Jj5¢,71) /q* in polynomial time in the size of
Jj because J; is a series-parallel graph. However, note that this hypothesis is not essential as
long as there is some way to compute a representation of D; while constructing J;. Note that

4] < |yl + 277, 50 | Z1utte(G; 4, 72) — Z1uste(G; ¢,7)| is upper bounded by

|A]—1

A ~ N Al—1—t

> Jal™ ‘7'2 '—W‘A" <S> g =41 Hg ity

ACE ACE t=0
1\ lA]-1
k(A ~
< 310" e =31 (141 = 1) (el + 5)
ACE

N 1\m—1
< b =Alla* 2" m = 1) (lel +5) " -

Page 83 of 212

Chapter 2. The complexity of approrimating the complez-valued Potts model

Hence, for j such that 277|q|"2™(m — 1)(|]ye| + 1/2)™~ < 27* which can be achieved for
Jj = O(size(G) + k), we obtain

Zrutte (G5 ¢,7M)

Dm = \ZTutte(Gé ¢,72) — ZTuste (G} %’3’)‘ < 27",
J

Ztutte (G ¢, 72) —

The algorithm returns H = G and D = D" # 0. Note that if G is planar, then H = G is also
planar by construction. If ¢ and 77 are real, then the number D = (Z,,(J;;¢,71)/ q*)™ is clearly

real too. O

In the rest of this section we use Lemma 2.54 to translate information about the function
Ztutte(—; ¢, 1) for certain graphs to information about Zryuite(G;q,7v2). This leads to the
reductions given in Lemmas 2.5 and 2.55. These results are stated for polynomial series-parallel
approximate shifts, but they would also hold even if the shifts are not series-parallel as long as, in
the proof of Lemma 2.54, the graphs J; are planar and we can compute D; = Z, (Jjsq,m) /¢
in polynomial time in the size of J;.

We are now ready to prove Lemma 2.5, which was stated in the proof outline (Section 2.1)

and which we restate here for convenience.

Lemma 2.5. Let ¢ # 0, 71 and 2 # 0 be algebraic numbers, and K > 1. For j € {1,2},
let yj =v; +1 and x; = 1+ q/v;. If there is a polynomial-time series-parallel approzimate
shift from (x1,y1) to (x2,y2), then we have a reduction from FACTOR-K-NORMTUTTE(q, y2) to
FACTOR-K-NORMTUTTE(q,y1). This reduction also holds for the planar version of the problem.

Proof. We are going to solve FACTOR-4K-NORMTUTTE(q, 72) in polynomial time with the help
of an oracle for FACTOR-K-NORMTUTTE(q,71). Recall that hardness of these problems does
not depend on K (see Section 2.1). Let Cy,, > 1 be the constant computed in Corollary 2.34
for the algebraic numbers ¢ and v = 79; so, for any graph G, either Zruite(G;¢q,72) = 0 or
| Zrutte (G q,72)| > C,;%ze(G). Let G = (V,E) be the input of the computational problem
FACTOR-4K-NORMTUTTE(q, 72). We assume that Zyye(G; q,72) # 0 since otherwise we can
output anything. Let k be the smallest integer such that 27 < Cy, ,Syi;e(G)/ 2. The reduction uses
the algorithm given in Lemma 2.54 to compute a graph H and a representation of an algebraic
number D with D # 0 such that

Zrue (H3 a:0) | _ ook Cp el @) < [Zrutte (G 0.72))
D =2 =Ty = 2 '

Zrutte (G30,72) — (2.31)

Therefore, we have
U | Zrue (Hig,m)| 3

2~ D[Ztuste (Gig,72)| ~ 2
By invoking the oracle for FACTOR-K-NORMTUTTE(q, 71), the reduction computes a rational

number N with N/K < |Zpue(H;q,71)] < KN. The reduction also computes a non-zero
rational number D such that 1/2 < D/D < 2. Then N = N/D satisfies

~

N R
1w S | Ztutte (G5 ¢,72)| < 4K N,

Page 84 of 212

Chapter 2. The complexity of approrimating the complez-valued Potts model

so the reduction outputs N for FACTOR-4K -NORMTUTTE(q, y2). Note that this reduction

analogously applies to the planar case since the graph H is planar when G is planar (see
Lemma 2.54). O

We next give the analogue of Lemma 2.5 for the argument.

Lemma 2.55. Let q, v1 and 2 be algebraic numbers with q # 0. If there is a polynomial-time
series-parallel approximate shift from (q,v1) to (q,72), then we have the following reduction,
DISTANCE-57r/12-ARGTUTTE(q, 72) <7 DISTANCE-7/3-ARGTUTTE(q,v1). This reduction also

holds for the planar version of the problem.

Proof. Let Cy ~, be the constant computed in Corollary 2.34 for v = 2. Let G = (V, E) be the
input of DISTANCE-7/2-ARGTUTTE(q,v2). We assume that Zruie(G; q,72) # 0 since otherwise
we can output anything. The reduction proceeds again similarly to that of Lemma 2.5. First, it
applies Lemma 2.54 for appropriate k as in (2.31) to compute a graph H and a representation
of a real algebraic number D with D # 0 such that

—size(G
ZTutte (H, q, 71) < 2—k—2 < Cq,;;e() < ’ZTutte (G, q, 72)|
D - - 8 - 8 '
Let @ = Zmyite (G5 ¢, 72) and 8 = Zrutte(H; q,71)/ D, so (2.32) can be rewritten as |a — 3| < |a /8.
We claim that |[Arg(a) — Arg(5)| < m/24. Since 3 is in the disc of centre o and radius |a|/8, by

basic geometry, we have

Zrutte (G5 ¢, 72) — (2.32)

so sin(f) = 1/8, where 6 is the angle between 0, a and the intersection of the circle of radius
|a|/8 and center a with the tangent line that goes through 0. Since sin(n/24) > 1/8, we
conclude that |Arg(a) — Arg(5)| < 6 < /24 as we claimed. By invoking the oracle for
DISTANCE-7/3-ARGTUTTE(q, 1), the reduction computes a rational number Ay such that,
for some a; € arg(Zrue(H;q,71)), we have |a; — /11| < m/3. Since the reduction has at its
disposal a representation of the algebraic number D, it can compute (in polynomial time in the
length of this representation) a rational number Ay such that, for some ag € arg(D), we have
lag — Ag\ < 7/24. The reduction outputs A= A; — Ay. We claim that there is an argument
a of a such that |a — A| < 57/12. Note that b = a; — ap is an argument of 3. By the triangle
inequality, we have |b — A| < |a; — A;| + |As — ap| < 97/24. Let a = Arg(a) + (b — Arg(f)),

which is an argument of a. We conclude that

la—A] < [b— A +]a—b| = |b— 4| + |Arg(a) — Arg(8)]| < 5/12.

Page 85 of 212

Chapter 2. The complexity of approrimating the complez-valued Potts model

This reduction analogously applies to the planar case since the graph H is planar when G is

planar (see Lemma 2.54). O

One could actually change the angles po = 57/12 and p; = 7/3 in the statement of
Lemma 2.55 as long as p; < pg2, but p2 = 57/12 and p; = 7/3 will suffice for our purposes.

2.5.7 Hardness for the Tutte polynomial

In this section we use the reductions of Section 2.5.5 to obtain intermediate hardness results
that will be used to obtain our main theorems in the upcoming sections. We start with the
following corollary which strengthens previous results of [59] (that applied to general graphs

rather than planar).

Corollary 2.56. Let K > 1 be a real number. Let q # 0,2, and 1,72 be real algebraic numbers
with v2 € (—o0, —2) U (0,00) and either

e g>1,v€(-2,-1), or
e ¢<1,7 €(-1,0).

Then, FACTOR-K-NORMPLANARTUTTE(q, 71,72) and SIGN-PLANARTUTTE(q, y1,72) are #P-
hard.

Proof. We consider first the case when v > 0. For ¢,~1,72 as in the first item, the conclusion
follows from Theorem 2.39 and the reductions given in Lemma 2.49. For the second item: when
q € (0,1), the result follows from the reductions given in Lemma 2.50 and Theorem 2.39, while
for ¢ < 0, the result follows from Lemmas 2.51 and 2.53.

The other case is when v < —2. Then, we can 7e-implement (yo + 1)2 — 1 > 0 with a

2-thickening and proceed as in the previous case. O

Lemma 2.57. Let K be a real number with K > 1. Let x,y be a real algebraic numbers such
that (z,y) # (—1,—1), min{z,y} < —1 and max{z,y} < 0. Let g = (z—1)(y—1) and y =y —1.
Then FACTOR-K-NORMPLANARTUTTE(q,y) and SIGN-PLANARTUTTE(q,y) are #P-hard.

Proof. Note that ¢ > 2. We claim that we can (x,y)-implement (z1,y2) with y; € (—1,0), and
(z2,y2) with |yz] > 1 using planar (in fact, series-parallel) graphs. The result then follows by
invoking Corollary 2.56 with v =y; — 1 and 9 = yo — 1.

The case min{x,y} < —1 is treated in [59, Lemmas 8-11]. Hence, we may assume that

—1<z<0and -1 <y <0. Since (z,y) # (—1,—1) by hypothesis, there are two cases:

e r=—1and —1 <y < 0. As pointed out in [59, Corollary 26|, a 3-thickening from (z,y)
implements the point (z/,y’) = (1 - ﬁ,yg) with 2/ < —1 and ¢’ € (—1,0), so the
point (2’,y') has already been studied in this proof.

e —1 <z <0andy=—1. This time we perform a 3-stretching from (z,y) to implement a
point (z,y’) with 2’ € (—1,0) and 3/ < —1. O

Page 86 of 212

Chapter 2. The complexity of approrimating the complez-valued Potts model

Lemma 2.58. Let K > 1 be a real number and q, x,y be real algebraic numbers with max{|z|, |y|} <
1 and g=(x—1)(y—1) > 32/27. Then, for v =y — 1, FACTOR-K-NORMPLANARTUTTE(q,)
and SIGN-PLANARTUTTE(q,) are #P-hard, unless ¢ = 2.

Proof. In view of [59, Lemmas 12 and 15], we can (z,y)-implement points (z1,y1) and (z2,y2)
with y; € (—=1,0) and y2 > 1. These implementations only use series-parallel graphs. Hence,
we can apply (the first item of) Corollary 2.56 with 41 = y; — 1 and 75 = y2 — 1 to finish the
proof. O

2.5.8 Proofs of the main theorems in this chapter

In this section we show how our main Theorems 1.1, 1.2, 1.3 and 1.4 follow from the #P-hardness
results of Section 2.5.7. We start with Theorem 1.4.

Theorem 1.4. Let ¢ > 2 be a real, v € C\R be an algebraic number, and K > 1. Then,
FACTOR-K-NORMPLANARTUTTE(q,y) and DISTANCE-7/3-ARGPLANARTUTTE(q,y) are #P-
hard, unless ¢ = 3 and v+ 1 € {62’”/3,64”/3} when both problems can be solved exactly in

polynomial time.

Proof. Let (z,y) € H4 be such that y = v+ 1. Consider the point (z2,y2) € H, with yo = —1/2
and xo9 = 1+ ¢/(y2 —1). Note that 29 = 1 —2¢/3 < 1 —4/3 < 0. There are two cases.
Either 9 < —1 and the point (z9,y2) satisfies the hypothesis of Lemma 2.57, or —1 < xz9 < 0
and the point (x9,y2) satisfies the hypothesis of Lemma 2.58. In any case, we conclude
that SIGN-PLANARTUTTE(q,y2) and FACTOR-K-NORMPLANARTUTTE(q, 72) are #P-hard for
Yo = y2 — 1 when q > 2.

By Lemma 2.5 (for 73 = v and 2 = 72), we see that FACTOR- K-NORMPLANARTUTTE(q, 72)
reduces to FACTOR-K-NORMPLANARTUTTE(q,), proving that the latter is #P-hard too.
The proof for DISTANCE-7/3-ARGPLANARTUTTE(q,) is analogous: first observe that since
q,72 are real and 57/12 < 7/2, the problem SIGN-PLANARTUTTE(q,v2) reduces (trivially) to
DISTANCE-57/12-ARGPLANARTUTTE(q, 72). Moreover, applying Theorem 2.2 with = and y as
above, ¥ = yo € (—1,0) and 2’ = x2, we have a polynomial-time series-parallel approximate
shift from (z,y) to (2/,3’) or, equivalently, from (q,7v) to (¢,72). Using Lemma 2.55 with
~v1 = 7 and 72 = 72, we conclude that DISTANCE-57/12- ARGPLANARTUTTE(q, 72) reduces to
DISTANCE-7/3-ARGPLANARTUTTE(q, 7v), proving that the latter is #P-hard, as wanted. [

Theorem 1.3. Lety € C\R be an algebraic number, and K > 1. Then, FACTOR- K-NORMISING(y)
and DISTANCE-71/3- ARGISING(y) are #P-hard, unless y = +i when both problems can be solved

exactly in polynomaial time.

Proof. Let ¢ =2,v=y—1,y2 = —1/2, v2 = yo—1. From the result of Goldberg and Guo [55], the
problems FACTOR-K-NORMISING(y2) and DISTANCE-7/3-ARGISING(y3) are #P-hard, hence
FACTOR-K-NORMPLANARTUTTE(q, 72) and DISTANCE-7/3- ARGPLANARTUTTE(q, 72) are #P-
hard as well, using that Zising(G;y2) = Z1utte (G 2, 72)-

Page 87 of 212

Chapter 2. The complexity of approrimating the complez-valued Potts model

By applying Lemma 2.5 and Theorem 2.2 analogously to the proof of Theorem 1.4, we conclude
that FACTOR-K-NORMPLANARTUTTE(q, 7) and DISTANCE-7/3-ARGPLANARTUTTE(q,y) are
#P-hard, and hence FACTOR-K-NORMISING(y) and DISTANCE-7/3-ARGISING(y), using that
Z1sing (G5 Y) = Zruee(G32,7)- -

Theorem 1.1. Let g > 3 be an integer, y € C\R be an algebraic number, and K > 1. Then, the
problems FACTOR-K-NORMPLANARPOTTS(q,y) and DISTANCE-7/3-ARGPLANARPOTTS(q,y)
2mi/3 | eAmi/3)

are #P-hard, unless ¢ =3 and y € {e when both problems can be solved exactly in

polynomial time.
Proof. Just apply Theorem 1.4 to the integer ¢, and use Zpoits(G; ¢, y) = Zrutte(G; ¢,y — 1). O

Theorem 1.2. Let ¢ > 3 be an integer, y € (—q + 1,0) be a real algebraic number, and K > 1.
Then FACTOR-K-NORMPLANARPOTTS(q,y) and DISTANCE-7/3- ARGPLANARPOTTS(q,y) are
#P-hard, unless (q,y) = (4, —1) when both problems can be solved exactly in polynomial time.

Proof. Let y € (—qg + 1,0). The point (z,y) with x = 1 + ¢/(y — 1) satisfies x € (1 — ¢,0),
(r,y) # (-1,—-1) and y < 0. If x < —1 or y < —1, #P-hardness follows from Lemma 2.57.
Otherwise, we have ¢ > 3 and z,y € (—1,0), so hardness follows from Lemma 2.58. O

2.6 Further consequences of our results

In this final section, we discuss some further consequences of our techniques, as mentioned in
Section 1.3.3.1. First, in Section 2.6.1, we explain how our results can be used to obtain hardness
for SIGN-PLANARTUTTE(q, v) and FACTOR-K-NORMPLANARTUTTE(q,y) (and the non-planar
version of these problems) at other parameters than the ones studied in Section 2.5.7, building
on work of Goldberg and Jerrum [59]. Secondly, in Section 2.6.2, we apply our results to the
problem of approximating the Jones polynomial of an alternating link, which is connected to the

quantum complexity class BQP as explained in [20].

2.6.1 Hardness results for real algebraic parameters in the Tutte plane

The regions studied in Lemmas 2.57 and 2.58 have been studied by Goldberg and Jerrum [59],
where they showed #P-hardness of SIGNPLANARTUTTE(q,7y) at several regions of the real
algebraic plane. As we explained in Section 2.5.7, we obtain hardness at a point (g,~) as long as
we can y-implement algebraic numbers v; and 72 as in Corollary 2.56. Goldberg and Jerrum came
up with multiple implementations that achieve the conditions of Corollary 2.56. By applying
their implementations, we obtain #P-hardness for FACTOR- K-NORMTUTTE(q,y — 1) in the
same regions where they obtained #P-hardness of SIGNPLANARTUTTE(q, y) in [59, Theorem 1].

Some of the implementations developed in [59] consist of planar graphs (as those used in
Lemmas 2.57 and 2.58), so we can extend their results to the planar version of the problems for

some of the previous regions.

Page 88 of 212

Chapter 2. The complexity of approrimating the complez-valued Potts model

Theorem 2.59. Let g and v be real algebraic numbers with g # 0,1,2. Lety =~v+1 and x = 1+
q/(y—1). The problems SIGN-PLANARTUTTE(q,y) and FACTOR-K-NORMPLANARTUTTE(q,)

are #P-hard when x,y are real algebraic numbers satisfying one of the following:
1. min(z,y) < —1, max(z,y) < 0 and (x,y) # (—1,-1),
2. x| >1, ly| > 1 and zy <0,
3. max(|z|, |y|) <1 and q > 32/27,
4. max(|z|,|y|) <1, ¢ <32/27 and © < —2y — 1,
5. max(|z|, |y|) <1, ¢ <32/27 and y < —2z — 1.

Proof. The proof follows from the following results of [59], which show how to implement 7, and
v2 with a planar (actually series-parallel) graph as in Corollary 2.56 for each of the regions in
the statement.

Item 1 follows from Lemma 2.57. For Item 2, note that ¢ < 0, so we have to implement
7 € (—1,0) and 2 & [—2,0]. We choose 72 =y — 1 and 7; as implemented in [59, Lemma 16].
Item 3 follows from Lemma 2.57. For Item 4, we implement v; € (—1,0) and 2 ¢ [—2,0]; the
implementations are as in [59, Lemmas 14 and 15]. For Item 5, we implement v; € (—1,0) and

v2 & [—2,0]; the implementations are as in [59, Lemmas 13 and 15]. O

The complexity of approximating the Tutte polynomial of a planar graph has previously been
studied in [58] and [84]. Our result on this matter (Theorem 2.59) strengthens the results of [58]
in three directions. First, we also study the complexity of determining the sign of the Tutte
polynomial. Secondly, we find new regions where the approximation problem is hard. These
regions are 3, 4 and 5, as well as the points in region 1 such that ¢ <5 and g # 3. Finally, we
prove #P-hardness, whereas in [58] hardness was obtained under the hypothesis that RP # NP.

For q € Z*, let P(G;q) count the number of proper g-colourings of a graph G. The chromatic
polynomial of G is the only polynomial that agrees with P(G;q) on positive integers. It is well-
known that P(G;q) = Ztutte(G; ¢, —1), see for instance [109]. The value ¢ = 32/27 appearing in
Theorem 2.59 is, in some sense, a phase transition for the complexity of computing the sign of
P(G, q): this sign depends upon G in an essentially trivial way for ¢ < 32/27 [72, Theorem 5]
and its computation is #P-hard for ¢ > 32/27, see [59] for an in detail discussion of the relevance
of the phase transition ¢ = 32/27.

2.6.2 Hardness results for the Jones polynomial

We briefly review some relevant facts about links and the Jones polynomial that relate it to
the Tutte polynomial on graphs, see [121] for their definitions. Let Vz(T') denote the Jones
polynomial of a link L. By a result of Thistlethwaite, when L is an alternating link with
associated planar graph G(L), we have Vi (t) = fL(t)T(G(L); —t,—t"1), where fr(t) is an

easily-computable factor that is plus or minus a half integer power of ¢, and T(G;x,y) is the

Page 89 of 212

Chapter 2. The complexity of approrimating the complez-valued Potts model

Tutte polynomial of G in the (z,y)-parametrisation [114, 121]. Moreover, every planar graph
is the graph of an alternating link [121, Chapter 2]. Hence, we can translate our results on
the complexity of approximating the Tutte polynomial of a planar graph to the complexity of
approximating the Jones polynomial of an alternating link, and obtain #P-hardness results for

approximating V7,(t). More formally, we consider the following problems for K > 0 and p > 0.

Name: FACTOR-K-NORMJONES(?).

Instance: A link L.

Output: If V(t) = 0, the algorithm may output any rational number. Otherwise, it must
output N € Q such that N/K < |Vi(t)] < KN.

Name: DISTANCE-p-ARGJONES(q,7).

Instance: A link L.

Output: If V(t) = 0, the algorithm may output any rational number. Otherwise, it must
output A € Q such that, for some a € arg(Vy(t)), we have |A —a| < p.

Corollary 2.60. Let K be a real number with K > 1. Let t be an algebraic number with
Re(t) > 0. Then FACTOR-K-NORMJONES(t) and DISTANCE-7/3-ARGJONES(t) are #P-hard

unless t € {1, —e>™/3 —e*™/3} when both problems can be solved exactly.

Proof. Let us consider the point (x,y) = (—t,—t!) in the Tutte plane. Note that t €
{1, —e2™/3 _e4m/3) if and only if (z,y) is one of the special points (—1, —1), (e*™/3,¢27/3) and
(62’”/ 3 edmi/ 3), where the Jones polynomial of a link can be exactly evaluated in polynomial
time in the size of the link [73]. Let us assume that ¢ is not one of these three values. We
have ¢ = (=t — 1)(=t~! — 1) = 2 + 2Re(t) > 2. When ¢ is non-real, in view of Theorem 1.4,
FACTOR-K-NORMPLANARTUTTE(q,y — 1) and DISTANCE-7/3-ARGPLANARTUTTE(q,y — 1)
are #P-hard and the result follows. When ¢ is real, note that y < 0, x < 0 and ¢ > 2. Thus,
either (x,y) is such that max{|x|, |y|} > 1 and (z,y) # (=1, —1), so hardness is covered in region

1 of Theorem 2.59, or max{|z|, |y|} < 1, so hardness is covered in region 3 of Theorem 2.59. [

The case t = e2™/% of Corollary 2.60 is particularly relevant due to its connection with
quantum computation. This connection between approximate counting and the quantum
complexity class BQP was explored by Bordewich, Freedman, Lovasz and Welsh in [20], where

they posed the question of determining the complexity of the following problem:

Name: SIGN-REAL-PLANARTUTTE(q,)
Instance: A planar (multi)graph G.
Output: Determine whether Re(Zrutte(G; q,7)) > 0 or Re(Zrutte (G5 ¢,7)) < 0.

The non-planar version of SIGN-REAL-PLANARTUTTE(q,) has been studied in [55, Sec-

tion 5], where it was shown that determining the sign of the real part of the Tutte polyno-

2mi/5

mial is #P-hard in certain cases that include t = e . Our results on the complexity of

Page 90 of 212

Chapter 2. The complexity of approrimating the complez-valued Potts model

SIGN-PLANARTUTTE(q,) allow us to adapt the argument in [55] to answer the question asked
in [20].

Corollary 2.61. Consider the point (x,y) = (exp(—amni/b),exp(ani/b)), where a and b are
positive integers such that 1/2 < a/b < 3/2 anda #b. Let q=(x —1)(y —1) and vy =y — 1.
Then q € (2,4) and SIGN-REAL-PLANARTUTTE(q,y) is #P-hard.

Proof. The proof is essentially the same one as that of [55, Theorem 1.7]. First, note that
g=(x—-1)(y—1)=2—2—y=2—exp(—ani/b) — exp(ani/b) = 2 — 2 cos(an /b),

which is real. Since 1/2 < a/b < 3/2 and a # b, we have ¢q € (2,4). A b-thickening allows us to
(x,y)-implement (1—¢/2, —1). Since SIGN-PLANARTUTTE(q, —2) is #P-hard (see Theorem 2.59),
we conclude that SIGN-REAL-PLANARTUTTE(q,) is #P-hard. O

Corollary 2.61 includes the case where a = 3 and b = 5. In this case, we have r =
exp(—ami/b) = — exp(7i) exp(—37i/5) = —exp(2mi/5) and y = L. That is, (x,y) = (—t, —t~1)
for t = exp(2mi/5), which is the point of interest in [20].

Page 91 of 212

Chapter 3

The complexity of approximating the
complex-valued Ising model on

bounded degree graphs

o This chapter is based on the following publication:

Andreas Galanis, Leslie A. Goldberg, and Andres Herrera-Poyatos. The complexity of
approximating the complex-valued Ising model on bounded degree graphs. SIAM J. Discrete
Math., 36(3):2159-2204, 2022. doi:10.1137/21M1454043.

Organisation of this chapter

This chapter contains the proofs of the results stated in Section 1.4 on the approximability of the
partition function of the Ising model on bounded degree graphs, for non-real edge interactions.
This chapter is organised as follows. First, in Section 3.1 we provide a full outline of our proofs
so as to make it easier for the reader to follow this chapter. In Section 3.2 we introduce the
preliminary material needed in our proofs. In Section 3.3 we prove Theorem 1.5, which gives our
zero-free region for the partition function of the Ising model, and Corollary 1.6 on easiness of
approximation within this region. In Section 3.4 we prove Theorem 1.7 on inapproximability
of the partition function for most non-real edge interactions. In Section 3.5 we give explicit
evidence that zeros imply hardness of approximation and use these results to find more edge
interactions where the approximation problem is #P-hard. Finally, in Section 3.6 we generalise
the implementation results of [15] so that they can be applied to other two spin systems, including
the Ising model. This section is independent of the rest of this chapter, and the result presented

may have applications outside the scope of the Ising model.

3.1 Proof outline

In the proof of Theorem 1.5 we use the SAW tree construction of Godsil and Weitz [54, 120] to
reduce the study of zero-free regions of partition functions on graphs to the study of zero-free
regions of partition functions on trees (see Section 3.2.1 for details). The partition function of a
two-spin system on a tree admits a recurrence expression that can be studied to find zero-free

regions on trees. This approach has been successfully applied in the literature for the Ising

Page 92 of 212

https://doi.org/10.1137/21M1454043

Chapter 3. Approximating the complex-valued Ising model on bounded degree graphs

model and other partition functions [86, 13, 16]. We remark here that in this chapter we use £
instead of y (as we did in Chapter 2) to denote the edge interaction, following standard notation
in the Ising model literature. In our work we exploit the properties of the Mobius function
hg(z) = (Bz+1)/(B + z) appearing in this recurrence for the Ising model with edge interaction
8. This Mobius function satisfies the equality

ho(2) =1 _ (B=1)(=—1)

he(z)+1 (B+1)(z+1)
which neatly relates properties of (5 — 1)/(8 + 1) to properties of the partition function of the

(3.1)

Ising model on trees, and greatly simplifies the derivation of our zero-free region. The translation
of Theorem 1.5 to an FPTAS for the partition function then follows from the work of Barvinok,
Patel and Regts [9, 101], see the proof of Corollary 1.6, via an approximation algorithm that
computes the first O(logsize(G)) coeflicients of the Taylor series of log Zising (G 3).

In order to obtain our inapproximability results, we construct graphs H with maximum degree
at most A and two distinguished vertices s,t with degree 1 such that substituting an edge in the
host graph with (H, s,t) has the effect of altering the edge interaction § of the original edge to
a new edge interaction ’. In this case, we say that H (5, A)-implements ', see Section 3.2.3 of
the preliminaries for a formal definition. The fact that the terminals s and t have degree 1 will be
important to preserve the maximum degree of graphs in our constructions; in fact, this bounded
degree restriction made the gadgets developed in Chapter 2 unapplicable in the current chapter,
as their maximum degree depends on size(G). As explained in Chapter 2, implementations
have played an important role in proofs of hardness of evaluating and approximating partition
functions, and they are the main tool to reduce exact computation to approximate computation
via a binary search [15, 59]. Initiated in [73, 121], these constructions have now become more
elaborate in recent inapproximability results [59, 15, 26], see also Chapter 2, using connections
to the iteration of complex dynamical systems. The following definition captures the relevant
framework for our implementations. We remark first, that in this chapter we also work with
algebraic numbers and computations are performed following the computational model described
in Section 2.2.3 of Chapter 2. In this chapter we denote by A the set of real algebraic numbers

and we denote by C, the set of complex algebraic numbers.

Definition 3.1. Let A > 3 be an integer and B € Cy. We say that the pair (A, B) implements
the complex plane (resp. the real line) in polynomial time for the Ising model if there is an
algorithm such that, on input A € Cp (resp. A € A) and rational € > 0, computes a graph G that
(A, B)-implements a complex number \ with A — 5\\ < e. The running time of this algorithm

must be polynomial in the size of the representations of A and €.

Our main contribution is that we can (A,) implement the real line (and, in fact, the complex

plane), for those pairs (A, 3) given in the following lemma.

Lemma 3.2. Let A be an integer with A > 3 and let f € Cx \ R with & {i,—i} and
1/VA—=1<|B—=1|/|B+1|. Then the pair (A,) implements the complex plane in polynomial

time for the Ising model.

Page 93 of 212

Chapter 3. Approximating the complex-valued Ising model on bounded degree graphs

The requirement that it be possible to implement the real line is the main bottleneck
when reducing exact computation to approximate computation. Even though it is possible to
identify some parameter values which enable the implementation of the real line, the complete
determination of this set of parameter values which make this possible seems out of reach, see,
for instance, [59, 15]. Let us compare Lemma 3.2 to Theorem 2.2 of Chapter 2. We note that in
the unbounded degree setting we are able to implement part of the real line for all non-real edge
interactions (other than easy/exceptional points of the Potts model), whereas here we require
the added hypothesis that the edge interaction 3 satisfies 1/v/A —1 < |3 — 1|/|8 + 1|. This
hypothesis arises when restricting the maximum degree of the gadgets in our constructions, as
we will see in the rest of this chapter.

The proof of Lemma 3.2 uses connections with complex dynamics (as opposed to the proofs
in Chapter 2), following recent developments in the area. The main idea in this line of works is to
analyse what can be implemented with trees, which can be done via understanding the properties
of the underlying dynamical system. A key difference in the case of the Ising model relevant to
previous works is that vertex-style implementations are useless; due to the perfect symmetry of
the Ising model nothing interesting can be implemented through that route. Instead, we have
to consider more elaborate edge gadgets, cf. Section 3.4.2, and obtain tree-style recursions for
them. Surprisingly, we are able to recover the tree-recursions for vertex activities (even though
our gadgets are not trees and simulate edge activities instead), albeit with a bit different value
of 8 which yields the square root in Lemma 3.2. We leave as a tantalising open problem how to
remove this square root, which seems inherent in our edge-style approach.

The good news is that once this edge-framework of the gadgets is in place, we can adapt
suitably the arguments given in [15]. We have in fact generalised these arguments in Section 3.6,
so that they are more amenable to be used for other spin systems. A quick summary of the main
idea behind Section 3.6 is as follows. We assume that we have access to a recursively-constructed
gadget that implements a weight f(z) assuming that we can implement z (for us, this is the
gadget given in Section 3.4.2). Then we apply results of complex dynamics to the function f in
order to understand which points we can implement by iterating f, which involves studying the
neighbourhood of fixed points of f. There are two steps in the constructions. In the first step,
we show how to implement approximations of any number near a fixed point of f. In the second
step, this implementation result is translated to implementing the complex plane in polynomial
time when the fixed point under consideration is repelling. As explained in Section 3.6, it is
important in this generalisation that the function f is of the form g(z%), where g is a Mobius map.
The results of [15] are derived for g(z) = 1/(1 + Az), where X is an activity of the independent
set polynomial. As noted in Section 3.6 significant extra work is needed to generalise these
results to any Mobius map g.

To conclude this section, we comment on the connection between zeros of the partition
function and hardness. It turns out that our hardness and implementation results can be applied
to conclude hardness of approximation at some zeros of the partition function, such as the zero
Bo plotted in Figure 1.2, which satisfies 1/(A — 1) < |8y — 1|/|80 + 1| < 1/v/A — 1. Our main

Page 94 of 212

Chapter 3. Approximating the complex-valued Ising model on bounded degree graphs

result on this matter is the following lemma.

Lemma 3.3. Let A be an integer with A > 3. Let f € Cy\(RU{¢, —i}). Let us assume that (A, 3)
implements the edge interaction —1. Then ISINGNORM(A, 3,1.01) and ISINGARG(A, 8, 7/3) are
#P-hard.

Typically, if we have a graph G with maximum degree A such that Ziing(G; 3) = 0, then
this can be used to (A, §)-implement —1 (provided that we can make the terminals have degree
1) and conclude hardness. See Lemma 3.43, where we conclude hardness of approximation based
on Lemma 3.3 and appropriate graphs with zero partition function. This is the first result of
this style for the Ising model, though building a connection between zeros and inapproximability
for bounded-degree graphs has also been explored thoroughly in a recent work [37] for the

independence polynomial. These observations lead us to propose the following conjecture.

Conjecture 3.4. Let A be an integer with A > 3 and let 5 € Cy with 5 ¢ RU{i,—i}. If there
is a graph G with mazimum degree at most A such that Zsng(G;) = 0, then the problems
ISINGNORM(3, A, 1.01) and ISINGARG(S, A, 7/3) are #P-hard.

We make progress toward Conjecture 3.4 in Corollary 3.45, where we have to weaken the
result, concluding hardness of ISINGNORM(f, A, 1.01) and ISINGARG(S, A, 7/3) when the graph
G has maximum degree at most A — 1. Unfortunately, our implementation results seem not

enough to prove the full conjecture.

3.2 Preliminaries

3.2.1 The tree of self-avoiding walks

In this section we recall some results concerning the self-avoiding walk tree (SAW tree) of a
graph and its connection to the partition function of the Ising model. SAW trees were introduced
in the study of partition functions by Godsil in [54] to study the matching polynomial. SAW
trees gained in popularity after the work of Weitz on the independent set polynomial [120]. The
idea of Godsil and Weitz was reducing the study of the partition function of a two-spin system
on graphs to the study of the same partition function on trees. This idea is at the core of our
proof of Theorem 1.5.

Intuitively the SAW tree T' of a graph G = (V, E) and a vertex v € V is constructed by
considering all of the self-avoiding walks from v in G and storing these in a tree T'. The root of T
is the walk consisting of the single vertex v, and two self-avoiding walks are connected in T if
one of them is a strict sub-walk of the other with maximal length. We refer to [86, Appendix A]
for a formal construction. Some of the leaves of the tree 1" are pinned according to a systematic
procedure that is described in [86, Appendix A]; a description of this systematic procedure is
not needed for our proofs, hence we omit it here. It is important to note that if G has maximum

degree A, then every node of T" has at most d := A — 1 children, except possibly the root of

Page 95 of 212

Chapter 3. Approximating the complex-valued Ising model on bounded degree graphs

T, which might have A children. We will use the following result that relates Ziing(G;2) and
leing (T; .%')

Proposition 3.5 ([86, Proposition B.1]). Let G be a connected graph and let v be a vertex of
G. Let T be the SAW tree of (G,v). Then the polynomial Zising(G;x) divides the polynomial
Zising(T5). In particular, if B € C is such that Zising(T;5) # 0, then it also holds that

ZIsing(G; /6) 7£ 0.

As a consequence of Proposition 3.5, we can translate zero-free results for trees to zero-free
results for graphs. Our proof of Theorem 1.5 uses this approach. In the rest of this section we

recall some tools to study the partition function of the Ising model of trees.

Definition 3.6. Let T be a tree (possibly with some pinned leaves) and let v be its root. For
each j € {0,1}, we define ZZ(T; B) as the sum of B™) over the configurations o of T that have
o(v) = j, $0 Zising(T; B) = Z)(T; B) + ZL(T; B). We define the ratio

Z, (T B)

T,v;8) = 2o 200

v

The ratio R (T, v;) is a rational function on B. If Z(T'; 8) # 0, we note that Zising(T;3) =0
if and only if R (T, v;) = —1, so we can study the zeros of the partition function by studying
these ratios. It turns out that the ratios R(T, v, 3) can be computed recursively. Let us consider

the function

k
Fop (21, z) = [[hs (2)
j=1

where hg(z) = (Bz+1)/(B + 2) for any z € C. Then if (11, v1),..., (T4, vi) are the trees with

roots v; hanging from the root of 7', one can check that
R(T,v; B) = Fgp(ri, ... k), (3:2)

where r; = R(Tj,v;; 8) for all j € [k] := {1,...,k}, see for instance [86]'.

3.2.2 Computing with algebraic numbers

Our algorithmic and hardness results (Corollary 1.6 and Theorem 1.7) involve algebraic edge
interactions. We refer to Section 2.2.3 of Chapter 2 for an explanation of how we represent
and compute with algebraic numbers. Here we need the folowing operation that we did not
use in Chapter 2. For x € C and r > 0 real we denote B(z,r) = {z € C : |z — x| < r},
B(z,r)={2€C:|z—z|<r}and C(z,r) = {z € C: |z — 2| = r}. In some of our algorithms
we have to check, for z,x € Cy and r € A with r > 0, if 2 € B(z,2) or 2 € B(z,z). Note
that |z — x| is a real algebraic number, and thus, we can check if |z — x| < r or |z —z| =7 in

polynomial time in the sizes of =, z and r.

'In [86] the authors work with Zg (b) = Zising (G; 1/b)b/E(D! 5o they get hy(z) = (b+ z)/(bz + 1) instead.

Page 96 of 212

Chapter 3. Approximating the complex-valued Ising model on bounded degree graphs

3.2.3 Implementing weights, series compositions and parallel compositions

Here we define the concept of implementations and series and parallel compositions for the Ising
model. These concepts have been used several times to obtain hardness results for partition
functions, see Section 2.2.2 for definition for the Tutte polynomial or [40] for definitions for the
graph homomorphism partition function. In this chapter we restrict ourselves to the partition
function of the Ising model so that the notation is more straightforward to use, hence the
notation differs from that of Chapter 2.

We will make use of the following notation. Let H = (V, E) be a graph and let s and ¢ be
two distinct vertices of H. For j,k € {0,1} we define

ZEH B = Y, AT
o: V—{0,1}
o(s)=y,0(t)=k

The interaction matriz of H at (s,t) is the matrix

00 . 01 .
Ist(HmB) — Zst (H,/B) Zst (Ha B)]) (33)

ZY(H;B) ZL(H;p)

We say that the graph H S-implements the weight w if there are vertices s and ¢t in H such
that the interaction matrix Iy (H; () is of the form

w 1
1 w
for some complex number C with C' # 0 or, equivalently, Z% (H;3) # 0 and we have

ZW(H;8)/Z% (H;3) = w. One can check that this is equivalent to the definition of im-

plementation given in Section 2.2.2 when ¢ = 2. We recall here that the point of implementations

C

is that if we substitute an edge e with weight w of a graph G by the graph H (identifying the
endings of e with the vertices s and t), the value of the partition function stays the same up to
the factor C = Z% (H;), see Lemma 2.6 in Chapter 2 for an accurate statement. Hence, if we
have an oracle to evaluate the partition function of the Ising model at 5 and we know C, we can
use this oracle to evaluate this partition function at w. This idea is exploited in many hardness
reductions, see Chapter 2 and the references therein. In this chapter we are interested in graphs
with bounded degree, so in order to use this construction while maintaining the maximum degree
of the graphs involved, the vertices s and ¢ should have degree 1 in H. This is formalised in the

following definition.

Definition 3.7. Let A > 2 be an integer and f € C\ {0}. Let G be a graph. We say that G
(A, B)-implements the edge interaction 3’ € C if G has mazimum degree at most A and distinct
vertices s and t of degree 1 such that G S-implements 3" with the terminals s and t. We say
that (A, B) implements the edge interaction 3’ € C if there is a graph G that (A, 3)-implements
B'. More generally, we say that (A, 3)-implements a set of edge interactions S C C if (A, B)
implements 3’ for any ' € S.

Page 97 of 212

Chapter 3. Approximating the complex-valued Ising model on bounded degree graphs

It is important to know that this bounded-degree of implementations also presents the
transitivity property, that is, if H (A, 8)-implements the weight w and J (A, w)-implements the
weight ~, it is not difficult to construct a graph that (A, 5)-implements +, which follows from
Lemma 2.6 in Section 2.2.2.

We now reintroduce the concepts of parallel composition and series composition following our
Ising notation, which allows us to express the implemented weights in terms of the interaction
matrix defined in (3.3). This will simplify some of the calculations in this chapter. Let
Hy = (Vi,E1) and Hy = (Va, E») be two graphs. For each j € {1,2}, let s;,t; € V; be two

distinct vertices.

1. Recall that the parallel composition of (H1, s1,t1) and (Ha, 2, t2) is the graph H constructed
by considering the union of H; and Hs and identifying s; with s and t; with ¢5. One
can easily check that the interaction matrix I (H;y) is the Hadamard product (or
component-wise product) of the interaction matrices I+, (H1;y) and I, (Ha;y). Hence,

if (Hj, s;,t;) implements w; for j € {1,2}, then (H,s;,t1) implements w = wjws.

2. Recall that the series composition of (Hy, s1,t1) and (Ha, s2, t2) is the graph H constructed
by considering the union of H; and Hy and identifying #; with so. One can easily check
that the interaction matrix I+, (H;y) is the product of the interaction matrices I, 4, (H1;y)
and I, (Ho;y). Hence, if (Hj, s;,t;) implements w; for j € {1,2}, (H, s1,t1) implements
the edge interaction w = (wyws + 1)/(w1 + wa). Note that this operation is commutative,
the series composition of (Hi, s1,t1) and (Ha, s2,t2) implements the same weight as the

series composition of (Ha, s2,t2) and (Hq, s1,t1).

Series compositions are particularly helpful when working with graphs with bounded degree.
In our constructions we usually consider the series composition of a graph H that S-implements
a weight w and a path of length 1 with edge interaction 8. This allows us to have a terminal

vertex with degree 1 in the resulting graph. This construction implements the edge interaction

w1
 Btuw’

hg(w) (3-4)

The Mobius map hg arises very frequently in this work and plays an important role in our

arguments, as we highlighted in the proof outline.

3.2.4 Iteration of complex rational maps

In Section 3.6 we extend the work on implementations for the independent set polynomial given
in [15] to a more general setting so that these results can be applied to other partition functions,
such as the partition function of the Ising model. The technique developed in [15] uses several
results from complex dynamics that we recall here. These complex dynamics results are also
used in this section when implementing edge interactions for the Ising model. We gather all
this material in this section. We refer to [100] for an introduction to Riemann surfaces and

to [11, 91] for an introduction to complex dynamics.

Page 98 of 212

Chapter 3. Approximating the complex-valued Ising model on bounded degree graphs

By C=Cu {oc} we denote the Riemann sphere. The Riemann sphere is a metric space
with the chordal metric d(-,-), given by
2|z — 2
|z = vl and d(z,00) = lim d(z,w) =

(1+ |z|2)1/2 (1+]w|2)1/2’ v (1—|—|z|2)1/2

The Riemann sphere is a Riemann surface, meaning that locally the Riemann sphere is homeomor-

d(z,w) =

phic to open subsets of C. One can translate several results from complex analysis to Riemann
surfaces. An example of such a result is the open mapping theorem, see, for example, [100,
Theorem 2.2.2].

Proposition 3.8 (Open mapping theorem for Riemann surfaces, [100, Theorem 2.2.2]). Let X
and Y be Riemann surfaces. If ¢: X — Y 1is a non-constant holomorphic mapping, then ¢ is

open, that is, $(O) is an open subset of Y for any open set O C X.

One can show that the set of holomorphic functions on the Riemann sphere is exactly the
set of rational functions. A rational function of degree d is a d-fold map on C. Hence, the
automorphisms on the Riemann sphere are precisely the rational functions of degree 1. These
are also known as Mobius maps or Mobius transformations. We use the following two properties

of Mobius maps.

Proposition 3.9 ([100, Theorem 5.7.3, part (f)]). If C is a circle in C (i.e., C is a circle in C
or C = LU{co} for some line L in C), then the image of C' under any Mobius map is also a

circle in C.

Proposition 3.10 ([100, Proof of Theorem 5.8.2]). Let a € C with |a| < 1, 8 € R and let
#(2) = e (az+1)/(@+ z). Then the Mobius map ¢ fizes the circle C(0,1).

It is well-known that holomorphic complex maps are locally Lipschitz and this is exploited

in [15]. Here we use a global Lipschitz property on the Riemann sphere, see Lemma 3.11.

Lemma 3.11 ([11, Theorem 2.3.1]). Let f be a rational map. Then f is a Lipschitz map on the
Riemann sphere, that is, there is a constant L > 0 such that d(f(z), f(w)) < Ld(z,w) for every

Z,Ww € @, where d is the chordal metric.

We conclude this section by introducing some results from complex dynamics. For a non-
negative integer n we denote by f" the n-fold iterate of n (for n = 0, f° denotes the identity
map). Let f: C — C be a rational map. Suppose that w € C is a fixed point of f. If w € C, the
multiplier of f at w is defined as f'(w). If w = oo, the multiplier of f at w is defined as 1/ f’(00).
The behaviour of the iterates f™ near a fixpoint is characterised in terms of the multiplier ¢ of
f at this fixpoint. With this in mind, there are three types of fixpoints: attracting if |q| < 1,
neutral or indifferent if |q| = 1, and repelling if |g| > 1. We also need to introduce the Julia set
of f. We refer to [11] for a definition, here we only use the two following properties of Julia sets,
Lemma 3.12 and Theorem 3.13.

Page 99 of 212

Chapter 3. Approximating the complex-valued Ising model on bounded degree graphs

Lemma 3.12 (|91, Lemma 4.6]). Let f: C — C be a rational map. Every repelling fixpoint of f
belongs to the Julia set of f.

A set U is a neighbourhood of x if it contains a ball B(x,r) for some r > 0. The exceptional
set of a rational map f is the set of points z € C such that [z] = {2/ € C : f"(2) =

f™(z) for some integers n,m > 0} is finite.

Theorem 3.13 ([11, Theorem 4.2.5]). Let f: C — C be a rational map with exceptional
set Ey. Let zp be a point in the Julia set of f and let U be a neighbourhood of zy. Then

Unzo f1(U) = C\ Ey.
The exceptional points of f can be characterised as follows.

Lemma 3.14 ([91, Lemma 4.9] and [11, Theorem 4.1.2]). Let f: C — C be a complex rational
map of degree at least 2, and let Ey be its exceptional set. Then, |Ef| < 2. Moreover,

o if Er ={(}, then (is a fized point of f with multiplier O;

o if By = {(1, (2} where (1 # (o, then (1,2 have multiplier 0 and either they are fized points
of f, or f(¢1) = ¢ and f(&2) = (1.

3.3 Easiness: a zero-free region for the Ising model

In this section we prove Theorem 1.5 and Corollary 1.6. We also compare Theorem 1.5 to the

zero-free regions appearing in Figure 1.1.

3.3.1 Proof of Theorem 1.5

First, we introduce some notation that will be used repeatedly in this work.

Definition 3.15. Let 6 > 0. We define R(d) as the set of complex numbers z such that
[(z—=1)/(z+1)| <4.

Definition 3.15 allows us to conveniently restate Theorem 1.5 as Zyging(G; §) # 0 for any
graph G with maximum degree at most A and any 8 € R(ea), where ea = tan(w/(4A — 4)).

Proposition 3.16 gives some properties of the region R(J) that we need in our proofs. See

Section 3.2.2 for a definition of B(z,r), B(x,r) and C(z,r).

Proposition 3.16. Let § > 0. The region R(J) satisfies the following properties:
1. We have 1 € R(6) and —1 & R(9).
2. If B € R(5), then 371 € R(J).

3. The map ¢(z) = (z —1)/(z + 1) has the following property. We have ¢(C(0,1)) = iR =
»~1(C(0,1)), and {z € C: Re(z) > 0} = ¢~ 1(B(0,1)). In particular, if § = 1, then R()

is the set of complex numbers z with Re(z) > 0.

Page 100 of 212

Chapter 3. Approximating the complex-valued Ising model on bounded degree graphs

4. If 6 € (0,1), then R(J) is the closed disk B(cs,rs) with centre cs = (14 62)/(1 — 62) and
radius rs = 26 /(1 — 6%). Moreover, in this case for every z € R(8) we have |z| < c5+ 15 =
(140)/(1—19).

Proof. We prove each property separately.
1. This property is trivial.

2. Note that (271 —1)/(z71 +1) = (1—2)/(1+2) = —(2 — 1)/(1 + 2), so B € R(J) if and
only if 571 € R(d).

3. One can check that the inverse of ¢(z) = (z — 1)/(z + 1) is the Mobius map ¢ (y) =
—(1+1y)/(y — 1). Hence, |¢(z)| = 1 if and only if |¢~1(2)| = 1, which happens exactly
when |z + 1| = |z — 1] or, equivalently, z € iR. This proves ¢(C(0,1)) = iR = ¢~ (C(0,1)).
Note that |z — 1| < |z + 1| if and only if |[Re(z) — 1| < |Re(z) + 1|. The latter is equivalent
to Re(z) > 0. This shows that {z € C: Re(z) > 0} = ¢~1(B(0,1)), and the result follows.

4. We note that R(6) = {z € C: |¢(2)| < 6} = ¢~ 1(B(0,6)). We claim that ¢! sends the
circle C(0,0) to the circle C(cs,7s), where c; and 75 are as in the statement. As ¢~ ! is
a Mobius map, ¢~ 1(C(0,0)) is a circle or a line of C, see Section 3.2.4 on rational maps.
We take 3 points in the circle C(0,0) and show that they are in C(cs,7r5). The three
points are §, — and di. One can easily check that ¢~1(0) = (14 8)/(1 — §) = cs + rs and
¢~ 1(6) = (1 —-0)/(1+6) = cs — rs. We also have

Sy i—0 140 1+i6 20
G R A T Ao 2
so |¢p~1(8i) — cs| = 75 as we wanted. We conclude that ¢—1(C(0,0)) = C(cs,75). Since ¢~*
is holomorphic in B(0,1) and ¢~*(0) = 1 € B(cs,75), we obtain ¢~1(B(0,6)) = B(cs,rs)
as we wanted. Finally, the point in B(cs,s) with the largest norm is cs +rs = (1+6)/(1 —
J). O

Remark 3.17. Let o, 8 € [—m,w|. Then it is well-known that if o, B, a0+ 8 & /2 + 7, we have

tan(a) + tan(f)

tan(a +) = 1 — tan(a) tan(8)

In particular, we obtain the equality

2 tan(«)

tan(2a) = 1= tan(a)?"

Let f(x) = 2x/(1 — 2%). This function is strictly increasing in x € [—1,1]. Hence, if we have
a € [—nw/4,7/4] and tan(2a) = f(0) for some § € (0,1), we can conclude that tan(a) = . This

argument will be used in the proof of Theorem 1.5.

Lemma 3.18. Let §,¢ > 0, let B € R(J) and let hg(z) = (Bz +1)/(8 + z). Then hg(R(e)) C
R(de). Moreover, we have hg(co) = B € R(9).

Page 101 of 212

Chapter 3. Approximating the complex-valued Ising model on bounded degree graphs

Proof. 1t is straightforward to check that for any z € C with z # —1, we have Equation (3.1),

namel
’ ha(:) =1 (B—1)(z—1)
hg(z) +1 (B+1)(z+1)

The result now follows from (3.1) and the definition of R(g), R(de). O

We are now ready to prove Theorem 1.5.

Theorem 1.5. Let A be an integer with A > 3. Let G = (V, E) be a graph of mazimum degree
at most A. Let en = tan(m/(4(A —1))) € (0,1). Then Zising(G;3) # 0 for all € C with
B=1]/IB+1] <ea.

Proof. Let € R(ea). In light of Proposition 3.5, we only have to prove that Zisng(1; 8) # 0
for all trees T' with maximum degree at most A with possibly some pinned leaves. Let v be the
root of such a tree T. We are going to prove that R(T,v;) # —1 and (unless T consists of a
single vertex, pinned to 1, in which case the Theorem is trivial) that Z2(T,v; 3) # 0. Note that
both assertions combined imply that

Zy(T,v; B)

ZIsing(T;ﬁ) = ZiE)(T’U; ﬂ) <1 + m

) = Z)(T,v; B) (1 + R(T,v; B)) # 0

as we want.
First, we restrict ourselves to trees such that every node has at most d := A — 1 children

and possibly some its leaves are pinned. We claim that for such a tree T' with root v we have

1. R(T,v;B) € R(1) U {oo}, that is, R(T,v;) has non-negative real part or R(T,v;) = 0o
(Proposition 3.16);

2. if T has height at least 1, then Z9(T,v;8) # 0 (a tree with only one vertex has height 0
by definition).

We carry out the proof by induction on the height of the tree. Let us consider the case when the
tree T consists of only one vertex. Depending on whether the vertex is pinned or not, either
R(T,v;B) =1 and Z)(T;8) = 1, or R(T,v;3) € {0,00} and Z(T;3) € {1,0}. In either case,
R(T,v; B) € R(1) U {oo}.

Now let T be a tree of height [> 0 and let us assume that our claim holds for any of the
desired trees with height at most [— 1. Let T be a tree of height [such that all nodes have at
most d children. Let v be its root and let (T1,v1),. .., (Tk, vx) be the trees hanging from this
root. By assumption, k < d. Let r; = R(T},v;;) for all j € [k]. In view of (3.2), we have

k
R(T,v;) = [] ha(ry). (3.5)
j=1

By our induction hypothesis, 7; € R(1) U {oo} for all j € [k]. In light of Lemma 3.18, we find
that hg(rj) € R(ea) for all j € [k]. This property will be enough to ensure that the product

Page 102 of 212

Chapter 3. Approximating the complex-valued Ising model on bounded degree graphs

in (3.5) yields a complex number with non-negative real part. Let us study the argument of
any element of R(ea). By a trigonometry reasoning shown in Figure 3.1, the argument of any

element in R(ea) is in the interval [—0, 6] for 6 such that

2
tan(f) = ——a - A

= R
2 2 1—¢
\[CEL —TEA A

where 75 and ¢s are defined in Proposition 3.16. In view of Remark 3.17 for o = 6/2, we conclude
that tan(6/2) = ea and, thus, /2 = arctan(ea) = 7/(4d). Therefore, the complex number
R(T,v; B) is the product of k numbers with argument in [—0,60] = [—7/(2d),7/(2d)], so its
argument is in [—k6, k0] C [—7/2,7/2], where we used k < d. This is equivalent to saying that

R(T,v; B) has non-negative real part as we wanted. Note that when [> 1, we have also shown
that R(T,v;) € C.

Figure 3.1: The disk R(9).

Let us now prove that Z0(T, v; 8) # 0. We have

k

20(1:8) = [T (828, (13:8) + 28, (1)) (3.6)

J=1

If T; has height at least 1, then
B2, (Tj; B) + Zy,(Tj; B) = Zy(Ty; B) (B + R(Ty, v5; 8)) # 0,

where we used that ZSJ, (T}; B) # 0 and Re(8 + R(Tj,vj;3)) > 0 by the induction hypothesis
(recall that Re(8) > 0). If T; has height 0, that is, 7} has only one vertex, then, depending on

whether this vertex is pinned or not,

828 (Ty: B) + 2L (Ty: 8) € {1, 8,1+ B}.

Therefore, the product in (3.6) is a product of complex numbers that are non-zero, so Z2(T'; 8) # 0
as we wanted.

Finally, to prove the Theorem, we consider a tree T' with maximum degree at most A and
possibly some pinned leaves. Let v be its root and let (Ty,v1),. .., (Tk,vg) be the trees hanging
from this root. By the claim, R(Tj,v;;8) € R(1) U {oo} for all j € [k]. By Lemma 3.18,

Page 103 of 212

Chapter 3. Approximating the complex-valued Ising model on bounded degree graphs

hg(r;) € R(ea) for all j € [k], so the argument of hg(r;) is in [—7/(2d), 7/(2d)] for all j € [k].
It follows from this fact, £ < A, and (3.5), that the argument of R(T,v; () is in

[—kr/(2d), k) (2d)] C [~Ar/(2d), Ar/(2d)] C [~3/4, 37 /4],

where we used that A > 3. In particular, R(T,v; 8) is not a negative real number, so R(T,v; 3) #
—1. The fact that Z(T; 8) # 0 follows analogously from (3.6), Z%(T';) is a product of non-zero

complex numbers.]

Corollary 1.6. Let A be an integer with A > 3. Let § be an algebraic number such that
|8 —1|/|8+ 1| < ea, where ea = tan(w/(4(A —1))). Then there is an algorithm that, on inputs
a graph G with mazimum degree at most A and a rational € > 0, runs in time poly(size(G), 1/¢)

and outputs Z = Zising(G; B)e* for some complex number z with |z| < e.

Proof. The proof follows from combining Theorem 1.5, the work of Patel and Regts [101] and
the work of Barvinok [8]%. Let G and ¢ > 0 be the inputs of our algorithm. We consider the
polynomial gg g(2) = Z1sing (G5 1+2(8—1)). We want to give an FPTAS for ¢¢.5(1) = Zising (G} B).
We claim that, on graphs with maximum degree at most A, we can compute the k-th coefficient of
qc,p(z) in polynomial time in 2% and the size of G. This claim is proved for the more general case
of the graph homomorphism partition function in the proof of [101, Theorem 6.1]. Recall that 1
and [are in the interior of the disk R(ea) (Proposition 3.16) so this is also true of an open interval
around the line segment between them. Hence, there is § > 0 such that 14 z(8 — 1) € R(ea)
for all z € Rs, where Rs is a strip of the form Rs = {z € C: —0 < Re(z) <144, |Im(z)| < d}.
In light of Theorem 1.5, we conclude that gg g(z) # 0 for all z € Rs. In [8, Section 2.2.2]
Barvinok constructs a polynomial ¢5 and a real number by > 1 such that ¢s5(0) = 0, ¢s(1)
and ¢s(z) € Rs for any z € B(0,bs). Note that the polynomial pg 5(2) = ga.5(¢s(2)) does not
vanish in B(0,bs). Finally, we compute an approximation of pg s(1) = Zising(G; 3) as in [8,
Lemma 2.2.1] using the truncated Taylor series of logpg g(2). The algorithm of Barvinok uses
O(log(deg(pa,p)/c)) = O(log(size(G)/e)) coefficients of the Taylor series of logpg g(z). Here
the implicit “O” notation depends only on 3. These coefficients can be computed using the
algorithm of Patel and Regts in polynomial time in size(G) and 1/e. We conclude that [8,
Lemma 2.2.1] computes Y such that |log pg s(1) — Y| < € in polynomial time in size(G) and
1/e. Let z =logpa (1) — Y and Z = exp(Y). Then we have Z = Zigng(G; f)e* and |z| < € as

we wanted. O

3.3.2 Comparing Theorem 1.5 to the state of the art

In this section we gather all the results we are aware of on the zeros of the partition function of
the Ising model and compare them to Theorem 1.5. We show that our result extends the state

of the art significantly.

>The idea presented in the proof of Corollary 1.6 is known among experts, see for example, [86]; we include it
here for completeness. We note that the only properties of S = {z € C: |z — 1|/|z + 1| < ea} needed are that S is
open and {t+ (1 —¢)f:t€[0,1]} CSforall € S.

Page 104 of 212

Chapter 3. Approximating the complex-valued Ising model on bounded degree graphs

Results on the zeros of the graph homomorphism partition function can be particularised
to the Ising model. Let G = (V, E) be an undirected graph, possibly with multiple edges or
loops, and let A = (a;;) be a k x k symmetric matrix of complex numbers. Recall that the graph

homomorphism partition function is defined as

hom(G;A) = Y] asew

b: VK] {up}eE

where [k] denotes {1,...,k}, see (1.3). When k = 2 and a1; = a2 we have

a a
hom(G; A) = a'lg‘ Z H L aE'ZISmg (G; 11) , (3.7)

¢: V—={1,2} {u,v}€E: 412 12
P(u)=0(v)

recovering the partition function of the Ising model as a particular case.
To the best of our knowledge, the best result on the zeros of the graph homomorphism

partition function known up to date is the following result of Barvinok.

Theorem 3.19 ([8, Theorem 7.1.4]). For a positive integer A, let

dA = max {sin (g) cos (A%) 0<a< ;Z} . (3.8)

Then for any graph G = (V, E) with mazimum degree at most A, we have hom(G; A) # 0
for any complex symmetric matriz A with dimension k x k such that |1 — a;;| < 6a for any
i,7€{1,...,k}.

Theorem 3.19 can be naively translated to the Ising model by considering matrices of the
form
g 1
1 B
For those matrices, Theorem 3.19 says that Ziging (G, 5) # 0 when |1 — 5| < 6a. One can obtain
a stronger result for the Ising model if we apply (3.7) together with Theorem 3.19.

Corollary 3.20. Let A be a positive integer, let da as in (3.8) and let

se U %E(LaA).

aGE(l,éA)
Then Zising (G, 8) # 0 for any graph G with mazimum degree at most A.

Proof. We can write 8 = aj1/ai2 for aj1,a12 € B(1,0a). We consider the matrix

A=
a2 ail

ail alQ]

By (3.7) and Theorem 3.19 we have Ziing (G,) = a12|E|hom(G; A) # 0 for any graph G = (V, E)

with maximum degree at most A. O

Page 105 of 212

Chapter 3. Approximating the complex-valued Ising model on bounded degree graphs

The case a = 1 is the naive application of Theorem 3.19 mentioned after Theorem 3.19.
Taking a = 1/4/8 in Corollary 3.20 gives the following corollary that can be found in the work

of Mann and Bremner [89).

Corollary 3.21 ([89, Corollary 7]). Let A be a positive integer, let oa as in (3.8) and let 5 € C
such that |1 —1/\/B| < 0a and |1 —/B] < da. Then Ziging(G,B) # 0 for any graph G with

mazimum degree at most A.

Proof. This is a particular case of Corollary 3.20 where a is set to 1/+/5. O

In Lemma 3.22 we show that the sets Uae§(1 5) B(1,6)/a and R(0) are related.

Lemma 3.22. For any d € (0,1/2], we have

[1—51+5]C U %Euﬁ)gn(%h@)

1+6'1-9¢ ~
a€B(1,0)

Proof. The first inclusion follows from the fact that

1—-6 1+9 - 1
148 1—-6| 1496

_ 1 _

B(1,0) + mB (1,9).

In the rest of the proof we focus on the second inclusion. First, let us consider a of the
form a = 1 + de? for some 6 € [0,27). We show that B(1,0)/a C R(26/v/3). Note that
B(1,6)/a = B(1/a,6/|al). Since B(1,6)/a and R(25/+/3) are convex, we only have to show that
the border of B(1,4)/a is contained in R(25/v/3). Let B be in the border of B(1,§)/a. We can
write 8 = (1 +de™)/a = (14 6e™)/(1 + 6¢%) for some 7 € [0,27). We have

5_1 eTz’_eei
B+1 - 2+ 6(em + efi)’

(3.9)

The norm of the right hand size of (3.9) is bounded by 2§/v/3 when § € (0,1/2]. This can
be shown using Mathematica (see Section 3.3.3 for the code). We highlight that the fact that
9 € (0,1/2] is needed for this bound as the norm of the right hand size of (3.9) is unbounded
when § gets close to 1. We conclude that 3 is in R(25/+/3) as we wanted.

Now we consider the case when a = 1 + re? for some r € (0,6). Let f(z) = 1/z and
Q = f(B(1,6)). We claim that the set f(B(1,6)) is convex. Let us finish the proof assuming
this claim. The map f maps the border of B(1,d) to the border of f(B(1,6)). Thus, we can
write 1/a = Af(a1) + (1 — \) f(az2) for some A € (0,1) and a1 and ag in the circle of centre 1 and

radius 6. We obtain,
1

1— 11— —

-B(1,0) =A—B (1,0 1-A)—B(1,d

“B(1.0) = A B(L6)+(1-N)-B(1,5),
which is contained in R(25/+v/3) due to the convexity of R(25/v/3) (Proposition 3.16, R(25/v/3)
is a closed disk) and the fact that B(1,0)/a; and B(1,8)/as are contained in R(25/v/3) as we

argued at the beginning of this proof.

Page 106 of 212

Chapter 3. Approximating the complex-valued Ising model on bounded degree graphs

Finally we prove that f(B(1,6)) is a convex set. The map f(z) = 1/z is a Mobius map, so
it sends lines and circles to lines and circles, see Section 3.2.4 on rational maps. The points
f(1—=96),f(146), f(1+41id) are not aligned so f sends the circle of center 1 and radius J to a
circle C' determined by the points 1/(1 — §),1/(1 +6) and 1/(1 +i8). Note that f(B(1,5)) C C
as 0 € B(1,5). Moreover, f(1) = 1 is in the disk determined by the circle C that contains
1/(1—6),1/(1+6) and 1/(1+1id), so f(B(1,)) is precisely the smallest closed disk that contains

C and, in particular, convex. O

As a consequence of Lemma 3.22, for 0, is as in (3.8), whenever dp < 1/2, the non-zero
regions of the partition function of the Ising model given by Corollaries 3.20 and 3.21 are contained
in R((2/v/3)0A). Recall that the zero-free region given in Theorem 1.5 is R(ca), where ep =
tan(r/(4A — 4)). By the definition of R(8) (see Definition 3.15), we have R(20a/v/3) C R(ea)
if and only if 20A/ V3 < ea. In the remaining of this section we compare 26 / V30a and ea.
Figure 3.2 shows that e is significantly larger than 25/v/35a and that da(A — 1) < 1. Thus,
da > 1/2 when A > 3 and we can apply Lemma 3.22 to conclude that Theorem 1.5 improves
the results of Barvinok, Mann and Bremner (Corollaries 3.20 and 3.21) considerably, particularly
for the case A = 3. See also Figure 1.1. The limit of ea(A — 1) is 7/4 = 0.785..., whereas we
have numerically checked that 25/v/36A (A — 1) tends to 0.64789.... Thus, our result is stronger
for all A, and in the limit as A — oo.

T
0.8 T™—w— _
0.6 - 3
0.4 -
—— ea(A-1)
0.2 20a(A =1)/V3 ||
on(A—1)
0 \ \ \ \ \ I i I
4 6 8 10 12 14 16 18 20

A

Figure 3.2: Plot of the quantities ea (A — 1), and da(2/v/3)(A — 1).

We recall here for completeness the approximability of Zising(G;3) when 8 is a positive
real, see Section 1.2 of the introduction for a in-depth overview. The partition function of the
anti-ferromagnetic Ising model (corresponding to the case 0 < f < 1) has an FPTAS when £ is
in the uniqueness region of the infinite A-regular tree [107]. This uniqueness region turns out to
be the interval ((A —2)/A,;A/(A —2)). When § > 1 (corresponding to the ferromagnetic Ising
model) the partition function has an FPRAS on arbitrary graphs (with no restrictions on the
degree) by the work of Jerrum and Sinclair [76]. However, in the case of the anti-ferromagnetic

Ising model (8 € (0, 1)) this uniqueness/non-uniqueness phase transition is also a computational

Page 107 of 212

Chapter 3. Approximating the complex-valued Ising model on bounded degree graphs

transition for the complexity of approximating the partition function of the Ising model: unless
RP = NP, for all A > 3, there is no FPRAS for approximating the partition function on graphs
of maximum degree A when § € (0,(A — 2)/A) [52]. Interestingly, the uniqueness interval
((A—=2)/A,A/(A —2)) is contained in a complex zero-free region of the partition function of
the Ising model.

Theorem 3.23 ([86, Theorem 1.2]). Let A be an integer with A > 3. For any f € ((A —
2)/A,A/(A —2)), there exists a § > 0 such that for all B/ € C with |8’ — 8| < 8, we have
Zising (G5 8') # 0 for any graph G with mazimum degree at most A.

The argument given in the proof [86, Theorem 1.2] uses continuity to prove the existence
of § > 0 as in the statement. Hence, the zero-free region is not given explicitly. We note that
Theorem 3.23 cannot be extended to include more edge interactions € (0, (A — 2)/A) unless
RP = NP as, by the work of Patel and Regts [101], this would imply easiness of approximating
Zising(G; B) on graphs with maximum degree A.

A recent paper of Barvinok and Barvinok gives another region where Ziging(G; 3) is non-
zero [9]. This result actually applies to the multivariate Ising model with a field but it can be

stated for our particular case as follows.

Theorem 3.24 ([9, Theorem 1.1]). Let A be a positive integer with A > 3. Let a € C and let
B = e2*. Suppose that for some 0 < § < 1 we have |Re(a)| < (1 —§)/A and |Im(a)| < §2/(10A).
Then Zising (G5 8) # 0 for any graph G with mazimum degree at most A.

Generally Theorems 1.5 and 3.24 are incomparable for A large enough, both of them cover
edge interactions that escape from the other result. However, for A = 3 Barvinok’s region
is contained in the region R(tan(w/(4A — 4))) covered by Theorem 1.5. This is depicted in

Figure 1.1, where all the regions introduced in this section have been plotted for A = 3.

3.3.3 Mathematica code for the proof of Lemma 3.22

The following Mathematica code shows that, for any 6 € (0,1/2] and 7,6 € [0,27), we have

T 01

<2
_\/37

which was promised in the proof of Lemma 3.22. The output of the code is False. The code uses

(3.10)

e —e
2+ (e 4 ef7)

the (rigorous) Resolve function of Mathematica. Here the variables cos1 and sini take all pair
of real values (cos1,sin1) such that cos1? + sin1? = 1. In the code, the variables cosl and
sinl are parametrised by a number t1 € [—1,1] and a sign s1 € {1,—1}. The variables cos2 and
sin2 are defined analogously for a new set of parameters t2 € [—1,1] and s2 € {1,—1}. Thus,
the variable Z represents all possible complex numbers of the form (e — e%)/(2 + 6(e™ + €%%))
for 7,0 € [0,27), and X and Y correspond to the real and imaginary parts of Z. Finally, the
variable delta of our code corresponds with § € (0,1/2]. The method resolve shows that there
is no set of parameters t1, t2, s1, s2, delta such that X2+ Y? > 4/3, thus, proving (3.10).

Page 108 of 212

Chapter 3. Approximating the complex-valued Ising model on bounded degree graphs

cosl = 2 t1/(1 + t172);

sinl = s1 (1 - t1°2)/(1 + t1°2);

cos2 = 2 t2/(1 + t272);

sin2 = 82 (1 - t272)/(1 + t272);

Z = ComplexExpand[((cosl + I sinl) - (cos2 + I sin2))/(2 +

delta (cosl + cos2 + I (sinl + sin2)))];
X = Simplify[(Z + ComplexExpand[Conjugate[Z]1])/2];
Y = Simplify[(Z - ComplexExpand[Conjugate[Z]])/(2 I)];
Resolve[Exists[{t1l, t2, sl, s2, deltal},
X72 + Y72 > 4/3 && -1 <= t1 <=1 && -1 <= t2 <=1 &&
0 < delta <= 1/2 && (s1 == [l s1 == -1) && (s2 == 1 || s2 == -1)]]

3.4 Hardness results: proof of Theorem 1.7

In this section we prove Theorem 1.7. Our hardness proof uses the reduction developed in
Chapter 2, based on the binary search technique of Goldberg and Jerrum [59]. Goldberg and
Jerrum developed this reduction to obtain #P-hardness results for determining the sign of the
Tutte polynomial, recall that the Tutte polynomial includes the partition function of the Ising
model as a particular case with the change of variables ¢ = 2 and v = 8 — 1. This reduction has
been further refined in [55] to obtain #P-hardness results for the problem of approximating the
norm of the Tutte polynomial. Further refinements have been obtained in Chapter 2, where
we give a reduction from exact evaluation of the Tutte polynomial to approximation of this
polynomial with complex edge interactions. This later refinement is particularly useful when
obtaining hardness results for restricted families of graphs for which exact evaluation of the
Tutte polynomial remains hard. Recall that in Chapter 2 we exploited this to prove hardness of
approximation for planar graphs whereas here we exploit this reduction to obtain hardness of
approximation for bounded-degree graphs for the partition function of the Ising model.

In order to apply the reduction given in Chapter 2 there are a few technical results that we
have to develop. The reduction is based on the binary search / interval shrinking technique of
Goldberg and Jerrum [59] and this requires us to be able to implement approximations of any
real edge interaction efficiently. We formalised this property in Definition 3.1 (recall that we
denote by A the set of real algebraic numbers and we denote by Cy the set of complex algebraic
numbers).

Our work shows that we can implement the complex plane in polynomial time for most
pairs (A, 3). These pairs (A, 8) are those where 3 ¢ R and (3 —1)/(8+1)| > 1/v/A — 1, see
Lemma 3.2. If we could extend Lemma 3.2 to other pairs (A,), then we could automatically
extend Theorem 1.7 to these pairs. In other words, the limiting factor in the proof of Theorem 1.7
is being able to (A, 8) implement the real line. In fact, most of our work is devoted to this

task. The proof of Lemma 3.2 heavily uses the results of [15] as an input. In [15], the authors

Page 109 of 212

Chapter 3. Approximating the complex-valued Ising model on bounded degree graphs

(A,) implement the complex plane in polynomial time for the independent set polynomial for
most complex activities A3. Their arguments apply results of complex dynamics in conjunction
with the tree recurrence for the independent set polynomial. It turns out that the arguments
presented in [15] can be generalised so that they can be applied to other spin systems, and we do
so in Section 3.6. We refer to [15, Section 2] or our Section 3.6 for a description of this complex
dynamics approach.

This section is organised as follows First, in Section 3.4.1 we introduce the framework needed
to implement the real line in polynomial-time (using Section 3.6 as an input). We remark
that Section 3.6 is independent of the proofs presented here and can be read on its own. In
Section 3.4.2 we use this framework to prove Lemma 3.2. Then in Section 3.4.3 we use Lemma 3.2

in conjunction with the reductions of Chapter 2 to prove our hardness results.

3.4.1 Ising and Mobius programs

In this section we introduce the framework that we use to implement the real line in polynomial
time for the Ising model. Our proofs are based on the techniques developed in [15] for the
hardcore model. The idea behind the implementation results of [15] is the following one. First, we
have to come up with a recursively-constructed gadget that implements a weight f(z1, 22, ..., 24)
assuming that we can implement z1,...,z4. Then we apply results of complex dynamics to the
function f in order to understand which points we can implement by iterating f. As we will
see, it is important that the function f is of the form g(z123 - - z4), where g is a Mobius map.
In [15] the function f naturally arises from the tree-recurrence for vertex implementations in the
hardcore model. Unfortunately vertex-style implementations are useless in the Ising model; due
to the perfect symmetry nothing interesting can be implemented through that route. Hence, we
need to devise another way to obtain this type of recurrence in the Ising model. This is done in

Proposition 3.26 for the Mobius map gg, which is introduced in Definition 3.25.

Definition 3.25. Let A >3 and B € C, and set d :== A — 1. Let hg(x) = (Bx +1)/(f +x) and
let gg(x) = hg(hg(x)). An Ising-program for B is a sequence ag, a1, ..., starting with ag = B and
satisfying

ar = gp(ai,, - aik,dk) for k>1,

where dy, € [d] and i1,... k4, € {0,...,k —1}. We say that the Ising program ag,a1, . ..

generates x € C if there exists an integer k > 0 such that ap, = x.

We use these definitions for hg and gg several times in the rest of Section 3.4. We work
with Ising-programs from a computational point of view. We represent an element aj of an
Ising-program by the tuples (ij1,...,i;q;) for j € {2,...,k}, so computing aj means computing
its representation as a sequence of tuples. Proposition 3.26 gives a gadget that implements the

edge-interactions generated by an Ising-program.

3Here) is a vertex activity of the independent set polynomial, and a graph G with terminal v (A, A)-implements
X if deg(v) =1 and X = R(G,v; \)

Page 110 of 212

Chapter 3. Approximating the complex-valued Ising model on bounded degree graphs

Proposition 3.26. Let A > 3 and § € C. Suppose that ag,a1,... is an Ising-program for
B. Then, for every k > 0, we can compute from the representation of ap a graph Hi with
mazimum degree at most A that (A, B)-implements the edge interaction ay. This computation

takes poly (A, k) steps.

Proof. Set d := A — 1. We give a recursive algorithm for the task of the statement. For k = 0,
our algorithm outputs the graph with two vertices and one edge joining them. This graph
implements the edge interaction ag = . For k > 0, first our algorithm computes recursively
graphs Hy, ..., H,_; such that H; (A,)-implements a; for every j € {0,...,k —1}. Since
ao,ai, . .. is an Ising-program, we have a, = gg(a;, , - ~aik’dk) for di € [d] and some indexes
i1y ika, € {0,...,k—1}. We have access to these indexes since we have access to the
representation of ai. Our algorithm constructs Hy as the series composition of the following
graphs: Hp, the parallel composition of the graphs H;, ;... >Hik,dk7 and Hy. The graph Hj

implements the same edge interaction as that implemented by the graph shown in Figure 3.3.

Qi 1

iy, ay,

Figure 3.3: The recursive construction for Hy.

By the properties of series and parallel compositions, see (3.4), the graph Hj implements
the edge interaction hg(hg(a;, , - - ~aik7dk)) = ay. Note that constructing Hy, from Hy, ..., H;_q
takes poly(A, k) steps, so in total our algorithm has performed at most k times that number of

steps.]

Note that gg is the composition of two Mobius maps and, thus, is a Mobius map. Hence,

Ising-programs can be viewed as a particular case of Mobius-programs (see Definition 3.27).

Definition 3.27. Let d > 2 be an integer, g be a Mobius map and ag € C. A Mobius-program

for g and d starting at ag is a sequence of complex numbers ag, a1, ... of the form

ak = g(@i, - @iy,) fork =1,

where dj, € [d] and iy 1,... g4, € {0,...,k —1}. We say that the Mobius-program ag, a1, . ..
generates x € C if there exists a non-negative integer k such that ar = x. We usually omit d

when its value is clear from the context.

In [15] the authors studied the points that can be generated by those Mobius-programs

starting at ag = A for

Page 111 of 212

Chapter 3. Approximating the complex-valued Ising model on bounded degree graphs

where)\ is an activity for the independent set polynomial. They called this program a hardcore-
program. The study of hardcore-programs is at the core of the hardness results for the independent
set polynomial derived in [15]. It turns out that their results on hardcore-programs can be
generalised to our setting of Mobius-programs. In short, their techniques imply that under some
hypothesis we can efficiently generate approximations of any complex number with Mobius-
programs algorithmically. First, let us introduce some notation that we use to generalise their

results.

Definition 3.28. Let d > 2 be an integer and let g be a Mobius map. Let ag € C. We say that
v € C\ R is program-approzimable for g, d and ag if for each € > 0, there is a Mobius-program
for g and d starting at ag that generates a number x € C\ R with 0 < |y — z| < e.

Definition 3.29. Let d > 2 be an integer and let g be a Mobius map with coefficients in Cy. Let
ag € Cy. We say that v € C is densely program-approzimable in polynomial time for g, d and
ag if there is v, € Asq such that for each positive integer k there is an algorithm whose inputs
are a rational € > 0 and X' € B(y,ry) N Cy that computes, in polynomial time in size(e) and
size(N'), k distinct complex numbers x1,xa, ...,z generated by Mobius-programs for g starting
at ag with |N' — x| < e for all j € [k].

In both definitions, we usually omit d when its value is clear from the context.

In [15] the authors consider a fixed point of f(x) := g(z?) that is program-approximable
for their choice of g and ag and show that this fixed point is densely program-approximable
in polynomial time for g and ag. Then they use this property in conjunction with results of
complex dynamics to generate approximations of any complex number when the fixed point
under consideration is repelling. This idea is made precise in Lemmas 3.30 and 3.31. We include
our proofs of Lemmas 3.30 and 3.31 in Section 3.6, which require significant extra work as the
versions of these results for the hardcore model given in [15] exploit the properties of the Mobius

function 1/(1 + Az) and, thus, cannot be directly generalised.

Lemma 3.30 ([15, Proposition 2.6 for Mobius-programs|). Let d be an integer with d > 2 and
let g be a Mobius map with coefficients in Cp. Let f(x) := g(x?) and let w be a fized point of f.

Let us assume that the following assumptions hold.
1. w is program-approximable for g, d and ag € C;
2. w#0, g'(wh) & {0,00} and g"(w?) # oo;
3. Let z := f'(w)/d = ¢ (wh)w@L. We have 0 < |z| <1 and z € R.
Then w is densely program-approximable in polynomial time for g, d and ag.

Lemma 3.31 ([15, Proposition 2.2 for Mobius-programs|). Let d be an integer with d > 2 and
let g be a Mobius map with coefficients in Cx such that g(co) € C. Let w € C be a repelling
fized point of f(z) := g(2%) that is densely program-approximable in polynomial time for g and

Page 112 of 212

Chapter 3. Approximating the complex-valued Ising model on bounded degree graphs

ag € Cp. Let Ey be the exceptional set of the rational map f. If 0,00 & Ey, then the following
holds.
There is a polynomial-time algorithm such that, on input A € Cy and rational € > 0, computes

an element ay of a Mobius-program for g starting at ag with |\ — ax| < €.

In order to apply Lemmas 3.30 and 3.31, first one has to find a fixed point w with the
properties described in Lemma 3.30. When applying this result to the Ising model, we will set
w = 1. Then one has to find the region of activities / edge interactions where the fixed point is

repelling. All this work is carried out in Section 3.4.2.

3.4.2 Proof of Lemma 3.2

In this section we use the framework introduced in Section 3.4.1 to prove Lemma 3.2. This
proof strongly uses the properties of the map hg, which naturally arises in the context of the
Ising model. The proof is divided into several technical lemmas. First, we show that w =11is a
program-approximable fixed point for the Ising model (Lemma 3.33). Then we prove Lemma 3.2
when 1/v/A —1 < |3 —1]/|8+ 1] < 1. Finally, we address the cases |3 — 1|/|8 + 1| = 1 and
|6 —1]/|8 + 1] > 1 separately, as they do not directly follow from the results of Section 3.4.1.

We will use the following remark.
Remark 3.32. Let 8,z € C\ {1,—1}. Then it is straightforward to check that

ho(e) =1 _ (8- 1)(e—1)
ho(@)+ 1 (B L@+ 1)

This equation was observed in (3.1) and plays a key role in the proof of Theorem 1.5. By

induction we conclude that, for any positive integer n,

w1 (1) (557).

By rearranging this equation, we obtain, for any positive integer n,

. 2 2
hi(z) = —1 - =1+

(@)”(x;l) 1 <@)” <L+1> 1
B+1 z+1 B-1 z—1

Therefore, we have

2 2
gs(r) = -1~ =1+

(@)2"(ﬂ>_1_ (@>2n<w>_1‘
B+1 z+1 B—1 r—1

Lemma 3.33. Let 8 € C with 5 ¢ {i,—i} UR. Then there is an Ising-program ag,ay,. .. such

that the following holds. For every € > 0, there is a positive integer k such that 0 < |1 —ag| <&
and ai € R.

Page 113 of 212

Chapter 3. Approximating the complex-valued Ising model on bounded degree graphs

Proof. We note (x +1)/(x—1)=1+4+2/(z —1) € R if and only if 2/(z — 1) € R or, equivalently,
x € R. Thus, we have (84 1)/(8 — 1) ¢ R. These facts are used repeatedly in this proof. There
are three cases:

Case 1: 0 < |8 —1|/|8+ 1| < 1. First, let us describe the Ising-program. We define ag = 3
and a; = gg(aj—1) for every j with j > 1. Note that this is an Ising-program. Since a; = g%,(ﬂ)
for 7 > 1, by Remark 3.32 we obtain

2
aj—1=—"—— (3.11)

2j+1 ’
B+1 _
(B5)" -1
By hypothesis we have |5+ 1|/|8 — 1| > 1, so the right hand side of (3.11) converges to 0.
Moreover, since (84 1)/(8 — 1) € R, there are infinitely many positive integers j such that

=

the right hand side of (3.11) is not real. Therefore, we can find a positive integer k& with
0<|l—ag| <eandap &R.

Case 2: |5 —1|/|8+ 1] > 1. First, we give an Ising-program by, b1, ... with the property that
b; converges to —1. We define by = 8 and b; = gg(bj_1) for every j with j > 1. By Remark 3.32

we have
2

51\ 2T ’
(m) -1

so b;j + 1 converges to 0 because |3 — 1|/|8 + 1| > 1. Once we have this Ising program, we define

bj—f-l:—

ag = 3, azj—1 = b; and ag; = gg(agjfl) = gﬁ(b?) for all j > 1. From Remark 3.32 we obtain

azj_lzgﬁ(bi)—l:<5_1>2b§—1
azj+1 gz(b3) +1 B+1) 241

(3.12)

The right hand side of (3.12) converges to 0, so ag; converges to 1. Moreover, (3.12) in

combination with b; = ¢%(3) and Remark 3.32 gives (b; +1)/(b; — 1) = ((8—1)/(B+1))"%~!

and

asj —1 _ (B—1\?(b; +1)(b; —1)2 [(B—1\"7T (b; — 1)
a2j+1_<5+1> (bj—l)(b§+1)_(6+1> bP+1

Since (8 —1)(8 + 1) is not real and (b; — 1)%/(b3 4 1) converges to 2, there are infinitely many

values of j such that (azj —1)/(ag; +1) is not real. Equivalently, there are infinitely many values

of j such that ag; is not real. Hence, for every € > 0, there is a positive integer k such that

0 < |1 —ag| <eand ay; € R.

Case 3: | —1|/| + 1] = 1. Then we note that § € Ri (Proposition 3.16, Item 3). We can
write S = c¢i with ¢ a real number with ¢ ¢ {0,1,—1}, where we used that g ¢ {0,47, —i}. We
consider v = gg(8?). We claim that v & {i,—i} UR and |y — 1|/]y + 1| > 1. Assuming this, we
obtain our Ising-program as by = 3, by = v and b; = a;_1 for all j > 2, where ag, a1, ... is the
Ising-program of Case 2 with g = ~. We study ~« to conclude the proof. We note that v is the
edge interaction implemented by the series composition of three edges with edge interactions
B, 8% and 3. Recall that series compositions are commutative when it comes to the weight they

implement (see Section 3.2.3) and that the weight implemented by the series composition of

Page 114 of 212

Chapter 3. Approximating the complex-valued Ising model on bounded degree graphs

two graphs implementing w; and wsg is (wiwg + 1) /(w1 + w2) = Ay, (W2) = hy, (w1). Thus, we
have v = hg(hg(8%)). This is also the edge interaction implemented by the series composition of
three edges with edge interactions 3,3 and 52, so we can also write v = hg2(hg(B)). From the
expression v = hg(hg(8?)) and Remark 3.32 we find that
‘7—1':‘%(52)—1‘ 2= g2
T+ lgs(B) +1 B+

where we used that ¢ # £1. In particular, we have v # +i. From the expression v = hg2(hg(3))

1+c2 <
+1 1—¢2

we are going to show that v ¢ R, which would complete the proof. We have

hipo () = h_oa(2) —Cr+1 (—02x+1) (E—CQ) —c2\x|2+f+c4x—02
2(x) =h_.2(x) = = = .
g ¢ —ctx |z — 2 |z — 2?

Since ¢! # 1 because ¢ # +1, we find that hg2(x) is non-real for any non-real x. In particular
this is the case for x = hg(8) as hg(8) = (1 + 8%)/(28) = —i(1 — ¢?)/(2c) ¢ R. We conclude
that v = hg2(hg(3)) is not real as we wanted. O

Using the notation of Section 3.6 (see Definition 3.28), the statement of Lemma 3.33 implies
“1 is program-approximable for gg and ag = 8 for any € C\ (RU {4, —i})”. This is one of the
three conditions that we have to check to apply Lemma 3.30 with w = 1 in our current setting.

Lemma 3.34 shows that the two other conditions hold for some edge interactions f.

Lemma 3.34. Let d be an integer with d > 2 and let 3 € C\ (RU {i,—i}). Let fz(x) = gs(z?),
where gg is as in Definition 3.25. Let z = fg(1)/d. If 0 < |3 —1[/|B+ 1| <1 and |B] # 1, then

1. g5(1) & {0, 00}, gi(1) # oo;
2.0< |z <1 and z ¢ R.

Proof. Let us determine z, gi(1) and gi(1). We have hj(z) = (B2 —1)/(8+x)? and Wy (x) =
2(1 — 8%)/(B + z)®. Hence, we obtain g5(1) = N (hg(Nhi3(1) = (B —1)%/(B + 1)*. Since
0 < [B—1]/|8+ 1] < 1, we have 0 < |g5(1)] < 1, so g5(1) & {0,00}. Moreover, from
z = f'(1)/d = gj(1), we obtain 0 < |z| < 1. Note that (3 —1)2/(B 4 1)? € R if and only if
(B—1)/(B+1) € RURi. Also note that (3—1)/(B+1)=1-2/(8+1),s0 (3—1)/(B+1) €R
if and only if 5 € R. If (f —1)/(8+ 1) = ci for some c € (—1,1)
l+ci 1—-¢& 2
=i iretira”
so|B|* = 1. Since 8 ¢ R and |8] # 1 by hypothesis, we find that 2 = g4(1) = (8—1)*/(8+1)* ¢ R
as we wanted. Finally, let us determine g7(1). We have g3(1) = —4(8 — 1)%/8 +1)* & {0, 00},
where we used that § ¢ {1, —1}. This finishes the proof. O

, then we obtain

Remark 3.35. The map fz(z) = gﬁ(zd) does mot have exceptional points. To see this, we apply
Lemma 3.14. First, let us determine the points of fz with multiplier 0. We have

(8% +1)2¢+28 (82— 1)

fa(z) = 11+ 2534 (142824 + g2)2

and fh(z) = dzt4=1)

Page 115 of 212

Chapter 3. Approximating the complex-valued Ising model on bounded degree graphs

so the only point with multiplier 0 is z = 0. However, 0 is not a fived point of fz because

f3(0) =2B/(1+ B?), so fz does not have any exceptional points.

Now we combine all the results obtained so far in this section obtaining Corollaries 3.36
and 3.37.

Corollary 3.36. Let A be an integer with A > 3 and let f € Cy \ R with |5] # 1 and
0<|B8—1]/|8+1| <1. There is a rational number r € (0,1) and a polynomial-time algorithm
such that, on input A € B(1,r) N Cy and rational ¢ > 0, computes a graph G that (A, 3)-

implements a complex number X with |\ — A| < e.

Proof. Set d := A — 1. Lemma 3.33 and Lemma 3.34 provide us with the three conditions
that the fixed point w = 1 of fg(x) = gs(z?) has to satisfy to apply Lemma 3.30. We find
that 1 is densely program-approximable in polynomial time for gg, d and ap = 5. In terms of
Ising-programs, this gives (Definition 3.29 with k = 1) that there is 7 > 0 and an algorithm, on
inputs a rational € > 0 and A € B(1,7) N Cy, that computes, in polynomial time in size(¢) and
size(\) a complex number A generated by an Ising-program with A — 5\| < e. This can be then

translated to the result given in the statement by applying Proposition 3.26. O

Corollary 3.37. Let A be an integer with A > 3 and let B € Cp \ R with |5 # 1 and
1/VA—-1 < |B—=1]/IB+ 1] < 1. Then the pair (A,) implements the complex plane in

polynomial time for the Ising model.

Proof. Set d := A — 1. The proof starts the same way as the proof of Corollary 3.36. The
difference here is that once we show that 1 is densely program-approximable in polynomial
time for gg, d and ap = 3, we use this property to apply Lemma 3.31. First, we have two
check the other two hypothesis of Lemma 3.31. The first hypothesis that 1 is a repelling fixed
point of fg or, equivalently, |f5(1)] > 1. This follows from 1/VA—1< |B—1|/|B+ 1| since
fp(1) =d(B— 1)2/(B+1)2. The second hypothesis is that 0 and oo are not exceptional points of
the rational map fg, which holds because fz does not have exceptional points, see Remark 3.35.
We conclude by Lemma 3.31 that there is a polynomial-time algorithm such that, on input
A € C4 and rational € > 0, computes an element a; of an Ising-program with |\ — ax| < e.
The result now follows by applying the algorithm of Proposition 3.26 to translate the obtained
Ising-program to a graph that (A, 8)-implements a. O

Finally, we extend Corollaries 3.36 and 3.37 to the rest of the complex plane when possible.

Lemma 3.38. Let A be an integer with A > 3 and let 5 € Cp \ R with 8 & {i,—i}. There is a
rational number r € (0,1) and a polynomial-time algorithm such that, on input A € B(1,7) N Cy
and rational € > 0, computes a graph G that (A, 3)-implements a complex number X with
A=) <e.

Proof. We recall that |8 — 1|/|8 + 1] < 1 if and only if Re(5) > 0, and |8 — 1]/|8 + 1| = 1 if
and only if Re(8) = 0, see Proposition 3.16, Item 3. We distinguish three cases based on this

observation:

Page 116 of 212

Chapter 3. Approximating the complex-valued Ising model on bounded degree graphs

Case 1: |f| # 1 and 0 < | —1|/|B8 + 1| < 1. This case is exactly Corollary 3.36.

Case 2: [f|=1and 0 < |8 —1|/|8+ 1| < 1. We have Re() > 0. We consider the edge
interaction 8’ = hg(/3) that is implemented by a path of length two with weights 5. We have
B =(p*+1)/(28) = (B+B71)/2 =Re(B) € (0,1), where we used that |3| = 1 and Re(3) > 0.
We now consider the Mobius map hg (z) = (82 +1)/(8'+xz) = (Bz+1)/(B’+x), where we used
that ' is real. It is well known that this Mobius map fixes {z € C: |z| = 1} (Proposition 3.10).
Moreover, hg (0) = 1/Re(8) € (1,00). Hence, the Mobius map hg sends the open unit disk
D := B(0,1) to ((/i\}D) and it sends @\ID) to D. We conclude that gg (D) = D. Therefore, 3-5' € D
and v := gg(f - B') € D. We can implement the edge interaction v using the graph given in

Figure 3.4. We have
iy () = BPx+ B + B> + T
o B a7

so, since 3’ € (0,1), the Mobius map h%(az) sends points with positive real part to points with

positive real part, and non-real points to non-real points. Hence, the Mobius map gz (x) =
hg(hg (z)) also has these properties. We conclude that v = ga/(8- ') has positive real part and is
not real. Putting all this together, v is a non-real number with |y| < 1and 0 < |[y—1|/|y+1| < 1,
so « is in the first case of this proof. We can translate the algorithm of the first case of this
proof for «y to an algorithm for 5 because we can (A, §)-implement ~, see Section 3.2.3 for the

transitivity property of implementations.

Figure 3.4: A graph that (3, §)-implements ~.

Case 3: | —1|/|8+ 1| > 1. We can use the Ising program of Lemma 3.33 to generate
ar € C\ R with |1 — ax| < 1/2. We can (A, 5)-implement aj, with the help of Proposition 3.26.
Note that 0 < |ar — 1|/|ax + 1| < 1, so the edge interaction aj is in one of the first two cases
of the proof. Again from the transitivity property of implementations, we can translate the

algorithm of the first two cases for ai to an algorithm for 3, concluding the proof. O

Lemma 3.2. Let A be an integer with A > 3 and let f € Cx \ R with § & {i,—i} and
1/VA—=1<|B—=1]/|8+1|. Then the pair (A,) implements the complex plane in polynomial

time for the Ising model.

Proof. Set d := A—1. Let r be the positive real number given in Lemma 3.38. Let f3(z) = gs (z?).
As argued in Corollary 3.37, 1 is a repelling fixed point of fg so, by Lemma 3.12, 1 belongs to
the Julia set of f and, thus, by Theorem 3.13, ;2 f5(B(1,7)) = C\ Ey,, where Ey, is the set
of exceptional points of fg. In view of Remark 3.35, Ey, is empty. Let v = 10(1 +). There
is a positive integer N such that v € féV(B(l,r)). Thus, there is * € B(1,7) N Cy such that

Page 117 of 212

Chapter 3. Approximating the complex-valued Ising model on bounded degree graphs

fN(z*) = ~. By the continuity of the rational function fV at 2*, there is § € (0,r) such that
|fN(z*) — fN(z)] <0.01 for every = € B(z*,d). The constants v and 0.01 are not chosen to be
optimal but to make the notation and proof simpler for the reader. In view of Lemma 3.38 we
can compute (in constant time) a graph G that (A, 8)-implements a complex number & with
|z* — 2| < 6. Let 4 = fév(a?) Note that we can (A,) implement 4 using the construction
from Proposition 3.26 and the fact that we can (A,) implement . By continuity, we have
|y — 4] < 0.01. Note that 4 is in C4. Moreover, we have Re(%) > 0, so | —1|/|% + 1| < 1. From
|v — 4] < 0.01 and the triangle inequality we have

v —1 v — -1 — 1| —0.01
o _ |Gy =1 =1 - 00 1/v2
y+1 A=7)+v+1 |y + 1| + 0.01

Hence, the edge interaction % is in the region covered by Corollary 3.37, so the pair (A,%)
implements the complex plane in polynomial time for the Ising model. We conclude that the
pair (A, 8) implements the complex plane in polynomial time for the Ising model thanks to the

transitivity property of implementations.]

The complex dynamic argument presented in the proof of Lemma 3.2 is one of the main ideas
behind the results of [15] and is applied twice in Section 3.6. The proof of Lemma 3.2 is simpler
than the ones presented in Section 3.6 because here we are only trying to approximate v instead
of approximating any number in a neighbourhood of «y. This allows us to use the continuity of
NV at 2* instead of having to use Lipschitz properties of fV and careful approximations of the

quantities involved.

Remark 3.39. Lemma 3.2 can be extended to other points with 1/v/A—1> |8 —1|/|8+ 1].
However, we have not found a systematic way to do this. Rather we are aware of points 5 with
1/VA=1>|3-1]/|8+ 1| > 1/(A —1) that can be used to (A, B)-implement edges interactions
that are covered by Lemma 3.2. For example, this is the case of those points 8 such that there is

a “nice” graph G with Zisng(G; f) = 0. This is made precise in Section 3.5.

3.4.3 Reducing exact computation to approximate computation

In this section we use our implementation results to prove the hardness of approximating the
partition function of the Ising model on bounded degree graphs. A basic building block for
the reduction is the binary search (interval-shrinking) technique developed by Goldberg and
Jerrum in the context of the Tutte polynomial [59]. Since the partition function of the Ising
model is a special case of the Tutte polynomial, this building block is also applicable here. The
interval-stretching technique requires us to be able to implement the real line in polynomial
time, and this is the motivation behind the results of Section 3.4.2.

We use the version of the interval-shrinking technique that we have developed on Chapter 2,
as it is the first such reduction that applies in the context of non-real edge interactions. Moreover,
the reduction developed in Chapter 2 is particularly relevant for us because the starting point

for the hardness result is the problem of exactly evaluating the Tutte polynomial, and crucially

Page 118 of 212

Chapter 3. Approximating the complex-valued Ising model on bounded degree graphs

this problem remains #P-hard even in the ¢ = 2 case (corresponding to the Ising model) and
even when the input is restricted to be a 3-regular graph [82] (which we require here). In order
to apply this reduction, we have to re-define the computational problems considered including
the parameter A corresponding to the maximum degree of the input graph, thus here we briefly
re-introduce the reduction given in Section 3.4.2 under our new notation, which should also help
the reader to follow this section. Then we show how this reduction applies to bounded degree
graphs.

First, let us recall some definitions. We have Ziging(G; 8) = Zutte(G; 2, 8 — 1), where Zmytte
is the Tutte polynomial as in (1.5), see, for instance, [109]. Let s and ¢ be two distinct vertices
of G. In Section 3.4.2 we defined

Za(Giq,7) = > gF A4
ACE:

s and ¢ in the same component
Analogously, we defined Zj, as the contribution to Zrue(G;q,7y) from the configurations
A C E such that s and ¢ are in different connected components in (V, A). That is, Z,,(G;q,7) =
Zutte(G5 4, 7)—Zst (G5 q,). We now introduce the computational problems that we are interested
in, for any rational numbers ¢ > 0, v > 0, any integer A > 3 and any (€ Cy.

Name: ISING(A, 3).
Instance: A graph G = (V, E) with maximum degree at most A.
Output: The number Zising(G;) € Ca.

Name: RATIOTUTTE(A, q,7).
Instance: A graph G = (V, E) with maximum degree at most A and an edge (s,t) of G.
Output: The rational number Zy,(G;q,7)/Zx(G; q,7).

In Chapter 2 we defined RATIOTUTTE(A, q,) more generally; there are no restrictions
on the maximum degree of the input graph and the vertices s and t are only required to be
in the same connected component of G. Moreover, ¢ and v could be any non-zero algebraic
numbers (possibly non-real or negative real), so we had to study carefully the possibility that
Zst(G;q,7v) = 0. Thus, our simplified version of RATIOTUTTE(A, ¢,) requires a slightly simpler

argument to conclude Lemmas 3.40 and 3.41.

Lemma 3.40 (Bounded degree version of Lemmas 2.41 and 2.42 for the Ising model). Let K be
a real number with K > 1. Let A > 3 be an integer and let B € Cyp such that (A, 3) implements
the real line in polynomial time. Let y € C with y > 1. Then we have the reductions

RATIOTUTTE(A, 2,y — 1) <7 ISINGNORM(A, 3, K),
RATIOTUTTE(A, 2,y — 1) <p ISINGARG(A, 5, 7/3).

Page 119 of 212

Chapter 3. Approximating the complex-valued Ising model on bounded degree graphs

Proof. The proof is the almost the same as that of Lemmas 2.41 and 2.42. Here we indicate
how we adapt the reduction of Lemmas 2.41 and 2.42 to graphs with maximum degree A.
First, let us translate our Ising notation to the notation used in the proofs of Chapter 2. In
the original proof we have two weights v € (—2,—1) and 72 > 0 and access to an oracle
that approximates the norm or determines the sign of the multivariate Tutte polynomial on
weighted graphs with weights in {71,7v2}. Note that determining the sign reduces to additively
approximating the argument of this polynomial with error at most 7/3, so we can use our oracle
ISINGARG(A, 8, 7/3) instead. The purpose of the weights v and s is implementing the real line
in polynomial time for the Tutte polynomial (using Corollary 2.9). Here the role of these weights
is performed by . Hence, every time Corollary 2.9 is used in the proof of Lemmas 2.41 and 2.42
we use the fact that (A,) implements the real line in polynomial time instead. The reduction
of Lemmas 2.41 and 2.42 computes the ratios Z,,(H;q,7)/Zst(H;q,~) for some positive number
~ that can be implemented using v; and . Here we set v = y — 1 instead. The only relevant
properties of v in the proof of Lemmas 2.41 and 2.42 are v > 0 and the fact that v can be
implemented exactly.

There are two differences between this proof and the proof of Lemmas 2.41 and 2.42. Let H
and (s,t) be the inputs of RATIOTUTTE(A, 2,y — 1). The first difference in the proof is that
we restrict ourselves to computing ratios Zy,(H;q,7v)/Zst(H;q,7) where (s,t) is an edge of H.
This is so that all the graphs considered in the reduction have maximum degree at most A.
The original proof applies one of the oracles ISNGNORM(A, 5, K) and ISINGARG(A, 3,7/3) to
a copy of H with an extra edge joining s and ¢. This extra edge has a weight +' that is updated
repeatedly during the binary search. The weight +' is implemented using Corollary 2.9 or, in
our case, using the fact that (A,) implements the real line in polynomial time. Instead of
adding an extra edge between s and ¢, here we modify the edge (s,t) so that its weight is 7 - 7/,
producing the same effect as adding an extra edge from s to ¢ with weight 4/. This time we have
to implement 7 - 4" instead. Let H' be the graph obtained by copying H and substituting the
edge (s,t) with an appropriate graph that (A, 8)-implements 7 - 7/. Then the graph H’ also has

maximum degree at most A. Moreover, for ¢ = +' + 1 we have, see (2.24),
/
Zue(H'30,7) = Zat(H; 0,7) (1 +9") + Zgu(Hs 0,7) (1 " ZJ)

= Zy(H;q,7) <1 - ;) +e <Zst(HQQ77) + ;ZSV(H;q,V))
= f(e; H,7),

where f(g; H,~) is the linear function to which the binary search will be performed. The
purpose of the binary search is finding a zero of f(e; H,~), which allows us to compute the ratio
Zgi(H:q,7)/Zst(H; q,7).

The second difference is that we cannot implement v exactly. We can bypass this by using
a very close approximation 4 of 7 instead. We use the fact that we can (A, §)-implement

4 with |y — 4| < ¢ in polynomial time in the size of §. We perform the binary search on

Page 120 of 212

Chapter 3. Approximating the complex-valued Ising model on bounded degree graphs

f(e; H,7) instead. This allows us to compute the number Z,,(H;q,%)/Zst(H;q,7). We can
choose ¢ with size(d) € poly(size(e),size(H)) such that |Zy(H;q,7) — Zg:(H;q,7)| < € and
|Zst(H;q,%) — Zat(H; q,7)| < €, see for instance Lemma 2.54. Therefore, the error that we
make by outputting Z,,(H;q,7)/Zst(H;q,7) instead of Z,,(H;q,7)/Zst(H;q,7) can be made
to be at most ¢ by choosing § with size(d) € poly(size(e),size(H)) thanks to the lower and
upper bounds on |Z,(H; q,-)| and [Zs(H;q,)|, see Section 2.5.1 for these bounds. We conclude
that we can compute Z,,(H;q,7)/Zst(H;q,7) exactly. This can be done using the algorithm
of Kannan, Lenstra and Lovéasz stated in Lemma 2.37, as we did for algebraic numbers in the
proof of Lemma 2.41, or a simpler version of Lemma 2.37 if we restrict this lemma to rational

numbers. 0

Lemma 3.41 (Particular case of Lemma 2.48). Let A > 3 be an integer and let § € Q with
8> 0. Then we have the reduction

ISING(A, B) <p RATIOTUTTE(A, 2,8 — 1).

Proof. The reduction given in the proof of Lemma 2.48 applies with the change of variables
qg=2and vy = — 1. It is important to note that this reduction only invokes the oracle for
RATIOTUTTE(A, 2, 3 —1) with inputs (G, s, t) such that e = (s, t) is an edge of G. The reduction
reduces the computation of Zruge(G5q,7) to that of Zrue(G \ €;¢,7), Zgi(G;4,7)/Zst(G; q,7)
and Zy (G \ €;q,7)/Zst(G \ €;q,7), where G'\ e is the graph G without the edge e. Hence, all
the calls to the oracle RATIOTUTTE(A, 2, 8 — 1) involve subgraphs of GG, that have maximum
degree at most A. Finally, because ¢ > 0 and ~ > 0 in our setting, we do not have to consider

the cases when Z4(G;q,v) = 0, simplifying the result. O
Now we have the tools to obtain the desired reductions and the proof of Theorem 1.7.

Lemma 3.42 (Lemma 2.49 for the Ising model). Let K be a real number with K > 1. Let
A > 3 be an integer and let B € Cp such that (A, B)-implements the real line in polynomial time.
Let y € C with y > 1. Then we have the reductions

ISING(A, y) <p ISINGNORM(A, 3, K),
ISING(A, y) <7 ISINGARG(A, 8, 7/3).

Proof. This result follows directly from combining Lemmas 3.40 and 3.41. The proof of
Lemma 2.49 takes a bit more work than this lemma because one has to be careful about

possible zeros of Zy(G;q,). O

Theorem 1.7. Let A be an integer with A > 3 and let 8 € C be an algebraic number such that
B€RU{i,—i} and |B—1|/|8+1] > 1/v/A — 1. Then the problems ISINGNORM(f3, A, 1.01) and
ISINGARG(S, A, 7/3) are #P-hard.

Proof. Our hardness theorem now follows from combining Lemmas 3.2 and 3.42 in conjunction
with the fact that ISING(3,y) is #P-hard for any y > 1 [82]. O

Page 121 of 212

Chapter 3. Approximating the complex-valued Ising model on bounded degree graphs

Since 1/v/A — 1 converges to 0 as A diverges, Theorem 1.7 gives a new proof of Theo-
rem 1.3 which says that ISINGNORM(/3, 00,1.01) and ISINGARG(, 0o, 7/3) (where there are no

restrictions on the maximum degree of the input graph) are #P-hard for any algebraic number

BeC\ (RU{i—i}).

3.5 Zeros of the partition function and hardness

In this section we give explicit evidence that zeros of the partition function imply hardness of
approximation for the Ising model when the edge interaction £ is not in R U {i, —i}. These are
the first results that explicitly link zeros to hardness of approximation that we are aware of.
Our main technical result Lemma is 3.3, which shows that implementing —1 implies hardness of
approximation of the partition function of the Ising model. We then use zeros of the partition
function to implement —1 and conclude hardness in Lemma 3.43 and Corollary 3.45. Our proofs
use the hardness and implementation results of Section 3.4. Finally, in Corollary 3.44, we give an
example of an edge interaction 3 in the region R(1/+/2) and a graph G with maximum degree 3
such that Zising (G; 8) = 0, showing that the hardness region given in Theorem 1.7 is not optimal.

Lemma 3.3. Let A be an integer with A > 3. Let f € Cy\(RU{¢, —i}). Let us assume that (A, 3)
implements the edge interaction —1. Then ISINGNORM(A, 3,1.01) and ISINGARG(A, 8, 7/3) are
#P-hard.

Proof. There are two cases. The first case is when | — 1|/|3 + 1| > 1/v/A — 1. Then, since
8 ¢ RU{i,—i}, we know that the problems ISINGNORM(A, /3,1.01) and ISINGARG(S, A, 7/3)
are #P-hard (Theorem 1.7). In the rest of the proof we assume that |3 —1|/|8+ 1| < 1/vA — 1.
We are going to reduce the approximation problems at (A,~) to the approximation problems at
(A, B) for some v such that ISINGNORM(A, v,1.01) and ISINGARG(A, vy, 7/3) are #P-hard. In
this reduction we will use the fact that we can (A, 8) implement the edge interaction —1. Let
a € C be some edge interaction that we can (A, 5)-implement. We fine-tune « later in the proof.
We consider the weighted graph J given in Figure 3.5. By the properties of series and parallel
compositions, this graph implements the edge interaction v := hg(hg(—a)).

—1
O ot®
«

Figure 3.5: The graph J in the proof of Lemma 3.3.

From Remark 3.32 it follows that
y—1 [(B-1\?—-a-1
— . 3.13
v+1 (ﬂ + 1) —a+1 (3:13)

The idea to complete this proof is (A, §)-implementing « so that the complex number in
(3.13) has norm larger than 1 (hence larger than 1/4/A —1 so Theorem 1.7 applies). By

Page 122 of 212

Chapter 3. Approximating the complex-valued Ising model on bounded degree graphs

Item 3 of Proposition 3.16, the norm is larger than 1 if and only if Re(y) < 0, which is
what we are aiming for. We also want v to be non-real. Note that ~ is real if and only if
1-2/(y+1)=(y—1)/(y+1) isreal. Let r € (0,1) be the rational number in the statement of
Lemma 3.38. Let ¢ = |(3 —1)/(B + 1)|?>r/2, so ¢ is an algebraic number with ¢ € (0,1/(A — 1))
and € <r/4. Let £ € Cy such that

£-1 _r(B-172

§+1 A@+1p"

We have |£ — 1|/|€ + 1| =¢/2, so £ € R(¢/2). From Proposition 3.16, we obtain Re({) > 0 and

L+e/2 _1+1/4
1—c/2 " 1-1/4

where we used that 0 <& < 1/(A —1) < 1/2. Thus, we have

€l < =5/3,

5 5 4 1
—1| = 1= < 1) =-e< =r.
E=1U=le+15 < (B/3+ 1) =ge< or

Therefore, we can use Lemma 3.38 to (A, 5)-implement o € Cy with [— a| < £/8. We have
la—1]<|a—¢&+]€—1 < (1/844/3)e < 2e < 1.

Hence, Re(a) > 0 and we find that

E—1 a-1
E+1 a+1

0
€+ 1)(a+1)
Let a=(a—1)/(a+1),b=(B—-1)2/(B+1)*r/2 and z = (£ — 1)/(£ + 1) = ib/2. The situation
is plotted in Figure 3.6.

‘ <2l —al <eg/4.

£

Figure 3.6: The quantities a, b, z in the proof of Lemma 3.3. We have |[b| = ¢, z = ib/2 and |a — 2| < £/4.

Let 7y = {\(y — x) : A € R} for any x,y € C. Note that 0z and 0b are perpendicular, so 0 is
the closest point of the line 0b to 2. Since 0 & B(z,&/4), we conclude that 0b N B(z,e/4) = . In
particular, a is not in the line 0b. Also note that |a| < € by the triangle inequality. Putting all
this together with equation (3.13), we find that

v—1

2 v—1
=—"ba'¢R d =" >1
P ~ba ¢ an ’ ‘ >

vy+1

Page 123 of 212

Chapter 3. Approximating the complex-valued Ising model on bounded degree graphs

as we wanted. We have shown how to (A, 8)-implement v € Cp with Re(y) < 0 and v € R. In
particular, we have |y — 1|/]y+ 1| > 1/v/A — 1. As a consequence of Theorem 1.7, the problems
ISINGNORM(A,7,1.01) and ISINGARG(A,v,7/3) are #P-hard. These problems reduce to
ISINGNORM(A, 3,1.01) and ISINGARG(A, B, 7/3) because we can (A, §)-implement ~y, and the

result follows. O

The rest of this section exploits Lemma 3.3 to obtain hardness for zeros of the partition
function. Our approach uses a zero to implement —1 and conclude hardness with the help of

Lemma 3.3.

Lemma 3.43. Let A be an integer with A > 3. Let 5 € Cy \ (RU{i,—i}). Suppose that there

18 a graph with mazimum degree at most A having terminals s,t such that
1. the degree of s and t is at most A —1;
2. Zising(G:) = 0;
3. Z9(G;8) # 0 for some i,j € {0,1}.

Then ISINGNORM(A, 3,1.01) and ISINGARG(A, 8,7/3) are #P-hard.

Proof. By symmetry of the spins 0 and 1 in the definition of Zyg, for any vertex v of G we
have ZJ(G; 8) = Z}(G; B). Let i,j € {0,1} as in the statement. We obtain 0 = Ziging(G; 8) =
2Z(G; B) so

0= ZL(G; B) + Zi4 (G; B). (3.14)

Since either Z(G; 8) or Zi(G; B) is non-zero by hypothesis, both quantities are non-zero. Again,
by symmetry of the spins 0 and 1, we have Z%(G; 8) = Z11(G; 8) and Z0H(G; B) = ZL(G; B).
Thus, by dividing by Z%(G;3) in (3.14) we find that

1= thl(G;ﬁ).

thl(G; B)
We have shown that the graph G S-implements —1. Consider the graph H that is a copy of G
with two extra vertices, s’ and ¢/, and two extra edges, (s,s’) and (¢,¢'). By the properties of
series compositions, see (3.4), the graph H S-implements hg(hg(—1)) = —1 for the terminals s’
and ¢’ (both of which have degree 1). Moreover, H has maximum degree at most A because G
has maximum degree at most A and the vertices s and t have at most A — 1 neighbours in G.

We conclude that H (A, 8)-implements —1, and hardness follows from Lemma 3.3. O

Corollary 3.44. Let A =3. Thereis a € Cy \ (RU {3, —i}) with |5 —-1|/|8+1| <1/vVA -1
such that ISINGNORM(A, ,1.01) and ISINGARG(A, 8,7/3) are #P-hard.

Proof. Let us consider the graph G given in Figure 3.7 with distinguished vertices s and t.

Page 124 of 212

Chapter 3. Approximating the complex-valued Ising model on bounded degree graphs

Figure 3.7: A graph that G with maximum degree 3 such that Zigne(G;) has a zero 3 € R(1/V/2).

One can check that Z%(G;z) = (1 + 22 +22%)? and Z1}(G;x) = 2%(2 + z + 23)%2. We have
Z1sing (G) = 2(1 + 622 + 827 + 22% + 82° + 62° + 2%). Using Mathematica we have determined
that Zising(G;) has a zero at 8 &~ 0.396608 + 0.917988i. Moreover, we have |Z9}(G; B)| > 2, so
B and G satisfy the hypothesis of Lemma 3.43. We conclude that ISINGNORM(A, 3,1.01) and
ISINGARG(A, 8, 7/3) are #P-hard. Finally, we have |3 —1|/|3+1| < 1/v/2 since |3 —1|/|3+1]| ~
0.6572981. O

We point out that one can use the approach that Buys developed for the independent set
polynomial to find more zeroes inside the region |3 — 1|/|8 + 1| < 1/v/A —1 [25].

Let 8 € C\ (RU{i,—i}). Lemma 3.43 uses the existence of a graph G with maximum degree
at most A and Ziing(G; 3) = 0 to demonstrate the hardness of ISINGNOrM(3, A, 1.01) and
ISINGARG(S, A, 7/3). However, Lemma 3.43 relies on the additional condition that Z% (G; 8) # 0
for some i, € {0,1} and two terminals s and ¢ with degree at most A — 1. In the following

conjecture, we conjecture that these additional conditions are not necessary.

Conjecture 3.4. Let A be an integer with A > 3 and let 5 € Cy with 5 ¢ RU {3, —i}. If there
is a graph G with mazimum degree at most A such that Zng(G;) = 0, then the problems
IsSINGNORM(3, A, 1.01) and ISINGARG(S, A, 7/3) are #P-hard.

We make some progress on this conjecture in Corollary 3.45 (by changing the degree constraint

from A to A — 1), but the full result seems to be out of reach for our implementation techniques.

Corollary 3.45. Let A be an integer with A > 3 and let 5 € Cy\ (RU{i, —1}). Suppose that there
is a graph G of mazimum degree at most A—1 with Zyging (G) = 0. Then ISINGNORM(f3, A, 1.01)
and ISINGARG (B, A, 7/3) are #P-hard.

Proof. Let F = {G' : G’ has maximum degree at most A — 1 and Z(G’, 3) = 0}, which is not
empty by our hypothesis. We can choose H € F with the minimum possible number of edges.
Let e = (s,t) be an edge of H. Let H \ e be the graph obtained by deleting the edge e from H.
We have

ZY(H; B) = BZy(H \ e B),
thl(H; B) = thl(H \ e B).
Therefore, if Z%(H; 8) = ZO(H; 8) = 0, then Ziging(H \ €; 8) = 2Z2(H \ e; 8) = 2(Z% (H; B) +

Z%(H;B)) = 0, which contradicts the minimality of H. We conclude that either Z%(H; 3) # 0 or
Z9(H; B) # 0. Since s and t have degree at most A — 1, the result follows from Lemma 3.43. [J

Page 125 of 212

Chapter 3. Approximating the complex-valued Ising model on bounded degree graphs

In [37], a parallel work to this chapter, a similar conjecture to Conjecture 3.4 has actually
been shown for the independent set polynomial. A key element of the proof of [37] is establishing
an analogous result to Lemma 3.3 for the independent set polynomial. In such a setting, a
version of Lemma 3.3 turns out to be enough to prove that zeroes imply hardness: one can use
an argument similar to the proof of Corollary 3.45, so a zero for the independent set polynomial
implies that there is a tree that also achieves a zero and that implements —1 as a ratio. In
the Ising case we are restricted by the fact that trees without pinnings do not implement any
meaningful edge interactions due to the symmetry of the model and, thus, we can not use this
trick to guarantee that there is a vertex in the graph H (see proof of Conjecture 3.4) such that

H has two vertices with degree less than A.

3.6 Mobius-programs: proofs of Lemmas 3.30 and 3.31

In this section we prove Lemmas 3.30 and 3.31. These lemmas generalise the results on
implementations for the independent set polynomial given in [15] to a more general setting so
that they can be applied to other spin systems, including the Ising model. In fact, in a work
published after we made public the results in this chapter, these results have been applied in the
context of the Tutte polynomial [14]. Some of the definitions required in this section have been
stated in Section 3.4.1, so we ask the reader to read Section 3.4.1 before this section. This section
is organised as follows. In Section 3.6.1 we show how to generate approximations of any point
around a program-approximable fixed point as a first step towards the proof of Lemma 3.30. In

Section 3.6.2 we prove Lemma 3.30. Finally, in Section 3.6.3 we prove Lemma 3.31.

3.6.1 From program-approximable to densely program-approximable

In this section we generalise the results in [15, Section 7.2] on hardcore-programs to Mobius-
programs. The main result of this section is Lemma 3.49, where we show that program-
approximable fixed points are densely program-approximable under some hypothesis (see Sec-
tion 3.4.1 for definitions). The main idea behind the results given in [15, Section 7] is that,
locally around w, hardcore-programs behave as straight-line-programs, which are much easier to

study. This property is not specific to hardcore-programs, as illustrated in Lemma 3.47.

Definition 3.46. Let z € C with z # 0. A straight-line-program with operation

d

(al,...,ad)HzZaj (3.15)

Jj=1

is a sequence of assignments starting with ag = 0,a1 = 1 and
ak:z(aik’l —|—~-+aik’d), fork=23,...,

where i1, ..., kg €{0,...,k —1}. We say that the straight-line-program generates x € C if

there exists integer k > 0 such that ap = x.

Page 126 of 212

Chapter 3. Approximating the complex-valued Ising model on bounded degree graphs

Lemma 3.47 ([15, Lemma 7.9 for Mobius-programs|). Let d be an integer with d > 2 and let g
be a Mobius map. Let w € C be a fized point of f(z) = g(z%) with w # 0 and g'(w?), g" (w?) # cc.
Set z := g (wHw?=L. There exist reals Cy := Co(g,d,w) > 1 and 5 := 6o(g,d,w) > 0 such that
for any ay,...,aq € C with |aj| < 6¢ (for j € [d]) we have

g((w+a1)...(w+ad)):w+z<2jlaj> + 7,

where T € C with |7| < Co max;eq |a;]*.

Proof. The proof is analogous to that of [15, Lemma 7.9]. The only difference is the determination
of the constants Cy and dy. Here these constants are obtained by a continuity argument whereas
in [15, Lemma 7.9] Cjy and dp are determined explicitly. We include this proof to illustrate this
continuity argument. Let by,...,bs € C with |b;| <1 for every j € [d]. For t € R, we define

F(t)=g((w+1tb) - (w+tby)).

Note that F(0) = g(w?) = w. To simplify our notation, for each j € [d], let x;(t) = w + tb;, and
set y(t) = x1(t) - - - xq(t), so F(t) = g(y(t)). We have

d

Fity=gw®)> b [=®).

=1 =l

In particular, we obtain

d d
F'(0)=¢ (wd) ijwd_l = ZZ bj. (3.16)
j=1 Jj=1

We have

2 d
P = o) (b Ilnm0) <20ww) 3w]lao. 6o
17 =1

1<j<i<d =
1#i,j

Since ¢'(w?), ¢"(w?) # oo (by assumption) and y(0) = w?, from the continuity of the maps vy, ¢’
and ¢” we find that there is dp := do(g,d,w) € (0,1) such that ¢'(y(¢)) and ¢”(y(t)) are bounded
when [t| < dg. Note that |2;(t)| < |w|+1 when [t| < 6y. Therefore, (3.17) can be upper bounded
when |t| < g by a constant Cy := Cy(g,d,w) > 1. By Taylor’s formula we conclude that, for
every t € R with |¢] < dy,

|F(t) — F(0) — F'(t)t| < Cot?. (3.18)

Finally, let ai,...,aq with |a;| < dp. We choose t = max;¢(q |a;|. The result for t = 0 is
equivalent to F'(0) = w. Hence, we can assume that ¢t > 0 and define b; = a;/t for j € [d]. The
result then follows from F'(0) = w, (3.16) and (3.18). O

Remark 3.48. If the Mobius map g of Lemma 3.47 is given explicitly, then the constants
d0(g,d,w) and Cy(g,d,w) can be determined explicitly as it is done for g(x) = 1/(1 + Az) in the
proof of [15, Lemma 7.9].

Page 127 of 212

Chapter 3. Approximating the complex-valued Ising model on bounded degree graphs

As noted in [15, Section 7], straight-line-programs can generate evaluations of any polynomial
p(z) with positive coefficients, up to a factor z". This property of straight-line-programs is used
in [15, Lemma 2.10] in conjunction with a density result on evaluations of polynomials to come
up with hardcore-programs that generate approximations of any number near a fixed point of
f(z) = 1/(1 + Az?). Here we extend this result to Mobius-programs in Lemma 3.49. Apart
from differences in notation, the proof is the same as that of [15, Lemma 2.10]; hence, we omit
this proof and only highlight the notation differences. We also note that the difference between
Lemmas 3.49 and 3.30 is that the latter gives an algorithm whereas the former only proves

existence of these Mobius-programs.

Lemma 3.49 ([15, Lemma 2.10] for Mobius-programs). Let d be an integer with d > 2 and let
g be a Mobius map. Let f(z) := g(x?) and let w be a fized point of f. Let us assume that the

following assumptions hold.
1. w is program-approximable for g and ag € C;
2w #0 and (), g (w?) # o0;
3. Let z := f'(w)/d = ¢'(wH w1, We have 0 < |z| <1 and z € R.

Then, for any e,k > 0 there exists a radius p € (0, k) such that the following holds. For every
x € B(w, p) there is a Mobius-program for g starting at ag that generates ay with |x — ag| < ep.

Proof. The proof is the same one as that of [15, Lemma 2.10] apart from a few differences in
notation. Here we point out these differences in notation so that the reader can translate the
proof to our setting if needed. First of all, in our version we have an arbitrary Mobius map g
whereas [15, Lemma 2.10] sets g(z) = 1/(14 Az) for some activity A € Qc \ R of the independent
set polynomial. The particular choice of g does not affect the proof, so every instance of
“hardcore-program” in [15, Lemma 2.10] can be effectively replaced by “Mobius-program for g
and ag”, and every time that the proof invokes [15, Lemma 7.9] we can use the more general
Lemma 3.47 instead.

The second main difference is that our statement adds a layer of generality in the choice of
the fixed point w € C. In [15, Lemma 2.10] w is chosen as the fixed point of f(z) = 1/(1 4+ Az9)
with the smallest norm. It turns out that such a fixed point satisfies the hypothesis of our
statement. First, w is program-approximable for g(z) = 1/(1 + Az) and ap = A (see [15, Lemma
2.7]). Secondly, we have w and ¢'(w?), ¢" (w?) # co. Thirdly, 0 < |z| < 1 and z ¢ R, see [15,
Lemma 7.4] (we should point out that in [15] the authors set z = w — 1, which agrees with
z = ¢'(wh)wd! for their choice of g). These are all the properties of w needed to carry out the
proof of [15, Lemma 2.10].

Finally, it is useful to note that if a hardcore-program generates a number ay, then there is a
tree of maximum degree at most d + 1 that implements Aai. This explains why in the proof
and statement of [15, Lemma 2.10] there is an extra factor A when activities of the independent
set polynomial are considered. Here we can omit this factor because we are not translating

programs to gadgets. O

Page 128 of 212

Chapter 3. Approximating the complex-valued Ising model on bounded degree graphs

3.6.2 Proof of Lemma 3.30

In this section we translate the results given in [15, Section 7.3] to Mobius-programs. The main
result of this section is Lemma 3.30, which gives an algorithmic version of Lemma 3.49. First,
we need some technical results, Lemmas 3.50 and 3.51, which extend [15, Lemmas 7.10 and 7.11]

to our more general setting.

Lemma 3.50 ([15, Lemma 7.10 for Mobius-programs]). Let d be an integer with d > 2 and let
g be a Mobius map. Let w € C be a fired point of f(z) = g(2%) with w # 0, ¢'(w?) & {0,000} and
g (w?) # co. Set z := ¢'(wHwt. There exist reals Cy := C1(g,d,w) > 1 and §; := 61(g, d,w) >
0 such that for any a1,...,aq € C with |a;| < 61 (for j € [d]) we have
, 0
O (w+ aq) —w—i-z—j;aj—i—ﬁ

o) =g ([+)

and T € C with |7| < Comaxe(g |a;|>.

where

Proof. First, note that
d—1

(@) =g (@) [Jw+a) .

j=1
Let by, ...,bg € C with |bj| < 1 for every j € [d]. For t € (—|w|,|w]|), note that w + tb; # 0, so

we can define
d—1

F(t) =g (w+thg) [] (w+tb;)~".
=1
We note that when g is particularised to g(x) = 1/(1 + Az), F' coincides with the definition of F
given in [15, Lemma 7.10]. Moreover, F(t) agrees with ®~!(w + aq) for t = maxjeq,.. qy|a;| and
bj = a;j/t. Note that F(0) = g~!(w)w 9! = w. One can check that F'(0) = by/z — Z;-l;% b;.

The proof is now analogous to that of [15, Lemma 7.10], with the difference that the constants

<
I

Cy :=C1(g9,d,w) > 1 and 071 := d1(g,d,w) > 0 are not explicitly determined but rather obtained
by a continuity argument as in Lemma 3.47 that uses the hypotheses w # 0, ¢'(w?) ¢ {0, 00}
and ¢”(w?) # co. Hence, we do not repeat the rest of the proof here. O

Lemma 3.51 ([15, Lemma 7.11 for Mobius-programs|). Let d be an integer with d > 2 and let
g be a Mobius map. Let w € C be a fized point of f(z) = g(2%) with ¢'(w?), g" (w?) # co. Set
2= ¢ (whwi=L. There exist reals Cy := Ca(g,d,w) > 1 and 2 := b2(g,d,w) > 0 such that for
any ai,...,aq € C with |a;| < 62 (for j € [d]) we have

O (w+ag) =2+,

where

o) =g («J[, +an)

Page 129 of 212

Chapter 3. Approximating the complex-valued Ising model on bounded degree graphs

and 7 € C with |7| < Co max;¢|q |a;].

Proof. First, note that

d—1
¢ (z)=¢ <az Hj: (w+ aj)> H (w+aj).
j=1

Let b1,...,bq € C with |bj| <1 for every j € [d]. For t € R, we define

d—1

F(t) = g’ (Hj:l (w+ tbj)) H (w+ tbj) ,

j=1
so F(t) agrees with ®'(w + aq) for ¢t = max;cqy, . gla;| and b; = a;/t. Note that F(0) =
¢ (wHw® ' = 2. At this point the proof is analogous to that of Lemma 3.47, so we are not
repeating it again. The only difference is that this time we have to bound F’(t), instead of F"(t),
in a neighbourhood of ¢ = 0, obtaining ds := d2(g,d,w) € (0,1) and Cy := Cs(g,d,w) > 1 such
that |F'(t)] < Cy for all t € (—d2,02). In [15, Lemma 7.11] the constants d; and Cs are made
precise for the choice g(x) = 1/(1 + Ax), whereas here we obtain them by continuity of F”(t)
and the fact that ¢’(w?), ¢"(w?) # oco. O

Lemma 3.52 ([15, Lemma 7.12 for Mobius-programs]). Let d be an integer with d > 2 and let
g be a Mobius map. Let f(z) := g(x?) and let w be a fized point of f. Let us assume that the

following assumptions hold.
1. w is program-approximable for g and ag € C;
2. w#0 and g'(w?), g"(w?) & {0,00};
3. Let z := f'(w)/d = ¢'(wHw?1. We have 0 < |z| <1 and z € R.

Then there are Mobius-programs for g starting at ag that generate {\o,\1,..., A} CC, and a
real v > 0 such that the following hold for all & € B(w,).

1. Fori=0, \p € B(w,2r).

2. For i = 1,...,t, the map ®; given by ®;(x) = g(x)\i)\g_2) is contracting on the ball
B(w,2r).

3. B(w,2r) C U, ®:i(B(w,2r)).

Proof. The proof is exactly the same one as that of [15, Lemma 7.12] apart from the differences
in notation mentioned in the proof of Lemma 3.49, and the fact that we use the more general
Lemma 3.50 instead of [15, Lemma 7.10] and the more general Lemma 3.51 instead of [15,
Lemma 7.11]. O

When one has maps ®1,...,P; with the properties 2 and 3 of Lemma 3.52, there is an
efficient algorithm to approximate numbers using sequential applications of the maps ®1,..., ®y,

see Lemma 3.53.

Page 130 of 212

Chapter 3. Approximating the complex-valued Ising model on bounded degree graphs

Lemma 3.53 ([15, Lemma 2.8]). Let zy € Cy, r € Asg and U be the ball B(zo,r). Further,
suppose that ®1,..., P, are Mobius maps (with coefficients in Cy) that satisfy the following:

1. for each i € [t], ®; is contracting on the ball U,
2. U C Ui, (V).

Then there is a polynomial-time algorithm which, on input (i) a starting point xg € U N Cy, (i7)
a target x € U N Cy, and (i4i) a rational € > 0, outputs a number & € U N Cy and a sequence
11,12, ..,1 € [t] such that

T =0, (‘I’i,%l (- Dy (z0) -+~)) and |x —z| <e.

Even though [15, Lemma 2.8] is stated for particular maps ®; that arise in the context of the
independent set polynomial, its proof is more general and works in the setting of Lemma 3.53.

Now Lemma 3.30 follows from combining Lemmas 3.52 and 3.53.

Lemma 3.30 ([15, Proposition 2.6 for Mobius-programs|). Let d be an integer with d > 2 and
let g be a Mobius map with coefficients in Cp. Let f(x) := g(x?) and let w be a fized point of f.

Let us assume that the following assumptions hold.
1. w s program-approximable for g, d and ag € C;
2. w#0, g'(wh) & {0,00} and g"(w?) # oo;
3. Let z := f'(w)/d = ¢ (wh)w@™L. We have 0 < |z| <1 and z € R.
Then w is densely program-approximable in polynomial time for g, d and ag.

Proof. The proof is the same as that of [15, Proposition 2.6], the main differences being that
we invoke the more general Lemmas 3.52 and 3.53 instead of [15, Lemmas 7.12 and 2.8]. We
also we stop the proof once we have obtained the desired program instead of translating the
program to a gadget for the independent set polynomial. Finally, in the definition of densely
program-approximable in polynomial time we ask the algorithm to compute k approximations
x1,...,x of N. This can be done by running k versions of the algorithm given in the proof of [15,
Proposition 2.6] and setting a different value for g in each version when applying Lemma 3.53.
In the proof of [15, Proposition 2.6] the value xg is a good approximation of the fixed point w.
These distinct values for xg are obtained by generating a better approximation of the fixed point
w each time. The generated elements 1, ...,z will be of the form ®; (®;,_, (- @4 (z0)---)),
so all of them are distinct because the starting points for zy are distinct and the maps ®; are

bijective. O

3.6.3 Proof of Lemma 3.31

In this section we prove Lemma 3.31, that is, we show how to generate approximations of any
complex number with a Mobius-program. This generalises [15, Proposition 2.2] to Mobius-

programs. Up to this point the results of [15] on hardcore-programs have been generalised to

Page 131 of 212

Chapter 3. Approximating the complex-valued Ising model on bounded degree graphs

Mobius-programs without much effort. In this section we have to refine the arguments given in
the proof of [15, Proposition 2.2] to make it work for any Mobius map g, although the main idea
stays the same: starting from a repelling fixed point and applying results of complex dynamics
(see Section 3.2.4) to come up with an appropriate Mobius-program.

First, let us make some remarks about the proof of [15, Proposition 2.2]. This result shows
how to efficiently implement approximations of any complex activity of the independent set
polynomial via a hardcore-program. The proof is divided into three steps. First, the authors
show how to generate approximations of any activity sufficiently large. Then they use the fact
that g(x) = 1/(1 + Az) tends to 0 when x diverges to generate approximations of any complex
number near 0. Finally, they combine both results to generate an approximation of any complex
number. Unfortunately, the second step breaks for arbitrary Mobius maps and, in particular,
for the Mobius maps that we use when particularising these results to the Ising model. This
motivates the work presented in this section.

This section is organised as follows. In Lemma 3.54 we show that if a repelling fixed point
of f(2) := g(2%) is densely program-approximable in polynomial-time, then any complex point
is densely program-approximable in polynomial-time. In particular, this includes the point 0
that escapes from the arguments given in [15], which rely heavily on the fact that complex
holomorphic maps are locally Lipschitz. Instead of this local property, here we use the fact
that rational maps are Lipschitz on the Riemann sphere with respect to the chordal metric
(Lemma 3.11), which simplifies the proofs because we do not have to deal so carefully with
the poles of the rational map. In Lemma 3.55 we show how to generate approximations of any
complex number that is sufficiently large. Although Lemma 3.55 could follow from the technical
proof given in [15, Proposition 2.2], we include a simpler proof that goes along the same lines as

the proof of Lemma 3.54. Finally, we combine Lemmas 3.54 and 3.55 to prove Lemma 3.31.

Lemma 3.54. Let d be an integer with coefficients in Cp. Let w € C be a repelling fixed point
of f(2) := g(2?) that is densely program-approzimable in polynomial time for g and ag € Cy.
Let Ey be the exceptional set of the rational map f and let v € C\ Ey. Then v is densely

program-approximable in polynomial time for g and ag.

Proof. Let r,, > 0 from the definition of densely program-approximable point for w (Defini-
tion 3.29). Since w is a repelling fixed point of f, by Lemma 3.12 it belongs to the Julia
set of f and, thus, by Theorem 3.13, |J,, f"(B(w,rw)) = C \ Ef. Let N be the smallest
non-negative integer such that v € f¥(B(w,r,)). If N = 0, then the fact that v is densely
program-approximable in polynomial time for g and ag is trivial: let r, be any positive real
number with B(v,r,) € B(w,r,,) and use the algorithm from the definition of densely program-
approximable (in polynomial time) point for w on the inputs A € B(y,r,) NCy and € > 0
rational. In the rest of the proof we deal with the case N > 1.
Let € B(w,r,) such that fV(z) =~ € C. Let

P ={z€C:zisapoleof f*for some n € [N]}.

Page 132 of 212

Chapter 3. Approximating the complex-valued Ising model on bounded degree graphs

Note that P is a finite set so there is r > 0 such that

B(z,r) C B(w,r,) and B(x,2r)NP C {z}. (3.19)
We point out here that x € P if and only if there is n € [N — 1] such that f"(z) = co. Since
N (B(x,2r)) is a compact set of complex numbers (f? is continuous on B(z,2r) as a complex

function due to the lack of poles), there is a rational constant C' > 0 depending on 7 such that
IfN(2)| < C for every z € B(z,2r). (3.20)

Since fV is a rational function, f¥(B(z,r)) is an open set in C by the open mapping theorem
(Proposition 3.8). Hence, there is a rational 7, > 0 with B(v,7,) C fN(B(z,r)) (here we used
that v # oo). This is the radius in the definition of densely program-approximable point for
7 (Definition 3.29). By Lemma 3.11, there is a rational L > 1 such that fV is Lipschitz with
constant L in C with respect to the chordal metric.
Now we proceed to give the polynomial-time algorithm. Let k be a positive integer. Let
A € B(v,74) NCy and € > 0 rational be the inputs of the algorithm. We are going to compute k
elements of Mobius-programs that approximate A up to an error e. We set
, €

e = 32 and ¢’ = min {5'/L,'r} . (3.21)

We can write fV(z) = P(2)/Q(z) where P and @ are polynomials with coefficients in Cj.
Note that the equation P(z)/Q(z) = A in z € B(z,r) N Cy is equivalent to P(z) = AQ(z) in
z € B(x,r) N Cy because @ has no zeros in B(z,r). We can solve this polynomial equation
numerically as described in the proof of [15, Proposition 2.2, case I] to compute 2’ € B(z,7)NCy
with |2* — 2’| < £”/2 for some solution z* of P(z) = AQ(z) with 2* € B(z,7)NCy, so f(z*) = \.
Since 2’ € B(x,r)NCy C B(w,r,), we can use the algorithm of the definition of densely program-
approximable in polynomial time for w to compute k + 1 distinct elements #1,...,2x41 of a
Mobius-program for g and ag with |2’ — ;| < &”/2. Let & be any of these k + 1 elements and
let us analyse how close fV(Z) is to A. We have |2* — 2| < &” by the triangle inequality. We
claim that |\ — f¥(2)| < e. In view of the Lipschitz property of fV and (3.21), we have

2" — &

(At) L+)

d(\ fN(2)) < Ld(z*,4) = L Llz*—2| <Le" <¢.

Note that by the triangle inequality, | — Z| < |z — 2/| 4+ |2’ — 2| < r +&” < 2r. We can now use
the upper bound (3.20) with z = # and z = 2* to conclude that |f(z*)| = |A\| < C and

= @) = (1 @) O+)P Y @) < 1+) d (A Y (3)) =

The algorithm chooses k numbers in {fV (21),..., f¥ (£x+1)} in conjunction with its represen-
tation as a sequence of tuples (which comes from the representation of Z and the corresponding
applications of f). Recall that N does not depend on the inputs € and A, so computing f (&)

from Z only adds a constant factor to the running time. In order to conclude the proof, we have

Page 133 of 212

Chapter 3. Approximating the complex-valued Ising model on bounded degree graphs

to ensure that f1(2), f2(z),..., V(&) is a sequence of complex numbers, that is, co does not
appear in the sequence. It is enough to show that this is the case for at least k£ of the k + 1
outputs fV (21),..., f¥ (A), since we only wanted k outputs to begin with. This follows

from (3.19) and the fact that at most one of the numbers Z1, ..., 241 is equal to z. O

Lemma 3.55 ([15, Proposition 2.2, case 1]). Let d be an integer with d > 2 and let g be a
Mobius map with coefficients in Cy. Let w € C be a repelling fized point of f(2) := g(z%) that is
densely program-approximable for g and ag € Cy. Let Ey be the exceptional set of the rational
map f. If oo & Ey, then there exists a rational number M > 1 such that the following holds.
There is a polynomial-time algorithm such that, on input X € Cx with |\| > M and rational

e > 0, computes an element ay of a Mobius-program for g starting at ag with |\ — ax| < €.

Proof. This lemma can be proven following the argument given in the first case of the proof
of [15, Proposition 2.2] for the independent set polynomial. Here we give a simpler proof that
works even when g is just a rational function. The original proof is significantly more technical
because the authors first get close to a pole and then apply one more iteration of f to get near
the desired point A. To do this, they have to make sure that the poles of f1,..., fV are excluded
from the all the domains considered and that all the applications of f are locally Lipschitz.

Our proof follows the same structure as that of Lemma 3.54 with v = oo, but it requires
a slightly different analysis because in the proof z is a pole of fV. Let r, > 0 from the
definition of densely program-approximable fixed point for w. Since w is a repelling fixed
point of f, by Lemma 3.12 it belongs to the Julia set of f and, thus, by Theorem 3.13,
UrZo fM(B(w, 1)) = C\ Ey. Since co € Ey, we can consider the smallest non-negative integer
N such that oo € fV(B(w,7,)). Note that N > 1 because co ¢ B(w,7,,).

Let x € B(w,ry) such that fV(x) = co. Let

P ={z€C:zisapoleof f* for some n € [N]}

and
Z={z¢€C:zisazero of f* for some n € [N]}.

Note that P and Z are finite sets and z € P because f¥(x) = co. Let § be the minimum
distance between any two distinct numbers in P U Z. There is 0 < r < §/4 such that

B(z,r) C B(w,1y,) and B(z,2r)N(PUZ) = {z}. (3.22)
Since fV is a rational function, fV(B(z,r)) is an open set in ((A:, see Section 3.2.4. Hence, by
the topology of the Riemann sphere and the fact that oo € f¥(B(z,7)), there is M > 1 with
U={z€C:|z| >M} C fN(B(z,r)). This is the constant given in the statement. We can
write fV(2) = P(2)/Q(z) where P and @ are polynomials with coefficients in C, that do not

share any root, so the set of roots of P is Z and the set of roots of @) is P. We are going to
bound |P(z)| and |Q(z)| in B(x,r). First, let us bound |P(z)|. Let k be the multiplicity of the

Page 134 of 212

Chapter 3. Approximating the complex-valued Ising model on bounded degree graphs

pole z of fN. For any z € B(x,2r) and ¢ € ZU P with ¢ # x, in view of r < §/4 and (3.22), we
have

— (I <|r—(l+[z—2| < |z —([+2r <2r+ —(
p=d Sl —dtlz-al Sle =+ 2 <2+ max o (|

and
lz=C(| >z —C|—|z—2>d—-2r>0d/2.
Hence, there are real numbers Cy, C7 > 0 such that, for any z € B(z, 2r),

Co(6/2)%8F < |P(2)| < C; and Cp(6/2)8QF |z — 2 F < |Q(2)| < C1 |z — 2. (3.23)

Combining the bounds in (3.23) and setting Dy = Co(5/2)48 " /C} and Dy = C1(5/2)+ (1) /C,
we find that, for any z € B(z, 2r),

Dolz— 2|7 < ‘fN(z)‘ < Dilz—z7". (3.24)

Note that Dy and D; are positive. The bounds (3.24) play an important role in our algorithm.
We also need Lemma 3.11, which gives a rational L > 1 such that fV is Lipschitz with constant
L in C.

Now we proceed to give the polynomial-time algorithm. Let A € Cx with |A| > M and € > 0
rational be the inputs. We set 7 = %2k|/\| and

’ g 7 . / 1 1/k
e = and €’ = min {5 J/L,r, = (Do/|\|) } . (3.25)
(L4 [72) (14]AP) 2 2
Note that size(e”) = poly(size(e), size(\)) since L, Dy, D1, 1, k are constants that do not depend
on the inputs. The equation P(z)/Q(z) = A in z € B(xz,r) N Cy is equivalent to P(z) = AQ(z)

in z € B(x,r) N Cp because @ has no zeros in B(z,r) other than x. We can solve this

polynomial equation numerically as described in the proof of [15, Proposition 2.2, case I] to
compute =/ € B(z,r) N Cy with |2* — 2’| < £”/2 for some solution z* of P(z) = AQ(z) with
x* € B(z,7)NCy, so fN(z*) = \. Since 2’ € B(x,r)NCyx C B(w,ry), we can use the algorithm
of the definition of densely program-approximable in polynomial time for w to compute 2 distinct
elements &1, &2 of a Mobius-program for g and ag with |2’ —z;| < &”/2 for any j € {1,2}. By the
triangle inequality, we have |z* — Z;| < &” and |z — &;| < |z — ™| +|z* — &;| < r+e” < 2r, where
we used (3.25). In light of the choice of r in (3.22), for any z € B(z,2r), we have fV(z) = oo
if and only if z = z. Hence, we can check if #; is = by evaluating f(#;) and checking if the
result is oo or not. Since 1 and 9 are distinct, at least one of the two is not x, so we can pick
& € {&1, 22} with 2 # . We work with & in the rest of the proof. We claim that |\ — fV(2)| < e.
Recall that z*,% € B(x,2r). In view of the bounds (3.24) and (3.25) we have

1|x—m*!>1<D0>1/k—1(D0)1/k>5”
> “o) T2\w) 2

solx—z| >z —a* —|z* -2 > |z —a*| —&" > |z —2* /2 and
D1 2 b Dl k

N (@) < ng() < Lok = |7]. 3.26

@) < 2 <0y () < B (3.20

Page 135 of 212

Chapter 3. Approximating the complex-valued Ising model on bounded degree graphs

In view of the Lipschitz property of fV and (3.25), we have

2t —

(At) A+)

d(\ fN(2) < Ld(a*,2) =L L|z* — 3| < Le" <&,

which in combination with (3.26) yields

|>\— fN (55) = ((1 + |fN (55)|2) (1 + |)\|2))1/2d()\’fN (ic)) < ((1 +]7\2) (1+ |)\\2))1/2€’ _

as we wanted to prove. The algorithm outputs fV (#) in conjunction with its representation
as a sequence of tuples (which comes from the representation of & and the corresponding
applications of f). In order to conclude the proof, we have to guarantee that the sequence
fY#), f2(2),..., fN(2&) does not contain the point co. In light of (3.22), & is a pole of f™ for
some n € [N] if and only if £ = z. But we chose & € {Z1,Z2} with & # x, concluding the

proof. O

Now we can combine Lemmas 3.54 and 3.55 to prove Lemma 3.31. The proof follows the
same idea as that of [15, Proposition 2.2, case I] with the difference that we can not use the
particular shape of g to simplify some steps. Hence, we have again to use the Lipschitz property

of rational functions on the Riemann sphere (Lemma 3.11).

Lemma 3.31 ([15, Proposition 2.2 for Mobius-programs|). Let d be an integer with d > 2 and
let g be a Mobius map with coefficients in Cp such that g(co) € C. Let w € C be a repelling
fized point of f(z) := g(2%) that is densely program-approzimable in polynomial time for g and
ag € Cp. Let Ey be the exceptional set of the rational map f. If 0,00 & Ey, then the following
holds.

There is a polynomial-time algorithm such that, on input A € Cy and rational € > 0, computes

an element ay, of a Mobius-program for g starting at ag with |\ — ax| < €.

Proof. By Lemma, 3.11 there is a rational L > 1 such that fV is Lipschitz with constant L in C.
Note that g only has one complex pole because g is a Mobius map with g(co) € C. Let p € C
be the pole of g, so g(p) = co. We can write g as g(z) = a/(z — p) + b for some a,b € Cy with
a # 0. Let 79 € (0,1) be rational number as in Lemma 3.54 for v = 0. Let M > 1 be a rational

number as in Lemma 3.55. There is a rational » > 0 such that
lg(z)| >2M for all z € B(p,r). (3.27)

Since g(oo0) = b € C and p is the only pole of g, we find that ¢ is bounded on C\ B(p,r/2). Let

C be a positive real number with
lg(z)| < C for all z € C\ B(p,r/2). (3.28)

We can now specify the algorithm announced in the statement. Let A € Cy and € > 0

rational be its inputs. Our algorithm distinguishes two cases depending on A € B(p,rp).

Page 136 of 212

Chapter 3. Approximating the complex-valued Ising model on bounded degree graphs

1. |A| > M. Then we can use the algorithm of Lemma 3.55 to compute an element aj, of a

Mobius-program for g starting at ag with |A — ag| < e.

A < M. Let x* = g~ 1(\). We have * & B(p,r) because |g(z*)| = |\| < 2M, see (3.27).

Let
;. €
3 —mln{w,r/Q} (329)
Our algorithm computes z* and distinguish two more cases depending on z*. In each of

the two cases the algorithm is going to compute an element & of a Mobius-program for g

starting at ap with |2* — 2| < ¢&'.

e |z*| > M. Our algorithm uses the algorithm of Lemma 3.55 with inputs z* and & to
compute an element Z of a Mobius-program for g starting at ap with |z* — &| < &/,

and returns ay.

o |z*| < M. Note that 2M/ro > M. Our algorithm first uses the algorithm of
Lemma 3.55 with inputs A = 2M/ry and € = 1 to compute an element A4 of a Mobius-
program for g starting at ag with |2M/ro — A\4| < 1, so |\4| > M/ro. This step takes
constant time since all the quantities involved are constants stored in our algorithm.
The idea for this part of the proof is borrowed from [15, Proposition 2.2, case III].
Here A4 plays the same role as the activity A4 implemented in [15, Proposition 2.2,
case III], hence the choice of the name. We have |z*/\4| < 79, so we can use the
algorithm of Lemma 3.54 for v = 0 with inputs z*/A\4 and £'/|\4] to compute an
element § of a Mobius-program for g starting at ag with |z* /Ay — 9| < &'/|A\4]. We

set & = A4y and note that |z* — 2| < ¢
From the definition of ¢’ (3.29) and the triangle inequality we have
p—2|>p—a*|—|z* -2 >r—€ >r/2

Hence, (3.28) yields

lg(2)] < C. (3.30)
In view of the Lipschitz property of f~ we have
) _) |z* — z|) , €
d(\g(2)) <Ld(g7'(\),2) =L <Llg* -2 <L < ———ue
() (1 [a[2) (1 +[2[2)) "/ L1 +C?)

which in combination with (3.30) and [A| < M < C yields
N N 1/2 . N
A =g @)= ((1+1g@P) (1+) d(\g (@) < L0+ CHd (Mg (@) <.

Our algorithm returns the representation of ¢(z) as an element of a Mobius-program. [

Remark 3.56. The hypothesis g(co) € C can be removed from Lemma 3.31. This would require

us to study the case g(oco) = oo in the proof of Lemma 3.31. Note that g(z) = oo if and only if

g is of the form az + b for a,b € Q with a # 0. This case is not relevant for this work, hence

why we left it out of the statement. Also, for convenience, [15] restricted attention to complex

numbers whose real and imaginary parts are rational, but it suffices for them to be algebraic.

Page 137 of 212

Chapter 4

Fast sampling of satisfying

assignments from random k-SAT

o This chapter is based on the following publication:

Andreas Galanis, Leslie Ann Goldberg, Heng Guo, and Andrés Herrera-Poyatos. Fast sampling
of satisfying assignments from random k-sat. arXiv preprint, 2022. arXiv:2206.15308

o This chapter also includes results on the geometry of the space of satisfying assignments
of random k-CNF formulas, that have been developed in conjunction with Zongchen Chen,
Nitya Mani and Ankur Moitra. The proofs of these geometry results presented here are my
own. An extended version of [48] containing these geometry results has been submitted to

Random Structures and Algorithms.

Organisation of this chapter

In this chapter we introduce our almost-uniform sampler for satisfying assignments of random k-
CNF formulas and prove its correctness. This chapter is organised as follows. First, in Section 4.1
we describe our algorithm and provide an outline of our proof. Given the amount of notation
and background needed to state and explain our algorithms and main technical lemmas, the
preliminary material is presented across the proof outline, as opposed to previous chapters. Our
proofs are then split into 9 sections, proving our main theorem on the correctness of our sampling
algorithm in Section 4.7 and our results on the geometry of the space of satisfying assignments
of random k-CNF formulas in Section 4.8. Since the titles and content of these sections are
technical and require some notation and definitions before introducing them, we provide a more

detailed organisation of this chapter at the end of the proof outline, see Section 4.1.5.

4.1 Proof outline and preliminaries

Our nearly linear-time sampling algorithm is based on running a Markov chain; this is a standard
technique in approximate counting, where typically one runs a Markov chain on the whole state
space that converges to the desired distribution. The twist in k-SAT is that the state space of the
Markov chain needs to be carefully selected in order to avoid certain bottleneck phenomena that
impede fast convergence. This approach has been recently applied to bounded-degree k-CNF
formulae [43, 75, 44, 74] building on the work of Moitra [93] and using the Markov chain known

as single-site Glauber dynamics. The main difficulties in all of these works are that the usual

Page 138 of 212

http://arxiv.org/abs/2206.15308

Chapter 4. Fast sampling of satisfying assignments from random k-SAT

distribution properties that are typically used to obtain fast algorithms (such as correlation decay
and spatial mixing) fail on the set of all SAT solutions, and in fact even ensuring a connected
state space is a major problem. Working around this is one of the main challenges for us too,
and in the random k-SAT setting it is further aggravated by the fact that a linear number of
variables have degrees much higher than average. In fact, w.h.p., a good portion of vertices have
degrees depending on n, with the maximum degree of the formula scaling as (logn)/(loglogn);
this can be shown by analysing a bins and balls experiments where variables identify with bins
and you throw k|an| balls (one for each literal of the random formula), see [92, Chapter 5] for
details.

This poses several new challenges for the Markov chain approach to work in our setting. First
of all, we have to ensure that the set of satisfying assignments that our Markov chain considers
has good connectivity properties. We address this problem in Section 4.1.1 of this proof outline,
where we find a suitable subset of marked variables where we can run the Glauber dynamics;
this part is inspired by Moitra’s “marking” approach, though here we need to add an extra layer
of marking to facilitate later the analysis of the Markov chain. Second and more importantly,
state-of-the-art arguments for bounding the mixing time of the single-site Glauber dynamics on
k-CNF formulae, such as [75, 43] break under the presence of high-degree variables. We focus
on this in Section 4.1.2, where we outline a novel argument that analyses the mixing time of the
uniform-block Glauber dynamics using recent advances in spectral independence [5, 79, 7, 28].
This is the first application of the spectral-independence framework for k-CNF formulae, where
the absence of correlation decay limits the application of standard techniques (based on self-
avoiding walk trees [7, 28]). A reader unfamiliar with spectral independence is encouraged to read
Section 4.1.2.1 before continuing reading this proof outline. To obtain our spectral-independence
bounds we need to combine the probabilistic structure of satisfying assignments with the local
sparsity properties of the random formula. The third challenge in our approach is simulating
the individual steps of the uniform-block Glauber dynamics since they involve updating a linear
number of variables, making the computation of the transition probabilities more challenging.
To this end, we need to initialise our block Glauber dynamics to random values (instead of
an arbitrary assignment that is typically used as initialisation), and show that the formula
breaks into small tree-like connected components that allows us to do the relevant computations
throughout the algorithm’s execution (cf. Section 4.1.3). Based on these pieces, the full algorithm
is presented in Section 4.1.4.

The fact that the formula breaks into small tree-like connected components when marked
variables are assigned random values will also allow to analyse the geometry of the space
of satisfying assignment of the random formula, and we will delve into this connection in
Section 4.1.3.

Page 139 of 212

Chapter 4. Fast sampling of satisfying assignments from random k-SAT

4.1.1 Marking variables in the random k-SAT model

In order to ensure good connectivity properties which are essential for fast convergence of the
relevant Markov chain, our algorithm runs Glauber dynamics on a large subset V,, of so-called
“marked” variables of the random formula, leaving the rest of the variables unassigned. The
variables in V;, are chosen in a way that ensures that their marginals are near 1/2, which is
important for ensuring rapid mixing. Moitra [93] introduced a random “marking” procedure
to identify such a subset of variables in the bounded-degree case. The presence of high-degree
variables impedes a direct application of this technique in the random-formula setting, but in [49]
the authors show that by temporarily removing a small linear number of “bad” clauses that
contain high-degree variables, one can also achieve marginals near 1/2 for an appropriate set of
variables in the random k-SAT model. Here, we further refine these arguments, as we need more
control over the high-degree variables of the formula in order to conclude rapid mixing of the
Glauber dynamics. Recall that the degree of a variable v is the number of occurrences of literals
involving the variable v in ® and that the maximum degree of the formula ® is the maximum
degree among its variables. The following important definitions will be used throughout the
paper. We usually use V to denote the set of variables and C to denote the set of clauses of a
k-CNF formula ®. For any ¢ € C we denote by var(c) the set of variables appearing in ¢, and for
any S C C we denote var(S) = (J g var(c).

Definition 4.1 (high-degree, A,). Let r € (0,1) and let k > 3 be an integer. Let ® = (V,C)
be a k-CNF formula. We say that a variable v € V is high-degree if the degree of v is at least
A, = [27F].

We refer to Section 4.2 for details on our procedure to determine the bad variables/clauses of
the formula ®. Roughly, bad variables consist of high-degree variables (as in Definition 4.1), plus
those variables that appear in a clause with at least two other bad variables (recursively); bad
clauses are those clauses that contain at least three bad variables. We use Vyaq(r) and Cpaq(7)
to denote the sets of bad variables and clauses. We use Vo0d(r) = V \ Vhad(7) to denote the set
of good variables, and Cgood(1) = C \ Cpad(r) to denote the set of good clauses. The following

proposition, proved in Section 4.2, summarises the main properties of the above sets.

Proposition 4.2. Let ® = (V,C) be a k-CNF formula. For any ¢ € Cgood(r), we have
[var(c) N Voad ()| < 2, and for any ¢ € Chaq(r), we have |var(c) N Vgood(r)| = 0. Moreover, every
good variable has degree less than A,.. There is a procedure to determine Cpaq that Tuns in time

O(n + mk), where n is the number of variables of ® and m is the number of clauses of ®.

It turns out that, w.h.p. over the choice of ®, most clauses (and variables) in the random
formula ® are good, see Lemma 4.15 for a precise statement. At this stage, it would be natural
to try to rework the Markov chain approach of [43]. To do this, we would split the set of good
variables into marked variables and control variables in such a way that marked variables have
marginals close to 1/2. To ensure this bound on these marginal probabilities, it turns out that it

is enough to find a marking such that each good clause has a high enough number of marked

Page 140 of 212

Chapter 4. Fast sampling of satisfying assignments from random k-SAT

variables. Then we run the Glauber dynamics on the set of marked variables. However, as
we explain in Section 4.1.2, the state-of-the-art techniques used to analyse the mixing time of
the single-site Glauber dynamics on bounded-degree formulae do not generalise to the random
k-SAT setting; the main reason for this is that they fail to capture the effect that the high-degree
variables have on the marginal probabilities of other variables. Therefore, we need to develop
an alternative approach that is robust against the presence of high-degree variables. Our main
contribution is an argument to apply the spectral independence framework [28, 29] to the random
k-SAT model that leads to nearly linear sampling algorithms. To do this, it is important to
introduce a third type of good variables, which we call the auziliary variables. This motivates

the following definition of marking.

Definition 4.3 (p-distributed, (r,ry, ra, 7c)-marking, ro, 71, d). Let r € (0,1). Let ® = (V,C)
be a k-CNF formula and let V' be a subset of Vyood(r). We say that V is p-distributed if for
each ¢ € Cgood(r) we have |var(c) NV| > p(k —3). An (7,7m,7a, 7c)-marking of ® is a partition
(Vs Va, Vo) of the variables of ® such that

1. the set of good variables Vi, is ry-distributed;
2. the set of good variables V, is r,-distributed.
3. Ve contains all the bad variables and the set V. \ Vhaa(r) is re-distributed;

The variables in Vi, are called marked variables, the variables in V, are called auxiliary variables,
and the variables in V. are called control variables.

In our sampling algorithm we work with r = ro — & for ro := 0.117841 and é := 0.00001, and
work with an (r,ro, 10, 2r9)-marking. In our connectivity results (Theorems 1.10 and 1.12) we
choose r =11 — 0 for ri :=0.227092 and work with an (r,r1,0,71)-marking in order to achieve

the larger density threshold.

In Section 4.3 we show that random k-CNF formulae have (rq — d, o, ro, 2r¢)-markings when
the density « is below the threshold 2(ro—9)k /k3, and that the marginals of good variables are
close to 1/2; this is where the value of ry becomes important in the argument. We also show
that random k-CNF formulae have (r; — §,71,0, 71)-markings when the density « is below the
threshold 2(T1_5)k/k:3. We state this result for rg in Proposition 4.5 below; first we give some

relevant definitions.

Definition 4.4 (Q*, pa, Q, ®4, CA VA QY. Let ® = (V,C) be a k-CNF formula. Let QF
be the set of all assignments V — {F,T}. Given any subset A C QF, let pa be the uniform
distribution on A. Let Q be the set of satisfying assignments of ®. For any partial assignment A
we denote by D the formula obtained by simplifying ® under A, i.e., removing the clauses which
are already satisfied by A, and removing false literals from the remaining clauses. We denote
by C* and V™ the sets of clauses and variables of ®*. Moreover, we denote by QM the set of

satisfying assignments of ®N.

Page 141 of 212

Chapter 4. Fast sampling of satisfying assignments from random k-SAT

Recall that we say that an event £ regarding the choice of the random formula ® holds with
high probability (abbreviated w.h.p.) if Pr(€) =1 — o(1) as n — oo, see Section 1.1.3 for the

definition of random formula used in this probability distribution.

Proposition 4.5. There is an integer ko such that for any k > ko and any density a with
a < 2(7"0_5)’“/163 the following holds w.h.p. over the choice of the random k-CNF formula
® = ®(k,n,|an]). There exists an (ro — 4,79, 70, 2r0)-marking (Vm, Va, Ve) of ®. Moreover,
for any such marking, for any v € Veood(ro —9), any V. C Vi UV, with v € V, and any
A:V = {F, T}, we have

1 1
maX{PrMQA (v F),Pry , (v T)} < 5 €XP (W))

Proof. This follows directly by combining Lemmas 4.21 and 4.23, which are stated and proved
in Section 4.3. O

We note that the density threshold of Theorem 1.8 is 29039 which is significantly smaller
than the threshold 2(70=%* /k3 in Proposition 4.5. The bottleneck for the threshold Theorem 1.8
comes from our mixing time results, see Section 4.1.2.

The bound given in Proposition 4.5 on the marginal probabilities of the marked and auxiliary
variables is exploited several times in this work, and we will explain some of these applications in
this proof outline. We remark that the bound on the marginals of good variables holds for any
pinning of any subset of marked and auxiliary variables, which will be relevant in the spectral

independence argument.

Definition 4.6 (u|y,). Let V be a finite set and let Q@ C {F,T}Y. Let u be a distribution over Q.
For a set V.CV, we denote by p|y, the marginal distribution of p on V.

Proposition 4.5 implies that the distribution ,LLQ|VmUva is very close to the uniform distribution

over all assignments Vy, UV, — {F, T}. This concept is formalised in the following definition.

Definition 4.7 (c-uniform). Let V' be a set of variables and p be a probability distribution over
the assignments V. — {F, T}. Let A: S — {F, T} be an assignment of some subset of variables
S C V. We denote by Pr,(A) the probability under p of the event that the variables in S are
assigned values according to A, and by Pr,(-|A) the corresponding conditional distribution of fi.

For e € (0,1), we say that the distribution p is e-uniform if for any variable v € V and any
partial assignment A: V \ {v} — {F, T}, we have

1
max {Pr, (v — F|A),Pr,(v—T|A)} < 568.

From Proposition 4.5, it follows that the distribution ugl,, is e-uniform for e = (27Tok /k),
so for any A: Vy,, — {F, T}, the probability that the assignment of the marked variables is A
is at least (1 — e°/2)/Vml. The e-uniform property also (trivially) guarantees that the space of
assignments A: Vy, — {F, T} with Pr,,(A) > 0 is connected via single-variable updates, so we
can indeed consider the Glauber dynamics over Vy,. This leads to the main challenge of this

work: does this chain mix rapidly?

Page 142 of 212

Chapter 4. Fast sampling of satisfying assignments from random k-SAT

4.1.2 Mixing time of the Glauber dynamics on the marked variables

Recently, there has been significant progress in showing that the single-variable Glauber dynamics
on appropriately chosen subsets of variables mixes quickly for k-CNF formulae with bounded
degree [43, 74]. These approaches carefully execute a union bound over paths of clauses connecting
marked variables in order to bound the coupling time between two copies of the chain. However,
these union bound arguments break under the presence of high-degree variables that are present
in random k-SAT; this is because the number of paths connecting marked variables is very
sensitive to the max degree of the formula and in particular grows too fast in our setting. We
give a more detailed discussion in Section 4.6.1.

Instead, we apply the spectral independence framework to show rapid mixing of a uniform-
block Glauber dynamics, which we review briefly below. Applications of spectral independence
usually exploit decay of correlations to show that the spectral independence condition holds,
see [7, 28, 17] for examples. As we have mentioned in the introduction, correlation decay fails
to hold for densities exponential in k in the random k-SAT model [95] and therefore, we have
to develop a different approach to conclude that the spectral-independence condition holds in
our setting. This is our main contribution in this work; we show that the marginal distribution
on the marked variables, i.e., ,uQ|Vm, is (elogn)-spectrally independent for some € > 0 that can
be made arbitrarily small for sufficiently large k. Our argument builds on the coupling idea of
Moitra [93] (as refined in [49] for random k-SAT) and relates the spectral independence condition
to the expected number of failed clauses in this coupling process. This allows us to exploit the
local sparsity properties of the random k-SAT model to analyse the mixing time of the Glauber
dynamics.

A caveat here is that the spectral independence of ,ug]vm is not enough on its own to conclude
fast mixing of the single-site Glauber dynamics. The most direct way to work around this is to
analyse instead the so-called p-uniform-block Glauber dynamics that updates p vertices at a
time for some p that scales linearly in n; the main missing ingredient there is to show that the
modified chain can be implemented efficiently which we discuss in Section 4.1.3. We next give a
quick overview of the relevant ingredients of the spectral-independence literature that we will

need.

4.1.2.1 The p-uniform-block Glauber dynamics, spectral independence, and the

mixing time

Let V be a finite set of size M and p be a distribution over the assignments V' — {F, T}. Let
Q be the set of assignments V' — {F, T} with positive probability under p. For an integer
p € {1,2,...,|V|]}, the p-uniform-block Glauber dynamics for u is a Markov chain X; where
Xp € Q is an arbitrary configuration and, for ¢ > 1, X; is obtained from X;_; by first picking a
subset S C V of size p uniformly at random, letting Ay be the restriction of X; to V'\ S, and
updating the configuration on S according to the probability distribution u(:|A;). This chain

satisfies the detailed balance equation for . Hence, when the chain is irreducible, for € > 0, we

Page 143 of 212

Chapter 4. Fast sampling of satisfying assignments from random k-SAT

can consider its mixing time Thix(p, €) = max,ecq min{t : dry (X, p) < e | Xo = o}. We say that
p is b-marginally bounded if for allv € V., S C V' \ {v}, A: § — {F, T} with Pr,(A) > 0, and
w € {F, T}, it either holds that Pr,(v — w|A) = 0 or Pr,(v — w|A) > b. Spectral independence
results have recently been used in the b-marginally bounded setting to obtain fast mixing time of
the uniform-block Glauber dynamics [19, 29]. For S C V, A: S — {F, T} with Pr,(A) > 0, and
uw,v € V\ Sand 0 <Pry(u— T|A) <1, the influence of v on v (under p and A) is defined as

IMu — v) = Pry, (v Tlurs T,A) — Pry, (ves Tlu e FA). (4.1)

The influence matriz conditioned on A is the (two-dimensional) matrix whose entries consist
of T (u — v) over all relevant u and v. We denote by Z% the matrix and by \;(Z) its largest
absolute value of its eigenvalues. For a real n > 0, we say that p is n-spectrally independent
if for all S € V and A: S — {F, T} with Pr,(A) > 0 we have \;(Z*) < 5. From the results
of [29], one can conclude the following bound for the mixing time of the uniform-block Glauber

dynamics, see Section 4.10 for details.

Lemma 4.8. The following holds for any reals byn > 0, any k € (0,1) and any integer M
with M > %(477/62 +1). Let V be a set of size M, let pu be a distribution over the assignments
V = {F, T}, let @ = {A:V — {F,T} : u(A) > 0} and let pmin = minpeq u(A). If p is
b-marginally bounded and n-spectrally independent, then, for p = [kM] and C, = (2/&)4"/b2+1,

we have

M 1 1
Tmix(ps€) < [Cpp (log log - + log Wﬂ :

We are going to consider the uniform-block Glauber dynamics on the marked variables of
®, so V = Vp, and the set of states coincides with the set of assignments V,, — {F, T} as
all of them have positive probability. In this setting, the target distribution is NQ’vm- The
distribution pqly, is (1/e)-marginally-bounded as a straightforward consequence of the fact that
it is (1/k)-uniform, see Remark 4.49 for details. Hence, in order to conclude rapid mixing it
remains to establish spectral independence. For this, we are going to use the well-known fact
(see for instance [28]) that, for S C V and A: S — {F, T}, we have

A(ZY) < max) TMu = v)]. (4.2)

T uev\S
uev veV\S

4.1.2.2 Spectral independence in the random k-SAT model

In this section we state our spectral independence results in the random k-SAT model. The

results stated in this section are proved in Section 4.6. Our main technical result is the following.

Lemma 4.9. There is an integer kg > 3 such that for any integer k > ko and any density «
with a < 2T0k/3/k3 the following holds. W.h.p. over the choice of the random k-CNF formula
® = ®(k,n, lan]), for any (ro — 0,70, 70, 270)-marking (Vm, Va, Ve) of ®, the distribution pqly,
is (2 (0=9k log n)-spectrally independent.

Page 144 of 212

Chapter 4. Fast sampling of satisfying assignments from random k-SAT

We are going to describe some of the ideas behind the proof of Lemma 4.9. First, we highlight
the fact that, due to the presence of high-degree variables (which form logarithmically-sized
connected components), current techniques seem unable to conclude n-spectral independence
with 7 = O(1). This has also been the case in recent work on 2-spin systems on random
graphs [17], where instead correlation decay is exploited to prove n-spectral independence for
some 1 = o(logn). Here, our n-spectral independence bound for n = ok (logn) will be based on
an appropriate coupling. Note, in light of Lemma 4.8, n = O(logn) is good enough for proving
polynomial mixing time of the uniform-block Glauber dynamics, but we need the improved
bound of Lemma 4.9 in order to conclude the following fast mixing-time result from Lemma 4.8
(as illustrated Section 4.6).

Lemma 4.10. There is a function ko(0) = ©(log(1/0)) such that, for any 6 € (0,1), for any
integer k > ko(0) and any density o with oo < 29039 the following holds. W.h.p. over the choice
of the random k-CNF formula ® = ®(k,n, |an]), for any (ro — 6, ro, 70, 2r0)-marking (Vm, Va, V)
of ® and for p = [27*"1| V|1, the p-uniform-block Glauber dynamics for updating the marked
variables has mizing time Tyix(p,e/2) < T := [22k+310 log %’ﬂ

Lemma 4.10 is stated for the block size p = [27%~1|V,,|], but it could be proved more
generally when p = ¢|Vu| and ¢ € (0,1). The fact that p < [V|/2" in the statement will be
relevant in implementing efficiently the dynamics, discussed in Section 4.1.3.

We remark that the more restrictive density threshold ov < 270%/3/k3 in the statement of
Lemma 4.9 arises in the union bound given in the proof of this lemma, and that for large enough
k we have 20-039% < 9rok/3 /k3, the former being the density threshold given in Lemma 4.10 and
Theorem 1.8.

Our approach to prove n-spectral independence significantly differs from those that in two-
spin systems, where it is enough to study sum of influences over trees (thanks to the tree of
self-avoiding walks) and exploit decay of correlations in this setting (very roughly, the further
away two vertices are in the tree, the smaller the influence that one vertex has in the other).
Here we relate influences to the structure of the dependency graph Gg by running a coupling
process on the auxiliary variables, and we state this connection in the upcoming Lemma 4.40.

First we define more formally the dependency graph Gg.

Definition 4.11 (Gg). Let ® = (V,C) be a k-CNF formula. We define the graph Gg as follows.
The vertez set of Gg is C and two clauses ¢1 and co are adjacent if and only if var(cy) Nvar(cz) # 0.
A set C C C is connected if C is connected in the graph Gg. We say that two variables u and v

are connected in ® if there is a path c1,c,...,cp in G with u € var(cq) and v € var(cy).

Let u € Vi, S C Vi and A: S — {F, T}. The aim of the coupling process is bounding
the sum Zvevm\(su{u})‘ZA(“ — v)| in terms of the expected size of a connected set of failed
clauses, where the expectation is over the choices made in the coupling process. We refer to
Section 4.6 for a definition of failed clauses, as it is not relevant in this discussion. Here we give

a brief overview of how the coupling process on the auxiliary variables works. First, we start

Page 145 of 212

Chapter 4. Fast sampling of satisfying assignments from random k-SAT

with two assignments X = AU (u+— T) and Y = AU (u — F), where AU (u — w) denotes
the assignment defined on S U {u} that agrees with A on S and sends u to w. The process
progressively extends X and Y on some auxiliary variables vy, v, ... following the optimal
coupling between the marginals Pr,, (v — -|X) and Pr,,(v — -|Y), see Section 4.6 for the
definition of optimal coupling. The main property of this process is that with high probability
over the choices made, at some point the graphs Ggx and Gy factorise in small connected
components in spite of the presence of bad variables and, on top of that, ®¥ and ®¥ share most
of these connected components. Then we can bound influences between marked variables by
analysing the connected components where ®* and ®Y differ, which turn out to be poly(k)logn
in size after enough steps of the process.

One of the key ideas behind our analysis is exploiting the fact that, in the random k-SAT
model, w.h.p. over the choice of the random formula ®, any logarithmic-sized set of clauses Z
that is connected in G has constant tree-excess, that is, the number of edges connecting a pair
of clauses in Z is |Z| + O(1). This saves a factor of A, _s in the spectral independence bound
by ensuring that there is a large independent set of clauses in the set of failed clauses. We also
obtain improved analysis by restricting the coupling process to auxiliary variables. This enables
us to get exponentially small bounds (in k) on the influences between marked variables, which

leads to our (2*(”)*5)]“ log n)-spectral independence result.

4.1.3 Analysis of the connected components of ®*

In this section we deal with the third challenge mentioned at the beginning of Section 4.1: can we
determine the transition probabilities of the Glauber dynamics so that we can actually simulate
this Markov chain? In fact, simulating the single-site Glauber dynamics on the marked variables
was one of the main challenges even in the bounded-degree case. In that case this was resolved
using a method that is restricted to the bounded-degree setting (and whose bottleneck is the
analysis of a rejection sampling procedure). A different procedure is required for the random
k-SAT setting.

One of the key ideas to simulate this chain is starting the chain on an assignment Xg: Vy, —
{F, T} drawn from the uniform distribution over all assignments of V;,. Since the distribution
paly, is (1/k)-uniform (Proposition 4.5), the transition probabilities of the Glauber dynamics
are close to uniform. This allows us to show that the probability distribution of the assignment
X; that is output by the uniform-block Glauber dynamics after ¢ steps is also (1/k)-uniform
(Corollary 4.24), which will be important in what follows.

In order to run the p-uniform-block Glauber dynamics we need to be able to sample from the
distribution pqga for any set S C Vy, with |S| = p and any assignment A: Vy, \ S — {F, T} that
arises. Unless we can restrict A, sampling from pna could potentially be as hard as sampling
from pq. Fortunately for us, the assignment A is not completely arbitrary; A is determined
by the random choice of S and the current state of the Glauber dynamics (which follows a

(1/k)-uniform distribution as discussed above). We show that we can efficiently sample from pia

Page 146 of 212

Chapter 4. Fast sampling of satisfying assignments from random k-SAT

w.h.p. over the choice of A. An important observation is that we can efficiently sample from pna
when the connected components of Gga are logarithmic in size, for example, by applying brute
force. This raises the following question: does Gga break into small connected components w.h.p.
over the choice of A? Lemma 4.12 gives a positive answer when 0 < p < |V/|/2¥. Here the reader
can see V as the set of marked variables. The proof of Lemma 4.12 exploits sparsity properties
of logarithmic-sized connected sets of clauses in random formulae in conjunction with the fact
that p is (1/k)-uniform. Lemma 4.12 is stated with an added layer of generality, as we will also
apply it to analyse the geometry of the space of satisfying assignments of ® with r =r; — 4. In
our sampling algorithm setting we consider r = ry — d. Recall that rqg = 0.117841, r; = 0.227092
and 6 = 0.00001. The restriction r € (24,1/(2log2)] in the statement of Lemma 4.12 is not

optimal, but it is enough for our purposes.

Lemma 4.12. Let r € (20,1/(2log2)]. There is an integer ko > 3 such that, for any integer
k> ko, any density oo < 200720k " and any real number b with a = 2k* < b, the following holds
w.h.p. over the choice of ® = ®(k,n, |lan]).

Let L be an integer satisfying alogn < L < blogn. Let V be a set of good variables of
O that is (r + 0)-distributed (Definition 4.3), let p be a (1/k)-uniform distribution over the
assignments V. — {F, T}, and let p be an integer with 0 < p < |V|/2%. Consider the following
experiment. First, draw S C V from the uniform distribution T over subsets of V with size
p. Then, sample an assignment A from :u|V\S' Denote by F the event that that there is a
connected set of clauses Y of ® with |Y| > L such that all clauses in 'Y are unsatisfied by A.
Then Prg., (PrANMV\s (F) < 2—5kL) >1— 9—0kL

Proof sketch. The proof is in Section 4.4. For the sake of exposition, we first sketch the proof in
the case p = 0, where the conclusion in the statement reads Pry.,,, (F) < 279kL At the end of
this proof sketch we explain how we extend the proof to any p with 0 < p < |V|/2*.

The first step is exploiting local sparsity properties of random k-CNF formulae to find many
variables from V in any sufficiently large connected set of clauses. Our sparsity results hold for
connected sets of clauses with size at least 2k*logn, and let us conclude the following result
(stated as Lemma 4.28 in Section 4.4): w.h.p. over the choice of @, for every connected set of

clauses Z C C we have
if 2k*log(n) < |Z| < blog(n), then |var(Z)NV|>rk|Z|. (4.3)

The proof of Lemma 4.28 counts the variables from V in Z by using the fact that Z does
not contain many bad clauses (Lemma 4.15, which gives the restriction on r) and the fact
that there are not many edges joining clauses in Z. In fact, for such a set Z, we show that
the number of edges is of order |Z| + O(1), that is, Z has constant tree-excess (Lemma 4.26).
We also need the following result on random k-CNF formulae. For each clause ¢ € C, let
Z(c,L) ={Z CC:ce Z, Zis connected in Gg,|Z| = L}. Then, w.h.p. over the choice of
®, [49, Lemma 40] shows that, as long as L > logn,

for any clause ¢ € C we have |Z(c, L)| < (9k2a)™. (4.4)

Page 147 of 212

Chapter 4. Fast sampling of satisfying assignments from random k-SAT

Once we have established (4.3) and (4.4), the proof exploits the fact that 4 is close to the uniform
distribution. First, we introduce some notation. Let L be an integer with alogn < L < blogn.
Let S = () as we are dealing with the case p = 0. For ¢ € C and Z € Z(¢, L), we denote by
&1(Z,S) the event that none of the clauses of Z are satisfied by assignment A (Definition 4.4),
where A is drawn from ,u\v\ g, see Definition 4.6. We keep track of S in the notation here as
this is relevant in the general case. The first observation is that the event F from the statement
satisfies 7 = U.ce zez(c,0) €1(Z, 5). We then claim that for any ¢ € C and Z € Z(c, L) we have

2—§kL

<
PrANmV\S (51(Z7 S)) — |C| . |Z(C, L)|7

(4.5)

so the result would follow from a union bound over ¢ and Z. Let us give some insight on how we
prove (4.5). Let ¢ € C and Z € Z(c, L). The main idea is that, if all clauses in Z are unsatisfied
by A then, when we sampled A ~ pfy\ g, for each variable v in var(Z) N (V'\ S) we picked the
value that does not satisfy the clauses of Z containing v. Thus, we can bound the probability that
all clauses in Z are unsatisfied as a product, over the variables in var(Z) N (V'\ S), of probabilities,
each factor corresponding to the probability that a variable is assigned a certain value (under
some careful conditioning, see the proof in Section 4.4 for details). Since the distribution u is

(1/k)-uniform, each one of these factors can be bounded by exp(1/k)/2, obtaining

. LA v (@nm\s)
PrANMV\s (51(Z, S)) < (2 exp <k>> . (4.6)

In (4.3) we gave a lower bound on |var(Z) N V|, which can be applied in conjunction with (4.4)
to conclude, after some calculations, that the bound given in (4.5) holds.

The case p > 0 is more technical and one has to be more careful in these calculations. We
show that (4.5) holds when S does not contain many variables in var(Z)NV. A slightly different
argument is needed when going from (4.6) to (4.5); here we have to bound |var(Z) N (V' \ .9)|
instead of |var(Z)NV/|. It turns out that, as long as the bound |var(Z)NV NS| < |var(Z)NV|/k
holds, the calculations to go from (4.6) to (4.5) also hold in this setting. Finally, we show
that the probability that |var(Z) NV N S| < |var(Z) N V|/k occurs when picking S is at least
1 — 29kL_ The proof of this fact is purely combinatorial, and requires the hypothesis p < |V|/2*,
see Section 4.4 for details. O

Once we have established Lemma 4.12, we can use it to implement the p-uniform-block
Glauber dynamics on the marked variables for 0 < p < [V,,| and complete our sampling algorithm,
which we explicitly state in Section 4.1.4.

Before concluding this section, we mention how we apply Lemma 4.12 to analyse the geometry
of the space of satisfying assignments of ® in order to conclude the O(logn)-connectivity and

O(logn)-looseness results given in Theorems 1.10 and 1.12. First, we need the following definition.

Definition 4.13 (Hg). Let ® = (V,C) be a k-CNF formula. We define the graph Hg as follows.
The vertex set of He is V and two variables v1 and vo are adjacent in Hg if there is a clause
¢ € C with vy, vy € var(c).

Page 148 of 212

Chapter 4. Fast sampling of satisfying assignments from random k-SAT

We apply Lemma 4.12 with 7 = r; — § and a density a < 20139k k3 For an (r,r,0,7)-
marking (Vim, 0, Ve) of @, we let V' =V, and p = pgly,_. In this setting, for p = 0, Lemma 4.12
allows us to conclude that, w.h.p. over the choice of A ~ IUQ|Vm, the graph Gga consists of
connected components with size at most O(logn). Thus, the connected components of Hga
have size at most O(logn) as each clause contains at most k variables. This leads to the main
idea behind the proof of Theorem 1.10: we can construct O(logn)-paths between satisfying
assignments by progressively updating the variables in each one of the connected components
of Hya. As an example, let &1,&,...,& be these connected components and let o) and o2
be two satisfying assignments that agree with A on V,,,. Then we can find an O(logn)-path
o1 = (o ¢+ (1 &+ -+ & (¢ = 02 as follows: the assignment (; is the satisfying assignment that

agrees with A, agrees with o1 on the variables in V \ ngl &) and agrees with o2 on the

variables in ngl &j. The case when o1 and o9 differ on some marked variables builds on the
same idea though it is more technical and requires applying Lemma 4.12 with p = 1. We refer
to Section 4.8.1 for this argument and the proof of Theorem 1.10.

The fact that the connected components of Hga are O(logn) in size with high probability
over A ~ pgqly, is also related to the looseness of the formula ®. Let v € V' \ V. For any
satisfying assignment o that agrees with A on the marked variables, we can construct a satisfying
assignment 7 with 7(v) # o(v) and |jo — 7||1 = O(logn) by updating the variables in the
connected component of v in Hga, provided that there is a way to satisfy this connected
component when giving v the value 7(v). In Section 4.8.2 we formalise this idea and give all the

details of this argument to prove Theorem 1.12.

4.1.4 The sampling algorithm

To complete this proof outline, we explicitly describe Algorithm 1, our algorithm for sampling
satisfying assignments of k-CNF formulae. The algorithm uses a method Sample(®*,S) to
sample an assignment 7: S — {F, T} from the distribution pga|g. This method exploits the fact
that logarithmic-sized connected set of clauses have constant tree-excess, which does not hold
in the bounded-degree case. This tree-like property enables us to efficiently sample satisfying
assignments on the connected components of ®* by a standard dynamic programming argument,

see Section 4.5. Lemma 4.14 is our main result on Sample(®%, S).

Lemma 4.14. There is an integer ky > 3 such that, for any integers k > ko, b > 2k* and any
density o > 0, the following holds w.h.p. over the choice of ® = ®(k,n, |an]|). Let V be a subset
of variables and let A: V' — {F, T} be a partial assignment such that all the connected components
in Gga have size at most blog(n). Then, there is an algorithm that, for any S CV\V, samples

an assignment from pqalg in time O(|S|logn).

The method Sample(®?, S) is used in Algorithm 1 to implement each step of the p-uniform-
block Glauber dynamics on the marked variables. It is also used to extend the assignment of

marked variables computed by the Glauber dynamics to a satisfying assignment of ®. As a

Page 149 of 212

Chapter 4. Fast sampling of satisfying assignments from random k-SAT

design choice, this method returns error when the connected components of Gga have size larger
than 2k*(1 + £)log(n). We remark that the probability that Sample(®%,S) returns error is
very small when running the Glauber dynamics thanks to Lemma 4.12. We can now introduce
Algorithm 1, which has two parameters 6 € (0,1) and £ > 1 as in Theorem 1.8.

Algorithm 1 The approximate sampling algorithm for satisfying assignments of random k-CNF

formulae.

Input: A k-CNF formula & = (V,C) with n variables
1: Compute the sets of bad/good variables and bad/good clauses for ® as in Proposition 4.2.

2: Let ¢ = n~¢. Compute an (rg — 6, 79, 7, 219)-marking (Vi, Va, Ve) for ® as in Proposition 4.5
(see Lemma 4.21 for the algorithm, use p = £/4). This succeeds with probability at least

1 — /4. If this does not succeed, the algorithm returns error.

3: For each v € V,, sample X((v) € {F, T} uniformly at random.

4: for t from 1 to T := [2%T3nf log 2] do

5. Choose uniformly at random a set of marked variables S C Vy, with size p := [27%71|Vu]].
6: Let A; be the assignment X;_; restricted to Vp, \ S.

7. Y < Sample(®Nt S).

8: X+ A UY.

9: end for

10: Y < Sample(®~7,V, UV,).
11: return X UY.

We remark here that Algorithm 1 only works for large enough &, and this hypothesis will be
used several times in our arguments. The quantity T defined in this algorithm corresponds to

the mixing time of the p-uniform-block Glauber dynamics given in Lemma 4.10.

4.1.5 Organisation of the rest of this chapter

The rest of this chapter is organised as follows. In Section 4.2 we introduce a procedure for
determining bad clauses of a k-CNF formula. In Section 4.3 we prove Proposition 4.5 on markings
of random formulae. In Section 4.4 we prove our technical result on the connected components
of @), Lemma 4.12. In Section 4.5 we give the method Sample and prove Lemma 4.14. In
Section 4.6 we prove the results on spectral independence stated in Section 4.1.2 of this proof
outline. In Section 4.7 we complete the proof of Theorem 1.8 by combining our mixing time
results (Lemma 4.10), our algorithm to sample from small connected components (Lemma 4.14)
and our result on the size of the connected components of ®* (Lemma 4.12). In Section 4.8
we prove Theorems 1.10 and 1.12 on the geometry of the space of satisfying assignments of ®.
Finally, in Sections 4.9 and 4.10 we prove three lemmas that are independent of the rest of
this work. More precisely, in Section 4.10 we bound the number of bad clauses in a random
k-CNF formula, both globally and for sufficiently large connected subsets of clauses. Finally, in

Section 4.10 we prove Lemma 4.8 on the uniform-block Glauber dynamics, which follows from

Page 150 of 212

Chapter 4. Fast sampling of satisfying assignments from random k-SAT

combining some result of [29].

4.2 High-degree and bad variables in random CNF formulae

As we noted in Section 1.5 and in our proof outline, one of the keys to sampling satisfying
assignments in the unbounded-degree setting is to “sacrifice” a few variables per clause (treating
them separately in the sampling algorithm) and to (temporarily) remove a small linear number
of clauses that contain these. The point of this is to ensure that the remaining (“good”) clauses
have mostly low-degree variables (at most two bad ones) and also that the rest of the clauses
(the “bad” ones) form small connected components that interact with the good clauses in a
manageable way.

Recall that, for r € (0,1), high-degree variables were introduced in Definition 4.1 as those
variables with at least A, := [2¥"] occurrences in the formula. In this work we consider two
possible values for r here, r = rg — § and r = r1 — 9§, where rg = 0.117841, 1 = 0.227092 and

= 0.00001. The values g and r; arise as solutions of an optimisation problem in Section 4.3
when we establish the markings that we use in our proofs. The marking used in our algorithmic
results requires the more restrictive definition of high-degree variable with r = rg — § than
the marking used in our connectivity results with r = r; — §. Subtracting § will make our
calculations easier without affecting our results.

By standard arguments about random graphs, one can determine that, w.h.p. over the choice
of ®, the number of high-degree variables of ® is bounded. We want to identify the clauses of
® that have at most 2 high-degree variables, since clauses with a lot of high-degree variables
will interfere with our sampling algorithms. This motivates the following construction. The bad
variables and bad clauses of ® are identified by running the process given in Algorithm 2. Here

Voad(7) denotes the set of bad variables and Cpaq(r) denotes the set of bad clauses.

Algorithm 2 Computing bad variables and bad clauses for r € (0,1)
Input: A k-CNF formula ® = (V,C)
1 Vo(r) — the set of high-degree variables, i.e., variables with at least A, =

[27F] occurrences in ®.

2: Co(r) < the set of clauses with at least 3 variables in Vy(r)
3140

4: while i = 0 or V;(r) # Vi_1(r) do

5 14 1+1

6: Vi(r) < Vi_1(r) Uvar(Ci—1(r))

7. Ci(r) < {ceC:|var(c)NV;(r)| > 3}

8: end while

9: Chad(r) = Ci(r) and Vpaq < Vi(r)

10: return Vy,q(r), Chad(r)

Page 151 of 212

Chapter 4. Fast sampling of satisfying assignments from random k-SAT

We define the good clauses of ® as Cyood(r) = C \ Cpad(r) and the good variables of ® as
Veood (1) = C \ Vbad(r). The sets Veo0d (), Vbad(T); Caood (7), Cbad (1) depend on the parameter
r € (0,1). The value of r here will be o — § except in Section 4.8 where we prove our connectivity
results for r = r; — 4, and in some of the marking results in Section 4.3. We will use the

observations given in Proposition 4.2 several times in this work.

Proposition 4.2. Let ® = (V,C) be a k-CNF formula. For any ¢ € Cgood(r), we have
[var(c) N Voad ()| < 2, and for any ¢ € Craq(r), we have |var(c) N Vgood(r)| = 0. Moreover, every
good variable has degree less than A,.. There is a procedure to determine Cpaq that Tuns in time

O(n + mk), where n is the number of variables of ® and m is the number of clauses of ®.

Proof. In this proof we briefly explain the implementation of Algorithm 2. First, for each clause
¢ we keep track of the number of bad variables in var(c), denoted bad(c). We also have a stack of
bad variables Sy that are yet to be processed by the algorithm. At the start of the algorithm, we
set Sy < Vp. While Sy is non-empty, we take the variable v on the top of the stack and increase
bad(c¢’) by 1 for those clauses ¢ where v appears. If any of these updates gives bad(¢’) > 3, we
add var(c’) to the stack Sy, set the variables in var(c’) as bad and set the clause ¢’ as bad. At
the end of this process, Sy is empty and we have found all the bad variables and bad clauses of
®. As every variable is added to the stack at most once and the list bad(-) is updated at most

mk times (once per literal in @), the running time is O(n + mk). O

In our work we need a variation of result of [49] that controls the number of bad clauses in

connected subgraphs of G. We state this result in Lemma 4.15 and prove it in Section 4.9.

Lemma 4.15 (Modified version of [49, Lemma 8.16]). Let r € (0,1/(2log2)]. There is a positive
integer ko such that for any integer k > ko, A, = [27F], and any density o with o < A,./k3, the
following holds w.h.p. over the choice of ® = ®(k,n, |an|). For every connected set of clauses
Y in Gg such that |var(Y)| > 2k*logn, we have |Y N Chaq(r)| < |Y]/k.

We also need a bound on the number of bad clauses of ®, which is also proved in Section 4.9.

Lemma 4.16 (Modified version of [49, Lemma 8.12]). Let r € (0,1/(2log2)]. There is a positive
integer ko such that for any integer k > ko, A, = [2"%], and any density o with o < A,./k>, the
following holds w.h.p. over the choice of ® = ®(k,n, [an|). We have |Cpaq(r)| < 2(c/Ay)n /28"
and [Voaa(r)| < 20k + 1)(a/An)n /25"

Lemmas 4.15 and 4.16 guarantee that, w.h.p. over the choice of ®, bad clauses are a
minority among all the clauses of ®. This will be used to show that bad clauses do not affect
significantly the behaviour of our sampling algorithm. We point out that the definitions of
Veood (1) Vbad (1"); Caood (1) and Chaq(r) given in [49] have r» = 1/300 and, in Algorithm 2, use the
condition |var(c) N V;(r)| > k/10 instead of |var(c) N V;(r)| > 3

Hence, our definitions of good clauses and good variables are more restrictive. However, it
turns out that, with minor changes, the proof of Lemma 4.15 given in [49] can be extended to

our setting. These changes are explained in Section 4.9.

Page 152 of 212

Chapter 4. Fast sampling of satisfying assignments from random k-SAT

4.3 Identifying a set of “marked” variables with good marginals

A property that is useful for sampling satisfying assignments is having a high proportion of
variables in each good clause such that the marginals of these variables are fairly close to 1/2.
That is, having variables which are roughly equally likely to be true or false in a random satisfying
assignment. The marginals of high-degree variables do vary. However, even in the random
kE-SAT model it turns out that there are enough variables with marginals near 1/2. Following
the basic approach of Moitra [93], we partition the good variables of a random k-CNF formula
into types. Here we have three types of variables (instead of two): marked, auxiliary and control
variables. The high-level goal is to do this in such a way that each clause has a good proportion
of each one of these types of variables. We call this construction a marking, see Definition 4.3 of
the proof outline for the precise definition. For such a marking, we will show that as long as
the control variables are left unassigned /unpinned, the marginals of the marked and auxiliary
variables are all near 1/2 as a consequence the Lovész local lemma [42]. We first set up the
notation and results that we need.

It is not difficult to show that in the random k-SAT model, w.h.p. over the choice of the
formula @, two distinct clauses share at most 2 variables (see Lemma 4.17). Previous work on
counting/sampling satisfying assignments of bounded degree formulae had to analyse subsets
of disjoint clauses in order to deal with the fact that small sets of clauses might share most of
their variables. The restriction to disjoint subsets imposes further restrictions on the maximum
degree of the formula and on the density of the formula in the random k-SAT model setting.

Here we manage to exploit Lemma 4.17 to avoid these restrictions.

Lemma 4.17. For any k > 3 and any density o > 0 (possibly depending on k), the following
holds w.h.p. over the choice of the random k-CNF formula ® = ®(k,n,|an|). We have
|var(c)| > k — 1 and |var(c) Nvar(c')| < 2 for all ¢,d € C with ¢ # .

Proof. First, let us prove that, for & > 3, w.h.p. over the choice of ®, |var(c)| > k—1 for all ¢ € C.
Let us denote by R. the event that a clause ¢ has at least two repetitions among its variables, that
is, [var(c)| < k — 2. We claim that Pr(R.) < q(k)/n?, where q = (g) +k(k—1)(k—2)(k—3)/4.
To prove this statement we note that the probability that a variable appears at least 3 times
in ¢ is at most (’;) n*=2/n* and the probability that two distinct variables are repeated in c is
at most p(k)n(n — 1)n*=4/nF for p(k) = k(k — 1)(k — 2)(k — 3)/4. Hence, by adding up both
cases, we find that Pr(R.) < q(k)/n?, and Pr({J.cc Re) < q(k)m/n* < q(k)a/n = O(1/n), so
the result follows.
Let ¢, € C with ¢ # ¢/. We study |var(c) N var(c)],

n(n —1)(n — 2)n**F=3) (k(k — 1)(k — 2))? < liﬁ

Pr (|var(c) Nvar(c)| > 3) < n2k — n3

Therefore, the probability that there is a pair of clauses ¢, ¢ with |var(c) Nvar(¢’)| > 3 is bounded
from above by m(ng_l) f% <2k _ 0 (1), which finishes the proof. O

— 2 n

Page 153 of 212

Chapter 4. Fast sampling of satisfying assignments from random k-SAT

We will use the asymmetric version of the Lovész local lemma (LLL), proved by Lovasz and
originally published in [110]. Before stating this result, let us introduce some notation. Let
P be a finite collection of mutually independent random variables. Let B an event that is a
function of the random variables in P. Let A be a collection of events that are a function of the
random variables in P. We define I'(B) as the set of events A € A such that A # B and A and
B are not independent. In this setting, Prp(B) is the probability that the event B holds when

sampling all the random variables in P.

Theorem 4.18 (Asymmetric Lovédsz local lemma, [64, Theorems 1.1 and 2.1)). Let P be a finite
collection of mutually independent random variables. Let A be a collection of events that are a
function of the random variables in P. If there exists a function x : A — (0,1) such that, for all
A€ A, we have
Prp(A) <a(4) [] (-2,
Nel'(A)
then Prp (ﬂAeAZ) > 0. Furthermore, for any event B that is a function of the random

variables in P, we have

Prp (B ’ ﬂAGAZ) <Prp(B) [[(t-a(4)"
AeT(B)

We are going to apply the LLL in Lemma 4.21 to find an (ro — d, 79, ro, 2ro)-marking of ®
(Definition 4.3), w.h.p. over the choice of the random formula, for some appropriate r¢ € (0, 1).
Before proving Lemma 4.21, let us highlight how strong the properties of a marking are. First,
the fact that a set of marked variables is p-distributed (Definition 4.3) will allow us to find,
w.h.p. over the choice of ®, a good amount of marked variables in any set of clauses, even if
the set includes bad clauses, see Lemma 4.28 for a precise statement. This result is an essential
ingredient in our proofs. Secondly, as long as the control variables are left unassigned, the
marginals of the marked and auxiliary variables will be near 1/2 as a consequence of the LLL, as
we show later in this section (Lemma 4.23). We remark that, in the definition of p-distributed
set of variables, we ask for |var(c) N V| > p(k — 3) instead of |var(c) N V| > pk to account for
the fact that w.h.p. a good clause has at most a repeated variable (Lemma 4.17) and at most
two bad variables (Proposition 4.2), which will come up in the proofs presented in this section.

First, we need the following definition.

Definition 4.19 (®g00d(7), Prad(r)). Let r € (0,1). Let & = (V,C) be a k-CNF formula. Let
Pg00d (1) = (Veood (), Ceood (7)) be the CNF formula obtained by taking the good clauses of ® and
ignoring the bad variables appearing in them. Let ®paq(r) be the k-CNF' formula with variables
Voad (1) and clauses Cpaq(T).

Note that in Gg,, () two clauses c¢1 and ¢z in Cgooaq are adjacent if and only if var(cy) N
var(c2) N Vgood # 0. By definition of good variables, the maximum degree in Gopoq(r) 15 at most
k(A, — 1), which will be important when applying the LLL. We also need the following version
of Chernoft’s bounds.

Page 154 of 212

Chapter 4. Fast sampling of satisfying assignments from random k-SAT

Lemma 4.20 (Chernoff’s bounds - [98, Theorem 2.1 and Corollary 4.1]). Let n € N, p € [0, 1],
and let X1,...,X, be n independent random variables with X; € {0,1} and Pr(X; =1) =p
forallj=1,....,n. Let X = Z?:l Xj. Then, for any t € (p,1) and any s € (0,p), we have
Pr(X >tn) < e PEP" gnd Pr(X < sn) < e PP where, for reals x,y € (0,1), D(z,y) =
zlog(x/y)+ (1 —x)log (1 —x)/(1 —y)) is the Kullback-Leibler divergence.

We can now state the main result of this section. The Lovasz local lemma ideas in the proof
of Lemma 4.21 are standard in the literature since the work of Moitra [93] but the quantities

involved are adapted to our setting.

Lemma 4.21. There is a positive integer ko such that for any k > ko and any density «
with a < 2(’"0*‘5)]“/k3 the following holds w.h.p. over the choice of the random k-CNF formula
® = d(k,n,|an]):

1. there exists a partial assignment of bad variables that satisfies all bad clauses;

2. there exists an (ro — 9,719,109, 2r0)-marking of ®. Furthermore, for any p € (0,1), such

an (ro — 6,719,710, 2r9)-marking can be computed with probability at least 1 — p in time
O(nlog(1/p)).

Proof. In this proof we set r = rg — 4. We note that for any k > 4 our density a < 2(7’0_5)”“/k:3
is below the threshold c; > 1.3836 - 2 /k established in [46, Theorem 1.3]. For densities below
this threshold, w.h.p. over the choice of ®, there is a satisfying assignment for . When & is
satisfiable, we claim that there is an assignment of the bad variables that satisfies all bad clauses.
Indeed, all the variables in bad clauses are bad (Proposition 4.2) and, thus, the restriction of a
satisfying assignment to Vpaq(r) must satisfy all the bad clauses. In the rest of this proof we
show that assertion 2 also holds.

In view of Lemma 4.17, we may assume that |var(c)| > k — 1 for all ¢ € C. Let us find
the (r,rg, 70, 2ro)-marking (Vim, Va, Ve). If all clauses are bad, then we set V. =V, V;, = () and
Va = 0. This is trivially an (r, 79,9, 2r¢)-marking for ®. In the rest of the proof we assume that
there are good variables. We study the following probability space. For each good variable v, we
set v as “marked” with probability 8 € (0,1/2), “auxiliary” with probability 8 and “control”
with probability 1 — 25. This decision is made independently for each good variable. Each
bad variable is set as “control”. Let P be the set {P, : v € Vgood(r)}, where P, is the random
choice made in this experiment for v. Let Vy, be the set of marked variables, let V, be the set of
auxiliary variables, and let V, be the set of control variables obtained by running this experiment.
For each clause ¢ € Cgo0d(r), let Ac be the event that ¢ has less than ro(k — 3) marked variables
or less than ro(k — 3) auxiliary variables or less than 2ro(k — 3) good control variables. We
are going to apply the LLL on the formula ®z,04(7) so as to show that Pr(ﬂcecgood(r) A) > 0.
For each ¢ € Cgo0d(r), in view of Proposition 4.2 and the fact that |var(c)| > k — 1, we have
[var(c) N Veood(r)| > k — 3. Hence, we can apply the Chernoff bound given in Lemma 4.20 with
n = |var(c) N Vgood(7)|, p = B and s = 7y to obtain, for any choice V' € {Vi, Va},

Prp (Jvar(c) N V| < ro(k — 3)) < e~ D(ro,B)(k=3)

Page 155 of 212

Chapter 4. Fast sampling of satisfying assignments from random k-SAT

When V' = V. \ Vhad, n = |var(c) N Vgood(r)|, p =1 — 26 and s = 2rg we obtain
Prp ([var(c) N V| < 2ro(k — 3)) < e~ P2ro1=26)(k=3)

We have chosen 7 to be as large as possible under the restrictions that D(rg, 3) > 79 log 2 and
D(2rg,1 —28) > rglog2. The values = 0.571027 and ry = 0.117841 satisfy these restrictions.
We conclude that

Prp (A.) <2- e~ D(ro,B)(k=3) + e~ D(2ro,1-28)(k-3) <3. 9—ro(k=3)

Let A" = 270(*=3) /(3¢2k) and let x(A.) = 1/(kA’) for all ¢ € Cgooa(r). We check that z satisfies
the condition of the LLL for P and A = {A. : ¢ € Cgp0a(r)}. For k > 43, 1/(kA’) € (0,1)
and thus z(A.:) € (0,1) for all ¢ € Cyooa(r). We note that I'(A.) = {Ay : ¢ € Cgo0d(r), ¢ #
¢, var(c’) Nvar(c) N Vgood(r) # 0}. The graph Gg,, (), given in Definition 4.11, has maximum
degree at most k(A, — 1), so [T'(A¢)| < k(A, — 1) < kA’ where the latter inequality holds for
large enough k as A, = [27*] and r = r¢ — §. Therefore, we have

1 1\ 1
A || 1—z(N)) > 1— >_— _ —3.9ro(k=3) 4.
z(Ae) (1-=(N)) = k:A’(k:A’) S T : (4.7)
NeT(Ae)

where we used (1 — 1/2)? > e 2 for all z > 2 in the second inequality. Thus,

z(4) J[(1 -=2@) =3-27F9 > Prp(4,).
NeT(Ae)

We conclude that, by the LLL, Prp (ﬂcecgood(r) AC) > 0, so there exists a partition (Vi, Va, Ve)
of the variables of ® such that Vpaq(r) € V. and each good clause contains at least ro(k — 3)
marked variables, ro(k — 3) auxiliary variables and 2ry(k — 3) good control variables. That is,
(Vin, Va, V) satisfies Definition 4.3 for r = ro — 0, ryy = 10, 7a = 10, and r. = 2rg. Moreover,
with probability at least 1 — ¢, this partition can be computed in 4naA’klog(1/6) steps with
the algorithm of Moser and Tardos [97]. O

We now give the marking result that we use in our connectivity results, which holds for
densities at most 2("1—9)k /K3, where r; = 0.227092. The larger density threshold comes from
the fact that the marking result is less strong — we do not require auxiliary variables nor a high

number of good control variables in every clause.

Lemma 4.22. There is a positive integer ko such that for any k > ko and any density «
with a < 2(7’1_6)]“//’6‘3 the following holds w.h.p. over the choice of the random k-CNF formula
O = d(k,n,|an]):

1. there exists a partial assignment of bad variables that satisfies all bad clauses;

2. there exists an (r1 — d,71,0,7r1)-marking of ®. Furthermore, for any p € (0,1), such an

(r1—90,71,0,7r1)-marking can be computed with probability at least 1 —p in time O(nlog(1/p)).

Page 156 of 212

Chapter 4. Fast sampling of satisfying assignments from random k-SAT

Proof. The proof is analogous to that of Lemma 4.21. Here we explain the main differences.
First, we set r = r1 — ¢ instead of » = ro — §. The second difference is that we study the following
probability space: each good variable v is set as “marked” with probability S and “control” with
probability 1 — 8. We let A, be the event that ¢ has less than r;(k — 3) marked variables or less
than r1(k — 3) good control variables. A Chernoff bound as in the proof of Lemma 4.21 gives

Prp (4A,) < e~ Dr1,B)(k=3) | ,—D(r1,1-5)(k-3) <2. 2—7"1(14:—3)’

where we chose r1 as large as possible so that D(rq, 3) > r1log2 and D(r1,1—) > r1log2. The
choices 8 = 1/2 and r; = 0.227092 satisfy these restrictions. We let A’ = 271(k=3) /(3¢2k) and
let z(A.) = 1/(kA’) for all ¢ € Cgpoa(r). It remains to check that we can apply the asymmetric
LLL on the formula ®4,,4(r) to conclude that Pr([c€Caona(r
(4.7) in Lemma 4.21. We note that the bound given in (4.7) also holds in our current setting
if we replace ro by r1. We find that 2(Ac) [[yer(a,) (1 —2(N)) = 3- 2-71(k=3) > Prp (A,) and,
thus, there exists a partition (Vi, Va, V) of the variables of ® such that Vypaq(r) € Ve, Va =0,

and each good clause contains at least ri(k — 3) marked variables and at least 1 (k — 3) good

) Ac) > 0. This was done in equation

control variables. O

In the remaining of this section we bound the marginals of uq (recall that pug is the uniform
distribution over the satisfying assignments of the formula ®, Definition 4.4) on any marked and
auxiliary variable. In fact, we prove the stronger result that the marginal distribution of ug on
Vi UV, is e-uniform, i.e., very close to the uniform distribution, see Definition 4.7. We give a
bound for each one of the markings established in Lemmas 4.21 and 4.22. Here we write Ay U As

for the combined assignment of A; and As.
Lemma 4.23. Let & = (V,C) be a satisfiable k-CNF formula. The following claims hold.
1. Letr =19—0 and let (Vm, Va, V) be a (7,10, 70, 2r0)-marking of ®. Then for any satisfying
assignment Apaq of ®Ppad(r), any assignment A: S — {F, T} where S C Vy, U V,, and any
U € Vgood() \ S we have

1 1
max {Pry, (v —= F|AU Apaq) , Pry, (v = TIAU Apag)} < 5 exXP <k;27”0k) .

In particular, the distribution pqly, . s (277K / k) -uniform.

2. Letr =11 — 8 and let (W, 0,Ve) be a (r,r1,0,71)-marking of ®. Then, for any satisfying
assignment Apaq of Ppaq(r), any assignment A: S — {F, T} where S C Vy,, and any
V € Veood() \ S we have

1 1
max {Pr,, (v—= F|AUApaq), Pry, (v = TIAUApaq)} < §exp (kz) .

In particular, the distribution pqly, s (1/k)-uniform.

Page 157 of 212

Chapter 4. Fast sampling of satisfying assignments from random k-SAT

Proof. We prove each one of the claims separately. The proofs are analogous so for the second

claim we only highlight the differences in the proof.

1. Here r = rg — 9. Let Ayp.q be an assignment of bad variables that satisfies all bad clauses.
Let S C Vi UV, let A be an assignment of S to {F, T}, and let v € Vyo0a(r) \ S. We
note that Pr,,. () = Pry, (- |7) for any assignment 7 of some variables. In light of this

observation, we are going to prove that

1 1
max {PrMQAUAbad (v—F) Prusoag., (v+— T)} —exp <k2r0k> (4.8)

We apply the LLL to the formula &' := ®AUArad a5 follows. Let V' and C’ be the sets
of variables and clauses of ®'. Note that, V' C Vy0d(r), €' € Caood(r) and Gor is a
subgraph of G%OO a(r) as all bad variables have been assigned a value and all bad clauses
have been satisfied. We set P, = o(v) for all v € V', where o: V' — {F, T} is chosen
uniformly at random from the set of assignments V' — {F, T}, and P = {P, : v € V'}.
We define the set A as the set containing for all ¢ € C’ the event A. = “the clause ¢
is not satisfied by the random assignment ¢”. By the definition of (Vy, Va, Ve), there
are at least 2rg(k — 3) good control variables in ¢. Since good control variables are not
assigned a value by A U Ap,q and, thus, they are in V', we have Prp(A.) < 2= 2ro(k=3)
Recall that A, = [2(0=9k] (Definition 4.1). Let A’ = 2270(*=3) /(¢2k) and let z(A.) = ﬁ
for all ¢ € C'. Let us show that x satisfies the LLL condition in this setting. In view of
I'(A.) = {Ayx : d € (', # ¢,var(c) Nvar(d) NV # (0}, which can be identified with a
subset of the neighbours of ¢ in Gg_ (), and IT(A.)| < kA, < kA’ for large enough k,
we find that

1 1\ 1)

_ _ — 9—2ro(k=3)

z(A)] Q-=(N) = Y <1 kA,) > g =27 > Prp (A,),
NEF(AC)

where we used (1 — 1/2)* > e 2 forall z > 2. Let A = {v = T} = {o:V —

{F, T} with o(v) = T}. In &', we have I'(4) = {A. : c € C',v € var(c)}, so [['(A)] < A,.

By the LLL, we obtain

Prp (v T, Ac) < % [T (-=v) "< % (1 _ ki/)(mn.

NeT(A)

For z > 1, we have (1 —1/x) ! =1+ 1/(z — 1) < exp(1/(x — 1)). We find that

1
Prp<v>—>T)ﬂC€c/ c _QGXp<kA’—1> = Xp<k2r0k>,

where in the latter inequality we used (p — 7)/(q — j) < p/q for all 0 < j < p < g and the
fact that A, = [2(0=0)k] < 9=rok . 92r0(k=3) /(2k) = 2770k A’ for large enough k. We note
that Pr, ,oa,. () = Prp (- |Neeer Ac), which completes the proof of one of the upper

bounds of (4.8). The other upper bound is proved analogously by applying the LLL with
A = {v~ F}. Finally, we conclude that the distribution pqly, , is (277°% /k)-uniform by
the arbitrary choice of Ay,q and the law of total probability, see Definition 4.7.

Page 158 of 212

Chapter 4. Fast sampling of satisfying assignments from random k-SAT

2. The proof is analogous. The only changes are r = r; — §, A/ = 271(:=3) /(¢2k) and the
fact that, since each good clause has at least r1(k — 3) good control variables, we have
Prp(A.) < 277(+=3) This time we have z(A,) [Inera,) 1 —2(N)) = i > Prp (Ac),
which justifies our choice of A’. Thus, we can apply the LLL, and the conclusion this time

N\ 1 A —1) 1 1
Prp (v T ‘ N A < 2 P (kA’ - 1) =3P (k) ’
where in the latter inequality we used (p — 7)/(q — j) < p/q for all 0 < j < p < g and the
fact that A, = [2(1=0k] < 2m(k=3) /(¢2k) = A/ for large enough k. O

becomes

The (1/k)-uniform property proved in Lemma 4.23 is remarkably strong: as long as the
control variables are left unassigned, the rest of the variables have marginals close to 1/2, even
if some of the marked and auxiliary variables are pinned / have already been assigned a value.
This property is used several times in this work and will allow us to prove that, for any pinning
of some marked variables, the influences between marked variables are bounded. In the following
corollary we extend Lemma 4.23 to the distributions computed by the Glauber dynamics on the

marked variables.

Corollary 4.24. Let r = rog— 9. Let ® = (V,C) be a satisfiable k-CNF formula that has an
(r,70,70,210)-marking Vm, Va, V). Let p be an integer with 1 < p < |Vp|. Lett be a non-negative
integer and let X be the (random) assignment obtained after running the p-uniform-block Glauber
dynamics on the marked variables for t steps, starting on an assignment Xg that is chosen

uniformly at random. Then the probability distribution of Xy is (277°% /k)-uniform.

Proof. Let ¢ = (277%/k). Let V4, Va,..., be a possible choice of sets of marked variables to
be updated when running the p-uniform-block Glauber dynamics. We are going to prove that,
conditioning on this choice of sets of variables, the probability distribution of X; is e-uniform.
Note that by the law of total probability and the fact that the choice of Vi, Vb, ... is arbitrary,
this is enough to conclude the result. We carry out the proof by induction on t. Let 7y be the
probability distribution of X;. As mg is the uniform distribution over assignments on V,, the
claim holds for ¢ = 0. Let us now assume that m;_1 is e-uniform and let us prove that this is
also the case for m;. To show the desired uniformity of m; (cf. Definition 4.7), consider arbitrary
v € Vy and A: Vi \ {v} — {F, T}, we need to bound Pr, (v +— F|A) and Pry, (v+— T|A). We

distinguish two cases:

e Case v € V;. By definition of the Glauber dynamics, the values of X; on V; are obtained
by sampling from the distribution pgo conditioned on the restriction of X;_1 to Vy, \ V4.
Thus, we have Prr, (v — F|A) = Pr,,, (v~ F) since the conditioning involving A sets all
the marked variables other than v. As /.LQ|VmuVa is e-uniform by Lemma 4.23, we conclude
that Prr, (v— F[A) =Pry , (v—F) < 3 exp(e). The same bound holds for v — T.

e Casev ¢ V;. If vis not updated in steps 1 through ¢, then Prr, (v — F|A) = Pry, (v — F) =
1/2. Otherwise, let j be the largest integer with j < t such that v € V;. Let A; be the

Page 159 of 212

Chapter 4. Fast sampling of satisfying assignments from random k-SAT

restriction of A t0 Vin \U;egj11,j42,. 11 Vi- By the induction hypothesis, Prr, (v — F|A) =
Prr, (v — F|Aj) < (1/2)exp(e). The same bound holds for v+ T.

As both cases are exhaustive, the proof is concluded.]

Previous work on counting/sampling satisfying assignments of k-CNF formulae does not
require the use of auxiliary variables, so the marking used is of the form (Vp, V). Here auxiliary
variables play an essential role in bounding the influences between marked variables as we
illustrated in Section 4.1. In order for this approach to be successful, we have to show that a
large proportion of the variables are marked. We conclude this section with the following bound

on the size of Vy,.

Corollary 4.25. Let r € (0,1/(2log2)). There is an integer ko such that for any k > ko
and any density o with o < A, /k3 the following holds w.h.p. over the choice of the random
k-CNF formula ® = ®(k,n, |an|). For any p € (0,1) and any set of good variables V' that is
p-distributed we have |V| > (p — 6)(ka/Ar)n.

Proof. W.h.p. over the choice of ®, by Lemma 4.16 we have |Chaa(r)| < 2(a/An)n/28° < an/4F,
80 |Caood(T)| > |C] — an/4k > an — 1 — an/4k = an(1 — 1/4F) — 1. Since V is p-distributed,
counting repetitions, there are at least p(k — 3)|Cgood(7)| occurrences of the variables of V' in the

good clauses of ®. Each good variable occurs in at most A, good clauses, so we find that

V| > p(k — 3lfgood(7“)| > P(kAr 3) (an <1 _ 41k> _ 1> > p(kArll)(om —1),

which is at least (p — d)(ka/A,)n for large enough k. O

4.4 Analysis of the connected components of ®*

In this section we prove Lemma 4.12, which bounds the size of the connected components
of ®*, where A is drawn from a (1/k)-uniform distribution over an (r 4 4)-distributed set
of good variables. In order to carry out this proof, we have to understand the structure of
logarithmic-sized sets of clauses of the random k-CNF formula ®. Section 4.4.1 is devoted to
this purpose. In Section 4.4.2 we apply the results of Section 4.4.1 to obtain a lower bound
of the number of marked/auxiliary variables in logarithmic-sized sets of clauses. Finally, in

Section 4.4.3 we complete the proof of Lemma 4.12.

4.4.1 Logarithmic-sized sets of clauses in the random k-SAT model

A connected graph H = (V, E) has tree-excess ¢ € Z>o if |E| = ¢+ |V| — 1. It turns out that,
w.h.p. over the choice of ®, small connected sets of clauses of ® have tree-excess bounded by a
quantity that only depends on k£ and the density «. This property is established in Lemma 4.26

and is essential to our proofs.

Page 160 of 212

Chapter 4. Fast sampling of satisfying assignments from random k-SAT

Lemma 4.26. Let k > 3 be an integer. Let b > 0 and o > 0 be real numbers. W.h.p. over the
choice of the random k-CNF formula ® = ®(k,n, |an]), every connected subset of clauses with

size at most blog(n) has tree-excess at most ¢ := max{1, 2blog(ek?a)}.

Proof. Let n be the number of variables and m be the number of clauses of ®, so m/n < a.
Note that the probability that two clauses of ® are not disjoint is at most k?/n. Let £ €
{1,2,...,|blog(n)]}. We upper bound the probability that there is a connected subset of clauses

of size ¢ with tree-excess at least ¢+ 1 by
() ()
14 c+1 n ’
where the factors appearing are the following ones:
° (72) is the number of subsets of clauses of size /;
e (“=2 is the number of trees on ¢ labelled vertices;
° (W*l)/ 2) is the number of ways to pick ¢ + 1 pairs of distinct clauses of a set of size /;

c+1

° (k:2 / n) ¢ s an upper bound of the probability that all the edges chosen in the two previous
items appear in the graph Gg.

We are going to show that the probability given in (4.9) is O(n*C/ 4), where the hidden constant
only depends on k. If this holds, by a union bound over ¢ € {1,2,..., |blog(n)|}, we would find
that the probability that there is a connected subset of clauses of ® with size at most blog(n)
and tree-excess at least ¢+ 1 is O(blog(n)n~%*) = o(1). This would complete the proof. Using
the inequality (Z) < (ep/q)? and m/n < « we can bound (4.9) by

<@>€££_2 €€(£ _ 1)/2 c+1 ka l+c (@)666_2 662/2 c+1 ka l+c
14 c+1 n 14 c+1 n
e s emk? ¢ K202\ € (4.10)
2c¢+2 n n
c+1 292\ €
k=t
< ¢ > (ek2a)£ <> .
2c¢+2 n
e Case when ek?a < 1. We have ¢ = 1 by definition. Thus, (4.10) can be further bounded

L) (k)0

e Case when ek?a > 1. Then, as £ < blogn and blog(ek?a) < ¢/2 by definition, we have

IN

IN

Now we distinguish two cases:

as we wanted.

(«91@204)1Z < (ekQa)blogn — pblos(ek?a) < pe/2

Page 161 of 212

Chapter 4. Fast sampling of satisfying assignments from random k-SAT

We conclude that (4.10) can be further bounded by

e+l 1292\ ¢ e+l a4 /2
()™ () - 5 () ot
2c+2 vn 2c+2 n

as we wanted, where we used ¢ > 0.]

Recall that in Lemma 4.15 we established that, in sets of clauses that have at least 2k*logn
variables, the number of bad clauses of ® is not too large. We aim to apply Lemma 4.15 to
logarithmic-sized sets of clauses. In general, |Y| might be significantly larger than |var(Y)|, so
it is not clear how to apply Lemma 4.15. However, in the random k-CNF formula setting the

following holds.

Lemma 4.27. Let k > 3 be an integer and let a > 0 and o > 0 be real numbers. W.h.p.
over the choice of ® = ®(k,n,|an]), for every set of clauses Y with |Y| > alogn, we have

[var(Y)| > alogn.

Proof. Let £ := [alogn| — 1 and let m = [an]. We prove the equivalent statement that, w.h.p.
over the choice of @, for every set of clauses Y with |var(Y)| < ¢, we have |Y| < ¢. We note that
if there is a set of clauses Y with |var(Y)| < £ and |Y| > ¢, then for any subset Y’ of Y with
[Y'| = ¢+ 1 we have |[var(Y”)| < |var(Y)| < £. Hence, it suffices to prove that there is no set Y’
of clauses with |var(Y')| < ¢ and |Y| = ¢+ 1. We can assume n is large enough so that £ < e - n.

Let &€ be the event that there is a set of clauses Y of size £ + 1 and a set of variables X of

size £ such that all clauses in Y have all variables in X. Then by a union bound

< (L) E

where the first factor is the number of sets Y, the second factor is the number of sets X and
the third factor is the probability that all variables in the clauses of Y are in X. From the
well-known bound (2) < (ep/q)?, we obtain

e (i) () (1) =G
(=) - (k)

which is O(log(n)/n) because k > 3 and ¢ = O(logn). O

4.4.2 Number of marked variables in logarithmic-sized sets of clauses

Our results on random k-CNF formulae can now be combined to give a lower bound on the
number of marked / auxiliary variables in logarithmic-sized sets of clauses. We prove this result
in a more general setting by considering a set of good variables V' that is r'-distributed for the
formula ®. The reader can think of V as the set of marked variables or the set of auxiliary

variables for one of the markings established in Section 4.3.

Page 162 of 212

Chapter 4. Fast sampling of satisfying assignments from random k-SAT

Lemma 4.28. Let r € (0,1/(2log?2)], ' € (0,1) and 6 € (0,7). There is a positive integer
ko such that, for any integer k > ko, any density a < A,/k® and any real number b with
2k* < b, the following holds w.h.p. over the choice of ® = ®(k,n, |an|). Let V be a set of good
variables that is v’-distributed. Then, for every set of clauses Y that is connected in Gg such
that 2k*log(n) < |Y| < blog(n), we have [var(Y) N V| > (r' — §)k|Y].

Proof. Let a = 2k*. We apply Lemma 4.15 to find that there is k; such that for & > ki, w.h.p.

over the choice of ®, for every set of clauses Y that is connected in Gg,
if |var(Y)| > alog(n), then |Y N Cpaa(r)| < |Y|/k. (4.11)

We apply Lemma 4.27 with a = 2k* to find that, w.h.p. over the choice of ®, for every set of
clauses Y, we have
if |Y| > alog(n),then |var(Y)| > alog(n). (4.12)

Finally, for any b > 0, we apply Lemma 4.26, obtaining that, w.h.p. over the choice of ®, for

every set of clauses Y that is connected in Gg,
if |Y| < blogn, then Y has tree-excess at most ¢ = max{1,2blog(ek?*a)} = O(1). (4.13)

Let Y be a set of clauses that is connected in Gg such that alog(n) < |Y| < blog(n). Then,
by (4.12) and (4.11), we have |Y N Cgo0a(r)| > |Y|(1 — 1/k). By definition of 7’-distributed
(Definition 4.3), each good clause has at least r'(k — 3) variables in V. As there are at most
|Y| — 1+ ¢ edges in G¢ joining clauses in Y, see (4.13), and two distinct clauses only share at

most two variables by Lemma 4.17, we have

var(Y) N V| > o (k — 3) (1 - }C) Y| = 2(Y|+e—1)

> (r'(k—4) —2)|Y] —2(c—1).

There is ko > k1 such that for k > kg, we find that, for any set of clauses Y that is connected in
G and has alog(n) < |Y| < blog(n), |var(Y)NV| > (' —§/2)k|Y| — 2(¢ — 1). Therefore, using
2(¢ — 1) = O(1), for large enough n we conclude that |var(Y)NV| > (' — §)k|Y| and the result
follows. O

4.4.3 Proof of Lemma 4.12

We use the following result of [49] on the number of connected sets of clauses in Gg.

Lemma 4.29 ([49, Lemma 8.6]). Let o > 0. W.h.p. over the choice of ® = ®(k,n, |an]), for
any clause ¢, the number of connected sets of clauses in Gg with size £ > logn containing c is at
most (9k%a)’.

We can now complete the proof of Lemma 4.12. Recall that we will apply this result with
r=ryg—0orr=ry—0, where § = 0.00001.

Page 163 of 212

Chapter 4. Fast sampling of satisfying assignments from random k-SAT

Lemma 4.12. Let r € (24,1/(2log2)]. There is an integer ko > 3 such that, for any integer
k> ko, any density o < 20020k and any real number b with a := 2k* < b, the following holds
w.h.p. over the choice of & = ®(k,n, |lan]).

Let L be an integer satisfying alogn < L < blogn. Let V' be a set of good variables of
O that is (r + 0)-distributed (Definition 4.3), let p be a (1/k)-uniform distribution over the
assignments V. — {F, T}, and let p be an integer with 0 < p < |V'|/2F. Consider the following
experiment. First, draw S C V' from the uniform distribution T over subsets of V with size
p. Then, sample an assignment A from M|V\S' Denote by F the event that that there is a
connected set of clauses Y of ® with |Y| > L such that all clauses in 'Y are unsatisfied by A.
Then Prg.., <PrA~u|V\s (F) < 2’5“) >1—27%L,

Proof. We apply Lemma 4.28 with our choices of b and with § = 6 to conclude that, w.h.p. over

the choice of @, for every connected set of clauses Z C C we have
if alog(n) <|Z| <blog(n), then |var(Z)NV|>rk|Z|. (4.14)
We also need the following result on random k-CNF formulae. For each clause ¢ € C, let
Z(e,L)={Z CC:ce€ Z,Z is connected in Gg, |Z| = L}.
Then, w.h.p. over the choice of ®, Lemma 4.29 shows that, as long as L > logn,
for any clause ¢ € C we have |Z(c, L)| < (9k2a)™. (4.15)

The facts that we have just established using Lemma 4.28 and Lemma 4.29 are all the properties
of random formulae that we need in this proof. The hypothesis a < A, is used when calling
Lemma 4.15 in the proof of Lemma 4.28.

Let L be an integer with alogn < L < blogn. First, we are going to fix S C V with |S|=p
and study the event F described in the statement. For ¢ € C and Z € Z(¢, L), we denote by
£1(Z,S) the event that Z C C*, where A is drawn from 11l s, see Definition 4.6. Recall that
Z C C" means that none of the clauses in Z are satisfied by the assignment A (Definition 4.4).
We note that F = UceC,ZeZ(qL) &1(Z,S). We are going to show that, for large enough n,

—0kL —okL
Prg., (PrAuly s (UceC,ZeZ(c,L) &(Z, S)) > 2) < 970K, (4.16)

which is equivalent to the result stated in this lemma. Using the union bound

Praculyys <Uc€C,Z€Z(c,L) &(2, S)> < ZCGC Praculy s (UZGZ(C,L) &z, S)> ’

we note that it Pry 1(Z4, > 27%%% then there i1s a clause ¢ € C wit

hat if Prau,, o (Ueec zez(er) €1(Z, S 279FL then there is a cl C with
PrANMlms (UZGZ(QL) &1(Z, S)) > 27%L/|C|. Repeating the same argument, now with a union
bound on Z € Z(c¢, L), if there is ¢ € C with PrANMV\s (UZEZ(C,L) &1(Z, S)) > 27%L/|c|.

Page 164 of 212

Chapter 4. Fast sampling of satisfying assignments from random k-SAT

then there is Z € Z(c, L) such that Pracpy s (£1(Z,8)) > 27%%L/(|c| - |Z(c, L)|). We have
shown that the event [PTANMV\S (Ucec,zeg(qL) &z, S)) > 2_5’%} is contained in the event
[Elc €C,Ze Z(,L): Prauly s (£1(2,8)) > 279KL(|C]| - | Z(c, L)|)} Therefore, the left-hand
side of (4.16) can be upper bounded by

2—5/€L
: - @ | <
Prg.. <ac €C.Z e Z(e L) Pravyyy s (B1(Z,9) > forme L>|> B

9—0kL > (4.17)

Z PI'SNT (Pr/\"’Mv\S (51(27 S)) ” m
c€C,Z€Z(c,L) |

We are going to show that, for any ¢ € C and Z € Z(c, L),

9—0kL . L
)< L2TTR) .
Pro.. (PrAN“V\S ((2.9) > Gz L)’) < (Qek 2) (4.18)

Before proving (4.18), let us complete the proof assuming that this inequality holds. In light
of (4.15), we have |Z(c, L)| < (9k22"=20%)L We use the following observation,

for k > 1/(6log2) and for large enough n, |C|] < na < ndk* 1082 < o(8/2kL (4.19)

Combining (4.17), (4.18) and (4.19), we conclude that, for large enough k, the left-hand size
of (4.16) is bounded above by

L L L L
3 (2ek-2”’k> gna.(9k22<7"*25>’f) -(261::-2’”“) — na (186k32*25’“> < 9~ OkL
ceC,ZeZ(c,L)

which completes the proof of (4.16), and hence the proof of the lemma, subject to (4.18).
To prove (4.18), we are going to find many S for which PrAN#\v\s (£1(Z,8)) <27%L /(|| -

|Z(c, L)|) holds. With this in mind, we introduce an event that may occur when sampling S:

Ey(Z) :=“the random set S C V that we select contains fewer

(4.20)
than ¢ := [|var(Z) N V|/k] variables in var(Z)NV”.

We will show (in equation (4.24)) that the event £2(Z) holds for most choices of S. Before proving
this claim, let us assume that £2(Z) holds for S and let us prove that Prauly s (&1(Z,8)) <
279kL/(|C|-|Z(¢c, L)|). If there are c1,c2 € Z and v € var(c;) Nvar(ca) N (V'\ S) such that ¢; # co
and the literal of v in ¢; is the negation of the literal of v in ¢y, then at least one of ¢; and c¢o is
satisfied by the assignment A: V' '\ .S — {F, T}. In this case we have PrANMV\S(é’l(Z, S)) = 0.
Let us now consider the complementary case:

for all ¢1,c9 € Z with ¢1 # ¢o and v € var(ep) Nvar(ca) N (V' \ 5), (4.21)

the literal of v in ¢; is the same as the literal of v in c¢s.

In this setting, we call w(v) the value of v that does not satisfy the clauses in Z that contain v.

Note that w(v) is well-defined by assumption (4.21). Let wuj, usg, ..., u; be the list of variables in

Page 165 of 212

Chapter 4. Fast sampling of satisfying assignments from random k-SAT

(var(Z) NV)\ S. We denote by Wj; the event that u; is assigned the value w(u;) by A when
sampling A ~ u|v\ g- Then, by definition of W;, we have

Pracy,. s (61(Z.5)) HPrANMV\S (W] M, W)

As p is (1/k)-uniform, we find that PrANMIV\s(Wj| M= Wi) < (1/2) exp(1/k) for all j €
{1,2,...,t}. We conclude that
P 825 < (Lexo (1))
Al s (E1(Z,9)) < (5exp (£)) -
From (4.14) and the fact that £(Z) holds for S, we have
t =|var(Z)N(V\S)| > [var(Z)NV|—[|var(Z)NV|/k] > |var(Z)NV|(1-1/k)—1 > rL(k—1)—

It follows that

1 1 r(k—1)L—1
PrANMIV\S (gl(Z, S)) S <2 exXp (k))

<2 (2 27 exp (T(kk 1)))L
< (46-2—’”’“>L,

where we used that 1/2 < (1/2)exp(1/k) < 1 in the second and third inequality. For large
enough k, we find that

- 9. dek? . o - 2Tk F 9. 4ek2 . 9-20k\ L 9—(3/2)skL 9—0kL
(46 -2) = 3 S\—az——) = <)
9k k2 |Z(c, L) IC| - Z(c, L)

(4.22)
where in the second to last inequality we applied 9 - 4ek? < 2(9/2k and the bound on the size of

Z(c, L) given in (4.15), and in the last inequality we used (4.19). As S was picked as any subset
of V with |S| = p such that £(Z) holds, it follows that

276kL
PI'SNT <PrANMV\S (gl(Z, S)) > WM) S PI’S,\,T (82(2)) . (423)

In order to prove (4.18), which finishes the proof, we need to show Prg., <52(Z)) < (2ek-27)L

The probability of £2(Z) can be bounded as follows. Recall that |S| = p. If p < ¢, then, by the
definition of £(Z) in (4.20), we obtain Prg.,(£2(Z)) = 1. Otherwise, the number of choices of
S (with |S| = p) such that |S Nvar(Z) N V| > £ is at most (‘Var(i)m/') (M__f). Hence, we have

Prs.. (&(2)) < (‘Z\)‘l (lvar(zg n V> <|Z_—€e>

_ o plp=1)--(p—L+1) (!VM(Z) ﬂVl)
VI(VI=1) - (V[-£+1) ¢

< (i) () < (o)

Page 166 of 212

Chapter 4. Fast sampling of satisfying assignments from random k-SAT

where we used ¢ := [|var(Z)NV|/k] > |var(Z)NV|/k, (p—1i)/(g—i) <p/qforany 0 < i <p <q
and (Z) < (ep/q)9. Combining this with the hypothesis p < |V|/2* and the bound ¢ > rL,
see (4.14), we obtain

Pro.. (W) < (ek2*’“)£ < ((ek)T : 2*T’“)L < (2ekz : Q*T’C)L. (4.24)

The bound (4.18) follows from combining (4.23) and (4.24), which completes the proof. O

4.5 Sampling from small connected components

In this section we prove Lemma 4.14. Recall that Lemma 4.14 claims the existence of a procedure
to sample from marginals of the uniform distribution on the satisfying assignments of ®* when
the connected components of Gga have small size. Here we make this procedure explicit. Our
algorithm exploits the fact that the tree-excess of logarithmic-sized subsets of Gg is bounded
by a constant depending only on k, see Lemma 4.26, and the fact that when Gg is acyclic, we
can exactly count and sample satisfying assignments efficiently via a dynamic programming

algorithm (Proposition 4.30).

Proposition 4.30. There is an algorithm that, for any k-CNF formula ® = (V,C) such that

G is a tree, computes the number of satisfying assignments of ® in time O(4*|C|).

Proof. We give an algorithm based on dynamic programming. Let us fix a vertex / clause ¢ of Gg
as the root and consider the corresponding directed tree structure 7' := (G, ¢). For any clause
c of @, let T» be the subtree of T hanging from ¢’. For any assignment o: var(c¢’) — {F, T},
let sa(¢/, o) denote the number of satisfying assignments of the formula determined by T, that
extend o. Our goal is computing the number of satisfying assignments of ®, which, under this
notation, is equal to

sa(®) 1= > sa(c, o). (4.25)

o: var(c)—{F,T}

We do this by computing sa(¢/, o) for any clause ¢ and any assignment o: var(¢’) — {F,T}.

Using the tree structure of T', we show that sa(c’, o) satisfies a recurrence. There are two cases:
1. ¢ is a leaf. Then sa(c/,0) = 1if ¢ is satisfied by o and 0 otherwise.

2. c is not a leaf. Let T1,...,T; be the trees hanging from ¢ in T and let ¢y, ..., ¢ be their

roots. Then, since 771,...,7T; do not share variables as Gg is acyclic, we have
l
sa(d,0) = H E sa(cj, T),
j=1 7€A(cj,0)

where A(cj,0) is the set of assignments of the variables in var(c;) that agree with o on

var(c’) Nvar(c;).

Page 167 of 212

Chapter 4. Fast sampling of satisfying assignments from random k-SAT

We can apply this recurrence with dynamic programming to compute sa(c, o) for any assignment
o: var(c) — {F, T}. More explicitly, we compute sa(c/,c) by levels of the tree, starting from
the deepest level, where all nodes are leaves, and ending at the root c. This involves computing
at most 2F entries sa(c’,-) per clause ¢ of ®. After computing all the entries appearing in this
recurrence, we compute the number of satisfying assignments of ®, sa(®), as in equation (4.25).
The overall procedure takes at most O(4*|C|) steps since each entry sa(c’, o) is accessed at most
2% times when computing the corresponding entries for the parent of ¢/, and there are at most
2|C(T)| entries. O

In Algorithm 3 we give an algorithm based on Proposition 4.30 to count satisfying assignments
of a k-CNF formula. Recall the folklore fact that if we can count satisfying assignments then we

can sample from the marginal of g on v by counting the satisfying assignments of ®*~F and
Q)UHT'

Algorithm 3 Counting satisfying assignments via trees
Input: a k-CNF formula & = (V,C)

Output: The number of satisfying assignments of ®.

: Find a spanning forest T" of G.
: Let Vr be the set of variables that gives rise to edges of G that are not in 7T'.

1

2

3: count < 0.

4: for all A: Vpr — {F, T} do

5 Note that the graph Gga is acyclic. Hence, we can count the number of satisfying
assignments of ®* in time O(4*|C(®")|) by applying Proposition 4.30 to each connected
component of Gpa and taking the product of the numbers obtained. Let sa(®") be the
result of this computation.

6: count « count + sa(®M).

7: end for

8: return count

Proposition 4.31. Let ® = (V,C) be a k-CNF formula and let ¢ be the tree-excess of Gg. Then
Algorithm 3 counts the number of satisfying assignments of ® in time O(2F2)|C)).

Proof. We note that, in the execution of Algorithm 3, we have |Vr| < kc. Hence, there are at
most 2¥¢ iterations of the for loop and each one takes O(4¥|C|) steps, so the running time follows.
The fact that the algorithm is correct follows from the correctness of the procedure presented in
Proposition 4.30. O

Even though the running time of Algorithm 3 is not polynomial in the size of the formula ®
(in fact, it is exponential in general), we obtain linear running time when the formulae considered
have constant tree-excess. As shown in Lemma 4.26, this is the case for logarithmic-sized subsets

of clauses of random formulae. We can now finish the proof of Lemma 4.14.

Page 168 of 212

Chapter 4. Fast sampling of satisfying assignments from random k-SAT

Lemma 4.14. There is an integer ky > 3 such that, for any integers k > ko, b > 2k* and any
density o > 0, the following holds w.h.p. over the choice of ® = ®(k,n, |an]|). Let V be a subset
of variables and let A: V' — {F, T} be a partial assignment such that all the connected components
in Gga have size at most blog(n). Then, there is an algorithm that, for any S CV\V, samples

an assignment from pqalg in time O(|S|logn).

Proof. We apply Lemma 4.26, so, w.h.p. over the choice of ® = ®(k,n, |an|), any connected set
of clauses in G with size at most blog(n) has tree-excess at most ¢ = max{1, 2blog(eak?)} =
O(1). First, we give an algorithm for the case |S| = 1. Let ®, V and A as in the statement,
and let S = {v}. Let H be the connected component of the clauses that contain v in Gga,
and let ® = (V',C’) be the subformula of ®* with Gg = H. The formula ®' has size at most
blog(n). Moreover, the graph Gg = H has tree-excess at most ¢ as H is a subgraph of G¢ with
size at most blog(n). Thus, we can apply Proposition 4.31 to count the number of satisfying
assignments of ®¥F and &7 in time O(2F(+2)|C’|) = O(logn). Let these numbers be tg
and t; respectively. It is straightforward to use ty and ¢; to sample from the marginal of the
distribution puga for v; we only have to sample an integer ¢t € [0, + ¢1) and output F if ¢ < ¢
and T otherwise. The whole process takes time O(logn).

Finally, we argue how to extend this algorithm to the case |S| > 1. For this, first, we give
an order to the variables in S, say w1, us9,...,up. We then call the algorithm described in the
paragraph above once for each variable in w1, us,...,us. The inputs of the algorithm in the j-th
call are the variable u; and the assignment A; = AU7;_1, where 7;_1 is the assignment obtained
in the previous calls for uy,...,u;_1. After this process, 7, is an assignment of all the variables
in S that follows the distribution juga|g. This assignment has been computed in O(|S|logn)

steps as we wanted.]

4.6 Mixing time of the Markov chain

In this section we study the mixing time of the p-uniform-block Glauber dynamics on the marked
variables and prove Lemma 4.10. As explained in Section 4.1.2, in order to conclude rapid
mixing of this Markov chain we apply the spectral independence framework, which has recently
been extended to the p-uniform-block Glauber dynamics [29]. Traditionally in path coupling or
spectral independence arguments one has to bound a sum of influences by a constant in order
to obtain rapid mixing of the single-site Glauber dynamics. However, due to the presence of
high-degree variables, an O(1) upper bound seems unattainable in the random k-SAT formula
setting; in the worst case paths of high-degree variable may significantly affect influences. This
seems also to be the case for other random models, such as the hardcore model on random
graphs [17]. Here we show that that sums of influences are at most € logn for small € (Lemma 4.9).
Even though this is generally not enough to conclude rapid mixing of the single-site Glauber
dynamics, it turns out to be enough to conclude rapid mixing of the p-uniform-block Glauber

dynamics for p = ©(n). An essential ingredient in our argument is exploiting the auxiliary

Page 169 of 212

Chapter 4. Fast sampling of satisfying assignments from random k-SAT

variables in introduced in Section 4.3. Therefore, in this section we will work with r =ry — §
and a (r,rg, ro, 2rg)-marking (V, Va, Ve). Since r is fixed, we drop it from the notation and
write, for instance, Vyooq instead of Veood (), in order to simplify the reading of this section.
This section is divided as follows. In Section 4.6.1, we explain why bounded-degree methods
to bound the mixing time of the Glauber dynamics fail to generalise from the bounded-degree
k-SAT model to the random k-SAT model. In Section 4.6.2 we prove Lemmas 4.40 and 4.9. In

Section 4.6.3 we prove Lemma 4.10.

4.6.1 Previous work

In this section we explain why previously known arguments for showing rapid mixing of the
Glauber dynamics on bounded-degree k-SAT formulae do not extend to the random k-SAT
model. This section is not used in our work and may be skipped by a reader who just wants
to understand our approach and result. The best result currently known on bounded-degree
formulae is [74], where the authors show, for large enough k, how to efficiently sample satisfying
assignments of k-CNF formulae in which their variables have maximum degree A < ¢ 201742k /K3,
where C' > 0 is a constant that does not depend on k.! Their result actually holds in the more
general setting of atomic constrain satisfaction problems (albeit with a different bound on A)
As part of their work, they show that the single-site Glauber dynamics on a set of marked
variables mixes quickly. Their argument is restricted to atomic CSPs with bounded-degree and
strongly exploits the properties of the Glauber dynamics in this setting. They study the optimal
coupling of the single-site Glauber dynamics, we refer to [92] for the definition of coupling of
Markov chains. In such a coupling the goal is to show that two copies of the chain starting from
truth assignments differing in at least a marked variable (a so-called discrepancy) can be coupled
in a small number of steps. Here it is crucial that the marginals of the marked variables are
near 1/2, so the optimal coupling generates new discrepancies with small probability. At this
stage, the high-level idea to conclude rapid mixing of the Glauber dynamics is bounding the
probability that the dynamics has not coupled by a product of probabilities, each corresponding
to the event that a clause is unsatisfied at a certain time, and aggregating over all possible
discrepancy sequences.

The fundamental observation in [74], based on the work on monotone k-CNF formulae
presented in [70], is that if there is an update of a marked variable that generates a discrepancy
in the chains, then there is another marked variable where the chains disagree that is connected
to the former variable through a path of clauses, where consecutive clauses in the path share at
least a variable. Moreover, each one of the clauses in this path is unsatisfied by at least one
of the two copies of the chain. As a consequence, from a discrepancy at time ¢ one can find a
sequence of discrepancies going back to time 0, and these discrepancies are joined by a path of

clauses. Thus, the union bound over discrepancy sequences is essentially a union bound over

'In [74] the maximum degree A of ® is defined as the maximum over ¢ € C of the number of clauses that share
a variable with ¢. Under this definition of A, their result holds for A < C20-1742% /2,

Page 170 of 212

Chapter 4. Fast sampling of satisfying assignments from random k-SAT

paths of clauses with a particular time structure, where the same clause can be appear in the
path several times. Extending this idea to the random k-SAT model presents two main issues.
First of all, the number of discrepancy sequences of any given length may be too large due to the
presence of bad clauses and the fact that they can repeatedly appear in the sequence. Moreover,
it may be the case that these discrepancy sequences mostly consist of bad clauses, which are
always unsatisfied in both chains and, thus, the probability that they are unsatisfied is not
small. Interestingly, similar issues arise when directly extending the bounded-degree approach
based on the coupling process of [93, 43] to our setting. In [43] the mixing time argument only
succeeds when A < 25/20/(8k) and is also based on a union bound over path of clauses that are
unsatisfied or contain discrepancies after running a coupling process. However, very importantly,
these paths of clauses are simple (clauses are not repeated) and the combinatorial structures
appearing in the coupling process are less complex than the discrepancy sequences of [74]. This
allowed the authors of [49] to exploit the expansion properties of random k-CNF formulae to
analyse the coupling process of [93] on the random setting. Here we incorporate novel ideas to
the work of [49] in order to obtain a tighter analysis that leads to nearly linear running time of

our sampling algorithm.

4.6.2 Spectral independence in the k-SAT model

In this section we prove Lemma 4.9. In order to bound the sum of influences of marked variables,
we follow the coupling process technique that is standard in the literature [49, 93, 43]. In this
work we introduce the concept of auxiliary variables in the coupling process and exploit the
sparsity properties of logarithmic-sized sets of clauses, which allows us to conclude a 277°% log n
spectral independence bound. The key idea is that if we progressively extend two assignments
X and Y on auxiliary variables following the optimal coupling, with high probability over X
and Y, at some point the formulae ®* and ®Y factorise in small connected components in
spite of the presence of bad variables and, on top of that, ®¥ and ® share most of these
connected components. Then we can bound influences between marked variables by analysing
the connected components where ®X and ® differ. First, let us introduce the notation and
results on couplings that we need.

Let p and v be two distributions over the same space Q. A coupling 7 of p and v is a
joint distribution over O x Q such that the projection of 7 on the first coordinate is y and the
projection on the second coordinate is v. Recall that the total variation distance of p and v is
defined by drv(p,v) = 3 > weali(®) —v(z)|. If a random variable X has distribution u, we also
write drv (X, v) to mean drv (i,). An important property of couplings is the coupling lemma.

Proposition 4.32 (Coupling lemma). Let 7 be a coupling of p and v. Then dpy(p,v) <
Prix yyur (X #Y). Moreover, there exists a coupling that achieves equality.

The coupling 7 of and v that minimises Pr(x yy.(X # Y) is called optimal. Let us now
assume that p and v are Bernoulli distributions with parameters 0 < p < g < 1 respectively,

so Pr,(X =1) = p and Pr, (Y = 1) = q. The monotone coupling 7 of u and v is defined as

Page 171 of 212

Chapter 4. Fast sampling of satisfying assignments from random k-SAT

follows. We pick U uniformly at random in [0, 1] and set X = 1 only when U <pand Y =1
only when U < ¢. For this coupling we have Pr(x y).,(X #Y) = ¢—p = dry(X,Y) and, hence,
the monotone coupling is optimal. This optimal coupling will come up in the coupling process
when sampling from the marginals of auxiliary variables.

Before presenting our coupling process, we show how we can bound a sum of influences
between marked variables with the help of the coupling lemma. In all this section we fix a
k-CNF formula ® and a (r, 79, ro, 2r¢)-marking (Wi, Va, Ve) of ®. Given two assignments A1 and
A9 on disjoint sets of variables, recall that we denote by A; U As the combined assignment on

the union of their domains.

Proposition 4.33. Let u € Vi, and A: S — {F, T} with S C Vi \{u}. Let (X,Y) be a coupling
where X follows the distribution pigavuwstly, —and Y follows the distribution pgavu—rly, . Then

Yoo Tru—ols Y Pr(X(v) £Y(v). (4.26)
vEVm\(SU{u}) vEVm\(SU{u})
Proof. Let v € Vy,. Then for any w € {F, T}, we have Pr(v — w|A,u— T) = Pr(X(v) = w) and
Pr(v = w|A,u— F) = Pr(Y(v) = w). Thus, by the coupling lemma,

T8 (u = v)| = [Pr(X(v) = T) = Pr(Y (v) = T)| = drv (X (0), Y (v)) < Pr(X(v) # Y (v)),
and the proof follows by adding over v € Vy, \ (S U {u}). O

For two assignments X and Y on a subset of variables V', we say that X and Y have a
discrepancy at v € V when X (v) # Y (v). In [43] the authors manage to bound (4.26) by a
constant that does not depend on n when the considered formula has bounded degree. However,
their argument breaks under the presence of high-degree variables due to the fact that we cannot
control the number of bad clauses in a path of clauses unless the path has length at least (logn).
Here instead we perform the coupling process developed in [49] over auxiliary variables, which
accounts for the presence of bad clauses.

Before presenting our algorithm for the coupling process on auxiliary variables, let us
describe some of the notation and structures that are used in this algorithm. Let u € Vp,
and A: S — {F, T} with S C Vi, \ {u}. We start with two assignments X and Y that have a
discrepancy at v and agree with A on S. In the coupling process we identify a set of failed
clauses, denoted Fq U JFy. At each step of the process, we check if a clause is failed or extend the
coupling to an auxiliary variable. It is important in our arguments that all clauses containing
a discrepancy are failed, and that we make sure that the set of failed clauses is connected in
G at all times. In order to achieve connectivity of failed clauses, at each step of the coupling
process we only consider clauses that are adjacent to failed clauses in Gg. For ease of reading,

here we present a list of the structures that appear in our algorithm.
1. V4. Set of discrepancies, i.c., variables v with X (v) # Y (v).

2. Fq. Set of all clauses containing a variable in V3. These are failed clauses.

Page 172 of 212

Chapter 4. Fast sampling of satisfying assignments from random k-SAT

. Vset- Set of variables that are assigned a value in the coupling.

. Fu. Set of clauses that have been considered by the coupling process, and are either bad,
or are unsatisfied by at least one of X and Y and have all their auxiliary variables in Vgeyt.

These are failed clauses.

. Crem- Set of clauses that have unassigned auxiliary variables or have not been explored yet.

Our coupling process on auxiliary variables is given in Algorithm 4.

Algorithm 4 The coupling process on auxiliary variables

Input: A k-CNF formula ® = (V,C), an (r,rq, ro, 2r9)-marking M = (Wi, Va, Ve), u € Vi and

A: S — {F, T} with S C Vp \ {u}.

Output: a pair of assignments X , Y: Vset — {F, T} for some set of variables Vsey such that:

e e e e e T

18:
19:
20:
21:
22:
23:

o SU{u} CVset CTSU{u} UV,,
o X and Y agree with A on S, X(u) =T and Y (u) = F.

: We fix two total orders <y and <¢ over the variables and clauses of ®. These are only

relevant to have a pre-determined order in which clauses and variables are considered in this

algorithm.
Initialise X and Y as A, and set X (u) = T and Y (u) = F.
Vaet < SU{u}, Vg < {u}, Fg < {c€C:uevar(c)}, Fu < 0, Crem < C.
while 3¢ € Cren : var(c) N (Vg Uvar(Fy,)) # 0 do
Let ¢ be smallest clause according to <¢ with var(c) N (Vq Uvar(F,)) # 0.
if ¢ is a bad clause then
Remove ¢ from C,emm and add ¢ to Fy.
end if
if ¢ is a good clause and (var(c) NV,) \ Veet = 0 then
Remove ¢ from Cen (as all auxiliary variables in ¢ have been set).
if ¢ is unsatisfied by at least one of X and Y then
Add ¢ to F.
end if
end if
if ¢ is a good clause and (var(c) N V,) \ Vset # 0 then
Let v be the smallest variable in (var(c) N Va) \ Vset (according to <y).
Extend X and Y to v by sampling from the optimal coupling between the marginal
distributions of p,x and pgy on v, and add v 0 Vet
if X(v) # Y (v) then
Add v to V4. Add all clauses containing v to Fy.
end if
end if
end while

return (X,Y).

Page 173 of 212

Chapter 4. Fast sampling of satisfying assignments from random k-SAT

First, we analyse the sets Viet, V4, Fd, Fu and Creyn and prove the connectivity property of
Fa U Fy. In the rest of this section we fix the inputs of Algorithm 4 unless stated otherwise.

Proposition 4.34 (Properties of the coupling process). The coupling process in Algorithm 4
terminates eventually and, at the end of the process, the sets Vset, V4, Fd, Fu and Crem present

the following properties:

1. We have SU{u} C Vet S Vo USU{u}, Vg = {v € Vet :)?(v) + ?(v)}, and JFq 1s the set

of clauses containing a variable in Vyq.
2. For all c € Fy we have var(c) N Va C Vst and ¢ is unsatisfied by at least one of)? and Y.
3. For all ¢ € Crem, we have var(c) N (Vg U var(Fy)) = 0.

4. For all ¢ € C\ (Crem U Fu), we have var(c) N (Vq Uvar(Fy)) # 0, var(c) N Vs C Vet and ¢
is satisfied by X and Y.

5. The set Fq U Fy is connected in Gg.

Proof. Each iteration of the coupling procedure either removes a clause from Cpep,, or samples
the values X (v) and ?(v) for an auxiliary variable v and adds v to Vst € V. As Ciem and V are
finite, the coupling terminates after a finite number of iterations. We prove the five properties
in the statement separately. First, we note that the sets Vset, V4, Fa, Fu never decrease in size
during the execution of Algorithm 4, whereas the set Cremy never increases in size.

Property 1. Note that at the start of Algorithm 4 (line 3) this property holds. The result
then follows from the fact that the sets Vset, Vg and Fq are only updated from line 15 to line 20
of Algorithm 4, and these steps preserve Property 1.

Property 2. This follows from the facts that the set Fy is originally empty, it is only extended
in lines 7 and 12, and bad clauses do not contain auxiliary variables.

Property 3. This property follows from the fact that clauses that satisfy var(c) N (Vq U
var(Fy)) # 0 at some point are eventually removed from Cyep, in either line 7 (if they are bad)
or in line 10 (if they are good, once all the auxiliary variables of the clause are in V).

Property 4. If ¢ € C \ (Crem U Fu), then ¢ has been removed from Crep, in line 10 but it has
not been added to JF in line 12, which proves this property.

Property 5. We note that at the start of the coupling process (line 3) Fq U F, is connected.
Let us analyse every line of the algorithm where the sets Fy and JF, are enlarged. When it
comes to Fq, this occurs in line 19 if this line is executed. Let ¢ be the clause considered in that
iteration of the coupling process and let v be the variable of ¢ considered in line 16. We recall
that var(c) N (Vg U var(Fy)) # 0 and v € (var(c) N Va) \ Veet- In line 19 we add all to Fq all the
clauses containing v. Let C, be the set of such clauses. Since () # var(c) N (Vq U var(Fy)) C
var(c) Nvar(Fq U Fy) and ¢ € Cy, we conclude that Fq U F, U C, is connected as we wanted.
When it comes to F,;, we add clauses in lines 7 and 12. In this case, we add a clause ¢ such that
var(c) N (Vg Uvar(Fy,)) # 0, so Fq U Fy U {c} is connected in Gg. O

Page 174 of 212

Chapter 4. Fast sampling of satisfying assignments from random k-SAT

We can now prove our main result concerning the structure of ®* and ®Y.

Lemma 4.35. Let X and Y be the assignments returned by Algorithm 4 and let Cremy and
Fu be as in Proposition 4.34. There are sets of clauses C1 C Crem and Co,C3 C Fy such that
X — (V\ Vset,C1 UC2) and Y — (V \ Vset, C1 UC3), where the variables in Vsey are removed
from the clauses in C1,Co,C3.

Proof. We determine the set of clauses that are unsatisfied by X or Y with the help of Proposi-
tion 4.34. We distinguish 3 disjoint cases:

® ¢ € Crem- Then var(c) NVyq = 0, so X and Y agree in all the variables in var(Crem) N Vset-
As a consequence, the restrictions of ®X and ®Y to Crem give rise to the same CNF formula.
Note that some of the clauses in Cyery might be satisfied by both X and }A/, but they are

never satisfied by only one of the two assignments.

e ¢ € Fy. Then c is unsatisfied by at least one of X and Y and, thus, it appears in at least

one of ®X and ®. The clause ¢ may contain a variable v € Vjy.

e ¢ € C\ (Crem U Fy). By Proposition 4.34, we have var(c) N (Vq U var(Fy,)) # 0 and
var(c) N Va C Vset. Since ¢ € Fy, it follows that ¢ is satisfied by both XandY and, thus,

¢ does not appear in any of the formulae X and Y.

We conclude that we can write C)? = C1 UCy and C? = C1 UC3, where C; C Crem and
Co,C3 C F, as we wanted. O

In order to further analyse the probability distribution of the output of Algorithm 4, we

introduce the following definition.

Definition 4.36 (run, R(®, M, u, A), 7r(®, M, u, A), Veet(R), Va(R), Fu(R), Fa(R), Crem(R)).
A run of Algorithm 4 is a sequence of all the random choices (X (v),Y (v)) made in line 17
when ezecuting Algorithm 4. Let R(®, M,u,A) be the set of all possible runs of Algorithm 4
for the inputs ®, M, u, A and let Tr(P, M, u,) be the probability distribution that Algorithm /
yields on R(®, M,u,A). Each run R € R(®, M,u,A) determines the output ()?,?) and the
sets Vset(R), Va(R), Fu(R), Fa(R),Crem(R) that are computed in Algorithm 4.

With the aim of applying Proposition 4.33, we extend the coupling ()? , 57) to all marked and

auxiliary variables.

Definition 4.37 (The coupling (X,Y)). Let R € R(®, M,u,A) and let ()A(,}A/) be the corre-
sponding output of the run R. Let <y be a total order on the variables of ® and let vi <y v9 <y
-+« <y vy be the variables in (Vi U V,) \ Vset- We extend the assignments)/(\',?: Vset = {F, T}
to v1,v9, ..., v inductively (as follows) to obtain a coupling (X,Y) such that X follows the
distribution ,LLQAUu»—)T‘(VmUva)\Vset and Y follows the distribution MQAUu»—)F|(VmUva)\Vset. Assume
that X and Y are defined on Veer U {v1,v2,...,vj_1} for j € {1,2,...,t}. Then we sample
(X (v5),Y (vj)) from the optimal/monotone coupling of the marginal distributions (on v;) of pox
and pgy .

Page 175 of 212

Chapter 4. Fast sampling of satisfying assignments from random k-SAT

Remark 4.38. When R € R(®, M,u,A) follows the probability distribution mr(®, M,u,A)
(Definition 4.36), the pair of random assignments (X,Y') of Definition 4.37 is a coupling of the

distributions pigaoustly, Gy and poaousely, Gy

In Lemma 4.39 we bound the probabilities Pr(X (v) # Y (v)|R) for any R € R(®, M, u, A)
and v € (Vi U V,) \ Vset(R).

Lemma 4.39. Let R € R(®, M,u,A). Let (X,Y) be the coupling of Definition 4.37. Then for
any v € (Vm UVa) \ Vset(R) we have Pr(X (v) # Y (v)|R) < 2—7‘016—1—1/]{'

Proof. Let X and Y be the output of Algorithm 4 for the run R. Let vi,ve,...,v: be the
variables in (Vi U V,) \ Vset(R) in the order that they are considered in Definition 4.37. Let
Jje{1,2,...,t} and let A/, A": Vet (R) U {v1,v2,...,vj—1} = {F, T} be two assignments such
that A'[), = X and A o = Y. When X agrees with A’ and Y agrees with A”, the values
X (v;) and Y (v;) are sampled from the optimal/monotone coupling between the marginals on v;
of the distributions pgar and pgar. Let us denote these marginals by vx and vy respectively.
Thus, by the coupling lemma (Proposition 4.32) and Proposition 4.5 (or Lemma 4.23) on the

marginals of marked and auxiliary variables, we have
Pr (X (v;) # Y (v;)|A,A") = drv (vx, vy) = [Pr(X (v)) = TIA) = Pr(Y(v;) = T|A")]
< [Pr(X(vj) = TIA) = 1/2] + [1/2 = Pr(Y (v;) = TIA")]

1
< exp <k2r0k> —1

Applying the inequality e* < 1+ 2z for z € (0,1), we find that Pr (X (v;) # Y (v;)|A,A”) <
2 "ok+1 /k Thus, from the arbitrary choice of A/, A” and the law of total probability we conclude
that the bound Pr (X (vj) # Y (v;)|R) < 2770*+1/E holds. O

Combining all the results presented up to this stage in the current section allows us relate
the sum Zvevm\(Sufu}) ‘IA(’U, — v){ to the coupling process over auxiliary variables. In fact, we
bound this sum of influences between marked variables by the expected number of failed clauses

in the coupling process on auxiliary variables. Recall that here r = ro — 9.

Lemma 4.40. There is an integer kg such that for any k > ko and any density o with
a < 2(”)_5)]"/1{:3 the following holds w.h.p. over the choice of the random k-CNF formula
& = O(k,n, |an]). Let (Vm, Va, Ve) be an (ro — 9,70, 70, 210)-marking of ®, and let v € Vi, and
A: S — {F, T} with S C Vy \ {u}. Then for a random run R of the coupling process on the

auziliary variables (Algorithm /), we have
Yoo M u—) <27FHEF(R)).
VEVm \(SU{u})
Proof. Let (X,Y) be the coupling in Definition 4.37 for a (random) run R ~ 7g(®, M, u, A) of
Algorithm 4. We are going to show that

Pr(X(v) =Y (()|R)=1forallv eV = (Vyn UVa) \ (Veet(R) Uvar(Fy(R))). (4.27)

Page 176 of 212

Chapter 4. Fast sampling of satisfying assignments from random k-SAT

Let X,V: Vset(R) — {F, T} be the output of Algorithm 4 for the run R. By Lemma 4.35
we conclude that we can write C)A(= C1 UCy and C17 = C1 UCs, where C; C Crem(R) and
C2,C3 C Fyu(R). Thus, the variables in V (see (4.27) for a definition of V') either appear in
a clause in C; or they are not present in any of the formulae X and @Y. Moreover, by
Proposition 4.34, we have var(c) Nvar(c’) = 0 for all ¢ € Crem(R) and ¢ € Fy(R). We conclude
that the distributions u,x ‘V and pgy ‘V agree — both are the uniform distribution over the
satisfying assignments of the CNF formula (V,C1). Let vi,v9,...,v; be the variables in V
in the order they are considered in the definition of the coupling (X,Y). By induction on
j€{1,2,...,t}, the marginals on v; in Definition 4.37 are the same when coupling X (v;) and
Y (v;). Thus, we have X (v;) =Y (v;) for all j € {1,2,...,t}.

Since S U {u} C Vset(R) € SU{u} UV,, we have V \ V = SU{u} U (Vy Nvar(Fu(R))). In
light of Lemma 4.39 and (4.27), we find that

> PXO)AY@IRIS Y PX) YRR < 2 (AR

VEVM\ (SU{u}) vEVmNvar(Fu(R))

From |var(Fy(R))| < k|Fa(R)| we conclude that

S PrX() # Y(0)|R) < 2 F(R). (128)
VEVm \ (SU{u})

In the rest of this proof we are going to aggregate (4.28) over R € R(®, M, u,A) with the aim
of applying Proposition 4.33. Let (X,Y) be the coupling in Definition 4.37 for a (random) run
R ~ (P, M, u,A) of Algorithm 4. We have

Y., PX@#FY()= Y Y. PrR)Pr(X(v) # Y (v)|R)

vEVm\(SU{u}) VEVm \(SU{u}) RER(P,M,u,A)
- Y kY PX@) £YWIR)
ReER(P,M,u,A) vEVm\(SU{u})
<2 Y PR)|R(E)
RER(®,M,u,A)
= 27 R | FL(R)].

Finally, we note that we can indeed apply Proposition 4.33 to the restriction of X and Y on Vy,
as (X,Y) is a coupling of the distributions pgavu-t|y,), and pgavusely,), (Remark 4.38).
This finishes the proof. O

In the remainder of this section we bound E [|F,(R)|], which would complete our proof of
Lemma 4.9 when combined with Lemma 4.40. In order to do this we exploit the fact that
Fu(R) U F4(R) is connected in G (Proposition 4.34), the local sparsity properties of random
CNF formulae and the properties of the marking (Vp, Va, Vc). It is important that the bound
on E[|F,(R)|] is poly(k)logn in order to conclude fast mixing time of the p-uniform-block
Glauber dynamics when applying the spectral independence framework. First, we bound the

probability that some good clauses are failed in Algorithm 4. At first glance this seems to be a

Page 177 of 212

Chapter 4. Fast sampling of satisfying assignments from random k-SAT

straightforward task thanks to the fact that the marginals of marked and auxiliary variables
are close to 1/2 (see Proposition 4.5). However, for any good clauses ¢; and cg, the events that
c1 € Fa(R) UFy(R) and c2 € Fq(R) U Fy(R) may not be independent; any value given to the
variables in ¢; may affects the marginals of the variables in ¢y and whether these variables are
considered by the coupling process or not. However, we show that, as long as ¢; and co do
not share good variables, these dependencies are not very strong and we can indeed bound the
probability that ¢1,ce € Fq(R) U Fy(R) with a careful probability argument that analyses the
coupling process step by step, see Lemma 4.44. With this in mind, we introduce the following

definitions.

Definition 4.41 (R¢(®, M, u, A), A<;). For a positive integer t, we let Ri(®, M, u,) be the
set containing for each R € R(®, M, u,A) a tuple with the first min{t,length(R)} entries of the
sequence R. That is, Ry(®, M, u,A) is the set containing all possible sequences of the first t
choices that Algorithm 4 makes in line 17. Note that if R € R(®, M, u,A) has length(R) < t,
then R € Ry(®, M,u,\). Each Ry € Ry(®, M,u,) determines two partial assignments A
and A" of marked and auziliary variables that correspond to the assignments X and Y after
length(R;) iterations of line 17 following Ry. Let A<y be the o-algebra containing all the subsets
of Re(®, M, u, A).

Intuitively, A<; contains all the possible events that may occur in the first ¢ iterations of
line 17, which is the only randomised operation in Algorithm 4. When bounding the probability
that a clause is failed, we will express this event in terms of events concerning the values that X

and Y take on its variables. This motivates Definition 4.42.

Definition 4.42 (D,(j)). We define the following events for variable v € V, and a random run
R~ mr(®, M, u, A) of Algorithm 4. Let Dy(1) be the event that v € Vst (R) and X (v) £ Y (v).
Let D, (2) be the event that v € Vset(R) and)?(v) =F. Let D,(3) be the event that v € Vet (R)
and X (v) = T. Let Dy(4) be the event that v € Vset(R) and Y (v) = F. Let Dy(5) be the event
that v € Veet(R) and Y (v) = T.

Finally, in order to study the events D, (j) for v € V' we will have to reason about the first

time that a variable in V' is added to Vet (R), which motivates the following definition.

Definition 4.43 (7(V), f(V)). For a set of auziliary variables V', we let 7(V') be the random
variable that takes the value t if the first time that a variable in V is added to Veet(R) in
Algorithm / is the t-th time line 17 is executed, and we denote by f(V') this variable. We set
T(V) =00 if VN Vet (R) = 0, in which case f(V) is not defined.

We now have all the tools that we need to analyse the coupling process step by step.
Lemma 4.44. Let V C V, and let i, € {1,2,3,4,5} for each v € V. Let h(1) = 2770%+1/k and
h(i) = %21/16) forie{2,3,4,5}. Then, we have

PrRNTR(‘I),M,u,A) (ﬂvev Dv(“})) < H h(lv)

veV

Page 178 of 212

Chapter 4. Fast sampling of satisfying assignments from random k-SAT

Proof. We are going to prove, for any positive integer ¢ and A € A<y,
Pr <ﬂvEV Dy (iy)

The lemma will then follow from the arbitrary choice of A and ¢ and the law of total probability.

We carry out the proof of (4.29) by induction on M = |V|. Equation (4.29) holds when V is
empty. Let us assume that (4.29) holds when |V| < M. Let V be a set of auxiliary variables
with M = |V| and indexes i, for all v € V, let t be a positive integer and let A € A<;. To
simplify the notation, for each w € V' we define A;(w,V)=AN[r(V) =t N[f(V) = w]. Then,

we have

e 20

A, 7(V) = t) < I ntiv)- (4.29)

veV

A, 7(V) =t) < 30 Pr(f(V) = w]A, 7(V) = 1) - Pr (D (ia)| Ailw, V)

wev . <ﬂvev\{w} Dy (i) | Au(w, V), Dw(iw)) .

We note that 7(V \ {w}) > ¢ when conditioning on 7(V) = ¢ and f(V) = w. Let A" =
Ai(w, V) N Dy (iy). We have

Pr <ﬂUEV\{w} Dy (i) Al) = Y Pr(r(V\{w}) =j|4)

j=t+1
. /
Pr <mv6V\{w} D,(iy)| A

By our induction hypothesis for V' \ {w}, the condition 7(V \ {w}) = j and the event A" € A<,
we find that

"\ (wh =d).

Pr(ﬂ . D, (iy) A’) < Z r(T(V\{w})=j4") H h(i,) < H h(iy).
vE \{w} J=t+1 ’UGV\{U}} ’UGV\{w}

As a consequence, we obtain

Pr (ﬂvev Dy (i)

A,7(V) =t) < 3 Pr(f(V) = w]A, 7(V) = 1) - Pr (D (ia)| Ailw, V)

We are going to show that Pr(Dy,(iy)|A:(w, V)) < h(iy). Once we have proved this, the proof
of (4.29) is completed by noting that)\ Pr(f(V)=w|A,7(V)=1)=1.

Let us now bound Pr(Dy,(iy)|At(w,V)). Recall here that A;(w, V') implies the event w €
Vet (R). Recall also that A;(w,V) € A<, see Definition 4.41. For each Ry € Ai(w,V) C
Ri(®, M, u,), we are going to apply Proposition 4.5 and the fact that)?(w) and }A/(w) follow
the optimal coupling between two marginal distributions on v of the form g and g for
some assignments A’, A” on some marked and auxiliary variables that are determined by R;.

Here it is important for applying Proposition 4.5 that the event A;(w, V) is in A<, so every

Page 179 of 212

Chapter 4. Fast sampling of satisfying assignments from random k-SAT

partial run R; € A¢(w, V) only gives information about what has happened in Algorithm 4
before w is added to Vst (R). Thus, aggregating over all possible runs R; € A;(w, V), we find
that

-2 k2rok
1 1

< e (1)

max {Pr (X = F‘ A(w V)) Pr (X T‘ Ag(w V))} < —exp < > (4.30)

where the probability is over the random run R ~ 7g(®, M, u, A). The bound (4.30) also applies
with Y instead of X. In particular, we conclude that Pr(Dy(j)|Ai(w, V) < exp(1l/k)/2 = h(j)
for all j € {2,3,4,5}. Moreover, using the definition of optimal coupling for two Bernoulli
distributions, the probability that X (w) # Y (w) can be bounded as

Pr((w) # ¥ (w)‘At(w,V)>:‘Pr()?(w):T’At(w,V))—Pr(?(w):T‘At(w,V))‘
< ‘Pr ()?(w) - T‘ At(w,V)) - 1/2‘

+ ’1/2 —Pr (}A/(w) = T‘ Ay(w, V)) ‘

1
=P (m) -

Hence, applying the bound e* < 1+ 2z for z € (0,1) and the definition of the event D, (1),
we have Pr(D,, (1)|A¢(w,V)) < 2/(k27°F) = h(1). This finishes the proof of (4.29). From the
arbitrary choice of A and ¢ and the law of total probability, the statement follows. O

We can now bound the probability that some good clauses are failed with the help of
Lemma 4.44.

Lemma 4.45. Let ®,u, A be the input of Algorithm 4. Let ci,...,ci € Cgooa Such that the
variable u does not appear in any of the clauses in cy,. .., ce, and var(c;) Nvar(c;) N Vgood = 0

for all1 < i< j<{ Then, for R~ tr(®, M,u,A), we have Pr(cy,...,co € Fq(R) U Fu(R)) <
o(—rok+4)t

Proof. Let c1,...,cp be some good clauses of ® as in the statement. The hypothesis that
u does not appear in any of these clauses is necessary as if u € var(c) then ¢ € F4(R) by
definition. We consider a random run R ~ 7r(®, M, u,A) of Algorithm 4 and let X ,17 be
the (random) output of Algorithm 4 for the run R. For j € {1,2,...,¢}, let Fj(1) be the
event that there is v € var(cj) NV, such that v € Vst (R) and X(v) # Y(v), let F;(2) be
the event that var(cj) N Va C Veet(R) and ¢; is unsatisfied by X, and let F;(3) be the event
that var(c;j) N Va € Veet(R) and ¢; is unsatisfied by Y. In light of Proposition 4.34, we have

[e1s- - ee € Fa(R) U Fu(R)] = =y (Fj(1) U F;(2) U Fj(3)). We obtain

Pr <ﬂj1(Fj(1) U F;(2) U Fj(s))> < > Pr (ﬂjl Fj(ij)> . (4.31)

(i1,i2,..,0¢)€{1,2,3}¢

Page 180 of 212

Chapter 4. Fast sampling of satisfying assignments from random k-SAT

We note that F;(1) = U’L)Gvar(cj)ﬁva D, (1), see Definition 4.42. Let (i1, iz,...,i7) € {1,2,3}", and
let Iy ={j:ij =1} Io = {j:i; = 2} and I3 = {j : i; = 3}. If the event (), F;(i;) holds,
then, for each j € I; there is a variable u; € var(cj) NV, such that D, (1) holds. Thus, for the
set of tuples T' =[]

have

(var(cj) N Va), where [] here denotes the cartesian product of sets, we

NEGH= U M Du, (1) (4.32)

JjenL (U17U27--~7U|11\)€Tj€11

Jje€l

Now we explain how we bound the probability of the event (ﬂjEIQLJlg F; (Z])> N (mjell Dy, (1))
for a tuple (u1,usg,...,ur|) € T. We are going to show that

br ((ﬂjelgul3 Fj(z'j)) N (ﬂjal Du]'(l)>) < (“I’(Ql/m)(k_g)mm13| (k;()k)Ill. (4.33)

The proof of (4.33) is not as straightforward as it may seem at first glance due to the dependencies
among the events Fj(ij), Dy, (1). The key idea is re-writing the LHS of (4.33) as in the statement

J

of Lemma 4.44. Indeed we note that for each j € I and for each variable v € var(c;) N Va,
the event F}(2) implies that there is i, € {2,3} such that D, (i,) holds, concluding F;(2) =
ﬂvevar(¢;)NVa D,(iy), see Definition 4.42. Analogously, for each j € I3 and for each variable
v € var(c;) N Va, we find 4, € {4,5} such that Fj(3) = m’UEVaI'(Cj)mVa Dy(iy). Therefore, we have

(ﬂjelgulg FJ(ZJ)) n (mjeh Duj(1)> = m Dy (i), (4.34)

UEVf

where V; contains exactly all the auxiliary variables in the clauses ¢; with j € I U I3 and the
variables uy,ug, ..., uj,|. Recall now that each good clause contains at least ro(k — 3) auxiliary
variables, and, thus, the bound given in (4.33) follows from (4.34) and Lemma 4.44. Combining
(4.33), (4.32) and (4.31), and counting the number of tuples in 7', we conclude that

Pr (ﬂjl(Fj(l) U Fj(2) qu(g))> < Z il (W)(k—3)rolzulg| <k22r0k>|11|

(ilyiQ:"'7if)€{17273}e

6237‘0 [I2UI3] 2 [I1]
< ¥ (%) ()

(i17i27"'7i£)€{17273}[

230 e230 2 \f
= (2’67‘0 + 2]67‘0 + 27’0k> ’

where we used the multinomial theorem. The result now follows from 2e237 + 2 < 24 O

Following [49] and motivated by Lemma 4.45, we introduce the combinatorial structure that

we use in our proof of Lemma 4.9 to bound the expected number of failed clauses.

Definition 4.46 (G=F, D5(Gs,c,/)). For a graph G = (V, E) and a positive integer k, let G=F
be the graph with vertex set V in which vertices u and v are connected if and only if there is a

path from u to v in G of length at most k. Given the graph Gg, a clause ¢ and a positive integer
¢, let D3(Go,c,l) be the set of subsets T C V(Gg) such that the following holds:

Page 181 of 212

Chapter 4. Fast sampling of satisfying assignments from random k-SAT

1. |[T|=4and ceT;

2. for any c1,co € T, var(c) Nvar(cz) N Vgood = 0;

3. the graph G%S[T], which is the subgraph of G(%S induced by T, is connected;
4. we have |T' N Cyood| > (1 — 8/K)L.

In [49] the authors consider connected sets in Ggl instead of G%g. Here we manage to
perform our union bound on D3(Gg,c,) thanks to the fact that the set of failed clauses is

connected in our refinement of the coupling process.

Lemma 4.47 ([49, Corollary 8.19] for G=3). Let G = (V, E) be a connected graph, let v € V
and let £ be a positive integer. Let ng(v) denote the number of connected induced subgraphs of

G with size £ containing v. Then, for ¢’ = min{3¢, |V}, we have ng<s ,(v) < 25/nG75/(v).

Proof. Let T be a connected subgraph of G=3 with size ¢ containing v. We claim that, for all
positive ¢, we can find a connected subset H of G with size ' = min{3/, |V'|} containing T". The
proof is straightforward by induction on ¢, see [49, Lemma 8.18] for the analogous result on
G=%*. We note that there are at most (/11) < 2% subsets T of H containing v that could be
mapped to H by the previous construction. Hence, we conclude that nGg:s,g(’U) < 2€/nG’g/ (v) as

we wanted. 0

Lemma 4.48 ([49, Lemma 7.9] for D3(Gs,c,{)). Let ¢ be an integer which is at least logn.
W.h.p. over the choice of ®, every clause ¢ € Cyooq has the property that the size of D3(Ga,c,¥)
is at most (18k%a)3¢.

Proof. This follows from bounding the number of connected sets of size £ in G%g’ that contain ¢

by combining Lemmas 4.29 and 4.47. O

We have now all the tools that we need to bound the expected number of failed clauses in

the coupling process given in Algorithm 4 and complete the proof of Lemma 4.9.

Lemma 4.9. There is an integer kg > 3 such that for any integer k > ko and any density «
with o < 270K/3 |3 the following holds. W.h.p. over the choice of the random k-CNF formula
® = ®(k,n, lan]), for any (ro — d,70, 70, 270)-marking (Vm, Va, Ve) of @, the distribution pqly,
is (2~ (0=9k log n)-spectrally independent.

Proof. Let u € Vi and A: S — {F, T} with S C V;, \ {u}. First of all, we apply Lemma 4.40 to
bound }° ey, \ (sufu) |Z%(u — v)| by 270K IE [| Fy (R)|], where R ~ 7r(®, M, u, A). In the rest
of this proof we show that Pr(|Fy(R)| > 2k*logn) < O(1/n) and, thus, for large enough n, using
the fact that [Fu(R)| < m < an, we have E [| Fu(R)|] = - per(o,mun) PT(R)|Fu(R)] < 4k* log .
Putting all this together, and using the fact that 8k* < 29% for large enough & (here § = 0.00001)
we would obtain the bound ¢y, \ (sufuy) T8 (u — v)| < 8- 270k ktlogn < 2~ (0= Jog , and,

thus, the result would follow.

Page 182 of 212

Chapter 4. Fast sampling of satisfying assignments from random k-SAT

So to finish we just need to show that, w.h.p. over the choice of ®, Pr(|F,(R)| > 2k*logn) <
O(1/n). Let L = [2k*logn] and let £ = [0.5k*logn]. First, we are going to show that, w.h.p.
over the choice of @, the following holds:

if Z C C is connected and |Z| = L, then 3¢ € Z N Cypoq and T' € D3(Go, c,l) with T C Z.

(4.35)
In order to prove (4.35), we are going to find a large independent set of Z N Cypod, and we are
going to extend it with some clauses in Z N Cp,q to obtain T € D3(Go,c,f). We need three
results that hold w.h.p. over the choice of ®: Lemmas 4.15, 4.27 and 4.26. We note that we can
apply Lemma 4.15 for 7 = 79 — § as our density satisfies o < 270F/3 /3 < [2(r0=0)k] /k3 = A /K3,
where § = 0.00001. For Z as in (4.35) we have |Z| > 2k*logn, so by Lemma 4.27 with
a = 2k*, we find that |var(Z)| > 2k*logn and, thus, in light of Lemma 4.15, we conclude that
|Z N Caood| > (1 —1/k)|Z| and |Z N Chaa| < |Z|/k. From Lemma 4.26 with b = 4k*, w.h.p. over
the choice of ®, all connected sets of clauses with size at most 4k*logn have tree-excess at most
t == max{1, 8k*log(ek?a)}. Thus, we can find U C Z N Cgpoa such that U is a forest (disjoint
union of trees) and |U| > (1 — 1/k)|Z| —t. In particular, U is bipartite, so there is I C U such
that var(c) Nvar(c') = 0 for all ¢, € I and |I| > |U|/2 > (1—1/k)L/2—t/2 > 3k*logn, where
the last inequality holds for large enough n. Let I’ be an independent set of Z N Cgooq With the
largest possible size. Then we have shown that [I’| > ¢ = [$k*logn].

We claim that the set 7" := I’ U (Z N Cpaq) is connected in (G[Z])=3, where G3[Z] is the
subgraph of Gg induced by Z. Assume for contradiction that 7" is not connected in (Gg[Z])=3.
In this case, we can write 7" = S; U Sy such that for all ¢; € S; and co € S5, the shortest path
between c¢; and co through clauses in Z has length at least 4. Let (c1,c2) € S x Sy be the
pair with the shortest path in Z, and let this path be ¢y = e1,e2,...,e; = c2. Then j > 5 and
€,...,ej—1 € Z\ T'. Moreover, we find that var(ez) Nvar(c) =) for all ¢ € T" as otherwise
e1,e,...,e; would not be the shortest path between S; and Sz. Moreover, since 7" contain all
bad clauses in Z, we conclude that eg is a good clause. It follows that I’ U {es} is an independent
set of good clauses of Z, which contradicts the fact that I’ has largest possible size among such
sets.

Finally, as |T"| > ¢, we can find a good clause ¢ and a subset T of 7" with size ¢ such that
c €T, T is connected in G§3 and |T' N Cpad| < |Z N Chad| < L/k < 8¢/k. We conclude that
T € D3(Go,c,?). This finishes the proof of (4.35).

In the rest of the proof we use (4.35) to bound Pr(|F,(R)| > L). Recall that the set of
failed clauses Fq(R) U Fy(R) is connected (Proposition 4.34). If |F,(R)| > L, then there is
Z C Fq(R) U Fy(R) with |Z] = L such that Z is connected in G, and, thus, we can find ¢ and
T as in (4.35). We have shown that the event |F,(R)| > L is contained in the event that there

Page 183 of 212

Chapter 4. Fast sampling of satisfying assignments from random k-SAT

is a good clause ¢ and T' € D3(®, ¢, ¢) such that T' C F4q(R) U Fy(R). As a consequence, we have

Pr{|Fu(R)| =L <> Y PrlT € F(R)UFu(R)
c€C TeD3(d,c,l)

<>) Pr[TNCgod € Fa(R)U Fu(R)].
ceC TeD3(P,cl)

We note that for any T € D3(®, ¢,) there is at most one good clause ¢’ that contains the marked
variable u. Thus, by definition of D3(®, ¢, f), there are at least (1 —8/k)¢ — 1 good clauses in T’
that do not contain the variable u. Hence, we can apply Lemma 4.48 on the size of D3(®, ¢, {)
and Lemma 4.45 on the probability of good clauses (that do not share good variables) failing to
further obtain

Pr[|Fu(R)| > L] < m (18k%a)™ 2~ (ok—I(1-8/b-1]

In what follows it is essential that o < 270k/3 /k3, and this is the only proof in this paper

where we need this bound on the density — other proofs only require the less restrictive bounds
a< 2(’"0*5)'“/k3 or a < 2(’”0*35)’“/163. Thus, we conclude that

orok/3

3¢ ¢
Pr{|Fu(R)| > L] <m <18) 9~ (rok—4)(1=8/k)t grok—4 _ ;) <1:3 98ro+4(1-8/ ’”) grok—4,
Finally, for large enough k we find that Pr [|Fy(R)| > L] < met2r0% < mpn =05k 90k — O(1/n)

as we wanted. O

4.6.3 Mixing time of the p-uniform-block Glauber dynamics

Finally, we combine the results in this section with Lemma 4.8 to complete the proof of
Lemma 4.10.

Remark 4.49. The distribution jiqly, on assignments of the marked variables (Definition 4.6) is
b-marginally bounded for b =1—(1/2) exp(1/k) by Proposition 4.5 (or, equivalently, Lemmas 4.21
and 4.23). Since exp(1/k) < 1+ 2/k, we have b>1/2 —1/k > 1/e for k > 8.

Lemma 4.10. There is a function ko(0) = ©(log(1/0)) such that, for any 6 € (0,1), for any
integer k > ko(0) and any density o with o < 20939 the following holds. W.h.p. over the choice
of the random k-CNF formula ® = ®(k,n, |an|), for any (ro — 6, ro, 1o, 210)-marking (Vm, Va, Ve)
of ® and for p = [27*"1 V|1, the p-uniform-block Glauber dynamics for updating the marked
variables has mizing time Tix(p,£/2) < T := [22%3n log ggﬂ

20-039%k < 2"0’“/3/k3 for large enough k, w.h.p. over the

Proof. In view of Lemma 4.9, as a <
choice of @, the distribution ,ug]vm is n-spectrally independent for n = 2~ 0=k Jog n. Moreover,
this distribution is b-marginally bounded for b = 1/e when k > 8. We are going to apply
Lemma 4.8 with V = Vi, = paly, , M = [Vu| and k = 27%71 First, we check that the

hypothesis M > (477/ b2 + 1) of Lemma 4.8 holds. By Corollary 4.25 with 7 = rg — § and

Page 184 of 212

Chapter 4. Fast sampling of satisfying assignments from random k-SAT

V = Vn, we have M > (rg — 0)(ka/Ar)n = Q(n), so M > 2(4n/b* + 1) holds for large enough
n as %(477/1)2 + 1) = O(logn). Hence, we can apply Lemma 4.8 to obtain

M 1 2
Thix(p,e/2) < |C,— | logl log = ||,
(.22 < |0 (toglog 4105 5)|

where p = [kM] and C, = (2//&)4”/1’2“. We have

4 log 2)(log n)(k + 2)4e?
C, = exp ((10g2)(k—|—2)<b;7—|—1>) §2k+2exp<< &)(ziofé)k)),

so there exists a function ko() = ©(log(1/6)) such that when k > ko(6), we have C, < 2k+2pf.
In light of Remark 4.49, we have min > b, so loglog(1/pimin) < log(M log(1/b)) = log M as
b= 1/e. Thus, we conclude that

2 2
Thix(p,e/2) < {22k+3n0 <logM + log 2>-‘ < [22]”3719 log Z-‘ . O
€ €

4.7 Proof of Theorem 1.8

In this section we complete the proof of Theorem 1.8. The proofs in this section do not present
any challenging steps. In fact, they amount to combining the main technical results that have
already been proved in this work. We start by showing that the calls to the method Sample in
Algorithm 1 are unlikely to ever return error, that is, the connected components of Gga have size
at most 2k*(1 + &) log(n) almost every time the method is called. As pointed out in our proof
outline, this is a straightforward consequence of Lemma 4.12 and the fact that the probability
distribution of the output of the Glauber dynamics is (1/k)-uniform (Corollary 4.24).

Lemma 4.50. Let 0 € (0,1). There is an integer ko > 3 such that, for any integers k > ko, £ > 1
and any density o < 200=30k /E3 the following holds w.h.p. over the choice of ® = ®(k,n, |an]).
In the execution of Algorithm 1 with input ®, with probability at least 1 — n=>¢ over the random
choices made by Algorithm 1, every time that the algorithm calls the method Sample(@’\, S), the
connected components of Gga have size at most 2k*(1 + £) log(n).

Proof. Let € = n~¢ and let T = [2%+3nf log i—qﬂ be the mixing time established in Lemma 4.10.
Note that a < 20039k /i3 < 9(r0=0)k /-3 50 we an indeed compute the marking (Vi, Va, Ve)
in Algorithm 1 with the help of Lemma 4.21. We need a < 2("0*35)”“//63 so that we can apply
Lemma 4.12 with r = rqg — . Algorithm 1 calls the method Sample exactly 7'+ 1 times in total:
T times in line 7 (when simulating the p-uniform-block Glauber dynamics) and one time in
line 10 to extend the assignment X7 of marked variables to all variables.

Let t € {0,1,...,T} and let 7; be the probability distribution of X;, where X} is the state
of the p-block-uniform Glauber dynamics on the marked variables described in Algorithm 1
after t steps. Recall that p = [27%71|V,|] and that Xj is chosen uniformly at random. First,
we focus on the case t < T. We are going to apply Lemma 4.12 with r = r¢g — J, a = 2k*,

Page 185 of 212

Chapter 4. Fast sampling of satisfying assignments from random k-SAT

b=2a(1+¢),V =V, u = m and this choice of p. The set Vy, is ro-distributed by the definition
of (ro — 8, 70,70, 2ro)-marking (Definition 4.3). Moreover, 7, is (1/k)-uniform by Corollary 4.24,
and we have p < |Vn|/2¥F. Hence, we can indeed apply Lemma 4.12. Consider the following
experiment described in Lemma 4.12 for L = [a(1+¢) log n], which satisfies alogn < L < blogn.
First, draw S C V,, from the uniform distribution 7 over subsets of Vy,, with size p. Then, sample
an assignment Ay4q from 7Tt|Vm\ g, the marginal of 7; on Vi, \ S. Denote by F the event that that
there is a connected set of clauses Y of ® with |Y| > L such that all clauses in Y are unsatisfied

by A¢y1. Then we have
Pro.. <PrAt+1Nm|vm\S (F) < 2—5“) >1 - 9~0kL, (4.36)

Alternatively, this experiment is the same as first sampling an assignment X; of all variables
in Vy, from 7, and then restricting the assignment to a random set S ~ 7, obtaining A;1;.
Note that this exact experiment occurs before calling the method Sample in the ¢-th step of
the p-uniform-block Glauber dynamics in Algorithm 1. Thus, in light of (4.36), the probability
that in step ¢ + 1 of the execution of Algorithm 1 the graph G ga,,, has a connected component
with size at least L is at most 279%L 4 279k where the first 2751 comes from the probability
of choosing a wrong set S ~ 7 in (4.36) and the second 27°*F comes from the bound on the
probability of the event F once we have chosen S. We have shown that with probability at
least 1 — 2:279%L_all the connected components of the graph Gga, appearing in step ¢ + 1 of
the execution of Algorithm 1 have size less than L. We have 2.9 0kL < 2.p~0ka(1+€) log2 < np 5
for large enough k, so the probability that Sample returns error at step ¢ + 1 is at most n=°¢.
The case t = T is analogous, the only difference here is that we call Sample on ®*X7, where
X7 ~ 7 is an assignment of all marked variables, so we apply Lemma 4.12 with p = 0 instead
of p=[27F1|Vy].

Finally, we carry out a union bound over ¢ € {0,1,...,T}, so the probability that any
of the calls to Sample returns error is at most (7' + 1)n~5% < n=3¢ for large enough n as
T = O(n’logn) = O(nlogn). O

Once we have established Lemmas 4.10, 4.14, and 4.50, the proof of Theorem 1.8 follows as

below.

Theorem 1.8. For any real 6 € (0,1), there is ko > 3 with ko = O(log(1/0)) such that, for any
integers k > ko and & > 1, and for any positive real o < 20939 the following holds.

There is an efficient algorithm to sample from the satisfying assignments of a random k-CNF
formula ® = ®(k,n, |an]) within n~¢ total variation distance of the uniform distribution. The

algorithm runs in time O(n'**?), and succeeds w.h.p. over the choice of ®.

Proof. Let ko(6) = ©(log(1/0)) be large enough so that, for all integers k > ko(6), £ > 1 and all
densities ov < 20939k the conclusions of Lemmas 4.21, 4.10, 4.14, and 4.50 hold w.h.p. over the
choice of the random k-CNF formula ® = ®(k,n, [an]). These lemmas are enough to analyse

Algorithm 1 and tackle this proof. We analyse the distribution .4 of the output of Algorithm 1.

Page 186 of 212

Chapter 4. Fast sampling of satisfying assignments from random k-SAT

This distribution outputs either a satisfying assignment of the input formula ® or error. Let
e = n~¢ Let £ be the event that running Algorithm 1 outputs error. This happens with
probability at most /4 when computing the marking (Vi, Va, Ve) in line 2 of the algorithm, and
in lines 7 and 10 if the method Sample((ﬁ, S) returns error, which occurs when G4 has a connected
component with size more than 2k*(1 + ¢)log(n). In view of Lemma 4.50, the probability that
Algorithm 1 outputs error due to the failure of the method Sample is at most n™3¢ = £3. We
conclude that the probability that the algorithm outputs error is bounded above by /4+¢% < ¢/2 .
Let piGiauper be the distribution that Algorithm 1 would output if there were no errors (that is, the
distribution assuming that the method Sample always outputs from the appropriate distribution).
Then dTV(,u,alg, UGlauber) 18 the probability that an error occurs, which is at most €/2. Let mgiquber
be the distribution output by the p-uniform-block Glauber dynamics on V,, after T steps. By
Lemma 4.10 on the mixing time of the Glauber dynamics, we have drv(TGiauber, paly,) < €/2.
AS Uaiauber comes from sampling an assignment X7 from 7aieuper and then completing X
to all V by sampling from puq(-|X7), we have drv(Uciauber; #2) < dTv(TGiaubers foly,) < €/2.
We find that drv(ptag, te) < drv(falg, HGlauber) + dTv (fGiauber) < €/2 +€/2 = € as we
wanted. The running time of Algorithm 1 is now easily obtained by adding up the running
times of the following subroutines. The good clauses and good variables are computed in time
O(n + km) = O(n), see Proposition 4.2. The marking (Vi, Va, V) is computed with probability
at least 1 — ¢/4 in time O(nA,k?log(4/¢)) = O(nlogn), see Lemma 4.21. Recall that there
are T + 1 = O(n’log(n/c?)) = O(n?logn) calls to the method Sample(®’,S), and each call
takes time O(]|S|logn) = O(nlogn) by Lemma 4.14. We conclude that the running time of
Algorithm 1 is O(n'*%1og(n)?). The result now follows by choosing ki = ko(6/2), so the running
time for k > k; is O(n!t%21log(n)?) = O(n't?). O

We have now proved that it is possible to (approximately) sample uniformly at random
from the satisfying assignments of ® = ®(k,n, |an|). At this point, standard techniques
can be applied to obtain a randomised approximation scheme for counting the satisfying
assignments of ®. These techniques are based on the self-reducibility of k-SAT [77]. The
following remark shows how to obtain a randomised approximation scheme that runs in time
O(n?(n/e)?) following [43, Chapter 7], where the authors base their counting algorithm on the
simulated annealing method [117, 71, 81].

Remark 4.51 (Approximate counting for random k-SAT formulae). Let ko(60) be the integer
depending on 0 € (0,1) obtained in Theorem 1.8. Let ki = ko(0/2), let k > k1(0) be an integer,
let € be a positive integer and let o < 20939 be o density. We apply Theorem 1.8 to obtain
an algorithm to sample from the satisfying assignments of ® = ®(k,n, [an|) within n=% total
variation distance from the uniform distribution. This algorithm runs in time O(n1+9/2) and
succeeds w.h.p. over the choice of ®.

Let e € (0,1) with e > n~¢. A modified version of the approzimate counting algorithm of [43,
Section 7], using O(e2nlog(n/e)) samples from the sampling algorithm above, approzimates

the number of satisfying assignments of the k-CNF formula ® with multiplicative error €, thus,

Page 187 of 212

Chapter 4. Fast sampling of satisfying assignments from random k-SAT

achieving running time O(n?/?(n/e)?log(n/c)) = O(n?(n/e)?). Here we describe these minor
modifications.

Let Qpaq be the set of assignments X :V — {F, T} that satisfy the bad clauses of ®. For
X € Qpaq, we define F(X) to be the set of good clauses that are not satisfied by X. For k € R,
we define wy(X) = exp(—k|F(X)|) and we define the partition function Z(k) =3 xcq, , Wx(X),
which was introduced in Section 1.1.3 of this thesis. The simulated annealing algorithm of [43,
Section 7] uses Z (k) (with Q* from Definition 4.4 in place of Qpaq) to approximate the number of
satisfying assignments of ®. We note that Z(0) = |Qpad|, which can be computed in linear time
in n using the exact counting algorithm given in Proposition 4.31. Here one has to use the fact
that the connected components of G for the formula ® = (V,Chaq) have size at most 2k*logn,
see Lemma 4.64 from Section 4.9 and Lemma 4.27, and the fact that these connected component
have tree-excess upper bounded as a function of k (Lemma 4.26). Once one has performed these

modifications, the algorithm given in [/3, Section 7] applies without any difficulties.

4.8 Proof of Theorems 1.10 and 1.12

In this section we exploit Lemma 4.12 to prove Theorems 1.10 and 1.12 on the connectivity and
looseness of the solution space of random k-CNF formulae. We recall that the density threshold
in Theorems 1.10 and 1.12 is a < 20-227%_significantly larger than our algorithmic threshold in
Theorem 1.8, which is o < 29039 In order to conclude connectivity for densities up to 20227,
we let 71 = 0.227092 and consider the threshold A, = [2"*] for 7 = r; — § in the definition of
high-degree variables instead of A, _5 = [2(r0=9)k7 In all this section we set 7 =71 — 8, s0 we
omit 7 in the notation and we write Vgood instead of Vgood(r) in order to improve the reading
experience. We work with an (r, 71,0, r1)-marking (Vm, 0, V.) (the set of auxiliary variables is
empty), which we can find w.h.p. over the choice of & = ®(k,n, [an]) as in Lemma 4.22. Let us
briefly recall some of the properties of this marking. First of all, by definition, the set V, is
ri-distributed and is a subset of Vgsq. Moreover, the distribution puqly, is (1/k)-uniform by
Lemma 4.23. In light of Lemma 4.12 for » = 1 — §, these properties allow us to show that, when
sampling A ~ ,ug]vm, the connected components of ®* are logarithmic in size with probability
1 —o(1) over the choice A ~ pqly, . In fact, this is also the case when A ~ pql,, \y,y for any

variable v.

Corollary 4.52. There is an integer kg > 3 such that, for any integer k > kg, any density
o < oy =239k the following holds w.h.p. over the choice of ® = ®(k,n, |an)).

Let V' be a set of good variables of ® that is ri-distributed, let u be a (1/k)-uniform distribution
over the assignments V. — {F, T} and let v € V.. Then, with probability at least 1 — n=" over the

choice A ~ ,u|v\{v}, the connected components of ® have size at most 2k*logn.

Proof. The result is an application of Lemma 4.12 with » = r; — 6, b = 4k*, p = 1 and
L = [2k*logn]. We need large enough kg such that 27% < 9-02k%logn < =k for all k > k.

For these parameters, in the setting of Lemma 4.12, the distribution 7 is the uniform distribution

Page 188 of 212

Chapter 4. Fast sampling of satisfying assignments from random k-SAT

over the variables in V. The experiment in the statement of Lemma 4.12 consists in sampling
v ~ 7 and then sampling A ~ M|V\{v}- Let F, be the event, concerning the choice A ~ u]v\{v},
that there is a connected set of clauses Y of ® with |Y| > [2k*logn] such that all clauses in
Y are unsatisfied by A. Then by Lemma 4.12 we have Pr,, (PTANMV\{U} (Fy) < 2—6kL) >

1—27%L From 279 < n=F we obtain the bound Pry., (PrAN#Iv\{U} (Fy) < 2_5“) >1—nk.
Since 7 is the uniform distribution over the variables in V', for v ~ 7, either the event that
Praculi (Fy) < 279L has probability 1 or it has probability at most 1 — 1/|V| <1 — 1/n.

The latter option is not possible due to Pry., (PrANHlv\{U} (Fy) < 2—5kL> > 1 —n* and

k > 3. Thus, we conclude that Pry,., (PIANMV\{U} (Fp) < 2—(5kL) =1, s0 for any v € V
we have Praculi (F,) < 27%L < n=F That is, for any v € V, with probability at least

k

1 —n~" over the choice of A ~ ,u\v\ {v} the connected components of ®A have size at most

L —1=[2k*logn] — 1 < 2k*logn as we wanted to prove. O

Our connectivity and looseness results will follow from Corollary 4.52. In Section 4.8.1 we

prove Theorem 1.10 and in Section 4.8.2 we prove Theorem 1.12.

4.8.1 Proof of Theorem 1.10

We consider Algorithm 5 that receives two satisfying assignments of a k-CNF formula ® as the
input and constructs a path between them. Before introducing this algorithm, recall that the

graph Hg is the dependency graph of the variables of ® introduced in Definition 4.13.

Algorithm 5 Finding a (poly(k)logn)-path between two satisfying assignments
Input: a k-CNF formula ® = (V,C) with n variables, an (r,r1,0,r1)-marking (Vm, 0, V,) of @,

and two satisfying assignments o, 0.

1: Let vy, v9,...,vs be the variables in Vy,.
2: (o« oO.
3: for i € [{] do

. . . . UI(Uj)v Jj <1
4: Find ¢; € Q with marked variables specified by ¢;(v;) =

O'(Uj)) J >
such that ||¢; — ¢;—1]|1 is minimised.
5: end for
6: o = Ce
7: Let 7/ = U/]Vm and suppose that Hg, has connected components &1, &, ..., &.
8: for i € [t] do

/ t) ’Ll AW
9: Let & € §Q be defined as &(v) = o'(v), ve (V \Uj=t 53) U <U]=1 53) ;
CZ(”)) v E U;:H—l gj.

10: end for
11: return Thepatho =y« - G =+ - & =0,

Page 189 of 212

Chapter 4. Fast sampling of satisfying assignments from random k-SAT

To prove Theorem 1.10, it suffices to show that the output of Algorithm 5 is with high
probability a D-path in the solution space for D = 2k®logn for the inputs o ~ g and o’ ~ ugq.
We will not actually require o ~ uq and o’ ~ ug in the proof; instead we will just use the fact
that the restrictions of o and ¢’ on Vy, follow a (1/k)-uniform distribution as guaranteed by
Lemma 4.23, see the proof of Lemma 4.54 for details.

We need the following two lemmas to establish Theorem 1.10. The first lemma (Lemma 4.53)
shows that all the truth assignments (;, &; in the algorithm exist and satisfy the formula (i.e.
the algorithm is well-defined), implying our constructed path is indeed a valid path comprising
only satisfying assignments. The second lemma (Lemma 4.54) shows that w.h.p., two adjacent

assignments differ by at most 2k°log n variables. This result is an application of Corollary 4.52.

Lemma 4.53. For any k-CNF formula ® with n variables, any (r,r1,0,71)-marking (Vm, 0, Ve)
of ®, and any two satisfying assignments o,c’, Algorithm 5 on these inputs is well-defined in the

following sense:
1. It is always possible to implement Line 4 such that (; € Q.
2. We have & € Q for each i € [t].

Proof. To prove item 1, we are going to show that for any partial assignment X : V,,, — {F, T},
we have Pr,,(X) > 0 and, thus, can extend X to some satisfying assignment. If this claim
holds, then we can indeed compute the satisfying assignments (1, (o, ...,y in Algorithm 5.
Recall that the distribution ugly, is (1/k)-uniform, see Lemma 4.23. From the definition of
(1/k)-uniform distribution, we find that an analogous statement to Proposition 4.5 holds for our
(r,71,0,71)-marking (here r =71 — 6): for any v € Vgood(r), any V C Vi, with v ¢ V', and any
A:V — {F, T}, we have

max {PrHQA (v—=F|A),Pry, (v T]A)} < %exp (;) .

Thus, by induction on the size of a set S C V,;,, we conclude that any assignment A: S — {F, T}
has Pr,, (A) > 0, finishing the proof of item 1.

Next consider item 2. Let 7/ = ¢’ ‘Vm as in Algorithm 5. All clauses that do not appear
in Gy, are satisfied by the partial assignment 7/. Now consider two satisfying assignments
A, A" such that A(Vy) = A'(Vm) = 7. Let Gy~ have connected components Ci,Ca,...,Cy.
In particular, Al ;) and A’ c,) each satisfy all clauses in ;. Each clause in 7 is in
exactly one connected component C;. Consequently, any assignment X such that X |Vm =7 and
Xlvare) € {Mvar(cy)» A lvar(c;)} for all i € [t'] is a satisfying assignment (any variables that do not
appear in Vy U (Uflzl V&I’(Ci)) can be chosen arbitrarily). We note that there are two types of
connected components of Hgr. The first type are those corresponding to var(C;) for some i € [t'].
The second type are those connected components with variables in V '\ (Vm U (Uf/:l var(Ci))).
These connected components are singleton and consist of one variable v that does not appear in

®7 or, equivalently, every clause of ® containing v is satisfied by 7. As a consequence, taking

Page 190 of 212

Chapter 4. Fast sampling of satisfying assignments from random k-SAT

A=, N =0" and X =& in the argument above, we conclude that &y, &1, ..., & are satisfying

assignments by construction in Algorithm 5 and item 2 holds. O

Lemma 4.54. There is an integer ko > 3 such that, for any integer k > ko, any density
o < 2=39k “he following holds w.h.p. over the choice of ® = ®(k,n, |an]). In Algorithm 5
with inputs the formula ®, an (r,r1,0,71)-marking of ® and the two satisfying assignments o

and o', with probability at least 1 — 1/n over the choices o ~ g, o’ ~ pq, we have
111G — Gimalls < 2k%logn for all i € [(];
2. |16 — &i—1]1 < 2kPlogn for alli € [t].

Proof. Let ® and (Vp,0,V,) be the first two inputs of Algorithm 5, and let vy, ve, ..., vy be
the variables in Vy, in the order considered in Algorithm 5. Let 0 ~ ug and ¢’ ~ ug. Let
o=+ =& -+ & = 0 be the path between o and ¢’ output by Algorithm 5.
In light of Lemma 4.53, the assignments (g, (1, ..., &1, ..., & are satisfying assignments of ®.
We also note that the set of marked variables V,, is ri-distributed and does not contain bad
variables by Definition 4.3. We are going to apply Corollary 4.52 with V' = Vy, several times
in this proof. In view of Lemma 4.23, the distribution uq|,, is (1/k)-uniform, and this will be
relevant when applying Corollary 4.52. We prove that Item 1 holds with probability at least
1 —1/(2n) and that Item 2 holds with probability 1 — 1/(2n), so the result follows from a union
bound.

Item 1. Let i € [¢] and let 7; be the restriction of ; to V. By construction, 7; agrees with
o’ on vi,v9,...,v; and it agrees with o on v;y1,vi19,...,v,. Let A; denote the restriction of
7; on Vi \ {vi}, which agrees with ¢; and ¢;—1 on Vy, \ {v;}. Recall that, by definition, (; is
the satisfying assignment that extends 7; that minimises ||(; — (;—1]|1, see Algorithm 5. We
consider the connected components of Gga,;, which can be seen as CNF formulae with variables
in V. U{v;} due to the fact that all marked variables other than v; are set by A;. Each one of
these connected components are satisfied as CNF formulae by the assignments (; and (;—1. We
conclude that ¢; and (;_1 agree on the variables of all these connected components except for
those variables in the connected component of the clauses containing v;, where (; and (;_1 may
disagree. Let us denote this connected component by C,,, which is empty when all the clauses
containing v; are satisfied by A;. We have ||¢; — (;—1]/1 < k|Cy,|, where the factor k comes from
the fact that each clause has at most k variables. We now bound the size of C,,. Since the
restrictions of o and ¢’ to Vy, follow ugqly, , which is (1/k)-uniform, we find, by Definition 4.7,
that 7; also follows an (1/k)-uniform distribution over the assignments V,, — {F, T}. Let us
denote this distribution by p;. Then A; ~ W|Vm\ {03} and, by Corollary 4.52 with V =V, A = A;

k

and pu = p;, with probability at least 1 — n™" over the choice A; ~ ,ul-\vm\ (i} the connected

component Cy,; C Gga, containing v; has at most 2k*logn clauses. Thus, with probability at
least 1 — n=%, we have ||¢; — ¢i_1|l1 < k|Cy,| < 2k°logn. By a union bound over i € [{] and
the fact that & > 3 and ¢ < n, we conclude that, with probability at least 1 — 1/n?, we have

||CZ — Ci*l”l < 2k logn for all 7 € [5]

Page 191 of 212

Chapter 4. Fast sampling of satisfying assignments from random k-SAT

Item 2. Let 7/ = ¢'|y,, as in Algorithm 5. By construction, {y = {; and & = ¢’ agree with
7" on V. Since o' ~ pq, we have 7 ~ pqly, , which is (1/k)-uniform by Lemma 4.23. In
view of Corollary 4.52 for V. =V, A =7 and p = paly, , with probability at least 1 — n=k,
all of the connected components of G/, have size at most 2k*logn. Thus, all the connected
components of H,./ have size at most 2k°logn. By construction, see Line 9 in Algorithm 5, the
assignments &;_1 and & agree on the variables in all the connected components of Hg. except
for the variables in the i-th connected component, where they may disagree. Thus, they disagree

on at most 2k®logn variables. This gives the desired result. O
We can now complete the proof of Theorem 1.10.

Theorem 1.10. There is ko > 3 and a polynomial p(k) with non-negative integer coefficients
such that, for any integer k > ko, and for any positive real o < 20227F the following claim
holds with high probability over the choice of a random k-CNF formula ® = ®(k,n, |an|). Two
satisfying assignments chosen uniformly at random are p(k)log(n)-connected with probability at
least 1 —1/n.

Proof. Since o < 20227k < 2(”1*35)’“/k3 < 2(’”1*‘5)’“/163 for large enough k, w.h.p. over the choice
of @, there is an (r,71,0,r1)-marking (Vi,, 0, V.) of ®, see Lemma 4.22. We run Algorithm 5
with inputs @, and the associated marking (Vi,, 0,V.). W.h.p. over the choice of ®, Lemma 4.54
holds. Therefore, with probability at least 1 — 1/n over the choice of two random satisfying
assignments o ~ g and o’ ~ uq, the output path of Algorithm 5 is well-defined by Lemma 4.53
and satisfies that ||¢; — ¢;_1]l1 < 2k®logn for all i € [] and ||& — &_1||1 < 2k logn for all
i € [t] by Lemma 4.54. Hence, it is a D-path in the solution space €2 for D = 2k°logn as we
wanted. O

4.8.2 Proof of Theorem 1.12

We next show O(logn)-looseness for all variables with high probability over (®, o) for random
k-CNF instances ® and uniformly random satisfying assignment o €). Consequently, in an
algorithmic regime where a < 2 for some ¢ < 1, we resolve a conjecture of [1]. Our proof
exploits Corollary 4.52 on the size of the connected components of ®*. It is important in our

arguments that every variable in the formula is flippable.

Definition 4.55. Let ® = ®(k,n,m) be a random k-CNF. A variable v € V is flippable if there
exists a pair of satisfying assignments (X,Y) to ®, in one of which X(v) =F and in the other
Y(v)=T.

Lemma 4.56. For a < 2872 with high probability over the choice of ® = ®(k,m,n), all

variables in ® are flippable.

Proof. Observe that we can define an NAE-SAT problem based on ®. By definition, any

NAE-satisfying assignment ensures that every clause contains at least one satisfied literal and at

Page 192 of 212

Chapter 4. Fast sampling of satisfying assignments from random k-SAT

least one unsatisfied literal. By Theorem 2 in [4], with high probability ® is NAE-satisfiable.
Consequently, we can find some assignment o that NAE-satisfies ® with high probability, and
then the opposite assignment & also NAE-satisfies ® by the symmetry of NAE-SAT solutions.
In particular, both o and @ are solutions to the original SAT formula ®. Observe that for every
variable v € V' we have X (v) = T and X(v) = F in exactly one of 0,5 and thus, with high
probability, every variable in @ is flippable. O

Lemma 4.57. For any variable v € V and any partial assignment X : Vin \ {v} — {F, T}, we
have
Pry,(v—F|X)>0 and Pr,,(v— T|X)>0.

Proof. We prove Pr,,(v — F|X) > 0; the proof of Pr,,(v — T|X) > 0 is analogous. We
distinguish two cases.

The first case is when v is a good variable. Lemma 4.23 gives Pr,, (v — F|X, Apaq) >
1 —exp(1/k)/2 > 0 for any satisfying assignment of the bad clauses Ap,g. Thus, we have
Pr,, (v— F|X) > 0.

The second case is when v is a bad variable. By Lemma 4.56 there exists a satisfying
assignment o with o(v) = F. Let Apaqa = oy, | be the assignment on bad variables and so in
particular Pr,, (Apaq) > 0. Then by Lemma 4.23 we have Pr,,, (X|Apaq) > (1—exp(1/k)/2)Val >
0. This implies that Pr,, (X, Apaq) > 0 and in particular Pr,, (v — F,X) > 0, so Pr,, (v —
FIX) > 0. O

We can now prove Theorem 1.12 with the help of Corollary 4.52.

Theorem 1.12. There is kg > 3 such that, for any integer k > kg, and for any positive real
a < 20227k the random k-CNF formula ®(k,n, |an]) is poly(k)log(n)-loose.

Proof. Note that 20-227k < 9(ri—=30)k < 2(”1_5)1“/14:3 for large enough k. Thus, w.h.p. over the
choice of ®, there is an (r,r1, 0, r1)-marking (Vp,, 0, V.) of @, see Lemma 4.21. The distribution
paly, is (1/k)-uniform by Lemma 4.23. Hence, Corollary 4.52 holds for V = Vi, and p = pqly, .
Let v be a variable of ®. Let 0 ~ ug and let A be the restriction of o to Vi, \ {v}. Then, with
probability at least 1 — n~*, the connected components of Gga have size at most 2k*logn. Let
Cj\ be the connected component containing the variable v, which is empty if all clauses containing
v are satisfied. Let w be the negation of o(v). By Lemma 4.57, we have Pr,, (v — w|A) > 0.
Therefore, there is an assignment Y of the variables in Var(CJA) that satisfies the clauses in C;X
and has Y (v) = w. We construct the assignment o’ that has o’(v) = w, agrees with Y in var(C]A)
and agrees with ¢ in the rest of the variables of ®. In particular, this assignment agrees with A
and satisfies each one of the connected components of ®*. Thus, ¢’ is a satisfying assignment of
®. Moreover, w.h.p. ¢’ differs with o in at most 2k°logn variables (the variables in Var(Cé\)).
We have shown that, w.h.p. over the choice of ®, with probability at least 1 —n~* a random

assignment o ~ g is (2k°logn)-loose, so the statement follows. O

Page 193 of 212

Chapter 4. Fast sampling of satisfying assignments from random k-SAT

4.9 Proofs of Lemmas 4.15 and 4.16

In this section we prove Lemmas 4.15 and 4.16. The proofs of these results are independent of
the rest of this chapter and, in fact, follow from slightly modifying some results in [49], without
involving any other material. We include the proofs here for completeness.

Recall that Lemmas 4.15 is [49, Lemma 8.16] with a less restrictive bound on the density
of the formula and a more restrictive definition of good variables/clauses, see Section 4.2 for
details. Moreover, the obtained upper bound on the number of bad clauses in our version of [49,
Lemma 8.16] is tighter. The original proof of Lemma 4.15 given in [49, Section 8] is split into a
sequence of results on random formulae. Here we restate some of these results — only those
whose statement needs to change as a consequence of our definition of good variables/clauses and
the tighter upper bound. We also explain how these changes affect the proofs if any modifications
are necessary.

Let us fix some notation first. The results stated in this section only hold for large enough &
unless we say otherwise. We note that in [49] the density o is at most 2%/300/k3 and A = 2k/300,
where A is the threshold in the definition of high-degree variables, and the proofs are carried
out for these particular values. It turns out that, following the proofs in [49, Section 8], the only
properties of @ and A needed in order to proof Lemma 4.15 are that, for r € (0,1/(2log?2)), we
have A, = [2"%] and « is bounded above by A,./k® (note the subscript r here to indicate that
A, depends on r). First, we need some definitions. For any set of variables S C V of ®, we
denote by HD(S,) the set of high-degree variables in S (recall that a variable is of high-degree
if the degree of v is at least A,).

Lemma 4.58 ([49, Lemma 8.1]). Let r € (0,1). There is a positive integer ko such that for any
integer k > ko, A, = [27F], and any density o with o < A, /K3, the following holds w.h.p. over
the choice of ® = ®(k,n, |an|). The size of Vo(r) := HD(V,r) is at most (a/AT)n/2k10.

Proof. The proof is the same to that of [49, Lemma 8.1], apart from one change that we highlight
here. The degrees of the variables in ® have the same distribution as a balls-and-bins experiment
with km balls and n bins. Let Dy, Do, ..., D, be independent variables following the Poisson
distribution Poi(p) with parameter u = ka. The degrees of the variables of ® have the same
distribution as {D1, D2, ..., Dy} conditioned on the event £ that Dy + Da + --- + D,, = m, see
for instance [92, Chapter 5.4]. Let U = {i € [n] : D; > A,}. We want to show that Pr(|U| >
(a/A)n/2%°1E) = o(1). In [49, Lemma 8.1] the authors show that Pr(|U| > n/2%'°|€) = o(1).
Their bound is not tight, but it is enough for their purposes. In fact, one can change k' by any
polynomial and the result would still hold for large enough k. Here we obtain the extra factor
a/A, by slightly modifying the application of the tail bound Pr(Poi(u) > x) < e #(eu)*/z*. For
2 = A,, instead of using the bound e #(ep)® /2% < e~ < 27¥"°~1 which holds for large enough
kas u/z < k=2 and A, is exponential in k, we use the bound e #(eu)®/x* < (eu/z)e 2+ <
(a/AT)2*k10*1. The rest of the proof is analogous; we have E[|U]|] > n(a/A)27"=1 5o by
a Chernoff bound we find that Pr(|U| > (a/A,)n/28"°) < exp(—(n)). From the connection

Page 194 of 212

Chapter 4. Fast sampling of satisfying assignments from random k-SAT

between a balls-and-bins experiment and the Poisson distribution, see [92, Theorem 5.7], we
conclude that Pr(|U| > (o/An)n /28" |€) < exp(—Q(n)) as we wanted. O

Corollary 4.59 ([49, Corollary 8.4]). There is a positive integer ko such that for any integer
k > ko and any density o with o < 2¥/(ek?) the following holds w.h.p. over the choice of
® = ®(k,n, |an]). For every set of variables Y such that 2 < |Y| < n/2%, the number of clauses

that contain at least 3 variables from Y is at most |Y|.

Proof. This is a consequence of [49, Lemma 35] with b =3 and t = 2/(b— 1) = 1, whose proof
only requires a < 2% /(ek?). O

Recall that the graph Hg is the dependency graph of the variables of ®, see Definition 4.13.

Lemma 4.60 ([49, Lemma 8.8]). Let r € (0,1). There is a positive integer ko such that for
any integer k > ko, A, = [27F], and any density o with o < A, /k>, the following holds w.h.p.
over the choice of ® = ®(k,n, |an|). Every connected set U of variables in Hg with size at least
2k*logn satisfies that [HD(U,r)| < 55 |U]|.

Proof. The proof is that of [49, Lemma 8.8], with the difference that 5y = 1/(2k%) instead
of o = 1/21600, as the exact value of §y does not play a role in the proof as long as, for
0o = A, — 2(k 4+ 1), we have dgbp log lg—oa > 3log k + log o, which holds for large enough k& when
dp = poly(k). Moreover, the only restriction on « is that of Corollary 4.59, and the fact that
a< A JK. O

Lemma 4.61 ([31, Lemma 2.4] and [49, Lemma 8.10]). Let k > 3 be an integer and let «
be a positive real number with o < €¥/2/(2¢*k?). For any € € [1/n,1) (depending on n) such
that € < e 3k for all n, the following holds w.h.p. over the choice of the random formula
b = ®(k,n,|an]). Let Z be a set of clauses with size at most en and let ¢1,...,c; € C\ Z be
distinct clauses. For s € {1,2,...,0}, let Ng:=var(Z)U Uj;% var(c;j). If |var(cs) N Ng| > 3 for
all s € {1,2,...,0}, then { < en.

Proof. The proof is almost identical to the proof of [31, Lemma 2.4]. There are four differences.
First, here, as it is also the case in [49, Lemma 44], £ can depend on n. This will arise later in this
proof. Second, the proof of [31, Lemma 2.4] is carried out for the condition |var(cs) N Ng| > A,
where A is an integer with A > 4. Here we set A = 3 and impose stricter hypotheses on « and ¢
to compensate for a smaller A. Their (more relaxed) hypotheses on a and € are o < 2¥log 2,
e < k73 and e* < (2¢)7* /e. Third, we substitute the last inequality of [31, Equation 4], which

1S
en

[<en’;/n>2exp(2k)(2k€)1 < [(26)% €>\/2:|5n’

by the inequality

En

[(672/”) 2 exp(2k><2k€>1 I (em/m)” exp(2k) 20| (4.37)

< [exp(3k — 1)g]™",

Page 195 of 212

Chapter 4. Fast sampling of satisfying assignments from random k-SAT

where we used A = 3 and m/n < a < €¥/2/(2¢?k?). Now, as it is done in [49, Lemma 8.10],
we distinguish two cases depending on e. If ¢ > 10(logn)/n, then using this in conjunction
with ¢ < e7?¥, the right hand size of (4.37) is bounded by e=*" < 1/n'0 = o(1/n). If
1/n < e < 10(logn)/n, then, for large enough n, the right hand size of (4.37) is bounded above
by exp(3k — 1)e = o(1). The last difference between the proofs is that our argument works for
all k > 3, whereas the bound [31, Equation 4] only holds for large k. O

The remaining results in this section do not need any changes in their original proofs, other
than that every time Corollary 8.4, Lemma 8.8 and Lemmas 8.10-8.16 are invoked in [49, Section
8], we use the version given in this section instead. We note that the statements of these results
are slightly different to their [49, Section 8] versions, and these changes are again due to the fact

that we use A = 3 instead of A = k/10 in the definition of good variables/clauses.

Corollary 4.62 ([49, Corollary 8.11]). Letr € (0,1/(2log2)]. There is a positive integer ko such
that for any integer k > ko, A, = [2"%], and any density o with o < A, /k3, the following holds
w.h.p. over the choice of ® = ®(k,n,|an]). Let Z be a set of clauses with size at most 271/2]’“10
and let c1,...,¢; € C\ Z be distinct clauses. For s € {1,2,...,L}, let Ng := V&r(Z)UUj;% var(c;).

If |var(cs) N Ng| > 3 for all s € {1,2,...,0}, then £ < |Z].

Proof. The proof given in [49, Corollary 8.11] also applies here. We note that the density « is at
most €#/2/(2¢2k?) so we can indeed apply Lemma 4.61 when the proof given in [49, Corollary
8.11] invokes [49, Lemma 8.10]. O

Lemma 4.63 ([49, Lemma 8.13]). Let r € (0,1/(2log2)]. There is a positive integer ko such
that for any integer k > ko, A, = [27F], and any density o with o < A, /k3, the following holds
w.h.p. over the choice of ® = ®(k,n,|an]). For any bad component S of variables, we have

S| < 2k[HD(S, 7)].

Proof. The proof given in [49, Lemma 8.13] applies using our versions of [49, Lemma 8.1,
Corollary 8.4 and Corollary 8.11]. O

Lemma 4.64 ([49, Lemma 8.14]). Let r € (0,1/(2log2)]. There is a positive integer ko such
that for any integer k > ko, A, = [2"%], and any density o with o < A,./k3, the following holds
w.h.p. over the choice of ® = ®(k,n, |an]). Every bad component S has size at most 2k*logn.

Proof. The proof given in [49, Lemma 8.14] applies using our versions of [49, Lemma 8.8 and
Lemma 8.13]. O

Lemma 4.65 ([49, Lemma 8.15]). Let r € (0,1/(2log2)]. There is a positive integer ko such
that for any integer k > ko, A, = [2"%], and any density o with o < A, /k3, the following holds
w.h.p. over the choice of ® = ®(k,n, |an|). For every connected set of S variables with size at
least 2k*logn, we have |S N Vpaa| < |S|/k2.

Page 196 of 212

Chapter 4. Fast sampling of satisfying assignments from random k-SAT

Proof. The proof is analogous to that given in [49, Lemma 8.15]. The only differences are that
we apply Lemma 4.60 instead of [49, Lemma 8.8], we apply Lemma 4.63 instead of [49, Lemma
8.13], and we have &y = 1/(2k?) instead of 6y = 1/21600. O

Lemma 4.15 ([49, Lemma 8.16]). Let r € (0,1/(2log2)]. There is a positive integer ko such
that for any integer k > ko, A, = [2F], and any density o with o < A, /k3, the following holds
w.h.p. over the choice of ® = ®(k,n, |an|). For every connected set of clauses Y in Gg such
that [var(Y)| > 2k*logn, we have |Y N Cpaa(r)| < |Y/k.

Proof. The same proof applies using our versions of [49, Corollary 8.4 and Lemma 8.15]. O

Lemma 4.16 ([49, Lemma 8.12]). Let r € (0,1/(2log2)]. There is a positive integer ko such
that for any integer k > ko, A, = [2"F], and any density o with o < A, /k3, the following
holds w.h.p. over the choice of ® = ®(k,n, [an]). We have |Coaa(r)| < 2(a/A)n/2¥" and
Voad (7)] < 2(k 4+ 1) (a/A,)n/28".

Proof. We consider the set of high-degree variables Vy(r) = HD(V,r), which w.h.p. over the
choice of ® has |Vy(r)| < (a/Ar)n/2k10 by Lemma 4.58. In view of Corollary 4.59 with Y = Vy(r),
we have [Co(r)] < [Vo(r)| < n/2¥'", where Co(r) is the set of clauses with at least 3 variables in
Vo(r), see Algorithm 2. From Corollary 4.62 and the construction of Cpaq(r) in Algorithm 2,
we find that [Chaa(r)| < 2|Co(r)| < 2Vo(r)| < 2(a/Ar)n/2F"°. By construction of Vpaq(r), see

%10

Algorithm 2, we conclude that [Vhaa(r)| < Vo(r)| + k|Chaa(r)] < 2(k + 1)(a/Ar)n/28 . O

4.10 Proof of Lemma 4.8

In this section we collect the results from [29] that one needs to combine to obtain Lemma 4.8
on the mixing time of the p-uniform-block Glauber dynamics. The proof is independent from

the rest of this chapter and we include it here for completeness.

Definition 4.66. Let i be a distribution supported on Q C [q]V. Let f: Q — R>o. We denote
the entropy of f by Ent,(f), that is, Ent,(f) = E,(flog f)) —E.(f)log(E,(f)) when E,(f) >0,
and Ent,(f) =0 when E,(f) =0. For S CV, we denote Entf:(f) = ETNMV\S Ent,(f|7), where
Ent,(f|7) is the entropy of f conditioning to the event that the assignment drawn from p agrees
with T in V' \ S.

Let p € {1,2,...,n}. We say that u satisfies the p-uniform block factorisation of entropy
(with constant C,) if for all f: Q — R>¢ we have

ZEnt#(f)ng(i) S Eatd(f).
p Se(‘p/)

One of the main results of [29] is showing that u satisfies the p-uniform block factorisation of
entropy when the distribution u is n-spectrally independent and b-marginally bounded. In the
proof of [17, Corollary 19] the authors observe that the proof of Lemma 4.67 also holds when 7

depends on n and, in particular, in the case n = elogn.

Page 197 of 212

Chapter 4. Fast sampling of satisfying assignments from random k-SAT

Lemma 4.67 ([29, Lemma 2.4]). The following holds for any reals b,n >0, any x € (0,1) and
any integer n with n > %(477/1)2 +1).

Let ¢ > 2 be an integer, let V be a set of size n and let p be a distribution over [q]v. If u
is b-marginally bounded and n-spectrally independent, then p satisfies the [kn|-uniform block
factorisation of entropy with constant C = (2/%)477/62+1.

It turns out that one can bound the mixing time of the p-uniform-block Glauber dynamics

when the target distribution p satisfies the p-uniform block factorisation of entropy.

Lemma 4.68 (See, e.g., [29, Lemma 2.6 and Fact 3.5(4)] or [17, Lemma 17]). Let ¢ > 2, p > 1
be integers and V be a set of sizen > p+ 1. Let u be a distribution supported on Q C [q]V that
satisfies the p-uniform-block factorisation of entropy with multiplier C,. Then, for any e > 0, the

mixing time of the p-uniform-block Glauber dynamics on p satisfies, for pimin = mingeq p(A),

n 1 1
Thix(e) < [Cpp (log log . + log 252)-‘ .

We can now prove Lemma, 4.8.

Lemma 4.8. The following holds for any reals b,n > 0, any k € (0,1) and any integer M
with M > %(4?7/()2 +1). Let V be a set of size M, let pu be a distribution over the assignments
V = {F, T}, let Q@ = {A:V — {F,T} : u(A) > 0} and let pmin = minpeq u(A). If p is
b-marginally bounded and n-spectrally independent, then, for p = [kM| and C, = (2/&)4”/b2+1,

L gt ﬂ
og —= .
Hmin g252

Proof of Lemma 4.8. The proof of Lemma 4.8 follows directly from combining Lemmas 4.67
and 4.68. U

we have

M
Tmix(ﬂ» 5) < lrcpp (IOg log

Page 198 of 212

Chapter 5
Conclusion and open questions

This thesis has established several computational complexity results for counting problems
arising in statistical mechanics. The research conducted in this thesis demonstrates the interplay
between approximate counting and statistical mechanics. This interplay has garnered considerable
attention from the research community in the past years, and has lead to several fundamental
questions in both fields. As we have illustrated, one of these remarkable questions is that of
understanding the computational complexity of sampling from the distribution of spin systems.
This problem is intricately linked, via self-reducibily arguments, to approximating the partition
function of the model, a question that naturally emerges in the complexity of counting due to
its connections to combinatorics.

In this thesis, we have capitalised on recent advancements in approximate counting. These
recent breakthroughs have showcased connections between approximate counting and various
areas of mathematics, such as complex analysis, complex dynamics, and the revival of Markov
Chain Monte Carlo algorithms for efficiently sampling in spin systems. We have delved into
these connections to obtain both inapproximability and tractability results, focusing primarily
on the Ising and Potts models, as well as the random k-SAT model.

In Chapter 2 we have studied the complexity of approximating the partition function of
the g-state Potts model and the closely related Tutte polynomial on planar graphs. Following
recent trends in both statistical physics and algorithmic research, we have allowed the edge
interaction y to be any complex number. We have established a complete classification of the
complexity of approximating the partition function of the Potts model for all non-real values
of the parameters (Theorem 1.1), concluding #P-hardness of approximation for almost all
parameters. Our techniques apply to all ¢ > 2 in the Tutte world, and fu