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A B S T R A C T 

Co v ering ∼ 5600 de g 

2 to rms sensitivities of ∼70 −100 μJy beam 

−1 , the LOFAR Two-metre Sk y Surv e y Data Release 2 

(LoTSS-DR2) provides the largest low-frequency ( ∼150 MHz) radio catalogue to date, making it an excellent tool for large-area 
radio cosmology studies. In this work, we use LoTSS-DR2 sources to investigate the angular two-point correlation function of 
galaxies within the surv e y. We discuss systematics in the data and an impro v ed methodology for generating random catalogues, 
compared to that used for LoTSS-DR1, before presenting the angular clustering for ∼900 000 sources ≥1.5 mJy and a peak 

signal-to-noise ≥ 7.5 across ∼80 per cent of the observed area. Using the clustering, we infer the bias assuming two evolutionary 

models. When fitting angular scales of 0 . 5 ≤ θ < 5 

◦, using a linear bias model, we find LoTSS-DR2 sources are biased tracers of 
the underlying matter, with a bias of b C 

= 2 . 14 

+ 0 . 22 
−0 . 20 (assuming constant bias) and b E ( z = 0) = 1 . 79 

+ 0 . 15 
−0 . 14 (for an evolving model, 

inversely proportional to the growth factor), corresponding to b E = 2 . 81 

+ 0 . 24 
−0 . 22 at the median redshift of our sample, assuming the 

LoTSS Deep Fields redshift distribution is representative of our data. This reduces to b C 

= 2 . 02 

+ 0 . 17 
−0 . 16 and b E ( z = 0) = 1 . 67 

+ 0 . 12 
−0 . 12 

when allowing preferential redshift distributions from the Deep Fields to model our data. Whilst the clustering amplitude is 
slightly lower than LoTSS-DR1 ( ≥2 mJy), our study benefits from larger samples and impro v ed redshift estimates. 

Key words: galaxies: haloes – large-scale structure of Universe – radio continuum: galaxies. 
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 I N T RO D U C T I O N  

he LOw Frequency ARray (LOFAR; van Haarlem et al. 2013 ) is a
ey radio telescope array, transforming views of the low-frequency
adio skies. Based in Europe, its full array combines a dense core of
tations in the Netherlands with additional stations that have much
arger baselines both across the Netherlands and Europe. This allows
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aselines of up to ∼ 100 km across the Netherlands and ∼ 2000 km
cross Europe, producing 6 arcsec resolution using the Dutch stations
nly and sub-arcsecond resolution imaging using the full array
Morabito et al. 2022 ; Sweijen et al. 2022 ), at 150 MHz . These sta-
ions combine two types of antennas to operate in two low-frequency
anges: the low-band antennas (LBA; 10 −80 MHz ) and high-band
ntennas (HBA; 120 –240 MHz ). Such lo w-frequency observ ations
ead to a large field of view for each LOFAR observation, making it
n excellent instrument for surv e y science. As part of this, LOFAR is
urrently focusing on several large-area survey projects, including:
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he LOFAR LBA Sky Survey (LoLSS; de Gasperin et al. 2021 ) and
he LOFAR Two-metre Sk y Surv e y (LoTSS; Shimwell et al. 2017 ,
019 , 2022 ) with the HBA, which is what we use for this work.
oTSS aims to observe the entire Northern hemisphere at 144 MHz 

o a typical rms sensitivity of σ144 MHz ∼ 70 –100 μJy beam 

−1 and 
race a combination of active galactic nuclei (AGN) and star- 
orming galaxies (SFGs) across large periods of cosmic time. At 
uch frequencies, the dominant radiative mechanism is synchrotron 
mission from relativistic electrons spiraling in the magnetic fields. 
his leads to a typically power-law-like distribution for flux densities 
s a function of frequency ( S ν ∝ ν−α) with a range of spectral indices,
ypically assumed to be α ∼ 0.7 −0.8 for an average radio population 
Kellermann, P aulin y-Toth & Williams 1969 ; Mauch et al. 2003 ;
mol ̌ci ́c et al. 2017a ; de Gasperin, Intema & Frail 2018 ), though
uch larger or smaller values can be observed for individual sources
ith flat or peaked spectra (e.g. Massaro et al. 2014 ; Callingham

t al. 2017 ; O’Dea & Saikia 2021 ). 
LoTSS has dev eloped o v er a series of data releases, improving

n properties such as angular resolution, sensitivity, image fidelity 
nd areal co v erage. Initially, observations co v ering 350 de g 2 were
eleased with direction-independent calibration only at a resolu- 
ion of 25 ′′ , detecting ∼44 000 sources with a typical noise of

0 . 5 mJy beam 

−1 . This was then impro v ed upon in both resolution
nd sensitivity with the first fully direction-dependent calibrated 
ata release for LoTSS: LoTSS-DR1 (Shimwell et al. 2019 ). This
ata release co v ered 424 de g 2 o v er The Hobby-Eberly Telescope
ark Energy Experiment (HETDEX) Spring Field (Hill et al. 
008 ) with a corresponding catalogue of ∼325 000 sources, with 
 1 σ sensitivity of ∼ 70 –100 μJy beam 

−1 at 6 arcsec angular res-
lution. This sky coverage has now been enlarged in the latest 
ata release, LoTSS-DR2 (Shimwell et al. 2022 ), which co v ers

5600 deg 2 with an accompanying catalogue of ∼4.4 million 
ources. This is the largest catalogue of radio sources within an 
ndividual radio surv e y to date. Such a combination of area and
arge source numbers means that LoTSS-DR2 provides an excel- 
ent data set for radio cosmology studies, allowing for a more 
etailed understanding of the distribution of radio sources in the 
niverse. 
The study of the distribution of sources observed in galaxy surveys

hroughout the Universe is important for a number of reasons. Most
mportantly, it allows us to understand more about how galaxies trace 
he large-scale structure of the Universe and the underlying dark 

atter distribution. Starting from initial primordial o v erdensities, 
ense regions of matter have come together and evolved over time. 
his has resulted in the large-scale distribution of matter we observe 

oday (Colless et al. 2001 ; Doroshkevich et al. 2004 ; Springel,
renk & White 2006 ). This coming together of dark matter forms
aloes in these initially o v erdense re gions, and leav es an absence
f dark matter, known as voids, in regions of initial underdensities. 
ilaments then connect dense regions together. Luminous matter, 
hich we observe in astrophysical objects such as stars and galaxies, 

s also attracted together under the effects of gravity but is further
nfluenced by factors such as the effect of feedback associated with 
oth star formation and from AGNs (see e.g. Ceverino & Klypin 
009 ; Fabian 2012 ; Hopkins, Quataert & Murray 2012 ; Morganti
017 ). Since galaxies form in dense re gions, the y trace peaks in
he underlying matter distribution, leading galaxies to be known as 
iased tracers of the matter distribution in the Universe (see e.g. 
eebles 1980 ; Kaiser 1984 ; Mo & White 1996 ; Desjacques, Jeong &
chmidt 2018 ). 
On large scales, the galaxy o v erdensity, δg ( x , z), can be considered

o trace the matter o v erdensity, δm 

( x , z), related by a quantity known
s ‘galaxy bias’, b ( z): 

g ( x , z) = b( z) δm 

( x , z) . (1) 

o quantify galaxy bias, a common method is to first determine
he excess probability to observe galaxies within different spatial 
eparations, compared to if they were randomly distributed. This is 
nown as the spatial two-point correlation function (TPCF), ξ ( r , z).
he redshift-dependent linear bias, b ( z), can then be measured and

s related to the ratio of spatial clustering of galaxies, ξ ( r , z), to the
lustering of matter, ξM 

( r , z), as given by 

 

2 ( z) = 

ξg ( r, z) 

ξM 

( r, z) 
. (2) 

he spatial clustering of galaxies, ξ g ( r ), defines the excess clustering
f galaxies observed at a given spatial separation, compared to if
hey were randomly distributed. Such measurements of the spatial 
lustering rely on accurate redshifts and corrections due to peculiar 
elocities. Where highly accurate redshifts are not available for 
ources in a surv e y, it is still possible to estimate the spatial clustering
y combining the observed projected angular clustering of sources 
ith their redshift distributions using methods such as Limber 

nversion (Limber 1953 , 1954 ). Radio surveys provide excellent 
atalogues to measure the large-scale structure of the Universe as 
hey predominately trace extragalactic sources over a broad redshift 
ange and o v er large areas, but typically rely on angular clustering
easurements instead of spatial measurements. 
The angular two-point correlation function ( ω( θ ), see e.g. Tot-

uji & Kihara 1969 ; Peebles 1980 ; Cress et al. 1996 ; Blake &
all 2002 ; Overzier et al. 2003 ; Wang, Brunner & Dolence 2013 )

oes not rely on redshifts for its calculation and quantifies the
xcess probability (d P ) of pairs of sources observed within a surv e y
atalogue at a given projected angular separation, θ , compared to if
he sources were randomly distributed on the sky, with no intrinsic
arge-scale structure. This is defined by 

 P = N [ 1 + ω( θ ) ] d 
, (3) 

here d 
 is the solid angle of the observations and N is the mean
umber of sources per unit area. 
Radio continuum surv e ys rely on multiwav elength information 

or redshifts (see e.g. Smol ̌ci ́c et al. 2017b ; Prescott et al. 2018 ;
lgera et al. 2020 ), which are typically dominated by less accurate
hotometric redshifts for a large fraction of the sources. For LOFAR,
n the first LoTSS data release (Shimwell et al. 2019 ), sources were
ross-matched to sources in surv e ys such as Pan-STARSS (Chambers
t al. 2016 ) and WISE (Wright et al. 2010 ; Williams et al. 2019 ), with
50 per cent of LoTSS-DR1 sources having redshift information 

see Duncan et al. 2019 ). Similarly for the LoTSS Deep Fields, the
ealth of multiwavelength data has been used to obtain redshifts for
7 per cent of sources across the multiwavelength defined regions 
n the three fields LoTSS Deep Fields (see Duncan et al. 2021 ;
ondapally et al. 2021 ; Sabater et al. 2021 ; Tasse et al. 2021 ) which
as used to help classify such sources (see Best et al. 2023 ). The

ccuracy of redshifts for such radio sources will be impro v ed upon
ith future spectroscopic surv e ys (such as WEAVE-LOFAR; Smith 

t al. 2016 ). 
Combining measurements of the angular clustering and redshift 

istribution, the spatial clustering for a population of sources can 
e inferred. The spatial clustering can then be used to estimate the
alaxy bias of radio sources (as in Equation 2 ), this will be discussed
urther in Section 5 . Such clustering and bias measurements have
een presented in a number of works (see e.g. Magliocchetti et al.
999 , 2004 ; Negrello, Magliocchetti & De Zotti 2006 ; Lindsay et al.
MNRAS 527, 6540–6568 (2024) 
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1 Redshifts for a number of sources will be available in the value-added 
catalogue of Hardcastle et al. ( 2023 ) which is cross-matching sources ≥4 
mJy, to ensure accurate host positions for source ≥8 mJy. Ho we ver, there 
will be significant incompleteness compared to the full population of sources 
used in this work. 
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014a ; Nusser & Tiwari 2015 ; Magliocchetti et al. 2017 ; Hale et al.
018 ; Siewert et al. 2020 ; Mazumder, Chakraborty & Datta 2022 ;
iwari et al. 2022 ). A number of such studies suggest an evolving
ias model for radio sources, suggesting radio sources are more
iased tracers of the underlying matter distribution at higher redshift.
oreo v er, studies which further consider the bias for radio SFGs and
GN separately have shown that these sources have different bias
istributions and trace different mass haloes (see e.g. Magliocchetti
t al. 2017 ; Hale et al. 2018 ; Chakraborty et al. 2020 ; Mazumder,
hakraborty & Datta 2022 ). Such studies have shown that AGN
ppear to inhabit more massive haloes than for SFGs at similar
edshifts, reflecting the fact that they preferentially inhabit massive
llipticals. Further studies which classify AGN suggest that the
aloes hosting radio AGN may be related to the accretion mode
f AGN (using high-redshift analogues to high/low-excitation radio
alaxies, see Hale et al. 2018 ). Such differences in the bias of different
ource populations can be advantageous for cosmological analysis,
sing the multitracer techniques (see e.g. Raccanelli et al. 2012 ;
erramacho et al. 2014 ; Gomes et al. 2020 ). These techniques require
nderstanding of the bias evolution for different source populations
nd make use of such difference to help place constraints on, for
xample, non-Gaussianity. 

Further cross-correlating radio data with other cosmological
racers (see e.g. Allison et al. 2015 ; Alonso et al. 2021 ) can also
elp remo v e some of the systematics which remain in the data and
ave added further constraints on the galaxy bias evolution of radio
ources, and Alonso et al. ( 2021 ) further used this to place constraints
n the redshift distributions for radio sources, where no redshift
nformation was available. Measurements of bias have been used in
umerous studies to relate such measurements to the typical mass
f the dark matter haloes which are hosting such sources (see e.g.
hose described in Mo & White 1996 ; Tinker et al. 2010 ), but there
re caveats to such measurements, especially if full halo occupation
odels are not taken into account (see e.g. Aird & Coil 2021 ). 
In this paper, we investigate the angular clustering of radio sources

ithin ∼ 4500 deg 2 of the LoTSS-DR2 surv e y and use this to infer
he average bias of LoTSS-DR2 sources. The paper is arranged as
ollows: In Section 2 , we describe the LoTSS-DR2 data used in this
nalysis, as well as the methods to measure the angular clustering
f radio galaxies in Section 3 . This includes a detailed description
f the methods used in order to obtain accurate random sources that
imic the distribution of observational biases across the field of

ie w, which de velops the techniques used for LoTSS-DR1 (Sie wert
t al. 2020 ). Then, in Section 4 , we present our measurements
f the angular clustering of sources and our validation of these
easurements before presenting our methods to determine galaxy

ias in Section 5 . This allows us to place constraint on how such
ources trace the underlying matter and dark matter haloes across
osmic time. We then discuss our results in Section 6 . We then go
n to draw final conclusions in Section 7 . For this paper, we assume
tandard cosmological parameters from Planck Collaboration ( 2020 )
n a flat model Universe, specifically: H 0 = 67.4 km s −1 Mpc −1 ,

b = 0.0493, 
c = 0.264, 
m 

= 
b + 
c , 
� 

= 1 − 
m 

, n s = 0.965,
8 = 0.811, unless otherwise stated. 

 DATA  

or this work, we make use of the data and associated data products
rom two LOFAR surv e y projects: (i) the large area LoTSS-DR2
urv e y (Shimwell et al. 2022 ) and (ii) the associated redshift
nformation from sources in the smaller LoTSS Deep fields (Duncan
t al. 2021 ). 
NRAS 527, 6540–6568 (2024) 
.1 LoTSS-DR2 

he majority of data used in this work consists of images and
atalogues from the mosaics generated from combining 841 indi-
idual pointings of LoTSS-DR2 (Shimwell et al. 2022 ) co v ering

5600 deg 2 o v er two re gions. The first of these is centred at 13 h
n RA, co v ering 4178 de g 2 , and the second re gion is centred at an
A of 1 h, co v ering 1457 de g 2 . The data were reduced in a two-

tage process which consists of both a direction-independent and a
irection-dependent calibration pipeline. The former flags, calibrates
nd averages the data in order to reduce the large data volumes,
hilst the latter does further calibration and imaging to account for
irection-dependent effects. This includes the effect of the varying
onosphere across the field of view, which is more prominent at the
bserving frequencies that telescopes such as LOFAR operate at,
ompared to higher frequency radio observations. As presented in
orks such as Williams et al. ( 2016 ), van Weeren et al. ( 2016 ),
himwell et al. ( 2019 ), and Tasse et al. ( 2021 ), such direction-
ependent calibration of LOFAR data is crucial for improving image
delity and for producing higher-resolution imaging of the field
t 6 arcsec angular resolution, compared to 25 arcsec without this
ccounted for (see e.g. Shimwell et al. 2017 ), when using only the
utch LOFAR stations. Source catalogues were generated using the

ource finder PYBDSF (Mohan & Rafferty 2015 ) which detected a
otal of ∼4.4 million sources across the full LoTSS-DR2 co v erage.
he distribution of these sources o v er the Northern hemisphere can
e seen in Fig. 1 . This distribution varies significantly across the field
f view due to a combination of factors. These include intrinsic large-
cale structure, and non-uniform detection across the field of view
esulting from instrumental, calibration and source finding effects.
nderstanding the factors which cause such non-uniformity in the
ata are important in order to accurately measure the true angular
lustering of sources and will be discussed further in Section 3.2 .
nless otherwise stated, any mention of images and pointings from
oTSS-DR2 refer to the mosaic images which are available from
ttps://lofar-surv e ys.org , and are the mosaiced region closest to the
ointing centre. 

.2 LoTSS Deep Fields 

n order to relate any observed angular clustering to the spatial
lustering and bias, it is crucial to have knowledge of the redshift
istribution of the sources within the field. As there are not direct
easurements of redshifts for the full population of LoTSS-DR2

ources 1 we make use of the LoTSS Deep Fields data (Sabater
t al. 2021 ; Tasse et al. 2021 ) which targets a handful of fields
n the Northern hemisphere with an abundance of multiwavelength
ata, these are observed to deeper sensitivities than in LoTSS-DR2.
bservations within these fields are important to help infer the

edshift distribution of the sources observed within LoTSS-DR2.
he first LoTSS Deep Fields data release consisted of three fields:
o ̈otes, Lockman Hole, and the European Large-Area ISO Surv e y
orthern Field 1 (ELAIS-N1) field. These were observed for a total
f 80, 164, and 112 h, respectively, covering ∼ 20 deg 2 in each field.
For each field, a smaller region was defined for which there

xists deep multiwavelength information. In such regions, the source

https://lofar-surveys.org
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Figure 1. Sky density distribution of all sources in the LoTSS-DR2 survey (upper panel) from Shimwell et al. ( 2022 ) and for the random catalogues generated 
for this work (lower; prior to any flux density, SNR or spatial cuts). This shows the two large regions covered by the survey, centred on right ascensions of 
1 h (15 ◦) and 13 h (195 ◦). The figure is plotted in the Mollweide projection using HealPix (G ́orski et al. 2005 ; Zonca et al. 2020 ) with an N side = 256. The 
colour-scale indicates the source density per sq. deg across the field of view. 
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atalogues from PYBDSF were cross-matched to host galaxies 
Kondapally et al. 2021 ) using a wealth of ancillary data. This
ross-matched area constituted a total area of 8 . 6 deg 2 in the Bo ̈otes
eld, 6 . 7 deg 2 in ELAIS-N1 and 10 . 3 deg 2 in the Lockman Hole
eld, totalling 25 . 6 deg 2 across the three fields. For the cross-
atched sources, a redshift was also associated to the source using a

ombination of template fitting to the multiwavelength data as well 
s machine-learning methods in order to obtain probability density 
unctions (PDFs) for the redshift distributions, denoted p ( z). A ‘best
edshift’ was then assigned to each source based on the PDF, or a
pectroscopic redshift if such was available for the sources. More 
etail on this can be found in Duncan et al. ( 2021 ). We use these
edshift distributions to estimate the redshift distribution, p ( z), for
ources in the wider LoTSS-DR2 surv e y. This will be discussed
urther in Section 5.1 . 

 A N G U L A R  CLUSTERING  A N D  R A N D O M S  

E N E R AT I O N  

.1 Angular clustering 

s discussed in Section 1 , one way to investigate the clustering of
ources within a galaxy catalogue is through measuring the angular 
wo-point correlation function (TPCF), denoted by ω( θ ). The TPCF 

uantifies the excess clustering observed at a given angular separation 
n the catalogue data, compared to what would be observed over the
eld of view if there was no large-scale structure within the data.
aiv ely, such e xcess probability to detect galaxies in the data at a
iven angular separation compared to the distribution from random 

ources is given by : 

( θ ) = 

DD ( θ ) 

RR ( θ ) 
− 1 . (4) 
n this estimator, DD ( θ ) is the counts of pairs of galaxies within the
ata catalogue at a given angular separation θ (normalised such 
hat � θDD ( θ ) = 1) and RR ( θ ) is the corresponding normalised
air counts within a random catalogue. This random catalogue is 
enerated to mimic observational effects across the field of view. If
he data were indeed randomly distributed and exhibited no large- 
cale structure behaviour, ω( θ ) would fluctuate around a value of
. Any deviation from this suggests intrinsic large-scale structure. 
 number of predictions for galaxies as well as observations have

uggested that this angular clustering behaves as a power law 

or galaxies and specifically radio sources (see e.g. Peebles 1980 ;
lake & Wall 2002 ; Lindsay et al. 2014a ; Magliocchetti et al. 2017 ,
ut see Section 4 ). Whilst Equation 4 could be used to estimate ω( θ ),
ork by Landy & Szalay ( 1993 ) has shown that a more accurate

stimator of ω( θ ) is given by: 

( θ ) = 

DD ( θ ) − 2 DR ( θ ) + RR ( θ ) 

RR ( θ ) 
. (5) 

n this estimator, DR ( θ ) is the corresponding normalised pair counts
etween the data and random catalogues within a given angular 
eparation. This estimator has been shown to have minimal variance 
nd be less biased than other estimators such as Equation 4 (see
andy & Szalay 1993 ). As such, we use Equation 5 to calculate ω( θ )

n this work. 
To calculate ω( θ ), a random catalogue must first be generated

o compare to the data. If source detection across the field of
iew were uniform, such a random catalogue could be generated 
hrough sampling random positions across the observed field of 
ie w. Ho we ver, the detection of sources is not uniform (see Fig.
 ) and will be affected by a number of observ ational ef fects across
he sky. Thus, the generation of randoms which accurately mimic the
etection of sources across the sky is crucial to a v oid observational
ffects being mistaken for intrinsic large-scale structure. We therefore 
MNRAS 527, 6540–6568 (2024) 
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mploy a number of methods (discussed in Section 3.2 ) to mimic such
bservations across the field of view. 
To measure ω( θ ), we make use of the package TreeCorr (Jarvis

015 ) to calculate the pairs of galaxies within angular separation
ins that are uniformly spaced bins in ln ( θ ) and co v er the range of
ngular scales possible with the data. Due to the large area co v erage
f LoTSS-DR2, we ensure that the metric for calculating separations
ithin TreeCorr is set to ‘Arc’ . This helps to more accurately

alculate separations across large fields of view, using great circle
istances. We also set the parameter bin slop to 0 which enforces
hat exact calculations are made to calculate the number of pairs of
ources within each angular separation bin, as opposed to the default
ethod which has some flexibility between the separation bins in

rder to help speed up the calculation of pairs. Such parameters were
etermined to be important in the work of Siewert et al. ( 2020 ),
here a non-zero bin slop was found to introduce larger errors in

he measurement of ω( θ ). The associated uncertainties in ω( θ ) will
e discussed in greater detail in Section 3.4 and its connection to
inear bias also discussed in Sections 5.2 –5.3 . 

.2 Randoms 

s discussed in Section 3.1 , in order to measure the angular clustering
rom LoTSS-DR2, we need to have a catalogue of random sources
hich mimics the detection of data across the field of view. Fig.
 highlights the non-uniform detection of radio sources across the
eld of view, due to a combination of factors including sensitivity
ariations across the field of view due to bright sources, reduced
ensitivity with declination and smearing of points sources across
he field of view. In building our random catalogue, we will take a
eries of steps to account for these effects. An outline of these steps,
s well as the section in which these shall be applied is as follows: 

(i) Survey area – We generate randoms across the surv e y field
f view, ensuring we remo v e an y masked regions within pointings
hich are masked out due to failures within the data reduction
rocess. We consider this in Section 3.2.1 . 
(ii) Smearing – There may be position-dependent smearing effects

cross the field of view of a pointing, as well across the 5600 deg 2 .
mearing will affect the detection of sources (which is based on
ignal-to-noise ratio ‘SNR’, defined here as peak flux density/rms
root mean square noise), for which the Isl rms column is used
or rms of the data 2 ), and could arise from effects such as residual
alibration uncertainties and uncorrected smearing effects inherent
o the data averaging. We model smearing across the field of view
nd its dependence on field ele v ation and correct for this, which is
iscussed in Section 3.2.2 . 
(iii) Incompleteness and measurement errors – The sensitivity

rms) will vary across the surv e y area, such as with ele v ation or
eclination (see Fig. 2 of Shimwell et al. 2019 ) or location within the
osaic and proximity to bright sources, where the noise is known

o be ele v ated. Variations may also exist towards the edge of the
eld, where there are fewer neighbouring pointings that can be
osaiced together (as mosaicing would reduce the noise). This will

ffect source detection and hence the completeness. Furthermore, the
ource finder may have a completeness dependence with SNR and
ts measurement errors can affect the properties such as flux density
NRAS 527, 6540–6568 (2024) 

 For the randoms, we use the pixel rms value at the source centre. Using a 
entral rms value for the data makes a negligible difference to the number of 
ources when the final flux density and SNR cuts are applied are described in 
ection 3.3.2 

D  

t  

3

c

ssociated with sources. We account for completeness as a function
f source input SNR and the effect that noise and the source finder
ay have on the measured flux properties of sources in Section 3.2.3 .
(iv) Additional spatial masking – Finally, there may be additional

patial regions which should be masked to a v oid regions such as the
nmosaiced edges of pointings; this is described in Section 3.3 . 

We note, though, that there may be limitations to generating
he randoms which may be more challenging to account for, es-
ecially o v er the large area of LoTSS-DR2. This includes residual
rimary beam uncertainties which are unknown and that mosaicking
ointings together may cause additional smearing which can very
patially due to pointing-dependent astrometric offsets. To minimize
he effects of these, additional flux limit and SNR limits can be
pplied to both the data and random samples. Specifically, for our
nal analysis, we limit the sample to ≥1.5 mJy and ≥ 7.5 σ . We
iscuss these and additional cuts in Sections 3.3.2 –3.3.3 . 

.2.1 Input simulated catalogue 

he first step in generating accurate random catalogues for the
oTSS-DR2 surv e y is to generate a sample of input positions which
re uniformly distributed across the field of view of LoTSS-DR2,
ccounting for masked regions within the fields. For this work, we
enerated random positions in the range: RA from 0 ◦ to 360 ◦ and
ec. from 20 ◦ to 80 ◦. This wide-area encompasses the full LoTSS-
R2 footprint, but a significant fraction of such a region is not

o v ered by LoTSS-DR2. Therefore, we use the associated rms maps
f each individual pointing to identify the sources within the LoTSS-
R2 area. We assign each random position an rms value, based on

he pixel value at the source location, using the rms map for the
losest pointing. This also allows sources within masked regions,
r regions not surveyed in LoTSS-DR2 to be identified. Random
ources falling within the surv e yed re gion are retained and consist
f ∼200 million input simulated positions across the field of view of
oTSS-DR2. 
To account for sensitivity variations and the effect that this has on

he detection of sources, we take a number of iterative steps. First,
e assign simulated properties of radio sources to each of the ∼200
illion random positions. Such properties include the flux density

f the simulated source, as well as source shape information. To
o this, we make use of the SKA Design Studies Simulated Skies
SKADS; Wilman et al. 2008 , 2010 ), which provide a simulated
atalogue of sources co v ering 100 de g 2 with multiple observable
roperties for each simulated source. These properties include an
ssociated redshift, flux density measurements at several frequencies
n the range 151 MHz − 18 GHz , shape information and source
ype (e.g. AGN or SFG). Recent observations suggest that SKADS
nderestimated the number of SFGs at the faintest flux densities
see e.g. Bonaldi et al. 2016 ; Smol ̌ci ́c et al. 2017a ; Matthews et al.
021 ; van der Vlugt et al. 2021 ; Best et al. 2023 ; Hale et al. 2023 ).
herefore, we employ a modified version of the SKADS catalogue
here the number of SFGs in the original catalogue are doubled, as

lso done in Hale et al. ( 2023 ). The source counts from the modified
KADS catalogue better reflects deep data from the LoTSS Deep
ields (Mandal et al. 2021 ), source counts presented for LoTSS-
R2 (Shimwell et al. 2022 ) and data from other wavelengths scaled

o 144 MHz , assuming a spectral index 3 of α = 0.7, We initially
 We use this value for the spectral index unless otherwise stated, under the 
onvention S ν ∝ ν−α . 
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se a minimum flux density of 0 . 1 mJy for the SKADS sources to
alidate the randoms, but increase this to 0 . 2 mJy once flux density
uts are applied (see Section 3.3.2 ). We note that the relatively
imited area of SKADS compared to LoTSS-DR2 means that the 
ontribution of the much rarer, bright sources may be undersampled 
nd so may differ from LOFAR observations. However, such bright 
ources are rare in the observations and simulations and so will not
ontribute largely to the clustering. Moreo v er, those sources will not
e sensitivity limited. Due to the nature of the large area of LoTSS-
R2, SKADS sources will need to be repeated in our random sample,

o ensure both spatial co v erage and to allow the random sample to
e significantly larger than the data. Whilst other simulated radio 
atalogues exist, such as T-RECS (Bonaldi et al. 2019 , 2023 ), we
ill demonstrate later that the source counts used from this modified 
KADS model can accurately represent the source counts of our 
ata and other deeper observations, and have been shown to be 
uccessful in estimating completeness in other studies (Hale et al. 
023 ). Therefore, we feel we are able to adopt SKADS for use in this
ork. With future studies which split by source type and redshift,

t will become increasingly important to use simulated catalogues 
hich both have overall flux distributions which reflect the data 

s well as reflect the evolving luminosity functions for different 
opulations. 
As PYBDSF relies on peak SNR in order to determine whether 

 source is detected abo v e the local noise, we need a peak flux
ensity for the simulated sources. For a given integrated flux density, 
 point source is more likely to be detected than an extended source,
ue to the decreasing peak SNR for more extended sources. To 
ssign a peak flux density to our simulated sources, we use the
omponent catalogue which corresponds to the modified SKADS 

atalogue. The catalogue used for this work has a flux density limit
f 5 μJy at 1 . 4 GHz ( ∼ 25 μJy at 144 MHz ), and includes the shapes
nd orientations of components that make up the individual sources 
n the SKADS catalogue. Following Hale et al. ( 2021 , 2023 ), we
odel each SKADS source through combining the emission related 

o the modelled components of a source. For each component, 
e model this as an ellipse randomly positioned within a pixel 
f the same pixel scale as the LOFAR observations. We convolve 
his ellipse with a Gaussian kernel representing the restoring beam 

hich is an approximation to the point spread function (PSF) of the
OFAR observations (6 arcsec) and sum these components together. 4 

his procedure provides an input catalogue of sources which have 
nformation on the integrated flux density, redshift, source type and 
eak flux density, which we can assign to our random catalogues. 
nlike in Hale et al. ( 2021 , 2023 ), though, we do not inject sources

nto the images and re-extract sources using the source finder, 
YBDSF . This is due to the large area of the field being considered,
or which a significant computational effort would be required to 
reate sufficient random sources to measure the clustering. Instead 
e make use of information from the simulations performed in 
himwell et al. ( 2022 ) to account for incompleteness across the
ky. Ho we ver, we must first account for smearing across the field 
f view. 
 We note that the knowledge of the true underlying source size distribution is 
hallenging to understand from current observations, due to complexities such 
s source deconvolution and smearing in the image. Whilst SKADS provides 
ne source size model, knowledge of these for the data will be impro v ed with 
eep, high-resolution imaging of galaxies, such as with observations from the 
OFAR International stations (see e.g. Morabito et al. 2022 ; Sweijen et al. 
022 ). 

t  

t  

e  

s  

u
w  
.2.2 Smearing 

mearing effects can reduce the peak flux densities of sources, and
ence their detection. This smearing can originate from a range of
actors including: bandwidth and time smearing (Bridle & Schwab 
999 ); residual calibration errors; the size of the facets used in the
eduction; and residual effects from the ionosphere interacting with 
he radio signals. The first of these, bandwidth and time smearing,
s described in detail in Bridle & Schwab ( 1999 ) and is related to
he averaging of data, which causes an increasing smearing with 
istance from the pointing centre. In LoTSS-DR1, Shimwell et al. 
 2019 ) suggested that the use of DDFacet reduced the effects of such
mearing at the largest angular separations compared to Bridle & 

chwab ( 1999 ) (see Fig. 10 of Shimwell et al. 2019 ). This is because
DFacet uses a different PSF in each facet which can be used to
ccount for smearing in the data. The 6 arcsec restoring beam of
OFAR images is then used uniformly across the images. Ho we ver,
uch a process leads to residual effects. For example, sources which
re not fully deconvolved may still exhibit smearing and as only
ne PSF per facet is assumed, this can also lead to residual effects.
e do not adopt the relation for smearing as presented in fig. 10 of

himwell et al. ( 2019 ), but instead investigate the smearing for the
oTSS-DR2 data and how it varies with observational properties. 
Given the large survey area of LoTSS-DR2 ( ∼ 5600 deg 2 ), we

onsider whether there is a possibility of smearing being a function
f position across the surv e y, in particular with the ele v ation of the
bservations, as the primary beam size of an individual pointing 
ncreases at low elevation with LOFAR as it is not a steerable
elescope, and as there are larger ionospheric effects, because more 
f the Earth’s atmosphere is along the line of sight. This leads to
arger and more elongated PSF sizes and observational area at lower
eclination (see LOFAR observations at lower declinations in Hale 
t al. 2019 ). Therefore, we consider the dependence of the observed
mearing as a function of these parameters. 

To investigate the relationship of the position-dependent smearing 
e make use of sources from the Faint Images of the Radio Sky at
wenty-cm surv e y (FIRST; Becker, White & Helf and 1995 ; Helf and,
hite & Becker 2015 ) where we have overlap between the two

urv e ys (mostly in the 13h field). FIRST is a 1.4 GHz surv e y with
he VLA which observed the northern sky to σ1 . 4 GHz ∼ 0 . 15 mJy
t 5 arcsec resolution. To study the smearing, it is important to
dentify sources which are believed to be unresolved. Such sources 
hould have a ratio of integrated to peak flux densities ( S I 

S P 
) of

, though scatter will exist due to the effects of noise at lower
NR. Due to the higher angular resolution in FIRST compared 

o LoTSS-DR2, we make the assumption that those sources which 
re unresolved in FIRST will also be unresolved in LoTSS-DR2. 
o identify unresolved sources in FIRST, we took those which are

solated (no neighbours within 12 arcsec) and are high SNR (SNR
10). For those sources, we follow the methods of previous works

uch as Smol ̌ci ́c et al. ( 2017a ), Shimwell et al. ( 2019 ), Hale et al.
 2021 ) and use a 95 per cent SNR envelope of the form: 

S I 

S P 
= A ± B × SNR 

−C , (6) 

where the ± reflects the upper/lower envelopes. A is found using 
he value of S I 

S P 
at high SNR, and sources with S I 

S P 
below A are used

o fit for B and C in order to define the envelope. The form of the
nvelope fit for these sources can be seen in Fig. 2 . Those FIRST
ources which are below the upper envelope are considered to be
nresolv ed. These unresolv ed FIRST sources are then cross-matched 
ithin a 3 arcsec matching radius to LoTSS-DR2 sources which are
MNRAS 527, 6540–6568 (2024) 
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Figure 2. SNR envelope for integrated to peak flux density ratio as a function 
of SNR that is determined for isolated, high SNR sources in FIRST (see 
Section 3.2.2 ). Sources in blue are considered to be unresolved and in red are 
resolved. The model for the envelope is also provided. 
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5 The model parameters that we find and use in this analysis are αC = 0.506, 
βC = −0.004 28, αD = 0.0557, and βD = −0.000 217 (to three significant 
figures). 
6 We note these shapes are based on deconvolved source sizes, which may 
have smearing effects. We also note the SKADS models use elliptical based 
models, not Gaussians, and so this may lead to some residual differences 
when comparing the detection of extended sources. We use these simulated 
sources from Shimwell et al. ( 2022 ), though, as they are more appropriate 
than point sources, and allow some indication of the effect of non-point-like 
objects. 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/527/3/6540/7313622 by Librarian user on 06 M
arch 2024
solated (again, within 12 arcsec), high-SNR sources (SNR ≥ 20, to
nsure sources are less affected by Eddington bias, see Eddington
913 ), and those sources which were considered single sources by
YBDSF (i.e. S Code = ‘S’). 
We then consider the position-dependent median ratio of the

ntegrated-to-peak flux densities as a function of distance to the
earest pointing centre and its dependence on RA, Dec., and mean
le v ation of the field observation. Only those separation bins that
ave at least 200 sources within them are presented in Fig. 3 and
rror bars are generated by bootstrap resampling the sources within
he bin 100 times after resampling one-third of the sources. 

Fig. 3 , shows an increase in smearing across the field of view as
 function of distance from the pointing centre. Ho we ver, there is
lso an apparent dependence on the declination and ele v ation of the
eld. The relationship with the right ascension of the observations is
ore complicated. If we first consider the effects of declination,

he median flux density ratios appear to increase with declining
eclination, whilst for the two lowest declination bins considered
here is similarity in the trend of the observed smearing as a function
f separation. If we consider the dependence on RA this does not
ppear to have a clear trend, but at the largest RA considered the
mearing is minimised. Ho we ver, we note that the comparison with
IRST does not have sufficient RA co v erage to investigate the full
A range observed with LOFAR. Finally, if we investigated the
le v ation dependence of this smearing, we see increasing smearing
ith distance from the pointing centre, which also appears to decrease
ith ele v ation abo v e an ele v ation of ≥65 ◦, and to be constant at

le v ations belo w this. As the ele v ation of an observation is related to
he declination of the source combined with the time of observation,
uch smearing effects are likely correlated. For this work, we only
onsider the ele v ation-dependent smearing to correct the peak flux
ensities of the random sources, using for a model of the form: 

S I 

S P 
= C 1 + e −D 1 ×θ , (7) 

here θ is the angular separation (in degrees) from the pointing
entre of the nearest pointing and C 1 and D 1 are values to be fit.
e calculate the best-fitting values of C 1 and D 1 in bins of ele v ation

nd then model the average distribution of these parameters using a
inear equation: 

 1 = αC + βC × ε, (8) 
NRAS 527, 6540–6568 (2024) 
nd similarly for D 1 . Here, αC and βC are constants, and ε is the mid-
oint of the ele v ation bin in degrees. These are fit for ele v ation bins
ith an ele v ation ≥60 ◦. For those ele v ations ≤62.5 ◦, we apply the

ame relation to that fit for the 60–65 ◦ ele v ation range. These models 5 

re presented in Fig. 3 . When applied to the random sources, angular
eparations are measured to the nearest pointing centre and the mean
le v ation is taken as that of the nearest pointing. As can be seen
rom Fig. 3 , this functional form appears to be a good visual fit to
he data. This smearing shows that for those sources at the largest
ngular distances from the pointing centre have greater smearing
nd so would be less easy to detect than for a source with the same
ntegrated flux density close to the pointing centre. 

.2.3 Correcting the simulations for completeness and source 
easurement effects 

nce we have information for the flux density properties (both
ntegrated and peak) for each simulated source, we consider the
ikelihood a random source would be detected, accounting for
ompleteness. Due to the variations in rms across the image and
he source finder itself, the completeness will vary across the sky and
ot all sources with intrinsic peak flux densities abo v e 5 σ will be
etected by the source finder, and some source with intrinsic SNR
elow the threshold will be pushed abo v e the threshold. It is then
mportant to use this understanding of the completeness variation to
etermine which of our simulated randoms would be detected if they
ere observed through the LoTSS-DR2 survey. 
To measure this, we make use of the image plane completeness

imulations which were presented and used in Shimwell et al. ( 2022 )
nd investigate the recovery of sources over a range of flux density
nd source shapes. We use the output from these simulations in order
o investigate completeness and the source counts for the surv e y.
hese simulations involved generating 10 simulated images for each
eld in which sources of varying flux densities and shapes 6 are

njected within the residual images of the individual pointings. This
ses a source counts model from Mandal et al. ( 2021 ) to determine
he number of sources to inject into a field. PYBDSF is then used to
e-extract the sources over the simulated images. This then allows the
ompleteness to be measured, which is presented as a function of flux
ensity in Shimwell et al. ( 2022 ) for both point source completeness
nd using simulations which include extended sources, which we
se for this work. These simulations can help quantify which of
ur simulated sources are likely to be detected, but also to establish
hat the ‘measured’ flux densities of these sources may be, if they
ad theoretically been detected by the source finder. It is with a
ombination of accounting for these two effects that we generate our
andom catalogue of simulated sources. 

Whilst the completeness is shown to have a large variation as
 function of flux density for each LoTSS pointing (see Shimwell
t al. 2022 ), the scatter is greatly reduced when its dependence on
NR is considered (see Fig. 4 ). This smaller scatter is due to the
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Figure 3. The measured integrated to peak flux density ratio (an indicator of source smearing, y -axis) as a function of separation from the closest pointing centre 
( x -axis). The dependence of such smearing is shown as a function of declination (left panel), RA (centre panel) and ele v ation (right panel). The dashed–dot line 
in the right-hand panel indicates the ele v ation-dependent smearing model which will be used in this work. For ele v ation bins ≤65 ◦, a constant model is used 
(green, orange, and red data). 

Figure 4. Completeness as a function of peak SNR (x-axis) and as a function 
of flux density (see colour bar) for sources across the 841 pointings of LoTSS- 
DR2. Inset: the completeness as a function of SNR only for each individual 
field (light blue) and the average across all fields (navy, dotted). 
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Figure 5. Comparison of the measured to input simulated flux density as a 
function of input SNR for the simulated sources in Shimwell et al. ( 2022 ) for 
both the integrated (left panel) and peak (right panel) flux densities. 
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act that source finding with PYBDSF uses thresholding which is 
ased on the peak flux density of pixels within a source, compared
o the local noise, i.e. SNR. Both the boundary of pixels which
ontribute to a source island and the criteria which define which 
ources contribute to the catalogue both use a SNR threshold. This
s a 3 σ and 5 σ thresholding limit, respectively, for the two criteria
efined. Therefore, while the rms v alues v ary between the different
elds of LoTSS-DR2, so each field has a different flux density 
ependence on completeness, the SNR dependence is more likely 
o be consistent across the fields. This can be seen in the inset of Fig.
 which also demonstrates that at a 5 σ limit, which is used to generate
he source catalogue, the completeness is in fact only ∼50 per cent,
ising to ∼95 per cent at 7 σ . Due to this consistency between fields,
e therefore believe that using completeness as a function of SNR

s a much more appropriate way to resample our simulated sources,
nstead of using solely a flux density dependence. 

Ho we ver, it is possible that while the average completeness as
 function of SNR is consistent across the fields, it may be that
ompleteness has both a dependency on SNR and flux density. This
s because the intrinsic size distribution of sources is likely to have
 dependence on flux density, such as AGN (which may have jets
nd be resolved) are likely to be brighter than SFGs. For extended
ources, these may be more likely to be detected at a given peak SNR
s the larger sizes means that while the peak of the sources may be
ffected by a noise trough, pushing it below a detection limit, but the
arge size means that other neighbouring pixels could push the source
bo v e the detection limit, making it detectable. For smaller sources,
hey may be less likely to have a pixel above the detection threshold,
iven the smaller size. Therefore, we also consider the flux density
ependence of the completeness as a function of SNR (Fig. 4 ). As
an be seen in Fig. 4 , there does appear to be a weak flux density
ependence of the completeness for the same SNR. For example at
 σ , there is a variation in completeness from ∼0.3 at ∼0.2 mJy to
0.65 at ∼5 mJy. This behaves in the way expected, as discussed

bo v e, with larger sources better detected. Ho we ver, at ∼6–7 σ for
ources with the highest flux densities considered in Fig. 4 there is
he opposite behaviour, where the completeness appears to decrease 
ith increasing flux density of the simulated sources. 
Moreo v er, the simulations from Shimwell et al. ( 2022 ) allow us to

lso consider (i) the combined effects of Eddington bias (Eddington 
913 ), where faint sources are preferentially boosted to higher flux
ensities, and (ii) source finder measurement errors. Combined, this 
llows sources which would be inherently fainter than 5 σ to be
etected by PYBDSF but leads to sources at lower SNR to have
easured integrated and peak flux densities at values different to their 

ntrinsic values. Hence, we also consider the ratio of the measured
o input flux density for each simulated source as a function of input
NR. This is shown for both the integrated and peak flux densities

n Fig. 5 . As can be seen, at high SNR, the measured-to-input flux
ensity ratio tends to a value of 1, indicating that these sources can
e accurately characterised by the source finder. At lower SNR, there
s a scatter for both the integrated and peak flux density ratios which,
MNRAS 527, 6540–6568 (2024) 
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Figure 6. Normalised distribution of the integrated (Int) to peak flux density 
ratio for the data (blue) compared to the random sources (red). This is shown 
for all sources in LoTSS-DR2 and also those sources when a SNR cut of 5 σ is 
applied, and for the finally adopted cuts of 7.5 σ , 1.5 mJy (see Sections 3.3.1 –
3.3.3 ). A lighter colour indicates a higher SNR cut. 
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7 Abo v e 5 mJy, there is more uncertainty due to the smaller number 
of simulated sources and so we assume the completeness variation with 
integrated flux density does not change abo v e the maximum flux density 
shown. 
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t the lowest flux densities, are biased to measured flux densities that
re larger than the intrinsic flux densities. 

We therefore resample our randoms to correct for the effects of: 

(i) The completeness as a function of both input SNR (peak flux
ensity/rms) and integrated flux density; 
(ii) The ratio of the input simulated peak flux density ( S P,in ) to the
easured peak flux density ( S P, meas ) as a function of input SNR (to

btain a ‘measured’ peak flux density); 
(iii) The ratio of the input integrated-to-peak flux density ratio

o the measured integrated-to-peak flux density ratio ( S I, in S P, meas 
S I, meas S P, in 

) as
 function of input SNR (to obtain a ‘measured’ integrated flux
ensity). 

We use the simulations of Shimwell et al. ( 2022 ) to take our input
imulated catalogues and resample them to determine which sources
re ‘detected’ based on their expected completeness, given their SNR
nd integrated flux density. For those sources which were considered
o be detected, we calculate a ‘measured’ integrated and peak flux
ensity for the simulated source. 
To generate the final catalogue of randoms to be used to investigate

he angular clustering, we therefore take the input catalogue of ran-
om sources from SKADS discussed in Section 3.2.1 and calculate
he peak flux densities that have been corrected for smearing (see
ection 3.2.2 ). We also apply a further constant smearing ratio by
ividing the peak flux densities by a ratio of 0.95; this was found
o be essential to allow the peak of the integrated-to-peak flux ratio
f the simulated sources to match that of the data, see Fig. 6 . The
alue was chosen to align the peak of these ratios and likely reflects
 residual smearing issue from the data reduction processes such
s from the effects of the ionosphere or residual calibration errors.
hen, given the rms at the source location, it is possible to determine
n input SNR. 

Using this input source SNR and integrated flux density for
n individual randoms source, we then calculate its completeness
hrough interpolating from a 2D grid of completeness as a function
f both SNR and flux density which have been calculated from
NRAS 527, 6540–6568 (2024) 
he simulations of Shimwell et al. ( 2022 ), across all fields. 7 For
egions in SNR and flux density space where there is no or limited
nformation from the simulations of Shimwell et al. ( 2022 ) to
nterpolate a completeness, we extrapolate to reflect the detection.
 or e xample, at high SNR ( ≥10) and high-flux densities where there

s limited simulation information (and so can be affected by smaller
umber statistics), we assume all sources will be detected, and at
ow SNR ( ≤1), we assume the completeness is zero. From this
D interpolation, we are able to calculate a probability associated
ith the completeness which is compared to a randomly chosen
robability and is considered to be ‘detected’ if the completeness
alue is larger than the random probability. 

For these ‘detected’ random sources, we then determine the
measured’ peak and integrated flux densities for a source. This
s important to consider because if we want to apply flux density or
NR cuts on the data (see Section 3.3 ) then such cuts would need

o be applied to the random sources as well. Therefore, we again
ake use of the simulations of Shimwell et al. ( 2022 ) in order to

enerate a simulated ‘measured’ peak and integrated flux density for
ach random source. To do this we again take the simulations from
himwell et al. ( 2022 ) and construct a 2D histogram of the input
NR distribution versus the ratio of the input to measured integrated
ux density distribution (or similarly for peak flux density), for each
ointing observed in LoTSS-DR2. To generate the measured flux
ensities, we use the input SNR of each random source and use
andom sampling to obtain a measured peak flux-density input-to-
utput ratio and to obtain a ‘measured’ peak flux density. For the
ntegrated flux density, we sample to find the ratio between the
nput-to-output peak flux density to integrated source flux density
atio, given the source SNR. Again, we make sensible extrapolations
n those regimes where we have fewer sources, for example, at
igh SNR. Using this combined method means that we now have
 distribution of random sources with not only positions, but also
nowledge of the ‘measured’ flux densities and SNR for the source.

.2.4 Distribution of randoms 

his methodology leads to a distribution of randoms that can be seen
n the lower panel of Fig. 1 . This, in general, matches that of the data
Fig. 1 ) in that both underdensity and o v erdensity within the data are
lso apparent within the randoms in similar locations. This highlights
hat the process we are using to generate the randoms appears to
roadly represent the observational biases across the field of view.
o we ver, as we believe there is real structure within the distribution
f galaxies, there will be differences between the distribution of data
nd randoms across the image. There may, ho we ver, be additional
NR, flux density and positional cuts that need to be applied to the
ata to ensure the randoms reflect the data. We discuss such additional
onstraints in the next sub-section. 

.3 Additional positional constraints on the data and randoms 

hile these randoms have been generated across the full field of view
f the LoTSS-DR2 surv e y, it is important to apply additional position-
ased constraints in order to account for known observational
ystematics within the data. 
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Table 1. Definition of inner regions used to mask both the data and random 

catalogues as described in Section 3.3 . 

Region RA ( ◦) Dec ( ◦) Region RA ( ◦) Dec ( ◦) 

1 [1, 37] [25, 40] 5 [127, 248] [30, 67] 
2 [1, 32] [19, 25] 6 [193, 208] [25, 30] 
3 [0, 1] [19, 35] 7 [248, 270] [30, 45] 
4 [113, 127] [27.5, 39] 8 [332, 360] [19, 35] 

Figure 7. Distribution of sources in the 1 h (top panel) and 13h (bottom 

panel) fields of LoTSS-DR2 for the full area (grey) and inner masked region 
(blue) that is presented in Table 1 . The black dots indicate the pointing centres 
for each of the 841 fields observed. White regions indicate areas where the 
images are masked or outside the co v erage of LoTSS-DR2. 
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As discussed in Section 3.3.2 of Shimwell et al. ( 2022 ) and shown
n their Fig. 9 , there appears to be variations in the flux scale across
n individual pointing within the LOFAR field. This appears to be a
esult of differences in the model of the primary beam across the field
f view. Such flux scale variations were seen to reduce by Shimwell
t al. ( 2022 ) when pointings were mosaiced together. Therefore, we
nly include regions where pointings have been mosaiced together 
nd by reducing the area of observations for both the data and the
andoms to remo v e the outer edges. Furthermore, and for a similar
eason, we want to remo v e those areas where there are a large number
f gaps within the images due to facets that failed the data reduction
rocess. These often, though not e xclusiv ely, lie towards the outer
dges of the observations. 

The reduced area is defined in Table 1 and shown in Fig. 7 ,
longside the locations of the centres of the 841 pointings which 
ake up the DR2 region. The RA and Dec cuts are chosen to ensure

hat the data are at least a pointing radius from the outer edges of the
bservations. These cuts are employed to be conservative and remove 
egions where uncertainty may be introduced in the flux scale across
he image as the region is not mosaiced with neighbouring pointings. 

ith these cuts applied, we have ∼80 per cent of the total area of
oTSS-DR2 remaining. This reduces the number of pointings which 

he data co v er to 791. 
.3.1 Validation of randoms 

n order to validate that our randoms are accurate before using
hem and to determine any additional cuts to apply in order to
tudy the angular clustering, we first make comparisons to check 
hat the data and randoms have similar distributions, using those 
ithin the region defined above (see Table 1 ). First, we consider

he apparent completeness produced by the random catalogues and 
hat this implies for the ‘intrinsic’ source counts that would be

stimated based on this completeness. We present the Euclidean 
ormalised source counts distribution in Fig. 8 , where the raw data
re compared to the ‘detected’ random sources. As can be seen,
here is good agreement between the raw source counts from the
oTSS-DR2 data and the ‘detected’ randoms to a flux density 
f ∼0.3 mJy. Below 0.3 mJy, deviations likely arise from the fact
hat the minimum flux density used for the random catalogues 
as 0.1 mJy. Therefore, below ∼0.3 −0.4mJy it is likely that the

orrections are mis-estimated as the full effects of detection biases 
e.g. measurement and Eddington biases) in the flux densities for low
NR sources will not be probed fully. Further comparing the LoTSS
andom completeness-corrected source counts to our input randoms 
ources, there are similar discrepancies below ∼0.3–0.4 mJy, which 
ombines the resultant effects of not fully probing the correction 
or faint sources (as abo v e) as well as the effect that the raw
OFAR data include sources found from the wavelet fitting mode 
f PYBDSF , which is not modelled by the randoms. The effect
f the wavelet fitting on the data can be better understood when
e consider the SNR envelope of the data, which we discuss 
elow. 
We compare the SNR envelope of our data to that of the randoms

atalogue in Fig. 9 . This presents the integrated to peak flux ratio
s a function of detected SNR (measured peak flux density/rms). In
heory, this would consist of sources with an integrated to peak flux
ensity ratio of 1 if they are unresolved or a ratio greater than 1 if
hey are resolved. In reality, an envelope distribution is observed with
ncreasing scatter in the ratio at low SNR. Fig. 9 also shows there
re a wealth of LoTSS-DR2 sources with SNR < 5. These originate
rom PYBDSF ’s wavelet fitting mode which was used during the
ource detection process. This is due to the fact that a new rms
ap is recalculated for each wavelet fitting scale. This mode is used

or finding larger extended sources. Ho we ver, the simulations from
himwell et al. ( 2022 ) use smooth models for their simulated sources,
o do not employ the wavelet fitting mode when source finding with
YBDSF . Therefore, a SNR cut of at least 5 σ should be employed to
nsure we use sources not detected through the wavelet fitting mode
hich have a different associated rms map that is not used here for

he randoms. We present the comparison of the SNR envelope at
5 σ for both the randoms and the data in Fig. 9 , which are in better

greement and for the final cuts to the data which are discussed in
ections 3.3.1 –3.3.3 . 
Both of the comparisons presented in Figs 8 and 9 examine the

andom populations as a whole, not as a distribution across the field
f view and so we also consider the distribution of randoms and data
cross the field of view, within the inner regions bounded by the
anges listed in Table 1 . In Fig. 10, we present the distribution of the
atio of normalised number of data sources (normalizing the number 
f sources in a bin to total number of sources) to the normalised
umber of randoms as a function of declination with various SNR and
ntegrated flux density cuts applied. As can be seen, the comparison
f data to randoms is shown both when the randoms are uniformly
istributed across the sky as well as the randoms generated from
he resampling process discussed in Section 3.2 abo v e. An accurate
MNRAS 527, 6540–6568 (2024) 
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Figure 8. Euclidean normalised source counts for the input and reco v ered randoms compared to that from previous data and simulated models. The randoms 
that are used as an input model (pink, right-facing triangles) and reco v ered (red, left-facing triangles) are shown, both scaled to reflect the larger ratio of randoms 
to data. The raw LoTSS-DR2 counts are also shown (black open circles) as well as the corrected source counts from the completeness derived from the reco v ered 
randoms (navy crosses) and the corrected source counts from the raw counts across DR2 using the completeness from the simulations of Shimwell et al. ( 2022 ) 
both accounting for flux shifts between the simulated and detected flux density for a source (light blue dotted line) and not accounting for flux density shifts (blue 
solid line). Also shown are previous data from the LoTSS Deep Fields (Mandal et al. 2021 , data – light grey stars and model – grey dot-dashed line) and source 
counts converted to 144 MHz from (Smol ̌ci ́c et al. 2017a , dark grey squares) and (Matthews et al. 2021 , grey triangles). Also compared is the source counts 
model from the model of SKADS (Wilman et al. 2008 , black dashed line) and modified SKADS model used in this work (black dotted line). Errors associated 
with source counts not presented in previous papers are determined using the relations from Gehrels ( 1986 ). When applying completeness corrections, we do 
not include uncertainty on the completeness as we only use a single randoms realization. We also include the LOFAR corrected source counts using the raw data 
and completeness corrections from randoms when a 7.5 σ cut is applied o v er the inner region described in Table 1 (navy plus symbols, see Sections 3.3.1 –3.3.3 ). 
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istribution of randoms which reflect the underlying observational
ystematics should show a ratio which is close to, or scatters around,
 value of 1. 

Fig. 10 , demonstrates that up to a 5 - mJy flux density limit, there is
 clear difference between the uniform randoms and those which
ave the systematics of the data taken in to account. With just
niform randoms there is a clear declination dependence compared
o the data, which likely reflects sensiti vity v ariations across the
k y. F or e xample, the sensitivity becomes poorer at the lowest
eclination, therefore the uniform randoms will appear to be much
ore numerous than the sources observed in the data. Ho we ver,

he randoms generated for this work which account for sensitivity
 ariations and observ ational systematics across the field of view
how a more similar distribution to the data, oscillating around a
alue of 1. For higher flux density cuts, the comparison between the
ata and randoms becomes more similar to a ratio of 1, staying
ithin ∼5 per cent of a ratio of 1 abo v e a flux density cut of
 mJy. 
Given the comparisons presented, it is clear that a 5 σ SNR (at

east) is needed to a v oid using those sources fit within the wavelet
tting mode of PYBDSF , whose rms maps will not reflect those used

n this work. Furthermore, from the source counts distribution it has
een discussed that at least a 0 . 3 mJy integrated flux density cut needs
o be applied. 
NRAS 527, 6540–6568 (2024) 

w  
.3.2 Additional SNR and flux density constraints 

espite the more advanced random catalogues presented in this work
ompared to Siewert et al. ( 2020 ) for the clustering of sources in
oTSS-DR1, we still may be limited by systematics in the data and
ay need to include additional cuts on the data and randoms. While
ig. 10 has demonstrated that our randoms are smooth across the field
f view as a function of declination, it cannot categorically show what
ux density and SNR cuts to apply to the data and randoms in order

o calculate the TPCF. We therefore consider the ratio across each
ointing of the numbers of real sources to randoms (both normalised
y the total numbers of real sources and randoms respectively)
cross the observations as a function of SNR and flux density cuts,
pecifically how the standard deviation in this ratio changes across
ach pointings. We use standard deviation, as opposed to the mean
alues as the mean values will fluctuate around a constant value, but
t is the deviations in these which illustrate the variation of fields
hich appear to have an overdensity or underdensity of randoms

ompared to data around a mean value. If there are observational
ffects which are unaccounted for in the generation of our randoms,
hese would cause larger standard deviations in the normalised ratios
f data to randoms across the sky coverage. 
In Fig. 11, we present the variation of this ratio both across the full

eld of view (all 841 fields) and within the subset of pointings for
hich at least half of their sources lie within the inner region defined
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Figure 9. Distribution of integrated-to-peak flux density ratio ( y -axis) as a function of measured SNR ( x -axis) for the full LoTSS-DR2 surv e y (upper left panel), 
for the data with a 5 σ cut applied (upper centre panel) and for the randoms with a 5 σ cut applied (upper right panel) and with the 1.5 mJy and 7.5 σ final cuts 
applied (lower panels, see Sections 3.3.1 –3.3.3 ). 

Figure 10. Comparisons of the ratio of the fraction of the total random sources to the fraction of the total data as a function of declination (accounting for 
differences in sample sizes) for the randoms generated using the methods in Section 3.2 (solid lines) and for randoms generated uniformly across the sky area 
(dotted lines) for sources ≥5 σ (light blue), 7.5 σ (blue), and 10 σ (dark blue), respectively, in the regions defined by Table 1 . This is shown with increasing flux 
density cut applied when moving from top left to bottom right. 
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n Table 1 (where this limit is applied to a v oid the effects of small
umber statistics). As can be seen, at a given SNR cut, the standard
eviation declines with increasing flux density to ∼ 2 mJy , where 
t begins to flatten. The right-hand side of Fig. 11 sho ws ho w the
umber of such sources in the data changes, given the cuts applied.
s a compromise to balance both the number of sources we have
 r
s well as the variation in data compared to randoms, we apply a
ux density limit of 1 . 5 mJy and SNR cut of 7.5 σ for this work. 8 
MNRAS 527, 6540–6568 (2024) 

andoms as opposed to the 0.1 mJy described earlier. 
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Figure 11. Standard deviations in the field-to-field scatter of the ratio of the LoTSS-DR2 sources to randoms across each individual pointings for different flux 
density and signal-to-noise cuts. Shown are the results for using the full field (dotted lines) and for those pointings which are within the inner region of Table 1 
and contains at least 50 per cent of the data sources in that pointing contained within the inner region (solid lines). The right-hand figure uses the same colour 
scheme, but instead indicates the number of LoTSS-DR2 sources available for analysis. 

Table 2. Number of data and random sources used when different cuts to the data are applied: using the inner region, a SNR cut and a flux density cut. The 
effects of these cuts on the data are presented individually as well as their combined effect on the catalogues (alongside the masking of 3 Healpix pixels, see the 
text), in the bottom row. Presented are the number of data sources; the percentage of sources in the total catalogue that this consists of the number of random 

sources; percentage of random sources compared to the initial (i.e. no cuts applied) random catalogue and the ratio of random sources to data sources with the 
same cuts applied. 

Cut applied N Data 

Per cent of Initial Data 
catalogue N Random 

Per cent of initial random 

catalogue N Randoms / N Data 

No cuts 4 396 228 100 50 336 145 100 11.4 
Inner region 3 696 448 84 42 655 772 85 11.5 
7.5 σ SNR cut 2 160 232 49 27 364 838 54 12.7 
1 . 5 mJy flux density cut 1 401 782 32 16 206 613 32 11.6 

All cuts applied 903 442 21 11 378 354 23 12.6 
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eferring back to Fig. 10 , it is clear that the distribution as a function
f declination for such a SNR and flux density cut varies around a
atio of 1 within ±5 per cent. Hence, we believe this will be sufficient
nd have a good reliability for our clustering measurements. 

Therefore, we are still limited in this work to a similar high-
ux density cut (1.5 mJy) which is ∼15 −20 times the typical point
ource sensitivity limit within the surv e y (70–100 μJy), despite our
dditional investigations into generating accurate random sources.
e believe that contributing to this may relate to residual field-to-

eld systematics across the field of view. Whether this relates to
ux scale differences between pointings, as presented in Fig. 9 of
himwell et al. ( 2022 ), imperfect primary beam models or another
esidual observational systematic, remains unclear. Accounting for
uch residual systematics is something which is challenging to do
ithin the simulations due to a lack of knowledge about, for example,

hese flux scale variations as a function of pointing. In order to
ssess any flux variations across the field of view, the LoTSS-DR2
ources would need to be compared with similar large area, deep
adio surv e ys across the field of view, using a catalogue with known
igh flux density accuracy. Ho we ver, such a similar large area, high-
esolution and moderately deep surv e y which allows a relatively large
umber of sources at a similar frequency for flux density comparison
cross the full field of view is not available at present. For those large
rea surv e ys that are currently available, applying SNR cuts, isolation
riteria and other cuts to ensure accurate comparisons of source
NRAS 527, 6540–6568 (2024) 

a  
ux densities between the two catalogues would lead to too few
ources to accurately study the flux variations across each pointing.
e therefore are reliant on applying flux density and SNR cuts

ntil we can fully understand and account for additional remaining
bservational systematics. 

.3.3 Final data set 

fter applying the abo v e SNR and flux density cuts as well as
estricting to an inner region and also flagging three HealPix pixels
using N side = 256) which were contaminated by a nearby spiral
alaxy (see Pashapour-Ahmadabadi et al. in preparation), the number
f sources which are used for these clustering studies is reduced. We
resent the number of data and random sources that are available
fter applying such cuts in Table 2 . Such cuts help produce a random
atalogue which we believe is accurate to measure the intrinsic large-
cale structure. The distribution of the final data and randoms used
n this analysis can be seen in Fig. 12 . 

.3.4 Changes in the process to create randoms compared to 
oTSS-DR1 and remaining limitations 

s this paper follows on from the clustering studies within the
rst data release of the LoTSS surv e y (DR1) (see cosmology
nalysis presented in Siewert et al. 2020 ), we briefly summarize the
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Figure 12. Sky distribution of data (upper panel) and randoms (lower panel) used in this work after cuts are applied to the data. These are plotted using Healpy 
(Zonca et al. 2020 ) in the mollweide projection. Note that the random sample is larger than the data sample, to minimize any Poisson errors associated with the 
randoms. 
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evelopments in random catalogues generated in this work compared 
o in Siewert et al. ( 2020 ) as well as the additional cuts applied to the
ata. First, in Siewert et al. ( 2020 ), the assumption was made that
ny sources above 5 σ are detected. Ho we ver, as sho wn in the inset
f Fig. 4 , at 5 σ the completeness is ∼50 per cent on average. This
ork, instead, uses the completeness curves as a function of SNR

rom Shimwell et al. ( 2022 ) which take into account the varying
ompleteness with SNR and, therefore, do not use a hard cut off.
his will result in fewer sources in the 5–10 σ range (based on

nput signal to noise) being included within the random sample, 
hough with a 7.5 σ cut (on measured signal to noise), this will reduce
he impact of such effects. Secondly, we also take into account the
ource sizes and do not assume all sources are point sources. This
ims to take into account the effects of resolution bias, which will
ffect completeness within our catalogue, though it does rely on a 
ource shape model which has uncertainties in the true distribution. 
bservations at higher angular resolution, such as sub-arcsecond 
OFAR surv e ys (see e.g. Sweijen et al. 2022 ), may aid with such
nowledge but will be affected by resolution bias. Finally, we also 
alculate more accurately, for each random source, its ‘measured’ 
eak and integrated flux densities. In Siewert et al. ( 2020 ), a flux
ensity cut could be applied to the sources by ensuring the flux
ensity added to the sampled noise associated with each source 
which provides an estimate for a measured flux density) was greater 
han a given flux density limit. Ho we ver, this used the same noise
erm which would be applied to the peak flux density. With this
ork, we are able to calculate the simulated to detected flux ratio

s a function of SNR separately for the peak and integrated flux
ensities. This allows both SNR and flux density cuts to be applied
n the appropriate ‘measured’ flux density value. 
While we ha ve endea v oured to improve the generation of such

andom catalogues, residual caveats within the data still remain, 
hich we discuss here for full clarity. First, as discussed abo v e,
esidual uncertainties in the beam model, flux density scale across 
he field of view and other un-accounted for observational biases 
ay impact the accuracy of the random catalogues. We believe that

hese are a significant contribution to the inability to use fainter flux
ensity/SNR cuts. While such flux offsets will average out when 
easuring, for example, source counts and declination dependencies 
 v er a full population, these will still exist on a field-to-field level.
urthermore, as we are not passing our randoms through a full end-

o-end pipeline, there may be issues from the full LOFAR data
eduction process, which we may not be fully able to account for
he effects of. These include the effect of the ionosphere across
ach individual pointing, astrometric errors, the direction-dependent 
alibration introduced by DDFacet or how individual fields are 
osaiced together. The latter, especially, can lead to smearing of 

ources due to positional offsets within o v erlapping areas, which
o v er a large fraction of the observations. This smearing of sources
ay lead to a reduced sensitivity to detecting sources in the o v erlap

egions and may affect the smearing model used at the largest
istances from the pointing centre. These effects are challenging 
o model, as are the uncertainties in the intrinsic size distribution
f radio sources. Whilst full end-to-end simulations (starting from 

imulating sources in the uv -data) could help such understanding, 
hey are computationally expensive, especially for changes in the 
nput source models considered. 

With the methods discussed we have aimed to characterize as 
any of the systematics as possible in order to generate accurate

andom catalogues. While the ef fecti veness of the detailed analysis
hen creating random catalogues through mimicking observational 
iases is reduced by the effect of the larger flux density and SNR
uts adopted in this work, our presentation of a detailed discussion
f the methods employed to generate the randoms as an example of
ethods which will be important for future analyses with deep radio

urv e ys. 
MNRAS 527, 6540–6568 (2024) 
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Figure 13. Comparison of the ratio of errors from different resampling 
methods. Shown are the naive Poissonian errors (black crosses, Equation 
9 ), the shot noise errors measured for the sample using the Landy–Szalay 
estimator in TreeCorr (grey crosses), bootstrap errors (red stars) and 
Jackknife errors for 10 TreeCorr jackknife samples (light blue squares), 
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.4 Errors on the TPCF 

nce the randoms catalogues have been generated, it is possible
o calculate ω( θ ) through Equation 5 and attribute uncertainties to
ur measurements. We consider several methods for quantifying the
rrors on the angular correlation function measurements. Possible
rrors include those from Poissonian statistics (i.e. just based on the
umber of sources observed within the data), bootstrap errors (where
 random number of sources are replaced across the field of view)
nd jackknife errors (where regions are remo v ed one area at a time
nd the scatter on the measured TPCFs assessed). Poissonian errors
re known to underestimate the true errors (see e.g. Cress et al. 1996 )
nd do not take in to account systematic variations in the data. For the
aive estimate of ω( θ ) given in Equation 4 , these Poissonian errors
re given by 

ω Poisson ( θ ) = 

1 + ω( θ ) √ 

D D ( θ ) 
. (9) 

Ho we ver, when including the cross-terms ( DR ) in with the Landy–
zalay model, small changes to this are expected (see e.g. the
quations presented in Landy & Szalay 1993 ; Chen & Schwarz
016 ). Either way, such estimates of the errors do not account for
otential systematics in the errors across the field. Therefore, we
onsider several methods which resample the data to assess the errors
ore accurately across the field of view. For bootstrap resampling,
1/3 of sources are randomly remo v ed from the data and randomly

eplaced with the same number of randomly selected data sources.
his means that a source from the original catalogue may not be

n the bootstrap sample, be in it a single time, or multiple times.
his process is then repeated in order to make N B resamples. For
ach resample, ω( θ ) is then calculated using TreeCorr as used
or the original sample. The errors are then calculated from these
s in Barrow, Bhavsar & Sonoda ( 1984 ) and Ling, Frenk & Barrow
 1986 ): 

ω B ( θ ) = 

√ √ √ √ 

1 

N B − 1 

N B ∑ 

i= 1 

[ ω i ( θ ) − ω B ( θ )] 2 , (10) 

here ω B is the mean value across the bootstrap samples. However,
ootstrap resampling randomly remo v es sources and is not able to
race systematic trends across the data. If such systematics exist or
f there is significant variation in source density across the field, it
s therefore possible that bootstrap resampling underestimates the
rrors on ω( θ ). 

We therefore, also consider using jackknife errors (see e.g. Norberg
t al. 2009 ) which are calculated by splitting the field into a number
f sub regions ( N J ). One sub-region is then removed in turn and
e measure the ω( θ ) from the remaining areas. The error is then

alculated as: 

ω J ( θ ) = 

√ √ √ √ 

N J − 1 

N J 

N J ∑ 

i= 1 

[ ω i ( θ ) − ω J ( θ )] 2 , (11) 

here ω J is the mean value of the angular TPCF across the samples
here a sub-region has been removed. 
For completeness, we present the errors measured for the TPCF

or jackknife resampled errors, using TreeCorr to calculate the
ffect of changing the number of jackknife bins from 10 to 200.
inally, we consider the effect of field-to-field variations between the

ndividual pointings of LoTSS-DR2. This method will directly probe
he variations introduced from uncertainties between the different
ndividual pointings of LoTSS-DR2. We calculate the errors from
his using each pointing as a jackknife sample. We note that jackknife
NRAS 527, 6540–6568 (2024) 
rrors typically use regions of similar areas when calculating such
rrors, this will not be the case when calculating for the individual
oTSS-DR2 pointings being remo v ed in turn. The internal pointings
hould be of roughly similar areas, but those towards the outside
f the regions defined in Table 1 could be significantly smaller.
o we ver, such jackknife scales are more rele v ant to understand the
ariation across the field of view. A comparison of these resampling
rrors is presented in Fig. 13 , relative to the Poissonian errors. The
elative sizes of the bootstrap and jackknife errors vary at different
ngular scales. At the smallest angles, θ � 0.1 −0.2 ◦, bootstrap errors
ppear lar ger. At lar ger angular scales, the jackknife errors are, as
xpected, significantly larger than found from bootstrap errors. This
ikely reflects variations in the data across the field of view either
ue to real variation across the field of view or systematics within
he surv e y across the field of view. The bootstrap errors are a factor
f ∼2 larger than the Poissonian errors at angles � 1 ◦, increasing
o a factor of ∼5 at 10 ◦. In contrast, the jackknife errors are similar
o within a factor of 2 to the Poissonian errors for θ � 0.2 ◦, rapidly
ncreasing to a factor of ∼10 larger at angles of ∼2 ◦. In general,
ince our fitting of ω( θ ) will focus on the largest angular scales, our
omparison suggests we should use jackknife errors, compared to
ootstrap errors, in order to not underestimate uncertainties at large
ngular scales � 0.2 ◦. These larger angular scales are important for
tting linear bias, see Section 5.2 . 
The errors from jackknife resampling appear to be dependent on

he number of jackknife samples considered, with larger errors for
maller samples and more comparable errors for � 50 resamples.
he errors generated using the individual field-to-field variations are
omparable to those calculated using Treecorr when 100–200
esampling bins are used, which is expected as ∼800 pointings are
sed for the field-to-field variations. As the field-to-field sizes are
he most physically moti v ated binning as they are based off scales
f the pointings within the LoTSS-DR2 samples, we present result
sing such errors. The covariance matrix for such errors is presented
n Fig. 14 . We note that whilst the errors from TreeCorr compared
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Figure 14. Covariance matrix from resampling the errors using a Jackknife 
approach where each individual observed LOFAR pointing (791 within the 
inner region) is removed in turn. 

Figure 15. Angular TPCF, ω( θ ) for the final LoTSS-DR2 sample used in 
this work (black, see Section 3.3 ) from the range of θ : 5 × 10 −3 −10 2 ◦. Also 
shown if the fit to ω( θ ) of the form A θ−0.8 and the probability distribution in 
the value of A is shown in the figure inset (top right panel). These are shown 
for fitting o v er the angular ranges: 0.03–5 ◦ (red), 0.1–5 ◦ (blue), 0.5–5 ◦ (gold) 
as well as for the range where we reduce the largest fitting angle 0.03–1 ◦
(grey) both without (light colours) and with (dark colours) the full covariance 
matrix, see Sections 4 and 5.2 . 
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o the field-to-field variation presented in Fig. 13 appear similar for
 Jack ≥ 100, the covariance matrix using TreeCorr has a larger 
ontribution of off-diagonal covariance values, especially for small 
 Jack . As such off diagonal covariance values can affect the fitting
f the source, we therefore will also briefly discuss the effect on the
easured bias values of instead assuming 100 jackknife bins as well, 

n Section 6 . 

 A N G U L A R  TP CF,  ω(  θ )  

e present the angular TPCF for LoTSS-DR2 sources with S ≥
 . 5 mJy and SNR ≥ 7.5 in Fig. 15 . This is shown abo v e a minimum
ngular scale of ∼3 times the PSF of the data ( ∼3 × 6 arcsec ∼18
rcsec). As discussed in many previous studies (e.g. Peebles 1975 ;
oche & Eales 1999 ; Blake & Wall 2002 ; Brodwin et al. 2008 ;
indsay et al. 2014a ; Hale et al. 2018 ), we can often describe the
ngular clustering at small angular scales ( θ 	 π) as a power-law
istribution, given by 

( θ ) = Aθ1 −γ , (12) 

here A is the amplitude, θ is measured in degrees, and the power-law
lope is given by 1 − γ . Observations suggest γ has a typical value
f ∼1.8 (see e.g. Peebles 1975 , 1980 ; Blake & Wall 2002 ; Wilman
t al. 2003 ), meaning that ω( θ ) follows a power law of slope –0.8. 

As can be seen in Fig. 15 , our results for ω( θ ) appear to follow a
ower law with γ = 1.8 o v er a large range of angular scales (0.03
θ < 1 ◦), at larger angles ( θ � 10 ◦) there is more uncertainty on

he value of ω( θ ) and so we do not present such scales in this work.
t small angles ( θ � 0.03 ◦), there is a deviation from this power-

aw distribution. This could arise from a combination of factors: (a)
lustering of galaxies within the same dark matter halo and (b) the
ffect of multicomponent sources. 

The first of these contributions to the excess clustering at small
ngular scales is related to whether the clustering of galaxies we
re observing is from sources that are residing within the same dark
atter halo (this is observed at small angular scales and is known as

he ‘1-halo’ clustering, see e.g. Zehavi et al. 2004 ). Measurements of
he ‘1-halo’ clustering require observations which are both sensitive 
nough to observe multiple galaxies within the same dark matter 
alo and also have the resolution to ensure any galaxies within the
ame dark matter halo are not confused into a single source. In
he radio, this ‘1-halo’ clustering has been challenging to observe 
ue to the depths and resolutions of surv e ys previously observed,
o we ver, it will become increasingly possible with future deep, high-
esolution radio surv e ys. When discussing clustering previously, we 
ave instead focused on the clustering from galaxies in different 
ark matter haloes (known as the ‘2-halo’ clustering) which presents 
s the power -law beha viour given in Equation 12 on large angular
cales). 

The second contribution to the excess clustering at small angular 
cales, on the other hand, relates to the source detection within radio
atalogues. F or e xample, a jetted radio galaxy could be observ ed
o have a core and two lobes separated from it. Depending on the
eparation of these lobes, conventional source finders (e.g. Whiting & 

umphreys 2012 ; Mohan & Rafferty 2015 ; Hancock, Trott &
urley-Walker 2018 ) may not be able to accurately characterize 

he components of the radio galaxy into a single source. As such,
ccurate cross-matching of radio components relies on techniques 
uch as visual identification (see e.g. Banfield et al. 2015 ; Williams
t al. 2019 ), or machine-learning/algorithm-based techniques (see 
.g. Galvin et al. 2020 ; Alegre et al. 2022 ; Barkus et al. 2022 ). If,
n this example, the three components of the single radio source are
atalogued to be different objects, then this will result in seeing an
pparent excess angular clustering at small angular scales (see e.g. 
lake & Wall 2002 ; Overzier et al. 2003 ), which can be described
s a power law with a steeper slope. To determine the angular scales
elow which such multicomponent sources may become important 
n our work we consider the clustering in LoTSS-DR1 with both the
aw PYBDSF catalogue and the value-added catalogue of Williams 
t al. ( 2019 ), where PYBDSF source components were combined into
hysical sources. We use the randoms generated for Siewert et al.
 2020 ) and apply a 1.5 mJy and 7.5 σ cut, as used in this work, and
resent the clustering with and without source associations in Fig. 16 .
his demonstrates a deviation between the raw and merged (source 
ssociated) catalogues, for which a deviation is seen at angles below
MNRAS 527, 6540–6568 (2024) 
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Figure 16. Comparison of ω( θ ) for LoTSS-DR1 Data (Shimwell et al. 2019 ; 
Siewert et al. 2020 ) for the raw PYBDSF catalogue compared to the source 
associated and cross-matched catalogue described in Williams et al. ( 2019 ) 
using a 1.5 mJy flux density cut and a 7.5 σ SNR cut and presented with 
bootstrapped uncertainties. 
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 . ◦03. This therefore suggests that the impact of multicomponent
ources is likely important below such an angular threshold and so
e should not fit our ω( θ ) for LoTSS-DR2 below this scale. 
We fit ω( θ ) using Equation 12 , with a maximum angular separation

f 5 ◦ and a minimum angular separation of either (i) 0.03 ◦, below
hich multicomponent source clustering becomes important; (ii)
.5 ◦ below which models that include both 1- and 2-halo clustering
an diverge (see Section 5.2 for fitting with the cosmology code CCL ,
hisari et al. 2019 ) 9 and (iii) 0.1 ◦ as a compromise between the two
ngular fitting ranges. Finally, we also include an angular fitting range
f 0.03 ≤ θ < 1 ◦ to reflect the fact that the approximation of a power-
aw model for ω( θ ) breaks down at large angles. In our model, we also
nclude an extra term known as the integral constraint which accounts
or finite field sizes (see e.g. Roche & Eales 1999 ). We therefore
alculate the χ2 through the difference between the observed data
nd the model (with the integral constraint subtracted 10 ), using two
ethods. The first method, that we adopt, solely accounts for the

iagonal elements of the errors ( δω, as compared in Fig. 13 ), defining
2 as: 

2 = 

N θ∑ 

i= 1 

(
ω( θi ) − ω M 

( θi ) 

δω i 

)2 

, (13) 

here ω M 

( θ i ) is the model for the angular clustering, as in Equation
2 , for a given angular bin ( θ i ) and is fit across the N θ bin in
he angular range considered. This does not encapsulate the full
ystematic correlations between θ bins, but allows for a comparison
o previous works who use such methods for fitting ω( θ ). The second
ethod uses the full covariance matrix, which allows correlations

etween θ bins to be accounted for. For this method, we calculate χ2 

s: 

2 = ( 
 ω − 
 ω M 

) T Cov −1 ( 
 ω − 
 ω M 

) , (14) 

here Cov is the associated covariance matrix for our measurements
f ω( θ ), as calculated by TreeCorr . The T indicates that the
ranspose is being used. We fit a model for ω( θ ) using both Equations
NRAS 527, 6540–6568 (2024) 

 Which makes use of CAMB (Lewis, Challinor & Lasenby 2000 ) and CLASS 
Lesgourgues 2011 ). 
0 We note that the integral constraint will be very small due to the large field 
f observation in LoTSS-DR2, on the scales considered. 
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w  
3 and 14 to highlight the differences of accounting for the full
ovariance. 

When fitting solely for A (and fixing γ to 1.8), we measure the
ariation in χ2 when fitting the data using values of log 10 ( A ) which
re uniformly sampled from −4 to −2. From the χ2 distribution, we
alculate a probability distribution ( P ∝ e −χ2 / 2 ) and use a resampling
ethod with 5000 samples to calculate a median value and associated

rror bars from this sample. The results are presented in Table 3 and
ig. 15 . As can be seen in Fig. 15 , the chosen angular scale below
hich we do not fit the data, θ < 0.03 ◦, appears to be an appropriate

cale to restrict the fitting o v er. Below these angular scales, we
bserve a significant increase in ω( θ ), which we attribute to the
ontribution of the combination of multicomponent sources and 1-
alo clustering. Fig. 15 shows the best-fitting models to the clustering
mplitude, log 10 ( A ), of –2.50 ± 0.01 (using χ2 as in Equation 13 )
nd -2.54 ± 0.01 (using the full covariance) when fit o v er the largest
ngular range (0.03–5 ◦). When fitting to the lower maximum angular
cale (0.03 ≤ θ < 1 ◦) we find little difference to that when fitting
n the range 0.03 ≤ θ < 5 ◦. Whilst fitting ω( θ ) using Equation ( 13 )
hows a good fit to the data on a large range of angular scales, there
s a deviation from such a power law around 1 ◦. This results in an
ncreased clustering amplitude when fitting across the largest angular
cales only 0.5–5 ◦, which then o v erestimates clustering on smaller
cales. This may suggest some excess residual systematics in the
ata, on the scale of ∼1 ◦. The fits using Equation 14 also appear
o underestimate the values for ω( θ ) to more of an extent than with
quation 13 . 
To test whether the assumed slope of -0.8 is suitable for this work,

e also fit ω( θ ) for both A and 1 − γ , using a fitting range of −4 to
1, for log 10 ( A ) and −2 to 0 for 1 − γ . We fit this using the Markov

hain Monte Carlo code, emcee (F oreman-Macke y et al. 2013 ). We
t using 100 w alk ers, each with 5000 chain steps and remo v e the first
0 per cent of chains as burn in. From this, we fit for A and γ using
ikelihoods based on the χ2 described in Equations 13 and 14 . The
esults for such fitting across the angular ranges described abo v e are
resented in Fig. 17 which, for the majority of angular scales, find
 value of 1 − γ ∼ −0.6 to −0.75, shallower than the −0.8 slope
ssumed when fixing 1 − γ . Ho we ver, pre vious measurements of
 − γ using radio surv e ys (see e.g. Lindsay et al. 2014a ; Lindsay,
arvis & McAlpine 2014b ; Magliocchetti et al. 2017 ) have found that
uch slopes (1 − γ ) observed for radio surv e ys are typically closer to
1.2 to −0.8. The differences observed here may therefore relate to
 combination of factors, such as residual systematics in the data (as
iscussed abo v e and in Section 3.3.4 ) as well as effects of combining
ultiple source populations in our measurement of ω( θ ). As such,
e will predominately use our measurements where we fix the slope
f γ in order to measure bias, though in Sections 5 and 6 , we will
iscuss the effect on the bias of assuming a variable slope. 

.1 Variation with location and flux density 

n order to investigate the uniformity of ω( θ ) given the possibility of
ystematics we are unable to correct for, we also present comparisons
f the angular clustering of the LoTSS-DR2 data as a function
f Right Ascension, Declination and position within the full field
f view. To do this, we consider the TPCF in RA angular ranges
panning 40 ◦ and declination in angular ranges spanning 10 ◦ and
nally within nine different regions spread across the field of view

n RA and Dec. bins as presented in Fig. 18 . Uniform RA and Dec
anges are used to generate the RA and Dec bins, this will lead to
ignificant differences in the number of sources in each of the bins
hich will have a more substantial impact on the measured ω( θ ) in
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Table 3. Results from fitting ω( θ ) for models across a range of angular fitting ranges. Presented is the fitting range, Fitting type, amplitude of power law ( A ) as 
in Equation 12 , clustering length, r 0 , and bias, b L , from Limber inversion using both a comoving (c) and linear (l) assumption. Bias values are evaluated at the 
median value of the median redshifts ( z m 

) from the p ( z) resamples, as in Fig. 20 , z m 

≈ 0.89. This is for both the case where the full covariance matrix is (with 
Cov) and is not (without Cov) used. 

θ range Fitting type log 10 ( A ) r 0, c (Mpc) b c ( z m 

) r 0, l (Mpc) b l ( z m 

) 
( ◦) 

0.03–5.00 Without Cov −2 . 50 + 0 . 01 
−0 . 01 11 . 55 + 0 . 92 

−0 . 77 2 . 58 + 0 . 25 
−0 . 21 15 . 41 + 1 . 99 

−1 . 44 1 . 77 + 0 . 20 
−0 . 14 

0.10–5.00 Without Cov −2 . 47 + 0 . 01 
−0 . 01 12 . 02 + 0 . 96 

−0 . 81 2 . 68 + 0 . 26 
−0 . 22 16 . 04 + 2 . 06 

−1 . 50 1 . 83 + 0 . 20 
−0 . 15 

0.50–5.00 Without Cov −2 . 38 + 0 . 02 
−0 . 02 13 . 51 + 1 . 11 

−0 . 96 2 . 97 + 0 . 29 
−0 . 25 18 . 03 + 2 . 33 

−1 . 74 2 . 04 + 0 . 23 
−0 . 17 

0.03–1.00 Without Cov −2 . 50 + 0 . 01 
−0 . 01 11 . 48 + 0 . 92 

−0 . 77 2 . 57 + 0 . 25 
−0 . 21 15 . 32 + 1 . 97 

−1 . 43 1 . 76 + 0 . 20 
−0 . 14 

0.03–5.00 With Cov −2 . 54 + 0 . 01 
−0 . 01 10 . 96 + 0 . 88 

−0 . 75 2 . 46 + 0 . 24 
−0 . 21 14 . 63 + 1 . 88 

−1 . 38 1 . 69 + 0 . 19 
−0 . 14 

0.10–5.00 With Cov −2 . 52 + 0 . 02 
−0 . 02 11 . 22 + 0 . 91 

−0 . 78 2 . 51 + 0 . 24 
−0 . 21 14 . 97 + 1 . 93 

−1 . 43 1 . 72 + 0 . 19 
−0 . 14 

0.50–5.00 With Cov −2 . 42 + 0 . 03 
−0 . 03 12 . 83 + 1 . 13 

−1 . 01 2 . 84 + 0 . 29 
−0 . 25 17 . 14 + 2 . 26 

−1 . 76 1 . 95 + 0 . 22 
−0 . 18 

0.03–1.00 With Cov −2 . 54 + 0 . 01 
−0 . 01 10 . 96 + 0 . 88 

−0 . 75 2 . 46 + 0 . 24 
−0 . 21 14 . 62 + 1 . 88 

−1 . 38 1 . 69 + 0 . 19 
−0 . 14 

Figure 17. Angular TPCF-fitting parameter constraints for both A and γ
(with contours at 1 σ and 3 σ ) for fitting o v er the angular ranges: 0.03–5 ◦
(red), 0.1–5 ◦ (blue), 0.5–5 ◦ (purple) as well as for the range where we reduce 
the largest fitting angle 0.03–1 ◦ (black) both without (dark colours) and with 
(light colours) the full covariance matrix, see Sections 4 and 5.2 . 

Figure 18. Regions used to investigate the TPCF variation as presented in 
Fig. 19 . Each colour indicates a different region used to quantify the TPCF. 
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egions where there are fewer sources. This analysis, follows on from
he comparisons of Siewert et al. ( 2020 ), in which three regions were
sed to consider the variation in the angular clustering of LoTSS-
R1. 
The resulting variations in ω( θ ) are presented in Fig. 19 . As can

e seen, the variation of the angular clustering is typically restricted
o larger angles θ � 0.5 ◦, whilst smaller angles are typically in much
etter agreement with one another. Whilst there are no apparent 
rends with RA, there may be a suggestion of a systematic trend in the
ngular clustering observed with declination, with higher observed 
ngular clustering at typically lower declinations. However, this is 
ot seen at all angular scales. We also see there is more variation in the
easured ω( θ ) when split into RA ranges and the regions presented

n Fig. 18 . As discussed in Sections 3.3.2 and 3.3.4 , we believe there
re still limitations in the data which the randoms do not account for,
uch as individual flux shifts between pointings, uncertainty in the 
eam models and remaining systematics not modelled as full end-to- 
nd simulations were not used to generate the random sources. It is
ossible that the effect of these can be a cause of the variation of ω( θ )
hen split by these sky regions ho we ver, true underlying large-scale

tructure may also play a role. The spread with declination is much
maller, with ω( θ ) in the Dec: 60–70 ◦ bin showing the most variation,
ikely due to the smaller area and number of sources in this region.
his smaller variation is likely due to the corrections implemented for 
le v ation-dependent smearing, which is related to the declination for
elds observed with a good hour angle co v erage. If there are residual
ystematics relating to flux shifts between pointings (as described in 
himwell et al. 2022 ), these are challenging to identify and model
sing available radio surv e ys. These effects and a combination of
ther residual systematics may relate to why there can be variations
etween ω( θ ) in different regions of the data. Identifying the cause of
hese and making further corrections may be possible in the future,
ith further understanding of the systematics. 

 G A L A X Y  BI AS  

hilst fitting a clustering amplitude, A , allows for a comparison
ith previous work, it is also challenging to compare with previous

tudies due to its dependence on flux density, luminosity and source
ype within the same sample (see e.g. Overzier et al. 2003 ; Wilman
t al. 2003 ; Magliocchetti et al. 2017 ; Hale et al. 2018 ; Chakraborty
t al. 2020 ). We calculate the more physical parameter of bias, b ( z).
s discussed in Section 1 , bias traces the clustering compared to
atter and can be used to estimate the typical dark matter halo mass
MNRAS 527, 6540–6568 (2024) 
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Figure 19. The clustering variation between regions which are split based on their right ascension (left panel), declination (centre panel) and their location 
within the DR2 region as presented in Fig. 18 (right panel). The colour of the lines present the RA range, Dec range or region being considered and the results 
of the full area of the surv e y are shown in grey (stars). Only the ω( θ ) value is presented for each subset, not the associated errors. 
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11 We note that low redshifts also have an important contribution to ω( θ ) on 
larger angular scales [ ∼O(1 ◦)], and we found that averaging in larger redshifts 
bins affected the fitting of ω( θ ) on such scales. 
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osting a population of sources (see e.g. Berlind & Weinberg 2002 ;
ehavi et al. 2004 ). By calculating the bias, we not only calculate a
ore physical parameter, but also account for the redshift distribution

f the sources being investigated. Ho we ver, this will also have a
ependence on flux density, as the relative contribution of different
ource types to the o v erall population (e.g. AGN and SFGs) varies
ith flux density (see Best et al. 2023 , for a comparison of this in

he LoTSS Deep Fields). These populations can have different bias
alues and so will affect the bias measured for a full population (see
.g. Magliocchetti et al. 2017 ; Hale et al. 2018 ; Chakraborty et al.
020 ). 
In order to obtain measurements of the bias for the LoTSS-DR2

ources, knowledge of the redshift distribution, p ( z), for the data
re required. This is because ω( θ ) is a projected measurement of
he clustering of galaxies o v er the sk y, and to understand the bias,
e need to understand the true spatial distribution. Using a given
 ( z), we then tak e tw o approaches to modelling the clustering: (1)
tting using the cosmology code, CCL (Chisari et al. 2019 ) and
2) using the power-law model fit for the amplitude, described in
ection 4 , and using Limber’s inversion (see Limber 1953 , 1954 ;
eebles 1980 , assuming a power-law model for ω( θ ) to calculate
 clustering length, r 0 , and subsequently a measurement of the
ias), as has been commonly employed in clustering studies for
adio surv e ys (see e.g. Magliocchetti et al. 2004 ; Lindsay et al.
014a ; Magliocchetti et al. 2017 ; Hale et al. 2018 ; Chakraborty et al.
020 ; Mazumder, Chakraborty & Datta 2022 ). We will describe
oth approaches, belo w, ho we ver, we first describe how the redshift
istribution, p ( z), for the data are obtained, as this is critical for both
pproaches. 

.1 Redshift distribution 

n order to calculate the bias, we must assume a redshift distribution
or the sources in our sample, which is not possible from radio
ontinuum measurements alone. Instead, a catalogue where radio
ata and multiwavelength data have been cross-matched together (as
ith LoTSS-DR1, see Duncan et al. 2019 ; Williams et al. 2019 ),
ay provide redshifts for some sources, ho we ver, redshifts are not

urrently available for a relatively complete population of LoTSS-
R2 sources. Therefore, in order to estimate the expected redshift
istribution of the sources observed in LoTSS-DR2, we make use of
he LoTSS Deep Fields observations (Duncan et al. 2021 ; Kondapally
t al. 2021 ; Sabater et al. 2021 ; Tasse et al. 2021 ). The LoTSS Deep
ields data are more sensitive than in LoTSS-DR2 (reaching an rms

20 –40 μJy beam 

−1 ) o v er three e xtragalactic fields (see Section 2.2
NRAS 527, 6540–6568 (2024) 
or details). For the Deep Fields sources, 97 per cent have been
ross-matched to a multiwavelength host galaxy (Kondapally et al.
021 ) and have an associated redshift (Duncan et al. 2021 ). A full
robability distribution for the photometric redshift, p i ( z), of those
ources with an associated host galaxy is presented in Duncan et al.
 2021 ), which we use in this work. 

To determine the redshift distribution for the sources observed
ere, we first apply a 1.5 mJy flux density cut to the cross-matched
adio deep-field catalogues, matching that used here for LoTSS-DR2.
pecifically, we take an individual field and generate N f estimates
or the redshift distribution, where N f across the three fields totals
000 samples. The N f values are weighted for each field to gives
ore samples where there are larger number of S ≥ 1.5 mJy sources

n the field. To make a single resample within a field, we use those
ources which have S ≥ 1.5 mJy and generate a resampled redshift for
hose sources through the following process. For those sources with a
hotometric redshift, we sample from the full p i ( z) distribution for the
ndividual source. For those sources where a spectroscopic redshift
xists, we instead consistently use the spectroscopic value. From the
esampled redshifts for the S ≥ 1.5 mJy sources, we create a p ( z)
y binning the redshifts and normalizing the resultant distribution.
hen binning the redshift distribution, we use bins which have more

requent binning at low redshifts ( z ≤ 1, using δz = 0.02, where we
ave more accurate spectroscopic information) and coarser binning
t higher redshifts ( z > 1, using δz = 0.1). 11 To generate the redshift
istribution across the fields, we combine the samples from each
eld to produce 1000 resampled p ( z) distributions. From this, we are
ble to determine a mean p ( z) distribution and associated errors from
he standard deviations of the sample. The final p ( z) and errors is
resented in Fig. 20 . 
To use this p ( z) in our fitting and modelling of b ( z), we generate

000 resampled p ( z) distributions using the mean and standard
eviation across each redshift bin. We do this, as opposed to using
he 1000 samples combined from the three fields, to a v oid extreme

odels in each field that are driven by cosmic variance affecting
uch measurements, as well as the effects of multiwavelength data
vailability. In order to ensure that such randomly sampled values
oes not lead to a highly varying p ( z) and satisfies P (0) = 0. We
odel the resampled redshift distribution using a functional form
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Figure 20. Weighted redshift distribution generated from combining redshift 
distributions in the LoTSS deep fields (grey) as described in Section 5.1 . The 
distribution of models fit to the resampled p ( z) as described in Section 5 
are presented as the median in blue (solid line) alongside the 16th and 84th 
percentiles, respectively (as dashed lines). 
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iven by 

( z ) ∝ 

z 2 

1 + z 

[
exp 

(
− z 

z 0 

)
+ 

r 2 

(1 + z) a 

]
, (15) 

hich we normalize such that it becomes a PDFs. 
Such a functional form is found to appropriately represent the 

edshift distribution, and was chosen to allow contributions from 

GN and SFGs to the full redshift distribution. The form reflects 
he probed volume of a � CDM model at small redshifts with the
xponential and power-law terms representing the high-luminosity 
ut-offs at large redshifts of SFGs and AGNs, respectively (for more 
escription see Nakoneczny et al. 2023 ). The model parameters ( z 0 , r ,
nd a ) are fit for each resample using scipy ’s curve fit function.
he range of the modelled redshift distribution from these resamples 
re presented in Fig. 20 . 

We note that with this method, the ∼5 per cent of LoTSS Deep
ields sources abo v e 1 . 5 mJy which have no associated redshift
istribution cannot be included in p ( z). This may bias the results
lightly, likely by missing some very high-redshift AGN or SFGs 
nd those which are dust obscured. Furthermore, there are potential 
iases in the p ( z) due to the band selection and magnitude limits of the
ultiwav elength data. F or e xample, sources may not be detectable in

ll bands and there is differing availability of multiwavelength data in 
he three deep fields, both of which will affect constraints which can
e placed on their redshift distributions. Moreo v er, the deep fields
re much smaller areas than the full LoTSS-DR2 surv e y, and so
re more likely to be affected by variances in large-scale structures,
o we ver, we mitigate this by averaging across the three fields. Finally,
t is challenging to apply similar SNR cuts to the deeper LoTSS
eep Fields data, which may lead to residual systematics in the p ( z)
odels. Ho we ver, this combined p ( z) is the best model available

or a representative radio population and those sources without any 
edshift information only represent a very small fraction of sources 
n the data. 

.2 Measuring b ( z) using CCL 

n the first method to determine b ( z), we use CCL to fit ω( θ ), assuming
 bias model. For this work, we follow the work of Alonso et al.
 2021 ) and assume two possible bias models either (i) a constant
ias i.e. b ( z) = b 0 or (ii) an evolving bias of the form b 0 / D ( z), where
 ( z) here is the normalised (to z = 0) growth factor as described in,
or example, Hamilton ( 2001 ). We also consider two matter power
pectrum models (i) a ‘linear’ model where only linear perturbation 
heory was assumed and (ii) a ‘HaloFit’ (Smith et al. 2003 ; Takahashi
t al. 2012 ) model where non-linear effects within a dark matter halo
re also accounted for. Both models are considered as we may not
 xpect to observ e a strong contribution from ‘1-halo’ clustering at
he depth of this surv e y, or that if such 1-halo contribution does exist
hat this may dominate predominately in the angular region where 
ffects of multicomponent sources is also important (see Fig. 16 ).
e use the � range 1 ≤ � ≤ 10 000 in 256 logarithmically spaced

ins to generate the C � power spectrum with CCL and then use this to
etermine ω( θ ) o v er the θ range used in this work using a Legendre
olynomial transform given by 

( θ ) = 

1 

4 π

∑ 

� 

(2 � + 1) C � P � ( cos θ ) . (16) 

uch a conversion from C � to ω( θ ) was also used in Siewert et al.
 2020 ). To obtain C � , we use the conversions in CCL which convert
he 3D power spectrum to C � using the equations in Section 2.4.1 of
hisari et al. ( 2019 ), but assuming the redshift-space distortion and
agnification bias terms can be neglected: 

 � = 

∫ 

d χ

χ2 
q 2 ( χ ) P 

(
k = 

� + 1 / 2 

χ
, z( χ ) 

)
, (17) 

here χ is the comoving radial distance, P ( k , z) is the matter power
pectrum, and the radial kernel q ( χ ) is: 

( χ ) = 

H ( z) 

c 
b( z ) p( z ) , (18) 

ith H ( z) is the Hubble parameter. This relation relies on Limber’s
pproximation (Limber 1953 , 1954 ), which is valid for the broad
edshift distribution explored here. 

We fit for b 0 through calculating ω( θ ) with CCL and fitting to
he data using Equations 13 and 14 . Again, when fitting the data we
onsider three angular ranges: 0.03 −5 ◦, 0.1 −5 ◦ and 0.5 −5 ◦. We also
onsider all possible combinations of linear and HaloFit models with 
he two bias evolutionary models. To determine b 0 , we use the 1000
edshift resamples described in Section 5.1 . First, we calculate ω( θ )
or each resampled redshift distribution, assuming b 0 = 1 (denoted 
ere as ω b 0 = 1 ( θ )). Using this, we select random bias values within
he range 0.5–3.5 and generate a model ω( θ ) through multiplying
 b 0 = 1 ( θ ) by b 2 . Using such a predicted model and comparing to

he data, we then calculate the associated χ2 across the angular 
tting ranges described abo v e and calculate this both assuming only
iagonal elements as well as using the full covariance matrix. The
ull covariance will highlight if there are correlations in the ω( θ )
alues at different θ which can affect the fitting of b . In both cases,
e take the ‘model’ to be the model produced from CCL with the

ntegral constraint as modelled in Roche & Eales ( 1999 ), though the
ontribution of an integral constraint will be negligible. Using such a
2 value we then calculate an associated probability for b 0 assuming 
 ( b 0 ) ∝ e −χ2 / 2 (which makes the assumption that errors on the data
an be approximated as Gaussian). 

To determine final values of b 0 found from fitting our observations
e then resample from P ( b ). To do this, we consider two possibilities
f how to include the redshift distribution to determine b 0 . The
rst case assumes that the individual redshift resamples described 

n Section 5.1 are all equally probable. In this case, any differences
hich may remain between the model and observations will reflect 

esidual systematics in the data which are unaccounted for in 
he random catalogues or that a different bias evolution model is
ppropriate. For this method, we renormalize the P ( b ) model from
MNRAS 527, 6540–6568 (2024) 
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Table 4. Results from fitting bias with CCL across a range of angular fitting scales, with both the linear ( b L ) and HaloFit ( b H ) models of CCL . These are both 
given by their value at z = 0 and, for the evolving bias model, are evaluated at the median value of the median redshifts ( z m 

) from the p ( z) resamples, as in 
Fig. 20 , z m 

≈ 0.89. These are given for both the case where the full covariance matrix is not used and where it is included (denoted by Co v). F or each model, 
the median reduced χ2 ( χ2 /DOF) from the resampled bias values is also given. This will be larger than the best-fitting model found across the samples, but is 
provided to show representative values for the fit. A fit type is given by the combination of the bias evolution type (E = evolving, C = constant) and redshift 
resampling method [U = unweighted, i.e. all p ( z) samples weighted equally and W = weighted, i.e. preferential p ( z) resamples are selected]. 

θ Range Fit b 0, L b L ( z m 

) χ2 
L / b 0, H b H ( z m 

) χ2 
H / b 0, L b L ( z m 

) χ2 
L / b 0, H b H ( z m 

) χ2 
H / 

( ◦) type DOF DOF Cov Cov DOF Cov Cov DOF 
Cov Cov 

0.03–5.00 E/U 1 . 90 + 0 . 10 
−0 . 09 2 . 97 + 0 . 15 

−0 . 15 9.34 1 . 51 + 0 . 12 
−0 . 10 2 . 37 + 0 . 19 

−0 . 16 13.69 1 . 83 + 0 . 08 
−0 . 08 2 . 87 + 0 . 13 

−0 . 13 10.50 1 . 41 + 0 . 11 
−0 . 10 2 . 21 + 0 . 18 

−0 . 15 4.43 

0.10–5.00 E/U 1 . 83 + 0 . 10 
−0 . 10 2 . 87 + 0 . 16 

−0 . 15 4.12 1 . 57 + 0 . 13 
−0 . 11 2 . 46 + 0 . 21 

−0 . 17 14.58 1 . 73 + 0 . 08 
−0 . 08 2 . 71 + 0 . 13 

−0 . 13 2.73 1 . 41 + 0 . 12 
−0 . 10 2 . 21 + 0 . 18 

−0 . 16 5.52 

0.50–5.00 E/U 2 . 04 + 0 . 20 
−0 . 17 3 . 20 + 0 . 32 

−0 . 27 3.53 2 . 04 + 0 . 21 
−0 . 17 3 . 20 + 0 . 33 

−0 . 27 4.49 1 . 79 + 0 . 15 
−0 . 14 2 . 81 + 0 . 24 

−0 . 22 3.18 1 . 75 + 0 . 16 
−0 . 15 2 . 74 + 0 . 25 

−0 . 23 4.05 

0.03–5.00 C/U 2 . 37 + 0 . 19 
−0 . 17 – 12.74 1 . 79 + 0 . 20 

−0 . 15 – 11.40 2 . 36 + 0 . 17 
−0 . 15 – 14.01 1 . 68 + 0 . 19 

−0 . 14 – 3.95 

0.10–5.00 C/U 2 . 27 + 0 . 19 
−0 . 16 – 2.24 1 . 87 + 0 . 22 

−0 . 16 – 11.62 2 . 21 + 0 . 16 
−0 . 15 – 3.05 1 . 69 + 0 . 20 

−0 . 15 – 4.81 

0.50–5.00 C/U 2 . 33 + 0 . 28 
−0 . 22 – 1.76 2 . 32 + 0 . 30 

−0 . 23 – 2.63 2 . 14 + 0 . 22 
−0 . 20 – 1.81 2 . 07 + 0 . 24 

−0 . 20 – 2.79 

0.03–5.00 E/W 1 . 98 + 0 . 05 
−0 . 06 3 . 11 + 0 . 07 

−0 . 10 7.81 1 . 18 + 0 . 01 
−0 . 01 1 . 84 + 0 . 02 

−0 . 02 10.27 1 . 97 + 0 . 09 
−0 . 05 3 . 09 + 0 . 14 

−0 . 08 9.07 1 . 35 + 0 . 08 
−0 . 08 2 . 11 + 0 . 13 

−0 . 13 4.19 

0.10–5.00 E/W 1 . 69 + 0 . 04 
−0 . 07 2 . 66 + 0 . 06 

−0 . 11 1.46 1 . 21 + 0 . 06 
−0 . 02 1 . 90 + 0 . 09 

−0 . 03 11.49 1 . 71 + 0 . 07 
−0 . 06 2 . 68 + 0 . 11 

−0 . 10 2.15 1 . 33 + 0 . 08 
−0 . 09 2 . 09 + 0 . 13 

−0 . 13 5.18 

0.50–5.00 E/W 1 . 81 + 0 . 15 
−0 . 12 2 . 84 + 0 . 24 

−0 . 19 1.46 1 . 78 + 0 . 14 
−0 . 13 2 . 79 + 0 . 22 

−0 . 21 2.59 1 . 67 + 0 . 12 
−0 . 12 2 . 62 + 0 . 19 

−0 . 18 1.86 1 . 62 + 0 . 12 
−0 . 11 2 . 54 + 0 . 19 

−0 . 18 3.11 

0.03–5.00 C/W 2 . 77 + 0 . 17 
−0 . 15 – 9.54 1 . 49 + 0 . 22 

−0 . 18 – 9.20 3 . 04 + 0 . 05 
−0 . 06 – 10.63 1 . 67 + 0 . 17 

−0 . 13 3.83 

0.10–5.00 C/W 2 . 28 + 0 . 13 
−0 . 11 1.68 1 . 57 + 0 . 15 

−0 . 20 – 10.56 2 . 33 + 0 . 13 
−0 . 13 – 2.59 1 . 65 + 0 . 18 

−0 . 13 – 4.65 

0.50–5.00 C/W 2 . 15 + 0 . 17 
−0 . 18 – 0.74 2 . 10 + 0 . 18 

−0 . 18 – 1.67 2 . 02 + 0 . 17 
−0 . 16 – 1.03 1 . 94 + 0 . 17 

−0 . 16 – 2.24 
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12 We note that ‘linear’ here does not refer to the mode used in CCL described 
earlier, but refers to an assumption of growth under linear perturbation theory, 
as discussed in Lindsay et al. ( 2014a ). 
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ach redshift sample to 1. The second case assumes that there are
o remaining systematics and so redshift resamples which better fit
he data reflect the intrinsic p ( z) of our sample can be determined.
n this case, we do not normalize P ( b ) for each sample to 1 before
esampling and instead retain the difference in probabilities based on
he magnitude of the χ2 . 

Through resampling the data, we determine b 0 accounting for the
ncertainty in p ( z) models. In the first method, this means that the
ontribution of p ( z) samples from those models which satisfy the
esampling criteria are approximately evenly distributed across the
000 redshift resamples and, as such, some p ( z) samples may lead
o large χ2 values where the magnitude of the χ2 for such a p ( z)
as large. In the second method, there will instead be preferred p ( z)

amples and others may not have any (or very little) contribution
o the bias values which satisfy the resampling criteria, whilst other
 ( z) models may substantially dominate the sample. This can lead
o only a small fraction of p ( z) samples actually contributing to the
t, especially when the fit is poor. Due to this method, the associated
2 values of the fit will be lower to that of the previous method.
he b 0 values these are quoted as the median value with errors
easured from the 16th and 84th percentiles and are presented

n Table 4 and Fig. 22 . To present associated models of ω( θ ) we
se 10000 realizations of the final b 0 sample to determine ω( θ )
odels, this is shown in Fig. 21 for the evolving and constant bias 
odels. 

.3 Fitting b ( z) using Limber’s equation for a power-law model 
f ω( θ ) 

he second commonly used method to infer the spatial cluster-
ng of galaxies from the angular clustering is by using Limber’s
quations after assuming a power-law model for ω( θ ) (see e.g.
imber 1953 , 1954 ; Peebles 1980 ). This method has been fre-
uently employed in studies of the clustering of galaxies both at
adio frequencies (see e.g. Lindsay et al. 2014a ; Hale et al. 2018 ;
NRAS 527, 6540–6568 (2024) 
hakraborty et al. 2020 ; Mazumder, Chakraborty & Datta 2022 )
nd other frequencies (see e.g. Puccetti et al. 2006 ; Starikova et al.
012 ; Cochrane et al. 2017 ). To quantify b ( z), we use the fitting of
( θ ) as described in Equation 12 , discussed in Section 4 , with the
arametrisation of the spatial clustering: 

g ( r) = 

(
r 

r 0 ( z) 

)−γ

= 

(
r 

r 0 

)−γ

(1 + z) γ−(3 + ε) , (19) 

here r 0 is a spatial clustering length which parameterises the
lustering of galaxies and ε describes the evolving clustering model.
g ( r ) is the spatial clustering of galaxies, as introduced in Section 1 .
e present r 0 and b measurements using two assumptions for

: (i) assuming ‘comoving’ clustering, where ε = γ − 3, to
ake comparisons with previous studies (e.g Lindsay et al. 2014a ;
indsay, Jarvis & McAlpine 2014b ; Hale et al. 2018 ; Mazumder,
hakraborty & Datta 2022 ) and (ii) assuming ‘linear’ clustering, 12 

here ε = γ − 1, which probes a different range of bias evolution,
ee Lindsay et al. ( 2014a ). In order to determine the spatial clustering,
e need both knowledge of γ and A from Equation 12 as well as p ( z)

o determine the spatial clustering length, r 0 . As discussed, in the
ajority of cases we fix γ to a value of 1.8, though we also consider

he case for a variable γ for comparison. The value of r 0 , can then
e calculated using Limber’s equation (see e.g. Limber 1953 , 1954 ;
eebles 1980 ): 

 0 = 

( 

A r c 
(∫ ∞ 

0 p( z )d z 
)2 

H γ H 0 

∫ ∞ 

0 E( z ) 
1 
2 p( z ) 2 χ ( z ) 1 −γ (1 + z) γ−(3 + ε) d z 

) 

1 
γ

, (20) 

here c is the speed of light in km s −1 , E ( z) = 
m 

(1 + z) 3 + (1 −
m 

) and χ ( z) is the comoving distance at redshift, z. A r is related
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Figure 21. Comparisons of ω( θ ) for LoTSS-DR2 and their modelled fits (subtracting the integral constraint) assuming errors without accounting for covariance 
between θ bins (upper row of each sub figure) and using the full covariance matrix is shown (lower row of each sub figure). These models are shown for the 
angular fitting ranges 0 . 03 − 5 ◦ (left panel), 0 . 1 − 5 ◦ (centre panel) and 0 . 5 − 5 ◦ (right panel), with the dashed vertical lines indicating the angular scales used 
for fitting. Black stars correspond to the measurements from LoTSS-DR2, and the shaded regions correspond to (i) the linear constant bias model (red), (ii) the 
HaloFit constant bias model (yellow), (iii) the linear evolving bias model (blue) and (iv) the HaloFit evolving bias model (purple). The upper panel presents the 
results when all redshift resamples are weighted equally, whilst the lower panel allows preferential p ( z) resamples to be weighted preferentially. 
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o the amplitude ( A ) in Equation 12 when θ is in the unit of radians.
inally, H γ is given by 

 γ = 

� ( 1 2 ) � ( γ−1 
2 ) 

�( γ2 ) 
, (21) 

here � represents the gamma function. As described in Section 1 
nd Equation 2 , the spatial clustering of galaxies can be related to that
f matter to parameterise galaxy bias. Following analysis from Pee- 
les ( 1980 ) and discussed and used in works such as Koutoulidis et al.
 2013 ), Lindsay et al. ( 2014a ), Hale et al. ( 2018 ), and Mazumder,
hakraborty & Datta ( 2022 ), the bias can then be inferred from r 0 
sing: 

( z) = 

(
r 0 ( z) 

8 Mpc h 

−1 

)γ / 2 
J 

1 / 2 
2 

σ8 D ( z) /D (0) 
, (22) 
MNRAS 527, 6540–6568 (2024) 
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Figure 22. Comparisons of the bias models fit (using the full covariance) for the data for a constant bias model and evolving bias model for the three angular 
fitting ranges: 0 . 03 − 5 ◦ (red), 0 . 1 − 5 ◦ (blue) and 0 . 5 − 5 ◦ (yellow) for linear (lighter colours) and HaloFit (darker colours) models. The left panel shows 
the results when each p ( z) resample is weighted as equally probable (method 1, Section 5.2 ) and the centre panel shows the results when preferential p ( z) 
models are upweighted (method 2, Section 5.2 ). This is presented alongside previous measurements from Nusser & Tiwari ( 2015 ) (grey dashed line), Lindsay 
et al. ( 2014a ) (grey pentagons), Hale et al. ( 2018 ) (grey triangles), Chakraborty et al. ( 2020 ) (grey squares) and Mazumder, Chakraborty & Datta ( 2022 ) (grey 
diamonds). Also shown are the fitting of b ( z) from Equation ( 22 ) using the angular fitting range 0.03–1 ◦ (e v aluated at the median redshift of the sample) for 
the fixed slope ( γ ) model (black) and 2 parameter model (magenta) for both the comoving (diamond) and linear (circle) Limber models. The right-hand panel 
shows a comparison of the bias values (evaluated at z med ≈ 0.89) from CCL (in the 0.5–5 ◦ fitting range) using the linear constant (up facing triangle), HaloFit 
constant (right facing triangle), linear evolving (down facing triangle) and HaloFit evolving (left facing triangle) with and without covariance (indicated by a 
fainter symbol). The filled markers for the CCL fitting represent those models where the p ( z) samples are uniformly weighted and open markers indicate where 
a preferential p ( z) model was preferentially selected. These are presented alongside the Limber comoving linear models across the three angular fitting ranges. 
Values on the right-hand panel are shown with an arbitrary offset on the y-axis to highlight the differences in the values. 
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here D ( z) is the growth factor, and J 2 is given by 72 
2 γ (3 −γ )(4 −γ )(6 −γ ) 

nd z is e v aluated at the median redshift of the redshift distribution
which is found here to be z m 

≈ 0.9 for the full redshift distribution).
In order to perform this fitting, we use the fit for ω( θ ) described in

ection 4 and the modelled resampled redshift distributions (using
quation 15 ) described in Section 5.2 . We calculate r 0 and b and their
ssociated uncertainties by using 5000 random values of log 10 ( A )
and γ for a two-parameter model) from our sample which were
enerated to fit A in Section 4 and e v aluate these using the random
amples for the p ( z) distribution to then quantify b ( z). Using this
ethod, we have no reason a priori to assume a certain redshift

istribution and so use the 1000 modelled p ( z) resamples equally to
alculate b . This is therefore most comparable to the first resampling
ethod described in Section 5.2 . From the r 0 and b samples, we then

uantify the median value as well as the errors from the 16th and
4th percentiles. 
We note though, that using Limber inversion used in this method

oes make assumptions, which could affect the results presented.
hese assumptions include that the angles considered are small. At

arger angles, approximations in Limber’s equation break down and
( θ ) deviates from a power la w. F or the majority of angular fitting

anges considered (up to 5 ◦), these use large scales where deviations
rom a power law are expected. Therefore, we also considered the
tting range for the power-law fitting of A , 0.03 ≤ θ < 1 ◦, as discussed

n Section 4 where such a power-law distribution appears appropriate.
oreo v er, assumptions are used to obtain Limber’s equation, which

an include that r 0 is independent of luminsosity; this is likely not be
he case (see e.g. Zehavi et al. 2011 ; Cochrane et al. 2017 ), ho we ver,
ithout an ability to split by luminosity for our sources, our analysis
ill give an average value across the population. We continue to
resent the bias measurements from this method as a number of
revious radio clustering papers (as well as at other wavelengths,
ee e.g. Lindsay et al. 2014a ; Magliocchetti et al. 2017 ; Hale et al.
018 ; Chakraborty et al. 2020 ; Mazumder, Chakraborty & Datta
022 ) all determine r 0 and bias through this method and so allows
or comparison with previous works. 
NRAS 527, 6540–6568 (2024) 

t  

w

We note that CCL also uses Limber’s inversion in order to obtain
 measurement of the bias, but does not rely on assumptions about
 power-law functional form for ω( θ ) and ξ g ( r , z) and accounts
or the deviation from a power law at the largest angular scale.
herefore, different results for the bias may be obtained through

hese different models and we present results for measurements
f b from both methods to make direct comparison of the results
btained. 

.4 ω( θ ) and b ( z) models 

e present the results from fitting ω( θ ) assuming the evolving bias
nd constant bias model in Fig. 21 . For each model, we present
he fits using the three different angular ranges described abo v e, for
oth the diagonal only errors and also the full covariance array. The
ssociated bias models are then presented in Fig. 22 along with the
alues from the Limber method assuming a power-law distribution of
( θ ), with additional comparisons to previous results from analysis
f the large area NVSS surv e y (Nusser & Tiwari 2015 ) as well as
ther individual measurements of bias evaluated at specific redshifts
rom Lindsay et al. ( 2014a ), Hale et al. ( 2018 ), Chakraborty et al.
 2020 ), and Mazumder, Chakraborty & Datta ( 2022 ). The results
f such fitting for both the power-law amplitude, spatial clustering
ength ( r 0 ) and bias for both the Limber- and CCL -derived bias

odels are also provided in Tables 3 and 4 . A comparison of the
mplitude fit assuming a power -law distrib ution as in Equation 12
s also presented in Fig. 24 compared to the work of Lindsay et al.
 2014a ), Hale et al. ( 2019 ), Siewert et al. ( 2020 ), Bonato et al. ( 2021 ),
nd Mazumder, Chakraborty & Datta ( 2022 ). As these surv e ys are
t different frequencies and flux density limits (shown in the inset),
his may affect the populations observed and hence the estimated
iases for such sources, and so an equi v alent surv e y limit scaled to
44 MHz is used. We note that Fig. 22 includes the bias values from
he two-parameter-fitting model compared to the fixed slope model,
hich appear in good agreement. 
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Figure 23. p ( z) for the data (grey) compared to the range of p ( z) models when 
uniformly sampling the data (blue) compared to allowing the p ( z) resamples 
to preferentially selected in the fitting process (see Section 5.2 ) for a linear 
model across the angular range 0.5–5 ◦ using the full covariance array with 
an evolving (red) and constant (yellow) bias model. All models are shown in 
the range given by the 16th and 84th percentiles. 
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 DISCUSSION  

n this section, we shall discuss our results in context of the different
odels used to fit the data as well as comparing to previous studies

f the angular clustering of radio sources. 

.1 Comparing CCL -deri v ed models for ω( θ ) and b ( z) 

irst, we compare the fitting of ω( θ ) using the linear and HaloFit
odels of CCL . As can be seen in Fig. 21 , the fit of ω( θ ) using

he linear model appears to have relatively good agreement with the 
ata across the angular range 0.06–1 ◦ using all three angular fitting 
anges considered in this work when using the more simplistic χ2 for
oth the evolving and constant bias models. Abo v e 1 ◦, the evolving
ias model appears to underestimate slightly ω( θ ), compared to the 
onstant bias model, especially when using fitting ranges that co v er
he largest angular range and the full covariance is considered. As the
ull covariance accounts for correlations between different angular 
ins, this allows the model to underpredict ω( θ ) on these scales
elative to what might be expected by simply looking at minimizing 

2 using the diagonal errors on ω( θ ) only. Ho we ver, such an ef fect
s less notable in Fig. 21 (b) where we allow the p ( z) resamples to
e preferentially selected to best fit the model. Below 0.06 ◦, the
easured value for ω( θ ) appears to be larger than expected from the

inear model for both the evolving and constant bias models, with an
v en larger discrepanc y for θ < 0.03 ◦, where we believe the effect of
ulticomponent sources within the LoTSS-DR2 surv e y is important. 
n the contrary, the HaloFit model, shows greater agreement with 
( θ ) for θ ≤ 0.06 ◦ when fitting with minimum angular scales θ
0.1 ◦. Ho we ver, in doing so these models greatly underestimate

( θ ) on the majority of larger angular scales ( θ ≥ 0 . ◦1), which is
here linear bias is dominating. This results in significantly larger 

educed χ2 values compared to the linear models. For the narrowest 
ngular fitting range (fitting between 0.5–5 ◦), instead, there is much 
etter agreement with the measured ω( θ ) on the largest angular 
cales (comparable to that when using a linear model), but the model
ignificantly o v er predicts the clustering at angles � 0.5 ◦. 
w  
This comparison suggests that neither the linear or HaloFit models 
an completely reproduce the measured ω( θ ) across the full range of
ngular scales presented in Fig. 21 , though abo v e the angular scale
here we believe the effects of multicomponent sources is negligible 

 θ ≥ 0.03 ◦), the linear models are able to much more accurately fit the
ata across a wider range of angular scales using both p ( z) resampling
ethods. The linear and HaloFit models should agree on the largest

ngular scales and only deviate at small angular scales due to the ‘1-
alo’ clustering from sources within the same dark matter halo. When
easuring the linear bias, where we measure the ‘2-halo’ clustering 

elating to galaxies in different dark matter haloes, it is important
hat the model ω( θ ) from the fitting be an accurate representation
n the largest angular scales. Therefore, the bias measured by the
aloFit models using the angular ranges 0.03–5 ◦ and 0.1–5 ◦ appears 

o underestimate ω( θ ) on the largest angular scales compared to the
inear models and so will underestimate the linear bias. These should
herefore not be used to draw conclusions of b 0 . When fitting for
ngular scales of θ ≥ 0.5 ◦ there is better agreement between the 
inear and HaloFit models and so measurements of bias from such

odels are more likely to represent the true bias. 
Given that cross-matched data for the LoTSS-DR2 is not currently 

vailable for the full LoTSS-DR2 sample, and instead cross-matching 
s only complete abo v e 8 mJy (Hardcastle et al. 2023 ), it is not
ossible to conclusively determine whether we do have a significant 
ontribution of 1-halo clustering to ω( θ ) in this work. Ho we ver,
rom the LoTSS-DR1 clustering measurements shown in Fig. 16 , 
he correction for multicomponent sources is relatively small and 
ould be insufficient to explain the excess clustering seen here at

mall angular scales ( θ � 0.03 ◦). This therefore suggests that we are
ndeed observing some 1-halo clustering within LoTSS-DR2. Given 
he uncertainty in the effect of multicomponent sources, ho we ver, we
re also unable to do a full halo occupation distribution modelling
HOD; see e.g. Berlind & Weinberg 2002 ; Zheng et al. 2005 ) in
rder to determine properties of the haloes which allow them to host
ultiple radio sources of the type observed in this data. 
At the largest angular scales, we note that the linear and HaloFit
odels are slightly lower than the measured ω( θ ) from the data
hen the full covariance is used (especially when uniform weighting 

s used for each p ( z) resample). This may suggest that residual
ystematics remain within the data which are not fully captured by
he randoms but are accounted for by the cov ariance. Alternati vely,
t could also represent a contribution of the radio dipole to the
bserved TPCF, which can cause an excess clustering at larger 
ngular scales (see Chen & Schwarz 2016 ), but is not included in our
odels. More likely, these differences could suggest the assumed bias 
odels used in this analysis may be too simplistic for the sources

bserved in this work. Our sample is a combination of different
ources types and luminosities which dominate at different redshift 
anges and so contribute differently across the redshift distribution. 
uch sub-populations have different bias evolution models (see e.g. 
agliocchetti et al. 2017 ; Hale et al. 2018 ; Chakraborty et al.

020 ; Mazumder, Chakraborty & Datta 2022 ), which are complex
o combine when considering only a single population. As we are
nable to separate the LoTSS-DR2 sources into different source 
lasses, we rely on more simplistic models to probe the population
s an average population, until the time where such sources can be
tudied in greater detail, split by source type. Such studies which
ccount for differences in bias models are more beneficial for those
ata where sources have been associated with a galaxy host, assigned
 redshift and source classification has been undertaken to identify 
he source type. This will be aided in future o v er such large sky areas
ith WEAVE-LOFAR (Smith et al. 2016 ), where spectra can be used
MNRAS 527, 6540–6568 (2024) 
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Figure 24. Comparison of the ω( θ ) from this work (black stars) compared 
to pre vious po wer-law fitting from the studies of Siewert et al. ( 2020 ) 
using a 2 mJy (solid purple) cut as well as the works of Hale et al. ( 2019 ) 
(turquoise dotted), Bonato et al. ( 2021 ) (dark red dot–dashed), Mazumder, 
Chakraborty & Datta ( 2022 ) (orange dashed) and Lindsay et al. ( 2014a ) (light 
grey dotted). Inset: Amplitude variation as a function of flux density compared 
to the fitting here using the simple χ2 method across the three fitting ranges: 
0.03–5.00 ◦ (red), 0.10–5.00 ◦ (yellow) and 0.50–5.00 ◦ (black). The quoted 
flux limits are scaled to 144 MHz to allow more equivalent comparisons. 
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o attribute redshifts to sources and to classify the source type. At
resent, though, such studies should focus on deep, multiwavelength
elds, as in the recent works of Hale et al. ( 2018 ), Chakraborty et al.
 2020 ), and Mazumder, Chakraborty & Datta ( 2022 ). 

Alternatively, if the systematics within the data have been fully
ccounted for it could imply that the true p ( z) is different from
hat currently estimated from the LoTSS Deep Fields. Fig. 23
hows the preferred p ( z) models (using a linear model, fit o v er
he angular range 0.5–5 ◦), which fa v our a model with a greater
raction of sources at these low redshifts. As discussed, this provides
 much better fit to the data at the largest angular scales than
sing a uniform weighting of our resampled p ( z) models, reflected
n the smaller average χ2 /DOF values for our samples. For other
ngular fitting ranges which may give poorer fits to the data, the
referred p ( z) may shift to higher or lower redshifts, however, we
resent the 0.5–5 ◦ range which we believe is the most trustworthy
o measure linear bias. We note that o v er the 0.5–5 ◦ fitting range,
he measured bias values presented in Table 4 are lower using
he weighted p ( z) resampling, but are consistent with one another
ithin ∼ 1 σ . Discerning between whether we expect a p ( z) with a

tronger preference to low-redshift sources or that there are residual
ystematics in our data are challenging, but will be aided with future
pectroscopic surv e ys such as WEAVE-LOFAR (Smith et al. 2016 ).

Next, we consider the comparison between the evolving, b ( z) =
 0 / D ( z ), and constant, b ( z ) = b 0 , bias models for our data, as
resented in Fig. 22 . The model used in analysis of NVSS in Nusser &
iwari ( 2015 ) was an evolving bias model and we also note that
or previous measurements using Limber inversion, the choice of
omoving clustering assumes a non-evolving r 0 and so an evolving
ias model inversely proportional to the growth factor, as can be
een in Equation 22 . As can be seen in Fig. 21 , both the evolving
nd constant bias model appear to accurately recreate the observed
ngular TPCF across a diverse range of angular scales ( ∼0.07 −1 ◦).
o we ver, whilst at θ ∼ 1 −5 ◦ the model for ω( θ ) using the constant
ias model (and assuming equal weighting for our p ( z) resamples,
ee Fig. 21 a) can be seen to better model ω( θ ) at the largest angular
cales, the evolving bias model underpredicts the observed angular-
PCF. This would therefore imply that a constant bias model appears
NRAS 527, 6540–6568 (2024) 
o more accurately represent the measurements made in this work.
o we ver, in the literature, bias models which evolve and increase
ith redshift have typically been assumed due to expectations that

t higher redshifts a halo of the same mass represents a more
xtreme fluctuation from the average, and so is more biased. In
KADS (Wilman et al. 2008 ), the authors used an assumption
f a constant mass haloes for each different source population,
hese result in an evolving bias model for such an assumption.
hese models have been used in numerous cosmology forecasts

Raccanelli et al. 2012 ; Ferramacho et al. 2014 ; Square Kilometre
rray Cosmology Science Working Group et al. 2020 ). The model
sed in the analysis presented in this work, ho we ver, includes a
ore simplistic evolving bias model, inversely proportional to the

rowth factor, and more complicated evolutionary models taking
nto account the contributions of different source populations are
ikely more appropriate. If the p ( z) resamples are allowed to be
referentially chosen to best fit the data (see Fig. 21 b), the constant
nd evolving bias models both appear to become more similar
ompared to the measurements of ω( θ ). 

Finally, comparisons can be made for the results when using the
ull covariance matrix, compared to errors based on the diagonals of
he covariance matrix. Work such as Lindsay et al. ( 2014a ) and Hale
t al. ( 2018 ) have followed methods where only the uncertainties on
 θ bin and not the full covariance matrix was assumed, which could
ffect the measurements of bias. As can be seen in Figs 21 and 22
nd in Tables 3 and 4 , there do exist differences in the measured bias
nd ω( θ ) models depending on whether or not the full covariance
atrix is provided. These often find a lower bias value when the full

ovariance matrix is used, although the values are typically consistent
ithin 1–2 σ . Differences between the results with and without the

ull covariance imply a correlation between angular scales which
eeds to be accounted for in the fitting of ω( θ ). We therefore use
he models in which the full covariance is incorporated for drawing
onclusions. We also note that when weighting all p ( z) resamples
qually (and modelling these as in Equation 15 ), the results when
sing the covariance matrix from TreeCorr (with N Jack = 100)
ere consistent within ∼1 σ and using a δz = 0.1 binning for the
 ( z) from the LoTSS Deep fields also resulted in b 0 values consistent
ithin ∼1 −1.5 σ to those presented in this work. 

.2 Comparison of b ( z) to other sur v eys 

e next present comparisons to the results made from previous
easurements with similar large-area surv e ys. As this work follows

rom the previous work of LoTSS-DR1 presented in Siewert et al.
 2020 ), we first make comparisons to the results found in that work.
n Siewert et al. ( 2020 ), redshifts were not available for the full
opulation of LoTSS-DR1 sources and no redshift data for LOFAR
ources in the Deep Fields were available at that time. Therefore, for
ias measurements this relied on those sources which had cross-
atched hosts (from Williams et al. 2019 ) and redshifts (from
uncan et al. 2019 ). This meant that approximately 50 per cent
f sources had redshifts a vailable, b ut that measurements of bias
n redshift bins were skewed to those sources. Therefore, it is
hallenging to make direct comparisons to that work. Ho we ver, it
s possible to make comparisons to the fitting parameters for ω( θ )
rovided in Siewert et al. ( 2020 ). 
In Fig. 24 , we present comparisons of the best-fitting models to

iewert et al. ( 2020 ) as well as a number of other previous works from
indsay et al. ( 2014a ), Hale et al. ( 2019 ), Bonato et al. ( 2021 ), and
azumder, Chakraborty & Datta ( 2022 ). For these works, we include

n indication of the equi v alent flux limit used, scaled to 144 MHz.
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or those with fainter populations, we note that differences in the 
opulations being observed, which will be increasingly dominated by 
FGs below 1 mJy , will affect the comparison of such measurements. 
s can be seen from Fig. 24 , our work finds a smaller clustering

mplitude to that found in Mask 1 used in Siewert et al. ( 2020 )
t 2 mJy (their best model from their paper). We do note that our
esult is in excellent agreement to that of Siewert et al. ( 2020 ) using
heir 2 mJy cut in Mask d (not shown in Fig. 24 ), which used a
ess conserv ati ve masking of re gions the y considered to have ‘good’
ensitivity. As discussed though in Section 3.3.4 , there are differences 
ntroduced in this work for the method of generating random sources
ompared to that in Siewert et al. ( 2020 ), which may also affect
omparisons of the measurements, as systematics in the data were 
ccounted for using some different methods. 

At both similar flux densities and a similar frequency to this work
s the clustering presented in Hale et al. ( 2019 ). In their work, the
lustering of sources within the XMM–LSS field as observed with 
OFAR was presented, and Hale et al. ( 2019 ) found a clustering
mplitude approximately three times larger to the work presented 
ere. These difference could arise from cosmic variance as the 
MM–LSS field co v ers a much smaller area ( ∼25 deg 2 ) compared

o the ∼5000 deg 2 used in this work. Ho we ver, we also note that
ale et al. ( 2019 ) discuss the fact that the corrected source counts

ppear to suggest that the completeness corrections applied are an 
nderestimation. This could affect the measurement of ω( θ ) in their 
 ork. Our w ork is consistent with that of Lindsay et al. ( 2014a ), who

tudy the clustering of sources in FIRST (Becker, White & Helfand 
995 ; Helfand, White & Becker 2015 ) with an equi v alent limit at
44 MHz of ∼ 5 mJy , yet there are large uncertainties in their work.
e derive a larger amplitude than that of Mazumder, Chakraborty & 

atta ( 2022 ), who use 325-MHz observations of the Lockman Hole
eld which are the equi v alent of ∼3 times more sensitive than for
oTSS-DR2, but restricted o v er smaller areas. Whilst previous work 
as investigated how the amplitude of clustering changes with flux 
ensity (see e.g. Overzier et al. 2003 ; Wilman et al. 2003 ), who find a
ypical declining amplitude at smaller flux densities, the complication 
etween the different populations introduced and changes in redshift 
istribution as flux limits decrease means that discussion of the 
ower-law amplitude is complicated to make direct comparisons. 
e provide the inset in Fig. 24 to show the flux density dependence

n context with the other work presented. 
Next, comparing the bias evolution models implied from this work 

o those from other works, we note that again there exists challenges
hen making comparisons due to the variety of radio populations, 

nd their variation with flux density. Radio surv e ys are dominated by
GN at the brightest flux densities, with SFG dominating at fainter 
ux densities (see e.g. Smol ̌ci ́c et al. 2017b ; Algera et al. 2020 ;
ale et al. 2023 ) and Best et al. ( 2023 ). For example, Nusser &
iwari ( 2015 ) used a quadratic polynomial model to investigate 
n evolving bias model for NVSS sources with S 1 . 4 GHz ≥ 2 . 5 mJy .
his is an equi v alent flux density limit of ∼ 12 . 5 mJy at 144 MHz ,
pproximately eight times the flux density limit used in this work. 
hese sources will be dominated by AGN and have very little 
ontribution of SFG, whereas we expect a much larger contribution 
f SFGs within this work. As shown in radio clustering studies such
s Magliocchetti et al. ( 2017 ), Hale et al. ( 2018 ), and Mazumder,
hakraborty & Datta ( 2022 ), these two populations are believed to
ave different biases and so by investigating the bias for a source
opulation as a whole, the bias measured will be an average between
he bias of the two populations. Moreo v er, if such previous studies
se comoving clustering, these should be compared to the evolving 
ias models instead of a constant bias model. Therefore, the results
hown for the Limber-derived bias values for comoving clustering 
n this work are only comparable for the evolving bias model and
ot the constant model. Our measurements of bias with Limber’s 
quation (when assuming a power-law spatial clustering model) can 
nderestimate the bias model (if comparing to those from CCL ),
hough these are typically consistent within 1–2 σ . The remaining 
ifferences highlight the challenges when making comparisons of 
ias evolution models using these different approaches. 
Evolving bias models (with the covariance) are consistent with 

ome of the measured values from Chakraborty et al. ( 2020 ) and Hale
t al. ( 2018 ) as well as the evolving bias model from NVSS (Nusser &
iwari 2015 ), especially when the linear model is assumed. We
ote that whilst for Hale et al. ( 2018 ) we present results for the
ull population in Fig. 22 , the results for Chakraborty et al. ( 2020 );

azumder, Chakraborty & Datta ( 2022 ) are separated by source type,
ith those for SFGs found to have lower bias values. Therefore,
ur agreement with Chakraborty et al. ( 2020 ) is to their AGN
opulation measurements and similarly, as discussed, NVSS will 
lso be dominated by AGN at the flux densities applied. Recent
ork from Best et al. ( 2023 ) for the LoTSS Deep Fields, suggests
20 per cent of SFGs and ∼6 per cent of radio quiet quasars (RQQs,
hich become more important at faint flux densities, see e.g. Jarvis &
awlings 2004 ) at the limiting flux density used in this work. 
It is also important to compare to the results of Alonso et al. ( 2021 )

ho used a combination of LoTSS-DR1 and CMB measurements to 
ointly constrain both p ( z) and b ( z) (for sources ≥2 mJy). Their
esults suggested that for an evolving bias model, the value of b 0 is
xpected to be ∼1.2–1.7, assuming a redshift distribution similar to 
hat of Smol ̌ci ́c et al. ( 2017b ) using an appropriate flux density cut.
ur measurements o v er the 0.5–5 ◦ angular fitting range using the full

ovariance matrix to determine b 0 are slightly larger than the results
f Alonso et al. ( 2021 ) (when the p ( z) samples are equally weighted),
hough our results are consistent with their upper limits within our
 σ uncertainties. Ho we ver, when we allow more preferential p ( z)
odels to be weighted, we find b 0 ∼ 1.6 −1.7, consistent with the
ork of Alonso et al. ( 2021 ). In their work, Alonso et al. ( 2021 ) fit for
oth the p ( z) and b ( z) model, and so are more comparable to when
e allow preferential selection of the p ( z) samples. For the constant
ias models, on the other hand, our b 0 values are typically lower than
hose found in (Alonso et al. 2021 , who find b 0 ∼ 2.3 −4). Ho we ver,
heir redshift distribution which they find for such a constant bias
odel is skewed to a much higher redshift than shown in Fig. 20 .
ur redshift distribution peaks significantly below z ∼ 1, similar 

o the evolving bias model of Alonso et al. ( 2021 ), whereas their
onstant bias model predicts a redshift distribution peaking at z ∼
 −2. From Fig. 23 , we see that the LoTSS Deep Fields data do not
ndicate such a peak at higher redshifts. Therefore, to have agreement
etween this work and that of Alonso et al. ( 2021 ) this suggests
 preference towards an evolving bias model for LoTSS sources 
ssuming a redshift distribution similar to that of the LoTSS Deep
ields. 

 C O N C L U S I O N S  

he LOFAR Two-metre Sk y Surv e y Data Release 2 (LoTSS-DR2;
himwell et al. 2022 ) provides a catalogue of ∼4.4 million low-
requency radio sources over ∼ 5600 deg 2 , making it an ideal data
et for radio cosmology studies of the large-scale structure of the
niverse. In this work, we provided analysis of the angular clustering
f sources in the LoTSS-DR2 surv e y and comparison of the bias
odels implied for such sources. We provide a comprehensive 

escription of the methods used to impro v e upon the accurac y of
MNRAS 527, 6540–6568 (2024) 
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13 Note, whilst the different p ( z) models preferred may result in a different 
median redshift, we e v aluate the bias values at the same redshift (the median 
suggested by the 1000 p ( z) resamples) to allow a consistent comparison 
between the values. 
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he random catalogues generated in this work compared to those
sed in the LoTSS-DR1 clustering analysis of Siewert et al. ( 2020 ).
ur random catalogues account for a variety of observational biases
ithin the data including: rms sensitivity variations across the field of
iew; resolution bias; smearing variations across the observations;
etection completeness of PYBDSF ; and the effect of Eddington
nd measurement biases on the measured flux density properties of
ources. 

Using the random catalogues generated, we measure the angular
PCF, ω( θ ), for sources with SNR ≥ 7.5 and integrated flux
ensity ≥1 . 5 mJy , which shows an approximate power-law behaviour
 ω( θ ) ∝ θ1 − γ ) o v er the angular scales between 0.03 and 2 ◦. We
odel ω( θ ) using a variety of models which account for both an

volving and constant bias model as well as using matter power
pectrum models which account for linear effects only (‘linear’) or
ith non-linear effects also included (‘HaloFit’). Our results show

hat in order to best model the ω( θ ) measured from LoTSS-DR2
cross a range of angular scales ( ∼0.1 −1 ◦), the linear model is
referred, which suggests that at the sensitivities probed by this work,
e are typically only observing a single radio source per dark matter
alo, and do not have a strong contribution from ‘1-halo’ clustering.
o we ver, we note that the linear model underestimates the clustering

t smaller angular scales, where a combination of 1-halo clustering
nd multicomponent source clustering may play a role. 

Comparing bias evolutionary models with the linear halo model,
ssuming the models based on the redshift distributions from the
oTSS Deep Fields accurately represent that of our data, our work
uggests that for an evolving bias model of the form b ( z) = b 0 / D ( z),
he best-fitting value of b 0 ∼ 1.7 −1.8 o v er the angular scales which
e believe are most accurate for measuring bias (0.5–5 ◦). Instead

or a constant bias model, of the form b ( z) = b 0 , we find b 0 ∼ 2.1.
t the largest angles ( ≥1 ◦), we see that the constant bias model
rovides a slightly better fit to the observed data when we use
qually weighted p ( z) models from the LoTSS Deep fields to measure
ias. Such differences are reduced if we allow our models to have
referential p ( z) models, based on the fit to the data. Where we allow
ur p ( z) model to be preferentially selected, the bias values in both
he constant and evolving bias models also reduced slightly, to b 0 ∼
.6 −1.7 in an evolving model, and b 0 ∼ 2.0 for a constant model.
ssuming an evolving bias model and taking into account the full

ovariance matrix, we find good agreement with the results from
VSS of Nusser & Tiwari ( 2015 ) up to z ∼ 1 and previous results

rom Hale et al. ( 2018 ) and Chakraborty et al. ( 2020 ), though we note
hat these probe different populations at both different frequencies
nd different equivalent sensitivities to that used in this work. 

Moreo v er, in comparison with work, from LoTSS-DR1 of Alonso
t al. ( 2021 ) who used both CMB and LOFAR measurements to
ointly constrain the redshift distribution and bias evolution model
f LoTSS-DR1 sources ( ≥2 mJy), we find that given the greater
nowledge of the redshift distributions contributed by the LoTSS
eep Fields (see Duncan et al. 2021 ; Sabater et al. 2021 ; Tasse et al.
021 ), an evolving model from Alonso et al. ( 2021 ) is necessary to
eflect the redshift distribution found in their work. We find that the
ias values presented from Alonso et al. ( 2021 ) for their evolving
odel is similar to that of the evolving bias models presented in

his work, especially when we allow p ( z) models to be preferentially
etermined during the fitting process. Using a linear model for the
atter power spectrum to fit across the largest angular scales (0.5–
 

◦) and equally weighting p ( z) models from the LoTSS Deep Fields,
e find, for an evolving bias model, a value of b 0 = 1 . 79 + 0 . 15 

−0 . 14 which
s equi v alent to b E = 2 . 81 + 0 . 24 

−0 . 22 at the median redshift of our sample,
 m 

≈ 0.9 when we do not show a preference to the p ( z) models,
NRAS 527, 6540–6568 (2024) 
educing to b 0 ,E = 1 . 67 + 0 . 12 
−0 . 12 which is equi v alent to b E = 2 . 62 + 0 . 19 

−0 . 18 

nd b 0 ,C = 2 . 02 + 0 . 17 
−0 . 16 when we allow our measurements to suggest

referential p ( z) models, 13 which are found to peak more strongly at
ower redshifts. 

Observations from future spectroscopic surv e ys such as WEAVE–
OFAR (Smith et al. 2016 ) will allow us to more accurately
etermine the redshift distribution of LOFAR sources at low redshifts
nd allow more understanding of the p ( z) models we expect for the
ources observed in this work. This will allow us to disentangle
hether small systematics remain within our data or we have a
opulation of radio sources which are more highly skewed to low
edshifts (e.g. from SFGs). As the low redshift p ( z) appears important
or this work in modelling ω( θ ) at the larger angular scales, such
ccurate redshifts at z < 1 are important for constraining the results
f future studies. This work has highlighted how a number of
bservational systematics can be corrected for future deep radio
osmology studies, whilst also demonstrating that the understanding
f systematics in wide-field mosaiced images is complex, and needs
eep understanding for use in cosmological studies. 
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