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Abstract 
Accurate knowledge of population exposure at the outset of a pandemic has critical 

ramifications for preparedness plans for future epidemic waves. In this thesis, I developed a 

mechanistically informed statistical model to integrate multiple epidemiological datasets in 

different settings and in different population and to estimate key epidemiological parameters 

as well as population exposure using Bayesian inference.  

First, I present a dynamic model to link together three key metrics for evaluating the progress 

of COVID-19 epidemic in England: seroprevalence, PR-PCR test positivity and death. 

While estimating the IgG antibody seroreversion rate and region-specific infection fatality 

ratios, I find that epidemic progression resulted in an increasing gap between measured 

serology prevalence levels and cumulative population exposure to the virus. Ultimately, this 

may mean that twice as many, or more, people have been exposed to the virus relative to the 

number of people who are seropositive by the end of 2020.  

Moreover, I demonstrate that the model could reconstruct the first, unobserved, epidemic 

wave of COVID-19 in England from March 2020 to June 2020 as long as two or three 

serological measurements are given as inputs, with the second wave during the winter of 

2020 validated by the estimates from the ONS Coronavirus Infection Survey. Comparing 

with the inferred exposure, I find that the UK official COVID-9 online dashboard reported 

COVID-19 cases only accounted for less than ten percent by the end of October 2020. I then 

generalise the model to account for the undocumented COVID-19-related mortality and 

sparse measurements of seroprevalence. I apply this in the context of Afghanistan COVID-

19 epidemic and find the population exposure in nine regions of Afghanistan were all higher 

than the seroprevalence survey suggested by July 2020.  



 
 

Finally, I assess the impact of shielding among pregnant patients by comparing their 

exposure with the estimated exposure of the general population. To approach this, I develop 

a dynamic model to link RT-PCR and antibody testing results from patients who gave birth 

and then apply Bayesian inference to estimate transmission parameters and exposure among 

pregnant patients. I find that after considering the duration of each pregnancy pre-COVID 

onset and after, the impact of shielding on reducing the level of exposure among pregnant 

patients during early 2020 who gave birth in this New York City hospital were 

approximately 50%. 
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Chapter 1 Introduction 
Rationale 

Emerging infectious diseases (EIDs) with endemic and pandemic potential remain a 

substantial threat to global health (1-4). The first few months of the COVID-19 pandemic 

were rife with conflicting information, controversy and anxiety. This was engendered not 

only by the nature of the disease itself and limited medical and therapeutic measures, but 

also by the urgent political and public health interventions required in response to the 

menacing developments. My research was motivated by the need to understand what 

precisely was transpiring epidemiologically at the outset, what aspects could be measured 

with the limited data available, and how these measurements could be integrated into a 

coherent model of the initial trajectory of the pandemic. This would not only be a 

contribution to the study of COVID-19, but should also be a resource for those confronting, 

as they emerge, future outbreaks of infectious diseases that threaten regional or global health. 

Essential to this project was to combine all relevant datasets, examine their interrelations, 

take account of as many potentially important factors as possible and to use rigorous and 

robust methods to characterize the progress of the disease. 

The COVID-19 pandemic that started in 2019 has had a devastating impact, with 6.9 million 

deaths reported worldwide as of 29th June 2023 (5). In different stages of the pandemic 

different types of epidemiological datasets were established and collected. Integrating these 

datasets and modelling the progress of the pandemic provides vitally important scientific 

evidence for public health policy. Here I consider the progress of the pandemic in terms of 

the exposure level in a population, with the focus on the early stages when the population 

consists almost entirely of naïve hosts and a vaccination campaign has yet to be conducted.  

Background 
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Exposure level in the population has strong implications for vaccination prioritization 

strategy. In the early stage of the COVID-19 vaccination campaign, when dose supply and 

administrative capacity were initially limited worldwide, a modelling study (6) explored 

how uncertainty regarding previous exposure levels and about a vaccine’s characteristics 

affects the prioritization strategies for reducing deaths and transmission. This model showed 

that the individual-level serological data can be used to inform the dosing priority to 

seronegative individuals, which will improve the marginal impact of each dose and reduce 

vaccination inequities in COVID-19 impact. 

Moreover, exposure level is an important metric for evaluating the effectiveness of non-

pharmaceutical interventions (NPIs). Most studies of estimating the impact of NPIs in the 

real-world relied on health-related outcomes at the population level associated with COVID-

19 (7) (e. g., hospitalisations (8) and deaths (9)), and epidemiological outcomes 

characterizing infection dynamics such as reproduction numbers (10, 11) or transmission 

rates. However, compared with the downstream measurements including hospitalisation and 

death, exposure level is a more relevant marker of transmission in the population when it 

comes to assessing the impact of NPIs where the intended purpose was to reduce 

transmission, for example, school closure (12). 

Approach 

In this thesis, I develop novel mechanistic mathematical models and use Bayesian inference 

to estimate exposure level by linking multiple datasets. Ordinary differential equations are 

classical tools to understand the population dynamics of infectious disease, and here I have 

adapted them to explore ‘cross-scale’ dynamics of pathogens: from within-host dynamics to 

the population scale. I used Bayesian methodology to conduct inference of important 

epidemiological characteristics in case of limited data, thereby allowing for reliable 

uncertainty quantification. 
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Overview 

I applied these methodologies to different populations, including the general population 

(Chapter 2 & Chapter 5) and pregnant women (Chapter 5), and in different settings, 

including High-Income Countries (HICs), where datasets are relatively rich and have 

relatively low bias (Chapter 2 and Chapter 3) and Low- and Middle-income Countries 

(LMICs) where datasets are limited and biased because of reporting issue (Chapter 4). In 

addition, in Chapter 5, I compared the estimates of exposure in the pregnant patients vs. 

general population in New York City.  By considering the duration of pregnancy pre- and 

post-shielding, I demonstrated a dramatic real-world effectiveness of shielding on reducing 

exposure to SARS-CoV-2.  

I framed the remainder of this introductory chapter in terms of a complex and multi-scale 

system. This includes the immune scale with mechanisms that operate at the individual level, 

and the epidemiological scale with mechanisms that are inter-individual.  The core of this 

thesis revolves around the interaction between these two scales. In details, I first review the 

progression of exposed individuals during the various clinical and diagnostic stages of 

COVID-19 infection (Section 1.1) in terms of the within-host virologic kinetics (Section 

1.1.1), within-host serologic kinetics (Section 1.1.2), T cells in immunity to SARS-CoV-2 

and cross-recognition against other human coronaviruses (Section 1.1.3) and 

seroepidemiology (Section 1.1.4). This review forms the basis of model development for 

exploring ‘cross-scale’ dynamics of pathogens: from within-host dynamics to the population 

scale. Then I summarise previously published methodologies on the process of exposure 

(Section 1.2) and parameter inference (Section 1.3), techniques that I use and adapt 

throughout this thesis.  Due to length limitations, I do not attempt to provide an 

encyclopaedic account of the epidemiological modelling or the parameter inference 

literature but focus on those methods that directly relate to the research presented in this 
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thesis. I then conclude this introductory chapter by providing an outline of the main research 

chapters of this thesis. 

1.1 Progression of exposed individuals through the various 
clinical and diagnostic stages during COVID-19 infections 
Once invaded the host, the SARS-CoV-2 starts replicating inside cells and infects more cells, 

evoking human immune responses. There are two broad types of immune response: innate 

responses and adaptive responses. The innate responses usually include physical barriers, 

such as the skin, as well as the activities of immune cells, such as macrophages and natural 

killer cells. The adaptive responses target specific pathogens or foreign substances and can 

take several days to develop (13). They involve two types of cells: 

• immune B cells, which help to hunt down invaders circulating in the bloodstream by 

producing antibodies 

• T cells, which seek out and destroy cells that have been infected by the invading 

pathogen by recognising tell-tale proteins on their surface 

The indicators of T cells immunity are usually hard to measure compared with B cells 

immune responses, typically antibodies. Throughout the thesis, I did not use any 

measurements directly related with T cells immunity and am not relating the serology and 

exposure with immunity. I discussed the limitations of the study around this in the 

Discussion chapter.  

1.1.1 Within-host virologic kinetics and diagnosis 

After an individual is infected with SARS-CoV-2, the virus starts replicating inside cells and 

infects more cells (14). Studies showed that SARS-CoV-2 initially infects targets cells in 

the upper respiratory tract (URT) (15) but also spreads to the lower respiratory tract (LRT), 

where it infects alveoli, causing reduced gas exchange, inflammation and pulmonary 
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pathologies (16). Exposed individuals shed the virus through the URT and transmit the virus 

leading to secondary infections with emission of infectious virus (17). The gold standard for 

laboratory diagnosis of an infection is quantitative reverse transcription polymerase chain 

reaction (RT-PCR). This is used to recognize the presence of specific target RNA through 

an enzymatic process of amplification (18).  

Viral load, a measure of the total number of viral particles inside the individual, as 

determined by RT-PCR, is either expressed as the number of viral RNA copies per millilitre 

of viral transport medium or per swab (19-21) or by the arbitrary test-specific Cycle 

threshold (Ct) value (22). Ct value is defined as the number of amplifications required for a 

target gene to cross the threshold determined by real-time PCR. Arbitrary test-specific Ct 

values inversely correlate with viral load (17). There are different types of RT-PCR assays 

worldwide used for COVID-19 surveillance. The assays differ from each other in multiple 

ways, including the threshold (sensitivity) – the lowest concentration of virus that can be 

detected by the assay, chemistry of reagents, gene targets, cycle parameters, analytical 

interpretive methods, sample preparation and extraction techniques (23). Therefore, Ct 

values cannot be directly compared among assays of different types.  

It is important to note that RT-PCR detects the presence of viral RNA in a sample but is not 

able to distinguish whether infectious virus is present. In a COVID-19 hamster model, the 

timeframe of transmission is correlated with the detection of infectious virus using cell 

culture instead of viral RNA (24). The gold standard for detecting the presence of infectious 

virus in respiratory specimens is the replication of virus in cell culture, termed virus isolation 

(17). 

Viral load determines the Ct value reported from a RT-PCR test and then determines RT-

PCR testing status (positive or negative). Infectious viral load determines the culture 

probability and then determines the infectiousness (or infectivity) and transmission. In the 
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literature, many studies have tried to capture the kinetics of viral titer or Ct value or RT-

PCR sensitivity since exposure or onset of symptom (25-27). A literature review during 

early 2020 showed  it is more likely that the virus would be detected from nasopharyngeal 

sampling between 0- and 4- days post-symptom onset, 89% (95% CI (83%, 93%)) vs. 54% 

(95% CI (47%, 61%)) after 10 to 14 days (27). However, RT-PCR positivity is highly likely 

to have started before the onset of symptoms, namely during the incubation period (28). 

Other studies tried to model the time-varying relationship between infectiousness and time 

since exposure or onset of symptoms (19-21, 29, 30). During the incubation period, infected 

individuals are highly likely to be infectious (31, 32). 

Comparing the kinetics of Ct value and culture probability shows that the viral load 

increased earlier in the early stage of infections and decreased later in the late stage of 

infections than the infectious viral load (33). This implies that the earlier detection of viral 

load using PT-PCR tests can help capture early infections but might lead to unnecessary 

isolation days or absenteeism in the late stage of infection (28) as illustrated by Figure 1-1 

(17).  

Along with the viral kinetics, infected individuals experience various clinical stages. Here I 

review the estimates of mean time of symptom onset, hospitalisation, and death since 

exposure. These quantities vary across virus variants and vaccination status. Since most of 

work in this thesis deals with the early stage of the pandemic, the literature review below 

mainly focuses on studies in 2020.  
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Figure 1-1. Dynamics of RNA viral loads and infectious virus and its correlation with symptoms for 
ancestral SARS-CoV-2 in patients with mild-to-moderate disease (17).  
The orange area shows the window of infectious virus presence that can be captured by Ag-RDT 
positivity while the blue area shows the window of RNA genome presence that can be captured by 
RT-PCR positivity.  

Most individuals, once infected, experience an incubation period of approximately 4.8 days 

(95% confidence interval (CI): 4.5–5.8) (34). followed by the development of symptoms, 

which include fever, dry cough, and fatigue, although some individuals will remain 

asymptomatic throughout. Symptomatic individuals may receive a diagnostic RT-PCR test 

at any time after symptom onset; the time lag between symptom onset and date of test varies 

by country and area, depending on local policies and testing capacity. Some individuals 

might, as their illness progresses, require hospitalization, oxygen therapy, or even intensive 

care, eventually either dying or recovering. The day of symptom onset, as the first 

manifestation of infection, is a critical point for identifying when specific events occur 

relative to each other along the infection timeline. The mean time from symptom onset to 

death is estimated to be 17.8 days (95% credible interval (CrI): 16.9–19.2 days) and to 

hospital discharge is 24.7 days (22.9–28.1 days) (35) (36).  
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1.1.2 Within-host serologic kinetics and diagnosis 

When individuals are exposed to the virus, their immune systems can recognise the proteins 

on the surface of the virus, namely antigens. Then the immune cells, such as ‘B cells’, 

produces antibodies that bind to the virus and signals for other cells in the immune system 

to neutralize the virus (37).  The role of T cells in immunity to SARS-CoV-2 is briefly 

discussed in the following subsection.  

The SARS-CoV-2 RNA genome encodes 29 structural and non-structural proteins, 

including the spike (S), envelope (E), membrane (M) and nucleocapsid (N) proteins, as well 

as the ORF1a/b polyprotein (38) which should elicit an antibody response (IgM and IgG) 

following infection. Many serological assays (also called response assays) have been 

developed to detect anti-spike (S) protein and anti-nucleoprotein (N) antibody response, 

because the two proteins are highly immunogenic (39, 40).  

Spike S protein is found on the surface of the virus. It contains several regions, such as the 

Receptor-Binding Domain (‘RBD’) which enables the virus to enter human cells. Anti-S 

antibody tests may target the entire S protein, or only certain regions (for example, RBD) 

(41, 42). The nucleocapsid (‘N’) protein plays a crucial role in subgenomic viral RNA 

transcription and viral replication and assembly (39).  Some anti-S antibodies, including 

those targeting the receptor binding domain (RBD) of the S protein, display neutralizing 

activity. Neutralizing antibody levels detected by functional assays such as plaque 

neutralization assays, microneutralization assays or inhibition of infection assays are highly 

predictive of immune protection from symptomatic SARS-CoV-2 infection (43). Delayed 

production of neutralizing antibodies correlates with fatal COVID-19 (44).  

The commercial immunoassays used for COVID-19 diagnosis are mainly 

chemiluminescence immunoassays (CLIAs), enzyme-linked immunosorbent assay (ELISAs) 

and rapid diagnostic tests such as lateral flow immunoassays (LFIAs) (45). They detect the 
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viral structural proteins or IgM and IgG antibodies against viral antigens (46-48). The 

dynamics of IgG and IgM antibodies after infection have been widely studied during the 

pandemic because of its potential power for tracking disease burden and population 

immunity.  

The time lag from exposure to SARS-CoV-2 until seroconversion was estimated to be 1-3 

weeks (49-51). Here, seroconversion is defined as the timing that exposed individuals start 

generating detectable antibody. After infection, however, 5-22% of individuals remain 

serology negative (52-54), which is more common among individuals with mild symptoms 

than with severe disease (53) and among asymptomatic compared to symptomatic 

individuals (52). The duration of antibody detection varied among antigen and 

immunoglobulin targets; anti-spike and total Ig assays demonstrated more stable 

longitudinal reactivity than anti-nucleocapsid and IgG assays (46). The half-life of anti-spike 

IgG antibodies was estimated to be from 36 to 244 days while estimates of the half-life of 

anti-nucleocapsid IgG was reported to be between 35 and 85 days (55-58). These estimates 

also show the half-life of IgG antibodies varies across age and disease severity and depends 

on the assay used. A recent systematic review and meta-analysis of SARS-CoV-2 serology 

studies assessed the sensitivity decay of seroassays for detecting SARS-CoV-2 infections; it 

showed sensitivity waning highly correlated with the antigen and the analytic technique used 

by the assay. The average sensitivities ranging between 26% and 98% at 6 months after 

infection, depending on assay characteristics (59). Figure 1-2 illustrated the time course of 

diagnosis variation relative to symptom development.  
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Figure 1-2. Dynamics of diagnostic test results (RT-PCR, IgM antibody, and IgG antibody) for 
detection of SARS-CoV-2 infection relative to symptom onset (60).  
The blue solid curve stands for the nasopharyngeal swab RT-PCR, the orange dashed curve indicates 
IgM antibody, and the dashed green curve represents IgG antibody. RT-PCR can detect infections 
much earlier than antibody tests prior symptom onset.  

1.1.3 T cells in immunity to SARS-CoV-2 and cross-recognition 
against other human coronaviruses 

Many individuals with substantial exposure to SARS-CoV-2, such as healthcare workers, 

demonstrate virus-specific cellular responses without virus-specific antibodies (61-63), 

indicating a potential role for the cellular immune system in clearing infection before it is 

fully established, known as ‘cellular sensitization without seroconversion’ (64). This implies 

that exposure level inferred from serology data might underestimate the population 

immunity.  

Cellular immune system might cooperate with humoral immune system to fight with the 

virus and provide protection against severe disease. Studies show that CD4+ dominated 

spike-specific T cell responses are likely to support antibody generation, with follicular 

helper T cells correlating with humoral immunity in the memory phase (65-67). CD8+ T cell 
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responses against the NP105–113 epitope restricted by B*07:02 demonstrate strong anti-viral 

activity and correlate with protection from severe disease (67).  

As for the duration of SARS-CoV-2-specific T cells presence, there is hope that they will be 

maintained for many years, although this may depend on the clinical severity of the initial 

infection (68). Robust immunity is certainly maintained by 6 months (69) and beyond (70), 

while prospective studies show some refocusing of T cell specificity over time (71) and an 

estimated half-life of around 200 days for virus-specific cells (72).  

Studies also showed that T cells exist within the body as resident memory cells within tissue 

and play an important role in protection against reinfection. The number of SARS-CoV-2-

specific resident memory T cells in the lungs correlates with clinical protection (73), and as 

they can be detected for at least 10 months after infection, it is likely that they play an 

important role in limiting the severity of reinfection (74). 

As for the T cell cross-recognition against other human coronaviruses, some studies show 

that children and young adults demonstrate higher levels of antibody cross-reactivity 

between human coronaviruses and SARS-CoV-2 (75). Individuals with robust HCoV-

specific T cells may potentially be primed for superior protective cellular immunity 

following exposure to SARS-CoV-2, and recent infection with an human coronaviruses 

appears to be associated with a better clinical outcome after SARS-CoV-2 infection (76-78).  

A study examined how the presence of these T cells induced by other coronaviruses at the 

time of SARS-CoV-2 exposure influences whether someone becomes infected and found 

high levels of pre-existing T cells, created by the body when infected with other human 

coronaviruses like the common cold, can protect against COVID-19 infection (79, 80). 

Another study at the early days of COVID-19 pandemic reflected on the immunological and 

epidemiological aspects and implications of pre-existing cross-reactive immune memory to 

SARS-CoV-2, which largely originates from previous exposure to circulating common cold 
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coronaviruses (81). They proposed four immunological scenarios for the impact of cross-

reactive CD4+ memory T cells on COVID-19 severity and viral transmission and discussed 

its implications for the dynamics of herd immunity. They found in any scenario wherein 

cross-reactive T cell memory affects SARS-CoV-2, there would still be substantial 

implications for understanding disease severity and risk stratification. The implications of 

immunological processes on other aspects of SARS-CoV-2 epidemiology are worthy of 

future study.  

1.1.4 Seroepidemiology  

Serologic studies provide important information about the current disease burden, i.e., what 

proportion of a population has been infected, as well as future pandemic trends, i.e., what 

proportion of a population is immune to disease or infection. However, because of the 

complexity of serologic dynamics as stressed above the answers to these two questions 

require further thought. I firstly outline some benefits of using serology data to inform 

pandemic progress as follows. 

Seroprevalence data can be useful to calculate important epidemiologic parameters 

Linking the syndrome surveillance data where COVID-19 cases and deaths are recorded 

with the seroprevalence data, one can calculate the case detection rate, symptom 

development rate, severity development rate, infection fatality rate and so on. However, to 

calculate the infection fatality rate, the total infections must be further estimated from the 

seroprevalence data as described below. 

Seroprevalence data can be used to fit dynamic models 

Susceptible-Exposure-Infection-Recovery-Susceptible (SEIRS)-based mechanistic models 

have been widely developed and applied during the pandemic to inform intervention design 

and vaccination campaigns. COVID-19 related case, hospitalisation, and death data are the 

three main sources used to fit the models (82, 83). Seroprevalence should be another 
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important source of data that can be used to anchor model parameters and improve the 

performance of prediction models.  

I also summarise some limitations of using serology data to understand exposure and 

immunity as follows. 

Antibody waning should be considered while inferring exposure  

The antibody generated after infection decays rapidly. The rate of decay varies across the 

antigen and immunoglobulin targets, leading eventually to seronegative status in exposed 

individuals over time, also called as ‘seroreversion’. This implies that seroprevalence assays 

miss this proportion of exposed individuals and underestimates the true exposure in the 

population over time. To compensate, in order to estimate the true exposure, one has to ‘add 

back’ the impact of antibody decay.  

Cellular immunity and cross protection against other human coronaviruses have to be 

taken into account while interpreting the relation between serology and immunity 

Studies have shown that the existence of anti-spike or anti-nucleocapsid IgG antibodies is 

correlated with a substantial risk reduction of SARS-CoV-2 reinfection at least during the 

first six months after primary infection (84-88). Comparing the incidence rate of reinfection 

in the antibody-positive cohort to the incidence rate of infection in the comparator antibody-

negative cohort, one study concluded that natural infection elicits strong protection against 

reinfection with an efficacy more than 90% for at least seven months (89). Based on an 

antibody level of 28ng ml-1 that was estimated to be associated with 50% protection against 

new infection (43), one study estimated that IgG antibodies will be present up to 869 (482–

3145), 600 (376–1123), 667 (407–1710) and 520 (343–962) days among white females, 

white males, non-white females and non-white males, respectively, aged 60 years. Based on 

a threshold of 6 ng ml−1 that was estimated to provide 50% protection against severe 

infection (neutralizing antibody levels 3% of peak) (90), the estimated time was 1500 (871–
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5973), 1017 (685–1909), 1070 (669–2827) and 826 (571–1532) days, respectively. Besides 

the study of humoral immunity, other studies focus on the T cell response and found that 

antibody and T cell responses may work in a compensatory manner to provide protection 

(91). Sero-reversion does not prevent the establishment of population immunity and many 

other factors including T cells immunity and cross protection from other human 

coronaviruses may play important roles in understanding population immunity. 

1.2 Mathematical models to reconstruct population exposure  
In the literature, many studies aim to quantify the exposure to SARS-CoV-2 over time in the 

population. In this section I categorise them into two major approaches: the simulation 

approach, and the deconvolution approach. I summarise each of them below.  

Simulation approach 

I use ‘simulation approach’ to represent an approach to estimate the population exposure in 

the past or to predict the population exposure in the future. It usually involves developing a 

transmission model under a series of assumptions about the underlying mechanism, 

parameterising the model by fitting real-world observation data and/or using the parameters 

estimated from studies. Two types of models are usually developed in the literature, namely 

compartmental models, and agent-based models (ABM). An agent-based model that tries to 

include the uncertainty of individual behaviour is often referred to as an individual-based 

model.  

The use of compartmental models to study infectious diseases can be traced back to the early 

20th century when Kermack and McKendrick first introduced the well-known 

susceptibility-infected-removed (SIR) model (92). Since then, compartmental models have 

been widely applied to very diverse epidemics. As the name implies, such a model divides 

the whole population into three groups: susceptible (S), infected (I), and removed (R), based 

on a series of assumptions, e.g., homogeneous mixing of the infected and susceptible 
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populations. In practice the modelling exercises during the COVID-19 pandemic aiming to 

estimate population exposure have taken many factors into account, for example, the 

heterogenous contact pattern in a population structured by age and context (93), household 

structure (94, 95), clinical progress pathway (96), waning immunity and reinfection (97), 

and time-varying impact of non-pharmaceutical interventions (e.g. mask wearing, social 

distancing, school closure, working from home, etc) (83, 98) , and so on. To account for the 

uncertainty of model structure and parameters, some studies used stochastic versions of the 

discretised compartmental model (99, 100).  

Agent-based models for infectious diseases usually include three key components: (1) a 

realistic synthetic population generated with demographic characteristics and household 

structure representative of the studied population, (2) a contact network among single 

individuals in the population, and (3) a disease model linking contact network into infection 

probabilities (101-104).  

In both compartmental and agent-based models, model predictions are used to fit the 

observed data including COVID-19 related reported cases, mortality, hospitalisation 

(stratified by ICU and ventilation) (99), so that all model parameters can be estimated at the 

same time. Once the model is fully parameterised, estimates of population exposure over 

time can be easily generated.  

Deconvolution approach  

Mathematically, epidemiological measurements such as daily reported cases can be 

described as a convolution of the underlying time series of new exposure with a delay 

distribution— the probability distribution that describes time from exposure to 

measurements such as cases reporting. Recovering the infections curve from measurable 

metrics is a deconvolution operation (105).  Similarly, COVID-19 related mortality, 

hospitalisation, and even the estimates of prevalence from large-scale infection surveys 
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(106) can also be used as the inputs in the deconvolution approach. Equation (1.1) gives a 

discrete version of the mathematical representation of the convolution-deconvolution 

process  

𝑧(𝑡) ← (𝑓 ∗ 𝑔)(𝑡) = / 𝑓(𝑥)𝑔(𝑡 − 𝑥)
!

"#$

 

(1.1) 

Here, 𝑧 is the observed epidemiological time-series data, e.g., daily reported cases (107), 

daily hospitalisation (105), and daily death (108) etc, 𝑓	is the new exposure time-series to 

be inferred, 𝑔 is the delay distribution, e.g. the probability distribution that describes the 

time from exposure to reporting, and 𝑚 and 𝑛 is the lower and upper bound of summation 

window. Calculating 𝑧 given 𝑓 and 𝑔 is defined as ‘convolution’, while inferring f given 𝑔 

and 𝑧 is defined as ‘deconvolution’. Because not all infections result in hospitalisation or 

mortality, some time-independent or time-varying probabilities of clinical pathway have to 

be included into Equation (1.1). For example, the infection fatality ratio (IFR) should be 

accounted for while using mortality data as input.  

Intuitively, new exposures can be seen as a weighted sum of reported observations with the 

weights as the probabilities given by the delay distributions. In the absence of a model, new 

exposures are just identified—the number of exposures to be inferred is equal to the number 

of observed data points. Without observation noise, the convolution matrix can be inverted, 

and true exposure rates can be identified. With observation noise, the data alone cannot 

distinguish signal from noise, leading to fundamentally unstable estimation. A recent study 

imposed structure on the solution of the deconvolution based on prior information in order 

to separate out the noise and obtain robust estimates of exposure (105). Using similar ideas 

based on the COVID-19 related mortality and a given delay distribution from infection to 
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mortality, another study estimated the cumulative exposure to SARS-CoV-2 in 2020 across 

15 countries (109). 

Using the deconvolution framework, some studies make full use of serological survey data 

to reconstruct the exposure curve (108, 110). However, the deconvolution formula has to be 

used ‘twice' in this case; along with the process from exposure to seropositivity there is 

another process called seroreversion whereby seropositive individuals become seronegative 

due to antibody decay as discussed in Section 1.1.2, besides the process of delay between 

exposure to seroconversion. One study developed a full stochastic framework to account for 

the delay between exposure and seroconversion and the delay between seroconversion and 

seroreversion and estimated the reversion rate as well as the infection fatality ratio (IFR) 

using mortality and seroprevalence data in New York City and Connecticut.  The daily 

seroprevalence and cumulative incidence of SARS-CoV-2 infection predictions can then be 

easily generated once the model is parameterised (108). This deconvolution framework of 

reconstructing the exposure curve using seroprevalence and mortality as input has been 

widely applied in many populations since then (111-113).  

In Chapter 2 and Chapter 5, I developed two novel mathematical models to link multiple 

datasets in the general population and pregnant women and applied Bayesian inference to 

estimate the population exposure over time. Compared with the SEIR-type compartmental 

models in the Simulation Approach, the model that I developed in Chapter 2 is simpler in 

terms of the model structure and requires fewer datasets as demonstrated in Chapter 3 but 

provides accurate estimates of parameters that can be validated by clinical observation study. 

Compared with the Deconvolution Approach, the model that I developed in Chapter 5 can 

reconstruct the exposure history by integrating multiple underlying dynamics including 

virologic kinetics and serologic kinetics, and then fitting to multiple real-world datasets. 
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1.3 Using Bayesian inference to estimate parameters in 
Rstan 
Throughout this thesis, I estimate parameter values of different mathematical models by 

fitting the models to a variety of data types using Bayesian inference using Markov chain 

Monte Carlo (MCMC). A brief introduction to Bayesian inference and its implementation 

in Rstan is given below.  

Bayesian statistics describe all characteristics of a parameter 𝜃  are made in terms of 

probability. The probability is conditional on the observed data of 𝑦, written as 𝑝(𝜃|𝑦). The 

joint probability mass or density function can be written as a product of two densities that 

are often referred to as the prior distribution 𝑝(𝜃) and ‘likelihood’ 𝑝(𝑦|𝜃), respectively:  

𝑝(𝜃, 𝑦) = 𝑝(𝜃)𝑝(𝑦|𝜃) 

 (1.2) 

Simply conditioning on the known value of the data 𝑦, using Bayes’ rule, yields the posterior 

density: 

𝑝(𝜃|𝑦) =
𝑝(𝜃, 𝑦)
𝑝(𝑦) =

𝑝(𝜃)𝑝(𝑦|𝜃)
𝑝(𝑦)  

 (1.3) 

where 𝑝(𝑦) = ∑𝑝(𝜃)𝑝(𝑦|𝜃) , and the sum is over all possible values of 𝜃  (or 𝑝(𝑦) =

∫𝑝(𝜃)𝑝(𝑦|𝜃)𝑑𝜃	in the case of continuous 𝜃). Once the data 𝑦 is given, then it can be 

considered as a constant. This allows to omit the factor 𝑝(𝑦) from Equation (1.3) which does 

not depend on 𝜃, yielding the unnormalized posterior density,  

𝑝(𝜃|𝑦) ∝ 𝑝(𝜃)𝑝(𝑦|𝜃) 

 (1.4) 

The second term in the expression, 𝑝(𝑦|𝜃), is taken here as a function of 𝜃, not of 𝑦 (114).  

It is generally challenging to work out the posterior in closed form due to the complexity of 
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models. MCMC methods provide a family of approaches for obtaining a sample from the 

posterior distribution, 𝑝(𝜃|𝑦) (115).  

One of the simplest MCMC algorithms is the Metropolis-Hastings algorithm. Briefly, this 

algorithm generates a sequence of values of the model parameters, 𝜃 = 𝜃!  (where 𝑛 =

0,… ,𝑁 for some 𝑁), that converges to a sequence of samples from the posterior distribution 

for large n. In each step, a candidate value of 𝜃 = 𝜃%&'%  is sampled from a proposal 

distribution 𝑄@𝜃%&'%A𝜃!()B, where the proposal distribution can  be any distribution that is 

symmetric in the sense of satisfying 𝑄(𝜃) = 𝑄@𝜃A𝜃CB, although this algorithm can also be 

adapted for non-symmetric proposal distributions. The proposed value of 𝜃 is accepted (i.e. 

we set 𝜃! = 𝜃%&'%) with a probability that depends on the relative posterior densities at 

𝜃%&'% and 𝜃!() (where the proposal is always accepted if the posterior density is higher at 

𝜃%&'%	than at 𝜃!() ), and is otherwise rejected (i.e. we set 𝜃!  = 𝜃!() ). While the chain 

eventually converges to the posterior distribution of 𝜃, initial estimates (i.e., 𝜃! for small 𝑛) 

may not follow this distribution (82). 

Stan is a C++ library for Bayesian modelling and inference that primarily uses the No-U-

Turn sampler (NUTS) (116) to obtain posterior simulations given a user-specified model 

and data. The R package rstan provides RStan, the R interface to Stan. The rstan package 

allows one to conveniently fit Stan models from R and evaluate the output, including 

posterior inferences and intermediate quantities such as evaluations of the log posterior 

density and its gradients (117). To assess the convergence of the Markov chains, one can 

plot the time series of the posterior draws or calculate the split  𝑅E  statistic (118). At 

convergence 𝑅E = 1 and the time series of the posterior draws are well mixing. Throughout 

this thesis, I conducted Bayesian inference using the R package rstan.  
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1.4 Thesis overview 
The whole relationship between immune responses, exposure to SARS-CoV-2 and other 

human coronaviruses forms a very big picture of COVID-19 ecosystem, which is extremely 

complex and beyond the scope of my thesis. I am focusing on a few data types that were 

available namely seroprevalence, COVID-19 related mortality and RT-PCR testing results. 

Through my analysis, I am offering evidence on a piece of the puzzle by focussing on 

methods for inferring the population exposure from available epidemiological datasets and 

not making any statement about the presence or absence with the immunity as a result of 

this. 

The overall aim of this thesis is to develop mechanistic models with Bayesian inference to 

reconstruct the hidden exposure history of SARS-CoV-2 infections in a population. I 

approach this problem by first conducting a literature review about the average timeline of 

virologic and serologic dynamics during an infection at the population level as presented in 

Sections 1.2-1.3. Then I developed mechanistic models to link multiple datasets and applied 

Bayesian inference to simultaneously estimate quantities of epidemiological interest from 

the models (see following chapters). The summaries of each chapter are: 

• Chapter 2: Data integration to estimate exposure to SARS-CoV-2 in England. In this 

chapter, I aim to estimate exposure to SARS-CoV-2 in different regions of England after 

accounting for the antibody decay. I first presented a new mechanistic model with 

Bayesian inference that combines multiple datasets (time-series of serology, mortality, 

and virus positivity ratios) to estimate seroreversion rate and infection fatality ratios 

(IFR) and simultaneously infer population exposure levels. Secondly, I collected 

publicly available datasets in different regions of England including mortality, 

seroprevalence and RT-PCR positivity rates and applied this method to estimate 

exposure. The results indicate that the average time to seroreversion is around six 
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months, while the true exposure may be more than double the seroprevalence levels 

reported at the time for several regions of England. This chapter is mainly based on my 

first-author paper published in PLOS Computational Biology (36). 

• Chapter 3: Data integration to estimate exposure to SARS-CoV-2 in data-scarce 

scenarios – at the beginning of the pandemic in England. In this chapter, I described how 

the model developed in Chapter 2 can be useful to accommodate the uncertainty of 

limited epidemiological information at early time and how it can be validated by large-

scale population level infection survey when it is available. This Chapter is mainly based 

on a first-author manuscript submitted to MedRxiv (119). 

• Chapter 4: Data integration to estimate exposure to SARS-CoV-2 in data-scarce 

scenarios – serological data was limited in Afghanistan. In this chapter, I revised the 

methodology that I developed in Chapter 2 to allow for the estimation to be conducted 

using a single seroprevalence and then applied this to data from Afghanistan as an 

example. The method also addressed the underreporting issue of COVID-19 related 

mortality in Afghanistan. This Chapter is mainly based on a co-author paper published 

in BMJ Open (120). 

• Chapter 5: Data integration to estimate the shielding impact among pregnant women 

on reducing exposure to SARS-CoV-2 in New York City. In this chapter, my aim was 

to estimate exposure to SARS-CoV-2 in pregnant women and in the general population 

separately in New York City and, based on that, to infer the effectiveness of shielding 

behaviour during pregnancy on reducing exposure among pregnant women. I first 

developed a new mechanistic model and used Bayesian inference to estimate exposure 

in pregnant women and applied the methodology that I developed in Chapter 2 to infer 

exposure in the general population in New York City. I compared the estimate of 

exposure in these two populations and discussed/considered? the effectiveness of 
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shielding during pregnancy, making full use of the approximately 40-week duration of 

pregnancy. The model showed that patients already pregnant at the onset of the pandemic 

had around a 50% decrease in exposure compared to those who became pregnant after 

the onset of the pandemic as well as to members of the general population. This Chapter 

is mainly based on a first-author paper published in Viruses (121). 

• Chapter 6: In this chapter, I summarise the findings of the thesis and discuss directions 

for future work.
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Chapter 2  Data integration to estimate 
exposure to SARS-CoV-2 in England 
 

I have published the research underlying this chapter in the journal PLOS Computational 

Biology with me as the first author (36): Siyu Chen, Jennifer A Flegg, Lisa J White, and 

Ricardo Aguas. (2021) Levels of SARS-CoV-2 population exposure are considerably higher 

than suggested by seroprevalence surveys. PloS Computational Biology 17(9): e1009436. 

https://doi.org/10.1371/journal.pcbi.1009436. 

Accurate knowledge of prior population exposure has critical ramifications for preparedness 

plans for future SARS-CoV-2 epidemic waves and vaccine prioritization strategies. 

Serological studies can be used to estimate levels of past exposure and thus position 

populations in their epidemic timeline. To circumvent biases introduced by the decay in 

antibody titers over time, methods for estimating population exposure should account for 

seroreversion, to reflect that changes in seroprevalence measures over time are the net effect 

of increases due to recent transmission and decreases due to antibody waning.  

This chapter aims to present a mathematical model to link together three key metrics for 

evaluating the progress of an epidemic and apply to the context of SARS-CoV-2 in England: 

antibody seropositivity, infection incidence and number of deaths. I use data on these three 

metrics to estimate the antibody seroreversion rate and region-specific infection fatality 

ratios. In doing so, the cumulative number of infections in England are estimated, showing 

that cross-sectional seroprevalence data underestimate the true extent of the SARS-CoV-2 

epidemic in England to date. Estimates for the IgG (spike) seroreversion rate and IFR are 

broadly consistent with other studies, which supports the validity of these findings. 

  



Chapter 2 Estimating exposure to SARS-CoV-2 in England 

24 
 

2.1 Introduction 
The COVID-19 pandemic has inflicted devastating effects on global populations and 

economies (122). Levels and styles of reporting epidemic progress vary considerably across 

countries (123) with cases consistently being under-reported and case definitions changing 

considerably over time. Therefore, the scientific and public health communities turned to 

serological surveys as a means to position populations along their expected epidemic 

timeline and thus provide valuable insights into COVID-19 lethality (124, 125). Those 

prospects were frustrated by apparent rapid declines in antibody levels following(126) 

infection. Population-wide antibody prevalence measurements can significantly 

underestimate the level of underlying population immunity, with obvious implications for 

intervention strategy design and vaccine impact measurement. 

Continued research efforts to determine the correlates for protective immunity against 

disease and infection have found that while antibody titers are poor indicators of sustained 

immunity, cellular immunity can play a determinant role in limiting susceptibility to further 

SARS-CoV-2 challenges in previously exposed individuals (61, 127). Unfortunately, 

performing T cell assays at scale is technically challenging and expensive, which justified 

the decision to conduct a series of serology surveys (some of which are still underway) in 

many locations globally to provide a better understanding of the extent of viral spread among 

populations (128). 

In England, a nationwide survey sampling more than 100,000 adults was performed from 

20 June to 13 July 2020. The results suggested that 13% and 6% of the population of London 

and England, respectively, had been exposed to SARS-CoV-2, giving an estimated overall 

infection fatality ratio (IFR) of 0.90% (129). Although corrections were made for the 

sensitivity and specificity of the test used to infer seroprevalence, declining antibody levels 

were not accounted for. This is a limitation of the approach, potentially resulting in 
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underestimates of the true levels of population exposure (129) and an overestimate of the 

IFR. 

We now have a much clearer picture of the time dynamics of humoral responses following 

SARS-CoV-2 exposure, with antibody titers remaining detectable for approximately 6 

months (130, 131). Commonly used serological assays have a limit of antibody titer 

detection below which a negative result is yielded. Hence, a negative result does not 

necessarily imply an absence of antibodies, but rather that there is a dynamic process by 

which the production of antigen-targeted antibodies diminishes once infection has been 

resolved, resulting in decaying antibody titers over time. As antibody levels decrease below 

the limit of detection, seroreversion occurs. 

We define the seroreversion rate as the inverse of the average time taken following 

seroconversion for antibody levels to decline below the cut-off point for testing seropositive. 

In a longitudinal follow-up study, antibodies remained detectable for at least 100 days(126). 

In another study (132), seroprevalence declined by 26% in approximately three months, 

which translates to an average time to seroreversion of around 200 days. However, this was 

not a cohort study, so newly admitted individuals could have seroconverted while others 

transitioned from positive to negative between rounds, leading to an overestimation of the 

time to seroreversion. 

Intuitively, if serology were a true measure of past exposure, we would expect a continually 

increasing prevalence of seropositive individuals over time. However, data suggest this is 

not the case (133), with most regions in England showing a peak in seroprevalence at the 

end of May 2020. This suggests seroreversion plays a significant role in shaping the 

seroprevalence curves in England and that the time since the first epidemic peak will 

influence the extent to which subsequent seroprevalence measurements underestimate the 

underlying population attack size (proportion of the population exposed). We argue that the 
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number of people infected over the course of the epidemic can be informed by data 

triangulation, i.e., by combining numbers of deceased and seropositive individuals over 

time. For this linkage to be meaningful, we need to carefully consider the typical SARS-

CoV-2 infection and recovery timeline (Figure 2-1). 

 

Figure 2-1. Progression of exposed individuals through the various clinical (below the timeline) and 
diagnostic (above the timeline) stages of infection and recovery.  
Stages marked in grey represent events that may happen, with a probability consistent with 
the darkness of the shade of grey.  

Most individuals, once infected, experience an incubation period of approximately 4.8 days 

(95% confidence interval (CI): 4.5–5.8) (34), followed by the development of symptoms, 

which include fever, dry cough, and fatigue, although some individuals will remain 

asymptomatic throughout. Symptomatic individuals may receive a diagnostic RT-PCR test 

at any time after symptom onset; the time lag between symptom onset and date of test varies 

by country and area, depending on local policies and testing capacity. Some individuals 

might, as their illness progresses, require hospitalization, oxygen therapy, or even intensive 

care, eventually either dying or recovering. 

The day of symptom onset, as the first manifestation of infection, is a critical point for 

identifying when specific events occur relative to each other along the infection timeline. 

The mean time from symptom onset to death is estimated to be 17.8 days (95% credible 

interval (CrI): 16.9–19.2 days) and to hospital discharge 24.7 days (22.9–28.1 days) (35). 

The median seroconversion time for IgG (long-lasting antibodies thought to be indicators of 

prior exposure) is estimated to be 14 days post-symptom onset; the presence of antibodies 
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is detectable in less than 40% of patients within 1 week of symptom onset, rapidly increasing 

to 79.8% (IgG) at day 15 post-onset (134). We assume that onset of symptoms occurs at day 

5 post-infection and that it takes an average of 2 additional days for people to have a RT-

PCR test. Thus, we fix the time lag between exposure and seroconversion, 𝛿*, at 21 days; 

the time lag between a RT-PCR test and death, 𝛿%  ,at 14 days; and assume that 

seroconversion in individuals who survive occurs at approximately the same time as death 

for those who do not (Figure 2-1).  

Thus, we propose to use population-level dynamics (changes in mortality and 

seroprevalence over time) to estimate three key quantities: the seroreversion rate, the IFR, 

and the total population exposure over time. We developed a Bayesian inference method to 

estimate said quantities, based on official epidemiological reports and a time series of 

serology data from blood donors in England, stratified by region (133) (see 2.3 Materials 

and Methods for more details). This dataset informed the national COVID-19 serological 

surveillance, and its data collection was synchronous with the ‘REACT’ study(135). The 

two serosurveys use different, but comparable, antibody diagnostic tests (136). While the 

‘REACT’ study used the FORTRESS lateral flow immunoassay (LFIA) test for IgG (129), 

the data analyzed here were generated using the Euroimmun ELISA (IgG) assay (46, 129). 

The independent ‘REACT’ study acts as a validation dataset, lending credence to the 

seroprevalence values used. For example, seroprevalence in London was reported by 

‘REACT’ to be 13.0% (95% CI: 12.3–13.6%) (129) for the period 20 June to 13 July 2020. 

In comparison, the London blood-donor time series indicated seroprevalence to be 13.3% 

(95% CI: 8.4–16%) (137) on 21 June 2020. Notably, the Abbott IgG antibody testing assay 

showed the most striking decline in sensitivity over time compared with other serological 

assays (138, 139), which limits comparisons across the two datasets as time progresses. 
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We developed a method that combines daily mortality data with seroprevalence in England, 

using a mechanistic mathematical model to infer the temporal trends of exposure and 

seroprevalence during the COVID-19 epidemic. We fit the mathematical model jointly to 

serological survey data from seven regions in England (London, North West, North East 

(North East and Yorkshire and the Humber regions), South East, South West, Midlands (East 

and West Midlands combined), and East of England) using a statistical observation model 

(see the 2.3 Materials and Methods section for more details on the input data sources, 

mechanistic model, and fitting procedure). We considered that mortality is perfectly reported 

and proceeded to use this anchoring variable to extrapolate the number of people infected 3-

weeks prior. We achieved this by estimating region-specific IFRs (defined as 𝛾+), which we 

initially assumed to be time invariant, later relaxing this assumption. The identifiability of 

the IFR metric was guaranteed by using the serological data described above as a second 

source of information on exposure. From the moment of exposure, individuals seroconvert 

a fixed 21 days later and can then serorevert at a rate, 𝛽 , that is estimated as a global 

parameter. We thus have both mortality and seropositivity prevalence informing SARS-

CoV-2 exposure over time. Extending from the baseline model thus described, we conducted 

sensitivity analyses on key assumptions to evaluate the robustness of the results presented 

in the main paper. These sensitivity analyses explore how estimates for IFRs and 

seroreversion rates depend on assumptions around the timelines of infection/testing and the 

data sources used (see the sensitivity analysis subsection in the 2.3 Materials and Methods 

section for more details). 

Several other research groups have used mortality data to extrapolate exposure and as a 

result provide estimates for IFR. Some IFR estimates have been published assuming 

serology cross-sectional prevalence to be a true reflection of population exposure, while 

others used infection numbers generated by mechanistic dynamic models fit to mortality 
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data (140). Most recently, sophisticated statistical techniques, which take into account the 

time lag between exposure and seroconversion, have been used to estimate the underlying 

population exposure from seroprevalence measurements (141), with some also considering 

seroreversion (108, 110, 142, 143). Our method is very much aligned with the latter studies 

but is applied at a regional level while using a dataset that has been validated by an 

independent, largely synchronous study (137) and uses test positivity data to help inform 

time-varying transmission intensity. 

2.2 Data sources and availability 
We used publicly available epidemiological data to infer the underlying exposure to SARS-

CoV-2 over time, as described below. All data, code, and materials used in the analyses can 

be accessed at: https://github.com/SiyuChenOxf/COVID19SeroModel/tree/master. All 

parameter estimates and figures presented can be reproduced using the codes provided. 

2.2.1 Regional daily deaths 

The observed daily mortality data for each of seven English regions (London, North West, 

North East (contains both the North East and Yorkshire and the Humber regions), South 

East, South West, Midlands (East and West Midlands combined) and East of England), from 

1 January 2020 to 11 November 2020, relate to daily deaths with COVID-19 on the death 

certificate by date of death. This information was extracted from the UK government’s 

official COVID-9 online dashboard (144) on 8 March 2021. The age dependent regional 

death rate data used to compare spring and winter 2020 waves was extracted from the same 

source. 

2.2.2 Regional adjusted seroprevalence 
Region-specific SARS-CoV-2 antibody seroprevalence measurements, adjusted for the 

sensitivity and specificity (82.5% and 99.1%, respectively) of the Euroimmun antibody test, 
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were retrieved from the national COVID-19 surveillance reports produced by Public Health 

England (133).  

2.2.3 Regional test-positivity ratios 

Time series of region-specific RT-PCR test-positivity ratios were downloaded from the UK 

government’s official dashboard (144) on 16 May 2021. 

2.2.4 Regional population age structure and non-COVID 
epidemiological indices 

Region-specific population structures were obtained from the UK Office for National 

Statistics 2018 population survey (145). Other demographic and epidemiological indicators 

such as number of care home beds and incidence of diabetes, e.g., were extracted from the 

PHE online database (146), using the search terms: ‘care home’; ‘diabetes’; ‘pulmonary 

disease’; ‘heart disease’. 

2.3 Materials and Methods 

2.3.1 Mechanistic model 

We developed a mechanistic mathematical model that relates reported daily deaths from 

COVID-19 to seropositive status by assuming all COVID-19 deaths are reported and 

estimating an IFR that is congruent with the observed seroprevalence data. For each region, 

𝑖 = 1,…7, corresponding to London, North West, North East, South East, South West, 

Midlands and East of England respectively; we denote the IFR at time 𝑡 by 𝛼+(𝑡) and the 

number of daily deaths by 𝑚+(𝑡). While we formulate the model in terms of a general, time-

dependent IFR, we assume its default shape to be time invariant and later allow IFR to vary 

with the stage of the epidemic. 
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Using the diagram in Figure 2-1 as a reference and given a number of observed deaths at 

time 𝑡 , 𝑚+(𝑡) , we can expect a number of infections )
,!(.(/!)

𝑚+(𝑡 − 𝑑+)  to have 

occurred 𝑑* days before. Of these infected individuals, 𝑚+(𝑡) will eventually die, while the 

remaining )(,!(.)
,!(.)

𝑚+(𝑡) will seroconvert from seronegative to seropositive. This assumes 

that seroconversion occurs, on average, with the same delay from the moment of infection 

as death. 

Assuming that seropositive individuals convert to seronegative (serorevert) at a rate 𝛽, the 

rate of change in the number of seropositive individuals in region 𝑖, 𝑋+(𝑡) is given by: 

𝑑𝑋+(𝑡)
𝑑𝑡 =

1 − 𝛼+(𝑡)
𝛼+(𝑡)

𝑚+(𝑡) − 𝛽𝑋+(𝑡) 

(2.1) 

Solving Equation (2.1), subject to the initial condition 𝑋+(𝑡1) = 0, where 𝑡 is time since 1 

January 2020, gives: 

𝑋+(𝑡) = 𝑒(2.M 𝑒23
@1 − 𝛼+(𝑤)B

𝛼+(𝑤)
𝑚+(𝑤)𝑑𝑤

.

."
 

(2.2) 

Discretizing Equation (2.2) with daily intervals (∆𝑤 = 1) gives: 

 

𝑋+(𝑡) = 𝑒(2. / P
1 − 𝛼+(𝑤)
𝛼+(𝑤)

𝑒23𝑚+(𝑤)Q
.

3#."

 

(2.3) 

The model-predicted proportion of seropositive individuals in each population, 𝑥+(𝑡), is 

calculated by dividing 𝑋+(𝑡) in Equation (2.3) by the respective region population size at 

time 𝑡 , 𝑃+ − ∑ 𝑚+(𝑤).
3#."  , where 𝑃+  is the reported population in region 𝑖  before the 

COVID-19 outbreak (145) : 
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𝑥+(𝑡) = 𝑒(2. S𝑃+ − / 𝑚+(𝑤)
.

3#."

T

()

/ P
1 − 𝛼+(𝑤)
𝛼+(𝑤)

𝑒23𝑚+(𝑤)Q
.

3#."

 

(2.4) 

This is relatively straightforward when the serology data are already adjusted for test 

sensitivity and specificity, as is the case with the datasets used here. For unadjusted antibody 

test results, the proportion of the population that would test positive given the specificity 

(𝑘4%) and sensitivity (𝑘45) can be calculated as: 

𝑧+(𝑡) = 𝑘45𝑥+(𝑡) + @1 − 𝑘4%B@1 − 𝑥+(𝑡)B 

As mentioned earlier, the method that we present here allows for the IFR, 𝛼+(𝑡), to be (a) 

constant or (b) vary over time with the stage of the epidemic: 

a) For a constant IFR, we have 

𝛼+(𝑡) = 𝛾+ 

b) For a time-varying IFR, we first define the epidemic stage, 𝐸𝑆(𝑡), as the normalized 

cumulative positivity ratio: 

𝐸𝑆+(𝑡) =
∑ 𝑦+@𝑤 − 𝛿%B.
3#."

∑ 𝑦+@𝑤 − 𝛿%B6
3#."

 

(2.5) 

where 𝑦+(𝑡) is the confirmed case positivity ratio at time t in the proportion of individuals 

testing positive for the virus, 𝛿%  is the average time between testing positive and 

seroconversion (see Figure 2-1) and 𝑇 is the total number of days from 𝑡1 until the last date 

of positivity data. In this work, we fixed 𝛿% = 14 days (see Figure 2-1 and the main text). 

We assume that the IFR is a linear function of the normalized cumulative positivity ratio as 

follows: 

𝛼+(𝑡) = 𝛾+@1 − 𝜂+𝐸𝑆+(𝑡)B 

(2.6) 
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where 𝜂+ ∈ [0,1] and 𝛾+ ∈ [0,1] are coefficients to be estimated. At the start of the 

epidemic, when the epidemic stage is 0 (see Equation (2.5)), then 𝛼+(𝑡) = 𝛾+, whereas 

when the epidemic stage is 1, 𝛼+(𝑡) = 𝛾+ − 𝜂+ × 𝛾+ ≤ 𝛾+. 

In Equation (2.5), 𝑦+(𝑡) is taken from the daily regional positivity ratios provided in the 

UK government’s data dashboard (144). 

Once the model is parameterized, we can estimate the total proportion of the population that 

has been exposed, 𝐸+, using the following formula: 

 

𝐸+(𝑡 − 𝛿*) = S𝑃+ − / 𝑚(𝑤)
.

3#."

T

()

/
1− 𝛼+(𝑡)
𝛼+(𝑡)

𝑚+(𝑤)
.

3#."

 

(2.7) 

where 𝛿* is fixed to 21 days (Figure 2-1) 

2.3.2 Observation model for statistical estimation of model 
parameters 

We developed a Bayesian model to estimate the model parameters 𝜃  and present the 

posterior predictive distribution of the seroprevalence in Equation (2.4) and exposure in 

Equation (2.7) over time. The results are presented as the median of the posterior with the 

associated 95% credible intervals (CrI). We assumed a negative binomial distribution (147) 

for the observed number of seropositive individuals in region 𝑖 over time, 𝑋+'74(𝑡): 

 

𝑋+'74(𝑡) = 𝑥+'74(𝑡) × `𝑃+ − / 𝑚+(𝑤)
.

3#."

a 

(2.8) 
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where 𝑥+'74(𝑡) is the observed seroprevalence in region 𝑖 over time. Then, the observational 

model is specified for region 𝑖 with observations at times 𝑡+), 𝑡+8, … , 𝑡+!!: 

𝑋+'74(𝑡)~𝑁𝐵(𝑋+(𝑡), 𝜙), 𝑡 = 𝑡+), … , 𝑡+!! 

(2.9) 

where 𝑁𝐵(𝑋+(𝑡), 𝜙)  is a negative binomial distribution, with mean 𝑋+(𝑡) –given by 

Equation (2.3)–and 𝜙 is an overdispersion parameter. We set 𝜙 to 100 to capture additional 

uncertainty in data points that would not be captured with a Poisson or binomial distribution. 

We assume uninformative beta priors for each of the parameters, according to the 

assumption made for how the IFR is allowed to vary over time: 

a) For a constant IFR, we have 𝜃 = {{𝛾+}+#)9 , 𝛽} and take priors:  

𝛾+~𝑏𝑒𝑡𝑎(1,1), 𝛽~𝑏𝑒𝑡𝑎(1,1) 

(2.10) 

b) For a time-varying IFR, we have 𝜃 = {{𝛾+}+#)9 , {𝜂+}+#)9 , 𝛽} and take priors: 

𝛾+~𝑏𝑒𝑡𝑎(1,1), 𝜂+~𝑏𝑒𝑡𝑎(1,1), 𝛽	(1,1) 

(2.11) 

We use Bayesian inference (Hamiltonian Monte Carlo algorithm) in RStan (117) to fit the 

model to seroprevalence data by running four chains of 20,000 iterations each (burn-in of 

10,000). We use 2.5% and 97.5% percentiles from the resulting posterior distributions for 

95% CrI for the parameters. The Gelman–Rubin diagnostics (𝑅E) given in Appendix Table 1 

and Appendix Table 2 show values of 1, indicating that there is no evidence of non-

convergence for either model formulation. Furthermore, the effective sample sizes (𝑛5::) 

in Appendix Table 1 and Appendix Table 2 are all more than 10,000, meaning that there are 

many samples in the posterior that can be considered independent draws. 
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2.3.3 Sensitivity analyses 

The results in the main text explore two model formulations: one that assumes IFR is 

constant over time and another that relaxes that assumption. These models share several 

underlying assumptions, particularly relating to time delays between events in the life 

history of infection, prior distributions, and data sources. To ascertain the robustness of our 

main results, we estimated the relevant parameters using a series of different models as listed 

in Appendix Table 4. Essentially, we explore how our estimates change as we: 

• assume different values for the delay between testing RT-PCR positive and death, 

𝛿%, and for the delay between infection and death, 𝛿*. 

• use a different prior distribution for seroreversion rate. 

• use a different set of mortality data. These are sourced from the same official 

database (144) but obey different criteria. The main results were generated using a 

dataset of death certificates with COVID-19 named as the cause of death, but we 

also apply our method to the ‘Deaths within 28 days of a positive test’ dataset. 

The parameter estimates for the different models considered are summarized in Appendix 

Table 5. Note that parameter 𝛿% does not appear in Equation (2.1), thus, estimates using the 

constant IFR model are only sensitive to changes in 𝛿* (Appendix Figure 8). Interestingly, 

the time-varying IFR model is relatively insensitive to 𝛿%  (Appendix Figure 16) since 

changes in 𝛿% have a limited impact on the shape of the Epidemic Stage (𝐸𝑆) curve and 

consequently IFR over time (Appendix Figure 17). 

2.3.4 Relationship between demographic and epidemiological 
factors and estimated regional IFRs 

Our estimates for regional IFRs were noticeably lower for London and higher for the North 

East, South East and South West. Since treatment outcomes are identical across regions 

(148), we explored which demographic and epidemiological factors could help interpret our 
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results (Appendix Table 6). Our objective here was not to build the most accurate predictive 

regression model (as this is beyond the scope of this paper), but rather to explore a multitude 

of covariates which might display a statistically significant correlation with the obtained IFR 

trends. We thus built several linear regression models with a single covariate using regional 

estimates (Model 2 in Appendix Table 4) for IFR as the dependent variable, which are 

summarized in Appendix Table 6. Linear regression models exploring relationships between 

demographic and epidemiological factors and estimated regional IFRs. Each row refers to a 

unique linear regression model and indicates which covariate was used, alongside the 

resulting slope and intercept estimates (with accompanying 95% CIs) and p-value. The 

independent variables explored were: 

• Proportion of the population over a certain age breakpoint (40 to 75 years of age in 

5-year intervals). We only show the results for the two most significant age 

breakpoints, 45 and 60. 

• Deaths in the community relative to deaths in care homes. 

• Care home beds per 100 people over 75 years of age. 

• Diabetes prevalence. 

• Chronic liver disease mortality rate (per 100,000). 

• Chronic obstructive pulmonary disease mortality rate (per 100,000). 

2.4 Results 

2.4.1 Time-independent IFR model results 
Results from the fixed IFR inference method show excellent agreement with serological data 

(Figure 2-2). We found that, after seroconverting, infected individuals remain seropositive 

for about 176 days on average (95% CrI: 159–197 days) (Table 2-1, Appendix Table 1 and 

Appendix Figure 1). This relatively rapid (approximately six months) seroreversion is 
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similar to estimates from experimental studies (130, 131, 139, 149, 150), and the choice of 

an exponential distribution for seroreversion seems to be validated by long follow-up 

longitudinal studies showing antibody persistence up to 1 year (139, 150, 151), with 59% 

(95% CrI: 50–68%) of seropositive individuals seroreverting after 52 weeks (Appendix 

Figure 2). These seroreversion rates are also broadly consistent with the observation of 83% 

protection against reinfection within 6 months of disease in UK patients (87). 

 

Figure 2-2. Time course of the SARS-CoV-2 pandemic up to 7 November 2020 for the seven regions 
in England in the constant IFR model.  
The solid orange circles and black error bars in each regional panel represent the observed 
seroprevalence data and their credible intervals, respectively, after adjusting for the sensitivity and 
specificity of the antibody test. The green and orange lines show the model predictions of median 
exposure and seroprevalence, respectively, while the shaded areas correspond to the 95% CrI. The 
regional predicted exposure levels (expressed as the proportion of the population that has been 
infected) as of 17 October 2020 are shown on the map of England.  

As a consequence of this rapid seroreversion, epidemic progression will result in an 

increasing gap between measured serology prevalence levels and cumulative population 

exposure to the virus. Ultimately, this may mean that more than twice as many people have 

been exposed to the virus relative to the number of people who are seropositive (Figure 2-2), 

highlighting the importance of our method in aiding interpretation of serological survey 

results and their use for informing policy decisions moving forward. Seroreversion is 

responsible for decreased seropositivity over periods of continued transmission (as 
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evidenced by mortality and case data) and thus why we had to resort to mortality data to 

inform the true exposure of populations to SARS-CoV-2. This is made clear by comparing 

the shapes of the regional cumulative death curves (Appendix Figure 3) with those of the 

estimated cumulative total exposure (Figure 2-2). 

Table 2-1. Marginal median parameter estimates and 95% CrI for the constant IFR model. 
𝛽 is the rate of seroreversion and γ denotes the IFR. The estimated median time to seroreversion 
given by 1/𝛽	is 176 (95% CrI: 159–197 days). 

Parameter Median (95% CrI) 

𝛽 0.0057(0.0051-0.0063) 

𝛾!"#$"#	 0.0049(0.0046-0.0063) 

𝛾&"'()*+,(	 0.0080(0.0073-0.0087) 

𝛾-".()*+,(	 0.0103(0.0095-0.0112) 

𝛾&"'()/0,(	 0.0094(0.0087-0.0101) 

𝛾-".()/0,(	 0.0118(0.0109-0.0129) 

𝛾12$3+#$,	 0.0085(0.0079-0.0091) 

𝛾*+,(	 0.0083(0.0077-0.0090) 

 

We also estimated age-independent IFRs for the seven English regions (means ranging from 

0.49% to 1.18%; Table 2-1) that are in very good agreement with other estimates for England 

(152). The estimated IFRs were noticeably lower for London and higher for the North East, 

South East and South West, indicating a clear signal for a lower probability of death per 

infection in London. Given there are no significant disparities in treatment outcomes across 

regions (148), we explored several demographic and epidemiological factors that could 

explain the observed trend (Appendix Figure 4). There is a strong positive correlation 

between the proportion of the population over the age of 45 years (when disease and 

mortality risk start to increase significantly) and the estimated IFR. Interestingly, not only 

is the population in London younger but there is also a lower proportion of the population 
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comprising elderly people living in care homes, which may explain the proportionally lower 

contribution of care-home deaths to the overall mortality in London. This covariate appears 

to explain more than 75% of the variance observed in estimated IFRs across regions 

(Appendix Table 4 (B)). Note that other mortality risk factors, such as diabetes and 

pulmonary and liver disease, seem to have no correlation with estimated IFR at all 

(Appendix Table 6). 

2.4.2 Time-varying IFR model results 

An alternative formulation of our modelling approach allows IFR to vary over time 

according to the stage of epidemic progression, i.e., allowing for IFR to potentially decrease 

as the population gains immunity, shielding of vulnerable people is optimized and patient 

treatment is improved. Unfortunately, it is extremely difficult to extrapolate the underlying 

risk of infection (a proxy for epidemic progression) from reported case data due to the 

volatility in testing capacity. Hence, we propose that the optimal metric for epidemic 

progression is the cumulative test positivity ratio. In the absence of severe sampling biases, 

the test positivity ratio is a good indicator of changes in underlying population infection risk, 

as a larger proportion of people will test positive if infection prevalence increases. In fact, it 

is clear from Appendix Figure 5(D) that the test positivity ratio is a much better indicator of 

exposure than the case fatality ratio (CFR) or the hospitalization fatality ratio (HFR), as it 

mirrors the shape of the mortality incidence curve Appendix Figure 5(B). For the time-

varying IFR, we took the normalized cumulative test positivity ratio time-series and applied 

it as a scalar of the maximum IFR value estimated for each region (more details can be found 

in the 2.3 Materials and Methods section). 

The results from the time-varying IFR model are consistent with the results from the constant 

IFR model and in very good agreement with serological data (Figure 2-3). The mean 

seroreversion rate in this model was estimated to be 162 days (95% CrI: 148–186 days), a 
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5.5–6.9% difference compared with the constant IFR model, meaning that the estimation for 

the seroreversion rate was robust to the assumption of the shape of the IFR. Critically, 

predictions for cumulative exposure in the population are very robust to the assumption of 

the shape of IFR, with both models forecasting the same levels of overall exposure 

(comparing Figure 2-2 and Figure 2-3). Estimates for the time-varying IFR model 

(Appendix Table 3 and Appendix Figure 6 and Appendix Figure 7) suggest a slight decrease 

in IFR from March to November 2020 in several regions of England; this was most 

significant in London. 

 

 

Figure 2-3. Time course of the SARS-CoV-2 pandemic up to 7 November 2020 for the seven regions 
in England in the time-varying IFR model.  
The orange solid circles and black error bars in each regional panel represent the observed 
seroprevalence data and their credible intervals after adjusting for the sensitivity and specificity of 
the antibody test. The green and orange lines show the median time-varying IFR model predictions 
for exposure and seroprevalence, respectively, while the shaded areas correspond to the 95% CrI. 
The regional median predicted exposure levels (expressed as the proportion of the population that 
has been infected) as of 17 October 2020 are shown on the map of England.  

The methodology for estimating the cumulative exposure in the population proposed in this 

paper rests on several key assumptions that might be violated in practice, the first of which 

is the assumption of fixed delays in the infection time history as depicted in Figure 2-1. This 

is admittedly a simplification of delay-distribution approaches used elsewhere but, as 
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determined by our sensitivity analysis, has no significant implications for the estimates of 

IFR and seroreversion rates for either the constant IFR model or the time-varying IFR model 

(Appendix Figure 8 and Appendix Figure 9). Indeed, relaxing the fixed delays assumption 

would only result in a shift in predicted exposure during the very early stages of the 

pandemic. Second, our methodology relies on mortality data to infer the true shape of the 

cumulative exposure curve. The official English government data dashboard provides two 

mortality datasets: ‘Deaths with COVID-19 on the death certificate’ and ‘Deaths within 28 

days of positive test’ by date of death (144). We opted for the former as the default source 

of mortality data used, because the latter dataset significantly underestimates COVID-19-

associated deaths at the beginning of the pandemic, at a time when transmission was very 

high and RT-PCR testing capacity was at its lowest (Appendix Figure 10). Note that once 

testing capacity reached the tens of thousands of tests per day, the two mortality data streams 

report essentially the same figures. If we use ‘Deaths within 28 days of positive test by date 

of death’ as a model input, we obtain a seroreversion rate that is 8.8–12.8% shorter, along 

with 16–32% lower regional IFRs (Appendix Figure 11 and Appendix Figure 12). This is 

an expected consequence of having the model fit to the same serology data, while assuming 

there were 17,000 fewer deaths during the spring 2020 epidemic wave. More importantly, 

the cumulative exposure predictions are extremely robust to the explored mortality inputs 

(Appendix Figure 13 and Appendix Figure 14). 

2.5 Discussion 
Given the current polarization of opinion around COVID-19 natural immunity, we realize 

that our results are likely to be interpreted in one of two conflicting ways: (1) the rate of 

seroreversion is high, therefore achieving population (herd) immunity is unrealistic, or (2) 

exposure in more affected geographical areas, such as London, is much higher than 

previously thought, and population immunity has almost been reached, which explains the 
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decrease in IFR over time. We would like to dispel both interpretations and stress that our 

results do not directly support either. Regarding (1), it is important to note that the rate of 

decline in neutralizing antibodies, reflective of the effective immunity of the individual, is 

not the same as the rate of decline in seroprevalence. Antibodies may visibly decline in 

individuals yet remain above the detection threshold for antibody testing (126). Conversely, 

if the threshold antibody titer above which a person is considered immune is greater than the 

diagnostic test detection limit, individuals might test positive when in fact they are not 

effectively immune. The relationship between the presence and magnitude of antibodies 

(and therefore seropositive status) and protective immunity is still unclear, with antibodies 

that provide functional immunity only now being discovered (130). Furthermore, T cell-

mediated immunity is detectable in seronegative individuals and is associated with 

protection against disease (61). Therefore, the immunity profile for COVID-19 goes beyond 

the presence of a detectable humoral response. We believe our methodology to estimate total 

exposure levels in England offers valuable insights and a solid evaluation metric to inform 

future health policies (including vaccination) that aim to disrupt transmission. With respect 

to (2), we must clarify that decreasing IFR trends can result from a combination of 

population immunity, improvement in patient treatment, better shielding of those at highest 

risk, and selection processes operating at the intersection of individual frailty and population 

age structure. We can eliminate exposure levels as the main driver of this process as there is 

no clear temporal signal for IFR for regions other than London. This is confirmed by data 

on age-dependent mortality rates at different stages of the epidemic, which show that 

mortality rates in London have decreased substantially since the first spring wave, much 

more so than in other regions (Appendix Figure 15). 

As no significant disparities in treatment outcomes across regions were found (148), an 

alternative interpretation of IFR trends in England is that individuals who are more likely to 
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die from infection (due to some underlying illness, being in a care home, being over a certain 

age or any other risk factors) will do so earlier. This means that as the epidemic progresses, 

selection (through infection) for a decrease in average population frailty (a measure of death 

likelihood once infected) is taking place and, consequently, a reduction in the ratio of deaths 

to infections. The lower estimated IFR for London can be attributed to the city’s relatively 

younger population and lower rates of elderly persons in care homes when compared with 

populations in the other regions of England (Appendix Figure 4, top right panel), indicating 

that if this selection process does exist it will be more pronounced in younger populations 

with a smaller subset of very frail individuals. 

We should mention some details that potentially limit the applicability of the methodology 

presented here to other countries, especially low- and middle-income countries (LMICs). 

The most pertinent detail is one of data quality. Whereas our assumption that COVID-19 

deaths are nearly perfectly reported in England is a plausible one, this is very unlikely to 

hold for other countries across the globe (153). To account for potential under-reporting, we 

could include a constant or time-varying reporting ratio to transform reported deaths into 

‘likely’ deaths. The direct consequence of using predicted deaths as a model input would be 

that any IFR estimates would be very difficult to disentangle from the underlying reporting 

ratio. The quality of the seroprevalence data itself is paramount, and the data collection 

protocol can have a major influence on the obtained estimates, as evidenced by two 

concurrent seroprevalence studies conducted in Manaus, Brazil. Whereas one study reports 

a raw seroprevalence of approximately 40% (154) using the Abbot test, the other reports an 

antibody positivity of approximately 13% (155) using the WONDFO SARS-CoV-2 

antibody test, with both measured in May 2020. A significant difference is that the former 

study used blood donor samples, whereas the latter relates to household surveys. Another 

issue that is likely to be relevant to many LMICs is that the provision of a reliable level of 
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uncertainty around the seroreversion estimate relies on having several sequential 

seroprevalence measurements. In countries with a very limited capacity for conducting 

serosurveys, we suggest using the posterior distribution for seroreversion provided here as 

an informative prior and proceed to estimate infection fatality ratios and total exposure 

profiles. However, we should note that the thresholds of seropositive and seronegative 

assignment vary across assays, hindering the applicability of estimates resulting from data 

generated with a specific assay to other settings where different assays might be used. 

Through its structure, the model assumes that all infections result in in seroconversion. If 

this is not the case, then this approach would underestimate exposure. One study used a 

different method and where large levels of exposure had been inferred from the model 

structure using mortality data (156). 

In conclusion, we propose a new method to forecast the total exposure to SARS-CoV-2 from 

seroprevalence data that accounts for seroreversion and uses daily mortality and test 

positivity ratio data to aid inference. The associated estimate of time to seroreversion of 176 

days (95% CrI: 159–197 days) lies within realistic limits derived from independent sources 

(130, 131, 139, 149, 150). The total exposure in regions of England estimated using this 

method is more than double the latest seroprevalence measurements. Implications for the 

impact of vaccination and other future interventions depend on the, as yet uncharacterized, 

relationships between exposure to the virus, seroprevalence, and population immunity. To 

assess vaccination population impact, one can consider the population at risk to be those 

individuals who are seronegative, those with no past exposure (confirmed or predicted), or 

those with no T-cell reactivity. Here, we offer an extra dimension to the evidence base for 

immediate decision-making, as well as anticipating future information from the 

immunological research community about the relationship between SARS-CoV-2 exposure 

and immunity.
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Chapter 3 Data integration to estimate 
exposure to SARS-CoV-2 in data-scarce 
scenarios – at the beginning of the pandemic 
in England  
 

I have published the research underlying this chapter as first author on MedRxiv (119): Siyu 

Chen, Jennifer A Flegg, Katrina A Lythgoe, Lisa J White. (2023). Reconstructing the first 

COVID-19 pandemic wave with minimal data in the UK. medRxiv: 2023-03.  

https://www.medrxiv.org/content/10.1101/2023.03.17.23287140v2 

In this chapter, I aim to describe how the model developed in Chapter 2 (termed ‘exposure 

model’ below) can be useful to accommodate the uncertainty of limited epidemiological 

information at early times and how it can be validated by a large-scale population level 

infection survey when it is available. To approach that, I re-examined and evaluated the 

exposure model in the context of reconstructing the first COVID-19 epidemic wave in 

England from three perspectives: validation from ONS Coronavirus Infection Survey, 

relationship between model performance and data abundance and time-varying case 

detection rate. The results showed that our exposure model can recover the first but 

unobserved epidemic wave of COVID-19 in England from March 2020 to June 2020 as long 

as two or three serological measurements are given as additional model inputs, with the 

second wave during winter of 2020 validated by the estimates from ONS Coronavirus 

Infection Survey. Moreover, our exposure model estimated that by the end of October in 

2020 the UK government’s official COVID-9 online dashboard reported COVID-19 cases 

only accounted for 9.1% (95%CrI (8.7%,9.8%)) of cumulative exposure, dramatically 

varying across two epidemic waves in England in 2020 (4.3% (95%CrI (4.1%, 4.6%)) vs 

43.7% (95%CrI (40.7%, 47.3%))).  
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3.1 Introduction 
The COVID-19 pandemic has inflicted devastating effects on global populations and 

economies(157, 158) and is now still affecting countries in many different ways. Reviewing 

the challenges posted by the COVID-19 pandemic and evaluating previous responses is 

vitally important for future pandemic preparedness (93, 159-161). Accurate estimation of 

exposure remains crucial for understanding the dynamics of disease transmission and 

assessing the impacts of interventions during the different stages of the pandemic. However, 

this was particularly challenging in the early phase since most of the characteristics of the 

pathogen were unknown and at the same time epidemiological data were sparse.   

Confirmed COVID-19 cases were typically the first type of data to be collected and reported 

mostly due to the syndrome surveillance systems (162, 163). However, this underestimates 

the true exposure in the population because of the limited capacity of diagnoses, the lack of 

clear definition of cases, testing criteria, etc. Large-scale viral infection surveys in the 

community can help to solve the testing issue. For example, the UK Office for National 

Statistics (ONS) conducted a nation-wide COVID-19 viral testing survey, namely 

Coronavirus Infection Survey (CIS) (164) that has successfully tracked the trajectories of 

COVID-19 infections in the UK community since April of 2020. Because of its 

representative sampling across households in the general population this study is recognised 

to have a strong power to capture asymptomatic infections which might be missed out by 

symptomatic testing scheme in the early pandemic and can provide reliable estimates of 

prevalence over time (106). However, this study started collecting samples from April of 

2020 and reporting the estimates of daily incidence from May of 2020 while the first death 

due to COVID-19 disease in the UK was documented in February 2020 (144). This implies 

that the transmission of COVID-19 in the community began earlier than the survey, and the 

survey might not be able to recover the early epidemic curve.  
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Serologic studies that measure how many people have antibodies against the virus are a 

promising tool for pinning down the stage of the pandemic because of its ability of capturing 

past infections regardless of clinical symptoms (165). If the antibody elicited by the virus 

lasts for lifetime, representative sampling in a population followed by the antibody testing 

will provide robust estimates of exposure. However, cohort studies following individuals 

over time after they’ve had a known COVID-19 infection were able to determine that 

antibodies are only measurable up to 6–9 months (51, 90, 166), on average, varying across 

testing assay (167) and antigen types (58). The immediate implication is that serological 

studies will inevitably under-estimate the number of people exposed, since some will have 

a lower antibody count when the study is conducted and test negative. Linking multiple 

publicly available datasets, I proposed a method that I published previously (36) and is 

described in Chapter 2 (termed ‘exposure model’ below) to estimate the true level of 

exposure after considering antibody decay. Here I further examined and evaluated the 

exposure model in the context of reconstructing the first COVID-19 pandemic in England 

from three perspectives: validation from the ONS Coronavirus Infection Survey (Section 

3.4.2), the relationship between model performance and data abundance (Section 3.4.3) and 

time-varying case detection rate (Section 3.4.4). 

3.2 Data sources and availability 
I used publicly available epidemiological data to conduct the analysis, as described below. 

All codes and materials used in the analyses can be accessed at:   

https://github.com/SiyuChenOxf/Exposure_ONS-modelling. All parameter estimates and 

figures presented can be reproduced using the code provided. 
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3.2.1 ONS estimated incidence  

The Office for National Statistics (ONS) launched the Coronavirus (COVID-19) Infection 

Survey in England on 26 April 2020 to estimate how many people across England, Wales, 

Northern Ireland and Scotland would have tested positive for COVID-19 infection, 

regardless of whether they report experiencing symptoms as one of the primary goals of the 

survey. The survey was based on a random sample of households to provide a nationally 

representative survey. Everyone aged 2 years and over in each household sample was asked 

to take a nose and throat swab for SARS-CoV-2, which was tested using the reverse 

transcriptase polymerase chain reaction (RT-PCR). Every participant was swabbed once. 

they were then invited to have repeat tests every week for another four weeks and then 

monthly. More descriptions about the survey design can be found in (164). Using Bayesian 

multilevel generalised additive regression models to model the swab test results (positive or 

negative) as a function of age, sex, time, and region, the study estimated community 

prevalence of SARS-CoV-2 in England since April 2020 (164). Combining the estimates of 

community prevalence and estimates of duration of RT-PCR testing positivity, the survey 

modelling team also published the estimates of daily incidence based on a deconvolution 

model (168).  

To conduct the comparison of estimates of incidence from our exposure model (36) and 

ONS Coronavirus Infection Survey, we first retrieved the SARS-CoV-2 daily incidence in 

England in 2020 from the Office for National Statistics (ONS) (106) on 17 March 2023. 

3.2.2 Model estimated exposure 

Cumulative exposure to SARS-CoV-2 in seven regions of England estimated by our 

exposure model were obtained from (36). Here, we transformed the cumulative exposure to 

daily incidence in different regions of England using Equation (3.1) and then aggregated to 

the total daily incidence in the whole England using Equation (3.2). 
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3.2.3 7-day average of reported COVID-19 cases in England 

7-day average of reported COVID-19 daily cases in England in 2020 were retrieved from 

the UK government’s official COVID-9 online dashboard (144) on 17 March 2023.  

3.3 Materials and Methods 

3.3.1 Model predicted incidence  

The incidence of COVID-19 in the whole England estimated by our exposure model (36) 

was calculated by computing the difference of cumulative exposure in two successive days 

by region and adding together over all England: 

 

𝐼+(𝑡) = 𝐸+(𝑡 + 1) − 𝐸+(𝑡), 𝑡 = 1,2, … , 𝑛, 𝑖 = 1,2, … ,7 

(3.1) 

𝐼;!<=>!/(𝑡) =/𝐼+(𝑡)
9

+#)

 

(3.2) 

Here, 𝐸+(𝑡) is the daily exposure at region 𝑖 estimated by our exposure model (36), 𝑛 is the 

total number of days from 1 January 2020 to 7 November 2020, 𝑖 = 1,…7  represents 

London, Southwest, Southeast, Northeast, Northwest, East, Midland. 𝐼;!<=>!/(𝑡) represents 

the total daily incidence of COVID-19 in England.  

The 7-day average model-predicted incidence as shown by the green lines in Figure 3-1 and 

Figure 3-3 was given by  

𝐼;̅!<=>!/(𝑡) =
1
7 / 𝐼;!<=>!/(𝑖), 𝑡 = 4, 5, … , 𝑛 − 4
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(3.3) 
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Here, 		𝑡 = 4 refers to the fourth day of 2020, 𝑛 is the end date of the comparison exercise, 

7 November 2020.  

3.3.2 Case detection ratio  

The estimated case detection ratio as shown by the bottom figure of Figure 3-3 was 

calculated by  

𝑟(𝑡) =
𝐼;̅!<=>!/(𝑡)

𝐶(𝑡)  

(3.4) 

Here, 𝐶 is the 7-day average of reported cases in England from the UK government’s official 

COVID-9 online dashboard (144).  

While examining the relationship between model performance and data abundance as shown 

in Figure 3-2, we first obtained all the data and codes from our exposure model (36) and 

reran the model by adding the seroprevalence measurements one-by-one into the model.  

3.4 Results 

3.4.1 Reconstruction of the early epidemic 

In Chapter 2, I presented a simple model to link together three key metrics for evaluating 

the progress of an epidemic applied to the context of SARS-CoV-2 in England: antibody 

seropositivity, infection incidence and number of deaths. We use these three metrics to 

estimate the antibody seroreversion rate and region-specific infection fatality ratios. In doing 

so, the cumulative number of infections in England are estimated, showing that cross-

sectional seroprevalence data underestimate the true extent of the SARS-CoV-2 epidemic in 

England in the early pandemic. Estimates for the IgG (spike) seroreversion rate and IFR are 

broadly consistent with other studies, which supports the validity of these findings.  
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The model was set up based on the important observation about the COVID-19 infection 

timeline that seroconversion in individuals who survive occurs at approximately the same 

time as death for those who do not. Therefore, a simple ordinary differential equation (ODE) 

was formulated to model the rate of change in the number of seropositive individuals in 

different regions of England. This rate will increase as new infections are generated as 

calculated by the daily number of deaths divided by infection fatality ratio and will decrease 

as antibody decays. The model-predicted proportion of seropositive population is fitted to 

observed seroprevalence using a Bayesian observation model. More details can be found in 

Chapter 2.  

3.4.2 Validation from ONS Coronavirus Infection Survey 

Comparing the incidence of SARS-CoV-2 in England estimated by our exposure model (36) 

with that inferred by the ONS Coronavirus Infection Survey (Figure 3-1), we found that our 

model could reveal the first but unobserved epidemic wave of COVID-19 in England from 

March 2020 to June 2020 as well as the second wave validated by the estimates from ONS 

Coronavirus Infection Survey. Further, we found our model results were highly consistent 

with those using SEIRS type compartmental models with time-varying force of infection 

(99, 169). 
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Figure 3-1. Comparison of model predicted daily incidence of SARS-CoV-2 in England.  
The green lines show the predictions of median daily incidence from our model (36) based on 
Equation (3.1) - Equation (3.3). The orange lines show the predictions of median daily incidence 
from the ONS Coronavirus Infection Survey while the orange shaded areas correspond to the 95% 
CrI.  

3.4.3 Relationship between model performance and data abundance  

We then examined the relationship between model performance and data abundance - how 

estimates of exposure from our exposure model change with more serological data points 

being added into the fitting procedure one-by-one over time (Figure 3-2). We found that, in 

general, a highly robust pattern of exposure across different regions of England was 

estimated. Specifically, the model could only estimate the quantities of interest: exposure 

and the two parameters (infection fatality ratio and antibody decaying rate) when at least 

two serological measurements from April to June 2020 in each region were given as inputs. 

However, these estimates were already highly consistent with those when more serological 

measurements were added although the credible bands were wider. The wide credible bands 

indicate a larger uncertainty around the estimates when little information was available. 

When three serological measurements in each of region were included, the estimates of 

exposure level became largely consistent with the results of using all the serological 
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measurements. This might be attributed to the timing of these third serological 

measurements since by then the seroprevalence in most regions started decreasing. With the 

addition of more and more serological measurements, the credible bands of estimates of 

exposure gradually narrowed.  
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Figure 3-2. Comparison of estimates of exposure in seven regions of England in 2020 as more 
serological measurements are included in the model inputs (left to right). 
The green and orange lines show the model predictions of median exposure and seroprevalence, 
respectively, while the shaded areas correspond to the 95% CrI.  

3.4.4 Time-varying case detection rate  
When comparing the reported cases with the incidence estimated by our exposure model 

(Figure 3-3), we found the UK government’s official COVID-9 online dashboard (144) 

reported COVID-19 cases in England only accounted for 9.1% (95%CrI (8.7%,9.8%)) of 

cumulative exposure by the end of October 2020. Further, the relative sizes of the two 

infection waves in England in 2020 estimated by our exposure model, the Spring wave from 

February to June and the Autumn wave from September to November, were reversed 

compared to those reported as confirmed cases.  

 

Figure 3-3. Comparison between estimates of daily incidence with reported cases of SARS-CoV-2 
in England and case detection rate that is defined as the ratio between reported cases and inferred 
underlying incidence.  

Here, all serological measurements were used in the model fitting to generate the green lines. 

In the top figure, the green lines show the predictions of median daily incidence by our 

exposure model based on Equation (3.1) - Equation (3.3) while the shaded areas correspond 

to the 95% CrI. The orange lines show the reported confirmed cases in England downloaded 
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from GUV.UK dashboard. In the bottom figure, the blue lines show the estimates of median 

case reporting rate in England based on Equation (3.4) while the shared areas correspond to 

the 95% CrI.   

The case detection rate relative to the total exposure was also dramatically different in these 

two-epidemic waves. In separating the two waves at the first of August 2020, we found 

during January 2020 to August 2020 the case detection rate was only 4.3% (95%CrI (4.1%, 

4.6%)) which increased to 43.7% (95%CrI (40.7%, 47.3%)) during August 2020 to October 

2020, highlighting the dominant effect of testing effort in shaping the case curve in the early 

stage of a pandemic. The testing issue, e.g. the limited capacity of tests and symptom-based 

testing strategy posed a big challenge for understanding the early pandemic. Viral surveys 

in the general population can solve the sampling issue, but still have the problem of not 

sampling early on. Serological data, even from some convenient samples, e.g., blood donors, 

can help to pin down the progress of the pandemic when antibody decay is teased out.  

3.5 Discussion 
Accurate reconstruction of exposure time series is necessary to assess how policies 

influenced transmission over time, in particular when reporting is lagged, and multiple 

interventions may have been undertaken in succession. For example,  (121) made use of the 

comparison of exposure between general population and pregnant women in New York City 

to conclude the effectiveness of shielding during pregnancy. Moreover, the prior exposure 

level in the population can be used to inform future intervention design, e.g., vaccination 

prioritisation. For example, in the early stage of the COVID-19 vaccination campaign, when 

dose supply and administrative capacity were initially limited worldwide, a modelling study 

(6) explored how uncertainty about previous exposure levels and about a vaccine’s 

characteristics affects the prioritization strategies for reducing deaths and transmission. This 
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model showed that the use of individual-level serological tests to redirect doses to 

seronegative individuals improved the marginal impact of each dose while potentially 

reducing existing inequities in COVID-19 impact.  

Here, we evaluated a simple dynamical model that we published previously and 

demonstrated its ability to reconstruct the first epidemic wave in England before large-scale 

survey sampling by providing robust estimates of exposure over time. One key element of 

the model was fitting it to serologic data that was generated from healthy adult blood donors 

supplied by the NHS Blood and Transplant (NHS BT collection) serum samples using the 

Euroimmun anti-spike IgG assay and reported in the Weekly national Influenza and COVID-

19 surveillance report. This suggests that convenient samples, such as serum samples from 

blood donors, have the promising power to provide primary information of epidemic 

progress in a short timeframe especially during the emergency of a new outbreak from a 

novel pathogen.   

It is also important to understand the limitations of the blood donor data. For example, 

testing samples were provided by healthy adult blood donors aged 17 years and older, 

supplied by the NHS Blood and Transplant (NHS BT collection); this might mean that the 

seroprevalence cannot well represent the exposure level among young people who are below 

17 years and some individuals who are not eligible for blood donation. Since week 26 (June 

22, 2020), an exclusion of donors aged 70 years and older donating throughout lockdown 

was lifted, and therefore data from recent sampling periods include donors in this older age 

group; this mean that before June 22, 2020 the seroprevalence data might not represent the 

true exposure level among people who are 70 years old and older. 

Because of the rigorous sampling design and robust estimation power, the ONS Coronavirus 

Infection Survey can almost be seen as the gold standard for estimating community 

prevalence. Our model does not take any results or estimates from the survey as inputs, so 
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that the comparison exercise that we conducted here between estimates of exposure from 

our model with the ONS Coronavirus Infection Survey provides a real-world validation. 

However, it is also important to note that there are some limitations of ONS study, including 

1) some data in the questionnaires can be incorrect or missing. For example, participants 

sometimes misinterpret questions or, in the case of remote data collection, may stop filling 

in the questionnaire part way through; 2) the testing results are limited by the performance 

of testing kits. There will be false-positives and false-negatives from the test, and false-

negatives could also come from the fact that participants in this study are self-swabbing. 

Moreover, we showed the modelling approach is a valuable early pandemic diagnostic tool 

and can clearly recover the first epidemic wave that the survey was unable to capture because 

of its late start. Using the inferred daily incidence, we explicitly demonstrated the variation 

of case detection rates over two epidemic waves in England in 2020. This provides 

quantitative information for studying the association between the capacity, behaviour and 

strategy of testing with the evolution of the epidemic and further supports the argument that 

confirmed case reports largely underestimate the extent of disease transmission.  

Moreover, the simple structure of the model presented here avoids the unnecessary 

complexity and structure-based uncertainty of a full dynamic model where compartmental 

models simulating disease spread in different groups of the population including susceptible, 

exposed, infected and recovered are developed. The exercise of studying the model 

performance against data abundance suggests the modelling results remain highly robust in 

a data-sparse setting that would be particularly important, for example, in Low- or Middle-

Income Countries (LMICs).



Chapter 4 Estimating the exposure to SARS-CoV-2 where serological data was limited 

59 
 

Chapter 4 Data integration to estimate 
exposure to SARS-CoV-2 in data-scarce 
scenarios – serological data was limited in 
Afghanistan  
 

I have co-authored a paper on the research underlying this chapter in the journal BMJ Open 

(120): Sayed Ataullah Saeedzai1, Mohammad Nadir Sahak, Fatima Arifi, Eman 

Abdelkreem Aly, Margo van Gurp4, Lisa J White, Siyu Chen, Amal Barakat, Giti Azim, 

Bahara Rasoly, Soraya Safi, Jennifer A Flegg, Nasar Ahmed, Mohmmad Jamaluddin Ahadi, 

Niaz M Achakzai, Alaa AbouZeid. (2022). COVID-19 morbidity in Afghanistan: a 

nationwide, population-based seroepidemiological study. BMJ open 12.7: e060739. doi: 

10.1136/bmjopen-2021-060739.  

My contribution in this paper was to develop methods to 1) estimate seroprevalence after 

adjusting the sensitivity and specificity of the antibody tests based on the serosurveys (as 

shown in Figure 2 in the original paper, 10.1136/bmjopen-2021-060739); 2) estimate the 

time course of exposure based on the seroprevalence calculated in 1) by accounting for 

antibody decay (as shown in Figure 3 in the original paper, 10.1136/bmjopen-2021-060739). 

To approach 2), I revised the method developed in Chapter 2 to allow for the estimation to 

be conducted using a single seroprevalence measurement at one time point.  

All of the theoretical models that I developed are formulated in 4.2 Materials and Methods; 

results that I generated from these models are presented in 4.3 Results. A brief description 

about the serological measurements from the serological survey that was conducted by 

collaborators is included in the 4.1 Introduction. More details about the survey can be found 

in the publication (120).  
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4.1 Introduction 
The first reported case of COVID-19 in Afghanistan was in Herat province, the national 

border with Iran where many returnees have seeded new cases in the country, on 24 February 

2020 (170). A few days later, the highly infectious virus was reported to have spread to 

several other locations within the country. Many efforts had been made to mitigate the 

spread by the Ministry of Public Health of Afghanistan during the early days of the epidemic. 

For example, a screening program with quarantine requirements following symptoms and 

positive tests for those entering through the country’s porous borders and airports was 

launched in January 2020 (171). Programmes on raising awareness in the population in 

preventing the spread of the virus were conducted since June 2020 (172). Lockdown was 

first imposed in Herat then subsequently in all major provinces including Kabul. Schools 

and universities were closed, and restrictions on mass gatherings were imposed from March 

2020 to August 2020 (170). Despite these non-pharmaceutical interventions, a series of 

epidemic waves were still reported since 2020. As of 20 July 2021, Afghanistan has reported 

156,363 confirmed cases of COVID-19 and 7,284 deaths from the disease (173).  

COVID-19 deaths are a key indicator to track the evolution of the epidemic. However, due 

to a less comprehensive surveillance system and limited capacity of diagnostic testing, the 

percentage of documented COVID-19 deaths was estimated to be only 10% in the African 

region, compared with 90% in Europe (174). With the political transition in Afghanistan and 

disruption of the health system, public health efforts to tackle COVID-19 were completely 

disrupted (175), implying that the undocumented COVID-19 related deaths are highly likely 

substantial in Afghanistan. This posted a big challenge for tracking the exposure to SARS-

CoV-2 in Afghanistan.  

Serological testing of patients can be used to provide useful information about an 

individual’s status in terms of a current or previous COVID-19 infection. Immunoglobulin 
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M (IgM) and G (IgG) antibodies arise at around the same time, between 1 to 3 weeks after 

infection (60); however, IgM antibodies decay more rapidly than IgG antibodies (176). 

Therefore, for public health studies, IgM is used as a marker of current infection while IgG 

is used as a marker of previous infection, i.e., within the previous few months. 

To estimate levels of past exposure and thus the position of a population in their epidemic 

timeline, a national population-based, cross-sectional, age-stratified seroepidemiological 

survey was initiated by the Afghanistan Ministry of Public Health and conducted throughout 

Afghanistan between June and July 2020, including a questionnaire survey and antibody 

testing of participants for COVID-19 infection using RDTs (120). The World Health 

Organization (WHO) protocol for population-based age-stratified seroepidemiological 

investigations for COVID-19 infection was adapted for the Afghanistan context to obtain 

seroprevalence estimates (177).  

Briefly, a two-stage cluster sampling was conducted in the eight regions of Afghanistan plus 

Kabul province where 9514 individuals were sampled in total and the number of participants 

required in each region was estimated proportionate to the population size of each region. 

More details about the survey design and sampling can be found in the publication (120). 

For each individual participant finger-prick blood samples were collected and tested using 

an antibody rapid test (RDT) of COVID-19. The COVID-19 RDT used was the COVID-19 

IgG/IgM Rapid Test Cassette developed by Healgen Scientific LLC, USA with IgM relative 

sensitivity and specificity of 95.7% and 97.3%, respectively; IgG relative sensitivity and 

specificity of 91.8% and 96.4%, respectively; and both IgG-positive and/or IgM-positive 

specificity of 97.5% (178). A weighted analysis of accounting for the sampling weighting, 

non-response weighting, and poststratification weighting was applied to adjust for the 

complex survey design for reporting the survey results. 
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I briefly describe the survey results in the national level here since they will be used as one 

of the inputs of the model that I developed below in Section 4.2 to infer the population 

exposure after adjusting for test sensitivity and specificity and seroreversion. In total, 9514 

participants aged from 5-17 years and >18 years were interviewed and tested for this survey. 

2997 (31.5%) of individuals tested positive for antibodies against SARS-CoV-2. Kabul 

region had the highest proportion of participants who tested positive for antibodies against 

SARS-CoV-2 (534, 53%), then East, Central, West, Northeast, Southeast, North, South, 

Central Highland with the antibody positivity as (466, 42.9%), (333, 36.3%), (314, 34.1%), 

(371, 32.4%), (263, 32.2%), (308, 30.7%), (170, 25.8%), (147,21.1%) respectively (120). 

As discussed in Chapter 1, serological survey results might underestimate the total exposure 

in a population (179) because of decaying antibody titres over time (126, 139, 166). To 

adjust the seroprevalence for test sensitivity and specificity, as well as seroreversion, I 

further adapted the methodology (36) that was originally developed for the English setting 

and used this to infer the population exposure after accounting for the undocumented 

mortality associated with COVID-19 in Afghanistan.  

4.2 Materials and Methods 

4.2.1 Data sources and availability 

In this section, I describe the datasets that are given as the inputs of the model for inferring 

exposure level in different regions of Afghanistan. Survey serology data that are used for 

modelling are all available from (120) and described in Section 4.1. For adjusting the 

COVID-19 seroprevelance, all data, code and materials used in the analyses can be accessed 

at:  

https://github.com/SiyuChenOxf/AfghanistanSerologyStudy/tree/master. 
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Regional daily deaths 

The documented daily mortality data associated with COVID-19, which might be subject to 

underreporting, for each of the nine Afghanistan regions (Kabul, East, West, North, South, 

North-east, South-east, Central, and Central highlands) from 1 January 2020 to 4 August 

2020, were extracted from the Afghanistan Ministry of Health DHIS2 database. 

Regional serology data 

The proportion of individuals with current or past COVID-19 infection in each region were 

obtained from the seroepidemiological study data (120). The serology survey provided a 

result for both IgM and IgG antibodies for each participant, using the COVID-19 IgG/IgM 

Rapid Test Cassette (180). The dynamics of IgM and IgG antibodies within an infected 

individual are complicated (126) as described in Section 1.2.1. Here, I take the simplified 

view that an individual who is either IgG positive and/or IgM positive has been exposed to 

COVID-19 (either past or current infection). Therefore, in the following modelling, the 

sensitivity and specificity provided by the manufacturer of the imperfect serology test for 

IgG+ and/or IgM+ was employed.  

Sample size for the regional serology survey 

The sample size for the serology survey in nine Afghanistan regions (Kabul, East, West, 

North, South, North-east, South-east, Central, and Central highlands) was obtained from the 

survey sampling protocol (120) as shown in Appendix Table 7. This will be used to correct 

the bias of proportion of population tested antibody positive caused by imperfect testing 

performance using Equation (5.1).  

4.2.2 Seroprevalence adjusted by the performance of the test  
I used a simple Bernoulli model to estimate the regional seroprevalence, after adjusting the 

proportion of individuals in each region with current or past COVID-19 infection according 

to the sensitivity and specificity of the serology test (180). (The term ‘seroprevalence’ below 
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denotes the serology positive ratio already adjusted by the test used) The Bayesian 

framework was as follows: 

𝑥+(𝑡1)~𝐵𝑒𝑡𝑎(1,1) 

𝑤+A~𝑏𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 s𝑘45 × 𝑥+(𝑡1) + @1 − 𝑘4%B × @1 − 𝑥+(𝑡1)Bt 

𝑤+A = u
0, 𝐼𝑔𝐺 + 𝑜𝑟	𝐼𝑔𝑀 +
	1, 𝐼𝑔𝐺 − 𝑎𝑛𝑑	𝐼𝑔𝑀 − , 𝑗 = {1,… ,𝑁+}               

 (5.1) 

where in the first equation given above we have specified a uniform prior for 𝑥+(𝑡1), which 

is the proportion of the population in region 𝑖 that is serology positive, either for IgM or IgG, 

at 𝑡1,  21 July 2020; 𝑤+A is the serology survey result for the 𝑗-th participant in the serology 

study from region 𝑖; 𝑁+ is the total number of participants in the serology survey for region 

𝑖 list in Appendix Table 7; and 𝑘45 (𝑘4%) is the median of the serology test cassette sensitivity 

(specificity) reported by the manufacturer (180). The posterior for seroprevalence on the 

date the serology survey was conducted, 𝑡 = 𝑡1, was estimated using a Markov chain Monte 

Carlo (MCMC) implemented in Rstan (117) and denoted as 𝑥y+(𝑡1).  

4.2.3 Exposure estimates   

We revised the mathematical model developed in (36) to account for the underreporting of 

mortality in the Afghanistan setting according to the varying serology status of the 

population, 𝑋+(𝑡), of each regional population (for each region 𝑖 = 1,… ,9, corresponding to 

Kabul, East, West, North, South, North-east, South-east, Central, and Central highlands, 

respectively). The population that has positive serology status increased with exposure of 

the population to COVID-19 and decreased due to the waning of antibodies.  

Given that the constant age-averaged infection fatality rate by region is 𝛽+, the documented 

mortality over time by region is 𝑚+(𝑡), and the reporting rate of mortality associated with 

COVID-19 by region is 𝑞+, which is assumed to be constant over time,  then, at each time 
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step, of the )
B!2!

𝑚+(𝑡) individuals who were exposed, )
B!
𝑚(𝑡) die and the remaining number 

of individuals, 	)(2!
B!2!

𝑚+(𝑡) , seroconvert from negative to positive. Then, assuming that 

positive individuals convert to negative at a rate of 𝛼, the equation for the rate of change of 

the number of seropositive individuals is given by: 

𝑑𝑋+(𝑡)
𝑑𝑡 =

(1 − 𝛽+)
𝑞+𝛽+

𝑚+(𝑡) − 𝛼𝑋+(𝑡) 

(5.2) 

Solving Equation (5.2), subject to the initial condition 𝑋+(𝑡 = 0) = 0 where 𝑡 = 0 is time 

since 1 January 1 2020, gives: 

𝑋+(𝑡) =
(1 − 𝛽+)𝑒(,.

𝑞+𝛽+
M 𝑒,&𝑚+(𝑟)𝑑𝑟
.

1
 

(5.3) 

Discretising Equation (5.3) with daily intervals (∆𝑟 = 1) gives: 

𝑋+(𝑡) =
(1 − 𝛽+)𝑒(,.

𝑞+𝛽+
/ 𝑒,&𝑚+(𝑟)

.

&#1
 

(5.4) 

Then, the proportion of the population that is serology positive over time, 𝑥+(𝑡), is  

𝑥+(𝑡) =
𝑋+(𝑡)

𝑃+ 	− 	
∑ 𝑚+(𝑟).
&#1
𝑞+

 

(5.5) 

Where 𝑃+ is the reported population in region 𝑖 before the COVID-19 outbreak, and the total 

proportion of the population that has been exposed over time, 𝜀(𝑡 − 𝛿*), is  

𝜀+(𝑡 − 𝛿*) =

1 − 𝛽+
𝑞+𝛽+

∑ 𝑚+(𝑟).
&#1

𝑃+ 	− 	
∑ 𝑚+(𝑟).
&#1
𝑞+

 

(5.6) 
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where 𝛿* is the time lag between exposure and seroconversion and is fixed at 21 days (36).  

We used the posterior samples of seroprevalence at 𝑡1 , 𝑥y+(𝑡1) , from the MCMC and 

combined it with Equations (5.4) and Equation (5.5) to calculate the posterior samples of 

reporting rate for mortality, 𝑞y+:  

𝑞y+ =	
(1 − 𝛽+)𝑒(,." ∑ 𝑒,.𝑚+(𝑡)

."

.#1
𝑥+(𝑡1)𝛽+𝑃+

+
∑ 𝑚+(𝑡)
."
.#1
𝑃+

 

(5.7) 

Compared with the total population in Afghanistan prior to 2020 (approximately 38 million 

people), the cumulative mortality associated with COVID-19 by the date of serology survey, 

∑ 𝑚(𝑡)."
.#1 , is small. Therefore, it is reasonable to neglect it from Equation (5.7), which then 

gives:  

𝑞y+ ≈
(1 − 𝛽+)𝑒(,." ∑ 𝑒,.𝑚+(𝑡)

."

.#1
𝑥+(𝑡1)𝛽+𝑃+

 

(5.8) 

Combining Equations (5.4), (5.5) and (5.8) we can obtain samples of seroprevalence over 

time, 𝑥y+(𝑡): 

𝑥"!(𝑡) ≈ "4($5)
&6(8985)

∑ &6;(4())8
;<5

∑ &68(4($)
85
8<5

 

(5.9) 

From Equations (5.6) and Equation (5.8) we can obtain samples of the total proportion of 

the population that has been exposed over time, 𝜀+̃(𝑡 − 𝛿*): 

𝜀+̃(𝑡 − 𝛿*) ≈ 𝑥+(𝑡1)𝑒,."
∑ 𝑚+(𝑟).
&#1

∑ 𝑒,.𝑚+(𝑡)
."
.#1

 

(5.10) 
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Note that the seroprevalence in Equation (5.9) and exposure in Equation (5.10) over time 

are not dependent on 𝛽. We use the median estimation of α from the constant infection 

fatality ratio (IFR) model from (36) as an input to Equation (5.9) and Equation (5.10).  

4.3 Results 
Based on the analysis formulated in Equation (5.1), the seroprevalence by region adjusted 

by the sensitivity and specificity of the antibody tests is shown in Figure 4-1.  

 

Figure 4-1. Adjusted seroprevalence by region by the sensitivity and specificity of the serology test 
for IgG-positive and/or IgM-positive. 

By region, Kabul had the highest proportion of population who had COVID-19 infections 

according to the serological survey (51.8% CrI (48.8%, 54.8%)), while the Central highlands 

region had the lowest proportion, at (19.0% CrI (16.4%, 21.8%)).  

Based on the mathematical relationship between adjusted seroprevalence and exposure 

formulated in Equation (5.10), I presented the predictions for cumulative exposure in the 

population up to 21 July 2020 in the nine regions of Afghanistan in Figure 4-2. Kabul was 

estimated to have around 60% population exposed while the Central highlands and South 

region had the lowest level of exposure, around 30%, suggesting a huge heterogeneity of 

exposure across different regions of Afghanistan in 2020.  
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Figure 4-2. Time course of the COVID-19 pandemic up to 21 July 2020 for the nine regions in 
Afghanistan, for all age groups. 
The solid orange circles and black error bars in the panel for each region represent the observed 
seroprevalence data and the associated credible interval (CrI) after adjusting for the sensitivity and 
specificity of the antibody test. The green and orange lines show the median predictions for exposure 
and seroprevalence, respectively, while the shaded areas correspond to 95% CrI. The median 
predicted exposure levels by region (expressed as the proportion of the population that has been 
infected) as of 21 July 2020 are shown on the map of Afghanistan. 

This national survey of COVID-19 morbidity in Afghanistan, which was conducted during 

June and July 2021, revealed that around 10 million people (31.5% of the population) were 

seropositive for antibodies against SARS-CoV-2 and even higher proportion of population 

were estimated to have been exposed after accounting for the antibody decay. The 

population of Afghanistan is estimated to comprise approximately 33.6 million people (181). 

This finding is reasonably consistent with the results of another telephone survey conducted 

before July 2020 with a randomly selected sample of 713 healthcare workers to estimate 

COVID-19 morbidity in the country. The estimated proportion of individuals who had 

experienced COVID-19 signs and symptoms was 49.6%, which is close to the value for total 

infections for most regions reported in the present study, however, no laboratory testing was 

conducted for the phone survey, which only collected clinical information about symptoms.  

There is a discrepancy between the serosurvey results and the detected number of COVID-
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19 infections reported to the surveillance system in the country (36 710 cases reported by 

the surveillance system as of 30 July 2020 and 156 363 cases as of 5 November 2021) in 

Afghanistan. The under-reporting of COVID-19 cases is a problem globally due to limited 

testing availability, flawed test sensitivity, poor surveillance and the indeterminate 

proportion of asymptomatic infections (182). 

4.4 Discussion 
In this Chapter, I presented a simple but powerful calculation tool to estimate the exposure 

to SARS-CoV-2 in a data scarce setting where COVID-19 related death was largely 

underreported and only one serological measurement at one time point was measured. I 

applied it to the context of Afghanistan and used the serological measurements from a large-

scale survey conducted in nine regions of Afghanistan in June and July 2020 as model inputs. 

In this process, I made two key assumptions in the model which is 1) the reporting rate of 

COVID-19 in Afghanistan was time invariant; 2) the antibody decaying rate was consistent 

with the posterior estimates from the England study that I presented in Chapter 2. By doing 

so, a key epidemic parameter, infection fatality ratio, can be omitted from the model. The 

model results showed that the exposure level was higher than the serology survey suggested 

in all regions of Afghanistan but had great heterogeneity across different regions, suggesting 

a non-uniform transmission pattern of SARS-CoV-2.  

The estimates of exposure informed the real practice of policy decision in Afghanistan. 

During the evolution of the COVID-19 epidemic in Afghanistan, I performed a series of 

modelling exercises to project the median- and long-term epidemic trends to inform policy 

decision using the CoMo model with collaborators from WHO EMRO as one active 

contributor in the CoMo Consortium. The CoMo model was developed by the Consortium 

(93). The CoMo Consortium adopted a participatory modelling approach (183), which 

places in-country subject matter experts at the forefront of model development to ensure that 
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contextual considerations, such as local infrastructure, human resources and sociocultural 

considerations, are fully taken into account. The CoMo model was used to estimate the peak 

incidence of COVID-19 in Afghanistan after fitting to the exposure level inferred in this 

Chapter under four scenarios: good, bad, very bad and appropriate, depending on the 

coverage of and adherence to various non-pharmaceutical interventions.  

Regularly presenting the modelling results to the Afghanistan Ministry of Public Health, 

revising the model structure and parameters to incorporate changes of various non-

pharmaceutical interventions conducted in the country, informing about emerging evidence 

of virus characteristics and summarising results from the updated model constituted the loop 

of collaboration. It became one of the successful community case studies for the CoMo 

consortium (93).  

A highly relevant concept when discussing and interpreting exposure to the virus in the 

population is herd immunity, which is also a key metric used in decision-making in 

communicable disease epidemiology. Herd immunity occurs when a certain proportion of 

the population is immune to a given infectious disease, reducing the probability that the 

disease will be transmitted from one individual to another, thus helping to protect the entire 

population from that disease (112). Herd immunity can be achieved when the immunity level 

in the whole population is above a certain threshold, called the herd immunity threshold, 

either through individuals being exposed or vaccinated.  

Under the simplest model, the herd immunity threshold depends on a single parameter 

known as R0, or the basic reproduction number. R0 indicates the average number of 

individuals one infected individual will go on to infect in a fully susceptible population. 

Mathematically, the herd immunity threshold is defined by 1 – 1/R0 (184). In the context of 

COVID-19 various herd immunity thresholds in different contexts have been estimated, 

ranging from 43% to 85% (93, 185-188). For example, one study indicated that if R0=3, i.e. 
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one infected individual can infect up to three others, meaning 67% of the population must 

be immune to achieve herd immunity (189). Estimates by Johns Hopkins University suggest 

that 70% of the population must be immune to achieve herd immunity and end restrictions 

on people’s day to day lives (93), while another study suggested that R0 values of 1–2, 2–4 

and >4 would require herd immunity thresholds of 50%, 56.1–74.8% and 77.9–85%, 

respectively (185) 

Based on evidence from countries comparable to Afghanistan, assuming an R0 in the country 

of 2–3, the herd immunity threshold would be between 56% and 75%. Kabul province, with 

a SARS-CoV-2 inferred exposure of 53%, was within range of this threshold. The Eastern 

and Central regions, with SARS-CoV-2 seroprevalences of 34% to 42%, seem in a relatively 

good position, but the remaining regions with SARS-CoV-2 seroprevalence of less than 35% 

seem in a worse position and not yet close to the assumed herd immunity threshold at the 

time of the study.  

However, the above discussion of R0 and its correlation to the herd immunity threshold 

represents the simplest interpretation of these terms.  They depend on several key 

assumptions, including homogeneous mixing of individuals within a population and that all 

individuals develop sterilizing immunity—immunity that provides lifelong protection 

against reinfection—upon vaccination or natural infection (190-192). In real-world 

situations, these epidemiological and immunological assumptions are often not met. From 

what we have learned in the past three years especially the last year of the Omicron epidemic 

wave, the rising number of documented reinfections, as well as the high number of 

breakthrough infections with the Omicron variant among the fully vaccinated, means that 

the indirect protection from the overall population immunity might be very hard to achieve.  

There are situations when herd immunity might be achieved before the population immunity 

reaches the threshold. By accounting for the heterogeneity of population mixing due to age 
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and social contact, one study concluded that herd immunity can be achieved at a population-

wide infection rate of ∼40%, considerably lower than previous estimates (193). This shift is 

because transmission and immunity are concentrated among the most active members of a 

population, who are often younger and less vulnerable. However, this heterogenous 

transmission is also likely to be not very effective in terms of achieving the herd immunity 

threshold. One review paper pointed out that if super-spreading, one example of the 

heterogenous transmission, is driven by events rather than by individuals, or if control 

measures reduce or modify the set of potential super-spreaders, there may be limited impact 

on herd immunity (194).  

As in many low- and middle-income countries, COVID-19 vaccination rates in Afghanistan 

are low, with just 12% of the population fully vaccinated by middle of 2021. With the 

disruptions to the health system as a result of the evolving political situation in the country, 

the COVID-19 response may deteriorate if control measures are not implemented and 

vigilantly maintained. In practice, after July 2021, the restrictions in many areas within the 

country were reduced and since then the country has only focused on school closures as a 

mitigation measure to balance the economy, social life and the impact of COVID-19 on the 

health system. It is worth mentioning that with the recent transition of government in 

Afghanistan and decreased funding for the country’s health system, there are evolving 

challenges that will ultimately lead to the increased spread of COVID-19 and other 

infectious diseases. Greater levels of poverty, a displaced population and poor sanitation will 

further exacerbate this problem. The influx of refugees from Afghanistan to other countries 

might also facilitate the cross-border spread of disease. Particularly with the emergence of 

new variants and low vaccination coverage, it is crucial to have continued public health and 

social measures to mitigate the impact of COVID-19 in a conflict-affected and unstable 

country. For the continuation of health services, functional hospitals, surveillance systems 
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and laboratories, as well as a skilled healthcare workforce, are needed to mitigate the spread 

of COVID-19 and other infections within Afghanistan and prevent the regional and even 

global spread of disease. Given the large proportion of the population that remains 

susceptible to COVID-19 infection, and limited COVID-19 vaccination coverage, extra 

caution should be made when relying on the indirect protection from herd immunity and 

then lifting any non-pharmaceutical interventions in the country, in order to avoid larger 

epidemic waves and to protect the health system from an unmanageable burden of 

hospitalisations.  

In this chapter, I revised the methodology developed in Chapter 2 to calculate the population 

exposure in Afghanistan to account for the sero-reversion and under-reporting of covid-19 

related mortality. However, it is also important to note that sero-reversion does not prevent 

the establishment of herd immunity and many other factors including T cells immunity and 

cross protection from other coronavirus may play important roles in understanding 

population immunity. Since I only inferred the exposure level from serology data, further 

correlations with immunity are beyond this thesis. 
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Chapter 5 Data integration to estimate the 
shielding impact among pregnant women on 
reducing exposure to SARS-CoV-2 in New 
York City 
 
I have published the research underlying this chapter in the journal Viruses with me as the 

first author (121): Siyu Chen*, Elisabeth A. Murphy, Angeline G. Pendergrass,Ashley C. 

Sukhu ,Dorothy Eng, Magdalena Jurkiewicz, Iman Mohammed, Sophie Rand, Lisa J. White, 

Nathaniel Hupert and Yawei J. Yang*. (2022). Estimating the Effectiveness of Shielding 

during Pregnancy against SARS-CoV-2 in New York City during the First Year of the 

COVID-19 Pandemic. Viruses, 14, 2408. https://doi.org/10.3390/v14112408     

Pregnant patients have increased morbidity and mortality in the setting of SARS-CoV-2 

infection. The exposure of pregnant patients in New York City to SARS-CoV-2 is not well 

understood due to early lack of access to testing and the presence of asymptomatic COVID-

19 infections. Before the availability of vaccinations, preventative (shielding) measures, 

including but not limited to wearing a mask and quarantining at home to limit contact, were 

recommended for pregnant patients.  

This chapter aims to develop a dynamic model to link serologic and virologic data from 

2196 patients who gave birth from April through December 2020 in one institution in New 

York City and estimated the exposure in pregnant women. In comparison with exposure in 

general population in New York City as assessed by the method presented in Chapter 2, I 

demonstrated a dramatic real-world effectiveness of shielding in these pregnant patients 

after considering the duration of pregnancy. 
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5.1 Introduction 
Pregnant patients make up a vulnerable patient population in any infectious disease 

outbreak. When New York City became the epicenter of COVID-19 pandemic in March 

2020, the impact of SARS-CoV-2 infection on pregnant patients and their neonates was not 

well understood (195). In addition, the prevalence of the disease in the pregnant population 

was difficult to capture given the lack of early testing and the presence of asymptomatic 

infected patients (195, 196). 

During this period of uncertainty early in the pandemic, most national and regional public 

health authorities and medical care professionals advocated for the enforcement of 

protective measures including wearing masks, quarantining at home when possible, and 

keeping social distancing. These non-pharmaceutical interventions or shielding measures 

have been shown to be highly effective in mitigating epidemic curves in the larger 

population especially during different “lockdown” periods in myriad countries (10, 83, 197, 

198) but the effectiveness among pregnant patients at that time are still unknown. 

Studies have shown that pregnant patients are at higher risk of getting seriously ill from 

SARS-CoV-2 compared to non-pregnant patients (199, 200). A meta-analysis showed that 

compared to non-pregnant patients of reproductive age with COVID-19, pregnant patients 

are at increased risk of severe disease from COVID-19, with increased risk of ICU admission 

mechanical ventilation, and death (201, 202) . In this study we aim to model exposure rates 

in the pregnant vs. general populations and evaluate the efficacy of both shielding and 

behaviour changes during pregnancy on reducing both infection exposure and its 

ramifications for morbidity and mortality to SARS-CoV-2 among pregnant patients. The 

estimation of effectiveness of shielding during pregnancy relies on the comparison of 

estimates of past exposure to infection between pregnant patients and the general population. 

Serology tests can identify past infections and enable estimation of the number of total 
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infections. However, naturally formed immunoglobulins targeting the virus (i.e., those 

generated by native infection and not vaccination) have been reported to wane below the 

detectable level of serological assays quite rapidly (e.g., after several months) (36, 108). The 

cumulative level of exposure to SARS-CoV-2 in a population therefore is not directly 

measurable and has to be inferred through modelling. Here, we propose a new method to 

estimate the cumulative exposure of SARS-CoV-2 among pregnant patients and employ a 

peer-reviewed model to estimate the cumulative exposure among general population in New 

York City, accounting for expected levels of antibody waning (seroreversion). These results 

have implications on future infectious disease prevention strategies in pregnancy. 

5.2 Data source and availability 
All code and materials used in the analyses can be accessed at: 

https://github.com/SiyuChenOxf/COVID-19Exposure-ShieldingPregnantWomen. All 

parameter estimates and figures presented can be reproduced using the code provided. The 

datasets from pregnant patients can be made available from the corresponding authors of the 

publication (121) on reasonable request. The seroprevalence data for general population in 

New York City Metro Area and the daily total (including confirmed and probability) 

mortality data were extracted from US Department of Health and Human Services Centers 

for Disease Control and Prevention CDC Data Tracker (203).  

5.2.1 Pregnant women data  

Pregnant patients giving birth at a single New York City hospital between 20 April 2020 

and 27 December 2020 were included in this study. 2682 pregnant patients with clinical data 

capture and sample capture could have had either RT-PCR testing or serology testing or 

were untested (unknown). Among these 2682 patients in terms of RT-PCR, 97.7% were 

tested and 2.3% were unknown; in terms of serology tests, 89.9% were tested and 10.1% 
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were unknown. For testing results breakdown: 10% were RT-PCR negative but serology 

unknown; 0.3% were both RT-PCR and serology unknown; 8.1% were RT-PCR negative 

and serology positive, 0.075% were RT-PCR unknow and serology positive, 2.1% were both 

RT-PCR and serology positive, 77.18% were both RT-PCR and serology negative, 2.0% 

RT-PCR unknown and serology negative, and 0.56% were RT-PCR positive and serology 

negative. The demographics of these 2682 pregnant patients can be found in Table 5-1. After 

screening the distribution of unknown tests results for RT-PCR and serology on the calendar 

week, 2196 pregnant patients were included in the mathematical modelling. 

Table 5-1. Demographics table for women who giving birth prior to August 2020 and from August 2020 
onwards. 

 Total 
Women Giving 
Birth Prior to 
August 2020 

Women Giving Birth 
from August 2020 

Onwards 
Test p-value 

  n = 2682 n = 1781 n = 901     
Ethnicity    Chi Square: 5.82 0.324 

Not Hispanic or Latino or 
Spanish Origin 1769 (66%) 1173 (65.9%) 596 (66.1%) 

 

 
Hispanic or Latino or Spanish 

Origin 219 (8.2%) 142 (8%) 77 (8.5%) 

African American 1 (0%) 1 (0.1%) 0 (0%) 
Multi-racial 1 (0%) 0 (0%) 1 (0.1%) 

Declined 600 (22.4%) 396 (22.2%) 204 (22.6%) 
Unknown 92 (3.4%) 69 (3.9%) 23 (2.6%) 

Race    Chi Square: 11.49 0.244 
White 1346 (50.2%) 876 (49.2%) 470 (52.2%) 

 

 

Asian 336 (12.5%) 224 (12.6%) 112 (12.4%) 
Black or African American 169 (6.3%) 118 (6.6%) 51 (5.7%) 
American Indian or Alaska 

Nation 6 (0.2%) 2 (0.1%) 4 (0.4%) 

Nat. Hawaiian/Oth. Pacific 
Island 3 (0.1%) 2 (0.1%) 1 (0.1%) 

Ashkenazi Jewish 2 (0.1%) 1 (0.1%) 1 (0.1%) 
Multiple races reported 15 (0.6%) 7 (0.4%) 8 (0.9%) 
Other combinations not 

described 258 (9.6%) 170 (9.5%) 88 (9.8%) 

Declined 464 (17.3%) 319 (17.9%) 145 (16.1%) 
Unknown 83 (3.1%) 62 (3.5%) 21 (2.3%) 

Mom Age (SD) years     t-test: −0.47 0.636 
  34.4 (5.0) 34.4 (5.0) 34.5 (5.0)    

Gestational Age at delivery 
(SD) weeks 

    t-test: 1.53 0.126 

  38.8 (2.1) 38.8 (2.0) 38.7 (2.4)     
The serology was detected in the serum or plasma from peripheral blood collected during 

admission for delivery. The serology test was performed using the clinical testing Pylon 3D 
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platform (ET HealthCare, Palo Alto, CA). The Pylon 3D platform (204) utilizes a 

fluorescence-based reporting system that allows for the semiquantitative detection of antie-

SARS-CoV-2 IgG and IgM with a specificity of 98.8% and 99.4%, respectively. In this 

paper, we denoted the serology status of every pregnant patient as positive if either IgG or 

IgM was positive and as negative if both IgG and IgM were negative. Pregnant patients 

underwent RT-PCR testing for SARS-CoV-2 using nasopharyngeal swabs. 

The observed cross-sectional data for pregnant patients is restructured into four trajectories 

for model fitting: weekly proportion of RT-PCR and serology negative time-series, weekly 

proportion of RT-PCR positive and serology negative time-series, weekly proportion of RT-

PCR positive and serology positive time-series and weekly proportion of RT-PCR negative 

and serology positive time-series. 

5.2.2 General Population Data 

The seroprevalence data for general population in New York City Metro Area (including 

Manhattan, Bronx, Queens, Kings and Nassau) from February 2020 to December 2020 and 

the daily total (including confirmed and probability) mortality data were extracted from US 

Department of Health and Human Services Centers for Disease Control and Prevention CDC 

Data Tracker (203). Details of the seroprevalence data used here can be found elsewhere 

(108, 205). 

5.3 Materials and Methods 

5.3.1 Exposure Inference in Pregnant Patients 
We first develop a dynamic model diagramed in Figure 5-1 for the temporary changing 

status of RT-PCR and serology among pregnant patients based on the COVID-19 disease 

progression. The definition of each compartment and transmission parameter specific to 

pregnant patients is described in Table 5-2 and Table 5-3 respectively. 
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Figure 5-1. Schematic diagram of the dynamic model structure for RT-PCR and serology status. 

A set of ordinary differential equations (ODEs) describing the time evolution of 

𝑋11, 𝑋)1, 𝑋)), 𝑋1) and 𝑍11 can be written as follows: 

𝑑𝑋11(𝑡)
𝑑𝑡 = −𝜆C(𝑡)𝑋11 

𝑑𝑋)1(𝑡)
𝑑𝑡 = 𝜆C(𝑡)𝑋11 − 𝜏𝑋)1 

𝑑𝑋))(𝑡)
𝑑𝑡 = 𝜏𝑋)1 − 𝜎𝑋)) 

𝑑𝑋1)(𝑡)
𝑑𝑡 = 𝜎𝑋)) − 𝛽𝑋1) 

𝑑𝑍11(𝑡)
𝑑𝑡 = 𝛽𝑋1) 

(5.1) 

The initial conditions of 𝑋11, 𝑋)1, 𝑋)), 𝑋1) and 𝑍11 at 𝑡 = 0 are denoted as 𝑦11, 𝑥)1, 𝑥)), 𝑥1) 

and 𝑧11. Here, 𝑡 = 0 refers to 20 April 2020 (calendar week 17 in 2020) when the first data 

of pregnant patients was collected. The minimum time step in the ODEs is one week. We 

reparametrize the initial conditions as follows 

𝑥)1 = 𝑘)1(1 − 𝑦11)	

𝑥)) = 𝑘))@1 − 𝑦11 − 𝑘)1(1 − 𝑦11)B	

𝑥1) = 𝑘1) s1 − 𝑦11 − 𝑘)1(1 − 𝑦11) − 𝑘))@1 − 𝑦11 − 𝑘)1(1 − 𝑦11)Bt	

𝑧11 = 1 − 𝑥)1 − 𝑥)) − 𝑥1) 

(5.2) 

where {𝑘)1, 𝑘)), 𝑘1)}   are tool parameters and constrained between 0 and 1 so that 

{𝑥1), 𝑥)), 𝑥)1, 𝑧11} can be constrained between 0 and 1. This is mainly for the convenience 
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of MCMC implementation in Rstan. The posterior estimates of  {𝑘)1, 𝑘)), 𝑘1)} in each 

model can be found in Table 5-3 and Appendix Figure 22. 

In Equation (5.1), {𝜆C(𝑡)} is the force of infection. We first assume 𝜆))(𝑡) is constant over 

time (17 ≤ 𝑡 ≤ 53) in Model 1 and then relax it by assuming a piece-wise constant at a 

fixed time step. To test the sensitivity, we try several different steps including 18 weeks in 

Model 2, 

u𝜆8), 17 ≤ 𝑡 < 35
𝜆88, 35 ≤ 𝑡 < 53 

(5.3) 

12 weeks in Model 3, 

�
𝜆@),			17 ≤ 𝑡 < 29
𝜆@8,			29 ≤ 𝑡 < 41
𝜆@@,			41 ≤ 𝑡 < 53

 

(5.4) 

and 9 weeks in Model 4, 

�

𝜆D), 17 ≤ 𝑡 < 26
𝜆D8, 26 ≤ 𝑡 < 35
𝜆D@, 35 ≤ 𝑡 < 44
𝜆DD, 44 ≤ 𝑡 < 53

 

(5.5) 

and then compare main model results. We denote the numerical solutions of ODE system 

defined in Equation (5.1) as 𝑋E11, 𝑋E)1, 𝑋E)), 𝑋E1) and 𝑍�11. 

Following the dynamic model, we develop a Bayesian measurement model to model the 

data observation process so that the parameter estimation and model fitting can be conducted 

simultaneously using MCMC in Rstan (117).The model with associated parameters 

(Appendix Table 9) is described as follows: 

𝜆+A~𝑢𝑛𝑖𝑓𝑜𝑟𝑚(0,1), 𝜆+A ∈ [0,1]	

𝜎~𝑢𝑛𝑖𝑓𝑜𝑟𝑚(0,1), 𝜎	 ∈ [0,1]	
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𝜏~𝑔𝑎𝑚𝑚𝑎(4,3), 𝜏	 ∈ [0,5]	

𝛽~𝑢𝑛𝑖𝑓𝑜𝑟𝑚(0,1), 𝛽 ∈ [0,1]	

𝑦11~𝑏𝑒𝑡𝑎(8,2), 𝑦11 ∈ [0,1] 

(5.6) 

s𝑥11'74(𝑡), 𝑥)1'74(𝑡), 𝑥))'74(𝑡), 𝑥1)'74(𝑡)t	

~𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙 s𝑁(𝑡), 𝑋E11(𝑡) + 𝑍�11(𝑡), 𝑋E)1(𝑡), 𝑋E))(𝑡), 𝑋E1)(𝑡)t 

(5.7) 

where 𝑥11'74(𝑡), 𝑥)1'74(𝑡), 𝑥))'74(𝑡) and 𝑥1)'74(𝑡) are the measured numbers of pregnant patients 

at calendar week 𝑡 who were (a) both RT-PCR and serology negative, (b) RT-PCR positive 

and serology negative, c) both RT-PCR and serology positive and d) RT-PCR negative and 

serology positive respectively. 𝑋E)1(𝑡), 𝑋E))(𝑡), 𝑋E1)(𝑡)  are ODE-predicted individuals at 

calendar week 𝑡 who were in RT-PCR positive and serology negative, RT-PCR positive and 

serology positive, RT-PCR negative and serology positive respectively. 𝑋E11(𝑡) + 𝑍�11(𝑡) is 

the ODE-predicted total number of pregnant patients at calendar week 𝑡 who were either 

both RT-PCR and serology negative.  

We use Bayesian inference (Hamiltonian Monte Carlo algorithm) in RStan to fit the model 

to RT-PCR and serology data by running four chains of 20,000 iterations each (burn-in of 

10,000). We use 5% and 95% percentiles from the resulting posterior distributions for 90% 

CrI for the parameters. The Gelman–Rubin diagnostics (𝑅E) given in Appendix Table 11 

show values of 1, indicating that there is no evidence of non-convergence for either model 

formulation. Furthermore, the effective sample sizes (𝑛5::) in Appendix Table 11 are all 

more than 5000, meaning that there are many samples in the posterior that can be considered 

independent draws.  

Table 5-2. A list of patient compartments or model variables and their definitions. 
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Variables Definition 

𝑋11 
proportion of naïve population who are both RT-PCR and 

serology negative and never exposed  

𝑋)1 
proportion of early-phase infected population who are RT-

PCT positive but serology negative  

𝑋)) 
proportion of middle-phase infected population who are 

both RT-PCR and serology positive  

𝑋1) 
proportion of late-phase infected population who are RT-

PCR negative but serology positive  

𝑍11 
proportion of past infected population who are both RT-

PCR and serology negative but previously exposed  

5.3.2 Exposure Inference in General Population 

For general population in New York City, we collected morality and seroprevalence time-

series data as described in the Data Description section and fitted a published model under 

the assumption of constant infection fatality ratio (36). In the meanwhile, we got the 

estimates of cumulative exposure over time and two parameters related to the general 

population of New York City: they are infection fatality ratio, 𝛼 and antibody decaying ratio, 

𝜔 (Appendix Table 10). Through comparing the exposure level to SARS-CoV-2 among 

pregnant patients and general population, we estimated the effectiveness of shielding during 

pregnancy. 

5.4 Results 

5.4.1 Dynamic model of SARS-CoV-2 infection  
The time course of SARS-CoV-2 infection among pregnant patients can be reconstructed 

utilizing both RT-PCR and serology testing results by following the timeline of a typical 

SARS-CoV-2 infection. Most individuals, once infected, experience an incubation period 

before developing some symptoms of COVID-19 infection, while some individuals will 

remain asymptomatic throughout. The onset of RT-PCR positivity varies across individuals 
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and types of clinical specimens (206) but systematic review studies showed that the highest 

percentage virus detection was from nasopharyngeal sampling between 0- and 4-days post-

symptom onset at 89% (95% confidence interval (CI) 83% to 93%) dropping to 54% (95% 

CI 47 to 61) after 10 to 14 days (27). In addition to testing SARS-CoV-2 RNA load using 

RT-PCR testing SARS-CoV-2-specific IgM and IgG antibody (in the absence of 

vaccination) is another method for identifying history of infection. Although the precise 

timing of IgM and IgG antibody detectability depends on the testing kits and varies across 

different individuals (90, 207), on average the viral RNA is detectable one or two weeks 

earlier by RT-PCR than the antibody detectable by serological assays (60, 90).  

Assuming that the RT-PCR is positive before serology positivity, we divided the population 

of pregnant patients into five compartments: 1) RT-PCR negative and serology negative 

without previous exposure (𝑋11, naïve); 2) RT-PCR positive and serology negative (𝑋)1, 

early phase infected); 3) RT-PCR positive and serology positive (𝑋)) , middle-phase 

infected); 4) RT-PCR negative and serology positive (𝑋1), late-phase infected), and 5) both 

RT-PCR and serology negative with history of previous infection (𝑍11,	past infected) (Table 

5-2). 

We next defined four transmission quantities or parameters to link these above mentioned 5 

time-based compartments: force of infection, 𝜆C ; average time lag between virus 

detectability by the RT-PCR test and antibody detectability by the serology assay, )
C
; average 

time lag between antibody detectability by the serology assay and virus undetectability by 

the RT-PCR assay, )
E
; and antibody decay rate, 𝛽 (Figure 5-1). 

The whole length of infectious period for pregnant patients can be therefore approximated 

by the sum of time delay between virus detectability and antibody detectability and the 

average time lag between antibody detectability and virus undetectability. We developed a 

dynamic model to study temporal changes of both RT-PCR and serology status in pregnant 
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patients (Figure 5-1) with associated variables (Table 5-1) and parameters (Table 5-3). 

Further details about the model can be found in the Section 5.3.  

Table 5-3. Parameter estimates (associated 90% credible intervals) among pregnant patients for 
each model fit. 

Parameter(unit) Definition Model Median 5% 95% 

𝜏=>(days) 
average time lag between 

virus detectability and 
antibody detectability 

1 7 4 18 
2 5 3 16 
3 5 3 10 
4 6 4 13 

𝜎=>(days) 
average time lag between 

antibody detectability 
and virus undetectability 

1 22 14 37 
2 18 11 32 
3 17 11 27 
4 18 12 28 

𝛽=>(days) 

average time lag between 
seroconversion and 

seroreversion among 
pregnant patients 

1 152 84 336 
2 118 64 270 
3 110 65 208 
4 117 66 240 

𝑦??(−) 

proportion of patients 
who were giving birth 
and not exposed by 20 

April 2020  

1 0.87 0.79 0.90 
2 0.86 0.76 0.90 
3 0.86 0.74 0.89 
4 0.85 0.74 0.89 

𝜆@ 

𝜆>>(−) 

force of infection 

1 0.0052 0.0022 0.010 
𝜆A>(−) 2 0.0063 0.0028 0.013 
𝜆AA(−) 0.0079 0.0025 0.0182 
𝜆B>(−) 

3 
0.0041 0.0052 0.019 

𝜆BA(−) 0.011 0.0052 0.019 
𝜆BB(−) 0.0077 0.0030 0.019 
𝜆C>(−) 

4 

0.00013 0.000088 0.00072 
𝜆CA(−) 0.0095 0.0051 0.016 
𝜆CB(−) 0.0070 0.0013 0.0178 
𝜆CC(−) 0.0083 0.0033 0.019 

 

5.4.2 Longitudinal cross-sectional RT-PCR and serology results 

We modeled the exposure of 2196 pregnant patients who delivered at a New York City 

hospital from 20 April 2020 through 27 December 2020 based on SARS-CoV-2 testing 

performed on discarded samples obtained from birth admission using data from quantitative 

real-time polymerase chain reaction (RT-PCR) testing for SARS-CoV-2 viral infection, or 

serology studies assaying levels of Immunoglobulin (Ig)G and IgM as a marker of the 

immune response to SARS-CoV-2 infection. Of the 2196 patients that had both RT-PCR 

and serology results available, 2.7% were positive and 97.3% were negative for RT-PCR 
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testing results; and 11.2% were positive and 88.8% were negative and for serology testing 

results. For both tests combined, 2.2% were both positive for RT-PCR and serology, 0.5% 

were RT-PCR positive and serology negative, 9.0% were RT-PCR negative and serology 

positive, and 88.3% were both RT-PCR negative and serology negative.  

5.4.3 Fitting data from pregnant patients to the dynamic model 

The test results of RT-PCR and serology allow us to divide our population of pregnant 

patients into four data-driven categories: (a) both RT-PCR negative and serology negative; 

(b) RT-PCR positive and serology negative; (c) both RT-PCR positive and serology 

positive; and d) RT-PCR negative and serology positive. The challenge in getting from test 

results to dynamic model compartments is that the first compartment (𝑋11, naïve) and the 

last compartment (𝑍11, past infected) in the dynamic model (Figure 5-1) both manifest as 

both RT-PCR and serology negative, and are thus indistinguishable. To overcome this 

challenge, we developed a Bayesian measurement model to fit the test result data, which 

connects model predictions of the five time-based modeling-compartments to the 

measurements of the four data-driven categories.  

Different models (Model 1–4) were used to analyze different assumptions about the force 

infection among pregnant patients. In Model 1, we assumed the force of infection is constant 

over time, and then relaxed the assumptions by assuming a time-varying force of infection 

in Model 2–4 (for details of how these models differ, see the parameters in Table 5-3). Model 

fitting results showed that predictions from all four dynamic models have good agreement 

with measurements from the data-driven categories each calendar week (Figure 5-2).  
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Figure 5-2. Time evolution measurements and fitted test-result model estimates of the SARS-CoV-
2 RT-PCR and antibody status among patients who gave birth between 20 April 2020 and 21 
December 2020.  
Panel (A–D), respectively, shows the model fitting results for four data-driven categories: (A) both 
RT-PCR negative and serology negative; (B) RT-PCR positive and serology negative; (C) both RT-
PCR positive and serology positive; and (D) RT-PCR negative and serology positive. In each panel, 
the orange solid circles and black error bars represent the measured proportion of patients who were 
giving birth and in one of the four RT-PCR and serology categories and their credible intervals 
respectively. The green, orange, purple and pink lines in each panel show the median of estimates 
from Model 1–4, for proportions of patients who were giving birth in each of the four categories, 
while the shaded areas correspond to the 90% credible intervals. The models differ in the time-
dependence of the force of infection; Model 1 assumes a constant force of infection while Models 
2–4 assume time-varying force of infection. 

We conducted a sensitivity analysis around the choice of prior of the initial conditional of 

proportion of pregnant patients who were not exposed previously by 20 April 2020 

(numerically equals to 1 minus the level of exposure in pregnant patients by 20 April 2020). 

The results showed that the median and 50% credible band of posterior estimates are very 

robust (Appendix Figure 20) although a heavy left tail in the 90% and 95% credible band 

are estimated when the priors are very weak (Appendix Figure 21), for example uniform 

(0,1). However, considering the transmission speed and antibody decaying rate it is 



Chapter 5 Estimating the effectiveness of shielding among pregnant women 

87 
 

reasonable to choose a relative formative prior, such as beta (2,1) and beta (8,2) and then the 

posterior estimates are more concentrated around 0.85 (Appendix Figure 21).  

5.4.4 Transmission parameters of COVID-19 in pregnant patients 
are estimated to be consistent with those estimated for general 
population 

Data fitting allowed for the estimation of the transmission parameters. The posterior 

estimates of parameters for pregnant patients from the four models were summarized in 

Table 5-3. The model also estimated the proportion of patients who were giving birth but 

not exposed to SARS-CoV-2 (𝑦11) by the beginning of our study in April 2020. 

We found that the estimates of the time difference between RT-PCR positivity and serology 

positivity, and the duration of the infectious period for pregnant patients are very robust, on 

average 5.5 days (95% Credible Interval, CrI (3.3, 16.7) days), and 18.8 days (95% CrI 

(11.3, 34.3) days), respectively. These estimates are largely comparable with those for the 

general population (50, 206, 208-211). After seroconverting, seropositivity is estimated to 

be maintained for 124 days on average (95% CrI: (63, 320) days) among exposed pregnant 

patients. This relatively rapid seroreversion is consistent with estimates from the 

corresponding observational study, where analysis of the relationship between the elapsed 

time from the date of symptom onset and the antibody levels for pregnant patients 

demonstrated that the IgG positivity status could last approximately 110 days on average 

with a lower bound of the 95% confidence interval of 82 days but with an upper bound that 

is uncertain and possibly very large (196).  

5.4.5 Estimated SARS-CoV-2 exposure in pregnant patients is 
higher than seropositivity rates would suggest 
The estimated seroprevalence (proportion of pregnant patients who are seropositive) from 

each of the dynamic models (Figure 5-3) match that of our data (Figure 5-2 B–D). We next 
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estimated the exposure to SARS-CoV-2 in the pregnant patients and found that exposure is 

estimated to be much higher than serology positivity (Figure 5-3). Due to the rapid decline 

in antibody levels after natural infection confirmed in both experimental analyses (51, 126, 

166) and modelling analyses (36, 108) there is a gap between seropositivity and the 

cumulative level of exposure; furthermore, this gap increases with time due to increasing 

exposure levels over time (Figure 5-3).  

 

Figure 5-3. Time evolution of SARS-CoV-2 exposure and seroprevalence among patients who gave 
birth between 20 April 2020 and 21 December 2020.  
The orange solid circles and black error bars represent the measured proportion of patients who were 
giving birth and serology positive and their credible intervals respectively. The green, orange, purple 
and pink lines show the median estimates of exposure for patients who were giving birth from Model 
1, Model 2, Model 3 and Model 4 respectively; shaded areas correspond to 90% credible intervals. 
The light green, yellow, brown and grey lines show the median estimates of seroprevalence for 
patients who were giving birth from Model 1, Model 2, Model 3 and Model 4 respectively; shaded 
areas correspond to 50% credible intervals. 
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5.4.6 SARS-CoV-2 exposure in pregnant patients at the time of 
birth rose from half that of the general population to equal that of 
the general population by late 2020 

We next compared cumulative level of exposure among pregnant patients with of the general 

population of New York City from the same time period. In brief, the levels of exposure in 

general population were estimated by applying our previously published inference 

methodology (36) to the epidemic data including mortality and seroprevalence in general 

population of New York City (model fitting and parameter estimation results for the general 

population can be found in Appendix Figure 19 and Appendix Table 10 respectively). The 

level of exposure in pregnant patients during April and May of 2020 is estimated to be 

around half of that in December 2020 in all four models (Figure 5-3 and Figure 5-4). This 

means that the exposure estimates of pregnant patients approaches that of the general 

population by November and December of 2020 (Figure 5-4). 

 

Figure 5-4. Comparisons of estimates of exposure in patients who were giving birth from four models 
and general population.  
The red line shows the median estimates of exposure from general population while the shaded areas 
correspond to the 95% credible interval; the green, yellow, green, blue and pink line shows the 
median estimates of exposure from Model 1, Model 2, Model 3 and Model 4 for patients who were 
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giving birth, respectively, while the deep and shadow shaded areas correspond to the 50% credible 
intervals. 

Our model was structured to recapitulate the average course of SARS-CoV-2 infection with 

turning RT-PCR positive occurring before becoming serology positive. However, not all 

disease courses follow this linear model structure. It is also possible that the state of 

pregnancy may alter the susceptibility to SARS-CoV-2 infection, although current evidence 

does not support that pregnancy increases the susceptibility of infection. In addition, the 

antibody decaying rate may differ during pregnancy. We should note that the thresholds of 

seropositive and seronegative assignment might vary between assays, and the performances 

of assays (including sensitivity and specificity) are different. Our study is not set up for 

longitudinal follow-up of our cohort, thus our data is not sufficient to evaluate the impact of 

pregnancy on the antibody decaying rate. While more detailed longitudinal serological data 

could be collected and modelled during pregnancy, incorporating antibody kinetics into 

transmission models may hinder the applicability of estimates resulting from different assays 

(36). 

In summary, we used a novel model to evaluate SARS-CoV-2 exposure levels in different 

populations using seroprevalence data and RT-PCR data, comparing exposure levels in 

pregnant patients in New York City to the levels in the general City population. This permits 

us to quantify the impact of shielding measures in preventing exposure during pregnancy 

across the first year of the pandemic. We estimate the impact of self-protection on reducing 

the level of exposure among pregnant patients during early 2020 who gave birth in this New 

York City hospital to be approximately 50%. These results, showing time-varying 

differences in exposure to SARS-CoV-2 in pregnant compared to non-pregnant populations, 

may have led to significant reduction in maternal morbidity and mortality in the early months 

of the pandemic. The estimated total exposure in pregnant patients and general population 

of New York City are both more than double the latest serology positive measurements. 
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5.5 Discussion 
Positive results from RT-PCR testing and serology testing can both be used to identify 

infected or recently infected individuals. While an infected individual turns RT-PCR 

positive and then RT-PCR negative within the span of days to a week, a positive serology 

test result can serve as a maintained marker of infection that last for months. By capturing 

this dynamic effect of antibody waning in our models, we found that SARS-CoV-2 exposure 

estimates were much higher than the seroprevalence estimates for our sample of pregnant 

patients and the general public in New York City. These results confirm that previous studies 

looking at RT-PCR positive testing rates or seroprevalence alone will substantially 

underestimate population-level and subgroup exposure to SARS-CoV-2.  

We found that patients who gave birth between April and August of 2020 had lower levels 

of exposure to SARS-CoV-2 compared to the general population. In fact, in the first months 

of the pandemic (April and May 2020), the exposure levels of pregnant patients were half 

of the exposure levels of the general population in New York City, and half of the exposure 

levels in pregnant patients who gave birth by the end of 2020. To understand the possible 

variables that contribute to this lower exposure level in pregnant patients who gave birth 

early in 2020, we must take into account the distinctions between the experience of pregnant 

patients who gave birth in early 2020 vs. late 2020. Patients that gave birth before August 

2020—before the level of exposure in pregnant patients became comparable to that of non-

pregnant patients—were all at least in their mid to late first trimester by the time that the 

pandemic hit New York City. This means that most of these patients had a high probability 

of knowing about their pregnancy at the onset of the pandemic, and it is possible that this 

knowledge of pregnancy led to behavior changes that made them more cautious than the 

general population. In contrast, the patients giving birth towards the end of 2020 were not 

pregnant and/or did not know of their pregnancy before the onset of the pandemic and may 
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not have behaved differently than the general population; in other words, they could be 

considered part of general population in early 2020. During the early part of the pandemic, 

the population only had access to shielding measures and other non-pharmaceutical 

measures for prevention of disease exposures (since vaccinations only became available for 

the general population in early 2021). Thus, the reduction of exposure in pregnant patients 

by about half early in the pandemic may be attributed to effectiveness of shielding measures 

(Appendix Table 12). Our current data do not address whether pregnant patients (especially 

those that gave birth early in the pandemic) were more stringent than the general population 

in following recommendations for behavioral changes and other non-pharmaceutical 

interventions, or whether they had additional means of improving the efficacy of shielding 

in preventing exposure. It is less likely that biologic differences from the state of being 

pregnant contributed to exposure differences as the pregnant patients that gave birth later in 

2020 had similar exposures to the general population. 

There are some limitations of the pregnant women data. Because of lack of testing kits, some 

pregnant women who were giving birth from June 2020 to August 2020 were not tested by 

antibody tests. This might influence the calculation of weekly proportion of pregnant 

patients in four observed compartments (PCR negative & antibody negative; PCR positive 

& antibody negative; PCR positive & antibody positive; and PCR negative & antibody 

positive). Because of the complexity of IgG and IgM kinetics after infection, the model only 

regards pregnant patients who were IgG or IgM positive as serology positive. This might 

bias the estimation of the time lag between PCR negative & antibody negative with PCR 

positive & antibody negative. 

Such a high-level reduction of exposure might have been associated with a reduction in 

infection and especially a reduction of severe COVID-19 illness and, consequently, in 

mortality in pregnant patients. A large-scale retrospective analysis from a database that 
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covers about 20% of the American population and includes 406 446 patients hospitalized 

for childbirth (6380 (1.6%) of whom had COVID-19) compared outcomes for pregnant 

patients with and without COVID-19 from April–November 2020 (50). It concluded that in-

hospital maternal death was rare, but rates were significantly higher for patients with 

COVID-19 (141/100 000 patients, 95% CI 65–268) than for patients without COVID-19 

(5/100 000 patients, 95% CI 3.1–7.7). The estimate of maternal death rate is consistent with 

the study from the UK AAP SONPM registry, where a perinatal maternal mortality rate of 

167/100 000 (for patients who have COVID-19 around the time of birth) was estimated(201, 

212). Further calculation shows that the 40% to 50% reduction on exposure to SARS-CoV-

2 estimated by our study might have led to the prevention of 70 (95% CI 26–134) per 

100,000 maternal deaths in New York City.  

After the period included in our study, additional SARS-CoV-2 preventative measures in 

the form of vaccinations were introduced in 2021 although strict quarantine regulations were 

also lifted from the city by then. Pregnant patients were not included in studies testing the 

safety and efficacy of COVID-19 vaccines. Studies conducted since the start of vaccination 

distribution including those looking at the real-word implementation of vaccination have 

confirmed the safety and effectiveness of vaccines specifically for pregnant patients, their 

placentas, and their neonates (51, 166, 212-214). In fact, one study showed that vaccinated 

pregnant patients had almost 50:1 lower odds of severe COVID-19 infection (214). Our data 

highlights the utility of shielding measures and argues for an integrated intervention as 

suggested by CDC and NHS guidelines, which includes a combination of vaccination and 

shielding to reduce the morbidity and mortality of COVID-19 during pregnancy.  

Our study has several important strengths, the two most important of which are robust data 

on a cohort of pregnant patients assessed over an extended period of time tested with both 

RT-PCR and serology throughout 2020, and the use of a novel model for reproducibly 
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calculating disease exposure from testing data. While the lacuna in data capture in May and 

June could potentially influence the performance of parameter inference, varying model 

assumptions on the force of infection (as detailed in the Section 5.3) found the estimated 

parameters and level of exposure to be robust and therefore clarified the likely minimal 

impact caused by missing data. While the pregnant patient population is from a single NYC 

institution which may not be representative of the broader population, this population 

allowed for uniformity in testing and the study of a large cohort of patients.  

The method developed here can be used to assess whether NPIs can reduce the transmission 

by comparing the population exposure level before and after the implementation of NPIs in 

the real world. This should not replace randomized control trials (RCT) for evaluation of 

NPIs. However, the fact that an intervention is effective does mean it is cost effective. One 

can use these studies to complete the cost-effectiveness analysis for non-pharmaceutical 

interventions after estimating the costs of interventions. Also, the study can be extended to 

estimate the side effect of interventions, such as the disutility.  

The evidence of shielding in pregnant women demonstrated the use of NPIs to stop/slow the 

spread SARS-CoV-2 in a subpopulation within a certain time period. The behaviour among 

general population is different from pregnant women since they have very different 

motivations. Also, pregnant women received different pharmaceutical interventions. 

Therefore, it is not propriate to generalize the results generated from pregnant women to 

general population. Whether shielding can stop or slow the spread of SARS-CoV-2 in the 

entire population is an interesting research question and worthy of future study.
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Chapter 6 Discussion 
 
Infectious disease epidemics and pandemics remain a threat to global population health. The 

World Health Organization declared that COVID-19 is no longer a ‘global health emergency’ 

on 4 May 2023 more than three years after originally declaring it a pandemic. Around 7 

million COVID-19-related deaths have been reported to the WHO in the last three years 

while the true death toll is estimated to be more than three times higher (215). However, 

uncertainties around emerging variants that cause new surges in cases and deaths mean the 

transmission of SARS-CoV-2 does in fact remain a global health threat (216).  Although the 

COVID-19 pandemic is the most widespread, a wave of other serious infectious disease 

outbreaks has occurred since the beginning of twenty-first century. The 2003 severe acute 

respiratory syndrome coronavirus outbreak (217), the 2009 swine flu pandemic (218), the 

2012 Middle East respiratory syndrome coronavirus outbreak (219), the 2013–2016 Ebola 

virus disease epidemic in West Africa (220) and the 2015 Zika virus disease epidemic (221) 

all resulted in substantial morbidity and mortality while spreading across borders to infect 

people in multiple countries (221).  

How to design and assess mitigating interventions and to minimise the impact of severe 

diseases during these menacing epidemics and pandemics have become important tasks for 

decision makers (222). To inform policy making, accurate estimation of population exposure 

by integrating epidemiological datasets collected during the outbreak while modelling its 

time course is crucial. Serological studies can be used to estimate levels of past exposure 

and thus position populations in their epidemic timeline but results from such studies need 

to be interpreted carefully. Several studies following individuals over time after they have 

had a known infection (prior vaccination) were able to determine that antibodies are only 
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measurable up to 6–9 months, on average. The immediate implication is that serological 

studies will inevitably under-estimate the number of people exposed, since some will have 

a lower antibody count when the study is conducted and will test negative. To circumvent 

biases introduced by the decay in antibody titers over time, methods for estimating 

population exposure should account for seroreversion, to reflect those changes in 

seroprevalence measures which are the net effect of increases due to recent transmission and 

decreases due to antibody waning.  

In this thesis, I develop various mathematical models and applied Bayesian inference 1) to 

synthesize multiple epidemiological datasets to review the progression of exposed 

individuals through the various clinical and diagnostic (in both virologic and serologic) 

stages of infection and recovery; 2) to estimate the time course of exposure to SARS-CoV-

2 in the early stage of the COVID-19 pandemic when the population consisted of naïve hosts, 

well before any vaccination campaign in the general population of England (Chapter 2) and 

New York City (Chapter 5) and in data-sparse settings (Chapter 3 and Chapter 4); 2) to 

assess the impact of one non-pharmaceutical intervention, namely shielding, on reducing 

exposure to the virus among pregnant patients (Chapter 5).  

In the remainder of this discussion, I first summarise the studies presented in this thesis, 

before discussing important areas of ongoing and future research.  

6.1 Summary of findings and implications 
Levels of SARS-CoV-2 population exposure are considerably higher than suggested by 

seroprevalence surveys (36) 

In Chapter 2, I present a clear and simple model to link together three key metrics for 

evaluating the progress of an epidemic, as applied to the context of SARS-CoV-2 in England: 

antibody seropositivity, infection incidence and number of deaths. I used data on these three 

metrics to estimate the antibody seroreversion rate and region-specific infection fatality 
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ratios. In doing so, the cumulative number of infections in England is estimated. I found that 

as a consequence of this rapid seroreversion, epidemic progression will result in an 

increasing gap between measured serology prevalence levels and cumulative population 

exposure to the virus. Ultimately, this may mean that twice as many, or more, people have 

been exposed to the virus relative to the number of people who are seropositive, highlighting 

the importance of the method in aiding the interpretation of serological survey results and 

their use for informing policy decisions moving forward. Estimates for the IgG (spike) 

seroreversion rate and infection fatality ratio (IFR) are broadly consistent with other studies, 

which supports the validity of these findings. 

I generalised the methodology presented in Chapter 2 to account for the undocumented 

COVID-19 related mortality in low- and middle-income countries (LMICs) and for the 

sparsity of serological measurements in Chapter 4. I then applied it in the context of 

Afghanistan COVID-19 epidemic and found the population exposure in nine regions of 

Afghanistan were all higher than the seroprevalence survey suggested by July 2020. 

An early pandemic diagnostic tool to reconstruct the first epidemic wave in England 

with minimal data (119) 

In Chapter 3, I re-examined and evaluated the model developed in Chapter 2 while 

reconstructing the first COVID-19 epidemic wave in England, with a focus on how early the 

model could provide information about prior population exposure and how accurate the 

model estimate could be as more and more data became available. To approach this, I 

conducted a series of exercises from three perspectives: validation from the ONS 

Coronavirus Infection Survey, the relationship between model performance and data 

abundance and the time-varying case detection rate.  

I found that the model I developed can reconstruct the first, unobserved, epidemic wave of 

COVID-19 in England from March 2020 to June 2020 as long as two or three serological 
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measurements are added to the model inputs, with the second wave during the winter of 

2020 validated by the estimates from the ONS Coronavirus Infection Survey. Specifically, 

when only two serological measurements were available in each region of England, the 

estimates of exposure were already highly consistent with those when more serological 

measurements were added although the credible bands were wider. Additionally, by 

comparing the model-predicted exposure with the UK government official COVID-19 

reported cases, I found that by the end of October 2020 the UK government’s official 

COVID-9 online dashboard reported COVID-19 cases only accounted for less than ten 

percent of cumulative exposure, dramatically varying across two epidemic waves in England. 

The testing issue, e.g. the limited capacity of tests and symptom-based testing strategy posed 

a big challenge for understanding the early pandemic. Viral surveys in the general population 

can solve the sampling issue, but there remains the problem of not sampling early on. 

Serological data even from some convenient samples, e.g., blood donors, can help to pin 

down the progress of the pandemic when antibody decay is teased out. 

Shielding among pregnant women during the beginning of COVID-19 pandemic leads 

to a dramatic real-world effectiveness on reducing exposure to the virus (121) 

Pregnant patients have increased morbidity and mortality in the setting of SARS-CoV-2 

infection. Before the availability of vaccinations, preventative (shielding) measures, 

including but not limited to wearing a mask and quarantining at home to limit contact, were 

recommended for pregnant patients. In Chapter 5, I assessed the impact of shielding among 

pregnant patients by first developing a dynamic model to link universal RT-PCR and 

antibody testing data from patients who gave birth from April through December 2020 from 

one institution in New York City and then applying Bayesian inference to estimate exposure 

among pregnant patients.  In comparison with the estimated exposure of the general 

population in New York City as assessed by the method developed in Chapter 2, I found 
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that after considering the duration of each pregnancy pre-Covid onset and after, the impact 

of self-protection on reducing the level of exposure among pregnant patients during early 

2020 who gave birth in this New York City hospital were approximately 50%. These results, 

showing time-varying differences in exposure to SARS-CoV-2 in pregnant compared to 

non-pregnant populations, may have led to significant reduction in maternal morbidity and 

mortality in the early months of the pandemic. The estimated total exposure in pregnant 

patients and general population of New York City are both more than double the latest 

serology positive measurements. 

Shielding was a new intervention introduced by the UK government and also adopted by 

many other countries in the early day of the COVID-19 pandemic to protect population who 

were under high risk of severe disease after infections. However, it was also an untested 

public health policy based on assumptions rather than evidence of effectiveness. These 

estimates of shielding on reducing exposure among pregnant women presented in Chapter 5 

provide important evidence and implications for future public health policy.  

The relationship between exposure, serology, and immunity  

It is important to note that the rate of decline in neutralizing antibodies, reflective of the 

effective immunity of the individual, is not the same as the rate of decline in seroprevalence. 

Antibodies may visibly decline in individuals yet remain above the detection threshold for 

antibody testing (126). Conversely, if the threshold antibody titer above which a person is 

considered immune is greater than the diagnostic test detection limit, individuals might test 

positive when in fact they are not effectively immune. The relationship between the presence 

and magnitude of antibodies (and therefore seropositive status) and protective immunity is 

still unclear, with antibodies that provide functional immunity only now being discovered 

(130). Furthermore, T cell-mediated immunity is detectable in seronegative individuals and 



Chapter 6 Discussion  

100 
 

is associated with protection against disease (61). Therefore, the immunity profile for 

COVID-19 goes beyond the presence of a detectable humoral response.  

I believe my methodologies to estimate total exposure levels in different countries and 

settings offers valuable insights and a solid evaluation metric to inform future health policies 

(including vaccination) that aim to disrupt transmission.  

The population exposure should be interpreted in the context of the different durations 

of infection- and disease- blocking immunity and cross-reactive responses to other 

seasonal coronaviruses.   

As discussed before, some studies show that the antibody level that is associated with 50% 

protection against new infection is estimated to be much higher than the antibody level (43) 

that is associated with 50% protection against severe infection (90), 28ng ml-1 vs 6ng ml-1. 

This implies that a population with low seroprevalence may nonetheless be protected from 

severe disease and death due to extended previous exposure to SARS-CoV-2. Because of 

the ‘cellular sensitization without seroconversion’ (64), T cells mediated cellular immunity 

may play a very important role in providing protection against disease progression in an 

early stage of infection without seroconversion, implying that a population with low 

seroprevalence is still likely to be protected from cellular immunity that may be 

underestimated by the seroprevalence. Besides, cross-reactive responses to other seasonal 

coronaviruses can also contribute to a higher population immunity than the virus-specific 

seroprevalence level. It is important to note that sero-reversion does not prevent the 

establishment of herd immunity and many other factors including T cell immunity and cross 

protection from other human coronaviruses may play important roles in understanding 

population immunity. The indicators of T cells immunity are usually hard to measure 

compared with B cells immune responses, typically antibodies. Throughout the thesis, I did 
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not use any measurements directly related with T cells immunity and am not relating the 

serology and exposure with immunity.   

6.2 Ongoing and future research  

6.2.1 Using serology data to inform the assessing of the impact of 
non-pharmaceutical interventions (NPIs) targeted on COVID-19 on 
other respiratory diseases 
During the COVID-19 pandemic, various nonpharmaceutical interventions (NPIs), 

including mask wearing and social distancing, were the major tools to reduce the 

transmission of SARS-CoV-2 prior to the development and deployment of vaccines (197). 

At the same time, these interventions have demonstrated a large effect on reducing the 

transmission of other respiratory pathogens including respiratory syncytial virus (RSV) and 

influenza (197). The US Centers for Disease Control (CDC) reported 2,857 total positive 

influenza specimens for the 2020/2021 season from combined clinical and public health labs 

when compared to 229,551 positive specimens in the 2018/2019 season (223). In the 

literature, one study (224) has demonstrated that the introduction of NPIs leads to a strong 

initial reduction in incidence on other respiratory diseases, but this effect is transient: as 

susceptibility increases, epidemics return while NPIs are in place although the characters of 

returned epidemics might vary between different basic reproduction number. However, 

accurate evaluations of these non-pharmaceutical interventions on other respiratory diseases 

are still missing. To approach this, the competition of these pathogens cannot be neglected 

when constructing their transmission dynamics in the population (225). Disentangling the 

transmission dynamics of multiple pathogens requires more datasets. Serological 

measurements can be useful since as discussed in Chapter 1, seroprevalence can best be used 

to track population exposure after considering antibody decay and has important 

implications on population immunity. I plan to develop epidemic models to couple 
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transmission dynamics of multiple respiratory pantheons and to disentangle the impact of 

NPIs on transmission based on pathogen-specific serological measurements in the 

population. Besides, it is also very important to note that to take the previous infection or 

reinfection into account, a full dynamic model with five compartments (S-E-I-R-S) can be 

helpful 

6.2.2 Linking individual-level virologic and serologic kinetics to 
inform epidemic progression 
I developed a compartmental model in Chapter 5 to inform the estimates of exposure by 

linking virology and serology datasets based on the difference of timing of virologic and 

serologic kinetics at the population level. In the literature, much progress in quantifying 

individual-level immunological and pathogen biomarkers e.g., antibody titers and Ct value 

after COVID-19 infections has been made. One study (22) has showed that individual-level 

viral load measurements from a single cross-sectional sample of RT-qPCR data can 

accurately estimate an epidemic’s trajectory. I plan to revise the model in Chapter 5 to 

incorporate individual level virologic and serologic titers and then to couple within-host 

viral and antibody kinetics with population-level dynamics. Some clinical studies also 

showed that viral kinetics are correlated with antibody kinetics during the infections (226) 

implying that combining these two dynamics might be able to provide extra information for 

disease progression at the individual level and disease transmission in the population level.  

6.2.3 Simulation of population assessments and economic impact of 
a hypothetical long-acting antibody (LAAB) on a vulnerable 
population   

Although vaccines of COVID-19 have been shown highly safe and effective, approximately 

2% of the population including immunocompromised individuals globally cannot mount an 

adequate immune response to COVID-19 vaccines. Others may not have been fully 
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vaccinated because of documented adverse reactions to the available vaccines or their 

components (227). To protect this group of vulnerable population, many efforts have been 

made to develop alternative therapies for prophylaxis, such as Evusheld (228) and AZD5156 

(229). Considering the uncertainty of variants of concern and the timing of the availability 

of prophylactic therapy in the future, I aim to study a hypothetical long-acting antibody 

therapy. Although the exact target population of this potential therapy is still uncertain, most 

of these individuals have been engaging in shielding behaviour during the COVID-19 

pandemic (230).  However, it is unclear whether shielding will continue at current levels, 

whether or not an alternative prophylactic therapy is available. I plan to assess the potential 

impact of shielding and the hypothetical therapy given uncertainty of the assignment of the 

cost of shielding and future shielding behaviour changes. 

6.3 Conclusion remarks  
In this thesis, focusing on the early stages of the COVID-19 pandemic, I developed a 

mechanistically informed statistical model, a simple structure with few parameters, to 

integrate multiple epidemiological datasets and to estimate key epidemiological parameters 

using Bayesian inference. In doing so, I can estimate the population exposure to SARS-

CoV-2.  I applied these modelling frameworks in different populations and different settings. 

Specifically, I first demonstrated the levels of SARS-CoV-2 population exposure are 

considerably higher than suggested by seroprevalence surveys in the general population of 

England and New York City after accounting for seroreversion in Chapter 2 and Chapter 5.  

I derived similar results for the case of Afghanistan after accounting for the undocumented 

COVID-19 related mortality and sparse measurements of seroprevalence, in Chapter 4. I 

further described how early in the pandemic these analytic tools are able to reconstruct the 

first epidemic wave with minimal datasets by limiting the amount of input data and how 

accurate it could be by comparing with large-scale infection surveys. By comparing the 
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model-predicted exposure with officially reported cases, I found that by the end of October 

2020 the UK government’s official COVID-9 online dashboard reported COVID-19 cases 

only accounted for less than ten percent of cumulative exposure, dramatically varying across 

two epidemic waves in England. In Chapter 5, I found a dramatic real-world effectiveness 

of shielding on reducing exposure to SARS-CoV-2 among pregnant patients in New York 

City after comparing the estimates of exposure in the pregnant patients vs. the general 

population as assessed using the method in Chapter 2.   

Emerging infectious diseases with pandemic potential in human populations will remain a 

significant threat going forwards. Accurately estimating population exposure has critical 

ramifications for preparedness plans for potential future epidemic waves. It is particularly 

challenging to achieve this at the beginning of a pandemic because of the tricky trade-off 

between sparse knowledge about pathogen and urgent demand about public health decision. 

The early pandemic diagnostic tools that I have described and developed in this thesis are 

likely to remain important for understanding epidemic dynamics at different scales and for 

informing public health decisions.  
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Appendix Figures and Tables 
Appendix Table 1. The effective sample size and the Gelman-Rubin diagnostic for the eight model 
parameters in the default model (constant infection fatality ratio, IFR). 

Parameter 𝑛5:: 𝑅E 

𝛽 12410 1 

𝛾F'!/'!	 18054 1 

𝛾H'&.I;>4.	 29625 1 

𝛾J'K.I;>4.	 23952 1 

𝛾H'&.IL54.	 28611 1 

𝛾J'K.IL54.	 22006 1 

𝛾M+/=>!/4	 21334 1 

𝛾;>4.	 20992 1 

 

Appendix Table 2. The effective sample size and the Gelman-Rubin diagnostic for the 15 model 
parameters in the time-varying IFR model. 

Parameter 𝑛5:: 𝑅E Parameter 𝑛5:: 𝑅E 

𝛽 35229 1 	ηNOPQRSTUQ 29965 1 

𝛾F'!/'!	 32184 1 γVOWQRSTUQ	 24430 1 

	𝜂F'!/'! 26680 1 	ηVOWQRSTUQ 31047 1 

𝛾H'&.I;>4.	 38159 1 γXYZ[\]ZU	 31943 1 

	𝜂H'&.I;>4. 33166 1 ηXYZ[\]ZU	 27558 1 

𝛾J'K.I;>4.	 24036 1 γ^\UQ 24703 1 

	𝜂J'K.I;>4. 24430 1 	η^\UQ 25506 1 

𝛾H'&.IL54.	 32887 1    
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Appendix Table 3. Marginal median parameter estimates and 95% CrI for the time-varying IFR 
model. 

Parameter Median (95% CrI) 

𝛽 0.0061 (0.0054-0.0068) 

𝛾F'!/'! 0.0054 (0.0048-0.0063) 

𝜂F'!/'! 0.30 (0.26–0.60) 

𝛾H'&.I;>4. 0.011 (0.0095–0.012) 

𝜂H'&.I;>4. 0.077 (0.0029–0.33) 

𝛾H'&.IL54. 0.0083 (0.0074–0.0098) 

𝜂H'&.IL54. 0.15 (0.0069–0.51) 

𝛾J'K.IL54. 0.0094 (0.0086–0.011) 

𝜂J'K.IL54. 0.060 (0.0021–0.26) 

𝛾J'K.I;>4. 0.0013 (0.011-0.017) 

𝜂J'K.I;>4. 0.17 (0.0070–0.53) 

𝛾M+/=>!/4 0.0088 (0.0079–0.010) 

𝜂M+/=>!/4 0.14 (0.0060–0.42) 

𝛾;>4. 0.0089 (0.0077–0.012) 

𝜂;>4. 0.18 (0.0080–0.57) 
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Appendix Table 4. Summary of sensitivity analyses performed for 𝛿D, 𝛿E, death inputs and 𝛽 prior 
for both constant IFR and time varying IFR models.  
Figure 2-2 and Figure 2-3 of the main text were generated using Models 2 and 7 respectively. 

Model 𝛿% 𝛿* 
Prior 

for	𝛽	
IFR	 death input	

1 N/A 14 Uniform Constant Death certificate 

2 N/A 21 Uniform Constant Death certificate 

3 N/A 28 Uniform Constant Death certificate 

4 7 14 Uniform Time-varying  Death certificate 

5 7 21 Uniform Time-varying  Death certificate 

6 7 28 Uniform Time-varying  Death certificate 

7 14 21 Uniform Time-varying  Death certificate 

8 14 28 Uniform Time-varying  Death certificate 

9 21 28 Uniform Time-varying  Death certificate 

10 N/A 21 Uniform Constant 28 days positive death 

11 14 21 Uniform Time-varying  28 days positive death 

12 N/A 21 Weibull Constant Death certificate 

13 14 21 Weibull Time-varying  Death certificate 
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Appendix Table 5. Summary of parameter estimates for all models explored as defined in 
Appendix Table 4. 

 

Parameters 
Model 

1, 2, 3 

Model 

4, 5, 6 

Model 

7, 8 

Model 

9 

Model 

10 

Model 

11 

Model 

12 

Model 

13 

𝛽 
0.0057 

(0.0051,0.0063) 

0.0061 

(0.0054 ,0.0067) 

0.0061 

(0.0054,0.0068) 

0.0061 

(0.0055,0.0069) 

0.0052 

(0.0046,0.0058) 

0.0058 

(0.0051,0.0065) 

0.0057 

(0.0051,0.0063) 

0.0062 

(0.0055,0.0068) 

𝛾!"#$"#	
0.0049 

(0.0046,0.0053) 

0.0055 

(0.0048,0.0065) 

0.0054 

(0.0048,0.0062) 

0.0053 

(0.0048,0.0059) 

0.0037 

(0.0035,0.0040) 

0.0044 

(0.0037,0.0050) 

0.0049 

(0.0046,0.0052) 

0.0054 

(0.0048,0.0062) 

𝛾%"&'(	*+,'	
0.0080 

(0.0073,0.0087) 

0.0084 

(0.0075 ,0.010) 

0.0083 

(0.0074,0.0098) 

0.0081 

(0.0073,0.0092) 

0.0063 

(0.0058,0.0069) 

0.0065 

(0.0058,0.0075) 

0.0079 

(0.0073,0.0086) 

0.0082 

(0.0074,0.0096) 

𝛾%"&'(	-.,'	
0.010 

(0.0095,0.011) 

0.011 

(0.0095,0.012) 

0.010 

(0.0095,0.012) 

0.010 

(0.0094,0.011) 

0.0079 

(0.0073,0.0086) 

0.0079 

(0.0071,0.0088) 

0.010 

(0.0095,0.011) 

0.010 

(0.0094,0.012) 

𝛾/"0'(	-.,'	
0.012 

(0.011,0.013) 

0.013 

(0.011,0.018) 

0.013 

(0.011,0.017) 

0.012 

(0.011,0.015) 

0.0082 

(0.0075,0.0089) 

0.0085 

(0.0075,0.011) 

0.012 

(0.011,0.013) 

0.013 

(0.011,0.016) 

𝛾/"0'(	*+,'	
0.0094 

(0.0087,0.010) 

0.0095 

(0.0087,0.011) 

0.0094 

(0.0086,0.011) 

0.0093 

(0.0085,0.010) 

0.0063 

(0.0058,0.0067) 

0.0062 

(0.0057,0.0069) 

0.0093 

(0.0086,0.010) 

0.0094 

(0.0086,0.010) 

𝛾12$3.#$,	
0.0085 

(0.0079,0.0091) 

0.0088 

(0.0079,0.010) 

0.0088 

(0.0079,0.010) 

0.0087 

(0.0079,0.0098) 

0.0067 

(0.0062,0.0072) 

0.0071 

(0.0063,0.0082) 

0.0085 

(0.0079,0.0091) 

0.0087 

(0.0079,0.010) 

𝛾-.,'	
0.0083 

(0.0077,0.0090) 

0.0092 

(0.0078,0.013) 

0.0089 

(0.0078,0.012) 

0.0086 

(0.0076,0.010) 

0.0069 

(0.0064,0.0075) 

0.0072 

(0.0063,0.0090) 

0.0083 

(0.0076,0.0090) 

0.0087 

(0.0077,0.011) 

𝜂!"#$"#	 N/A 
0.28 

(0.021,0.57) 

0.32 

(0.028,0.62) 

0.38 

(0.033,0.68) 
N/A 

0.54 

(0.14,0.79) 
N/A 

0.33 

(0.033,0.62) 

𝜂%"&'(	*+,'	 N/A 
0.17 

(0.0086,0.56)  

0.15 

(0.0059,0.49) 

0.13 

(0.0058,0.46) 
N/A 

0.14 

(0.0057,0.49) 
N/A 

0.15 

(0.0061,0.49) 

𝜂%"&'(	-.,'	 N/A 
0.084 

(0.0029,0.35) 

0.074 

(0.0031,0.31) 

0.073 

(0.0030,0.31) 
N/A 

0.076 

(0.0028,0.32) 
N/A 

0.075 

(0.0031,0.32) 

𝜂/"0'(	-.,'	 N/A 
0.19 

(0.0084,0.58) 

0.17 

(0.0069,0.53) 

0.14 

(0.0064,0.47) 
N/A 

0.15 

(0.0071,0.50) 
N/A 

0.16 

(0.0068,0.51) 

𝜂/"0'(	*+,'	 N/A 
0.066 

(0.0025,0.29) 

0.058 

(0.0020,0.25) 

0.053 

(0.0020,0.24) 
N/A 

0.058 

(0.0022,0.25) 
N/A 

0.057 

(0.0022,0.26) 

𝜂12$3.#$,	 N/A 
0.14 

(0.0067,0.42) 

0.40 

(0.0064,0.13) 

0.14 

(0.0065,0.43) 
N/A 

0.23 

(0.014,0.55) 
N/A 

0.14 

(0.0070,0.43) 

𝜂-.,'	 N/A 
0.21 

(0.0096,0.62) 

0.19 

(0.0085,0.57) 

0.16 

(0.0071,0.51) 
N/A 

0.16 

(0.0062,0.54) 
 N/A 

0.18 

(0.0078,0.55) 
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Appendix Table 6. Linear regression models exploring relationships between demographic and 
epidemiological factors and estimated regional IFRs.  
Each row refers to a unique linear regression model and indicates which covariate was used, 
alongside the resulting slope and intercept estimates (with accompanying 95% CIs) and p-value. 

Independent Variable Slope  Intercept p-value 

Proportion of people over 45 

years of age 

0.0382  

[0.00292, 0.0735] 

-0.00819 

[-0.0239, 0.00751] 
0.0388 

Proportion of people over 60 

years of age 

0.0440   

[0.000193, 0.0879] 

0.001936 

[0.0127, 0.00880] 
0.0493 

Deaths in the community 

relative to deaths in care 

homes 

-0.000787 

[-0.00128, -

0.000290] 

0.0125   

[0.00987, 0.0151] 0.00962 

Care home beds per 100 

people over 75 years of age 

0.00147   

[0.000220, 0.00272] 

-0.00450 

[-0.0168, 0.00677] 
0.0293 

Diabetes prevalence -0.000587 

[-0.00574, 0.00457] 

0.0128880 

[-0.0236, 0.0494] 
0.781 

Chronic liver disease 

mortality (per 100,000) 

8.81e-05 

[-0.000650, 

0.000826] 

0.00764 

[-0.00187, 0.0172] 0.771 

Chronic obstructive 

pulmonary disease mortality 

(per 100,000) 

1.28e-05 

[-0.000235, 

0.000261] 

0.00810e-03 

[-0.00461, 0.0208] 0.899 
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Appendix Figure 1. Marginal posterior distributions for parameters in the constant IFR model.  
The vertical lines show the median distributions, and the grey shaded regions show the 95% CrI. 

 

 

Appendix Figure 2. Probability of seropositivity persistence after seroconversion.  
The green curve shows the probability curve from (110) and the orange curve gives the median 
probability curve for Models 1, 2 and 3 in our study within the corresponding 95% credible intervals 
defined by the shaded area. See Appendix Table 4 for details on each model’s assumptions. 
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Appendix Figure 3. Cumulative deaths in the seven regions of England. 

 

 

 
Appendix Figure 4. Relationship between demographic and epidemiological factors and estimated 
regional IFRs. 
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Appendix Figure 5. Relevant epidemiological metrics in England over the course of the pandemic.  
(A) Daily COVID-19 cases and tests in England from Feb 5th 2020 to Nov 7th, 2020, alongside the 
testing effort corrected case curve. Case correction was done by taking the number of daily tests 
done on May 1st and extrapolating the number of daily cases that would be reported if the testing 
effort had been constant over time, i.e., how many daily cases would be reported if 20,000 tests has 
been done every day. (B) Comparison of testing effort corrected case incidence (blue), test positivity 
ratio (yellow) and daily deaths per 2 million people (purple). (C) Daily reported incidence of cases, 
deaths and people tested up to July 1st, 2020. Note the different scale for mortality data used on 
panels (B) and (C). In panel (C) we present the absolute number of deaths reported per day as a 
means of comparing its scale to the reported case data. In panel (B) we modify the mortality 
incidence scale to more easily compared its shape over time against that of the daily corrected cases 
and test positivity ratio curves. (D) Normalized case fatality ratio (CFR), hospital fatality ratio (HFR) 
and RT-PCR test positivity ratio (yellow, blue, and green lines, respectively). We assumed fixed 
time lags of 𝛿D = 14 days between RT-PCR testing and death and 𝛿) 	= 	12 days between RT-PCR 
testing and hospitalization. 
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Appendix Figure 6. Marginal posterior distributions for parameters in the time-varying IFR model.  
The vertical lines show the median distributions, and the grey shaded regions show the 95% CrI. 

 

 

Appendix Figure 7. Posterior predictive distribution of the time-varying IFR.  
The solid lines show the medians and the shaded regions show the 95% CrI. 
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Appendix Figure 8. Comparison of the time course of the SARS-CoV-2 pandemic up to 7 November 
2020 for the seven regions in England. 
The figure is based on the constant IFR model, given 𝛿D as 2 weeks and 𝛿E as 2, 3 and 4 weeks. The 
orange solid circles and black error bars in each regional panel represent the observed seroprevalence 
data and their credible intervals after adjusting for the sensitivity and specificity of the antibody test. 
The green, red and purple lines show the median constant IFR model predictions for exposure 
assuming 𝛿E as 2, 3 and 4 weeks, respectively, while the shaded regions correspond to the 95% CrI. 
The green lines show the median constant IFR model predictions for seroprevalence while the shaded 
regions correspond to the 95% CrI. See Appendix Table 4 for details on each model’s assumptions. 
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Appendix Figure 9. Comparison of time course of the SARS-CoV-2 pandemic up to 7 November 
2020 for the seven regions in England for the time-varying IFR model.  
The figure is generated by giving 𝛿D as 2 weeks and 𝛿E as 2, 3 and 4 weeks. The orange solid circles 
and black error bars in each regional panel represent the observed seroprevalence data and their 
credible intervals after adjusting for the sensitivity and specificity of the antibody test. The lines in 
red, green, and blue tones show the median constant IFR model predictions for exposure assuming 
𝛿E as 2, 3 and 4 weeks, respectively, while the shaded regions correspond to their 95% CrI. The 
purple lines show the median constant IFR model predictions for seroprevalence while the shaded 
regions correspond to the 95% CrI. See Appendix Table 4 for details on each model’s assumptions. 
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Appendix Figure 10. Daily deaths with COVID-19 on the death certificate and deaths within 28 days 
of positive test by date of death.  

 

 
Appendix Figure 11. Comparison of marginal posterior distributions for estimated parameters in the 
constant IFR model.  
The red regions show the posterior distributions for parameters using deaths within 28 days of 
positive test as model inputs while the blue regions show the posterior distributions of parameters 
using death certificate data as model inputs. See Appendix Table 4 for details on each model’s 
assumptions. 
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Appendix Figure 12. Comparison of marginal posterior distributions for estimated parameters in the 
time varying IFR model.  
The red regions show the posterior distributions for parameters using deaths within 28 days of 
positive test as model inputs while the blue regions show the posterior distributions of parameters 
using death certificate data as model inputs. See Appendix Table 4 for details on each model’s 
assumptions. 
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Appendix Figure 13. Comparison of the time course of the SARS-CoV-2 pandemic up to 7 
November 2020 for the seven regions in England for the constant IFR model between using death 
within 28 days of a positive COVID-19 test and death certificate data as model inputs.  
The solid orange circles and black error bars in each regional panel represent the observed 
seroprevalence data and their credible intervals after adjusting for the sensitivity and specificity of 
the antibody test. The green and pink lines show the median constant IFR model predictions for 
exposure using death within 28 days of a positive test and death certificate data as model inputs, 
respectively, while the shaded regions correspond to the 95% CrIs. The purple and orange lines show 
the median constant IFR model predictions for seroprevalence using death within 28 days of a 
positive and death certificate data as model inputs, respectively, while the shaded regions correspond 
to the 95% CrIs. See Appendix Table 4 for details on each model’s assumptions. 
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Appendix Figure 14. Comparison of the time course of the SARS-CoV-2 pandemic up to 7 
November 2020 for the seven regions in England for the time-varying IFR model between using 
death within 28 days of a positive COVID-19 test and death certificate data as model inputs.  
The solid orange circles and black error bars in each regional panel represent the observed 
seroprevalence data and their credible intervals after adjusting for the sensitivity and specificity of 
the antibody test. The green and pink lines show the median constant IFR model predictions for 
exposure using death within 28 days of a positive test and death certificate data as model inputs, 
respectively, while the shaded regions correspond to the 95% CrIs. The purple and orange lines show 
the median constant IFR model predictions for seroprevalence using death within 28 days of a 
positive and death certificate data as model inputs, respectively, while the shaded regions correspond 
to the 95% CrIs. See Appendix Table 4 for details on each model’s assumptions. 
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Appendix Figure 15. Ratio between relative rates of deaths of people who died within 28 days of 
their first positive test (per 100,000 population) in the winter wave of 2020 vs. the 2020 spring wave.  
A ratio greater than 1 means that the age specific rate of death was greater in the winter wave than 
in the preceding spring wave, and vice-versa. 
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Appendix Figure 16. Comparison of parameter posterior distributions for the time-varying IFR 
model.  
The figure uses 𝛿D as 7 days (Models 4, 5 and 6), 14 days (Models 7 and 8) and 21 days (Model 9). 
See Appendix Table 4 for details on each model’s assumptions. 

 

 

 
Appendix Figure 17. Comparison of IFR estimates for seven regions in England for time-varying 
IFR model. 
The figure uses 𝛿D as 7 days (Models 4, 5 and 6; see Appendix Table 4 for definitions of the different 
Models), 14 days (Models 7 and 8) and 21 days (Model 9). See Appendix Table 4 for details on each 
model’s assumptions. 
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Appendix Table 7. Sample size for the regional serology survey 

Region Sample size 

Kabul 1104 

Central 1056 

Central highlands 902 

East 1233 

North 1071 

South 738 

North-east 1265 

South-east 969 

West 1176 

 
Appendix Table 8. Characteristics of respondents 

Respondents’ 
characteristics 

Number Percentage 

Total respondents  9514 100% 

Sex   
Male 5128  53.9% 

Female 4386  46.1% 
Age   

5–17 years 4346 45.7%  
18 years or more 5168 54.3% 

Geographical area   
Urban  2574 27% 
Rural  6940 73% 

Region   
Kabul 1104 11.6% 
Central 1056 11.1% 

Central highlands 902 9.4% 
East 1233 13.0% 

North 1071 11.2% 
South 738 7.8% 

North-east 1265 13.3% 
South-east 969 10.2% 

West 1176 12.4% 
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Appendix Figure 18. A map showing the nine regions in Afghanistan where the study was conducted 
(the eight regions of Afghanistan plus Kabul province). 
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Appendix Table 9. A list of parameters, definitions and priors used in the Bayesian inference in the 
model of pregnant patients and general population. 

Parameter 

category 

Symbol Definition Prior Units Range 

Pregnant 

patients 

𝜆C force of infection of pregnant 

patients; 1 / (average time to 

challenge by the virus for 

pregnant patients) 

uniform (0,1) week-1 [0,1] 

𝜏 1 / (average time lag between 

virus detection and antibody 

detection) 

gamma (4,3) week-1 [0,5] 

𝜎 1 / (average time lag between 

middle infection and past 

infection) 

uniform (0,1) week-1 [0,1] 

𝛽 antibody decaying rate in 

pregnant patients  

uniform (0,1) na [0,1] 

𝑦11 proportion of people who are 

never exposed yet by April 20th, 

2020 

beta (8,2) na [0,1] 

𝑘1) tool parameter in the initial 

condition reparameterization 

uniform (0,1) na [0,1] 

𝑘)) tool parameter in the initial 

condition reparameterization 

uniform (0,1) na [0,1] 

𝑘)1 tool parameter in the initial 

condition reparameterization 

uniform (0,1) na [0,1] 

General 

population 

𝛼 infection fatality ratio for 

general population 

uniform (0,1) na [0,1] 

𝜔 antibody decaying rate in 

general population based on 

ELISA test (231). 

uniform (0,1) na [0,1] 
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Appendix Table 10. Posterior estimates of parameters in general population. 

Parameter(unit) Definition Median 2.5% 97.5% 

𝛼 (-) Infection fatality ratio among general 

population 

0.0077 0.0067 0.0087 

𝜔()(days) 1/antibody decaying rate among general 

population 

209 152 333 

 

Appendix Table 11. The effective sample size and the Gelman-Rubin diagnostic for the four 
models. 

Parameter Model 𝑛5:: 𝑅E Parameter Model 𝑛5:: 𝑅E 

𝜏 

1 9902     1 

𝑘)1 

1 9954     1 

2 7876     1 2 8854     1 

3 9516     1 3 11699     1 

4 8251     1 4 8544     1 

𝜎 

1 10448     1 

𝑘)) 

1 13671     1 

2 8744     1 2 13344     1 

3 11928     1 3 13863     1 

4 8241     1 4 10818     1 

𝛽 

1 9982     1 𝜆)) 1 10128     1 

2 8005     1 𝜆8) 
2 

9273     1 

3 9154     1 𝜆88 8502     1 

4 7953     1 𝜆@) 

3 

10948     1 

𝑦11 

1 9330     1 𝜆@8 9698     1 

2 10350     1 𝜆@@ 9549     1 

3 8152     1 𝜆D) 

4 

12655     1 

4 5675     1 𝜆D8 7391     1 

k1) 

1 19436     1 𝜆D@ 7333     1 

2 19826     1 

𝜆DD 7116     1 3 19595     1 

4 17016     1 
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Appendix Table 12. Estimation of effectiveness of shielding from the four models. 

Model Estimation of effectiveness of shielding (95% 
CrI) 

Model 1 53.4% (23.5%, 72.1%) 

Model 2 52.0% (16.4%, 71.1%) 

Model 3 48.4% (11.4%, 67.8%) 

Model 4 47.3% (6.1%, 67.5%) 

 
 

 
Appendix Figure 19. Time course of the SARS-CoV-2 infection among general from January 1st, 
2020 to December 31st, 2020.  
The orange solid circles and black error bars represent the measured seroprevalence and their 
credible intervals respectively. The blue and orange lines show the median of predictions of 
seroprevalence and exposure among general population in New York City, while the shaded areas 
correspond to the 95% credible intervals. 
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Appendix Figure 20. Comparisons of posteriors with different significant levels (50%, 90% and 95%) 
for the proportion of pregnant patients who were not exposed previously by 20 April 2020.  

 

 
Appendix Figure 21. Comparisons of priors and posteriors for the proportion of pregnant patients 
who were not exposed previously by 20 April 2020. 
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Appendix Figure 22. Comparison of estimates of ‘instrumental parameters’ among the four models.
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