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Abstract

Adaptive designs can make clinical trials more flexible by utilising results accumulating in the trial to modify the trial’s
course in accordance with pre-specified rules. Trials with an adaptive design are often more efficient, informative and
ethical than trials with a traditional fixed design since they often make better use of resources such as time and
money, and might require fewer participants. Adaptive designs can be applied across all phases of clinical research,
from early-phase dose escalation to confirmatory trials. The pace of the uptake of adaptive designs in clinical research,
however, has remained well behind that of the statistical literature introducing new methods and highlighting their
potential advantages. We speculate that one factor contributing to this is that the full range of adaptations available
to trial designs, as well as their goals, advantages and limitations, remains unfamiliar to many parts of the clinical
community. Additionally, the term adaptive design has been misleadingly used as an all-encompassing label to refer
to certain methods that could be deemed controversial or that have been inadequately implemented.
We believe that even if the planning and analysis of a trial is undertaken by an expert statistician, it is essential that the
investigators understand the implications of using an adaptive design, for example, what the practical challenges are,
what can (and cannot) be inferred from the results of such a trial, and how to report and communicate the results.
This tutorial paper provides guidance on key aspects of adaptive designs that are relevant to clinical triallists. We
explain the basic rationale behind adaptive designs, clarify ambiguous terminology and summarise the utility and
pitfalls of adaptive designs. We discuss practical aspects around funding, ethical approval, treatment supply and
communication with stakeholders and trial participants. Our focus, however, is on the interpretation and reporting of
results from adaptive design trials, which we consider vital for anyone involved in medical research. We emphasise the
general principles of transparency and reproducibility and suggest how best to put them into practice.
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Why, what and when to adapt in clinical trials
Traditionally, clinical trials have been run in three
steps [1]:

1. The trial is designed.
2. The trial is conducted as prescribed by the design.
3. Once the data are ready, they are analysed according

to a pre-specified analysis plan.
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This practice is straightforward, but clearly inflexible
as it does not include options for changes that may
become desirable or necessary during the course of the
trial. Adaptive designs (ADs) provide an alternative. They
have been described as ‘planning to be flexible’ [2], ‘driv-
ing with one’s eyes open’ [3] or ‘taking out insurance’
against assumptions [4]. They add a review–adapt loop
to the linear design–conduct–analysis sequence (Fig. 1).
Scheduled interim looks at the data are allowed while the
trial is ongoing, and pre-specified changes to the trial’s
course can be made based on analyses of accumulating
data, whilst maintaining the validity and integrity of the
trial. Such a priori planned adaptations are fundamentally
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Fig. 1 Schematic of a traditional clinical trial design with fixed sample size, and an adaptive design with pre-specified review(s) and adaptation(s)

different from unplanned ad hoc modifications, which
are common in traditional trials (e.g. alterations to the
eligibility criteria).
Pre-planned changes that an AD may permit include,

but are not limited to [5]:

• refining the sample size
• abandoning treatments or doses
• changing the allocation ratio of patients to trial arms
• identifying patients most likely to benefit and

focusing recruitment efforts on them
• stopping the whole trial at an early stage for success

or lack of efficacy.

Table 1 lists some well-recognised adaptations and
examples of their use. Note that multiple adaptations may
be used in a single trial, e.g. a group-sequential design
may also feature mid-course sample size re-estimation
and/or adaptive randomisation [6], and many multi-arm
multi-stage (MAMS) designs are inherently seamless [7].
ADs can improve trials across all phases of clinical devel-
opment, and seamless designs allow for a more rapid
transition between phases I and II [8, 9] or phases II and
III [10, 11].
The defining characteristic of all ADs is that results from

interim data analyses are used to modify the ongoing trial,
without undermining its integrity or validity [12]. Preserv-
ing the integrity and validity is crucial. In an AD, data are
repeatedly examined. Thus, we need to make sure they
are collected, analysed and stored correctly and in accor-
dance with good clinical practice at every stage. Integrity
means ensuring that trial data and processes have not
been compromised, e.g. minimising information leakage
at the interim analyses [13]. Validity implies there is an
assurance that the trial answers the original research ques-
tions appropriately, e.g. by using methods that provide
accurate estimates of treatment effects [14] and correct

p values [15–17] and confidence intervals (CIs) for the
treatment comparisons [18, 19]. All these issues will be
discussed in detail in subsequent sections.
The flexibility to make mid-course adaptations to a trial

is not a virtue in itself but rather a gateway to more effi-
cient trials [20] that should also be more appealing from a
patient’s perspective in comparison to non-ADs because:

Table 1 Overview of adaptive designs with examples of trials
that employed these methods

Design Idea Examples

Continual
reassessment
method

Model-based dose escalation to
estimate the maximum tolerated
dose

TRAFIC [136],
Viola [137],
RomiCar [138]

Group-sequential Include options to stop the trial
early for safety, futility or efficacy

DEVELOP-UK [139]

Sample size
re-estimation

Adjust sample size to ensure the
desired power

DEVELOP-UK [139]

Multi-arm
multi-stage

Explore multiple treatments,
doses, durations or combinations
with options to ‘drop losers’ or
‘select winners’ early

TAILoR [31],
STAMPEDE [67, 140],
COMPARE [141],
18-F PET study [142]

Population
enrichment

Narrow down recruitment to
patients more likely to benefit
(most) from the treatment

Rizatriptan study
[143, 144]

Biomarker-
adaptive

Incorporate information from or
adapt on biomarkers

FOCUS4 [145],
DILfrequency [146];
examples in [147, 148]

Adaptive
randomisation

Shift allocation ratio towards
more promising or informative
treatment(s)

DexFEM [149];
case studies in
[150, 151]

Adaptive
dose-ranging

Shift allocation ratio towards
more promising or informative
dose(s)

DILfrequency [146]

Seamless phase
I/II

Combine safety and activity
assessment into one trial

MK-0572 [152],
Matchpoint [153, 154]

Seamless phase
II/III

Combine selection and
confirmatory stages into one trial

Case studies in [133]
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• Recruitment to futile treatment arms may stop early.
• Fewer patients may be randomised to a less

promising treatment or dose.
• On average, fewer patients may be required overall to

ensure the same high chance of getting the right
answer.

• An underpowered trial, which would mean a waste of
resources, may be prevented.

• A better understanding of the dose–response or
dose–toxicity relationship may be achieved, thus,
facilitating the identification of a safe and effective
dose to use clinically.

• The patient population most likely to benefit from a
treatment may be identified.

• Treatment effects may be estimated with greater
precision, which reduces uncertainty about what the
better treatment is.

• A definitive conclusion may be reached earlier so that
novel effective medicines can be accessed sooner by
the wider patient population who did not participate
in the trial.

ADs have been available for more than 25 years [21],
but despite their clear benefits in many situations, they
are still far from established in practice (with the notable
exception of group-sequential methods, which many peo-
ple would not think to recognise as being adaptive) for
a variety of reasons. Well-documented barriers [22–29]
include lack of expertise or experience, worries of how
funders and regulators may view ADs, or indeed more
fundamental practical challenges and limitations specific
to certain types of ADs.
We believe that anothermajor reason why clinical inves-

tigators are seldom inclined to adopt ADs is that there is a
lack of clarity about:

• when they are applicable
• what they can (and cannot) accomplish
• what their practical implications are
• how their results should be interpreted and reported.

To overcome these barriers, we discuss in this paper
some practical obstacles to implementing ADs and how
to clear them, and we make recommendations for inter-
preting and communicating the findings of an AD trial.
We start by illustrating the benefits of ADs with three
successful examples from real clinical trials.

Case studies: benefits of adaptive designs
A trial with blinded sample size re-estimation
Combination Assessment of Ranolazine in Stable Angina
(CARISA) was a multi-centre randomised double-blind
trial to investigate the effect of ranolazine on the exercis-
ing capacity of patients with severe chronic angina [30].
Participants were randomly assigned to one of three arms:

twice daily placebo or 750mg or 1000mg of ranolazine
given over 12 weeks, in combination with standard doses
of either atenolol, amlodipine or diltiazem at the discre-
tion of the treating physician. The primary endpoint was
treadmill exercise duration at trough, i.e. 12 hours after
dosing. The sample size necessary to achieve 90% power
was calculated as 462, and expanded to 577 to account for
potential dropouts.
After 231 patients had been randomised and followed

up for 12 weeks, the investigators undertook a planned
blinded sample size re-estimation. This was done to main-
tain the trial power at 90% even if assumptions underlying
the initial sample size calculation were wrong. The stan-
dard deviation of the primary endpoint turned out to be
considerably higher than planned for, so the recruitment
target was increased by 40% to 810. The adaptation pre-
vented an underpowered trial, and as it was conducted
in a blinded fashion, it did not increase the type I error
rate. Eventually, a total of 823 patients were randomised
in CARISA. The trial met the primary endpoint and could
claim a significant improvement in exercise duration for
both ranolazine doses.

Amulti-armmulti-stage trial
Telmisartan and Insulin Resistance in HIV (TAILoR) was
a phase II dose-ranging multi-centre randomised open-
label trial investigating the potential of telmisartan to
reduce insulin resistance in HIV patients on combination
antiretroviral therapy [31]. It used a MAMS design [32]
with one interim analysis to assess the activity of three
telmisartan doses (20, 40 or 80mg daily) against control,
with equal randomisation between the three active dose
arms and the control arm. The primary endpoint was the
24-week change in insulin resistance (as measured by a
validated surrogate marker) versus baseline.
The interim analysis was conducted when results were

available for half of the planned maximum of 336 patients.
The two lowest dose arms were stopped for futility,
whereas the 80mg arm, which showed promising results
at interim, was continued along with the control. Thus,
the MAMS design allowed the investigation of multi-
ple telmisartan doses but recruitment to inferior dose
arms could be stopped early to focus on the most
promising dose.

An adaptive randomisation trial
Giles et al. conducted a randomised trial investigat-
ing three induction therapies for previously untreated,
adverse karyotype, acute myeloid leukaemia in elderly
patients [33]. Their goal was to compare the standard
combination regimen of idarubicin and ara-C (IA) against
two experimental combination regimens involving troxac-
itabine and either idarubicin or ara-C (TI and TA, respec-
tively). The primary endpoint was complete remission
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without any non-haematological grade 4 toxicities by 50
days. The trial began with equal randomisation to the
three arms but then used a response-adaptive randomisa-
tion (RAR) scheme that allowed changes to the randomi-
sation probabilities, depending on observed outcomes:
shifting the randomisation probabilities in favour of arms
that showed promise during the course of the trial or stop-
ping poorly performing arms altogether (i.e. effectively
reducing their randomisation probability to zero). The
probability of randomising to IA (the standard) was held
constant at 1/3 as long as all three arms remained part
of the trial. The RAR design was motivated by the desire
to reduce the number of patients randomised to inferior
treatment arms.
After 24 patients had been randomised, the probability

of randomising to TI was just over 7%, so recruitment
to this arm was terminated and the randomisation prob-
abilities for IA and TA recalculated (Fig. 2). The trial
was eventually stopped after 34 patients, when the prob-
ability of randomising to TA had dropped to 4%. The
final success rates were 10/18 (56%) for IA, 3/11 (27%)
for TA, and 0/5 (0%) for TI. Due to the RAR design,
more than half of the patients (18/34) were treated with
the standard of care (IA), which was the best of the
three treatments on the basis of the observed outcome
data, and the trial could be stopped after 34 patients,
which was less than half of the planned maximum of
75. On the other hand, the randomisation probabili-
ties were highly imbalanced in favour of the control
arm towards the end, suggesting that recruitment to this
trial could have been stopped even earlier (e.g. after
patient 26).

Practical aspects
As illustrated by these examples, ADs can bring about
major benefits, such as shortening trial duration or
obtaining more precise conclusions, but typically at
the price of being more complex than traditional fixed
designs. In this section, we briefly highlight five key areas
where additional thought and discussions are necessary
when planning to use an AD. Considering these aspects
is vital for clinical investigators, even if they have a statis-
tician to design and analyse the trial. The advice we give
here is largely based on our own experiences with ADs in
the UK public sector.

Obtaining funding
Before a study can begin, funding to conduct it must be
obtained. The first step is to convince the decision-making
body that the design is appropriate (in addition to showing
scientific merits and potential, as with any other study).
This is sometimes more difficult with ADs than for tradi-
tional trial designs, as the decision makers might not be
as familiar with the methods proposed, and committees
can tend towards conservative decisions. To overcome
this, it is helpful to ensure that the design is explained
in non-technical terms while its advantages over (non-
adaptive) alternatives and its limitations are highlighted.
On occasion, it might also be helpful to involve a statisti-
cian with experience of ADs, either by recommending the
expert to be a reviewer of the proposal or by including an
independent assessment report when submitting the case.
Other challenges related to funding are more specific

to the public sector, where staff are often employed for
a specific study. Questions, such as ‘How will the time

Fig. 2 Overview of the troxacitabine trial using a response-adaptive randomisation design. The probabilities shown are those at the time the patient
on the x-axis was randomised. Coloured numbers indicate the arms to which the patients were randomised
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for developing the design be funded?’ and ‘What hap-
pens if the study stops early?’ need to be considered.
In our experience, funders are often supportive of ADs
and therefore, tend to be flexible in their arrangements,
although decisions seem to be on a case-by-case basis.
Funders frequently approve of top-up funding to increase
the sample size based on promising interim results
[34, 35], especially if there is a cap on the maximum
sample size [36].
To overcome the issue of funding the time to prepare

the application, we have experience of funders agreeing
to cover these costs retrospectively (e.g. [37]). Some have
also launched funding calls specifically to support the
work-up of a trial application, e.g. the Joint Global Health
trials scheme [38], which awards trial development grants,
or the Planning Grant Program (R34) of the National
Institutes of Health [39].

Communicating the design to trial stakeholders
Once funding has been secured, one of the next chal-
lenges is to obtain ethics approval for the study. While
this step is fairly painless in most cases, we have had
experiences where further questions about the AD were
raised, mostly around whether the design makes sense
more broadly, suggesting unfamiliarity with AD meth-
ods overall. These clarifications were easily answered,
although in one instance we had to obtain a letter from
an independent statistical expert to confirm the appropri-
ateness of the design. In our experience, communications
with other stakeholders, such as independent data mon-
itoring committees (IDMCs) and regulators, have been
straightforward and at most required a teleconference to
clarify design aspects. Explaining simulation results to
stakeholders will help to increase their appreciation of the
benefits and risks of any particular design, as will walk-
ing them through individual simulated trials, highlighting
common features of data sets associated with particular
adaptations.
The major regulatory agencies for Europe and the US

have recently issued detailed guidelines on ADs [40–42].
They tend to be well-disposed towards AD trials, espe-
cially when the design is properly justified and concerns
about type I error rate control and bias are addressed
[43, 44]. We will expand on these aspects in subsequent
sections.

Communicating the design to trial participants
Being clear about the design of the study is a key require-
ment when recruiting patients, which in practice will be
done by staff of the participating sites. While, in gen-
eral, the same principles apply as for traditional designs,
the nature of ADs makes it necessary to allow for the
specified adaptations. Therefore, it is good practice to pre-
pare patient information sheets and similar information

for all possible adaptations at the start of the study. For
example, for a multi-arm treatment selection trial where
recruitment to all but one of the active treatment arms is
terminated at an interim analysis, separate patient infor-
mation sheets should be prepared for the first stage of
the study (where patients can be randomised to con-
trol or any active treatment), and for the second stage,
there should be separate sheets for each active versus
control arm.

IDMC and trial steering committee roles
Reviewing observed data at each interim analysis requires
careful thought to avoid introducing bias into the trial. For
treatment-masked (blinded) studies that allow changes
that may reveal—implicitly or explicitly—some informa-
tion about the effectiveness of the treatments (e.g. stop-
ping arms or changing allocation ratios) it is important to
keep investigators and other people with a vested inter-
est in the study blinded wherever possible to ensure its
integrity. For example, they should not see any unblinded
results for specific arms during the study to prevent ad hoc
decisions being made about discontinuing arms or chang-
ing allocation ratios on the basis of accrued data. When
stopping recruitment to one or more treatment arms, it is
necessary to reveal that they have been discontinued and
consequently hard to conceal the identity of the discontin-
ued arm(s), as e.g. patient information sheets have to be
updated.
In practice, it is advisable to instruct a (non-blind)

IDMC to review interim data analyses and make recom-
mendations to a (blind) trial steering committee (TSC)
with independent membership about how the trial should
proceed [45–51], whether that means implementing the
AD as planned or, if there are serious safety issues, propos-
ing an unplanned design modification or stopping [41].
The TSC, whose main role is to oversee the trial [52–
54], must approve any ad hoc modifications (which may
include the non-implementation of planned adaptations)
suggested by the IDMC. However, their permission is not
required for the implementation of any planned adap-
tations that are triggered by observed interim data, as
these adaptations are part of the initial trial design that
was agreed upon. In some cases though, adaptation rules
may be specified as non-binding (e.g. futility stopping cri-
teria in group-sequential trials) and therefore, inevitably
require the TSC to make a decision on how to proceed.
To avoid ambiguity, all adaptation rules should be

defined clearly in the protocol as well as in the IDMC
and TSC charters and agreed upon between these com-
mittees and the trial team before the trial begins. The
sponsor should ensure that the IDMC and TSC have
members with all the skills needed to implement the AD
and set up firewalls to avoid undue disclosure of sensitive
information, e.g. to the trial team [55].
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Running the trial
Our final set of practical challenges relates to running
the study. Once again, many aspects will be similar to
traditional fixed designs, although additional considera-
tions may be required for particular types of adaptations.
For instance, drug supply for multi-arm studies is more
complex as imbalances between centres can be larger and
discontinuing arms will alter the drug demand in a
difficult-to-predict manner. For trials that allow the ratio
at which patients are allocated to each treatment to
change once the trial is under way, it is especially impor-
tant that there is a bespoke central system for randomi-
sation. This will ensure that randomisation errors are
minimised and that drug supply requirements can be
communicated promptly to pharmacies dispensing study
medication.
Various AD methods have been implemented in vali-

dated and easy-to-use statistical software packages over
the past decade [21, 56, 57]. However, especially for novel
ADs, off-the-shelf software may not be readily available,
in which case quality control and validation of self-written
programmes will take additional time and resources.
In this section, we have highlighted some of the con-

siderations necessary when embarking on an AD. They
are, of course, far from comprehensive and will depend on
the type of adaptation(s) implemented. All these hurdles,
however, have been overcome in many trials in practice.
Table 1 lists just a few examples of successful AD trials.
Practical challenges with ADs have also been discussed,
e.g. in [46, 58–66], and practical experiences are described
in [64, 67–69].

Interpretation of trial results
In addition to these practical challenges around planning
and running a trial, ADs also require some extra care
when making sense of trial results. The formal numerical
analysis of trial data will likely be undertaken by a statisti-
cian. We recommend consulting someone with expertise
in and experience of ADs well enough in advance. The
statistician can advise on appropriate analysis methods
and assist with drafting the statistical analysis plan as
well as pre-trial simulation studies to assess the statisti-
cal and operating characteristics of the proposed design,
if needed.
While it may not be necessary for clinicians to com-

prehend advanced statistical techniques in detail, we
believe that all investigators should be fully aware of the
design’s implications and possible pitfalls in interpreting
and reporting the findings correctly. In the following, we
highlight how ADs may lead to issues with interpretabil-
ity. We split them into statistical and non-statistical issues
and consider how they may affect the interpretation of
results as well as their subsequent reporting, e.g. in jour-
nal papers. Based on the discussion of these issues, in

the next section we will identify limitations in how ADs
are currently reported and make recommendations for
improvement.

Statistical issues
For a fixed randomised controlled trial (RCT) analysed
using traditional statistics, it is common to present the
estimated treatment effect (e.g. difference in proportions
or means between treatment groups) alongside a 95%
CI and p value. The latter is a summary measure of a
hypothesis test whether the treatment effect is ‘signifi-
cantly’ different from the null effect (e.g. the difference
in means being zero) and is typically compared to a pre-
specified ‘significance’ level (e.g. 5%). Statistical analyses
of fixed RCTs will, in most cases, lead to treatment effect
estimates, CIs and p values that have desirable and well-
understood statistical properties:

1. Estimates will be unbiased, meaning that if the study
were to be repeated many times according to the
same protocol, the average estimate would be equal
to the true treatment effect.

2. CIs will have correct coverage, meaning that if the
study were to be repeated many times according to
the same protocol, 95% of all 95% CIs calculated
would contain the true treatment effect.

3. p values will be well-calibrated, meaning that when
there is no effect of treatment, the chance of
observing a p value less than 0.05 is exactly 5%.

These are by no means the only relevant criteria for
assessing the performance of a trial design. Other met-
rics include the accuracy of estimation (e.g. mean squared
error), the probability of identifying the true best treat-
ment (especially with MAMS designs) and the ability to
treat patients effectively within the trial (e.g. in dose-
escalation studies). ADs usually perform considerably bet-
ter than non-ADs in terms of these other criteria, which
are also of more direct interest to patients. However, the
three statistical properties listed above and also in Table 2
are essential requirements of regulators [40–42] and other
stakeholders for accepting a (novel) design method.
The analysis of an AD trial often involves combining

data from different stages, which can be done e.g. with
the inverse normal method, p value combination tests or
conditional error functions [70, 71]. It is still possible to
compute the estimated treatment effect, its CI and a p
value. If these quantities are, however, naively computed
using the same methods as in a fixed-design trial, then
they often lack the desirable properties mentioned above,
depending on the nature of adaptations employed [72].
This is because the statistical distribution of the estimated
treatment effect can be affected, sometimes strongly, by
an AD [73]. The CI and p value usually depend on the
treatment effect estimate and are, thus, also affected.
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Table 2 Important statistical quantities for reporting a clinical trial, and how they may be affected by an adaptive design

Statistical quantity Fixed-design RCT property Issue with adaptive design Potential solution

Effect estimate Unbiased: on average (across many
trials) the effect estimate will have
the same mean as the true value

Estimated treatment effect using
naive methods can be biased, with
an incorrect mean value

Use adjusted estimators that elimi-
nate or reduce bias; use simulation
to explore the extent of bias

Confidence interval Correct coverage: 95% CIs will on
average contain the true effect 95%
of the time

CIs computed in the traditional way
can have incorrect coverage

Use improved CIs that have correct
or closer to correct coverage levels;
use simulation to explore the actual
coverage

p value Well-calibrated: the nominal signifi-
cance level used is equal to the type
I error rate actually achieved

p values calculated in the traditional
way may not be well-calibrated,
i.e. could be conservative or anti-
conservative

Use p values that have correct theo-
retical calibration; use simulation to
explore the actual type I error rate of
a design

CI confidence interval, RCT randomised controlled trial

As an example, consider a two-stage adaptive RCT that
can stop early if the experimental treatment is doing
poorly against the control at an interim analysis, based
on a pre-specified stopping rule applied to data from
patients assessed during the first stage. If the trial is not
stopped early, the final estimated treatment effect calcu-
lated from all first- and second-stage patient data will be
biased upwards. This is because the trial will stop early
for futility at the first stage whenever the experimental
treatment is—simply by chance—performing worse than
average, and no additional second-stage data will be col-
lected that could counterbalance this effect (via regression
to the mean). The bottom line is that random lows are
eliminated by the stopping rule but random highs are not,
thus, biasing the treatment effect estimate upwards. See
Fig. 3 for an illustration. This phenomenon occurs for a
wide variety of ADs, especially when first-stage efficacy
data are used to make adaptations such as discontinuing

arms. Therefore, we provide several solutions that lead to
sensible treatment effects estimates, CIs and p values from
AD trials. See also Table 2 for an overview.

Treatment effect estimates
When stopping rules for an AD are clearly specified (as
they should be), a variety of techniques are available to
improve the estimation of treatment effects over naive
estimators, especially for group-sequential designs. One
approach is to derive an unbiased estimator [74–77].
Though unbiased, they will generally have a larger vari-
ance and thus, be less precise than other estimators. A
second approach is to use an estimator that reduces the
bias compared to the methods used for fixed-design trials,
but does not necessarily completely eliminate it. Exam-
ples of this are the bias-corrected maximum likelihood
estimator [78] and the median unbiased estimator [79].
Another alternative is to use shrinkage approaches for

Fig. 3 Illustration of bias introduced by early stopping for futility. This is for 20 simulated two-arm trials with no true treatment effect. The trajectories
of the test statistics (as a standardised measure of the difference between treatments) are subject to random fluctuation. Two trials (red) are stopped
early because their test statistics are below a pre-defined futility boundary (blue cross) at the interim analysis. Allowing trials with random highs at
the interim to continue but terminating trials with random lows early will lead to an upward bias of the (average) treatment effect
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trials with multiple treatment arms [36, 80, 81]. In general,
such estimators substantially reduce the bias compared to
the naive estimator. Although they are not usually statisti-
cally unbiased, they have lower variance than the unbiased
estimators [74, 82]. In trials with time-to-event outcomes,
a follow-up to the planned end of the trial can markedly
reduce the bias in treatment arms discontinued at
interim [83].
An improved estimator of the treatment effect is not

yet available for all ADs. In such cases, one may empir-
ically adjust the treatment effect estimator via boot-
strapping [84], i.e. by repeatedly sampling from the data
and calculating the estimate for each sample, thereby
building up a ‘true’ distribution of the estimator that
can be used to adjust it. Simulations can then be
used to assess the properties of this bootstrap estima-
tor. The disadvantage of bootstrapping is that it may
require a lot of computing power, especially for more
complex ADs.

Confidence intervals
For some ADs, there are CIs that have the correct
coverage level taking into account the design used
[18, 19, 85, 86], including simple repeated CIs [87]. If a
particular AD does not have a method that can be read-
ily applied, then it is advisable to carry out simulations at
the design stage to see whether the coverage of the naively
found CIs deviates considerably from the planned level.
In that case, a bootstrap procedure could be applied for
a wide range of designs if this is not too computationally
demanding.

p values
A p value is often presented alongside the treatment
effect estimate and CI as it helps to summarise the
level of evidence against the null hypothesis. For cer-
tain ADs, such as group-sequential methods, one can
order the possible trial outcomes by how ‘extreme’ they
are in terms of the strength of evidence they repre-
sent against the null hypothesis. In a fixed-design trial,
this is simply the magnitude of the test statistic. How-
ever, in an AD that allows early stopping for futility or
efficacy, it is necessary to distinguish between differ-
ent ways in which the null hypothesis might be rejected
[73]. For example, we might conclude that if a trial
stops early and rejects the null hypothesis, this is more
‘extreme’ evidence against the null than if the trial con-
tinues to the end and only then rejects it. There are
several different ways that data from an AD may be
ordered, and the p value found (and also the CI) may
depend on which method is used. Thus, it is essential to
pre-specify which method will be used and to provide
some consideration of the sensitivity of the results to the
method.

Type I error rates
The total probability of rejecting the null hypothesis (type
I error rate) is an important quantity in clinical trials,
especially for phase III trials where a type I error may
mean an ineffective or harmful treatment will be used in
practice. In some ADs, a single null hypothesis is tested
but the actual type I error rate is different from the
planned level specified before the trial, unless a correc-
tion is performed. As an example, if unblinded data (with
knowledge or use of treatment allocation such that the
interim treatment effect can be inferred) are used to adjust
the sample size at the interim, then the inflation to the
planned type I error can be substantial and needs to be
accounted for [16, 34, 35, 88]. On the other hand, blinded
sample size re-estimation (done without knowledge or use
of treatment allocation) usually has a negligible impact
on the type I error rate and inference when performed
with a relatively large sample size, but inflation can still
occur [89, 90].

Multiple hypothesis testing
In some ADs, multiple hypotheses are tested (e.g. in
MAMS trials), or the same hypothesis is re-tested mul-
tiple times (e.g. interim and final analyses [91]), or the
effects on the primary and key secondary endpoints may
be tested group-sequentially [92, 93], all of whichmay lead
to type I error rate inflation. In any (AD or non-AD) trial,
the more (often the) null hypotheses are tested, the higher
the chance that one will be incorrectly rejected. To control
the overall (family-wise) type I error rate at a fixed level
(say, 5%), adjustment for multiple testing is necessary [94].
This can sometimes be done with relatively simple meth-
ods [95]; however, it may not be possible for all multiple
testing procedures to derive corresponding useful CIs.
In a MAMS setting, adjustment is viewed as being par-

ticularly important when the trial is confirmatory and
when the research arms are different doses or regimens
of the same treatment, whereas in some other cases, it
might not be considered essential, e.g. when the research
treatments are substantially different, particularly if devel-
oped by different groups [96]. When making a decision
about whether to adjust for multiplicity, it may help to
think what adjustment would have been required had the
results of the equivalent trials been conducted as sep-
arate two-arm trials. Regulatory guidance is commonly
interpreted as encouraging strict adjustment for multiple
testing within a single trial [97–99].

Bayesianmethods
While this paper focuses on frequentist (classical) statis-
tical methods for trial design and analysis, there is also a
wealth of Bayesian ADmethods [100] that are increasingly
being applied in clinical research [23]. Bayesian designs
are much more common for early-phase dose escalation
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[101, 102] and adaptive randomisation [103] but are gain-
ing popularity also in confirmatory settings [104], such as
seamless phase II/III trials [105] and in umbrella or bas-
ket trials [106]. Bayesian statistics and adaptivity go very
well together [4]. For instance, taking multiple looks at the
data is (statistically) unproblematic as it does not have to
be adjusted for separately in a Bayesian framework.
Although Bayesian statistics is by nature not con-

cerned with type I error rate control or p values,
it is common to evaluate and report the frequentist
operating characteristics of Bayesian designs, such as
power and type I error rate [107–109]. Consider e.g.
the frequentist and Bayesian interpretations of group-
sequential designs [110–112]. Moreover, there are some
hybrid AD methods that blend frequentist and Bayesian
aspects [113–115].

Non-statistical issues
Besides these statistical issues, the interpretability of
results may also be affected by the way triallists con-
duct an AD trial, in particular with respect to mid-trial
data analyses. Using interim data to modify study aspects
may raise anxiety in some research stakeholders due to
the potential introduction of operational bias. Knowl-
edge, leakage or mere speculation of interim results could
alter the behaviour of those involved in the trial, includ-
ing investigators, patients and the scientific community
[116, 117]. Hence, it is vital to describe the processes and
procedures put in place to minimise potential operational
bias. Triallists, as well as consumers of trial reports, should
give consideration to:

• who had access to interim data or performed interim
analyses

• how the results were shared and confidentiality
maintained

• what the role of the sponsor was in the
decision-making process.

The importance of confidentiality and models for mon-
itoring AD trials have been discussed [46, 118].
Inconsistencies in the conduct of the trial across dif-

ferent stages (e.g. changes to care given and how out-
comes are assessed) may also introduce operational bias,
thus, undermining the internal and external validity and
therefore, the credibility of trial findings. As an exam-
ple, modifications of eligibility criteria might lead to a
shift in the patient population over time, and results may
depend on whether patients were recruited before or after
the interim analysis. Consequently, the ability to combine
results across independent interim stages to assess the
overall treatment effect becomes questionable. Hetero-
geneity between the stages of an AD trial could also arise
when the trial begins recruiting from a limited number of

sites (in a limited number of countries), which may not
be representative of all the sites that will be used once
recruitment is up and running [55].
Difficulties faced in interpreting research findings with

heterogeneity across interim stages have been discussed in
detail [119–123]. Although it is hard to distinguish hetero-
geneity due to change from that influenced by operational
bias, we believe there is a need to explore stage-wise het-
erogeneity by presenting key patient characteristics and
results by independent stages and treatment groups.

Reporting adaptive designs
High-quality reporting of results is a vital part of running
any successful trial [124]. The reported findings need to
be credible, transparent and repeatable. Where there are
potential biases, the report should highlight them, and
it should also comment on how sensitive the results are
to the assumptions made in the statistical analysis. Much
effort has been made to improve the reporting quality of
traditional clinical trials. One high-impact initiative is the
CONSORT (Consolidated Standards of Reporting Trials)
statement [125], which itemises a minimum set of infor-
mation that should be included in reports of RCTs.
We believe that to report an AD trial in a credible, trans-

parent and repeatable fashion, additional criteria beyond
those in the core CONSORT statement are required.
Recent work has discussed the reporting of AD trials
with examples of and recommendations for minimum
standards [126–128] and identified several items in the
CONSORT check list as relevant when reporting an AD
trial [129, 130].
Mindful of the statistical and operational pitfalls dis-

cussed in the previous section, we have compiled a list of
11 reporting items that we consider essential for AD tri-
als, along with some explanations and examples. Given
the limited word counts of most medical journals, we
acknowledge that a full description of all these items may
need to be included as supplementary material. However,
sufficient information must be provided in the main body,
with references to additional material.

Rationale for the AD, research objectives and hypotheses
Especially for novel and ‘less well-understood’ ADs (a
term coined in [41]), a clear rationale for choosing
an AD instead of a more traditional design approach
should be given, explaining the potential added bene-
fits of the adaptation(s). This will enable readers and
reviewers to gauge the appropriateness of the design
and interpret its findings correctly. Research objectives
and hypotheses should be set out in detail, along with
how the chosen AD suits them. Reasons for using
more established ADs have been discussed in the lit-
erature, e.g. why to prefer the continual reassessment
method (CRM) over a traditional 3 + 3 design for dose
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escalation [131, 132], or why to use seamless and MAMS
designs [133, 134]. The choice of routinely used ADs,
such as CRM for dose escalation or group-sequential
designs, should be self-evident and need not be justified
every time.

Type and scope of AD
A trial report should not only state the type of AD used but
also describe its scope adequately. This allows the appro-
priateness of the statistical methods used to be assessed
and the trial to be replicated. The scope relates to what the
adaptation(s) encompass, such as terminating futile treat-
ment arms or selecting the best performing treatment in a
MAMS design. The scope of ADs with varying objectives
is broad and can sometimes include multiple adaptations
aimed at addressing multiple objectives in a single trial.

Sample sizes
In addition to reporting the overall planned and actually
recruited sample sizes as in any RCT, AD trial reports
should provide information on the timing of interim anal-
yses (e.g. in terms of fractions of total number of patients,
or number of events for survival data) and how many
patients contributed to each interim analysis.

Adaptation criteria
Transparency with respect to adaptation procedures is
crucial [135]. Hence, reports should include the decision
rules used, their justification and timing as well as the fre-
quency of interim analyses. It is important for the research
team, including the clinical and statistical researchers,
to discuss adaptation criteria at the planning stage and
to consider the validity and clinical interpretation of the
results.

Simulations and pre-trial work
For ‘well-understood’ ADs, such as standard group-
sequential methods, referencing peer-reviewed publica-
tions and the statistical software used will be sufficient to
justify the validity of the design. Some ADs, however, may
require simulation work under a number of scenarios to:

• evaluate the statistical properties of the design such as
(family-wise) type I error rate, sample size and power

• assess the potential bias that may result from the
statistical estimation procedure

• explore the impact of (not) implementing adaptations
on both statistical properties and operational
characteristics.

It is important to provide clear simulation objectives,
a rationale for the scenarios investigated and evidence
showing that the desired statistical properties have been
preserved. The simulation protocol and report, as well as

any software code used to generate the results, should be
made accessible.

Statistical methods
As ADs may warrant special methods to produce valid
inference (see Table 2), it is particularly important to state
how treatment effect estimates, CIs and p values were
obtained. In addition, traditional naive estimates could
be reported alongside adjusted estimates. Whenever data
from different stages are combined in the analysis, it is
important to disclose the combination method used as
well as the rationale behind it.

Heterogeneity
Heterogeneity of the baseline characteristics of study par-
ticipants or of the results across interim stages and/or
study sites may undermine the interpretation and credi-
bility of results for some ADs. Reporting the following, if
appropriate for the design used, could provide some form
of assurance to the scientific research community:

• important baseline summaries of participants
recruited in different stages

• summaries of site contributions to interim results
• exploration of heterogeneity of results across stages

or sites
• path of interim results across stages, even if only

using naive treatment effects and CIs.

Nonetheless, differentiating between randomly occurring
and design-induced heterogeneity or population drift is
tough, and even standard fixed designs are not immune to
this problem.

Unplannedmodifications
Prospective planning of an AD is important for credi-
bility and regulatory considerations [41]. However, as in
any other (non-AD) trial, some events not envisaged dur-
ing the course of the trial may call for changes to the
design that are outside the scope of a priori planned adap-
tations, or there may be a failure to implement planned
adaptations. Questions may be raised regarding the impli-
cations of such unplanned ad hoc modifications. Is the
planned statistical framework still valid?Were the changes
driven by potential bias? Are the results still interpretable
in relation to the original research question? Thus, any
unplanned modifications must be stated clearly, with an
explanation as to why they were implemented and how
they may impact the interpretation of trial results.

Interpretability of results
As highlighted earlier, adaptations should be motivated
by the need to address specific research objectives. In the
context of the trial conducted and its observed results,
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triallists should discuss the interpretability of results in
relation to the original research question(s). In partic-
ular, who the study results apply to should be consid-
ered. For instance, subgroup selection, enrichment and
biomarker ADs are motivated by the need to characterise
patients who are most likely to benefit from investigative
treatments. Thus, the final results may apply only to
patients with specific characteristics and not to the gen-
eral or enrolled population.

Lessons learned
What worked well? What went wrong? What could have
been done differently? We encourage the discussion of all
positive, negative and perhaps surprising lessons learned
over the course of an AD trial. Sharing practical expe-
riences with AD methods will help inform the design,
planning and conduct of future trials and is, thus, a key
element in ensuring researchers are competent and con-
fident enough to apply ADs in their own trials [27].
For novel cutting-edge designs especially, we recom-
mend writing up and publishing these experiences as a
statistician-led stand-alone paper.

Indexing
Terms such as ‘adaptive design’, ‘adaptive trial design’ or
‘adaptive trial’ should appear in the title and/or abstract
or at least among the keywords of the trial report and
key publications. Otherwise, retrieving and identifying
AD trials in the literature and clinical trial registers
will be a major challenge for researchers and systematic
reviewers [28].

Discussion
We wrote this paper to encourage the wider use of ADs
with pre-planned opportunities to make design changes
in clinical trials. Although there are a few practical stum-
bling blocks on the way to a good AD trial, they can
almost always be overcome with careful planning. We
have highlighted some pivotal issues around funding,
communication and implementation that occur in many
AD trials.When in doubt about a particular design aspect,
we recommend looking up and learning from examples
of trials that have used similar designs. As AD meth-
ods are beginning to find their way into clinical research,
more case studies will become available for a wider
range of applications. Practitioners clearly need to pub-
lish more of their examples. Table 1 lists a very small
selection.
Over the last two decades, we have seen and been

involved with dozens of trials where ADs have sped up,
shortened or otherwise improved trials. Thus, our key
message is that ADs should no longer be ‘a dream for
statisticians only’ [23] but rather a part of every clinical
investigator’s methodological tool belt. That is, however,

not to say that all trials should be adaptive. Under some
circumstances, an AD would be nonsensical, e.g. if the
outcome measure of interest takes so long to record that
there is basically no time for the adaptive changes to come
into effect before the trial ends. Moreover, it is important
to realise that pre-planned adaptations are a safeguard
against shaky assumptions at the planning stage, not a
means to rescue an otherwise poorly designed trial.
ADs indeed carry a risk of introducing bias into a trial.

That being said, avoiding ADs for fear of biased results is
uncalled for. The magnitude of the statistical bias is prac-
tically negligible in many cases, and there are methods
to counteract it. The best way to minimise operational
bias (which is by no means unique to ADs) is by rigorous
planning and transparency. Measures such as establishing
well-trained and well-informed IDMCs and keeping trial-
lists blind to changes wherever possible, as well as clear
and comprehensive reporting, will help build trust in the
findings of an AD trial.
The importance of accurately reporting all design

specifics, as well as the adaptations made and the trial
results, cannot be overemphasised, especially since clear
and comprehensive reports facilitate the learning for
future (AD or non-AD) trials. Working through our list of
recommendations should be a good starting point. These
reporting items are currently being formalised, with addi-
tional input from a wide range of stakeholders, as an
AD extension to the CONSORT reporting guidance and
check list.
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