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Abstract—This study investigates a new type of drone 

classifier based on Long Short-Term Memory (LSTM) 

networks. As a real-time surveillance system, the classification 

time of a drone detection radar is crucial. The motivation for 

this work is to develop a classification framework which has low 

latency in terms of data processing for the algorithm input. 

Theoretical modeling of a rotary wing drone and a bird wing 

flapping returns were done first to exhibit the difference in the 

patterns of the respective phase progressions. Then, 94 GHz 

experimental trial data containing 4800 sequences of drones, 

birds, noise and clutter were used to create a diverse training 

dataset of 1D phase data for supervised learning. A stacked 

LSTM network with tuned hyperparameters was generated to 

reduce the possible overfitting from a simple LSTM model. 

Validation accuracy of 98.1% was achieved for 2-class 

classification of drone and non-drone. Further performance 

assessment was then done with 30 unseen test data, where the 

network was able to correctly classify all the sequences. It is 

ascertained that this method can be ~10 times faster than a 

spectrogram based classification model, which requires 

additional Fast Fourier Transform  (FFT) operations. 
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I. INTRODUCTION 

Radar is widely used in the surveillance and tracking of 
airborne targets, with the advantage of being able to operate 
in all weather and light conditions. The recent advancement in 
the affordable commercial drone market has also established 
the need for reliable monitoring sensors for these objects. 
Therefore, detection and classification of drones using radars 
has been at the forefront of research and development in the 
past few years  [1]–[4]. 

Notable progress in computational power has opened the 
path for advanced machine learning and deep learning based 
classification techniques, which have been widely explored 
for drone and bird classification algorithm development. 
Machine learning classifiers based on feature extraction from 
the radar micro-Doppler data can provide high accuracy [5]–
[8]. Machine learning techniques can suffer from 
computationally expensive extraction processes (e.g. a 
conventional Singular Value Decomposition can be time 
consuming). Any large computational requirement imposes a 
potential latency when classifying a drone in real-time. 
Meanwhile, neural network based models can be more 
efficient by learning pertinent features during training, hence 
not requiring them to process the radar data to obtain feature 
values in real-time. Convolutional Neural Network (CNN) 
based classification techniques have demonstrated promising 
results (greater than 90% accuracy) using spectrogram images 
containing micro-Doppler information [9]–[11]. In [12],  a 
Fully Convolutional Network (FCN), which is a modification 

of CNN, and also an LSTM based classification technique 
have been proposed. For LSTM training, a spectrogram was 
considered as a series of 1D spectra. The classification 
accuracies were above 97% for 30 dB Signal-to-Noise Ratio 
(SNR) and above 80% for 10 dB SNR. The models were 
trained with cluttered and noisy signals.  

As spectrogram generation requires multiple FFTs along 
the time series data, reducing the number of FFT operations 
for neural network input can notably improve the 
classification speed. This work describes an LSTM model 
which utilizes phase information of contiguous range profiles 
from a coherent Frequency Modulated Continuous Wave 
(FMCW) radar, eliminating the need for any 
spectrogram/range-Doppler plot generation. The method can 
be applied to pulse-Doppler radar data as well. The phase data 
from the complex raw time series has not been used, as no 
information on range would be available then. It should be 
noted that even though 2-channel I-Q data have been used 
here, a single channel FMCW radar data would also suffice, 
as the range processed data would be complex after the FFT. 

Section II of this paper illustrates the simulated phase 
returns from a drone and a bird target. Section III describes the 
LSTM network. Section IV provides information on the 
training dataset. Section V discusses the classification results 
and then conclusive remarks are given in the last section.  

II. SIMULATED DRONE AND BIRD DOPPLER PHASE 

The phase progressions corresponding to the micro-
Doppler returns from a rotary wing drone and a bird have been 
simulated, based on [13], [14]. The simulation is performed 
for W-band (94 GHz), as the experimental dataset is from a 94 
GHz radar. 

For a drone, the geometry of a Phantom 3 Standard 
quadcopter is considered, as it is quite generic. Rotation rates 
for each rotor can be defined independently. In this case the 
values have been selected within the range of 50-200 Hz, 
which are typical for these types of drones. The Doppler 
sampling rate is specified to be 15 kHz, to represent an 
expected Chirp Repetition Frequency (CRF) of an FMCW 
radar, without imposing too much hardware constraint. The 
CRF here is not high enough to unambiguously sample the 
micro-Doppler returns from the fast rotating propeller blades 
at higher frequencies such as W-band. On the other hand, it 
has been shown that better Doppler sensitivity can be achieved 
at this frequency range [15], and also Doppler resolution is 
finer at higher frequencies for a given integration time. 
Nonetheless, a phase plot with unambiguous Doppler 
sampling rate is presented here as well to show its difference 
from a bird phase plot. A hovering drone is considered to 
reveal the Doppler returns only from the blades. The 
experimental dataset contains in-flight data as well. For bird 



geometry, the upper arm and forearm lengths are defined as 
half a meter each, to represent a medium to big sized bird. The 
flapping frequency is 10 Hz. A real-time 360° surveillance 
radar will have a very brief exposure to a drone in a single 
scan. The duration of a phase vector here is 4.27 milliseconds, 
the length of 64 chirps in time. This roughly corresponds to a 
single Coherent Processing Interval (CPI) for the 0.5-1 Hz 
rotation rate of the radar. The CRF of the experimental data is 
slightly lower, but it is very close to yield similar results. 

Fig. 1 shows the simulated phase vector of a drone, bird 
and noise. The Differences in pattern are observed, which can 
be attributed to the variations in the micro-Doppler signatures, 
or lack thereof. The sharp peak on the unambiguously sampled 
drone phase plot in Fig. 1(a) is due to the propeller blade flash. 
Fig. 1(b) shows the periodic phase jump due to Doppler when 

under sampled. This is not observed for the bird phase plot in 
Fig. 1(c), as the wing flapping frequency is comparatively 
lower, so no aliasing occurs. The simulated results show the 
potential use of these phase vectors as classifier training data. 
Some feature extraction based classification might also be 
done using the phase vectors, but that would involve more 
computation. 

III. STACKED LSTM MODEL 

The neural network that was designed used ‘stacked’ 
LSTM layers [16], as a simple LSTM network might be prone 
to overfitting. The network is designed for 2-class 
classification of drone and non-drone. The layers for this 
network are shown in Fig. 2 and Table I. A second LSTM 
network was added following the first. The first LSTM layer 
outputs in sequence mode, which means it passes on the 
hidden state at all time steps, whereas the second LSTM 
network output is the last timestep of the sequence. The goal 
of this addition was to try and learn more complex features 
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Fig. 1. Simulated 94 GHz phase plots of a (a) quadcopter drone at 200 

kHz CRF, (b) quadcopter drone at 15 kHz CRF, (c) bird at 15 kHz 
CRF, (d) noise at 15 kHz CRF 

 

 

 

 
Fig.2. Layer-graph of the stacked LSTM network 

 
TABLE I. STACKED LSTM NETWORK FOR 2-CLASS 

CLASSIFICATION 

Layer Name Type Description     

1 ‘sequenceinput’ Sequence 
Input 

Sequence 
input with 1 

dimension 

    

2 'lstm_1' LSTM LSTM with 
64 hidden 

units 

    

3 'dropout_1' Dropout 25% dropout     

4 'lstm_2' LSTM LSTM with 
32 hidden 

units 

    

5 'dropout_2' Dropout 25% dropout     

6 'fc_1' Fully 
Connected 

32 fully 
connected 

layer 

    

7 'fc_2' Fully 

Connected 

2 fully 

connected 
layer 

    

8 'softmax' Softmax Performs 

softmax 
normalisation 

    

9 'classoutput' Classification 

Output 

Computes 

cross entropy 
loss with 

classes 

'Drone' and 
'Non-Drone' 

    

 



from the data, after the first LSTM layer has learnt more basic 
ones. This would potentially increase the capability of the 
network to identify more complex sequences. Another fully 
connected layer was added after this LSTM which features 
more neurons than just the two used in the ‘last-learnable’ 
fully connected layer. Again, this layer is expected to extract 
more features before the second fully connected. After each of 
the two LSTM layers, a dropout layer was added. These layers 
set random inputs to zero during training, based on a set 
probability factor. The purpose of these dropout layers is to 
reduce overfitting or dependence on one or two particular 
neurons. The network was trained using Stochastic Gradient 
Descent (SGD). MATLAB’s implementation of the 
Stochastic Gradient Descent with Momentum (SGDM) adds a 
‘momentum’ term which changes the amount of information 

kept from one iteration to the next. This aims to limit 
oscillations in the training process due to the SGD algorithm. 
The network ‘hyperparameters’, such as the learning rate, size 
of hidden units, or dropout probability can also be changed. 
Trials to identify the optimal combination of these values were 
attempted, by checking the validation and test accuracies. 

IV. LSTM TRAINING DATASET 

The main goal whilst creating the labeled dataset for the 
supervised learning was to ensuring data diversity. Along with 
drone and bird data, noise and clutter data were also included 
to train the network for real scenario. Fig. 3 shows the 
variations in the drone and bird targets. A very low phase 
noise 94 GHz FMCW radar [17] was used for experimental 
data collection. The radar is circularly polarized (odd bounce). 
The set radar bandwidth during the trial was 150 MHz. The 
chirp period was 80.489 µs, corresponding to a CRF of 12.42 

 
Fig. 3. Images of different targets present in the radar data. A) DJI Phantom 3, b) DJI Inspire 1, c) DJI S900, d) Harris Hawk, e) Indian Eagle Owl 

 
Fig. 4. Diagram showing the process of extracting phase vectors from the complex range transformed data 

 
Fig. 5. 94 GHz Range-Time Intensity (RTI) plot example, featuring 

two drones (DJI Phantom and Inspire) and static clutter. The path of 

the drones can be identified based on how the range profiles vary over 
time 

TABLE II. LSTM TRAINING AND TEST DATA DETAILS 

 

Training Datafile Target(s) Velocity range (m/s) 

Trial (S900) DJI S900 -1.8 to 1.6 

DJI Inspire 1 DJI Inspire -5.6 to – 3.9 

DJI (Dual) DJI Inspire, 

DJI Phantom 

-1.9 to -3.5 

3.5 to 3.8 

DJI S900 1 DJI S900 3.3 to 5.7 

Indian Eagle Owl Bird, Indian 
Eagle Owl 

2.0 to 10 

Test Datafile Target(s) Velocity range (m/s) 

DJI S900 2 

(Unseen) 

DJI S900 2.0 to 3.6 

Harris Hawk 

(Unseen) 

Bird, Harris 

Hawk 

-7.6 to -2.2 

 



kHz.  Fig. 4 illustrates the phase sequence generation process. 
For the LSTM dataset, phase values of 64 contiguous chirps 
for a given range bin were selected, which corresponds to 5.15 
ms. Fig. 5 shows an example RTI plot of two drones slowly 
flying in different directions at around 70 and 100 m range. 
Clutter returns at around 130-150 m range can also be seen. 
During the data labeling, these RTI plots were examined to 
select the range bins of interest. Range-Doppler plots were 
also generated for logging the detailed velocity information. It 
should be noted that these plots are used only to obtain the 
ground truth for the labeled data. As seen in Table II, the 
dataset includes phase values of varying bulk velocities, 
including drone hovering. The bird data also has variation in 
terms of wing flapping while landing or gliding. The final 
dataset created contained a total of 4800 phase vectors of 
length 64 chirps each. 2400 of these were ‘drone’ class, with 
600 sequences from each of the four drone datafiles. 1200 
sequences were taken from the Eagle Owl data as discussed 
above, and the remaining 1200 were taken from noise or 
clutter features throughout all five datafiles. This would 
provide a balance of the different features that were contained 
within the five sets of radar data.  From Fig. 6, The different 
shapes for the drone and non-drone targets are clearly 
observable. 

V. LSTM CLASSIFICATION RESULTS 

 Training and validation were done using the MATLAB 
training progress tool. This allowed a set of validation 
sequences and labels to be used to constantly check their 
classification accuracy, in addition to monitoring the training 
accuracy over time. Out of the 4800 sequences, 20% of each 
type were randomly selected to be set aside for this validation 
purpose. This number was chosen to keep enough samples 
available for training but having a range and quantity to check 
during the training process. 3840 sequences and their labels 
were split into mini-batches and used to train each network. 

 
Fig. 6. Set of example phase vector sequences, labelled with their origin from the data available 

 
Fig. 7. Training and validation data for the stacked LSTM network 
with optimal parameters but different dropout factors 



The training was done using a GPU environment (GTX 970 
or RTX 3070) in order to reduce the training time. The 
performance during training and validation for each version of 
the networks was recorded in addition to some variable values 
such as the mini-batch size and learning rate.  

 In addition to the validation performance, a key factor for 
each network was the performance when classifying 
completely unseen data. For this, the two unseen files shown 
in table II were used to create a labelled set of drone and non-
drone phase vectors. In total, 600 drone, and a mix of 600 bird, 
noise and clutter sequences were labelled. A random subset of 
these were then given to the network to examine how 
successfully each vector was individually classified. The 
phase vectors were plotted with the classification from the 
network, and the confidence interval for the two types was 
recorded. 

 The stacked-LSTM network was then trained with the 
optimal parameters for learning rate and mini-batch size, 

whilst varying the dropout layer factor. Fig. 7 shows the 
parameter values, along with demonstrating that validation 
accuracies above 98% were achieved. Even though dropout 
factor of 0.25 gives better accuracy, the model with 0.5 
dropout factor also performed very well with unseen data. 
Hence, it was selected as the final model as it should be less 
prone to overfitting. 

 An unseen dataset of 30 phase sequences was created, 
containing 10 randomly chosen sequences of drone, bird and 
noise/clutter labels. The network was able to classify both 
classes correctly in each case. The confidence level was no 
less than 0.89 in each case and more than 0.95 in most cases. 
Fig. 8 and Fig. 9 show examples of the performance of the 
LSTM network on unseen test data, showing correct 
classification in every case. 

 As all the phase vectors are generated from range 
transformed data, this allows for a significant reduction in 
time before classification by avoiding Doppler processing. 

 
Fig. 8. Plot of the 6 randomly chosen drone sequences from the unseen data featuring DJI S900, all being correctly classified 

 
Fig. 9. Plot of the 6 randomly chosen bird sequences from the unseen data featuring Harris Hawk, all being correctly classified 



Performing the range transform on 64 chirps required 1.3 ms, 
compared to a range-Doppler transform which required 4.1 
ms, and a full spectrogram generation which required 12 ms. 
This is a large advantage over existing spectrogram based 
classifiers when used in the context of a real-time drone 
detection, tracking and identification system. 

VI. CONCLUSION 

 An LSTM based neural network is introduced with the 
goal to minimize the data processing time in a real-time drone 
classification by radar scenario. Basic simulation of phase 
sequences of micro-Doppler returns from a drone and a bird 
at 94 GHz was done, showing discernible features. A large and 
diverse dataset was then created for training, labeled with two 
classes, drone and non-drone. The validation and test 
accuracies on unseen data values are very promising, showing 
more than 98% accuracy in both cases. The time required for 
the classifier input data processing with this method is around 
factor of 10 faster than a spectrogram image based 
classification. This shows the potential for this technique to be 
explored on a real-time system, as it can be a very reasonable 
trade-off between the computational speed and a better 
classification performance from a more robust classifier. 

 As many commercial drone detection radars operate at 
lower frequencies, further investigation should be done to 
determine the efficacy of the network on radar data at those 
frequencies (e.g. X-band). Also, more drone data of different 
models including fixed wing types should help to improve the 
LSTM network to be more generalized. 
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