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We investigate numerically the evolution of a baroclinic vortex in a two-level surface quasi-geostrophic model.
The vortex is composed of two circular patches of uniform buoyancy, one located at each level. We vary the
vortex radii, the magnitude of buoyancy, and the vertical distance between the two levels. We also study
different radial profiles of buoyancy for each vortex. This paper considers two main situations: firstly, initially
columnar vortices with like-signed buoyancies. These vortices are contra-rotating, are linearly unstable and
may break. Secondly, we consider initially tilted vortices with opposite-signed buoyancies, which may align
vertically. Numerical experiments show that (1) identical contra-rotating vortices break into hetons when
initially perturbed by low azimuthal modes; (2) unstable, vertically asymmetric, contra-rotating vortices
can stabilise nonlinearly more often than vertically symmetric ones, and can form quasi-steady baroclinic
tripoles; (3) co-rotating vortices can align when the two levels are close to each other vertically, and when
the vortices are initially horizontally distant from each other by less than three radii; (4) for initially more
distant vortices, two such vortices rotate around the plane center; (5) in all cases, the vortex boundaries are
disturbed by Rossby waves. These results compare favorably to earlier results with internal quasi-geostrophic
vortices. Further modelling efforts may extend the present study to fully three dimensional ocean dynamics.
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1. Introduction

Vortices are long-lived oceanic features, with a mostly horizontal circulation constrained
by the Earth rotation and by the density stratification (Richardson 1983, McWilliams
1991). Vortices play a substantial role in the transfer of water masses, heat and momentum
across the oceans (Provenzale 1999, Gula et al. 2019, 2022). Insofar as the hydrostatic and
geostrophic balances mostly hold for the mesoscale oceanic vortices (i.e. vortices with a
radius of a few tens of kilometers and a turn-over period of a few days), the quasi-geostrophic
(QG) model is an appropriate framework to describe their dynamics (Reinaud et al. 2022).
Nevertheless, due to the ocean’s density stratification, more than one layer, or vertical level,
is necessary to adequately represent these vortices (Reinaud 2019).
An often-used model for vortex dynamics is the two-layer, (internal) quasi-geostrophic model
(Flierl 1978). This model represents two superimposed slabs of homogeneous fluid, of different
densities, interacting via their density interface. In each layer, the dynamics is governed by the
evolution of the potential vorticity (Charney 1948). This two-layer quasi-geostrophic model
has been the framework of the study of baroclinic instability of parallel flows (Phillips 1954)
and of circular vortices (Sokolovskiy and Verron 2013, Flierl 1988, Carton and McWilliams
1996, Carton et al. 2010). Baroclinically unstable vortices can evolve nonlinearly into hetons
(Hogg and Stommel 1985a,b, Reinaud and Carton 2009b), contra-rotating ellipses (Carton
and McWilliams 1996) or in baroclinic tripoles (Reinaud and Carton 2009a, Sokolovskiy
and Carton 2010). Such nonlinear evolutions are also observed in two-layer ageostrophic
shallow-water flows (Baey and Carton 2002).

∗Corresponding author:xcarton@univ-brest.fr



March 11, 2024 Geophysical and Astrophysical Fluid Dynamics output

2

In the presence of buoyancy anomalies concentrated vertically over a shallow depth, the
quasi-geostrophic model can be expressed via the evolution of buoyancy (or temperature)
anomalies, which are the singular equivalents of potential vorticity. This restriction of the
general QG model is the surface quasi-geostrophic model (SQG); it represents the advection
of buoyancy anomalies at the surface and bottom of the ocean, or of a part of the ocean,
vertically (Bretherton 1966, Held et al. 1995, Lapeyre 2017, Smith and Bernard 2013). The
SQG model has been used mostly in a one-level configuration for vortex and turbulence
studies (Carton 2009, Carton et al. 2011, Tulloch and Smith 2009, Lapeyre and Klein 2006,
Klein et al. 2008, Harvey and Ambaum 2011, Harvey et al. 2011, Badin and Poulin 2019). A
SQG model coupled with an internal quasi-geostrophic model has also been used for the study
of coupled surface flow-internal vortex Perrot et al. (2010), Reinaud et al. (2016, 2017a,b).
The two-level SQG model was also used to calculate the linear instability of vertically shear,
parallel flows by Eady (1949).

Recently, the present authors have investigated the linear stability of a circular vortex in
a two-level, SQG model (Vic et al. 2022), comprising surface and bottom uniform buoyancy
anomalies. Such vortices are here referred to, as Eady vortices by analogy with the Eady
problem. The aim of the present work is to extend the linear stability study of two-level
Eady vortices to their nonlinear dynamics, that is, investigate the possible formation of
hetons (e.g. Gryanik (1983), Hogg and Stommel (1985a,b)), or of more complex compound
vortex, from these two-level vortices. For two like-signed buoyancy anomalies, one on each
surface, we assess the finite-amplitude evolution of monochromatic angular perturbations,
and the possibility of vortex breaking, or of topological rearrangement of the initial vortices.
The structure and regularity, or lack thereof, of the final compound vortex cannot be
assessed from the linear analysis previously carried out. We also extend our previous study
to parameter regimes which are not accessible to linear analysis, for the sake of simplicity
and of tractability of the analytical solutions. Finally, we study the ability of initially tilted,
two-level SQG vortices, to straighten up. This process, called vertical vortex alignement, has
previously been studied in a two-layer internal quasi-geostrophic model (Polvani 1991). It is
essential for the robustness and the durability of oceanic vortices.

This paper is organized as follows: we present the SQG model equations, the initial condi-
tions and the numerical implementation in section 2. In section 3, we address the nonlinear
evolution of an initially perturbed, contra-rotating Eady vortex, with like-signed tempera-
ture anomalies at both levels. These anomalies are initially aligned vertically and they are
linearly unstable to perturbations. We assess the influence of various physical parameters on
the nonlinear evolution of the vortices. In section 4, we consider the case of two circular,
opposite-signed, temperature anomalies, initially horizontally offset. The vortices of such a
tilted Eady vortex are co-rotating. We study numerically the possible vertical alignment of
the two buoyancy patches at finite time. A discussion on the stability of these Eady vortices
follows in section 5. Finally, conclusions are drawn in section 6.

2. Physical and numerical model

2.1. Model equations and initial conditions; physical parameters

2.1.1. Model equations

In the quasi-geostrophic model, the Coriolis acceleration mostly balances the horizontal
pressure gradient and the horizontal velocity is essentially non-divergent. The dynamic
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pressure p∗ (total pressure minus pressure at rest) is related to a streamfunction ψ∗ via
ψ∗ = p∗/ρ0f0. The superscript ∗ indicates a dimensional variable. The Coriolis parameter
is f0 = 2Ω sin(λ) with Ω the Earth rotation rate and λ the latitude. The density ρ∗ is also
related to the streamfunction via the buoyancy b∗ = −gρ∗/ρ0 = f0∂z∗ψ

∗, where ρ0 is a
reference density. Here x∗, y∗, z∗ are also dimensional space variables; typically, x∗, y∗ vary
over tens of kilometers and z∗ over hundreds of meters.

The surface quasi-geostrophic (SQG) model assumes that the potential vorticity q∗ is zero
in the fluid :

q∗ =

[
∂2

∂x∗2
+

∂2

∂y∗2
+ ∂z∗

[(
f2

0

N2

)
∂z∗

] ]
ψ∗ = 0, z∗ ∈ (−h∗, 0),

where N is the Brunt-Väisälä frequency, and h∗ is the total (dimensional) depth of the fluid
layer under study (thus it may be different from the total depth of the ocean). The SQG
model assumes that the potential vorticity is concentrated at the surface and at the bottom
of the fluid layer under consideration : q∗ = q1δ(z

∗ = 0) + q2δ(z
∗ = −h∗) with δ the Dirac

distribution. Then, the potential vorticity conservation equation becomes an equation for
buoyancy evolution on these two surfaces (Bretherton 1966).

db∗

dt
= ∂t∗b

∗ + J(ψ∗, b∗) = 0, z∗ = 0,−h∗, (1)

where b∗ = f0∂z∗ψ
∗.

Assuming that the fluid domain is horizontally unbounded, the streamfunction can be written
as

ψ(x∗, y∗, z∗, t∗) =

∫ ∫
A∗k∗l∗(t∗) φk∗l∗(z∗) exp(i[k∗x∗ + l∗y∗]) dk∗ dl∗,

where k∗, l∗ are the horizontal wavenumbers, b∗1, b
∗
2 the Fourier transforms of the surface and

bottom buoyancies, and A∗k∗l∗ , φk∗l∗ the Fourier transforms of the associated streamfunctions.
Assuming the Brunt-Väisälä frequency constant (N = N0), the condition of zero potential
vorticity in the bulk of the fluid leads to

φ′′k∗l∗(z∗)− K∗2N2
0

f2
0

φk∗l∗(z∗) = 0,

where K∗2 = k∗2 + l∗2. This leads to

φk∗l∗(z∗) = φ
(1)
k∗l∗ cosh(K∗N0z

∗/f0) + φ
(2)
k∗l∗ cosh(K∗N0(h∗ + z∗)/f0).

This simple form of the Fourier transform of ψ provides simple relations between φ(1), φ(2)

and the Fourier coefficients of buoyancy at the upper and lower levels, b(1)(k, l), b(2)(k, l), via
the relation b = f0∂zψ. This also indicates that the time variability of the Fourier coefficients
of ψ and of b are given by the same functions A∗k∗l∗(t∗).

Now we move from dimensional to dimensionless variables. Hereafter, we set Z∗ = N0z
∗/f0

and H∗ = N0h
∗/f0. Here, H∗ is the first internal radius of deformation (in dimensional

terms).
We let 1/f0 be our time scale, and the vortex radius at the ocean surface, R1, our length
scale. Therefore, the normalized values of f0 and of R1 are unity. We define a dimensionless
depth in the model Z = Z∗/R1 and a dimensionless radius of deformation Rd = N0h

∗/(f0R1).
Note that the latter is also a normalised height of the model H∗/R1 = H. The horizontal co-
ordinates are normalised similarly, x = x∗/R1, y = y∗/R1. The dimensionless time is t = f0t

∗.
We also normalise the wavenumbers k = k∗R1, l = l∗R1,K

2 = k2 + l2. The streamfunction is
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normalised as ψ = ψ∗/(R2
1 f0). The dimensionless buoyancy is b = ∂Zψ = b∗/(f0R1).

Then, we have

b(x, y, Z = 0, t) =

∫ ∫
b1(k, l, t) exp(i[kx + ly]) dk dl,

b(x, y, Z = −H, t) =

∫ ∫
b2(k, l, t) exp(i[kx + ly]) dk dl,

and the normalised streamfunction is

ψ(x, y, Z = 0, t) =

∫ ∫
ψ1(k, l, t) exp(i[kx + ly]) dk dl, (2)

ψ(x, y, Z = −H, t) =

∫ ∫
ψ2(k, l, t) exp(i[kx + ly]) dk dl, (3)

where

ψ1(k, l, t) =
b1(k, l, t)

K tanh(KH)
− b2(k, l, t)

K sinh(KH)
,

ψ2(k, l, t) =
b1(k, l, t)

K sinh(KH)
− b2(k, l, t)

K tanh(KH)
.

These forms of ψ at the surface and at the bottom result from the dimensionless equation
b = ∂zψ, using the cosh(Kz) and cosh(K(H + z)) form of the Fourier coefficients of ψ
mentioned above.
Note that these formulae correspond to a vertically bounded domain (between 0 and −H),
without any flow nor buoyancy anomaly below −H.

Material conservation of buoyancy allows us to march b1, b2 in time, and these fields can
then be inverted to obtain the streamfunction from equations (2) and (3).

2.1.2. Initial conditions and aim of the simulations

Our two-level SQG model is initialized with a single disk of uniform buoyancy at each level
(surface and bottom). The corresponding streamfunction is given in Vic et al. (2022). Figure
1 shows the geometry of the configuration.

We consider the interaction of two vertically aligned vortices with like-signed buoyancy in
section 3, and of two horizontally offset vortices with opposite-signed buoyancy in section 4.
It should be noted that any axisymmetric distribution of buoyancy corresponds to a steady
state. Hence in the present case, the pair of circular, co-axial, vortices is steady. In section
3, we perturb the vortex boundary with a monochromatic perturbation, with angular (or
azimuthal) mode m. We assess whether the vortices break, and/or, rearrange as new types of
vortices such as dipoles or tripoles. In section 4, we horizontally offset the centres of the two
vortices and we study their vertical re-alignment with respect to the horizontal offset and to
the vertical distance between the SQG levels.

2.1.3. Physical parameters

In this study, the vortex radii R1, R2, the deformation radius Rd, the buoyancy magni-
tudes B1, B2, and the angular (or azimuthal) mode m are the physical parameters under
consideration. R1 is fixed as a reference length. It should be noted that increasing B1 while
keeping B2/B1 fixed simply modifies the time derivative of buoyancy. Indeed, this rate of
change scales as f0B1. Therefore, the 4 independent dimensionless physical parameters are
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Figure 1. Schematic representation of the two-level SQG model with the two vortices vertically aligned (top) and
laterally shifted (bottom).(Colour online).

B2/B1, R2/R1, Rd/R1 = H and m.

Due to the large number of parameters, we start by studying a reference case, for which the
first two parameters are set to 1. Then we perform a sensitivity study of the instability to the
physical parameters by varying them separately.

2.2. Numerical model

Our numerical model is a pseudo-spectral model with 256×256 collocation points. We increase
the horizontal resolution to 512× 512 points for specific analyses. The equations are marched
in time with a mixed Euler-Leapfrog scheme with an Euler step every 50 time steps. The
Leapfrog scheme is conservative in energy but tends to separate the even and odd solutions.
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This is taken care of with the periodic use of an Euler time step. The spatial derivatives are
computed in Fourier space and FFT’s are used to transform the fields from physical to Fourier
space and back. The domain size is 4π×4π (except for a few simulations of vortex alignment,
when the vortices are initially distant from each other; then the domain size is 8π× 8π). Very
weak hyperviscosity is used (biharmonic diffusion) with ν4 = 8 · 10−7 at 256-resolution and
ν4 = 5 · 10−9 at 512-resolution. The numerical model has been validated in a previous study
of vortex merger (Oulhen et al. 2022).

3. Nonlinear evolution of linearly unstable SQG vortices with like-signed buoyancy
anomalies

Here, we study the various nonlinear regimes of linearly unstable, two-level SQG vortices, for
various values of B2/B1 > 0, R2/R1, Rd/R1 and of the angular mode of perturbation m. We
start by considering initially vertically aligned vortices.

3.1. Vortices with equal radii and intensity

3.1.1. An overview of the nonlinear regimes of the vortex depending on its size and on the
deformation radius

Firstly, we set B2/B1 = 1, R2/R1 = 1, that is, the two patches constituting the vortex
have equal radii and buoyancy magnitudes. We run several simulations, varying Rd/R1 = H.
We perturb both buoyancy patches with a mode of deformation m = 2.

For Rd/R1 = 1 and 0.6, the Eady vortices elongate elliptically in each layer and eventually
break into two hetons (see Figure 2). This is also the case for baroclinically unstable
vortices in the two-layer (internal) quasi-geostrophic model (Helfrich and Send 1988). For
Rd/R1 = 0.5, the Eady vortices break over a mixed angular mode m = 2 and m = 4 (with
a complex elliptical and square deformation) leading to several fragments. For Rd/R1 = 0.4,
angular mode m = 4 prevails and the Eady vortices break into four hetons. Finally, for
Rd/R1 = 0.2, angular mode m = 6 is dominant in the vortex evolution.

Clearly, higher modes of deformation become more unstable as the two levels get closer
to each other vertically. This is explained by the connection between the horizontal and
vertical scales in the SQG model (this link is due to the vanishing potential vorticity). Short
horizontal scales have a short vertical reach. As the two vortices get closer vertically, their
small scale perturbations can interact more efficiently. This is consistent also with the linear
analysis of instability of Eady vortices, published previously (Vic et al. 2022).

We have also run simulations, for the same values of B2/B1, R2/R1 varying Rd/R1 for
the angular mode of perturbation m = 3. For Rd/R1 = 1, the growth of the perturbation is
slower than that with the angular mode m = 2. The linear growth rate of the latter mode is
indeed larger than that of m = 3 for these vortex parameters. The Eady vortices evolve from
a triangular to an elliptical shape and finally break into two hetons. For Rd/R1 = 0.5, the
growth rate of mode m = 3 is larger than that of mode m = 2. In the nonlinear evolution,
the vortices form three hetons. For Rd/R1 = 0.2, the vortex breaks on a mode m = 8. This
confirms the increase of the wavenumber of the most unstable wave as Rd/R1 decreases. The
destabilization of short waves as R1/Rd increases has also been noticed for the baroclinic
instability of vortices in two-layer quasi-geostrophic models (Flierl 1988, Helfrich and Send
1988).
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This conclusion also holds for vortices with a hemispheric radial profile of buoyancy, the
velocity of which is calculated in the appendix; this buoyancy profile corresponds to a top-hat
profile in relative vorticity. For Eady vortices with uniform buoyancy at the two levels, we
also observe the same nonlinear regimes using CASL. Therefore our results are generic.

3.1.2. Study of the hetonic evolution of the unstable Eady vortices

We next investigate in more detail our reference case B2/B1 = 1, R2/R1 = 1, Rd/R1 =
1, m = 2. We present in figure 2 the evolution of buoyancy at each level.

The buoyancy patches evolve continuously and simultaneously at the two levels from
near disks to ellipses. During their evolution, the angle between them increases to reach
approximately π/4 and does not vary substantially afterwards. The aspect ratio λ = b/a ≤ 1
of the ellipses decreases. Here b and a are the minor and major semi-axis lengths respectively.
Further in time, the vortices evolve towards a peanut shape. This shape indicates the presence
of higher angular modes of deformation, in particular mode m = 4 which is the first harmonic
of the fundamental perturbation (m = 2). Higher even modes grow non linearly from the
interaction of the previous modes; they become important when vortex pinching occurs. The
strongly deformed Eady vortices eventually break at their center and form two hetons.

An analysis of the angular modes of deformation, is performed for both levels. We com-
pute the difference between the buoyancy distribution at time t and the initial distribution
(considered as nearly axisymmetric because of the weak initial perturbation amplitude). This
difference is expressed in polar coordinates:

b′j(r, θ, t) = bj(r, θ, t)− bj(r, θ, t = 0),

where j = 1, 2 is the level index. Then, this difference is expanded in a Fourier series in θ.

b′j(r, θ, t) =
∞∑
m=0

<[Ajm(r, t) exp(imθ)],

where Ajm is the complex amplitude of the angular mode m component of the perturbation
on the buoyancy patch at level j. Here we compute the L2 norm of the modulus of Ajm and
we present the amplitude ajm(t) with respect to time. This amplitude is calculated via

a2
jm(t) =

∫ L

0
|Ajm|2(r, t) r dr,

where L is large (given by the domain size) so that vortex velocity at this distance is small.
Results are shown in figure 3. Clearly, the elliptical component of the deformation grows first,
followed in time and in amplitude by the m = 4 mode. The antisymmetric mode m = 1 and
the triangular mode m = 3 have a small amplitude.

The ellipticity and the angle of each vortex are determined from the geometric moments of
buoyancy (not shown here for brevity). The value obtained confirms that the relative angle
between the two vortices is π/4. This relative orientation of the two vortices maximises the
destabilizing influence exerted by each vortex on the other (or, in other words, it maximizes
the resonance of unstable Rossby waves on the vortex contours). It must also be noted that
the two vortices become irreversibly deformed by acquiring a peanut shape when their aspect
ratio is smaller than 0.25. This critical value is reminiscent of that necessary for the breaking
of the Kirchhoff elliptical vortex in two-dimensional incompressible fluids (λ = 0.33).
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3.1.3. A vortex evolution model with a single ellipse

Considering the similarity between the evolution of our unstable circular Eady vortices,
and the evolution of strongly elongated Kirchhoff ellipses, we next study the stationarity and
the stability of an elliptical vortex of constant buoyancy depending on its initial aspect ratio.

We perform numerical simulations using a single level SQG model where the buoyancy is
confined to a surface, over an infinitely deep ocean/fluid. Specifically, we run simulations for
a/b = 1/λ = 3, 4, 5. Two simulations are run for each case: a short one with a high-frequency
temporal sampling to determine the initial rotation rate Ω of the ellipses, and a long one to
assess the long-term evolution of each ellipse.

We numerically obtain an estimate for Ω ≈ λ for a unit-buoyancy elliptical vortex in the
range 3 ≤ a/b ≤ 5. It should be noted that the rotation rate of an elliptical vortex with a
hemispheric profile of buoyancy has been computed in (Dritschel 2011). The authors showed
that indeed Ω is linear in λ in the range λ ∈ [0, 0.3].

Then, we observe that the constant buoyancy elliptical vortex with λ = 1/3 (or with
λ = 1/4) elongates to a peanut shape but eventually deforms back to an ellipse. In con-
trast, an elliptical vortex with λ = 1/5 initially elongates and deforms irreversibly into a
peanut-shaped vortex and then breaks into two separate vortices. Again, this indicates that
higher modes can grow on an elliptical vortex, during its unsteady, and possibly unstable,
evolution; this confirms the angular mode analysis of the unstable circular vortex, presented
in subsection 3.1.2.

Figure 4 shows a time series of buoyancy for the elliptical vortex with aspect ratio 1/5.
The growth of mode m = 4 is clear in the deformation of the ellipse. The growth of this
mode, simultaneous with that of mode m = 2 is confirmed by a angular mode analysis of
the elliptical vortex boundary in time. To achieve this modal analysis, the initial ellipse was
subtracted from the instantaneous vortex shape.

As a conclusion, the critical aspect ratio for elliptical SQG vortex breaking (with constant
buoyancy) lies in λ ∈ [0.2, 0.25].

We also perform simulations in a two-level SQG model. We initialized identical co-rotating
ellipses of constant - but opposite signed - buoyancy at the two levels (with B2/B1 = −1,
R2/R1 = 1, and with the same aspect ratio).
For Rd/R1 = 1 and λ > 0.2, the elliptical vortices do not break and they eventually evolve
to adopt a steady elliptical shape, as in the one-layer case. For Rd/R1 = 0.8, the elliptical
vortices with aspect ratios larger than 0.3 are meta-stable and oscillate around a peanut
shape (see panel 2 of figure 3).
In contrast, for Rd/R1 = 0.6, the elliptical vortex breaks for a large range of aspect ratios,
namely λ ∈ [0.3, 0.8]. Indeed, as H or Rd/R1 decreases, mode m = 4 becomes more linearly
unstable, and thus favors vortex breaking (Vic et al. 2022). As a conclusion, we note
the similarity between our one level model results and those for the Kirchoff ellipse in a
two-dimensional fluid. We also note the consistency between the evolution of two-level ellipses
and those of the contra-rotating, perturbed, Eady vortices.
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3.2. Nonlinear evolution of Eady vortices with different radii or intensities at the two
levels

Next, we vary the Eady vortex parameters and we classify and explain the unstable evolutions
of vertically asymmetric vortices. Figure 5 describes the various nonlinear regimes obtained
when varying R2/R1 and B2/B1, for Rd/R1 = 1 (H = 1) and m = 2. In the linear stability
analysis of such vortices done previously (Vic et al. 2022), R2/R1 was not varied to keep
algebraic equations tractable.

Clearly, the linearly unstable Eady vortex breaks into two hetons when the buoyancy
patch radii are identical at both levels. When the bottom vortex patch is smaller and less
intense than the surface one, it has a smaller influence on the latter. Therefore, the bottom
patch breaks into two symmetric vortices, on each side (horizontally) of the surface patch.
This evolution is much slower than that leading to the formation of two hetons. Then, after
nonlinear stabilization, the vortex compound thus obtained is called a Λ-tripole, a structure
observed previously, in particular in the collision of two oppositely-signed hetons (Reinaud
and Carton 2009a, Sokolovskiy and Carton 2010); the formation of a Λ-tripole is illustrated
in figure 6. This figure presents a time-series of the buoyancy field, at the surface and
bottom. In this case, the surface vortex undergoes a strong elongation and the bottom vortex
breaks into two symmetric secondary vortices. After several turn-over periods of the whole
structure, the surface vortex relaxes to a less elongated state while the bottom two vortices be-
come its lateral satellites. The whole structure rotates and its ellipticity continues to fluctuate.

The angular mode analysis of the various angular modes is shown for this case on the
bottom row of figure 6. It should again, be noted that only even modes grow significantly
on each patch. At the surface, mode m = 2 grows with superimposed oscillations, a result
of the contra-rotation of the two-ellipses. Such an oscillation is also shown in Carton and
McWilliams (1996). Mode m = 4 grows more slowly but follows the general trend of mode
m = 2. Both modal amplitudes reach a peak after which they stabilize, decay and oscillate.
This peak corresponds to the third panel of figure 6 where the vortex is very elongated. The
last stage (stabilisation) corresponds to the relaxation of the vortex towards an ellipse at the
surface and to two satellites at the bottom. It should be noted that the bottom perturbation
amplitude is weaker, but also that it acts on a weaker vortex. This bottom vortex breaks
earlier in the evolution of the whole structure.

When the two patches of the Eady vortex have similar buoyancies, but with a smaller
bottom patch, their mutual deformation can become insufficient to break them as hetons.
The final outcome of the instability is two contra-rotating elliptical vortices at the two
levels (Carton and McWilliams 1996). The formation of contra-rotating ellipses is illustrated
in figure 7. This figure presents the surface and bottom maps of buoyancy in the case
R2/R1 = 0.5, B2/B1 = 1, Rd/R1 = 1, m = 2. Clearly the vortex ellipticity initially increases
at each level while the vortex rotates. The periodic shear exerted by each vortex on the other
level vortex then leads to a pulsating aspect ratio. The bottom vortex, which is smaller, is
more deformed.

When varying R2/R1 and B2/B1, for H = 0.5 and m = 2, higher modes grow and in
particular, when the elliptical mode m = 2 is perturbed, its harmonic m = 4 grows on
the vortex. Both modes are unstable, even if the graver mode is slightly more unstable.
Therefore, the final outcome of the nonlinear simulation is usually two hetons, a Λ-tripole or
an elliptical vortex, with smaller features due to the growth of mode m = 4 (see figure 8).
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Further simulations are performed varying Rd/R1 and B2/B1 for R1 = R2 and m = 2.
They show the growth of mode m = 4 for Rd = 0.4, 0.5 and of mode m = 6 for Rd = 0.2 in
agreement with the linear stability analysis of (Vic et al. 2022). Simulations are also performed
with an initial perturbation of mode m = 3. They show the breaking of the unstable vortex
into hetons for Rd/R1 = 1, into Λ-tripoles for Rd/R1 = 0.5 and vortex breaking on short
unstable waves m = 6, 8 for Rd = 0.2. Again, this confirms the pre-eminence of short waves
for small H. Finally, we added a perturbation with m = 4. As predicted by the linear stability
analysis (Vic et al. 2022), mode m = 4 is linearly unstable only for Rd/R1 ≈ 0.5. Numerical
experiments with the spectral code show that for Rd/R1 = 0.7 to 1, adding a mode m = 4
perturbation leads to a transition to a vortex deformation on mode m = 2 (which is the
subharmonic of m = 4, and which is the most unstable linearly), and finally to vortex breaking
into two hetons. For Rd/R1 = 0.5, vortex breaking occurs on m = 4 and forms 4 hetons. For
Rd/R1 = 0.6, a complex wave interaction occurs and the final result is asymmetric.

3.2.1. Influence of a horizontal offset between the vortex centers

We briefly report on the influence of a finite horizontal distance between the vortex centers.
If the two centers are far apart, the effect of one disk of buoyancy on the other is comparable
with that of a point vortex. It is known that the far velocity field of a vortex is an advection
and a deformation. In this deformation field, the mode 2 component (with respect to the
deformed vortex center) has a larger amplitude than that of mode 3, and further on for
higher modes. Therefore we expect the horizontal offset to:
1) create a hetonic coupling when the two vortices are far apart (i.e. couple the surface and
bottom vortex patches as a baroclinic dipole which translates perpendicularly to the dipole
axis)
2) favor both mode 1 and 2 deformation for closer vortices,
3) contribute to the growth of even higher modes of deformation (modes 3 and 4) for very
close vortices.

After this physical analysis, we turn to numerical experiments where we vary the distance
d between the vortex patch centers, for given Rd/R1, R2/R1, B2/B1.
Firstly, we set Rd/R1 = 1, R2/R1 = 1, B2/B1 = 1. While for d = 0, the breaking of the vortex
into two hetons is symmetrical, it becomes increasing asymetric as d increases. However, for
d = 0.9, the vortices do not break but form a heton. This illustrates the transition between
hetonic coupling of two widely offset vortices and baroclinic instability of a slightly tilted
contra-rotating vortex (Polvani et al. 1989, Dritschel 1995).
Secondly, we set Rd/R1 = 1, R2/R1 = 0.5, B2/B1 = 1. A similar result is obtained. For d = 0,
a dipolar breaking of each vortex occurs, leading to the formation of two hetons. In contrast,
for d = 1, the surface and bottom vortices pair to form a single heton without breaking.
Finally, we set Rd/R1 = 0.5, R2/R1 = 1, B2/B1 = 1. We recall that for d = 0, the vortex
patches undergo a mode m = 4 deformation. As d grows, the single heton which forms and
moves away from the plane center, leaves behind fewer and fewer fragments.

3.3. A model of the Λ-tripole with three vortices on two levels

We next show that an initial aggregate of three buoyancy patches, one at the center of the
fluid surface, two laterally shifted at the bottom of the fluid, can adjust nonlinearly to form a
Λ-tripole. We run a simulation with B2/B1 = 0.5, R2/R1 = 0.5, Rd/R1 = 1, d = 4R2 starting
from three circular patches. Here d is the distance between the centers of the two patches.
Figure 9 shows that each patch deforms under the influence of the other two patches, and
in particular, elongates. The surface patch finally adjusts to an ellipse. The bottom satellite
vortices then lie along the surface vortex boundary.
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4. Evolution of two offset, co-rotating Eady vortices, with opposite-signed buoyancy
anomalies

In this section, we assess the robustness of a co-rotating Eady vortex, with opposite-signed
buoyancy anomalies at the two levels (B2/B1 < 0). More specifically, we study the ability
of such a vortex, initially tilted, to straighten up. This process is important in geophysical
fluids. In the ocean or in the atmosphere, drifting vortices are affected by a perturbation with
horizontal mode m = 1. This perturbation leads to the tilting of the vortex with respect to
the vertical axis. The robustness of tilted vortices is therefore an important questions. Again,
for simplicity, we consider vortices with uniform buoyancy at each level. Initially, we offset
the surface and bottom patches horizontally, by a distance d.

Figure 10 shows the evolution of tilted vortices with R2/R1 = 1, B2/B1 = −1, for various
values of Rd/R1 and of the relative horizontal offset d/R1. The nonlinear evolutions are either
towards the vertical alignment of the vortices, or their co-rotation around a central axis with
the absence of convergence of the two patches towards the center.

For Rd/R1 ≤ 1.0, vertical alignment occurs for vortices initially distant of 3.3 vortex radii
or less. When vortices are initially farther away, they simply rotate around the center of
the plane. Note that this critical distance d/R1 = 3.3 is close to the critical distance for
the merger of two vortices, with uniform vorticity, in two-dimensional incompressible flows
(Melander et al. 1988). It is also the critical distance for the merger of two vortices in a
two-layer (internal) quasi-geostrophic model, when the vortices are confined at the fluid
surface (Polvani et al. 1989).
When Rd/R1 is increased beyond 1, the critical distance for alignment decreases rapidly. For
Rd/R1 = 1.25 it is less than 3. For Rd/R1 = 1.4, no complete alignment is observed anymore.
Only a moderate convergence of the two patches occurs. Their separation decreases by half
and then oscillates. The vortices mostly co-rotate. For Rd/R1 = 1.5, only a weak (partial)
convergence followed by a weak radial oscillation, accompanies the co-rotation of the two
vortices. Finally, for Rd/R1 ≥ 2, only co-rotation is observed.

Our regime diagram is similar to the one of Polvani (1991) (his figure 7) for the alignment
of two-layer, internal quasi-geostrophic vortices. The critical value for alignment is also
d/R ≈ 3.3 and the maximal value of 1/γ (the equivalent of H in our study) is unity. It should
be noted also that, for very small d/R initially, alignment is replaced by partial convergence.

The final state of the vortex depends on H. Various cases are shown below.
Firstly, for B2/B1 = −1, R2/R1 = 1, Rd/R1 = 1, d = 1, alignment occurs. Figure 11 shows
time series of buoyancy maps. The two patches overlap increasingly with time. To ensure
conservation of angular momentum, the vortex sheds filaments which wrap around the final
vortex. The interaction of the central vortex with the peripheral vorticity supports vortex
contour waves (vortex Rossby waves) which induce a phase shift between the two vortices.
This explains why the inter-centroid distance oscillates while decreasing with time.

Figure 12 shows that, initially, the streamlines and the buoyancy isolines do not coincide
(the fluid surface is shown here; the situation is symmetric at the bottom). This indicates
that the buoyancy field is unsteady and that buoyancy is advected towards the center of the
plane (as shown by the streamlines). At the end of the simulation (same figure), the buoyancy
distribution is not steady yet but the streamlines match the buoyancy contours better. A
longer simulation would be necessary to attain full stationarity, if any.
In contrast, for B2/B1 = −1, R2/R1 = 1, Rd/R1 = 1, d = 4, co-rotation occurs. Figure 13
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shows time series of buoyancy maps. Clearly, each vortex rotates around the center of the
plane, as shown by the inter-centroid distance, which only varies little. The mutual influence
of the two vortices is manifested by the Rossby waves on the vortex boundaries. As it appears
in this figure, low modes of deformation grow first (modes 1 and 2, leading to a slightly
asymmetric ellipse for the vortex contours). Then higher modes grow by nonlinear interaction:
this is seen on the last buoyancy map of figure 13 where a mode m = 4 deformation of the
vortices appears. Nevertheless, this contour deformation never leads the vortices to deform so
much to overlap near the center of the plane. Vertical alignment does not occur.
Finally, the regimes of weak to moderate convergence, with oscillation, lie in between the

previous two regimes. The time variation of the inter-centroid distance increases from co-
rotation, to weak to moderate convergence and finally to vertical alignment. The amplitude
of contour deformation also increases. The combination of the two effects favor alignment.

5. Discussion

Our numerical experiments yield the following results:

• for like-signed buoyancy at the surface and bottom, contra-rotating Eady vortices un-
dergo baroclinic instability for increasing angular wavenumbers as the fluid height de-
creases. Low wavenumber (m = 2, 3) perturbations lead to hetonic breaking when the
two level buoyancy patches have comparable size and strength. In contrast, for vertically
asymmetric vortices, vortex elliptisation or the formation of Λ-tripoles, are observed.

• The formation of a Λ-tripole results from a nonlinear equilibration of the linearly un-
stable contra-rotating Eady vortex. Higher wavenumber perturbations saturate at finite
amplitude, in particular for mode m = 4. It is also shown that a Λ-tripole is an attrac-
tor for nearby states: three vortices initialised in this configuration, but with a circular
shape, deform until they reach the configuration observed in the nonlinear experiments
of baroclinic vortex instability.

• For opposite-signed buoyancies at the surface and bottom (co-rotating vortices), vertical
alignment can occur when the total height of the fluid is smaller than, or equal to unity,
and when the initial horizontal distance between the two vortices is smaller than, or
equal to, three vortex radii. Unequal vortices have not been considered here.

• In both alignment and co-rotation regimes, vortex Rossby waves are observed. In the
alignment regime, they participate in the overlapping of buoyancy, and to he appearance
of a mode m = 1 deformation (corresponding to a dipolar effect), eventually leading to
the convergence of vortices towards the center of the plane.

• Intermediate regimes, between the former two regimes, exist, exhibiting radial oscillations
at various degrees. They occur more specifically for larger fluid heights (vertically more
separated buoyancy levels).

These results confirm and extend those previously obtained with a two-layer (internal)
quasi-geostrophic model: in particular for baroclinic vortex instability (Flierl 1988, Helfrich
and Send 1988). Clear analogies exist in the nonlinear evolutions, in particular the existence
of nonlinearly equilibrated states for linearly unstable vortices, or the possible breaking of
linearly unstable vortices into hetons. Similarly, previous studies found that vortices with
like-signed potential vorticity could align in a two-layer quasi-geostrophic model if the vortices
were large and close enough initially (Polvani 1991). These similarities can be related to the
similarity between the Phillips and Eady models of baroclinic instability of jets (Eady 1949,
Phillips 1954). Nevertheless, the SQG model produces more fine-scale features (filaments) and
also leads to higher vertical velocities as described in Lapeyre (2017). This is important in
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particular for near surface dynamics. Smith and Bernard (2013) noted that the SQG model
can apply to a depth with a rapid change in stratification. This is the case of the base of
the oceanic mixed layer. The internal quasi-geostrophic model, on the contrary, pertains to
deeper vortices. Despite this, results from the two models concerning the baroclinic instability
of vortices, or their ability to align vertically, are quite similar.

6. Conclusion

Our study extends those on vortex barotropic instability in surface quasi-geostrophic dynam-
ics. They provide results comparable to those of vortex studies in internal quasi-geostrophic
models, but for shallower vortices. Naturally, this study should be extended to ageostrophic
dynamics (either in a two-level SQG+1 model, which is an extension of the SQG model
(Hakim et al. 2002), or in a fully stratified, primitive equation, model). Oceanic vortices have
complex vertical structures, and, when deformed, they are associated with finite vertical
velocities. Complex three-dimensional motions and vortex structures are not included in the
present study. Using a primitive equation model (3D hydrostatic model) will substantially
extend our results, via the inclusion of high frequency components of velocity and by allowing
ageostrophic instabilities to occur.

Concerning observations at sea, new measurement devices (tow-yo, gliders) allow repeated
measurements of interacting vortices at the submesoscale (McWilliams 1985, Chavanne et al.
2010, Bosse et al. 2016). Very high resolution numerical models also show evidence of such
processes (Gula et al. 2015, Morvan et al. 2019). Such interactions were proved to strengthen
these small vortices against the decay due to ambient shear and strain effects, turbulent
diffusion, Rossby wave dispersion or topographic interactions, and thus make submesoscale
eddies more robust. In particular it is important to quantify the efficiency of vortex alignment
and vortex merger, in three-dimensional ocean dynamics, when the vortices are not isolated.
Our study is only a step towards this goal. Further studies will include more physical effects
(in 3D stratified rotating dynamics), but should retain few physical parameters to remain
numerically tractable. The quantification of 3D vortex interactions will refine assessments of
the contribution of oceanic eddies to heat and salt transport at large scale.

Appendix A:

Here we calculate the streamfunction associated with a hemispheric radial distribution of
buoyancy for a two-level SQG vortex :

Bs = Bs
0

√
1− r2 He(1− r), Bb = Bb

0

√
1− r2 He(1− r), (A.1)

where He is the Heaviside function He(x) = 1 if x ≥ 0 and He(x) = 0 if x < 0. The angular
velocity of a single vortex defined by this steady state is drawn in Figure A1.

Indeed, for any buoyancy bs or bb (Vic et al. 2022) (where s stands for surface and b for
bottom):

ψs(r, φ, z = 0, t) =
∑
n∈N

∫ ∞
0

Jn(ρr)

σ sinh(ρσ)

(
b̂b − b̂s cosh(ρσ)

)
dρ exp(inφ),

ψb(r, φ, z = 1, t) =
∑
n∈N

∫ ∞
0

Jn(ρr)

σ sinh(ρσ)

(
b̂b cosh(ρσ)− b̂s

)
dρ exp(inφ), (A.2)



March 11, 2024 Geophysical and Astrophysical Fluid Dynamics output

14

where σ = N0H/f0.

Computing the streamfunction of the steady state requires the Fourier transforms of the
steady state buoyancies: for ρ > 0 and n ∈ Z∗ :

B̂s(ρ, n) =
Bs

0

2π

∫ 2π

0

∫ 1

0

√
1− r2 Jn(ρr) r exp(−inφ dr dφ = 0. (A.3)

For n = 0, posing r = sinα, using formula 11.4.10. from (Abramowitz and Stegun 1964)
and the equality

J3/2(x) =

√
2

π

sinx− x cosx

x3/2
,

we have:

B̂s(ρ, 0) = Bs
0

∫ 1

0

√
1− r2J0(ρr) r dr, (A.4)

= Bs
0

∫ π/2

0
cos2 α sinα J0(ρ sinα)dα, (A.5)

= Bs
0

√
2 Γ

(
3

2

)
J3/2(ρ)

ρ3/2
, (A.6)

= Bs
0

√
π

2

J3/2(ρ)

ρ3/2
, (A.7)

B̂s(ρ, 0) = Bs
0

sin ρ− ρ cos ρ

ρ3
, (A.8)

and similarly for

B̂b(ρ, 0) = Bb
0

sin ρ− ρ cos ρ

ρ3
. (A.9)

From these identities, the steady state streamfunction at the two levels are:

Ψs(r, φ, z = 0, t) =

∫ ∞
0

J0(ρr)

σ sinh(ρσ)

sin ρ− ρ cos ρ

ρ3

(
Bb

0 −Bs
0 cosh(ρσ)

)
dρ, (A.10a)

Ψb(r, φ, z = 1, t) =

∫ ∞
0

J0(ρr)

σ sinh(ρσ)

sin ρ− ρ cos ρ

ρ3

(
Bb

0 cosh(ρσ)−Bs
0

)
dρ. (A.10b)

The steady state velocity field is plotted in figure A1: the radial velocities are null because

the streamfunctions have no angular component and Uφ =
dΨ

dr
so :

U sφ = Bb
0E1(r, σ) +Bs

0F1(r, σ), (A.11a)

U bφ = Bb
0F1(r, σ) +Bs

0E1(r, σ), (A.11b)

where the function E1 and F1 are defined by the following integrals (and drawn in Figure A2):

E1(r, σ) =

∫ ∞
0

J1(ρr)

σ sinh(ρσ)

ρ cos ρ− sin ρ

ρ2
dρ, (A.12a)

F1(r, σ) =

∫ ∞
0

J1(ρr)

σ tanh(ρσ)

ρ cos ρ− sin ρ

ρ2
dρ. (A.12b)
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Figure 2. Hetonic breaking of an unstable contra-rotating Eady vortex with uniform buoyancy at the two levels; time-
series of horizontal maps of buoyancy; the parameters are B2/B1 = 1, R2/R1 = 1, Rd/R1 = 1, m = 2. The upper two
rows show the surface buoyancy evolution, and the lower two rows, the bottom buoyancy. For each level, frames are read
from left to right and then from top to bottom. Times shown are 0, 8, 12, 20 model time units (Colour online).
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Figure 3. Angular mode analysis of the hetonic breaking of an unstable contra-rotating Eady vortex with uniform
buoyancy at each level (see the text for their definition); the parameters are B2/B1 = 1, R2/R1 = 1, Rd/R1 = 1, m = 2.
The amplitudes of the various angular modes are shown, the modes are m = 1, 2, 3, 4. (a): surface vortex modes; (b):
bottom vortex modes (Colour online).
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Figure 4. Top : Time series of horizontal maps of buoyancy showing the nonlinear breaking of an elliptical vortex, with
uniform buoyancy, in a vertically semi infinite fluid; the aspect ratio of the ellipse is b/a = 1/5 initially. Times shown
are t = 0, 4, 8 from left to right. Bottom: Modal analysis of the one-level SQG ellipse with uniform buoyancy. The two
angular modes shown are m = 2, 4. For m = 2 the initial value was subtracted (Colour online).
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Figure 5. Nonlinear regimes of the unstable contra-rotating Eady vortex, with respect to the buoyancy patch radii and
magnitudes, for B1 = 1, R1 = 1, H = 1, m = 2.
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Figure 6. Λ-tripole formation from the nonlinear evolution of an unstable contra-rotating Eady vortex with uniform
buoyancy; time-series of horizontal maps of buoyancy. The upper row (a) shows the surface buoyancy, and the middle
row (b), the bottom buoyancy. Times shown are 0, 48, 72, 120 model time units. The bottom row (c,d) shows the
angular mode analysis of the unstable contra-rotating Eady vortex forming a Λ-tripole; the parameters are B2/B1 =
0.5, R2/R1 = 0.65, Rd/R1 = 1, m = 2. The various angular modes shown are m = 1, 2, 3, 4. Left panel (c): modes of
the surface vortex; right panel (d): modes of the bottom vortex (Colour online).
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Figure 7. Nonlinear evolution of an unstable contra-rotating Eady vortex with uniform buoyancy in a disk; the param-
eters are B2/B1 = 1, R2/R1 = 0.5, R1/Rd = 1, m = 2. The upper row shows the surface buoyancy, and the lower row,
the bottom buoyancy. Times shown are 0, 90, 180 model time units (Colour online).
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Figure 8. Nonlinear regimes of the unstable contra-rotating Eady vortex, with respect to the patch radii and buoyancies,
for B1 = 1, R1 = 1, R1 = 2Rd (H = 0.5), m = 2.
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Figure 9. Time series of buoyancy maps for the surface (solid lines) and the bottom (dashed lines) superimposed,
showing the evolution of a vortex aggregate towards a Lambda tripole. Times shown are t=0, 28, 42 model time units.
The vortex parameters are B1 = 1, B2 = 0.5, R1 = 1, R2 = 0.5, H = Rd = 1, d = 4R2 (Colour online).
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Figure 10. Nonlinear regimes of the tilted co-rotating Eady vortex, with respect to the vertical height of the domain H
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Figure 11. (Top and middle) Time series of buoyancy maps at the fluid surface (solid lines) and at the bottom (dashed
lines) superimposed, showing the evolution of a tilted Eady vortex towards a vertical column. Times shown are t=0, 24,
40 model time units. The vortex parameters are B1 = 1, B2 = −1, R1 = R2 = 1, H = Rd = 1, d = 1; (bottom) Time
series of the inter-centroid distance for this simulation (Colour online).
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Figure 12. Maps of buoyancy (black dashed lines) superimposed on streamlines (green solid lines) for the fluid surface.
Times shown are t=0, 40 model time units. The vortex parameters are B1 = 1, B2 = −1, R1 = R2 = 1, H = Rd = 1,
d = 1 (Colour online).
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Figure 13. (Top and middle) Time series of buoyancy maps at the fluid surface (solid lines) and at the bottom (dashed
lines) superimposed, showing the co-rotation of a tilted vortex around the plane center. Times shown are t=0, 64, 128
model time units. The vortex parameters are B1 = 1, B2 = −1, R1 = R2 = 1, H = Rd = 1, d = 4; (bottom) Time series
of the inter-centroid distance for this simulation (Colour online).
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Figure A1. Graph of the angular velocity for a single hemispheric profile vortex in a 2-layer SQG model (Colour online).

Figure A2. Graphs of the functions E1 and F1 for fixed σ = 1. Note that |E1| < |F1| : at the surface, the surface
buoyancy influences the velocity more than the bottom buoyancy (Colour online).


