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We introduce a new structure preserving, second order in time relaxation-type scheme for 
approximating solutions of the Schrödinger-Poisson system. More specifically, we use the 
Crank-Nicolson scheme as a time stepping mechanism, whilst the nonlinearity is handled 
by means of a relaxation approach in the spirit of [10,11,34] for the nonlinear Schrödinger 
equation. For the spatial discretisation we use the standard conforming finite element 
scheme. The resulting scheme is explicit with respect to the nonlinearity, i.e. it requires the 
solution of a linear system for each time-step, and satisfies discrete versions of the system’s 
mass conservation and energy balance laws for constant meshes. The scheme is seen to be 
second order in time. We conclude by presenting some numerical experiments, including 
an example from cosmology and an example with variable time-steps which demonstrate 
the effectiveness and robustness of the new scheme.

© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

1.1. Statement of the problem

Schrödinger-Poisson-type systems appear in many applications, including semiconductors [40,31,38], plasma physics [15,
41], optics [39] and cosmology [44,35,45,21]. In this paper we consider a class of Schrödinger-Poisson systems (SPS), namely 
the following initial-boundary value problem, either with homogeneous Dirichlet boundary conditions or periodic boundary 
conditions: We seek a wavefunction u : Ω × (τ , T ) →C and the associated potential v : Ω × (τ , T ) →R such that⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ut − ip(t)�u + iq(t)vu = 0, in Ω × (τ , T ),

�v = |u|2 − μ, in Ω × (τ , T ),

u(x, τ ) = u0(x), in Ω,

{μ = 0 and u = v = 0}, OR {μ = ‖u0‖2
L2 and u, v periodic,} on ∂Ω × (τ , T ],

(1.1)

* Corresponding authors.
E-mail addresses: a.athanassoulis@dundee.ac.uk (A. Athanassoulis), thodoros.katsaounis@uoc.gr (T. Katsaounis), ikyza@dundee.ac.uk (I. Kyza), 

smetcalfephd@gmail.com (S. Metcalfe).
https://doi.org/10.1016/j.jcp.2023.112307
0021-9991/© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://
creativecommons .org /licenses /by /4 .0/).

https://doi.org/10.1016/j.jcp.2023.112307
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcp
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcp.2023.112307&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:a.athanassoulis@dundee.ac.uk
mailto:thodoros.katsaounis@uoc.gr
mailto:ikyza@dundee.ac.uk
mailto:smetcalfephd@gmail.com
https://doi.org/10.1016/j.jcp.2023.112307
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


A. Athanassoulis, T. Katsaounis, I. Kyza et al. Journal of Computational Physics 490 (2023) 112307
In (1.1), τ ≥ 0 is a given initial time and T > τ is a given final time. The domain Ω ⊂ Rd, d = 1, 2, 3, is assumed to be 
bounded, convex and polygonal in the Dirichlet case, and a d-dimensional parallelepiped in the periodic case. The normali-
sation of μ ensures that the elliptic problem is well-posed in both cases. For the initial condition we have u0 ∈ H1(Ω). The 
coefficients p(t), q(t) are smooth and real valued; the introduction of time-dependent coefficients is directly motivated by 
the cosmological application [44,35]. More details and simulations of that problem can be found in Section 5.4.

System (1.1) satisfies mass conservation and energy balance laws that are of great physical relevance. These are discussed 
in detail in Section 2. Proposing schemes that satisfy discrete analogues of these laws is a significant goal, as typically this 
leads to good qualitative behaviour of numerical solutions for longer computational times. Moreover, when these discrete 
laws are verified unconditionally in the time-step size, this provides flexibility for dealing with stiffness issues. Structure 
preserving schemes for (1.1) are of great physical relevance since in recent years the SPS system is used extensively as an 
alternative to the computationally expensive Vlasov-Poisson system with applications in cosmology, see e.g. [35,44,45] and 
the references therein.

Our goal in this paper is to propose a scheme that is linearly implicit, unconditionally structure preserving (in the 
sense of satisfying discrete energy and mass balance laws without restriction on the time-step size) and second order 
accurate in time. An important advantage of linearly implicit schemes is that they are faster. Moreover, they are easier to 
implement, as no iterative scheme (Newton, fixed point etc) has to be selected and calibrated. Finally, by being more directly 
implementable, linearly implicit schemes are more amenable to further work on a posteriori error control.

An important special case of (1.1) is the problem with constant coefficients and homogeneous Dirichlet boundary condi-

tions; taking p(t) = ε

2α2 , q(t) = β

εα
and μ = 0 we obtain the following standard Schrödinger-Poisson system,⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ut − iε

2α2
�u + iβ

εα
vu = 0, in Ω × (τ , T ),

�v = |u|2, in Ω × (τ , T ),

u = 0, v = 0, on ∂Ω × (τ , T ],
u(x, τ ) = u0(x), in Ω,

(1.2)

where the parameter ε represents the ratio of the Planck constant to the mass of the particle, while α > 0 and β ∈ R
are given constants. When ε is small, this is called the semiclassically scaled problem, and it is expected formally that as 
ε → 0+ the Schrödinger-Poisson system (1.2) approximates, in some sense, the classical Vlasov-Poisson equations, cf., e.g., 
[48].

Concerning the existence and uniqueness of solutions to the Schrödinger-Poisson system (1.2), most of the analytical 
results are for the full space case Ω = Rd; we refer to the works [17,18,29] and the book [19]. In [1], the authors analyze 
a transient Schrödinger-Poisson system with transparent boundary conditions while in [43] the stationary spherically sym-
metric case was analyzed. The asymptotic behaviour of solutions to the Schrödinger-Poisson system is studied in [5] via a 
variational approach.

1.2. Existing numerical methods for the Schrödinger-Poisson system

There exists a very large literature for the numerical approximation of the nonlinear Schrödinger equation with power 
nonlinearity (NLS), cf. e.g. [10,11,34,4,2,3,26,22,7,32,33,14,20,23,24,28,12,27,42,49] and the references therein for a sample 
of such works. In contrast, the numerical methods available for the SPS are not that many. In what follows, we focus on 
numerical methods for the SPS (1.1).

The existing methods in the literature for SPS are with uniform temporal and mesh sizes and/or the nonlinear term is 
treated implicitly. This leads to practical difficulties, which might be the reason that in the literature most of the numerical 
implementations for the SPS (1.1) are performed in the one-dimensional case.

More precisely, popular methods in the literature for the approximation of the SPS (1.1), include the Crank-Nicolson, the 
Gaussian beam or the time-splitting method for the time-discretization, while finite differences or spectral methods are 
used for the spatial discretization. In [6], the authors conduct an error and stability analysis for an operator splitting finite 
element discretization of (1.2) whilst an error analysis for the semidiscrete Galerkin finite element scheme is presented in 
[16]. Utilizing a Crank-Nicolson temporal and finite difference spatial discretization of (1.2), a predictor-corrector scheme is 
studied in [40] and the spherically symmetric case is studied in [25]. In [9], the behaviour of the solution of the Schrödinger-
Poisson-Xα system is explored through a discretization based on the time splitting spectral method. A time semidiscrete 
scheme for (1.2) using Strang splitting is studied extensively in [37] and an error analysis is provided. The Gaussian beams 
method is introduced in [30] for the numerical simulation of (1.2) in the one dimensional case whilst in [47] error estimates 
are obtained for a Crank-Nicolson in time, compact finite difference in space discretization of (1.2). A numerical method 
consisting of a backward Euler in time, pseudo-spectral method in space is utilized in [46] to approximate the ground states 
and the solution of the Schrödinger-Poisson-Slater system (which also includes (1.2)). A spectral discontinuous Galerkin 
method in space coupled with a Runge-Kutta scheme in time is used to study solutions of (1.2) in [36]. More recently, a 
time-discrete relaxation scheme is introduced in [11] for Schrödinger equations with convolution-type nonlinearities, and it 
2
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shown to conserve energy at the discrete level. Upon the choice of an appropriate integral kernel, it can be seen that the 
relaxation scheme of [11] applies to the standard Schrödinger-Poisson system (1.2) on the torus (but not to the generalized 
system (1.1) with time-dependent coefficients).

1.3. Main contribution of this paper

In this paper we introduce a novel numerical scheme for the discretization of the SPS (1.1). In particular, for the spatial dis-
cretization we use the standard conforming finite element method, while for the temporal discretization we propose a new 
Crank-Nicolson relaxation-type method. More precisely, we linearize the nonlinear term |u|2 − μ in the potential equa-
tion of (1.1) and discretize it using the Crank-Nicolson method. The main advantage of the particular scheme is that it 
avoids solving a computationally expensive nonlinear system, whilst maintaining the second order temporal accuracy of the 
Crank-Nicolson method. For the proposition of this method we were inspired by Besse, [10,11], who used a relaxation-type 
Crank-Nicolson scheme with constant time-steps for the nonlinear Schrödinger equation. Katsaounis and Kyza in [34] gen-
eralised the scheme of [10] to variable time-steps and used it to derive a posteriori error estimates, while Zouraris in [50]
used a similar scheme for a semilinear parabolic equation.

In particular, our main contribution is the proposition of a fully discrete relaxation-type Crank-Nicolson finite element scheme with 
variable temporal and spatial mesh sizes, which is implicit with respect to the Laplacian terms of (1.1) (hence guaranteeing stability), 
but explicit in the nonlinearity of the potential equation of (1.1). The fact that the proposed method is with variable temporal 
and mesh-sizes opens the road for the a posteriori error analysis and the proposition of adaptive algorithms for (1.1); this is 
the focus of a forthcoming paper. Our method is easily implementable and is numerically shown to be of second order of accuracy. 
Moreover, it is proven to inherit on the discrete level the mass conservation and energy balance laws of the original continuous problem, 
for constant meshes. To the best of our knowledge, this is the first time that such a method, satisfying all the above mentioned properties, 
is proposed in the literature for the SPS (1.1).

1.4. Idea behind the scheme

The scheme is presented in full detail in Section 3, however at this point we can give a heuristic description of the main 
idea behind it. For example, a semi-discrete fully implicit Crank-Nicolson scheme with constant time-step k for the standard 
SPS (1.2) could be written as⎧⎪⎨⎪⎩

Un − Un−1

k
− iε

2α2
�Un− 1

2 + iβ

εα
V n− 1

2 Un− 1
2 = 0,

�V n− 1
2 = |Un− 1

2 |2,
(1.3)

with the usual notation of Un− 1
2 := (Un + Un−1)/2, V n− 1

2 := (V n + V n−1)/2. This might be an interesting scheme (sec-
ond order in k, mass preserving), but each time-step involves a nonlinear system in the unknowns U n , V n and would be 
computationally expensive and complicated to implement.

So instead of that, the idea here is to use an auxiliary variable on a staggered timegrid. We introduce an auxiliary variable 
	n− 1

2 as a proxy for the position density and update it by linear extrapolation

	n− 1
2 + 	n− 3

2

2
= |Un−1|2, (1.4)

then define V n− 1
2 simply as

�V n− 1
2 = 	n− 1

2 .

Thus we end up with a semi-discrete scheme of the form⎧⎪⎪⎪⎨⎪⎪⎪⎩
	n− 1

2 = 2|Un−1|2 − 	n− 3
2 ,

�V n− 1
2 = 	n− 1

2 ,

Un − Un−1

k
− iε

2α2
�Un− 1

2 + iβ

εα
V n− 1

2 Un− 1
2 = 0,

(1.5)

where the equations above appear in the order they would be solved. For variable time-step, the same idea yields the 
scheme in (3.2) by adjusting the linear extrapolation step of (1.4).

1.5. Organization of the paper

The rest of the paper is organized as follows: In Section 2 we derive the balance laws of the Schrödinger-Poisson system 
(1.1) while in Section 3 we introduce our new numerical method and derive discrete variants of the system’s conservation 
3
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laws. Section 4 explains the practical implementation of the numerical scheme. In Section 5, we present numerical experi-
ments which verify the accuracy and efficiency of the method. We finish the section by applying the numerical method to 
a concrete example from cosmology.

2. Mass conservation & energy balance

The standard Schrödinger-Poisson system (1.2) exhibits mass and energy conservation, consistently with its quantum 
mechanical interpretation [13]. If however the coefficients p(t), q(t) vary in time, the more general system (1.1) still satisfies 
mass conservation and exhibits a precise energy balance law instead of simple conservation. More specifically, given (1.1) let 
us define the mass

M(t) := ‖u(t)‖2, (2.1)

and the kinetic energy Ek(t) and potential energy Ev(t)

Ek(t) := ‖∇u(t)‖2, Ev(t) := ‖∇v(t)‖2 = −
∫
Ω

v(t)(|u(t)|2 − μ)dx, (2.2)

where ‖ · ‖ denotes the L2-norm over Ω . It is worth noting that the integration by parts,∫
Ω

∇v(t) · ∇v(t)dx = −
∫
Ω

v(t)�v(t)dx, (2.3)

which is used in showing that the two expressions for the potential energy in (2.2) are equivalent, works equally well with 
both the periodic or the homogeneous Dirichlet boundary conditions. With this at hand, we are now ready to prove the 
following:

Lemma 2.1 (Continuous mass conservation & energy balance). If (u, v) is a solution of (1.1) then, for τ ≤ t ≤ T ,

M(t) = M(τ ), Conservation of Mass, (2.4)

p(t)
d

dt
Ek(t) − q(t)

2

d

dt
Ev(t) = 0, Balance of Energy. (2.5)

Proof. We begin the proof by deriving conservation of mass. To obtain this, we multiply the Schrödinger equation by ū and 
integrate over Ω yielding∫

Ω

ūut dx + ip(t)‖∇u‖2 + iq(t)

∫
Ω

v|u|2 dx = 0. (2.6)

Since p(t), q(t), v are real-valued, taking real parts immediately implies that∫
Ω

(ūut + uūt)dx = 0 =⇒ d

dt
M(t) = 0 (2.7)

and (2.4) readily holds.
To derive the energy balance, we begin by differentiating the potential equation with respect to t yielding

�vt = ∂

∂t

(
|u|2 − μ

)
= 2Re(uūt). (2.8)

Multiplying this by v and integrating over Ω we get

−1

2

d

dt
‖∇v‖2 =

∫
Ω

v�vt dx = 2
∫
Ω

vRe(uūt) dx. (2.9)

If we now resort to the Schrödinger equation, multiply it by ūt and integrate over Ω we obtain∫
Ω

ut ūt dx − ip(t)

∫
Ω

ūt�u dx + iq(t)

∫
Ω

vuūt dx = 0, (2.10)

or equivalently,
4
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‖ut‖2 + ip(t)

∫
Ω

∇u • ∇ūt dx + iq(t)

∫
Ω

vuūt dx = 0. (2.11)

Taking imaginary parts yields

1

2
p(t)

d

dt
‖∇u‖2 + q(t)

∫
Ω

vRe(uūt)dx = 0. (2.12)

We now substitute in (2.9) to get

p(t)
d

dt
‖∇u‖2 − 1

2
q(t)

d

dt
‖∇v‖2 = 0. (2.13)

Using the second expression for the potential energy, namely

||∇v||2 = −
∫
Ω

v�v dx = −
∫
Ω

v(|u|2 − μ)dx, (2.14)

we can equivalently get

p(t)
d

dt
‖∇u‖2 + 1

2
q(t)

d

dt

∫
Ω

v(|u|2 − μ)dx = 0. (2.15)

From either (2.13) or (2.15) we obtain the balance of energy (2.5). �
Remark 2.1. From the previous lemma it’s obvious that for p, q constant in time one recovers the energy conservation law

d

dt

(
pEk(t)−q

2
Ev(t)

)
= 0 =⇒ pEk(t)−q

2
Ev(t) = pEk(τ )−q

2
Ev(τ ), τ ≤ t ≤ T .

3. A new relaxation-type numerical method & discrete balance laws

The numerical scheme we propose here is inspired by the Crank-Nicolson relaxation method introduced by Besse in 
[10,11] for the nonlinear Schrödinger equation. The first stage in the creation of a Besse-style relaxation scheme is to 
rewrite system (1.1) via the introduction of an auxiliary variable φ = |u|2 − μ which takes the place of the nonlinearity. We 
are thus now searching for a solution (u, v, φ) of the following enlarged Schrödinger-Poisson system⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ut − ip(t)�u + iq(t)vu = 0, in Ω × (τ , T ),

�v = φ, in Ω × (τ , T ),

φ = |u|2 − μ, in Ω × (τ , T ),

u(x, τ ) = u0(x), in Ω,

{μ = 0 and u = v = 0}, OR {μ = ‖u0‖2
L2 and u, v periodic, } on ∂Ω × (τ , T ],

(3.1)

which is, obviously, equivalent to the original problem (1.1). The numerical scheme that we will introduce in the sequel 
is based upon this enlarged formulation of the Schrödinger-Poisson system. For the remainder of this section, we assume 
(1.1)/(3.1) to be augmented with zero Dirichlet boundary conditions for the simplicity of the presentation only as the modi-
fication of the numerical method to incorporate periodic boundary conditions is standard. We begin by first presenting the 
time semi-discrete scheme before moving on to the presentation of the fully-discrete scheme.

3.1. Time semi-discrete scheme

We introduce a sequence of N + 1 time nodes τ =: t0 < ... < tn < . . . < tN := T of [τ , T ] and the variable time-steps 
kn := tn − tn−1. With this notation, our time semi-discrete Besse-style relaxation scheme for (1.1) based on (3.1) is defined as 
follows: We seek approximations (Un, V n−1/2, 	n−1/2) ∈ H1

0(Ω) to (u(tn), v(tn−1/2), φ(tn−1/2)) ∈ H1
0(Ω), 1 ≤ n ≤ N , such that⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂Un − ip(tn−1/2)�Un−1/2 + iq(tn−1/2)V n−1/2Un−1/2 = 0,

�V n−1/2 = 	n−1/2,

kn−1
	n−1/2 = (|Un−1|2 − μ) − kn

	n−3/2,

(3.2)
kn−1 + kn kn−1 + kn

5
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holds, where we used the notation

tn−1/2 := tn−1 + tn

2
, Un−1/2 := Un−1 + Un

2
, ∂Un := Un − Un−1

kn
. (3.3)

The scheme should be initialized at n = 0; a natural, straightforward choice is U 0 = u0, k0 = k1, 	−1/2 = |u0|2 − μ. In 
Section 4.1 we discuss some subtle computational issues with this initialization, and derive a modified initialization which 
addresses them.

Remark 3.1. Method (3.2) can be combined with various methods for spatial discretization. Examples include finite differ-
ences, in the spirit of [10,50], spectral methods, or finite elements. In this paper we choose finite elements for the spatial 
discretization, which allow for spatial adaptivity; this is particularly important for the Schrödinger-Poisson system (1.1) with 
applications in cosmology, in which we observe sharply localized features for the density (cf. Section 5.4).

3.2. Fully-discrete scheme

Let Th be a conforming, shape regular partition of Ω consisting of elements K which are either simplices or d-
dimensional cubes. We then build real/complex finite element spaces over the mesh Th , denoted by Vh(Th; R) and 
Vh(Th; C), respectively, given by

Vh(Th;R) := {
χ ∈ C(Ω̄) ∩ H1

0(Ω) : ∀K ∈ Th, χ |K ∈ P r(K )
}
,

Vh(Th;C) := {χR + iχI : χR ,χI ∈ Vh(Th;R)} ,
(3.4)

where P r(K ) denotes the space of polynomials on the element K of total degree r if K is a simplex, or of degree r in 
each variable if K is a d-dimensional cube. At each time step n, we assume that we have some mesh T n

h which has been 
obtained from a previous mesh T n−1

h via a limited number of refinement and/or coarsening operations. We then associate 
to each time step n the real and complex finite element spaces Vn

h (R) := Vh(T n
h ; R) and Vn

h (C) := Vh(T n
h ; C) over the 

mesh T n
h .

To characterize the fully-discrete scheme on (possibly) variable finite element spaces, we need to introduce two opera-
tors; namely, the L2-projection operator Pn

h : L2(Ω) → Vn
h (C) and the discrete Laplacian operator −�n

h : H1
0(Ω) → Vn

h (C), 
which are defined implicitly as the solution of the following variational problems

v 
→ Pn
h v, 〈Pn

h v,χn〉 = 〈v,χn〉, ∀χn ∈ Vn
h (R), (3.5)

v 
→ −�n
h v, 〈−�n

h v,χn〉 = 〈∇v,∇χn〉, ∀χn ∈ Vn
h (R), (3.6)

where 〈·, ·〉 denotes the L2-inner product over Ω . Note that although the L2-projection/discrete Laplacian may be complex 
in the above definitions, the test functions always lie in the real finite element space Vn

h (R). We are now ready to introduce 
the fully-discrete Besse-style relaxation scheme for (1.1) based on (3.1) which is given as follows: We seek approximations 
(Un

h , V n−1/2

h , 	n−1/2

h ) ∈ Vn
h (C) × Vn

h (R) × Vn
h (R) to (u(·, tn), v(·, tn−1/2), φ(·, tn−1/2)) ∈ H1

0(Ω), 1 ≤ n ≤ N , such that⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Pn
h

[
∂Un

h − i

2
p(tn−1/2)(�

n−1
h Un−1

h + �n
hUn

h) + iq(tn−1/2)V n−1/2

h Un−1/2

h

]
= 0,

�n
h V n−1/2

h = 	
n−1/2

h ,

kn−1

kn−1 + kn
	

n−1/2

h = Pn
h

[
(|Un−1

h |2 − μ) − kn

kn−1 + kn
	

n−3/2

h

]
,

(3.7)

where the straightforward initialization would be U 0
h =P0

h u0, k0 = k1 and 	−1/2

h =P0
h (|u0|2 − μ). If no mesh change occurs 

on the time step n, i.e., T n
h = T n−1

h then the fully-discrete Besse-style relaxation scheme (3.7) can be simplified to⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂Un

h − ip(tn−1/2)�
n
hUn−1/2

h + iq(tn−1/2)Pn
h (V n−1/2

h Un−1/2

h ) = 0,

�n
h V n−1/2

h = 	
n−1/2

h ,

kn−1

kn−1 + kn
	

n−1/2

h = Pn
h (|Un−1

h |2 − μ) − kn

kn−1 + kn
	

n−3/2

h .

(3.8)

We now look into whether the numerical scheme (3.8) satisfies discrete versions of the system’s conservation laws (cf. 
Lemma 2.1 for the continuous version).

The discrete mass is the discrete equivalent of the mass (2.1) and is given by

Mn
h := ||Un

h ||2. (3.9)

The discrete mass satisfies an exact equivalent of the conservation of mass law, as is seen in the following:
6
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Proposition 3.1 (Discrete mass conservation). If no mesh change occurs on the time step n, i.e. if T n
h = T n−1

h , then the solution of the 
fully-discrete Besse-style relaxation scheme (3.8) satisfies

Mn
h = Mn−1

h .

Therefore, if no mesh change occurs at all, i.e. if T n
h = T 0

h , ∀1 ≤ n ≤ N, then

Mn
h = M0

h, 1 ≤ n ≤ N. (3.10)

Proof. We multiply the discrete Schrödinger equation in (3.8) by U
n−1/2

h , i.e., the complex conjugate of Un−1/2

h and integrate 
over Ω to obtain∫

Ω

U
n−1/2

h ∂Un
h dx + ip(tn−1/2)||∇Un−1/2

h ||2 + iq(tn−1/2)

∫
Ω

V n−1/2

h |Un−1/2

h |2 dx = 0. (3.11)

The last two terms are purely imaginary so taking real parts and expanding yields

Mn
h −Mn−1

h +
∫
Ω

Re(Un
h U

n−1
h − Un−1

h U
n
h)dx = 0. (3.12)

The last integral vanishes and so we are left with

Mn
h = Mn−1

h , (3.13)

as claimed. �
The discrete energy balance is slightly more sophisticated, as more can be said about how to discretize the energy. In 

equation (2.2), two expressions for the potential energy were given; both of them come into play, but at the discrete level 
they are not necessarily identical. In that context, we will define the discrete kinetic energy En

k,h , and the two discrete versions 
of the potential energy En

v1,h, En
v2,h as follows:

En
k,h = ‖∇Un

h‖2, En
v1,h = ‖∇V n−1/2

h ‖2 En
v2,h = −

∫
Ω

V n−1/2

h (|Un
h |2 − μ)dx. (3.14)

What will end up playing the role of the discrete potential energy would be En
v,h := 2En

v2,h − En
v1,h . We are now ready to prove 

the following

Proposition 3.2 (Discrete energy balance). Assume that the time-step size remains constant between successive time-steps, i.e. kn−1 =
kn, and that no mesh change occurs on time step n, i.e. T n

h = T n−1
h . Then the solution of the fully-discrete relaxation scheme (3.8)

satisfies the discrete energy balance law

p(tn−1/2)∂(En
k,h) − q(tn−1/2)

2
∂

(
2En

v2,h − En
v1,h

)
= 0, (3.15)

which is the discrete analog of (2.5).
If furthermore p, q are constants, (3.15) simplifies to

pEn
k,h−

q

2
(2En

v2,h − En
v1,h) = pEn−1

k,h −q

2
(2En−1

v2,h − En−1
v1,h ). (3.16)

Finally, if in addition the time-step size and spatial mesh do not change over the whole computation, i.e. if kn = k and T n
h = Th for all 

n = 1, 2, . . . , N, then

pEn
k,h + q

2
(2En

v2,h − En
v1,h) = pE1

k,h + q

2
(2E1

v2,h − E1
v1,h). (3.17)

Proof. Multiplying the discrete Schrödinger equation (3.8) by ∂ U
n
h and integrating over Ω we obtain

‖∂Un
h‖2 + ip(tn−1/2)

∫
Ω

∇Un−1/2

h
• ∇∂ U

n
h dx + iq(tn−1/2)

∫
Ω

V n−1/2

h Un−1/2

h ∂ U
n
h dx = 0.

Taking imaginary parts yields
7
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p(tn−1/2)

2kn
(‖∇Un

h‖2 − ‖∇Un−1
h ‖2) + q(tn−1/2)

2kn

∫
Ω

V n−1/2

h (|Un
h |2 − |Un−1

h |2)dx = 0. (3.18)

For the second term of (3.18) we have∫
Ω

V n−1/2

h (|Un
h |2 − |Un−1

h |2)dx =
∫
Ω

V n−1/2

h

(
(|Un

h |2 − μ) − (|Un−1
h |2 − μ)

)
dx

=
∫
Ω

(
V n−1/2

h (|Un
h |2 − μ) − V n−3/2

h (|Un−1
h |2 − μ)

)
dx

+
∫
Ω

(
V n−3/2

h (|Un−1
h |2 − μ) − V n−1/2

h (|Un−1
h |2 − μ)

)
dx

=
∫
Ω

kn ∂
(

V n−1/2

h (|Un
h |2 − μ)

)
dx +

∫
Ω

(|Un−1
h |2 − μ)(V n−3/2

h − V n−1/2

h )dx

Hence (3.18) becomes

p(tn−1/2)

2
∂(‖∇Un

h‖2)+

+q(tn−1/2)

2kn

⎛⎝∫
Ω

kn∂
(

V n−1/2

h (|Un
h |2 − μ)

)
dx +

∫
Ω

(|Un−1
h |2 − μ)(V n−3/2

h − V n−1/2

h )dx

⎞⎠ = 0.

(3.19)

Using (3.7)(c), (3.7)(b), and finally integration by parts, for the third term of (3.19) we obtain,∫
Ω

(|Un−1
h |2 − μ)(V n−3/2

h − V n−1/2

h )dx =
∫
Ω

Pn
h

(
|Un−1

h |2 − μ
)
(V n−3/2

h − V n−1/2

h )dx

=
∫
Ω

(
kn−1

kn−1 + kn
	

n−1/2

h + kn

kn−1 + kn
	

n−3/2

h

)
(V n−3/2

h − V n−1/2

h )dx

=
∫
Ω

(
kn−1

kn−1 + kn
�n

h V n−1/2

h + kn

kn−1 + kn
�n

h V n−3/2

h

)
(V n−3/2

h − V n−1/2

h )dx

=
∫
Ω

(
kn−1

kn−1 + kn
∇V n−1/2

h + kn

kn−1 + kn
∇V n−3/2

h

)
(∇V n−1/2

h − ∇V n−3/2

h )dx.

(3.20)

Since the time-step size is constant between successive time-steps we readily obtain that∫
Ω

(|Un−1
h |2 − μ)(V n−3/2

h − V n−1/2

h )dx = 1

2

∫
Ω

(
|∇V n−1/2

h |2 − |∇V n−3/2

h |2
)

dx = 1

2
kn∂(‖∇V n−1/2

h ‖2)

Using the above to reformulate the last term of (3.19) yields

p(tn−1/2)

2
∂(‖∇Un

h‖2) + q(tn−1/2)

2kn

⎛⎝kn

∫
Ω

∂
(

V n−1/2

h (|Un
h |2 − μ)

)
dx + kn

2
∂(‖∇V n−1/2

h ‖2)

⎞⎠ = 0.

The result then follows from the definition of the discrete energies En
k,h, En

v1,h, En
v2,h , (3.14). �

Remark 3.2 (Discrete balance laws & periodic boundary conditions). Propositions 3.1 & 3.2 remain valid for the fully discrete 
scheme corresponding to (1.1)/(3.1) with periodic boundary conditions, as long as the finite element space Vh(Th; C) is 
appropriately equipped with periodic boundary conditions instead of homogeneous Dirichlet.

An important question that raises here is what happens to the discrete energy balance in the case of variable time-steps. 
In particular, by how much does it fail to satisfy (3.15)? We answer this in the next proposition:

Proposition 3.3 (Discrete energy balance & variable time-steps). Assume that no mesh change occurs on time step n, i.e. T n
h = T n−1

h . 
Then the solution of the fully-discrete relaxation scheme (3.8) satisfies the following
8
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p(tn−1/2)∂(En
k,h) − q(tn−1/2)

2
∂

(
2En

v2,h − En
v1,h

)
+ q(tn−1/2)

4

kn−1 − kn

kn−1 + kn
kn‖∂̄∇V n−1/2

h ‖2 = 0. (3.21)

Proof. For this case, (3.19) and (3.20) are still valid. From (3.20) we obtain∫
Ω

(|Un−1
h |2 − μ)(V n−3/2

h − V n−1/2

h )dx =
∫
Ω

Pn
h

(
|Un−1

h |2 − μ
)
(V n−3/2

h − V n−1/2

h )dx

=
∫
Ω

(
kn−1

kn−1 + kn
	

n−1/2

h + kn

kn−1 + kn
	

n−3/2

h

)
(V n−3/2

h − V n−1/2

h )dx

=1

2
kn∂(‖∇V n−1/2

h ‖2) + kn−1 − kn

2(kn−1 + kn)

∫
Ω

(∇V n−1/2
h − ∇V n−3/2

h )2 dx

=1

2
kn∂(‖∇V n−1/2

h ‖2) + kn−1 − kn

2(kn−1 + kn)
k2

n‖∂̄∇V n−1/2
h ‖2.

Using the above to reformulate the last term of (3.19) we obtain (3.21). �
Remark 3.3. Clearly, if kn−1 = kn (3.21) reduces to (3.15). For variable time-steps the remainder term 

q(tn−1/2)

4

kn−1 − kn

kn−1 + kn
×

kn‖∂̄∇V n−1/2
h ‖2 is expected to be of first order in time; in other words, the energy balance law (3.15) fails to be satisfied 

by order O(k) (where k = max1≤n≤N−1 kn), every time we change the time-step.

4. Implementation

In this section, we discuss the practicalities of implementing the Besse-style relaxation scheme (3.7) for the numerical 
solution of the Schrödinger-Poisson system (1.1).

4.1. Initialization

In Section 3, the straightforward initialization U 0
h = P0

h u0, k0 = k1 and 	−1/2

h = P0
h (|u0|2 − μ) was presented. This is a 

simple, viable choice, and we observe numerically that the obtained numerical solution Un is a second order approximation 
in time to u(tn). However, in the same computations we observe that 	n− 1

2 is only a first order approximation in time 
to v(tn−1/2). This is something also observed in [50]. Thus we look for a modified initialization under which both Un and 
	n− 1

2 will be seen numerically to be of second order in time.
One way to do this is to define 	1/2

h,old according to the straightforward initialization, i.e. 	1/2

h,old = P0
h (|u0|2 − μ). 	1/2

h,old
is then used in the numerical scheme (3.7) to calculate initial approximations for the potential and wavefunction which we 
denote by Ṽ

1/2

h and Ũ 1
h , respectively. The initial approximation to the wavefunction, Ũ 1

h , is then used to update the estimate 
for the nonlinearity on the first time step. In particular, the coefficients 	̂1/2

h are chosen to satisfy

M	̂
1/2

h =
(〈

1

2
(|Ũ 1

h |2 − μ) + 1

2
	

1/2

h,old,ϕ1
j

〉
j=1,...,N1

)
. (4.1)

This is equivalent to choosing a modified

	
−1/2

h = 3

2

(
|U 0

h |2 − μ
)

− 1

2

(
|Ũ 1

h |2 − μ
)

(4.2)

to be used in (3.7)(c). Using this initialization we observe numerically second order in time for both Un , 	n− 1
2 . An analogous 

initialization can be found in [50] for a Besse-type relaxation finite difference scheme and the semilinear parabolic equation.

4.2. Solving for the nonlinearity

Solving for the nonlinearity is a standard finite element problem, i.e., we are seeking a vector of coefficients 	̂n−1/2

h for 
	

n−1/2

h such that

	
n−1/2

h =
Nn∑

	̂
n−1/2

h, j ϕn
j ,
j=1

9
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where ϕn
j , j = 1, . . . , Nn = dim(Vn

h (R)) are (real) finite element basis functions. From (3.7), we see that the vector of 

coefficients 	̂n−1/2

h must satisfy

kn−1

kn−1 + kn
M	̂

n−1/2

h =
(〈

|Un−1
h |2 − kn

kn−1 + kn
	

n−3/2

h ,ϕn
j

〉
j=1,...,Nn

)
,

where M is the mass matrix given by

Mij =
∫
Ω

ϕn
i ϕ

n
j dx.

4.3. Solving for the potential

Solving for the potential is also fairly routine; if we introduce the vector of coefficients V̂ n−1/2

h such that

V n−1/2

h =
Nn∑
j=1

V̂ n−1/2

h, j ϕn
j ,

then (3.7) implies that V̂ n−1/2

h must satisfy

LV̂ n−1/2

h =
(

〈	n−1/2

h ,ϕn
j 〉 j=1,...,Nn

)
,

where L is the stiffness matrix given by

Li j =
∫
Ω

∇ϕn
i

• ∇ϕn
j dx.

For V 0
h , the coefficients V̂ 0

h are chosen to satisfy the matrix-vector system

LV̂ 0
h =

(
〈	1/2

h,old,ϕ0
j 〉 j=1,...,N0

)
. (4.3)

Another question now is how to use the nodal values V n−1/2
h in order to obtain optimal (second) order approximations V n

h to 
v(tn) (note that the obtained by the method approximations V n−1/2

h are approximations to v(tn−1/2), i.e., are approximations 
at the middle nodal points tn−1/2 and not at the nodes tn). To obtain V 1

h , the most obvious choice is to linearly extrapolate 
from V 0

h and V
1/2

h to obtain V 1
h , i.e., we set V 1

h = 2V
1/2

h − V 0
h . It is tempting to continue to iterate this procedure in order to 

compute the remaining nodal values, however, for n �= 0, the value V n
h is an extrapolated quantity (in contrast to V 0

h which is 
computed according to (4.3)). Attempting to calculate V n

h by extrapolating through V n−1
h (an extrapolated point) and V n−1/2

h
(a computed point) is therefore an unstable procedure which oscillates out of control. To avoid this, we instead calculate V n

h

by linearly extrapolating from the computed values V n−1/2

h and V n−3/2

h ; a simple calculation yields

V n
h = V n−1/2

h + kn

kn−1 + kn
(V n−1/2

h − V n−3/2

h ).

4.4. Solving for the wavefunction

In the case of the wavefunction, we are seeking a vector of real coefficients Ûn
h,R and a vector of imaginary coefficients 

Ûn
h,I such that

Un
h = Un

h,R + iUn
h,I =

Nn∑
j=1

(
Ûn

h,R, j + iÛn
h,I, j

)
ϕn

j .

Here, as before, ϕn
j , j = 1, . . . , Nn = dim(Vn

h (R)) are real finite element basis functions which form a basis for Vn
h (R). Then 

(3.7) implies that the coefficient vectors must satisfy the block matrix-vector system
10
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(
M

p(tn−1/2)kn

2 L − q(tn−1/2)kn

2 P

− p(tn−1/2)kn

2 L + q(tn−1/2)kn

2 P M

)(
Ûn

h,R
Ûn

h,I

)
=⎛⎝〈

Un−1
h,R − p(tn−1/2)kn

2 �n−1
h Un−1

h,I − q(tn−1/2)kn

2 V n−1/2

h Un−1
h,I ,ϕn

j

〉
j=1,...,Nn〈

Un−1
h,I + p(tn−1/2)kn

2 �n−1
h Un−1

h,R + q(tn−1/2)kn

2 V n−1/2

h Un−1
h,R ,ϕn

j

〉
j=1,...,Nn

⎞⎠ ,

(4.4)

where �n−1
h is the discrete Laplacian operator (see (3.6)), L is the stiffness matrix and P , the matrix associated with the 

potential term, is given by

Pij =
∫
Ω

V n−1/2

h ϕn
i ϕ

n
j dx.

As is standard, one can extend the nodal values of the wavefunction to a function Uh(t) on the whole interval via linear 
interpolation, viz.,

Uh(t) :=
(

tn − t

kn

)
Un−1

h +
(

t − tn−1

kn

)
Un

h , t ∈ [tn−1, tn].
As a side, we note that (4.4) can be solved far more efficiently if no mesh change has occurred Indeed, in this case the 
system (3.7) can be rewritten to solve for the half point Un−1/2

h (3.8) resulting in the block matrix-vector system(
M − p(tn−1/2)kn

2 L − q(tn−1/2)kn

2 P
p(tn−1/2)kn

2 L + q(tn−1/2)kn

2 P M

)(
Ûn−1/2

h,R

Ûn−1/2

h,I

)
=

(
M 0
0 M

)(
Ûn−1

h,R

Ûn−1
h,I

)
.

The nodal value coefficients Ûn
h can then be recovered via Ûn

h = 2Ûn−1/2

h − Ûn−1
h .

5. Numerical experiments

We perform four sets of numerical experiments. First of all we apply the new numerical method (3.7) to some rela-
tively simple problems in order to confirm numerically the rate of convergence. In addition, we verify the validity of the 
discrete conservation laws, for both time-independent and time-dependent coefficients p and q. It must be noted that in 
what follows we use the modified initialization discussed in Section 4.1. We also study how variable time-step affects the 
conservation of mass and balance of energy.

Moreover, we apply (3.7) to an example with time-dependent coefficients, periodic boundary conditions and singular 
features (“sine wave collapse”) which arises in cosmology. In that context, the semiclassical Schrödinger-Poisson system 
(1.1) is used as a lower dimensional analogue of the Vlasov-Poisson system [35]. The numerical results reported in this 
section take place in two spatial dimensions and utilize a C++ code based on the deal.II finite element library [8].

5.1. Experimental order of convergence

To verify the experimental order of convergence of the numerical method, we apply the classical method of manufactured 
solutions, i.e., we choose a wavefunction u(x, t) : Ω × [0, T ] → C and a potential v(x, t) : Ω × [0, T ] → R such that (1.2)
is satisfied (with the inclusion of appropriate right-hand sides). Note that in this case μ = 0 and homogeneous Dirichlet 
boundary conditions are used. Moreover we set Ω = (−1, 1)2 ⊂ R2 and consider uniform partitions Th of Ω consisting of 
squares with sides of length h. For simplicity, we set the PDE coefficients to α = β = ε = 1; this leads to p(t) = 1

2 , q(t) =
1, ∀t . The initial time is set to be τ = 0 and the final time is given by T = 1. The time interval (τ , T ) is subdivided into 
uniform intervals of time step length k = T /N > 0. Then, we choose the right-hand sides such that the exact solution to 
(1.2) is given by

v(x, y, t) = e−t sin(π(x2 − 1)(y2 − 1)), u(x, y, t) = (1 + i)v(x, y, t). (5.1)

The errors are then measured in the L∞(L2) norm and we expect that

e(u;h,k) := max
0≤n≤N

‖u(·, tn) − Un
h‖ = O(k2 + hr+1), e(v;h,k) := max

0≤n≤N
‖v(·, tn) − V n

h ‖ = O(k2 + hr+1),

where r is the polynomial degree of the spatial finite element space Vh(Th; R).
To compute the spatial convergence rate, we take a large number of time steps, N = 2000 i.e. k = 5 · 10−4, so that the 

temporal part of the error is negligible. We then compute the spatial experimental order of convergence by performing two 
different realizations with the mesh sizes h1 and h2 and computing

Rate := log(e(· ;h1,k)) − log(e(· ;h2,k))
.

log(h1) − log(h2)

11
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Table 1
Spatial experimental orders of convergence for u, v.

r = 1 r = 2

h e(u;k,h) Rate e(v;k,h) Rate e(u;k,h) Rate e(v;k,h) Rate

0.250000 2.60203e-1 - 1.36736e-1 - 1.54310e-2 - 8.50485e-3 -
0.125000 6.58945e-2 1.981 3.29791e-2 2.052 2.19359e-3 2.814 1.31987e-3 2.688
0.062500 1.68103e-2 1.971 8.23356e-3 2.002 2.54266e-4 3.109 1.71600e-4 2.943
0.031250 4.22146e-3 1.994 2.05895e-3 2.000 3.12572e-5 3.024 2.16460e-5 2.987
0.015625 1.05487e-3 2.001 5.14783e-4 2.000 3.85637e-6 3.019 2.71179e-6 2.997

Table 2
Temporal experimental orders of convergence for u, v.

k e(u;k,h) Rate e(v;k,h) Rate

0.04 3.72233e-4 - 9.60801e-4 -
0.02 9.49430e-5 1.971 2.51017e-4 1.936
0.01 2.39046e-5 1.990 6.41950e-5 1.967

In Table 1, the spatial experimental orders of convergence are displayed for r = 1 and r = 2. The optimal rate of conver-
gence is observed in both cases (two for r = 1 and three for r = 2) thus validating the claimed spatial accuracy of our new 
numerical method (3.7).

For the temporal error rate, we take a large polynomial degree, r = 3, in order to minimize the spatial error over the 
uniform spatial mesh Th of mesh size h = 0.0625. We then compute the temporal experimental order of convergence by 
performing two different realizations with the time step lengths k1 and k2 and computing

Rate := log(e(· ;h,k1)) − log(e(· ;h,k2))

log(k1) − log(k2)
.

The results, given in Table 2, confirm that our proposed numerical method (3.7) is of order two in time for both the 
wavefunction u and the potential v.

5.2. Discrete conservation laws

In this example, we investigate the behaviour of our numerical scheme (3.7) for system (1.1), with respect to the mass 
conservation (2.4) and energy balance (2.5) in two different cases: a) with constant coefficients p(t) and q(t) and b) with 
variable coefficients p(t) and q(t). We take Ω = (−1, 1)2 which we discretize with linear finite elements over a uniform 
grid Th consisting of squares with sides of length h = 0.015625. We take τ = 0 and final time T = 3. We use N = 3000 time 
steps giving a time step length of k = 10−3 and we choose α = β = 5. The initial condition is taken to be

u(x, y,0) =
(

sin(
x

π
) + i cos(

y

π
)
)

(1 − x2)(1 − y2), (5.2)

which vanishes along the boundary of � (μ = 0 in (1.1)).

5.2.1. Constant coefficients p(t), q(t)
In this case we take p(t) = ε

50 , q(t) = 1
ε , ∀t and we expect that both mass and energy are conserved at the discrete level. 

We allow ε to vary in order to analyze how this affects the errors in the conservation laws. We then compute the global 
conservation law errors (3.10), (3.17), given by

Mn
e :=

∣∣∣Mn
h −M0

h

∣∣∣ , (5.3)

En
e,gl :=

∣∣∣∣ (pEn
k,h + q

2
(2En

v2,h − En
v1,h)

)
−

(
pE1

k,h + q

2
(2E1

v2,h − E1
v1,h)

) ∣∣∣∣. (5.4)

(Note that this definition of global energy error only applies to constant coefficients.) From Table 3, we observe that the 
density and the energy are conserved to double precision accuracy for all values of ε as expected. Note that each row is 
roughly 1000 time-steps after the previous one.

5.2.2. Variable coefficients p(t), q(t)

For the variable coefficient case we take p(t) = ε
50 t, q(t) = 1

ε t
1
2 , ∀t . Here we have to introduce the local error for the 

discrete energy balance law, namely
12



A. Athanassoulis, T. Katsaounis, I. Kyza et al. Journal of Computational Physics 490 (2023) 112307
En
e,loc :=

∣∣∣∣(p(tn−1/2)En
k,h − q(tn−1/2)

2

(
2En

v2,h − En
v1,h

))
−(

p(tn−3/2)En−1
k,h − q(tn−3/2)

2

(
2En−1

v2,h − En−1
v1,h

))∣∣∣∣. (5.5)

Table 3
Errors in the conservation laws: p(t), q(t) constant.

ε = 1 ε = 0.1 ε = 0.01

tn Mn
e En

e,gl Mn
e En

e,gl Mn
e En

e,gl

0 4.55e-15 2.39e-16 7.22e-16 2.58e-15 3.94e-15 9.57e-15
1 2.06e-14 3.29e-16 4.11e-15 1.39e-15 3.55e-15 1.60e-14
2 4.33e-14 1.75e-16 1.66e-15 2.36e-15 8.55e-15 1.54e-14
3 5.97e-14 3.03e-16 7.32e-15 2.01e-15 1.44e-14 2.56e-14

Table 4 shows the corresponding conservation of mass (3.10) and balance of energy (3.15). We observed that both are 
recovered to double precision of accuracy for all values of ε.

Table 4
Errors in the conservation laws: variable p(t), q(t).

ε = 1 ε = 0.1 ε = 0.01

tn Mn
e En

e,loc Mn
e En

e,loc Mn
e En

e,loc

0 2.05e-15 6.69e-16 4.49e-15 6.27e-15 6.55e-15 1.08e-15
1 1.91e-14 5.81e-16 9.81e-15 3.29e-15 5.55e-15 1.74e-14
2 5.73e-14 3.62e-16 1.97e-14 4.02e-15 8.91e-15 2.86e-14
3 9.38e-14 2.71e-16 1.47e-13 4.39e-15 1.78e-14 4.39e-14

5.3. Variable time-step kn

We examine now the effect of variable time-step in the mass conservation (2.4) and energy balance (2.5) of system 
(1.2). We take (5.2) as an initial condition, α = β = 5 and ε = 0.01. The domain Ω = (−1, 1)2 is discretized by a uniform 
grid Th consisting of squares with sides of length h = 0.015625, and we consider cubic finite elements on Th resulting 
a spatial discretization error which is almost negligible. We take τ = 0 and final time T = 3. We split the time interval 
[0, T ] = ∪12

j=1[T j−1, T j] with T j = j/4, 0 ≤ j ≤ 12. In each subinterval [T j−1, T j) we use a different time step k j = j ×
1.25e − 03, 1 ≤ j ≤ 12. We monitor the error in discrete mass conservation (3.10) by means of M j

e which was defined in 
(5.3). Moreover we monitor error in the energy balance law (3.17) by means of the global error E j

e,gl defined in (5.4), and 

of the local error E j
e,loc defined in (5.5).

At this point one should also recall that, according to Proposition 3.3, the size of E j
e,loc at the points of change of time-

step size is expected to be equal to the residual

R j :=
∣∣∣∣q(t j−1/2)

4

k j−1 − k j

k j−1 + k j
k2

j ‖∂̄∇V j−1/2
h ‖2

∣∣∣∣. (5.6)

Our findings are presented in Table 5. Each row j, 1 ≤ j ≤ 12 corresponds to the time interval [T j−1, T j) and T j is 
printed in the first column, while the corresponding time-step k j is shown in the second column. The time-step size 
changes right after T j ; for the computation of the numerical solution in [T j, T j+1) with new time-step k j+1 appears (cf. 
equation (3.2)); this k j+1 is printed in the third column. The global mass error at T j is printed in the fourth column, and 
the global energy error at T j is printed in the fifth column. The local error in energy due to the change of time-step size 
around T j is printed in the sixth column. The predicted residual, which is expected to be equal to the local energy error, is 
printed in the last column. We observe that conservation of mass is essentially unaffected by the time-step change while 
the energy loss is monitored accurately by the residual derived in Proposition 3.3. We note that, during this computation 
the time-step changed 11 times and grew by a factor of 20.

5.4. A cosmological example

One application of the Schrödinger-Poisson system (1.1) comes from the field of cosmology. Indeed, the d-dimensional 
Schrödinger-Poisson system (1.1) can be used as an approximation to the computationally expensive 2d-dimensional Vlasov-
Poisson system used to describe collisionless self-gravitating matter [35]. For this numerical experiment, we proceed as in 
13
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Table 5
Errors in the conservation laws: variable time-step.

T j k j k j+1 M j
e E j

e,gl E j
e,loc R j

0.25 1.250e-03 2.500e-03 2.99e-15 3.11e-15 2.88e-11 1.28e-11
0.50 2.500e-03 3.750e-03 7.54e-14 2.93e-11 1.92e-10 1.22e-10
0.75 3.750e-03 5.000e-03 9.30e-14 2.21e-10 6.09e-10 4.42e-10
1.00 5.000e-03 6.250e-03 1.07e-13 8.31e-10 1.40e-09 1.09e-09
1.25 6.250e-03 7.500e-03 1.23e-13 2.23e-09 2.69e-09 2.20e-09
1.50 7.500e-03 8.750e-03 1.28e-13 4.92e-09 4.66e-09 3.92e-09
1.75 8.750e-03 1.000e-02 1.39e-13 9.59e-09 7.37e-09 6.32e-09
2.00 1.000e-02 1.125e-02 1.41e-13 1.70e-08 1.10e-08 9.71e-09
2.25 1.125e-02 1.250e-02 1.49e-13 2.80e-08 1.61e-08 1.42e-08
2.50 1.250e-02 1.375e-02 1.53e-13 4.40e-08 2.24e-08 2.00e-08
2.75 1.375e-02 1.500e-02 1.59e-13 6.64e-08 3.04e-08 2.72e-08
3.00 1.500e-02 – 1.63e-13 9.68e-08 – –

Fig. 1. The initial density |u0|2 used in (5.7). (For interpretation of the colours in the figure(s), the reader is referred to the web version of this article.)

[35]. Firstly, we take μ = ‖u0‖2 = 1 and periodic boundary conditions in (1.1). The initial time is τ = 0.01 and the final time 
T = 0.088. Time dependent coefficients are used, namely p(t) = ε

2t3/2 , q(t) = β

εt1/2 , where β = 1.5 and ε = 6e – 5. Thus our 
cosmological example reads as⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ut − iε

2t3/2
�u + iβ

εt1/2
vu = 0, in Ω × (τ , T ),

�v = |u|2 − 1, in Ω × (τ , T ),

u(x,0) = u0(x), in Ω ,

‖u0‖2
L2 = 1 : u, v periodic on ∂Ω × (τ , T ).

(5.7)

This problem is a special case of system (1.1), and therefore satisfies the mass conservation (2.4) and the energy balance 
(2.5), which for the particular p(t) and q(t) takes the form:

ε

2t3/2

d

dt
Ek(t) + β

εt1/2

d

dt

(
2Ev2(t) − Ev1(t)

) = 0 =⇒ ε2

2

d

dt
Ek(t) + tβ

d

dt

(
2Ev2(t) − Ev1(t)

) = 0.

The fully discrete relaxation scheme (3.2) with constant time-step kn = k, ∀n for (5.7) is⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂Un

h − iε

2t
3/2

n−1/2

�n
hUn−1/2

h + iβ

εt
1/2

n−1/2

Pn
h

(
V n−1/2

h Un−1/2

h

)
= 0,

�n
h V n−1/2

h = 	
n−1/2

h ,

	
n−1/2

h = 2Pn
h (|Un−1

h |2 − 1) − 	
n−3/2

h .

(5.8)

Scheme (5.8) satisfies the discrete mass conservation (3.10) and the local discrete energy balance (3.15), which for the 
particular p(t) and q(t) takes the form:
14



A. Athanassoulis, T. Katsaounis, I. Kyza et al. Journal of Computational Physics 490 (2023) 112307
Fig. 2. The density |Uh(t)|2 (logarithmic scale) at t = 0.023, 0.033, 0.088 : 1024 × 1024 grid (left), 2048 × 2048 grid (right).

ε2∂(‖∇Un
h‖2) + βtn−1/2

⎛⎝∂(‖∇V n−1/2

h ‖2) + 2
∫
Ω

∂(V n−1/2

h (|Un
h |2 − μ))dx

⎞⎠ = 0,∀n. (5.9)

We now consider the benchmark case of a sine wave collapse. The initial condition is as given in [35] and its position density 
is displayed in Fig. 1. The domain Ω is discretized with linear finite elements over one of two different uniform grids: a 
1024 × 1024 and a 2048 × 2048 grid while the time domain (τ , T ) is discretized using 1560 uniform time steps yielding a 
15
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Fig. 3. The density |Uh(t)|2 (logarithmic scale) at t = T with Gaussian filtering of width σ = 0.0035 : 1024 × 1024 grid (left), 2048 × 2048 grid (right).

Table 6
Mass conservation error (MCe) and Energy balance error (EBe).

Grid 512 × 512 1024 × 1024 2048 × 2048

t MCe EBe MCe EBe MCe EBe

0.023 4.329e-15 1.222e-08 1.010e-13 9.039e-10 1.852e-13 1.131e-11
0.033 1.643e-14 2.427e-08 1.210e-13 9.675e-10 1.912e-13 2.323e-11
0.088 3.775e-14 5.065e-08 1.386e-13 9.273e-10 5.332e-13 6.037e-11

time step size of k = 5e – 5. Results of the numerical simulations are shown in Fig. 2. For comparison purposes, we plot the 
density |Uh(tn)|2 at three different time instances (tn = 0.023, 0.033, 0.088) all of which are in excellent agreement with 
the plots in [35].

Due to the small value of ε, the wavefunction is highly oscillatory which can be readily seen in the 1024 × 1024 grid 
but is much more apparent in the 2048 × 2048 grid. We thus postprocess the density by applying a Gaussian filter of width 
σ = 0.0035 which eliminates spurious oscillations – this is shown in Fig. 3 at the final time τ = T for both grids.

For this example, the density is conserved up to double precision while the energy is conserved to at least 8 digits of 
accuracy, see Table 6. The loss of accuracy in the energy balance is mainly due to the loss of periodicity for ∇v at the 
discrete level. Indeed, the periodicity for wavefunction and potential is preserved at the discrete level, however it is lost for 
∇V n

h which is a crucial assumption in (3.20) for proving (3.16). We have computed the L2-norm of the difference between 
the values of the ∇V n

h , n = 1, . . . , along the corresponding horizontal and vertical boundaries of the domain and it is found 
to vary from 10−7 − 10−10 depending on the grid size.
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