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Abstract

As a contribution to the study of graphs on groups, we show that
the commuting graph of a finite group G is a split graph, or a threshold
graph, if and only if either G is abelian or G is a generalized dihedral
group

D(A) = ⟨A, t : (∀a ∈ A)(at)2 = 1⟩

where A is an abelian group of odd order.
Keywords: Commuting graph, split graph, threshold graph, gener-
alized dihedral group
MSC: 05C25, 20D60

1 Introduction

There has been a big upsurge of research recently on graphs defined on groups
so as to reflect the group structure in some way. The oldest example is the
commuting graph, whose vertices are the group elements, two vertices joined
if they commute. This was the main tool in the seminal paper of Brauer and
Fowler [2] in 1955, arguably the first step towards the classification of the
finite simple groups. This graph is still the subject of current research.
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The second author has suggested that the interaction between graphs and
groups can benefit both areas, and that there are three main ways where this
can happen:

• We learn new results about groups. The Brauer–Fowler theorem is a
good example of this. A more recent result is a strengthening of the
old result of Landau [8] that the order of a finite group is bounded by
a function of the number of conjugacy classes; it was shown in Bhowal
et al. [1] that the order is bounded by a function of the clique number
of a graph (the SCC graph) whose vertices are the conjugacy classes.

• Interesting classes of groups can be defined in terms of graphs. Known
examples include the minimal non-abelian, non-nilpotent, or non-solvable
groups, the Dedekind groups, the 2-Engel groups, and the EPPO groups
(those in which every element has prime power order): see [4].

• We may find beautiful graphs, by taking known graphs defined on
groups (especially almost simple groups) and applying suitable reduc-
tions such as indentifying twin vertices.

This paper is a contribution to the second of these points. In the literature
there are two methods for defining a class of groups using graphs: either
restrict the graph to some well-known graph class, or take two graphs defined
on the group and ask for them to be equal or complementary. We use the
first method here.

Our main theorem is the classification of all finite groups for which the
commuting graph is either a split graph or a threshold graph. These graph
classes will be defined below before the statement of the main theorem. This
answers, in part, a question of the second author [4, Question 14].

2 Split graphs and threshold graphs

Our graph theory terminology will be standard. Graphs will be simple and
undirected, and the graph Γ has vertex set V (Γ) and edge set E(Γ). The
n-vertex complete graph is denoted by Kn, the n-cycle by Cn, and the n-path
by Pn. The disjoint union of m copies of Γ is denoted by mΓ.

We denote the commuting graph of a finite group G by Γ(G). Note that,
in much of the literature, vertices in the centre of G, which would be joined
to all other vertices, are removed; but for our purpose it makes no difference
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whether this is done or not, and for convenience we will not remove these
vertices.

The graph Γ is a split graph if V (Γ) is a disjoint union of sets V1 and
V2, where V1 and V2 induce a complete subgraph and a null subgraph in Γ
respectively. Split graphs have a forbidden subgraph characterization, due
to Foldes and Hammer [7].

Proposition 2.1 A graph is split if and only if it contains no induced sub-
graph isomorphic to C4, C5, or 2K2.

The graph Γ is called a threshold graph if there is a weight function wt
on vertices and a threshold number t such that vertices x and y are joined if
and only if wt(x) + wt(y) > t. The forbidden subgraph classification is due
to Chvátal and Hammer [6].

Proposition 2.2 A graph is threshold if and only if it has no induced sub-
graph isomorphic to P4, C4 or 2K2.

We see that every threshold graph is split, but not conversely. However,
our main theorem has the consequence that, within the class of commuting
graphs of groups, these two properties coincide.

3 The main theorem

Let A be a finite abelian group. the generalized dihedral group D(A) is
defined as the semidirect product of A with a cyclic group ⟨t⟩ of order 2,
where t−1at = a−1 for all a ∈ A. (This reduces to the usual dihedral group
when A is cyclic.) It has the properties, easily checked, that every element of
D(A) \A has order 2, and that if t′ is any such element, then the centralizer
of t′ in A is the set of elements of order 1 or 2.

Now we can state our main theorem.

Theorem 3.1 The following are equivalent for a finite group G:

(a) Γ(G) is a split graph;

(b) Γ(G) is a threshold graph;

(c) Γ(G) contains no induced subgraph isomorphic to 2K2;
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(d) either G is abelian, or it is a generalized dihedraph group D(A) where
A is an abelian group of odd order.

Proof Propositions 2.1 and 2.2 show that each of (a) and (b) implies (c).
Moreover it is clear that (d) implies the other three statements: the com-
muting graph of an abelian group is complete, while that of D(A) with |A|
odd consists of a complete graph on A with |A| pendant vertices attached to
the identity.

So it remains to show that (c) implies (d). So let G be a graph whose
commuting graph forbids 2K2. We assume that G is not abelian, and proceed
in a number of steps.

Step 1: The elements of order greater than 2 in G commute pairwise, and
so generate an abelian subgroup Ω(G). For let a and b be elements with
order greater than 2. If a and b don’t commute, then {a, a−1, b, b−1} induces
2K2.

Step 2: |G : Ω(G)| ≤ 2. For clearly every element of G not in Ω(G) is
an involution. So, if the claim is false, then |G : Ω(G)| ≥ 4, from which it
follows that more than three-quarters of the elements of G satisfy x2 = e.
Now a folklore result shows that such a group is abelian. (Here is the proof.
Let x be an involution. Then more than half the elements g ∈ G satisfy
g2 = (xg)2 = e, and so commute with x. Thus x ∈ Z(G). Since there are at
least 3|G|/4 choices for x, we have Z(G) = G.)

Step 3: G is generalized dihedral D(Ω(G)). For take x /∈ Ω(G). For any
element a ∈ Ω(G), we have ax /∈ Ω(G), and so x2 = (ax)2 = e, whence
x−1ax = a−1.

Step 4: Ω(G) has odd order. For suppose not. If every element of Ω(G) has
order 2 then G is abelian. Otherwise, choose a ∈ Ω(G) with order 2m, where
m > 1, and x /∈ Ω(G). Then {a, am+1, x, xam} induces 2K2, a contradiction.
□

4 Further directions

There are two obvious directions to extend this work:
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• Other classes of graphs. Well-studied subgraph closed classes include
perfect graphs, cographs and chordal graphs. The problem is to inves-
tigate the classes of groups whose commuting graphs belong to one of
these classes. Britnell and Gill [3] determined the quasi-simple groups
whose commuting graph is perfect, and the present authors with Na-
talia Maslova are preparing a paper on groups whose commuting graph
is a cograph or a chordal graph. But the general problem is still un-
solved in these cases.

• Other graphs on groups. For example, the power graph of a group
has an edge {x, y} whenever one of x and y is a power of the other.
The second author, with Pallabi Manna and Ranjit Mehatari [5], have
studied groups whose power graph is a cograph. Even in this case the
complete classification is not known, and there are many other graphs
which could be considered.
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