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Abstract 87 
 88 
As human activities increasingly shape land- and seascapes, understanding human-wildlife 89 
interactions is imperative for preserving biodiversity. Habitats are impacted not only by static 90 
modifications, such as roads, buildings and other infrastructure, but also by the dynamic 91 



movement of people and their vehicles occurring over shorter time scales. While there is 92 
increasing realization that both components of human activity significantly affect wildlife, capturing 93 
more dynamic processes in ecological studies has proved challenging. Here, we propose a novel 94 
conceptual framework for developing a ‘Dynamic Human Footprint’ that explicitly incorporates 95 
human mobility, providing a key link between anthropogenic stressors and ecological impacts 96 
across spatiotemporal scales.  Specifically, the Dynamic Human Footprint integrates a range of 97 
metrics to fully acknowledge the time-varying nature of human activities and to enable scale-98 
appropriate assessments of their impacts on wildlife behavior, demography, and distributions. We 99 
review existing terrestrial and marine human mobility data products and provide a roadmap for 100 
how these could be integrated and extended to enable more comprehensive analyses of human 101 
impacts on biodiversity in the Anthropocene. 102 
 103 
Introduction 104 
 105 
Although humans have reshaped planet Earth for millenia, current impacts of anthropic activities 106 
are staggering 1. More than half of the Earth’s surface – 70% on land and 57% at sea – has been 107 
substantially altered by human activities 2–5 driving significant changes in the behavior, distribution 108 
and viability of wildlife populations 6,7. Despite the negative consequences for biodiversity as a 109 
whole, a growing body of evidence suggests that behavioral plasticity and natural selection may 110 
enable adaptation to a changing world, even allowing some species to thrive in the Anthropocene 111 
8,9. The variable responses of wildlife to anthropogenic stressors indicate that the mechanisms 112 
governing human-wildlife interactions and coexistence are complex and context-dependent. As 113 
human pressures continue to increase, there is an urgent need to understand how wildlife cope 114 
with current levels of human activity.  115 
 116 
To study wildlife responses to human activities, ecologists have typically leveraged estimates of 117 
various aspects of anthropogenic influence, such as land development or human population 118 
density 10–12. Integrated metrics of the human footprint have been widely useful in assessing the 119 
condition of ecosystems and protected areas globally as well as predicting population trends and 120 
extinction risks by incorporating the many dimensions of human activities 11,13–17. Though critical, 121 
current approaches often do not capture the dynamic presence of humans and their vehicles 122 
(‘human mobility’; see 18). While landscape modification is a well-known driver of biodiversity loss, 123 
human mobility may exert additional pressure on wildlife. Human mobility may represent a key 124 
link between anthropogenic stressors and ecological impacts by driving behavioral or 125 
demographic responses which scale up to consequences at the species-level. However, 126 
information on human mobility has yet to be widely adopted in wildlife studies or integrated metrics 127 
of the human influence on nature. 128 
 129 
As the COVID-19 pandemic unfolded, researchers started exploring opportunities to leverage 130 
human mobility data products to examine how wildlife responded to lockdowns 19. Until then, the 131 
ecological research community had been largely unaware of advances in measuring human 132 
mobility, which were driven by decades of work in other disciplines (e.g., transportation, 133 
population geography, computer science, physics, public health, geographic information science) 134 
and the private sector 20. The importance of monitoring and managing human movements to stem 135 
the spread of COVID-19 (e.g., via social distancing and travel restrictions 21) spurred some 136 
companies to make human mobility data publicly available. This increased data accessibility 137 



created exciting opportunities for ecologists to investigate more comprehensively how wildlife is 138 
affected by humans – both during and after the COVID-19 anthropause. Human mobility has 139 
multiple components 18. We consider ‘human mobility’ to encompass the movements of humans 140 
and their vehicles (and any associated by-products in the environment), along the full spectrum 141 
of spatiotemporal resolutions. This is distinguished from human infrastructure, which 142 
encompasses roads, buildings and additional anthropogenic landscape modifications (and their 143 
associated by-products). For a schematic overview of key concepts and terminology, please see 144 
Figure 1. 145 
 146 
In this contribution we argue that high-resolution human mobility data should be combined with 147 
more conventional static measures (e.g., population density and land cover maps) to capture the 148 
multidimensional, dynamic nature of human activity, and its complex effects on wildlife. But doing 149 
so requires ecologists to understand the accessibility, underpinning, and limitations of human 150 
mobility data products. While a handful of recent studies have begun integrating datasets 151 
reflecting static and dynamic components of human activity, they have been restricted to local 152 
and regional scales 22,23, and their methods are not yet applicable to many other areas across the 153 
world, particularly in the Global South. 154 
 155 
Here, we present a new conceptual framework for integrating human mobility with other 156 
components of human activity into a multiscale ‘Dynamic Human Footprint’. This vision builds on 157 
a rich literature quantifying human impacts on the planet 24–26, extending it by explicitly 158 
incorporating the movements of humans and their vehicles. Our framework is ‘dynamic’ in two 159 
senses – first in that it considers time-varying information on human mobility, and second, in terms 160 
of allowing flexible data aggregation across a suite of human activities (Fig. 1). We review existing 161 
terrestrial and marine human mobility data products that are of relevance to the ecological 162 
research community but have not yet been widely adopted (Fig. 2-3, Supplementary Table 1). 163 
Using recent empirical examples, we then demonstrate how emerging metrics of human mobility 164 
enable refined investigations of anthropogenic impacts on wildlife behavior, demography, and 165 
distribution. We conclude with a set of recommendations for how the ecological community and 166 
other stakeholders can make progress towards integrating a variety of human mobility metrics to 167 
achieve a comprehensive analysis of human impacts on biodiversity in the Anthropocene (Fig. 4). 168 
 169 
Measuring human mobility  170 
 171 
Here, we outline the main approaches for measuring the dynamic movement of humans and their 172 
vehicles. In 2021, mobile phone subscriptions topped 8 billion worldwide, with over 6 billion of 173 
those subscriptions registered to smartphones 27. The proliferation of mobile devices means that 174 
we can capture human mobility data across broad spatial and temporal extents in most areas that 175 
are inhabited by people. Location data are now commonly collected using mobile phones relying 176 
on onboard GPS receivers, or by identifying the network node (WiFi or cellular network tower) 177 
they are connected to 20,28. Location-based mobile phone services, such as real-time weather, 178 
social media, and fitness applications, similarly collect high-resolution location data from their 179 
users 29. The spatiotemporal resolution and continuity of these data varies greatly between 180 
technologies. While GPS can yield accurate geographic coordinates, cellular tower networks 181 



provide data at spatial resolutions varying from very accurate in urban settings to relatively coarse 182 
in rural areas, depending on local network coverage. Furthermore, various types of human 183 
mobility data vary in their temporal resolution. Data from cellular networks are often more 184 
temporally continuous than GPS data collected from smart-phone applications. 185 
 186 
While network and technology companies collect individually identifiable information, they do not 187 
typically make raw mobile phone data (publicly) available due to geo-privacy concerns and 188 
compliance with national and international regulations (e.g., General Data Protection Regulation 189 
of the European Union). Instead, human location data are anonymized, or aggregated to prevent 190 
the identification of individuals 30. Mobile network data are often aggregated into origin-destination 191 
flows, which provide information on how many users moved between two given geographic areas, 192 
such as the areas served by two mobile phone towers 31. Importantly, the quality of the estimates 193 
of human mobility derived from mobile phone data varies based on the number of devices 194 
contributing data and therefore becomes less accurate in more sparsely populated regions. This 195 
is compounded by the fact that access to, and usage of mobile devices varies across the globe 196 
21 and that users of mobile phones, and of different applications, vary geographically and in terms 197 
of their socio-demographic characteristics 32. Mobile phone uptake rates vary significantly within 198 
and among countries, undercounting rural populations 33. Therefore, human location data have 199 
inherent spatial, temporal, and socio-demographic biases and may be especially limited in 200 
characterizing activities in rural areas 34. 201 

Mobile phone tracking logs remain one of the most challenging data sources to access. Some of 202 
these challenges stem from legitimate concerns over data privacy. However, there is an 203 
increasingly large industry of private intermediary providers that charge for access to aggregated 204 
mobility indicators (e.g., Near Mobility, Outlogic, Safegraph). In response to the COVID-19 205 
pandemic, a number of private companies started making large amounts of anonymized human 206 
mobility data publicly accessible. Human location data derived from mobile phones have been 207 
widely used, for example, to plan and study the impact of government restrictions on human 208 
mobility during the pandemic 35. Research applications of these data, however, are constrained 209 
by fairly rigid data formats (e.g., aggregation or use of fixed reference baseline), which limit the 210 
potential for reprocessing 36. For example, in the case of Google Mobility products, estimates of 211 
human use of ‘greenspaces’ combine national and local parks into a single index, which may 212 
obscure ecological responses. Perhaps most importantly, there is limited clarity on the long-term 213 
support of these public products, making research planning difficult and future replication attempts 214 
impossible. In some cases, researchers have started working directly with mobile phone network 215 
operators to overcome these issues. The European Commission has asked national mobile 216 
network providers to release their network data to its Joint Research Centre to build a COVID-19 217 
mobility dashboard 37. In general, there is significant scope for strengthening collaboration 218 
between the collectors and holders of large human mobility datasets and the wider research 219 
community.  220 

An alternative to mobile phone-based approaches are data relating to various types of transport. 221 
For example, vehicular transportation data have been used during the COVID-19 pandemic to 222 
explore changes in flow of vehicular traffic 38and cycling behavior, as local authorities provided 223 
additional space for recreation 39. These types of data are commonly accessible through open 224 



data portals housed by local municipalities (e.g., 40,41) or national authorities, presenting a 225 
significant advantage over mobile phone data in terms of accessibility. The main disadvantage of 226 
these datasets is that they are typically collected idiosyncratically at specific locations, most often 227 
in urban environments, making them unsuitable for studies in more remote areas or at larger 228 
geographic scales (e.g., 42). Other types of human mobility, such as those related to agriculture, 229 
forestry and hunting, are either documented through land cover proxies or left uncharacterized. 230 

In contrast to the more regional nature of data collection in terrestrial realms, marine traffic is 231 
monitored globally by the automatic identification system (AIS) – an anti-collision network that 232 
combines transceivers on ships and both in-situ and satellite radar receivers to monitor ships’ 233 
locations. AIS data are available through private companies 43 and governmental institutions. For 234 
example, European marine data can be requested through the SafeSea net initiative 44. These 235 
data have been used to study the impacts of vessel traffic, and resultant noise pollution, on wildlife 236 
45, as patterns of global fishing effort 46,47, and the global reduction of marine traffic during the 237 
COVID-19 anthropause 48. Marine traffic has also been monitored with nightlight data from VIIRS 238 
(Visible Infrared Imaging Radiometer Suite) and VIIRS Boat Detection (VBD) across scales, from 239 
individual vessel detections per night to annual summary grids of detection tallies and average 240 
radiances 49. The global scale of marine data that are available at relatively fine spatiotemporal 241 
resolution, coupled with their good accessibility, provide ecologists with opportunities for broad-242 
scale analyses that presently are out of reach for terrestrial studies. That said, activities such as 243 
recreational fishing cannot currently be assessed at local scales, limiting our understanding of 244 
reported increases in recreational marine human activities during the COVID-19 pandemic 50. 245 

Air traffic can be tracked through data on the total number of flights by FlightRadar24 51. 246 
Additionally, data on passenger flows are available for Europe through the EU Open Data Portal 247 
52, for the US through the International Civil Aviation Organization COVID-19 Air Traffic 248 
Dashboard 53, and for 35,000 city-pairs around the world through the Civil Aviation Data Solutions 249 
(iCADS) portal 54. Air traffic was severely impacted during the COVID-19 pandemic, with 250 
temporary, but significant, reductions in commercial flights 55,56. 251 

Complementary satellite-sensed data on artificial nightlights and other by-products, such as 252 
nitrogen dioxide from fossil fuel combustion, have been used to measure aspects of human 253 
activity 57,58. For example, artificial nightlights have been used for mapping both vehicles and 254 
infrastructure, from maritime traffic to whole cities 58,59. However, these products only capture 255 
activities that occur at night and produce high-powered lighting, which must be taken into 256 
consideration when charting spatiotemporal patterns in human mobility. These data are available 257 
directly from 60. Daily satellite data on concentrations of various atmospheric gasses have global 258 
coverage 61 and are available from NASA's Earth Data center 60 and from the Sentinel 5 Precursor 259 
satellite of the European Space Agency (ESA). For example, the TROPOMI sensor on-board of 260 
the Sentinel 5P satellite provides measurements of atmospheric gasses, including the most 261 
common anthropogenic pollutants, such as NOx, SO2, ozone and others 62. Satellite-recorded 262 
nighttime images indicated dimming of light in China 58, and NO2 data documented decreases in 263 
pollution levels across European cities due to COVID-19 related changes in human activity 49,63. 264 
One obvious limitation of by-product analyses is that it is challenging to estimate the relative 265 



contributions of dynamic and static components of human activity, which – as we have argued 266 
above – is key for advancing our understanding of ecological impacts.  267 

Inputs to a Dynamic Human Footprint 268 

In isolation, each of the data types discussed above provide a valuable window into how humans 269 
use different spaces over time, but in combination, they reveal the diversity of our impacts on the 270 
environment. Current approaches to mapping the global influence of humans, particularly the 271 
Human Footprint Index 11 and the Human Modification map 25, aggregate multiple aspects of the 272 
built environment – including infrastructure, land use, and transportation networks – along with 273 
static estimates of human population density and distribution. These indices have been used 274 
extensively, and very productively, for assessing wilderness loss, protected area effectiveness, 275 
and wildlife responses to human encroachment (e.g., 12,15,64–66). Recent advances in machine 276 
learning mean that human footprint maps may be generated more rapidly, allowing for greater 277 
temporal resolution 67. Considering the increasing availability of high-quality human mobility 278 
datasets, we see an opportunity for extending the concept, by developing a vision for a framework 279 
for quantifying humans’ dynamic footprint on Earth would allow for the investigation of ecological 280 
processes (e.g., wildlife movement and related behaviors) that occur over much shorter 281 
timescales (e.g., integrating data over a migratory journey that lasts a few weeks, rather than 282 
across years or longer periods, as current measures do). 283 

Our proposed ‘Dynamic Human Footprint’ incorporates the multiple ways in which humans affect 284 
environments, by aggregating both static and dynamic metrics spanning the full range of 285 
spatiotemporal scales. Importantly, rather than computing a single index, we envision a modular 286 
set of products that can be tailored to the specific research question and ecological responses 287 
under investigation (Fig. 1). 288 

The underlying datasets supporting these footprint estimates depend on which drivers and 289 
spatiotemporal resolutions are required to link different types of human activity to ecological 290 
processes. Questions related to distributional changes for wildlife may require a global-scale, 291 
coarse-grained, human footprint estimate 46, whereas questions related to behavioral responses 292 
would necessitate a fine-grained approach, potentially limited to select locales (e.g., 22) (Fig. 1). 293 
For example, understanding behavioral responses of animals to COVID-19 lockdowns would 294 
benefit from quantifying changes in human mobility at high spatiotemporal resolutions (e.g., 295 
meters and hours) 19,68. If conducted globally, the footprint estimates for such a study would 296 
require all underlying datasets to have global extent or rely on modeling approaches for 297 
appropriate interpolation. In contrast, a study with a more limited geographic scope would be able 298 
to leverage datasets that are only available locally, such as municipal traffic-flow estimates. In 299 
general, our review in the previous section reveals a striking lack of widely available human 300 
mobility data products that could be used to address ecological responses at finer spatiotemporal 301 
scales (Fig. 1). 302 

The development of such products would ideally be based on the  data processing levels 303 
employed by NASA’s Earth Observing System Data and Information System (EOSDIS)62 and the 304 
ESA Earth Observation Data Access Portal 69. Under this system, data products are classified 305 



along a scale from raw, unprocessed data (Level 0), to corrected data (Level 1), derived variables 306 
(Levels 2-3), and, ultimately, modeled outputs (Level 4). In the context of a Dynamic Human 307 
Footprint, each dataset would be rated corresponding to its processing level. For example, 308 
unstandardized mobile device counts may be considered a Level 0 product, whereas population 309 
density estimates may be considered a Level 3 product. Combined datasets, such as daily 310 
aggregate products of human mobility, would be given a Level 4 distinction, to indicate their 311 
synthetic nature. A critical challenge in this process will be appropriately measuring the 312 
uncertainty propagated from underlying data sources to derived products.   313 
 314 
As noted above, aggregating across data types will be at the core of the Dynamic Human Footprint 315 
(Fig. 4). When integrating datasets with similar spatiotemporal resolutions and extents, we 316 
propose following previous approaches which rely on standardizing values within and among 317 
datasets (e.g., 11,25). This step alone is not necessarily straightforward, as it requires handling 318 
mismatches in resolutions and a nuanced understanding of the rescaling methods appropriate for 319 
different data types. However, we also envision scenarios where the variables of interest are not 320 
readily available across the full extent required, necessitating more sophisticated methodologies 321 
for interpolation. This would apply, for example, to high-resolution transit or human mobility data 322 
which are not currently available at global, or even regional, scales (see above). It may be possible 323 
to compute finer-scale human mobility estimates by modeling statistical relationships between 324 
coarse mobility data and satellite-sensed auxiliary data, which serve as a proxy for finer-scale 325 
movement 70,71. But this would likely involve the use of complex data-fusion methods and modeling 326 
techniques, including Bayesian approaches, for leveraging the respective best-qualities of 327 
different human mobility datasets 70,72.  328 
 329 
For example, data on the fine-scale spatial structure of outdoor recreation activity as delivered by 330 
fitness apps such as Strava could be combined with mobile-phone data (e.g., Google mobility 331 
reports) to generalize the temporal dynamics of such activities 22. In general, such approaches 332 
need to be employed cautiously, as human mobility is linked, as we had noted above, to a complex 333 
set of cultural, socio-demographic, and environmental factors that vary geographically and must 334 
be accounted for 73,74. Aggregating across data types will require explicit and careful consideration 335 
of the underlying sources of uncertainty and potentially compounding biases. For example, 336 
estimating population density by downscaling census data using mobile phone call records 337 
compared to using remotely sensing data has been shown to have opposing tradeoffs in accuracy 338 
and precision 33. Remote sensing based approaches underestimate population density in dense 339 
areas and overestimate it in less populated areas, whereas the opposite has been found for 340 
mobile phone data 33. However, combining methods delivered overall improved accuracy 33. 341 
Therefore, users should carefully assess the systematic uncertainty and biases of different data 342 
types and, as much as possible through data integration leverage the complementarity of data 343 
sources and types in this regard.  344 
 345 
In the following sections, we use recent empirical examples to showcase how a Dynamic Human 346 
Footprint could be employed to advance our understanding of human-wildlife interactions, and 347 
their effects on behavior, demography, and distributions. The datasets used in these case studies 348 
remain limited in their applicability and availability – at fine scales, they are often collected 349 



idiosyncratically (e.g., AIS 75), while at large scales, they remain relatively coarse proxies of 350 
human activity. Therefore, we see these examples as demonstrating the need for a Dynamic 351 
Human Footprint that enables research on human-wildlife interactions at appropriate – and as yet 352 
largely unachieved – spatiotemporal scales. 353 
 354 
Behavioral responses 355 
The ‘ecology of fear’ hypothesis suggests that the risk of predation alters prey behavior and 356 
physiology in the absence of direct mortality 76. A ‘landscape of fear’ is a species’ perception of 357 
the spatiotemporal patterns of that risk as a result of predator activity 77. Because many animals 358 
are thought to perceive humans as super predators 78, the landscape of fear hypothesis predicts 359 
that animals will avoid human-occupied areas in a similar fashion as they might avoid areas 360 
frequented by predators 79,80. Such human avoidance can manifest in both spatial and temporal 361 
shifts in activity. For example, many animals become more nocturnal in the presence of humans 362 
81, while some prey species select areas of high human mobility, to ‘shield’ themselves from 363 
predators (i.e., the human shield hypothesis) 82,83. Furthermore, the response may differ 364 
depending on the type of activity, such as use of motorized versus non-motorized recreational 365 
vehicles 84. As such, to study behavioral responses of wildlife, human mobility datasets should 366 
have high temporal resolution, to capture the dynamic nature of humans’ movements across 367 
habitats (Fig. 1; e.g., sub-daily human mobility or traffic data that can be collected at <1km2 368 
resolution). 369 
 370 
Implicitly or explicitly incorporating dynamic human activity data can often help understand 371 
animals’ behavioral responses. For example, by integrating land-cover and anthropogenic noise 372 
data, 85 found that the song frequency of White-crowned sparrows (Zonotrichia leucophrys) 373 
increased in response to early COVID-19 lockdown in the San Francisco Bay Area. In contrast, 374 
great white sharks (Carcharodon carcharias) showed no change in space use at a seal colony in 375 
South Australia when cage-diving tourism operations paused for 51 days during lockdown 86. By 376 
integrating dynamic human mobility data, such as driving and walking, 87 researchers were able 377 
to demonstrate that mountain lions (Puma concolor) in California ventured deeper into urban 378 
areas during the COVID-19 pandemic. These studies demonstrate the impacts of reduced human 379 
mobility with little or no corresponding change in infrastructure, indicating that dynamic and static 380 
metrics are not redundant measures of human activity.  381 
 382 
Demographic responses 383 
Human activities can influence wildlife populations by affecting critical life history stages. Vital 384 
rates (e.g., survival, fecundity) can be altered over a wide range of temporal scales (i.e., days to 385 
years) and therefore require human activity data of moderate spatiotemporal resolution (Fig. 1). 386 
Human disturbance can occur even in areas with relatively intact habitat if they attract visitors 387 
pursuing recreational activities. Outdoor recreation differs significantly throughout the week (e.g., 388 
weekends vs. weekdays) and is often spatially heterogeneous, with some areas being used more 389 
frequently than others 88. These differences in human mobility may have substantial impacts on 390 
demographic responses. For example, DeRose-Wilson et al. 89 found that recreational use of 391 
beaches impacted piping plover (Charadrius melodus) demographics, by lowering chick survival 392 
during weekends and in areas of intense use. Roads, vehicle traffic and collisions are another 393 



cause of wildlife mortality 90. Traffic reductions during early COVID-19 lockdowns in central 394 
Europe led to strong decreases in road mortality in large mammals, such as roe deer, but 395 
increased collisions with badgers indicating heterogeneous effects on demographic responses 396 
across species 91. However, human impacts on demography must not necessarily be negative. 397 
For example, Hentati-Sundberg et al. 92 discovered that tourism typically shielded a seabird colony 398 
in the Baltic from gulls and crows. When tourism declined during COVID-19 lockdowns, visitation 399 
rates by White-tailed eagles (Haliaeetus albicilla) drastically increased, causing – through 400 
disturbance, rather than predation – a 26% decrease in the productivity of common murres (Uria 401 
aalge). These nuanced responses of species to human recreation highlight the importance of 402 
integrating spatially explicit and temporally dynamic information on human mobility into ecological 403 
studies. 404 
 405 
Recent advances in detecting sensory pollutants are offering insights into how humans affect 406 
demographic processes of wildlife across larger scales 93,94. For example, datasets on 407 
anthropogenic noise and artificial light sources across the United States were combined with 408 
citizen science bird observations to show that demographic responses to these pollutants, and 409 
adjustments in phenology 95, depended on species traits and habitats 96. These results emphasize 410 
that the impacts of human activities are not uniform across species and that analyses must 411 
consider context dependence 83,97. This is key to informing the design of effective conservation 412 
interventions 94, such as reducing nightlight emission during peak migration periods or limiting 413 
recreational activities during critical times of the breeding cycle 98. 414 
 415 
Distributional responses 416 
Metrics that characterize the amount of static human infrastructure in an area are the predominant 417 
source of information used to study anthropogenic impacts on species distributions 99,100. 418 
Interactions among static and dynamic components of human activity may determine the 419 
magnitude and direction of anthropogenic impacts on species abundances and distributions. For 420 
example, 23 coupled static (human population density, human footprint) and dynamic (human 421 
noise and artificial nightlight) data with information on bird observations around feeder locations 422 
(feederwatch.org), to reveal impacts on the abundance of several bird and mammal species at 423 
continental scale 23. Similarly, by combining the static Human Footprint Index with direct records 424 
of the presence of humans captured by camera traps, 101 identified thresholds at which species 425 
with different traits are able to persist in human-dominated landscapes.  426 
 427 
While some changes in species distributions can occur abruptly over relatively short time periods, 428 
the ranges of individuals, populations and species are typically measured at coarser 429 
spatiotemporal resolutions. The integration of static and dynamic variables into a Dynamic Human 430 
Footprint will allow us to more accurately predict how the distribution of species may change in 431 
response to human by-products (such as anthropogenic noise and artificial nightlights) and 432 
human encroachment 23,83,102. Modeling encroachment in a more detailed way may allow us to 433 
identify thresholds of anthropogenic development 103 or human mobility levels, beyond which 434 
animal populations cannot persist. For example, light pollution may lead to nocturnal species 435 
abandoning or avoiding areas that would otherwise be suitable 83. This may aid our understanding 436 



of the ‘silent forest’ concept which posits that species may be absent in an area because of human 437 
activities, despite otherwise suitable environmental conditions. 438 
 439 
The activities of humans are a major driver of species extinction, and exert strong selective 440 
pressure on the evolution of species 104. The ability to consistently map human modification, 441 
showed that mammalian genetic diversity and effective population sizes are lower in urbanized 442 
areas when compared to natural areas, but less so for birds 105. Furthermore, sociodemographic, 443 
such as economic inequality and racial segregation appear to reduce overall genetic diversity in 444 
terrestrial mammals, reptiles and amphibians 106. A dynamic measure of human activities would 445 
allow quantifying the degree to which human activities may affect behavioral plasticity and 446 
evolution, and more importantly allow a framework to document behavioral changes of wildlife 447 
across a gradient of human activities in both space and time. Such a dynamic measure would 448 
allow a much more detailed exploration than the urban-rural gradient, as some rural areas 449 
experience very high and consistent seasonal influx of humans. 450 
 451 
A roadmap for data and collaboration needs 452 
 453 
The successful development of a Dynamic Human Footprint critically depends on closer 454 
collaboration among research communities, better connecting insights and approaches from the 455 
fields of ecology, conservation biology, environmental science, geographic information science, 456 
remote sensing, human geography, transportation science, and social science. To bring this 457 
vision to life will require engaging with a diverse array of government agencies, local authorities, 458 
policy makers, and private industries. In the following sections, we provide a forward-looking 459 
vision for facilitating these interactions and for collaboratively tackling specific challenges. 460 
 461 
Unify terminology 462 
Productive collaboration will require a consistent, unified terminology for discussing concepts, 463 
methods, development goals and implementation strategies. We therefore urge the wider 464 
research community to adopt a standardized set of definitions. From an ecological perspective, 465 
terminology in this realm is complicated by the wide range of use cases and associated scales of 466 
analysis. Our proposed Dynamic Human Footprint uses recently established definitions that 467 
clearly distinguish between static and dynamic components of human activity 18.  468 
 469 
Establish data standards 470 
We encourage all parties that create and use human mobility data to adopt a standardized 471 
representation and classification system for describing datasets, building upon approaches 472 
employed by NASA’s EOSDIS. Doing so, would create transparency across scientific 473 
communities and correctly distinguish between raw data and modeled or aggregated products. 474 
Adopting an existing schema already in use would promote collaboration with the remote sensing 475 
community and other fields (such as the animal tracking community; 107). Aligning the methods 476 
and data standardization used for human and animal tracking will be essential for future efforts to 477 
merge these data streams 107. We also urge greater collaboration across disciplines to ensure 478 
that end users understand the limitations of data sources and select them based on 479 
appropriateness for their application as opposed to ease of access. 480 



 481 
Commit to data sharing and long-term support  482 
Commitments from private companies to continue making human mobility data products freely 483 
available will be important for future studies on human-wildlife interactions in the Anthropocene. 484 
To date, most large data providers explicitly state that mobility reports are publicly available for a 485 
limited time to help stem the spread of COVID-19 108, suggesting that access may become 486 
restricted post-pandemic. Committing to data sharing and long-term support does not require 487 
releasing raw data and algorithms, which would raise privacy, ethical and commercial concerns. 488 
Anonymized, aggregated human mobility data products can afford invaluable insights into human-489 
wildlife interactions, and should be made available to the wider research community. 490 
 491 
Increase transparency and flexibility in data aggregation 492 
Considering that data preprocessing can have significant effects on research outcomes, we urge 493 
private companies to provide greater clarity about the methods used to generate currently 494 
available human mobility data products. Furthermore, we recommend that a higher degree of 495 
flexibility be incorporated into aggregate products. Allowing researchers to select the temporal 496 
baseline and categorical binning of aggregate mobility products would enable comparisons across 497 
different data sources and support a much broader range of research applications. This is of 498 
particular relevance for studies of animal species that routinely cross national borders, such as 499 
migratory species 109,110.  500 
 501 
Address social, demographic, economic and cultural factors 502 
Socioeconomic dimensions are increasingly being integrated into ecology and conservation 503 
research to demonstrate the myriad impacts of structural inequality 111–113. Clearly, patterns in 504 
human mobility are driven by a complex set of social, economic, and cultural factors. For example, 505 
the worldwide total activity of fishing vessels records its lowest levels during the Chinese New 506 
Year, Christmas and New Year 48. In the Middle East, the religious celebration of Ramadan, which 507 
typically greatly influences the mobility and behavior of humans across large areas, was 508 
significantly disrupted during the COVID-19 pandemic 114. We therefore urge close collaboration 509 
with human geographers and social scientists during the development of the Dynamic Human 510 
Footprint. 511 
 512 
Develop systems to monitor change 513 
It will be important for policy makers and funding agencies to support research and private-public 514 
partnerships that enable a dynamic understanding of humans’ footprint on Earth. As the COVID-515 
19 pandemic acutely illustrated, society was overall poorly prepared for changes in human 516 
behavior on large scales and is still grappling to understand the implications across sectors. For 517 
example, how the COVID-19 pandemic has impacted biodiversity across the world, and thus 518 
affected progress towards the United Nations Sustainable Development Goals 14 and 15 (Life on 519 
Water and Life on Earth), remains mostly unknown (but see 56). We therefore need to develop a 520 
higher degree of preparedness, for mapping changes in human mobility, and measuring their 521 
environmental impacts 18.  522 
 523 
Construct the Dynamic Human Footprint 524 



Being inherently dynamic in nature, the Dynamic Human Footprint will require open-ended 525 
development. Therefore, this endeavor should embed flexibility with regards to choosing data 526 
sources and modeling approaches, accommodating any future advances. In many regions of the 527 
world, high-resolution data on human mobility will be nearly impossible to collect. This is due to a 528 
variety of factors including differences in the geographical distributions of human populations, 529 
socioeconomic inequalities, technological infrastructure, seasonality, privacy concerns, and 530 
geopolitics 115. Therefore, globally, or even regionally, consistent maps of the Dynamic Human 531 
Footprint will require modeling and data-fusion approaches, which are likely to pose significant 532 
development challenges.  533 
 534 
Conclusions 535 
 536 
As the planet becomes increasingly crowded, we need to understand the complex interactions 537 
between humans and wildlife if we are to safeguard biodiversity for generations to come. 538 
Achieving this demands a rigorous accounting of the multi-dimensional aspects of human activity. 539 
We see an immense, time-sensitive opportunity for the ecological community to engage with other 540 
disciplines, to integrate data across spatiotemporal scales and operationalize a Dynamic Human 541 
Footprint. Human mobility data providers can make invaluable contributions to these efforts by 542 
improving data accessibility, data standardization, and transparency. The insights gained by 543 
incorporating a Dynamic Human Footprint into ecological studies could provide decision makers 544 
with critical novel information for designing highly effective, targeted conservation interventions. 545 
Coordination and collaboration are imperative for understanding and managing human-wildlife 546 
interactions in the Anthropocene 116. We must tackle this challenge with utmost urgency to protect 547 
the animals that are forced to share space with us. 548 
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Tables and Figures 584 
 585 
Supplementary Table 1: Datasets for static and dynamic components of human activity in the 586 
terrestrial and marine realms. 587 
 588 
Figure 1. Motivation for the development of a Dynamic Human Footprint. (left) Human activity has 589 
both static and dynamic components. In contrast to static landscape modifications (e.g., roads and 590 
buildings), human mobility encompasses the dynamic movement of humans and their vehicles. Drivers are 591 
quantified as a set of observed variables, ranging from relatively static assessments of infrastructure and 592 
population density to highly dynamic approximations of human mobility, and aggregated products. These 593 
variables can then be used to examine potential ecological responses along a range of spatiotemporal 594 
scales. (right) Each observed variable has an associated spatiotemporal resolution which dictates the 595 
ecological scales it may be appropriate for (schematic illustration, left panel). Here we show the 596 
approximate spatiotemporal resolution of example datasets and their corresponding ecological scale is 597 
indicated (right panel). Dashed lines around icons indicate datasets that are not publicly available, and the 598 
yellow dashed line highlights the current lack of publicly available datasets with high spatiotemporal 599 
resolution. For more details on a representative set of data sources see Supplementary Table 1. 600 
 601 
Figure 2. Measuring the Dynamic Human Footprint. Selected examples of datasets quantifying human 602 
activities in the terrestrial and marine realms. Spatiotemporal resolutions are presented qualitatively for 603 
comparison purposes only. Icons indicate the respective variable type, corresponding to Figure 1. (a) Staten 604 
Island, New York (March–May 2020). (top row, left to right) Mobility report at the community level, Google; 605 
tropospheric NO2, Sentinel-5 TROPOMI; Human Footprint index, 10; (middle row, left to right) nightlights, 606 
NASA VIIRS; land cover type, USGS; (bottom row, left to right) human mobility, SafeGraph; recreational 607 
activity, Strava Metro; Population Density, US Census Bureau; road network, US Census Bureau. (b) 608 
English Channel (December 2019). (top row) Cumulative human pressures, 3; (middle row) fishing effort, 609 
Global Fishing Watch; (bottom row) boat detection, NASA VIIRS. 610 
 611 
Figure 3. Timeline of the availability of different human activity data products. Lifetime of current data 612 
products, demonstrating the recent availability of many human mobility datasets from 2000 to 2022 (some 613 
products have been available for longer). Datasets are grouped and colored by categories of drivers, as 614 
introduced in Figure 1. For details on the spatiotemporal resolution and extent of terrestrial, aerial, and 615 
marine datasets, see Supplementary Table 1. 616 
 617 
Figure 4. Constructing the Dynamic Human Footprint. Framework for a Dynamic Human Footprint, 618 
leveraging a suite of input variables quantifying human mobility and infrastructure. Fundamental to 619 
achieving this vision is an integration process which begins by allowing users to select the human activity 620 
variables relevant to their application target. Dynamic measures of human mobility are primarily held by 621 
private companies; their use depends on continued support to make them available to the research 622 
community (post-pandemic), transparency about data collection and processing, and robust protocols to 623 
ensure geoprivacy and quality control. Cross-disciplinary collaboration will be necessary for developing the 624 
methodologies necessary for integrating disparate datasets across spatiotemporal resolutions. This in turn 625 
will require a unified terminology, to discuss the various components of human activity, and will be greatly 626 
assisted by adopting a standardized schema of data processing levels, to distinguish raw data from 627 
modeled or aggregated data products. In many cases, data fusion or interpolation approaches will be 628 
needed for areas where human mobility data are unavailable, which consider the underlying sociocultural 629 
context. This process will generate a suite of products that are inherently dynamic, both in terms of their 630 
flexible aggregation and their ability to generate time-varying estimates of human activity. 631 
 632 
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