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ABSTRACT

BACKGROUND: Findings from randomized controlled trials have yielded conflicting results on the association be-
tween blood pressure (BP) and dementia traits. We tested the hypothesis that a causal relationship exists between
systolic BP (SBP) and/or diastolic BP (DBP) and risk of Alzheimer’s disease (AD).

METHODS: We performed a generalized summary Mendelian randomization (GSMR) analysis using summary sta-
tistics of a genome-wide association study meta-analysis of 299,024 individuals of SBP or DBP as exposure variables
against three different outcomes: 1) AD diagnosis (International Genomics of Alzheimer’s Project), 2) maternal family
history of AD (UK Biobank), and 3) paternal family history of AD (UK Biobank). Finally, a combined meta-analysis of
368,440 individuals that included these three summary statistics was used as final outcome.

RESULTS: GSMR applied to the International Genomics of Alzheimer’s Project dataset revealed a significant effect of
high SBP lowering the risk of AD (Bgsmr = —0.19, p = .04). GSMR applied to the maternal family history of AD UK
Biobank dataset (SBP [Basmr = —0.12, p = .02], DBP [Bgsmr = —0.10, p = .05]) and to the paternal family history of AD
UK Biobank dataset (SBP [Bgsmr = —0.16, p = .02], DBP [Basmr = —0.24, p = 7.4 X 10~ %)) showed the same effect. A
subsequent combined meta-analysis confirmed the overall significant effect for the other SBP analyses
(Basmr = —0.14, p = .03). The DBP analysis in the combined meta-analysis also confirmed a DBP effect on AD
(Basmr = —0.14, p = .03).

CONCLUSIONS: A causal effect exists between high BP and a reduced late-life risk of AD. The results were obtained
through careful consideration of confounding factors and the application of complementary MR methods on
independent cohorts.

https://doi.org/10.1016/j.biopsych.2020.12.015

Alzheimer’s disease (AD) represents the most common form of
dementia (1). Epidemiological studies have found that the
earliest pathological event in disease progression is reduced
cerebral blood flow (1). Hypertension is one of the most
common conditions that degrade cerebral circulation, and it
has been found that prolonged high blood pressure (BP) is a
cause of vascular dementia in individuals under 85 years of age
(2). This evidence points to a potential link between BP and AD,
which would make BP an ideal target for early AD therapy,
given that medications able to manipulate BP exist. However,
despite several published studies including meta-analyses of
randomized controlled trials (RCTs), this association between
high BP and AD remains unclear, with many studies reporting
discordant results (3).

Several publications have investigated the relationship be-
tween midlife hypertension and late-life risk of AD (4-9), and
two meta-analyses of dementia risk factors published results in
favor of an increased risk of AD driven by midlife high BP
(10,11). However, other studies such as the World Alzheimer’s

Report and a meta-analysis conducted by the Alzheimer’s
Research Forum (alzrisk.org) reported weak and inconsistent
evidence (3,12-15) to support the association of midlife hy-
pertension and AD incidence (3). A recent RCT reported a
beneficial effect of antihypertensive drug treatment on the
occurrence of mild cognitive decline (mild cognitive impair-
ment), which is a precursor of dementia (15). However, even
RCTs, integrally designed to tackle study confounding, have
failed to provide consistent results on the dementia outcome,
either because of the long follow-up between hypertension
manifestation and dementia onset or because of an early
termination of the study (15,16).

Conversely, a recent longitudinal study on ~2.6 million in-
dividuals in the United Kingdom confirmed a moderate positive
association between long-term high BP and vascular demen-
tia, though, paradoxically, the study reported a weaker inverse
association with AD (17). The inverse association between BP
and AD first described by Gregson et al. (17) was reported as a
causal association, but such inference should be interpreted
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cautiously. These inconsistencies in the literature call for the
use of alternative methods, for instance those that target
causal effects and use complementary data sources, rather
than single cohorts. Mendelian randomization (MR) is a causal
inference methodology that can test the effect of a modifiable
exposure on a disease by using genetic variants to provide
evidence of robust associations and incorporates the advan-
tage of summary statistics from large-cohort genome-wide
association studies (GWASSs) (18).

In this study, two-sample MR approaches were used to
assess the potential causal relationship between high BP
(systolic BP [SBP]/diastolic BP [DBP]) and AD risk. Data were
obtained from a collection of complementary sources,
including large-scale GWAS analyses on blood pressure (BP)
(19) and Alzheimer's disease (AD) (20) and the UK Biobank
(UKBB) (21), which is one of the largest genetic and phenotypic
data resources available to researchers today (22).

METHODS

This study relied on de-identified summary-level data that have
been made publicly available (the International Consortium for
Blood Pressure [ICBP] GWAS and the International Genomics
of Alzheimer’s Project [IGAP] GWAS) and on the patient-level
UKBB phenotypic and genetic data; ethical approval was ob-
tained in all original studies and for the UKBB data usage
(application No. 43309). Data were analyzed for this study from
January 1, 2019, to June 30, 2019.

Data Sources

The analyses were performed using genetic instruments
associated with BP selected from summary statistics of a
recently published Stage 1 GWAS meta-analysis as part of the
ICBP (19). The association estimates between BP genetic in-
struments and AD were obtained from four GWAS summary
statistics: 1) the IGAP GWAS (20); 2) maternal UKBB family
history of AD (MFH-UKBB); 3) paternal UKBB family history of
AD (PFH-UKBB); and 4) a combined meta-analysis that used
the IGAP, MFH-UKBB, and PFH-UKBB GWAS results (MA-AD)
(21). The IGAP cohort uses AD diagnosis as an outcome
measure. The UKBB cohort uses self-reported family history of
AD/dementia as a proxy for AD diagnosis. The accuracy of this
measure has been shown using genetic correlation analysis
and reported by Marioni et al. (21). Full cohort and variable
descriptions are provided in the Supplement.

Instrument Selection Criteria

We used the following selection criteria to choose the genetic
instruments: a set of single nucleotide polymorphisms (SNPs)
that reached GWAS significance (o < 5 X 107%) (18) in asso-
ciation with DBP and/or SBP; all SNPs were confirmed in
previous publications (19). In order to assess whether any
genetic instrument was previously associated with AD as an
outcome and remove possible confounding, we searched the
PhenoScanner GWAS database (version 2; http:/
phenoscanner.medschl.cam.ac.uk) (23) and removed SNPs
that reached genome-wide significance (o < 5 X 1078 in
published dementia GWASSs. As part of the data harmonization
process, we checked that all effect/reference alleles were in
agreement with the dbSNP151 reference in all used summary
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statistics (19-21) and in the UKBB family history results from
the paternal and maternal logistic regression analyses
described below. All nonmatching alleles were switched
(A1=A2 and A2=A1) and the sign of the beta estimates
changed. For quality control, we checked for reciprocal strand
alleles (e.g., C=G and T=A), excluding alleles with ambiguous
SNPs and allele frequencies between 0.4 and 0.6. All instru-
ment SNPs present in the UKBB were in Hardy-Weinberg
equilibrium (p > 1 X 1079, and they also had a minor allele
frequency >1% and imputation quality info score >0.9. A list
of genetic instruments is reported in Table S1. We retained a
total of 81 genome-wide-significant SNP instruments from the
ICBP summary statistics (DBP, n = 61; SBP, n = 64) (19), and a
description of the SNP exclusion is reported in the
Supplement.

Mendelian Randomization

We tested the hypothesis that high BP may have a causal
effect on AD. We performed a two-sample MR analysis using
beta estimates of the ICBP Stage 1 meta-analysis
(Supplement) as exposure for BP in the MR design, and the
following datasets as outcome for AD: 1) B estimates and
standard errors (SEs) of AD from the IGAP (20) (see
Supplement); 2) log-transformed odds ratios (ORs) and SEs
obtained from analysis of MFH-UKBB and PFH-UKBB data
(Supplement); and 3) B estimates and SEs of a combined meta-
analysis summary statistics (MA-AD) (21) (Supplement) that
used IGAP, MFH-UKBB, and PFH-UKBB data. Our main
analysis comprised a generalized summary MR (GSMR) using
the GSMR R package (24), which excludes SNPs that show
evidence of pleiotropic effects by the heterogeneity in
dependent instruments outlier analysis (HEIDI-outlier test <
0.01). We therefore estimated a causal association between
the exposure and the outcomes using the GSMR method (24).

We used 10,000 randomly selected unrelated samples from
the UKBB dataset as a reference to determine linkage
disequilibrium patterns, and we clumped SNPs for indepen-
dence if correlated at /2 > .001. Only one representative SNP
was retained.

We subsequently performed a sensitivity analysis for each
dataset combination using the TwoSampleMR R (25) package
to conduct MR analysis using inverse variance-weighted (IVW)
meta-analysis with fixed/random effect and MR-Egger
regression. The IVW is the equivalent of a weighted regres-
sion of exposure on outcome effects with the intercept con-
strained to zero. Owing to this constraint, the results can be
biased if instrument SNPs show horizontal pleiotropy. This can
be caused by the influence on the outcome through causal
pathways other than the exposure (26). We therefore
compared the IVW results with the MR-Egger regression,
testing whether the MR-Egger intercept was different from
zero. This was used as an indicator of average pleiotropic bias
because this regression intercept is not constrained at the
origin. Although the MR-Egger method’s estimate is known to
be relatively robust to the presence of pleiotropy, it is also
affected by a reduced statistical power (18). Therefore, in
presence of pleiotropy, an MR-Egger regression estimate was
used; in case of no pleiotropy, an IVW-MR estimate was
preferred. Moreover, in order to detect heterogeneous
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outcomes, we further included leave-one-SNP-out analyses
and the modified Cochran Q statistic, also implemented in the
TwoSampleMR R package (25). In both SBP and DBP ana-
lyses, we scaled MR estimates per standard deviation differ-
ence of the risk factor.

IVW-MR estimates were also used to produce post hoc
power calculations for each MR analysis using an online MR
power calculation tool (https://sb452.shinyapps.io/power/)
(27). The coefficient of determination (R?) of exposure on ge-
netic variants was calculated on the total allele score using the
TwoSampleMR R package.

RESULTS

Mendelian Randomization

SNPs were used as instruments in GSMR on three different AD
exposures: 1) AD risk from the IGAP, 2) MFH of AD (MFH-
UKBB), and 3) PFH of AD (PFH-UKBB). Finally, subsequent
meta-analysis (MA-AD) confirmed results by combining the
IGAP, MFH-UKBB, and PFH-UKBB outcomes. We used
sensitivity analyses to measure the effect of employing
different types of MR methods, IVW-MR and MR-Egger, and of
pleiotropy.

Results using the IGAP dataset showed a statistically sig-
nificant protective causal effect of SBP on AD (Bgsvr = —0.19,
p =.04) (Figure 1A). IVW-MR with random effect and MR-Egger
confirmed the GSMR results for SBP (Bxy-nw = —0.19, p = .03;
Bxy-MRr-Egger = —0.72, p = .03). No pleiotropy was detected in
this case. The DBP analysis in the IGAP did not show evidence
of a causal relationship (Besmr = —0.06, p = .55) (Figure 1B).
We additionally performed the same analyses in IGAP
excluding the ambiguous-strand SNPs that were included in
the previous analysis. The alternative results did not deviate
significantly from the original DBP analysis in the IGAP
(data not shown). Sensitivity analysis detected a source of
pleiotropy (MR-Egger intercept, p < .01), and the MR-Egger
regression estimates confirmed an inverse causation in the
DBP ([Z“Sxy_,\,”q_Egger = —0.95, p =39 X 10_3) analysis. No evi-
dence of confounding heterogeneity of effect sizes (leave-one-
out; Cochran Q statistic, p > .10) was observed in either of
these two analyses.

In the UKBB cohort, estimates confirmed a protective
causal relationship between both SBP and DBP with AD family
history: MFH-UKBB (SBP [Bgsvr = —0.12, p = .02], DBP
[Basmr = —0.10, p = .05], PFH-UKBB (SBP [Baswr = —0.16, p =
.02], DBP [Besmr = —0.24, p = 7.4 X 107%) (Figure 1C-F).
Sensitivity analyses found no evidence of confounding het-
erogeneity of effect sizes (leave-one-out; Cochran Q statistic,
p > .10) or from pleiotropy (MR-Egger intercept, p > .05).
Furthermore, IVW-MR with random effect confirmed the GSMR
results: SBP (MFH-UKBB [Byy-vw = —0.12, p = .02], PFH-
UKBB [Byy-nw = —0.17, p = .03])), DBP (MFH-UKBB
[Bxy-ww = —0.10, p = .03], PFH-UKBB [Byy-ww = —0.24, p =
3.1 X 107%) (Table 1).

We subsequently estimated an overall estimate between BP
and the combined meta-analysis (MA-AD) (24). A total of 64
SNPs for SBP and 59 SNPs for DBP overlapped between
the UKBB and IGAP datasets. For SBP, we confirmed the
overall significant causal effect (Basmr = —0.14, p = .03;
Bxy-vw = —0.14, p = .03) (Figure 1G; Table 1). For DBP, we

also confirmed a protective effect of high DBP and AD
(BGSMR = — 0.14, p = .03; Bxy»IVW = —0.14, p = .03; Bxy—MR—
ggger = —0.50, p = .02) (Figure 1H; Table 1). No evidence of
pleiotropy (MR-Egger intercept, p > .05) or heterogeneity of
effect sizes was found in either of these two analyses (leave-
one-out; Cochran Q statistic, p > .10).

Both the MFH-UKBB and PFH-UKBB datasets reached a
moderate power to detect a causal effect both in SBP analyses
(MFH-UKBB, 51.6%; PFH-UKBB, 53.3%) and in DBP analyses
(MFH-UKBB, 46.7%; PFH-UKBB, 86.7%). Also, statistical
power of 63.1% was reached using the IGAP dataset in the
SBP analysis, but reduced power of 12.1% was evident when
using DBP genetic instruments. The overall analysis using the
MA-AD results reached a minimum of 94.2% power in the SBP
analyses and a maximum of 95.6% power in the DBP analyses
(Table S2).

Observational analyses of the relationship between BP
measurements and family history of AD were estimated in the
UKBB dataset (methods reported in the Supplement; cohort
summary statistics in Table S3). Logistic regression analyses
adjusting for age, sex, body mass index, smoking, hyperten-
sion medication, 40 principal components, genotype array,
and genetic batch were performed. Results showed that SBP
was associated with a protective effect on family history of AD
(Figure 2; Supplement), which was detectable after both causal
and observational estimates were scaled to a genetically pre-
dicted 10-mm Hg difference in BP. This protective effect was
unchanged when the observational model was adjusted for
antihypertensive drugs (Figure 2).

DISCUSSION

Several publications suggest that high BP manifested in
midlife may contribute to an increased risk of AD in late life
(4-9), and two meta-analyses supported this result (10,11).
However, a meta-analysis published by the Alzheimer’'s
Research Forum suggested that no association exists be-
tween midlife high SBP or high DBP and the incidence of AD
but suggested that an inverse association between late-life
hypertension and AD does exist (12). Similar contradictory
results have been reported by other meta-analyses including
observational studies or meta-analyses of RCT studies that
had not been able to determine a clear effect of midlife use of
antihypertensive drugs and late-life risk of dementia
(Supplement and Table S4). A possible cause of these con-
tradictory results might be that observational studies analyze
correlation, rather than causation, and that RCT studies did
not reach statistical power. In this study, we performed two-
sample MR analysis, using publicly available GWAS sum-
mary statistics and the UKBB dataset, to test for a causal
association between higher levels of BP due to genetic pre-
disposition and lower AD risk. Using family history of AD as a
proxy for AD status, we report evidence of a protective effect
of genetically inherited higher levels of BP and a lower chance
of having PFH or MFH of AD. A logistic regression analysis of
family history of AD and BP was also performed in the UKBB,
reporting an association between high BP levels and reduced
risk of AD. Findings from the MR and logistic regression an-
alyses showed similar standardized ORs (Figure 2). Our data
confirm previous findings (27), and by selecting larger sample
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E c% © 8 g % 58 §§ § B Q" & :,“E’ pendent, and if weak instrument bias were an issue, effects
3 e g §§ f_ 5+ % % é 'g'ff would be in the direction toward the null and, therefore,
- P §A . 5 g8 § é 2 § ‘gg ;%E g would not be _the cause of overestimation of the MR esti-
® Bl & 2 & £ 2 |8vs8gn§T5EC mates (18). It is also important to note that the overlap of
s g|s SESEY |=38% gﬂﬁ“ol E2 285 SNPs between these two previous MR studies (28,29) and
s 3|5 g9 Ev ¢ SP82<3 &°¢ our results is marginal (Table S1).
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Figure 2. Forest plot of Mendelian randomization (MR) and logistic regression estimates of the relationship between systolic blood pressure (SBP)/diastolic
blood pressure (DBP) and family history of Alzheimer’s disease (AD) or AD diagnosis. The forest plot figure reports both observational and generalized
summary Mendelian randomization (GSMR) estimates of the relationship between DBP and SBP and dementia outcome. The MR outcome variable used
genome-wide association study summary statistics from the following: BP exposure, using the International Consortium for Blood Pressure (ICBP) meta-
analysis (19); AD diagnosis, using the International Genomics of Alzheimer’s Project [IGAP] Stage 1 meta-analysis (19); paternal family history (PFH) of AD
and maternal family history (MFH) of AD, using the UK Biobank (UKBB) database; and a combined meta-analysis (MA-AD) including PFH-UKBB/MFH-UKBB
data and the IGAP meta-analysis (21). A separate logistic regression analysis used family history of AD and either the first or the second BP measurement,
adjusting the model for population stratification, genetic batch, array, assessment center, body mass index, age at assessment, sex, smoking (binary [smoker/
ever smoker]), and hypertension medication (binary [yes/no]). Red line indicates no effect. Red dots represent odds ratio (OR) per genetically predicted 10-mm
Hg difference in BP, and bars represent 95% confidence intervals (Cls). bx (beta estimatese,posurer) and by (beta estimates,uicome(an) Were used in the MR
analyses. *An MR-Egger test intercept different from zero was observed, indicating a source of pleiotropy. cov, covariates; Logistic Reg., logistic regression

analysis.

On the contrary, the MR study published by Andrews et al.
(30) included a larger number of instrument SNP variables
compared with the two previously published MR studies and
used the same exposure GWAS dataset associated with BP
used in the present study (19). Owing to usage of different
GWAS outcome datasets, we tested the instrument variables
used in the analyses reported in this study [excluding the
novel SNPs reported by Evangelou et al. (19) but included by
Andrew et al. (30)] against the recent GWAS meta-analysis on
AD diagnosis (31) used by Andrew et al. (30). Our analyses
did not reach enough statistical power for either SBP (OR,
0.97 [95% CI, 0.89-1.05]; 13.3% power) or DBP (OR, 0.96
[95% ClI, 0.84-1.10]; 8.4% power) to detect a true causal
effect, whereas Andrew et al. (30) reported a power of 72%
for SBP and 88% for DBP analyses. However, the authors
(30) reported the presence of heterogeneity in both MR
models, while we did not find any evidence that our analyses
required further corrections when using only established
SNPs associated with BP. These sensitivity analyses’ results
are reported in the Supplement (MR power analyses in
Table S2 and MR analyses in Table S5) and have not been
used in our main analyses owing to a lack of statistical power
in the MR method.

Study Limitations

Self-reported parental family history of AD and dementia from
UKBB participants was employed as a proxy phenotype for
assignment of cases and controls in this study. We accept that
this information could be affected by a self-reporting bias;
however, along with variable accuracy, this was already
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evaluated through genetic correlation analysis in a global
meta-analysis showing that self-reported information of
parental AD can indeed reflect an accurate proxy for clinical
diagnosis (21). It should be noted that all individuals included
in these datasets were of European ancestry (19-21), which
limits the applicability of our findings to more diverse ethnic
populations.

There are several potential confounders that were consid-
ered when planning this study. First, to overcome the issue of
population stratification, we corrected the UKBB genetic as-
sociations for population relationship by including genetic
principal components (32). Second, antihypertensive medi-
cation use has a modifying effect on the exposure, and this
confounding might have induced the inverse causal effect
detected by our MR analysis between AD risk and high BP
(17,28). Meta-analyses that published the effect of antihy-
pertensive medications on AD show contradictory results
(either a protective effect or no effect) (Table S4). Our
observational results remained unaffected after adjusting for
this (Figure 2), and a recent study that used an MR approach
to determine the effect of antihypertensive drugs on AD risk
did not detect any causal effect by alleviating high BP (33).
Third, the risk of death associated with high BP could
compete with the risk of dementia, and associations detected
might be affected by survival bias (17,34). Specifically, the
follow-up of individuals genetically predisposed to high BP
(SBP/DBP) might be discontinued owing to the higher mor-
tality rate (due to other clinical complications, such as stroke
or heart attack) (35) of this group without reaching dementia
diagnosis (17).

Biological Psychiatry April 15, 2021; 89:817-824 www.sobp.org/journal


http://www.sobp.org/journal

High Blood Pressure and Dementia: A Two-Sample MR Study

It is also important to note that the UKBB is a healthy
volunteer cohort (36). Therefore, we tested whether the
offspring of parents with an AD diagnosis had a healthier life-
style by comparing the moderate-to-vigorous physical activity
score (37) in individuals with either PFH or MFH history of AD
against controls with no family history. The comparison of the
moderate-to-vigorous physical activity score means in the
offspring groups with family history of AD and no family history
of AD showed no statistically significant differences (Table S6).
Therefore, a change in the offspring lifestyle, hence physical
activity, does not seem an attributable confounding factor
influencing results interpretability.

The UKBB included individuals with AD family history with
age at assessment close to AD average age at onset of 65
years (MFH: median age 61 years; PFH: median age 59 years)
compared with subjects with no AD family history (median age
57.5 years) (Table S6). On the one hand, when comparing
UKBB BP measurements in these two groups (Table S7A, B)
by subgrouping them in age groups, hypertension was
detected neither in the group <50 years of age nor in the group
with age ranging from 50 to 59 years, nor was hypotension
detected in the group >60 years of age, as we could expect
considering recent findings of midlife hypertension and late-life
hypotension in AD subjects (38). On the other hand, hyper-
tension between 140 and 150 mm Hg was observed in the
group >60 years of age, and the family history of AD groups
showed a slightly lower overall BP compared with the group no
family history of AD. This could still imply a healthier volunteer
composition of the UKBB (36).

However, the IGAP study, by including AD-diagnosed pa-
tients with a minimum age at onset of 68 years and older,
presented similar MR results, included either as an MR
outcome by itself or in combination with the UKBB in an overall
meta-analysis (MA-AD) (21). It still needs to be addressed
whether possible hypotension could explain the results ob-
tained using the IGAP summary statistics, considering that no
BP measurement was provided by the IGAP consortium.

In conclusion, this study leverages support for a causal
association between high SBP and/or high DBP BP profiles
and a reduced late-life risk of AD. Our findings were obtained
by analysis of the estimates associated with genetic in-
struments, previously identified by GWASs within participants
of European ancestry. This was followed by the application of
multiple MR methods to minimize the extent of confounding
factors and allow exclusion of genetic instrument outliers.
Nevertheless, further research is required to confirm the impact
of the use of antihypertensive drugs on dementia outcomes
and address potential survival bias, in order to determine
whether the protective causal effect detected in the present
and previous MR studies (26) can describe the true nature of
the relationship between BP and AD.
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