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A B S T R A C T

In this article, discrete and stochastic changes in (effective) population size are incorporated into the spectral
representation of a biallelic diffusion process for drift and small mutation rates. A forward algorithm inspired
by Hidden-Markov-Model (HMM) literature is used to compute exact sample allele frequency spectra for
three demographic scenarios: single changes in (effective) population size, boom-bust dynamics, and stochastic
fluctuations in (effective) population size. An approach for fully agnostic demographic inference from these
sample allele spectra is explored, and sufficient statistics for stepwise changes in population size are found.
Further, convergence behaviours of the polymorphic sample spectra for population size changes on different
time scales are examined and discussed within the context of inference of the effective population size. Joint
visual assessment of the sample spectra and the temporal coefficients of the spectral decomposition of the
forward diffusion process is found to be important in determining departure from equilibrium. Stochastic
changes in (effective) population size are shown to shape sample spectra particularly strongly.
1. Introduction

Population demography is difficult to infer reliably, even with-
out considering its interplay with different modes of selection (Johri
et al., 2022). Here, we consider an analytically tractable framework
for modelling and inferring demography that is efficient in terms of
its use of the often limited information within site frequency data.
Specifically, we utilise a previously proposed hidden Markov method
(HMM) inspired approach (Bergman et al., 2018b) that allows for
exact computation of the expected sample allele frequency spectrum
of a single population across time, assuming this population evolves
according to a diffusion process with a generator that permits a spectral
decomposition. We will assume a Moran diffusion process for drift and
small mutation rates (Vogl and Bergman, 2016). The HMM-inspired
method, especially when applied to a diffusion with small mutation
rates, is particularly efficient for modelling non-constant population
size dynamics through approximation by sequences of epochs of piece-
wise constant population sizes, and this will form the backbone of
our article. We develop, analyse, and discuss three specific demo-
graphic models: (i) a single deterministic shift in population size, to
model simple population growth or shrinkage, (ii) series of alternating
fixed population sizes, which mimic population boom-bust cycles, and
(iii) stochastic changes in population size that occur according to an
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autoregression model. The deterministic demographic models (i) and
(ii) are hardly new within this modelling context (Song and Stein-
rücken, 2012; Lukic et al., 2011; Zivkovic and Stephan, 2011; Zivkovic
et al., 2015), however, our assumption of small mutation rates further
simplifies the exact calculation of expected sample allele frequencies in
these cases. To the best of our knowledge, the stochastic demographic
models (iii) are novel. They utilise the theory of autoregression pro-
cesses commonly used in econometrics (see Johnston, 1960, Chapter 7).
Further, we find sufficient statistics for inferring changing population
sizes (under simplifying assumptions). This enables us to propose a
small-scale but reliable inference framework and contribute to the
discussion around the limitations of inference of demography from site
frequency data, particularly using spectral methods (Myers et al., 2008;
Bhaskar and Song, 2014).

Both Kingman’s 𝑛-coalescent (Wakeley, 2009, Chapter 3) and diffu-
sion approaches have been used to generate the expected distribution
of allele frequencies (i.e., the site frequency spectrum) of population
samples (e.g., Sawyer and Hartl, 1992; Griffiths and Tavaré, 1998; Fu,
1995; Griffiths, 2003; Evans et al., 2007). Coalescent approaches yield
accurate closed form solutions for small to moderate sample sizes, but
for large sample sizes numerical problems generally arise. Coalescent
approaches involve multiple steps: Starting with all observed lineages
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at the present time and looking back, each expected coalescent time,
i.e., the duration for which the number of lineages remains constant,
is determined. Conditional on the coalescent time and number of
lineages present, the expected number of mutations on each thereby
constructed branch of the genealogy is calculated. The expected sample
allele frequencies follow from summing mutations along the bifurcating
lineages. This process is cumbersome particularly with changing popu-
lation sizes: To circumvent numerical pitfalls, computationally intense
simulations are often employed (e.g., Hudson, 2002; Excoffier et al.,
2013). Even computationally more efficient analytical solutions for
simplified scenarios can require slow high-precision numerics (Marth
et al., 2004). Coalescent methods based on utilising the spectral de-
composition of the transition matrix describing the decrease of distinct
lineages across generations from the sample to the most recent common
ancestor (i.e., the ‘‘matrix coalescent’’, (Wooding and Rogers, 2002))
for determining the expected coalescent times, do not require such
libraries for stepwise constant population sizes (Wooding and Rogers,
2002; Polanski and Kimmel, 2003) and exponential growth scenar-
ios (Polanski and Kimmel, 2003; Bhaskar et al., 2015). Other growth
patterns have also been well-approximated analytically (Chen, 2019).
Aside from the incorporation of different growth patterns, the ‘‘matrix
coalescent’’ approach has also been extended to the calculation of
the expected site frequency spectra of general coalescent processes,
which include coalescent models that explicitly include multiple and
simultaneous coalescent events (Spence et al., 2016). A more recent,
compellingly straightforward but not yet popularised matrix method
for determining expected sample spectra assuming either the classic or
a more general coalescent model utilises phase-type theory (Hobolth
et al., 2019): So-called phase-type distributions are constructed via
convolutions or mixtures of individual exponential distributions; since
the individual branch lengths in coalescent trees are exponentially
distributed, many measures of interest to population geneticists can
easily be determined by application of results from phase-type theory.

Incorporation of non-constant population sizes into diffusion equa-
tions is considered comparatively conceptually straightforward to the
classic coalescent approaches; however, closed form solutions for ex-
pected sample allele spectra are available only when considering con-
crete sampling schemes in combination with the backward diffusion
process (Griffiths, 2003). Analytically tractable solutions to the diffu-
sion density itself have long been studied in population genetics: Kimura
(1955a) showed that the biallelic Wright–Fisher diffusion for popula-
tion allele frequencies can be re-parameterised to the so-called oblate
spheroidal differential equation. The general solution to the system is
an infinite sum over: i) A spatial component constituted by the eigen-
vectors that depends solely on the allele frequencies. It is given by a
class of weighted orthogonal polynomials with a normalisation constant
that is determined by the initial population conditions. ii) A temporal
component modulating the change of polymorphic allele frequencies
over time by the corresponding eigenvalues. Kimura often assumed
the infinite sites mutation model (Kimura, 1969), where each novel
mutation hits a previously unmutated site. Formal treatment of neutral
parent-independent mutation diffusions by others followed Shimakura
(1977), Griffiths (1979), and a more direct mathematical approach
was introduced by Song and Steinrücken (2012): If the generator
associated with the biallelic diffusion process fulfils certain mathe-
matical requirements, a spectral decomposition can be applied to find
an analytical representation of the allele transition density (extension
to the multiallelic case in Steinrücken et al. (2013)). Applications to
diffusion processes with recurrent mutations and selection of arbitrary
strength have been demonstrated (which goes beyond Kimura, who
models only weak selection). Note that the spectral decomposition of
the diffusion generator for populations with deterministic, piecewise
constant population sizes under selection and with mutations segre-
gating as per the infinite sites model has also been derived Zivkovic
et al. (2015). To obtain explicit results for the expected sample allele
56

frequencies from the transition densities for populations obtained using
either of the above methods, binomial sampling at the extant time is
required (Griffiths, 2003). This sampling, coupled with a system of
ordinary differential equations on the moments of the sample spectrum
derived from the time-reversed Wright–Fisher diffusion (Evans et al.,
2007), also provides analytical equations for the sample site frequency
spectrum while by-passing exact calculation of the transition density
itself (Zivkovic and Stephan, 2011; Zivkovic et al., 2015).

In Bergman et al. (2018b), analytical formulae for the transition
densities are used to obtain the sample allele spectra via a dynamic
programming approach: The continuous allele proportions of biallelic
Moran diffusion processes are treated as latent/hidden variables, and
realisations of discrete sample allele frequencies at predetermined inter-
vals across time are treated as emission/observed variables. The logic
of the classic forward–backward algorithm from Hidden Markov Model
(HMM) literature (Rabiner and Juang, 1986) can then be applied for
inference: e.g., the probability of observed sample allele frequencies
at extant time given assumptions on the population parameters can
be determined via the forward algorithm, and the combination of the
forward and backward algorithms can be utilised to calculate the joint
probabilities of population and sample allele proportions at any point
in time. Recall that standard Moran/Wright–Fisher diffusions are con-
sidered dual processes to the coalescent in the sense that the expected
allele proportions that these models yield are identical, once the state
spaces are made comparable by an appropriate function. It can, e.g., be
shown that the neutral biallelic Moran diffusion model with recurrent
mutations (which is equivalent to parent-independent mutations) in the
first half of Bergman et al. (2018b) is dual to variants of Kingman’s co-
alescent with respect to the binomial sampling scheme (Tavare, 1984;
Etheridge and Griffiths, 2009a; Chaleyat-Maurel and Genon-Catalot,
2009; Papaspiliopoulos and Ruggiero, 2014). From the HMM theory
it follows that the hidden probabilities of population allele proportions
can be computed at a cost polynomial in the number of observations
via finite mixtures of distributions involving the coalescing dual pro-
cess (note that this is for constant population sizes, Papaspiliopoulos
and Ruggiero, 2014). By comparison, the transition densities of the
forward diffusion processes in Bergman et al. (2018b) are already
made tractable by expansion into infinite spectral sums involving poly-
nomials, and representation of the binomial sampling scheme as a
finite sum of corresponding orthogonal polynomials then enables all
HMM tasks to be performed using finite spectral sums of the order
of the sample size. This ties to the long-established duality between
the spectral representation and the diffusion (Griffiths and Li, 1983;
Griffiths and Spanò, 2010). However, the finite expansion up to the
haploid sample size 𝐾 (rather than an infinite expansion) also reduces
the computational burden of the system. Note that similar reasoning
is implicit in the moment method of Zivkovic and Stephan (2011),
Zivkovic et al. (2015), who forgo exact calculation of the transition
densities.

In the second half of Bergman et al. (2018b), the same HMM
approach is applied to the spectral representation of the diffusion limit
of the so-called boundary mutation Moran model (Vogl and Clemente,
2012; Vogl and Bergman, 2016). It is assumed that the expected
heterozygosity is less than about 2.5 ⋅ 10−2 (Vogl and Clemente, 2012),
which is true for most eukaryotes (Lynch et al., 2016). Through a first-
order approximation in the overall scaled mutation rate to the general
mutation Moran model, mutations segregating in a sample of moderate
size can then be modelled to occur only at previously monomorphic
sites and normalised so they enter the polymorphic region at a con-
stant equilibrium rate in relation to drift. While ‘‘back-mutations’’ are
generally allowed, they are excluded while the allele is polymorphic.

In this article, we extend the spectral representation of the boundary
mutation Moran model for drift and small mutation rates (Vogl and
Bergman, 2016) (recap in Section 2.4) to both deterministic and
stochastic piecewise constant (effective) population sizes (see Sec-
tions 3.1, 3.3, 3.4, 3.5). At this point we would like to note that any

appropriate measure of the census or effective population size could
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be assumed to vary within our models (hence our use of (effective)
population sizes); we explicitly discuss estimation of the effective pop-
ulation size as it relates to our demographic models in our Conclusions
(Section 4). In the main part of the article, we examine changes
in size occurring on different time scales, we determine analytical
expressions for the resulting sample site frequency spectra via the
forward algorithm from the HMM-inspired method (Vogl and Clemente,
2012; Vogl and Bergman, 2016) (recap in Section 2.4). These enable
us to assess the convergence behaviour of the sample spectra vs the
expected convergence of the effective population size for these differing
time scales, and discuss whether this matches expectations from past
literature. Further, we propose an agnostic inference framework for
inferring past (effective) population sizes from these sample spectra
(see Section 3.2). Throughout, we wish to emphasise that the use of
the boundary mutation model simplifies the spectral representation
of the transition densities (which we discuss in Section 2.5): Changes
in population size, and thus the overall scaled mutation rate, affect
only the temporal component. Therefore, only a single full spectral
decomposition is required rather than one per population size change
as in the more general mutation models used both in the first half
of Bergman et al. (2018b) and in the moment methods of Zivkovic and
Stephan (2011), Zivkovic et al. (2015).

2. Methods: general mathematical framework

2.1. Outline

To start off, we provide an introductory sketch of the methods
utilised in this article, and their purpose within the context of this
article in particular. We will assume 𝐿 genomic sites, which have
volved independently according to a biallelic mutation-drift model.
uch biallelic systems are determined from the four letter DNA alphabet
ither by polarisation of alleles into ancestral and derived (as in the
nfinite sites model), or by intentional nucleotide grouping, e.g., by
ontrasting the bases adenine and thymine vs the bases cytosine and
uanine; here, we will assume reversible mutations and thus data in
he form of the latter. At the extant time, which we designate as 𝑡 = 0,
sample of 𝐾 haploid individuals with these 𝐿 sites is taken and parti-

ioned into an observed site frequency spectrum 𝒚 = (𝑦0,… , 𝑦𝑘,… , 𝑦𝐾 )
ccording to the number of focal alleles 𝑘 in the sample, which will
enerally be either the ancestral type or a chosen group of nucleotides,
hereby ∑

𝒚 =
∑

𝑘 𝑦𝑘 = 𝐿. If we denote the probability of observing 𝑘
ocal alleles as 𝑝𝑘 we can write the likelihood of observing the full site
requency spectrum as the following multinomial distribution:

Pr(𝑦0,… , 𝑦𝐾 ∣𝐿, 𝑝0,… , 𝑝𝐾 ) . (1)

ote that the exact distribution the event probabilities 𝑝𝑘 follow will
iffer according to the underlying mutation model, and need not corre-
pond to the stationary sampling distributions; when they do, we will
enote them as �̄�𝑘. In any case, the shape of the resulting spectrum
iven the event probabilities is governed by the overall scaled mu-
ation rate 𝜃 (which is a model-dependent multiple of the (effective)
opulation size and the overall genomic point-wise mutation rate per
eneration 𝜇), as well as the mutation biases 𝛽 towards the focal allele
nd 𝛼 = 1 − 𝛽 away from the focal allele. Throughout this article, we
ill assume that the source population of our sample has reached an
volutionary equilibrium with respect to the mutation bias. However,
he (effective) population size and thus 𝜃 are assumed to have changed
ver time, which runs from −∞ to 0, and consequently the shape of the
olymorphic site frequency spectrum sampled at the extant time may
iffer from equilibrium expectations. Specifically, this means there is
n underlying vector 𝜽 of past overall scaled mutation rates, where the
ntries 𝜃𝑗 represent a constant value that the mutation rate takes within
he epoch 𝑗 between the epoch break points at times 𝑡𝑗−1 and 𝑡𝑗 . In the
est of this section, we will provide a mathematical introduction to the
57

pecific continuous (diffusion) model that describes the evolution of the
source population, and then introduce the method we apply to analy-
tically determine the discrete event probabilities 𝑝𝑘 given the vector 𝜽
and the corresponding epoch break points; the expected observed site
frequency spectrum given these event probabilities then follows. The
novelty of the current article and focus of the following sections is then
to vary 𝜽 and the epoch break points to model specific demographic
scenarios, and then assess the effect on the expected sample spectrum.

2.2. General mutation model

Let us begin by considering the transition rate density 𝜙(𝑥, 𝑡) of
opulation allele frequencies 𝑥 ∈ [0, 1] along a continuous time axis.
he standard forward Kolmogorov (Fokker–Planck) diffusion equation
perating on this transition density for biallelic, reversible mutations
nd drift at each genomic site is given by:

𝜕𝜙(𝑥, 𝑡)
𝜕𝑡

= − 𝜕
𝜕𝑥

(

𝜃𝛽(1 − 𝑥)𝜙(𝑥, 𝑡) − 𝜃𝛼𝑥𝜙(𝑥, 𝑡)
)

+ 𝜕2

𝜕𝑥2
𝑥(1 − 𝑥)𝜙(𝑥, 𝑡)

= − 𝜕
𝜕𝑥
𝜃(𝛽 − 𝑥)𝜙(𝑥, 𝑡) + 𝜕2

𝜕𝑥2
𝑥(1 − 𝑥)𝜙(𝑥, 𝑡) ,

(2)

here the first term on the right hand side describes mutation events
nd the second corresponds to drift. The usual boundary conditions at
= 0 and 𝑥 = 1, which we will not reproduce here, ensure that there

s no flow of probability outside the unit interval (i.e., that the initial
robability mass is conserved at all times) (see McKane and Waxman,
007). It is well known that the stationary distribution 𝜙(𝑥, 𝑡 = ∞) is the

beta distribution 𝑏𝑒𝑡𝑎(𝛽𝜃, 𝛼𝜃) (Wright, 1931). Binomially sampling 𝐾
haploid individuals results in the following beta-binomially distributed
event probabilities:

�̄�𝑘 = Pr(𝑘 ∣ 𝐾, 𝛽, 𝜃)

= ∫

1

0

(

𝐾
𝑘

)

𝑥𝑘(1 − 𝑥)𝐾−𝑘 𝛤 (𝜃)
𝛤 (𝛽𝜃)𝛤 (𝛼𝜃)

𝑥𝛽𝜃−1(1 − 𝑥)𝛼𝜃−1 𝑑𝑥

=
(

𝐾
𝑘

)

𝛤 (𝜃)
𝛤 (𝛽𝜃)𝛤 (𝛼𝜃)

𝛤 (𝑘 + 𝛽𝜃)𝛤 (𝐾 − 𝑘 + 𝛼𝜃)
𝐾 + 𝜃

= 𝑏𝑒𝑡𝑎𝑏𝑖𝑛(𝑘∣𝐾, 𝛽, 𝜃) .

(3)

Substituting these �̄�𝑘 into Eq. (1) yields the likelihood of the ob-
served sample site frequency spectrum in the general mutation-drift
equilibrium.

2.3. Boundary mutation model

Note that if the scaled mutation rate 𝜃 is very low, most of the
probability mass associated with the stationary distribution of pop-
ulation allele frequencies 𝑥 will be concentrated at the boundaries
(compare to the visualisation of the stationary distribution of a Wright–
Fisher process approaching its diffusion limit in Fig. 2B of Der and
Plotkin, 2014). Then the same will be true for a sample taken from this
stationary distribution. The first order Taylor series expansion in the
overall scaled mutation rate 𝜃 of the beta-binomial stationary sampling
distributions in Eq. (3) results in the following event probabilities (Vogl,
2014b):

�̄�𝑘 = Pr(𝑘 ∣ 𝐾, 𝛽, 𝜃) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝛼(1 − 𝛽𝜃𝐻𝐾−1) + (𝜃2) 𝑘 = 0;

𝛼𝛽𝜃 𝐾
𝑘(𝐾 − 𝑘)

+ (𝜃2) 1 ≤ 𝑘 ≤ 𝐾 − 1;

𝛽(1 − 𝛼𝜃𝐻𝐾−1) + (𝜃2) 𝑘 = 𝐾 ,

(4)

here 𝐻𝐾−1 =
∑𝐾−1
𝑘

1
𝑘 is the harmonic number. Omitting the higher

order terms, these correspond to the equilibrium distribution of the
discrete boundary mutation Moran model with population size 𝑁 = 𝐾

(Vogl and Clemente, 2012; Vogl and Mikula, 2021). We will refer to
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this distribution as the following boundary binomial distribution (Vogl
and Bergman, 2015, Eq. 13):

𝑏𝑜𝑢𝑛𝑑𝑏𝑖𝑛(𝑘 ∣ 𝐾, 𝛽, 𝜃) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝛼(1 − 𝛽𝜃𝐻𝐾−1) 𝑘 = 0;

𝛼𝛽𝜃 𝐾
𝑘(𝐾 − 𝑘)

1 ≤ 𝑘 ≤ 𝐾 − 1;

𝛽(1 − 𝛼𝜃𝐻𝐾−1) 𝑘 = 𝐾 ,

(5)

ue to its similarities with the beta-binomial distribution (see also
ppendix B.2.4). Note that such boundary mutation models restrict
utations entirely to the monomorphic boundaries; the mutation rate

s then normalised so that the expected equilibrium heterozygosity
s maintained regardless of the population size (Vogl and Clemente,
012; Vogl, 2014b). Simulations confirm that the boundary mutation
oran model approximates the general mutation Moran model well

f the expected equilibrium heterozygosity of the population 𝛼𝛽𝜃 <
.025 (Vogl and Clemente, 2012), which holds for the protein coding
enes of most eukaryotes (Lynch et al., 2016). Note that the boundary
utation model can be extended to multiple alleles (Schrempf et al.,
016; Burden and Griffiths, 2019a,b; Vogl et al., 2020). Samples from
uch multiallelic diffusion models with similarly low scaled overall
utation rates are also well approximated by the boundary mutation
oran model because the probability of sites being more than biallelic

s also very low (Burden and Griffiths, 2019a,b).
Different to the case of general mutation models, the boundary

utation diffusion cannot be obtained directly by passing 𝑁 = 𝐾 to
nfinity in a corresponding discrete system: The stationary probabilities
f observing monomorphic sites in Eq. (4) contains the harmonic
umber 𝐻𝐾−1, which approaches infinity logarithmically and leads
o boundary singularities; thus, the sample size must be lower than
𝑚𝑎𝑥 ≈ 𝑒𝑚𝑖𝑛(𝛼,𝛽)∕(𝛼𝛽𝜃) (Bergman et al., 2018b) for the model to remain
athematically tractable. In Appendix A, we provide an alternative
erivation of the boundary mutation diffusion model, the dynamics of
hich we explain here: Methodologically, the derivation reflects the

ogic of Kimura’s infinite sites model (Kimura, 1969), where novel mu-
ations occur at a steady but infinitesimally small genomic rate of 𝜃 and
it a previously unmutated site where ‘‘the mutant form is represented
nly once at the moment of its occurrence, 𝑝 = 1∕(2𝑁)’’ (Kimura,
969, immediately after Eq. (16)), and is subsequently spread by drift.
ote that 𝑝 is the proportion of the new allele in the population
onsisting of 𝑁 diploid individuals. A proportion of exactly 𝑝 alleles
n the population can be represented via a Dirac delta function.

In contrast to Kimura, who differentiates between ancestral and
erived (novel) alleles in his infinite sites model, we differentiate be-
ween mutations hitting the non-focal and focal alleles in our boundary
utation model. Let 𝑏0(𝑡) be the proportion of the non-focal allele in

he population at time 𝑡 and 𝑏1(𝑡) = 1− 𝑏0(𝑡) the proportion of the focal
llele in the population. The initial proportion of a new mutations is
𝑥 = 1∕𝑁 or 1 − 𝜖𝑥 = 1 − 1∕𝑁 and with rates 𝑏0(𝑡)𝛽𝜃 and 𝑏1(𝑡)𝛼𝜃
espectively. Convergence towards the equilibrium values 𝑏0(∞) = 𝛼
nd 𝑏1(∞) = 𝛽 occurs exponentially with rate 𝜃. This rate is low
ompared to the rate of drift operating on the polymorphic region,
hich scales with 1. While the monomorphic and polymorphic regions
xchange probability mass, no probability fluxes are assumed to cross
he closed unit interval. Thus probability mass is conserved within the
losed unit interval. Due to the distinct spatial and temporal dynamics
f the monomorphic vs the polymorphic regions, we specifically denote
he transition rate density of the polymorphic interior (i.e., the open
nterval 𝜖𝑥 ≤ 𝑥 ≤ 1 − 𝜖𝑥) as 𝜙𝐼 (𝑥, 𝑡). Compactly, the forward boundary
utation diffusion equation can be written as (Vogl and Bergman,
016, Eq. 41, and see Appendix A):
𝜕𝜙𝐼 (𝑥, 𝑡)

𝜕𝑡
= lim
𝜖𝑥→0

(

(𝛽𝜃𝑏0(𝑡)∕𝜖𝑥)𝛿(𝑥 − 𝜖𝑥) + (𝛼𝜃𝑏1(𝑡)∕𝜖𝑥)𝛿(𝑥 − 1 + 𝜖𝑥)
)

+ 𝜕2 𝑥(1 − 𝑥)𝜙 (𝑥, 𝑡) ,
(6)
58

𝜕𝑥2 𝐼
where 𝛿(.) denotes the Dirac delta function. Together with the dynamics
at the boundaries, this system has a solution in the form of the limiting
distribution:

𝜙(𝑥, 𝑡) = lim
𝜖𝑥→0

( (

𝑏0(𝑡) − ∫

1−𝜖𝑥

0+𝜖𝑥
(1 − 𝑥)𝜙𝐼 (𝑥, 𝑡) 𝑑𝑥

)

𝛿(𝑥)

+
(

𝑏1(𝑡) − ∫

1−𝜖𝑥

0+𝜖𝑥
𝑥𝜙𝐼 (𝑥, 𝑡) 𝑑𝑥

)

𝛿(𝑥 − 1)
)

+𝜙𝐼 (𝑥, 𝑡) ,
(7)

hich is a variant of the distribution (McKane and Waxman, 2007,
q. 7) (noting that 𝛿(𝑥 − 1) = 𝛿(1 − 𝑥)):

(𝑥, 𝑡) = 𝛱0(𝑡)𝛿(𝑥) +𝛱1(𝑡)𝛿(1 − 𝑥) + 𝜙𝐼 (𝑥, 𝑡) . (8)

The form of 𝜙(𝑥, 𝑡) (see Eq. (7)) ensures that the integral ∫ 1
0 𝜙(𝑥, 𝑡) 𝑑𝑥

for all possible values of 𝑡 (i.e., that 𝜙(𝑥, 𝑡) is normed to one at all
imes). While probabilistic interpretation of the transition rates is not
mmediate because of the singularities at the boundaries, binomially
ampling 𝐾 haploid individuals results in regular, well defined event
robabilities (which we discuss in detail in Appendix B.2.4):

𝑘 = Pr(𝑘∣𝐾, 𝛽, 𝜃, 𝑡) = ∫

1

0
Pr(𝑘∣𝐾, 𝑥)𝜙(𝑥, 𝑡) 𝑑𝑥

= ∫

1

0

(

𝐾
𝑘

)

𝑥𝑘(1 − 𝑥)𝐾−𝑘𝜙(𝑥, 𝑡) 𝑑𝑥 .
(9)

ndeed, binomially sampling from the stationary limiting distribution
(𝑥) = 𝜙(𝑥, 𝑡 = ∞) yields stationary event probabilities �̄�𝑘 of the
oundary-binomial distribution (see Eq. (5)). This validates our rep-
esentation of the boundary mutation drift diffusion as the limiting
pproximation 𝜃 → 0 of the general mutation drift diffusion model.

.4. Spectral representation of diffusion equations

.4.1. General mutation model
In order to make the transition densities of diffusion equations

nalytically tractable, they can be represented as spectral sums; these
ums are constituted by the weighted eigenfunctions and eigenvalues
f the associated diffusion generator. For diffusion models with pure
rift (Kimura, 1955b) and with parent-independent mutation (Shi-
akura, 1977; Griffiths, 1979), the eigendecomposition was found as
solution to the respective differential equations themselves. Much
ore recently, Song and Steinrücken (2012) introduced a method for
irectly determining the spectral decomposition of the diffusion gen-
rator for models with recurrent mutation and selection. Their result
or the transition density of biallelic reversible mutation models is
tilised by Bergman et al. (2018b), who construct a forward–backward
lgorithm for calculating expected allele proportions across time. Dif-
erently to Song and Steinrücken (2012), they must therefore model an
xplicit ancestral population distribution of allele proportions (compare
ukic et al., 2011) as well as an explicit sampling distribution (rather
han simply starting from a Dirac delta function and waiting for an
nfinite amount of time), and furthermore must use both the forward
nd backward diffusion equations (rather than just the latter). We
ecapitulate the required results here (details in Section 3.4 of Bergman
t al., 2018b, for the remainder of this section, unless otherwise cited):

The spectral expansion of the biallelic reversible mutation model
learly depends on both the mutation bias 𝛽 as well as the scaled
utation rate 𝜃. We will assume that at a time 𝑡𝑠 < 0 in the past, the dis-

ribution of ancestral population allele proportions can be represented
y a density 𝜌(𝑥). This density must be defined on the unit interval
nd assumed to integrate to unity, but is otherwise arbitrary i.e. can
e chosen according to the context. It can be expanded into a series
f (modified) Jacobi polynomials, which are defined by the recursion
compare Eq. 22.3.2 in Abramowitz and Stegun (1970))

(𝛽,𝜃)
𝑛 (𝑥) =

𝑚
∑

(−1)𝑙
𝛤 (𝑚 − 1 + 𝑙 + 𝜃)𝛤 (𝑚 + 𝛽𝜃)

𝑥𝑙 . (10)

𝑙=0 𝛤 (𝑚 − 1 + 𝜃)𝛤 (𝑙 + 𝛽𝜃)𝑙!(𝑚 − 𝑙)!
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These polynomials satisfy the orthogonality relation:

∫

1

0
𝑅(𝛽,𝜃)
𝑚 (𝑥)𝑅(𝛽,𝜃)

𝑛 (𝑥)𝑤(𝛽,𝜃)(𝑥) 𝑑𝑥 = 𝛿𝑛,𝑚𝛥
(𝐺;𝛽,𝜃)
𝑛 , (11)

with respect to the beta-distributed weight function 𝑤(𝛽,𝜃)(𝑥) =
𝑏𝑒𝑡𝑎(𝛽𝜃, 𝛼𝜃), whereby 𝛿𝑛,𝑚 is Kronecker’s delta, implying that the con-
stant

𝛥(𝐺;𝛽,𝜃)𝑛 =
𝛤 (𝑛 + 𝛽𝜃)𝛤 (𝑛 + 𝛼𝜃)

(2𝑛 + 𝜃 − 1)𝛤 (𝑛 + 𝜃 − 1)𝛤 (𝑛 + 1)
,

is non-zero only for 𝑚 = 𝑛. Knowing this, the ancestral distribution can
ow be written as:

(𝑥) = 𝜙(𝑥, 𝑡 = 𝑡𝑠) =
∞
∑

𝑛=0
𝜌𝑛𝑤

(𝛽,𝜃)(𝑥)𝑅(𝛽,𝜃)
𝑛 (𝑥),

where the coefficients 𝜌𝑛 can be determined via

𝜌𝑛 =
1

𝛥(𝐺;𝛽,𝜃)𝑛
∫

1

0
𝑅(𝛽,𝜃)
𝑛 (𝑥)𝜌(𝑥) 𝑑𝑥.

Thus, the forward diffusion equation representing the trajectory
of the population allele proportions for 𝑡𝑠 ≤ 𝑡 ≤ 0, i.e., starting
from this ancestral distribution and extending forwards in time, can
be represented uniquely as the following spectral sum:

𝜙(𝑥, 𝑡) =
∞
∑

𝑛=0
𝜌𝑛𝑤

(𝛽,𝜃)(𝑥)𝑅(𝛽,𝜃)
𝑛 (𝑥)𝑒−𝜆𝑛(𝑡−𝑡𝑠),

where 𝜆0 = 𝜆1 = 0 and 𝜆𝑛 = 𝑛(𝑛+ 𝜃 − 1) for 𝑛 ≥ 2 are the corresponding
eigenvalues. Note that this assumes that the mutational parameters 𝛽
and 𝜃 remain constant over time.

As before, we wish to draw a binomially distributed sample of size
𝐾 from this population at the extant time 𝑡 = 0. In order to do so, we
must first more closely consider this binomial sampling scheme, i.e., the
istribution:

Pr(𝑘∣𝐾, 𝑥) =
(

𝐾
𝑘

)

𝑥𝑘(1 − 𝑥)𝐾−𝑘 . (12)

t can equivalently be seen as a polynomial of order 𝐾 with coefficients
𝑘+𝑖 =

(𝐾
𝑘

)(𝐾−𝑘
𝑖

)

(−1)𝑖. Let 𝐚(𝑘,𝐾) then be the vector of coefficients
𝑛(𝑘,𝐾), and let 𝐑(𝛽,𝜃) be the lower triangular matrix of polynomial co-
fficients of the Jacobi polynomials 𝑅(𝛽,𝜃)

𝑛 (𝑥). The binomial distribution
an then be expressed in matrix form via the following linear algebraic
quation:

(𝛽,𝜃)(𝐾, 𝑘) = 𝐚(𝑘,𝐾)𝐑(𝛽,𝜃) (13)

ote that the triangular structure of 𝐑(𝛽,𝜃) obviates matrix inversion.
he entries of the vector on the left hand side, i.e., 𝐝(𝛽,𝜃)(𝐾, 𝑦), can also
e obtained via:

𝑛(𝐾, 𝑘) = ∫

1

0

(

𝐾
𝑘

)

𝑥𝑘(1 − 𝑥)𝐾−𝑘𝐑(𝛽,𝜃)𝑤(𝑥)(𝛽,𝜃) 𝑑𝑥 . (14)

It follows that the binomial sampling distribution from Eq. (12) can be
uniquely expanded into Jacobi polynomials:

Pr(𝑘∣𝐾, 𝑥) =
(

𝐾
𝑘

)

𝑥𝑘(1 − 𝑥)𝐾−𝑘 =
𝐾
∑

𝑛=0
𝑑(𝛽,𝜃)𝑛 (𝐾, 𝑦)𝑅(𝛽,𝜃)

𝑛 (𝑥) . (15)

Utilising the previous results, the marginal likelihood of the sample,
i.e., the event probability 𝑝𝑘 of observing precisely 𝑘 focal alleles within
ur binomial sample of size 𝐾 drawn at time 𝑡 = 0, can be evaluated
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ia the following (wherein we recall the orthogonality relationship to
simplify calculations):

𝑝𝑘 = Pr(𝑘∣𝐾, 𝛽, 𝜃, 𝑡 = 0) = ∫

1

0

(

𝐾
𝑘

)

𝑥𝑘(1 − 𝑥)𝐾−𝑘𝜙(𝑥, 𝑡 = 0) 𝑑𝑥

= ∫

1

0

( 𝐾
∑

𝑛=0
𝑑𝑛(𝑘,𝐾)𝑈 (𝛽,𝜃)

𝑛 (𝑥)
)

×
( ∞
∑

𝑚=0
𝜌𝑚𝑒

𝜆𝑚𝑡𝑠𝑤(𝛽,𝜃)(𝑥)𝑈 (𝛽,𝜃)
𝑚 (𝑥)

)

𝑑𝑥

=
𝐾
∑

𝑛=0
𝑑𝑛(𝑘,𝐾)𝜌(𝛽,𝜃)𝑛 𝛥(𝐺;𝛽)𝑛 𝑒𝜆𝑛𝑡𝑠 .

(16)

ote that this is technically a forward pass of the forward–backward
lgorithm, which we discuss in more detail in Appendix C.1). Substi-
uting these 𝑝𝑘 into Eq. (1) again yields the likelihood of the observed
ample site frequency spectrum.

.4.2. Boundary mutation model
As previously mentioned, the spectral decomposition of the transi-

ion density of the pure drift diffusion equation has been known for
he good part of a century (Kimura, 1955a), and the eigenvectors and
igenvalues can be recovered via the formalised methodology presented
y Song and Steinrücken (2012). However, both boundaries in these
pproaches are considered exit boundaries, and only the polymorphic
egion is thus explicitly modelled by the spectral representation. To
nclude specific boundary terms, the spectral representation must be
ugmented by appropriate boundary conditions related to mutation
nd/or fixation rates (McKane and Waxman, 2007; Tran et al., 2014,
013; Vogl and Bergman, 2016). In Appendix B, we provide a full
erivation of the spectral representation of the forward and back-
ard boundary mutation diffusion equations that follows the unified
pproach to solutions of differential equations proposed by McKane
nd Waxman (2007), and thus clarify the reasoning in the derivation
riginally provided by Vogl and Bergman (2016). We will cover the
ain results here.

Traditionally, the eigenfunctions of the diffusion generators of pure
rift models (considering only the polymorphic region) are constituted
y Gegenbauer polynomials; we here use the modified Gegenbauer
olynomials 𝑈𝑛(𝑥) (see Olver et al., 2022, Eq. 18.5.77):

𝑛(𝑥) =
𝑛−2
∑

𝑙=0
(−1)−1−𝑙

(

𝑛 + 𝑙
𝑙

)(

𝑛 − 1
𝑙 + 1

)

𝑥𝑙 for 𝑛 ≥ 2 . (17)

hese are orthogonal with respect to the weight function 𝑤(𝑥) = 𝑥(1−𝑥)
or all orders of expansion 𝑛, 𝑚 > 2:

∫

1

0
𝑈𝑛(𝑥)𝑈𝑚(𝑥)𝑤(𝑥) 𝑑𝑥 = 𝛿𝑛,𝑚𝛥

(𝐵)
𝑛 , (18)

here 𝛿𝑛,𝑚 is Kronecker’s delta, and

(𝐵)
𝑛 =

(𝑛 − 1)
𝑛(2𝑛 − 1)

(19)

with 𝑛 ≥ 2 is the proportionality constant. The corresponding eigenval-
es determining the rate of drift are 𝜆𝑛≥2 = 𝑛(𝑛− 1). The augmentation

of this system required to include fixation at the boundaries yields
the following system of forward eigenfunctions with the corresponding
eigenvalues 𝜆0 = 0, 𝜆1 = 0 and 𝜆𝑛≥2 = 𝑛(𝑛−1) (see McKane and Waxman
(2007), but also Tran et al. (2013), Bergman et al. (2018b)):

⎧

⎪

⎪

⎨

⎪

⎪

⎩

 (𝛽)
0 (𝑥) = 𝛼𝛿(𝑥) + 𝛽𝛿(𝑥 − 1)

 (𝛽)
1 (𝑥) = −𝛿(𝑥) + 𝛿(𝑥 − 1)

 (𝛽)
𝑛≥2(𝑥) = − (−1)𝑛

𝑛 𝛿(𝑥) + 𝑈𝑛(𝑥) −
1
𝑛 𝛿(𝑥 − 1) ,

(20)

where 𝛿(.) is Dirac’s delta. Observe that the point masses at the bound-
aries of the eigenfunctions 𝑛 ≥ 2 balance the probability weight in
the polymorphic interior with the probability mass point masses at the
boundaries. Importantly for this article, these forwards eigenfunctions
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are identical to those of the diffusion generator of the boundary muta-
tion model (Vogl and Bergman, 2016, Eqs. 32, 37) (see the derivation
in Appendix B). However, the first-order eigenvalue 𝜆1 in the boundary
mutation diffusion model is given by 𝜃 so as to explicitly model the
influx of new mutations occurring at either boundary (with the other
eigenvalues remaining the same). As covered in Section 2.3, 𝜃 also
determines the rate of convergence to the equilibrium boundary values
associated with the eigenvalue 𝜆0 = 0 (see also Eq. (78)), which is slow
compared to the rate of drift.

A set of backward eigenfunctions can be constructed to be or-
thogonal to the forward eigenfunctions above; these are the following
polynomials of ascending order (McKane and Waxman, 2007; Tran
et al., 2014, 2013; Bergman et al., 2018b) (see also Appendix B):

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(𝛽)
0 (𝑥) = 1

(𝛽)
1 (𝑥) = 𝑥 − 𝛽

(𝑝)
𝑛≥2(𝑥) = 𝑥(1 − 𝑥)𝑈𝑛(𝑥) .

(21)

This construction can be confirmed by setting 𝛥(𝐵)0 = 𝛥(𝐵)1 = 1, and
checking that an analogous orthogonality relation to before holds:

∫

1

0
(𝛽)
𝑛 (𝑥) (𝛽)

𝑚 (𝑥) 𝑑𝑥 = 𝛿𝑛𝑚𝛥
(𝐵)
𝑛

for a nonzero 𝛥(𝐵)𝑛 = 𝑛−1
(2𝑛−1)𝑛 only if 𝑚 = 𝑛.

As with the general mutation model in the previous subsection, the
spectral representation of the boundary mutation diffusion can be used
within the context of a forward–backward algorithm (Bergman et al.,
2018b, details in Section 4.2). This again requires the specification of a
distribution of ancestral allele proportions 𝜌(𝑥) at time 𝑡𝑠 < 0. As before,
this is an arbitrary distribution that we here obtain a spectral repre-
sentation for by expanding the limiting distribution that represents the
solution of the boundary mutation diffusion model (see Eq. (7)) into
orthogonal polynomials. Specifically:

𝜌(𝑥) = 𝜙(𝑥, 𝑡𝑠) = 𝜏0(𝑡𝑠)
𝛽
0 (𝑥) + 𝜏1(𝑡𝑠)

𝛽
1 (𝑥) +

∞
∑

𝑛=2
𝜏𝑛(𝑡𝑠)𝛽

𝑛 (𝑥) , (22)

where 𝜏0(𝑡𝑠) = 1, and 𝜏1(𝑡𝑠) = 𝛽 − 𝑏1(𝑡𝑠) represents the proportion of the
focal allele in the population at time 𝑡𝑠. To correctly model the temporal
change in focal allele proportions due to mutational input between
𝑡𝑠 < 𝑡 ≤ 0, we must set 𝜏0(𝑡) = 1 and 𝜏1(𝑡) = (𝑏1(𝑡𝑠)−𝛽)𝑒−𝜆1(𝑡−𝑡𝑠) (compare
Eq. (85)). For the polymorphic interior, the changes in population
allele proportions over time 𝑡𝑠 < 𝑡 ≤ 0 due to drift can be found by
substituting the spectral sum for the polymorphic transition rate density
𝜙𝐼 (𝑥, 𝑡) =

∑∞
𝑛=2 𝜏𝑛(𝑡)𝐹

𝛽
𝑛 (𝑥) into the forward diffusion equation Eq. (6).

This induces the following system of inhomogeneous differential equa-
tions for the temporal coefficients (Vogl and Bergman, 2016, Eq. 43)
(see also Appendix B.2, Eq. (84)):

𝑑
𝑑𝑡
𝜏𝑛(𝑡) = −𝜆𝑛

(

𝜏𝑛(𝑡) − 𝛼𝛽𝜃
𝐸𝑛
𝜆𝑛
𝜏0(𝑡) − 𝜃

𝑂𝑛
𝜆𝑛
𝜏1(𝑡)

)

. (23)

for 𝑛 ≥ 2, with:

𝐸𝑛 =
𝑈𝑛(0) + 𝑈𝑛(1)

𝛥(𝐵)𝑛

= −(2𝑛 − 1)𝑛
(−1)𝑛 + 1

𝛥(𝐵)𝑛

and

𝑂𝑛 =
𝑈𝑛(0)𝛽 + 𝑈𝑛(1)𝛼

𝛥(𝐵)𝑛

= −(2𝑛 − 1)𝑛
(−1)𝑛𝛽 − 𝛼

𝛥(𝐵)𝑛

.

Importantly, this eigensystem can be diagonalised to a time-
homogeneous form (which we show in Appendix B.2.2). However, we
will proceed with the above system for this article (details follow in
Section 2.5).

At the extant time 𝑡 = 0, we once again draw a binomial sample of
ize 𝐾 from the population that has evolved according to the above. The
60

inomial likelihood itself can, similarly to the previous subsection, be a
uniquely expanded into a series of appropriate backward polynomials
at 𝑡 = 0:

Pr(𝑘∣𝑥,𝐾) =
(

𝐾
𝑘

)

𝑥𝑘(1 − 𝑥)𝐾−𝑘

=
𝐾
∑

𝑛=0
𝑑𝑛(𝑘,𝐾)(𝛽)

𝑛 (𝑥) ,
(24)

where 𝑑𝑛(𝑘,𝐾) are again coefficients depending on 𝑘 and 𝐾 that can be
btained analogously to either Eq. (13) via a matrix multiplication or
o Eq. (14) via integration:

𝑛(𝐾, 𝑘) = ∫

1

0

(

𝐾
𝑘

)

𝑥𝑘(1 − 𝑥)𝐾−𝑘𝛽
𝑛 (𝑥) 𝑑𝑥 . (25)

ote that the coefficients 𝑑𝑛(𝑘,𝐾) of the boundary mutation expansion
re of course different from those of the general mutation expansion,
ut we choose to not distinguish them in their notation since they
re always associated with the appropriate eigenfunctions 𝑅(𝛽,𝜃)

𝑛 vs
(𝛽)
𝑛 (𝑥) or with the constants 𝛥(𝐺;… )

𝑛 or 𝛥(𝐵)𝑛 , from which context it
s obvious which model is assumed. Either way, Eq. (24) represents

straightforward linear transformation, since a binomial sample can
e represented as polynomial of order 𝐾, just like the backwards
igenfunction (𝛽)

𝑛 (𝑥).
Overall, we can thus determine the likelihood of the sample, i.e.,

he event probability 𝑝𝑘 of observing precisely 𝑘 focal alleles within
ur binomial sample of size 𝐾 drawn at time 𝑡 = 0, via the following
wherein we again use the orthogonality relationship of the orthogonal
olynomials to simplify calculations):

𝑘 = Pr(𝑘∣𝐾, 𝛽, 𝜃, 𝑡 = 0) = ∫

1

0
Pr(𝑘∣𝐾, 𝑥)𝜙(𝑥, 0) 𝑑𝑥

= ∫

1

0

(

𝐾
𝑘

)

𝑥𝑘(1 − 𝑥)𝐾−𝑘𝜙(𝑥, 0) 𝑑𝑥

= ∫

1

0

( 𝐾
∑

𝑛=0
𝑑𝑛(𝑘,𝐾)(𝛽)

𝑛 (𝑥)
)

×
( ∞
∑

𝑚=0
𝜏𝑚(0) (𝛽)

𝑚 (𝑥)
)

𝑑𝑥

=
𝐾
∑

𝑛=0
𝑑𝑛(𝑘,𝐾)𝜏𝑛(0)𝛥(𝐵)𝑛 .

(26)

learly, this is again a forward pass of the forward–backward algorithm
see Appendix C.1), and substituting these 𝑝𝑘 into Eq. (1) yields the
ikelihood of the observed sample site frequency spectrum.

emark. In the formulae for the event probabilities 𝑝𝑘 assuming either
he general or boundary mutation diffusion for the population allele
requencies (Eq. (16) and Eq. (26) respectively), polynomial expansions
nly up to the sample size 𝐾 rather than to infinity are required.
his is due to our application of the HMM forward–backward scheme
o a system of orthogonal polynomials: the sample size 𝐾 at time
= 0 determines (backwards in time) the order of the expansion

eeded for the forward eigensystem. In principle, this approach to
etermining expected sample site frequency spectra therefore has a
ow computational burden. Directly implemented as above, the event
robabilities 𝑝𝑘 can be evaluated in a matter of seconds in the open
ource statistics software R (R. Core Team, 2017); however, exceeding
sample size of 𝐾 = 24 incurs numerical instability. With the high

recision floating point library MPFR (Fousse et al., 2007), reliable
esults can be obtained up to 𝐾 = 37. Clearly, specialised programs are
till lacking for application to larger samples. However, direct imple-
entation of these formulae suffices for model-validating simulations

nd application to small or down-sampled data sets as required for this
rticle.

emark. In Section 2.3, we show that the spectral representation of
he backwards diffusion rate densities of both the general mutation
nd boundary mutation models has a dual representation as a time
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dependent pure-death jump process on the space of binomial distri-
butions with respect to their respective transition rate distributions
𝜓(𝑥, 𝑡). Specifically, at each time point 𝑡𝑠 < 𝑡 ≤ 0 and each order
f expansion 0 < 𝑛 < 𝐾, the expected event probabilities 𝑝𝑘 can be
valuated to the same result. In the case of the boundary mutation
iffusion model, 𝜓(𝑥, 𝑡) is the limiting stationary distribution but not a
ensity in the traditional sense. The application of the HMM framework
nd the interpretation of the dual process are still possible, however,
recisely because the sampling distribution at each time point 𝑡𝑠 < 𝑡 ≤ 0

and each order of expansion 0 < 𝑛 < 𝐾 is a regular discrete probability
distribution even in non-equilibrium (which can be seen in Section 2.3,
compare Section 4.2 in Papaspiliopoulos and Ruggiero (2014)).

Remark. Recall that the forward eigenfunctions of the boundary mu-
tation diffusion are given by  (𝛽)

𝑛≥2(𝑥). Interestingly, these can also be
considered a zeroth-order Taylor series expansion in the scaled muta-
tion rate 𝜃 of the weighted Jacobi polynomials 𝑤(𝛽,𝜃)𝑅(𝛽,𝜃)

𝑛≥2 (𝑥) (Vogl and
Bergman, 2016, Appendix A.1.). This is of note because analogously,
the discrete boundary mutation Moran model (Vogl and Clemente,
2012) was first derived as a first-order expansion in the overall scaled
mutation rate 𝜃 of the general biallelic Moran model with separately
parameterised drift and mutation terms (Baake and Bialowons, 2008).

2.5. Piecewise constant (effective) population size

Recall that our main aim is to analytically determine the expected
site frequency spectra under a variety of demographic scenarios. So
far, we have determined that utilising the spectral representation of
diffusion models within a forward pass of a HMM forward–backward
algorithm yields a computationally efficient framework for analytically
calculating expected site frequency spectra, but have not explicitly
introduced demographic changes into these models. In this section,
however, we will introduce a time axis that is partitioned into a se-
quence of epochs between which the population undergoes changes in
(effective) sizes; this will be reflected in a change of the overall scaled
mutation rate 𝜃 and re-scaling of time between individual epochs.
Incorporating this into the general mutation model requires that any
change in the scaled mutation rate 𝜃 or the mutation bias 𝛽 must be
matched by a change in the base of the Jacobi polynomials 𝑅(𝛽,𝜃)

𝑛 .
This is cumbersome and complicates the treatment of the demographic
models. We will therefore proceed with the spectral representation
of the boundary mutation diffusion model for the remainder of this
article. As long as we use the un-diagonalised spectral representation
of this model, demographic changes do not affect the base of the
Gegenbauer polynomials within the eigensystem. These can thus be
considered the purely spatial component of the spectral representation
of the transition rate density, depending on the allele frequencies but
not on the overall scaled mutation rate or mutation bias. Changes
in the mutation parameters only require appropriate modification of
the temporal coefficients that solve the time-inhomogeneous system of
equations from Eq. (23).

A Simplification
As a further simplification within our modelling approach, we will

assume that the mutation bias 𝛽 is evolutionarily stable, i.e., does
ot change between epochs. This enables us to examine the effect of
emography on the allele frequencies via the overall scaled mutation
ate in isolation from any other evolutionary force. We can then assume
hat the proportion of the focal allele within the population has already
onverged to 𝛽, i.e., that 𝜏1(𝑡) has converged to 0. Indeed 𝜏1(𝑡) converges
o 0 at rate 𝜃 even with changing population sizes as long as the
utation bias 𝛽 remains constant (recall that the diffusion time is scaled

y the population sizes). Thus, the only requirement for convergence
f 𝜏1 to zero is that our process starts at 𝑡 = −∞.

Note that only a further change in 𝛽, which we do not permit, but
ot a change in 𝜃 can then induce 𝜏1(𝑡) ≠ 0. Hence, we set 𝜏1(𝑡) = 0
61

nd thus 𝑏0(𝑡) = 𝛼 and 𝑏1(𝑡) = 𝛽. As a result, the time-inhomogeneous i
system for the temporal coefficients from Eq. (23) can be simplified to
(see Appendix B.2.4):
𝑑
𝑑𝑡
𝜏𝑛(𝑡) = −𝜆𝑛𝜏𝑛(𝑡) + 𝛼𝛽𝜃(2𝑛 − 1)𝑛((−1)𝑛 + 1), for 𝑛 ≥ 2. (27)

ince 𝜏1(𝑡) = 0 and 𝜆𝑛≥2 = 𝑛(𝑛 − 1) are much greater than 𝜆1 = 𝜃, we
educe that all odd 𝜏𝑛≥2(𝑡) converge to zero very rapidly. This implies
hat we need only consider the even temporal coefficients in our mod-
lling approach, i.e., that the polymorphic spectrum remains symmetric
egardless of potential demographic changes because the mutation bias
ndergoes no further shifts. This symmetry does not pertain to the
onomorphic boundaries, which converge to a symmetric equilibrium

nly if 𝛽 = 𝛼 = 1
2 .

Introducing Demography
From now on, we will assume that time is segmented into epochs

indexed by 𝑗 ∈ {1,… , 𝐽}. Each epoch starts with time point 𝑡𝑗−1 and
ends with time point 𝑡𝑗 . We will usually end the last epoch at the
extant time 𝑡𝐽 = 0, since our samples are assumed to come from
the present. Let us define the epoch lengths as 𝑠𝑗 = 𝑡𝑗 − 𝑡𝑗−1. We
will assume that the (effective) population size remains constant at 𝑁𝑗
within epoch 𝑗 and then instantaneously switches to 𝑁𝑗+1 at the onset
of epoch 𝑗 + 1. This translates to corresponding changes in what we
will call the bias-complemented overall scaled mutation rate, defined
per epoch 𝑗 as 𝜃∗𝑗 = 𝛼𝛽𝜃𝑗 . Note that 𝜃∗𝑗 also corresponds to the
equilibrium solution of the boundary mutation diffusion model. Since
we only consider the polymorphic part of the sample spectrum in our
later demographic models, we will specify only the values of 𝜃∗𝑗 in our
examples/simulations rather than any component values.

Some caution is required around our treatment of the first epoch: In
our model where we assume a single change in (effective) population
size (Section 3.1), as well as in our inference approach (Section 3.2),
we set the beginning of the first epoch to 𝑡𝑗=0 = −∞, and thus the initial
interval 𝑠1 is assumed to be infinitely long. In the boom-bust (Sec-
tion 3.3) and stochastic fluctuation models (Section 3.4, and Section
3.5), we obtain convergence results for an infinite number of epochs 𝐽 ,
which means that the initial epoch has no real impact on the outcome.
Therefore, we can readily assume that temporal functions are equal to
their equilibrium values at the end of the first epoch, so at 𝑡1 (having
either converged there, or being generally negligible). These values
are:
⎧

⎪

⎨

⎪

⎩

𝜏0 = 1
𝜏1 = 0
𝜏𝑛(𝑡) = 𝛯𝑛≥2𝜃∗1 , for 𝑡 = 𝑡1,

(28)

with 𝛯𝑛 = − 4𝑛−2
𝑛−1 = 𝐸𝑛

𝜆𝑛
.

Moving forwards in time, the bias-complemented overall scaled mu-
tation rate 𝜃∗𝑗 changes from epoch to epoch; within each, the population
allele frequencies converge towards their current expected equilibrium.
This convergence is governed by the time-inhomogeneous equation for
the odd temporal coefficients from Eq. (27), which can now be re-
parameterised again. Specifically, for even 𝑛, i.e., 𝑛 ∈ 2N, and 𝑗 ≥ 2,
the system within each epoch is given by:

𝑑
𝑑𝑡
𝜏𝑛(𝑡)𝛯−1

𝑛 = −𝜆𝑛

(

𝜏𝑛(𝑡)𝛯−1
𝑛 + 𝜃∗𝑗

)

, for 𝑡𝑗−1 < 𝑡 ≤ 𝑡𝑗 . (29)

his applies to all models within this paper. Setting the starting con-
ition specifically as the epoch start point 𝜏𝑛(𝑡𝑗−1), the solution of this
ifferential equation is:

𝑛(𝑡)𝛯−1
𝑛 = 𝜃∗𝑗 −

(

𝜃∗𝑗 − 𝜏𝑛(𝑡𝑗−1)𝛯
−1
𝑛

)

𝑒−𝜆𝑛(𝑡−𝑡𝑗−1), for 𝑡𝑗−1 < 𝑡 ≤ 𝑡𝑗 . (30)

ote that each epoch with 𝑗 ≥ 2 now technically has an ancestral
llele distribution 𝜌(𝑥) = 𝜙(𝑥, 𝑡 = 𝑡𝑗−1) that is precisely the final
llele configuration of the previous epoch; these are determined by
ubstituting the temporal coefficients of the two equation systems
mmediately above into the representation of 𝜌(𝑥) as a spectral sum
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using Gegenbauer polynomials given in Eq. (22). Explicit modelling of
the system therefore actually begins at the end of the first epoch, which
represents an equilibrium state.

At the extant time, which is also the end of the last epoch, we will
as always assume that a binomial sample of haploid size 𝐾 is drawn;

ore explicitly, we assume that the binomial sampling probabilities are
xpanded into a series of backward polynomials as in Eq. (24). Then
he event probability 𝑝𝑘 of observing precisely 𝑘 focal alleles within

this sample, after the population has undergone a series of piecewise
constant demographic scenarios, can be determined via Eq. (26):

𝑝𝑘 = Pr(𝑘∣𝐾, 𝛽, 𝜃, 𝑡 = 0)

= −
𝐾
∑

𝑛=2

2
𝑛
𝑑𝑛(𝑘,𝐾)𝜃∗1 for 𝑘 ∈ {1,… , 𝐾 − 1} ,

(31)

or the polymorphic spectrum. The expected event probabilities at the
oundaries follow accordingly:

0 = Pr(𝑘 = 0∣𝐾, 𝛽, 𝜃, 𝑡 = 0) = 𝛼 −
𝐾−1
∑

𝑙=1

1
2 𝑝𝑙

𝑝𝐾 = Pr(𝑘 = 𝐾 ∣𝐾, 𝛽, 𝜃, 𝑡 = 0) = 𝛽 −
𝐾−1
∑

𝑙=1

1
2 𝑝𝑙 .

(32)

Importantly, recall that only an expansion of the temporal coefficients
up to the sample size 𝐾 is required in order to determine the event
probabilities given the sample at the extant time. Further, note that
although we have assumed that 𝑏0(𝑡) and 𝑏1(𝑡) remain constant at
𝛼 and 𝛽 respectively, the frequencies of the monomorphic classes in
the sample may nevertheless vary over time with the changes in the
mutation rate.

It should be noted that Eqs. (30)–(31) will form the basis for the
nalyses of specific demographic models in Section 3, where we look
t the effect of these models on the polymorphic sample spectrum.

. Theory: demographic models

.1. Single shift in population size (model 1)

Now consider a population that undergoes a single change in (ef-
ective) population size, meaning there are only two epochs: The an-
estral epoch runs between 𝑡0 = −∞ and 𝑡1 < 0 with the overall
ias-complemented ancestral mutation rate of 𝜃∗1 ; the overall bias-
omplemented mutation rate switches instantaneously to 𝜃∗2 at 𝑡1 and
emains constant until the sample is taken at 𝑡2 = 0. The population
llele frequencies thus evolve from the old equilibrium attained before
1 towards a new one according to Eq. (30) after this point, with
𝑛(𝑡1)𝛯−1

𝑛 = 𝜃∗1 for 𝑛 ∈ 2N:

𝑛(𝑡)𝛯−1
𝑛 = 𝜃∗2 −

(

𝜃∗2 − 𝜃
∗
1

)

𝑒
−𝜆𝑛

𝜃∗1
𝜃∗2

(𝑡−𝑡1), for 𝑡1 < 𝑡 ≤ 0.. (33)

The marginal probabilities of sample allele frequencies can then be
etermined as outlined in Section 2.5. Note that if 𝜃∗1 ≪ 𝜃∗2 , the solution

above can be approximated by the solution of a simple one-parameter
model (see Appendix D.1).

3.1.1. Results and discussion for model 1
By calculating the marginal probabilities for each possible segregat-

ing value of the focal allele, an expected biallelic polymorphic sample
site frequency spectrum can be constructed and assessed for departure
from equilibrium. Visual representations that contrast an observed or
simulated distribution of segregating sites with a neutral spectrum
are simple and informative (Nawa and Tajima, 2008; Achaz, 2009):
Fig. 1 shows a series of expected polymorphic sample spectra drawn
from a growing (panel 1 A) and a shrinking (panel 2 A) population
at successive time points after the shift in (effective) population size.
The log ratio of these expected sample spectra vs a sample assumed to
62
be in equilibrium at the ancestral overall-biased scaled mutation rate
(see Vogl and Clemente, 2012, Eq. 13) are depicted in Fig. 1 panels
1B and 2B; these second plots emphasise the distinct demographic
signatures. In Fig. 1 panels 1 A and 1B, which show the samples from a
growing population, the presence of excess rare alleles is recognisable.
Conversely, Fig. 1 panels 2 A and 2B show an increased proportion
of intermediate frequency alleles for the samples from a shrinking
population. These are well-established phenomena in population ge-
netics and a battery of neutrality tests have been constructed to detect
them (Tajima, 1983; Fu and Li, 1993; Fu, 1995; Fay and Wu, 2000;
Korneliussen et al., 2013), among them Tajima’s D. For such tests,
the site frequency spectrum is construed as the minor allele frequency
distribution and is given by either the number of polymorphic sites 𝜁𝑘
at frequency 𝑘

𝐾 , where 𝑘 ∈ [1, 𝐾 − 1] when an outgroup is available,
r by the number of polymorphic sites 𝜁𝑘,𝐾−𝑘 at frequencies 𝑘

𝐾 and
𝐾−𝑘
𝐾 when ancestral and derived alleles cannot be distinguished. The

classic neutrality tests contrast two estimators for the overall scaled
mutation rate 𝜃 that are sensitive to deviations from neutrality in
different regions of the allele frequency spectrum. These estimators
are constructed by differently weighted linear combinations of �̂�𝑘 =
𝑘𝜁𝑘 (Achaz, 2009). In Fig. 1 panels 1C and 2C, a version of Tajima’s D

odified for the boundary mutation model, which we will call the
-statistic (see Appendix D.2 for its derivation), is inferred for the

eries of samples: This clearly shows how the signal of the demographic
vent first becomes clearer in the samples over time, and then fades
o undetectable as a new equilibrium is approached (compare also the
hange in deviation from equilibrium over time in Fig. 1 panels 1 A,
B and 2 A, 2B. It is also apparent that populations lose polymorphism
uch faster than they accrue it (compare Nei et al., 1975), because the
rift time scale is much faster than the mutation time scale.

.2. An agnostic inference approach

Let us now assume a population that undergoes multiple shifts in
effective) population size over time, yielding a history of 𝐽 demo-
raphic epochs, indexed with 1 ≤ 𝑗 ≤ 𝐽 , and let us assume the time
oints 𝑡𝑗 as given, with 𝑡0 = −∞, 𝑡𝐽 = 0 and 𝑡𝑗−1 < 𝑡𝑗 . The general
olution of the time-inhomogeneous equations at 𝑡 = 𝑡𝐽 is then for
∈ 2N:

𝑛(𝑡𝐽 )𝛯−1
𝑛 = 𝜃∗𝐽

(

1 − 𝑒−𝜆𝑛𝑟𝐽
)

+
𝐽−1
∑

𝑗=2
𝜃∗𝑗

(

𝑒−𝜆𝑛𝑟𝐽 − 𝑒−𝜆𝑛
∑𝐽
𝑗=1 𝑟𝑗

)

× 𝜃∗1

(

𝑒−𝜆𝑛
∑𝐽
𝑗=1 𝑟𝑗

)

,

(34)

here 𝑟𝑗 is shorthand for the scaled epoch length 𝑟𝑗 =
𝜃∗𝑗−1
𝜃∗𝑗
𝑠𝑗 .

It has previously been noted that sampled spectra are not fully
informative of a population’s demographic history (Myers et al., 2008).
With orthogonal polynomial expansions, the demographic history is
mapped onto a function space spanned by 𝑒−𝜆𝑛𝑟𝑗 with 1 ≤ 𝑗 ≤ 𝐽 , which
implies several things: Because the exponential function decays rapidly,
increasing orders of expansion have a decreasing influence on the shape
of the spectrum. Furthermore, demographic histories orthogonal to the
function space remain ‘‘hidden’’ - in effect, this means past events can
cancel each other out and produce a ‘simplified’ historical trajectory. In
other words, an infinite number of demographic histories can actually
produce the same set of spatial and temporal coefficients and therefore
the same observed spectrum. However, it was later shown that the
expected sample spectra results uniquely from demographic models
as long as these models are defined piecewise using population size
functions that do not oscillate/switch signs too often, and as long as the
samples are sufficiently large (Bhaskar and Song, 2014); note, however,
that fixed epoch start and end times were assumed. Generally, these
past discussions have also always assumed an infinite-sites mutation

scheme and corresponding either polarised or unpolarised (i.e., folded)
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Fig. 1. These figures examine the effect of an increase (1A-1D) and a decrease (2A-2D) in the overall bias-complemented scaled mutation rate of the polymorphic site frequency
spectrum. Specifically, we examine samples of size 𝐾 = 24 from a population whose mutation rate has increased from 𝜃∗1 = 0.007 to 𝜃∗2 = 0.015 (1A-1D) or decreased in the reverse
(2A-2D) at times 𝑡1 = 𝑐(−0.083,−0.292,−0.500,−0.708) back from the time of sampling (see Section 3.1). In (A), the sampled polymorphic site frequency spectra are shown with
the first sample in black and the succeeding in grey; in (B) the log ratio between the sampled polymorphic spectra and the equilibrium distribution of the boundary mutation
Moran model with the ancestral overall bias-complemented scaled mutation rate is shown in a similar way. The figures (C) show the value of the D-statistic inferred from each
sample at the times since the shift, with the vertical grey line marking the most extreme value. The plots in (D) show our inferred values of both the ancestral and the current
bias-complemented overall scaled mutation rate from each sample across time determined via Eq. (34) and the procedure outlined beneath it, with the true values indicated by
the horizontal grey lines.
sample site frequency spectra. Here, we motivate a new analytic in-
ference approach for piecewise constant demographic histories with
unknown epoch break points, where the starting point is a biallelic
sample spectrum.

To start, let us return to Eq. (34). In order to infer all 𝜃𝑗 for 1 ≤ 𝑗 ≤ 𝐽
and therefore all the past (effective) population sizes attained at the
end of each epoch, (i) the left hand side of the equation, i.e., the
temporal dynamics, must be determined from the sampled spectrum,
and (ii) the 𝑟𝑗 , i.e., the scaled time points of demographic events, must
also be specified in some way. Consider a sampled spectrum of size
𝐾 comprised of a total of 𝐿 loci, with 𝐿(0) and 𝐿(1) loci fixed for
the respective alleles as well as 𝐿(0,1) polymorphic loci, so that 𝐿 =
∑

(𝐿(0) +𝐿(0,1) +𝐿(1)). In the context of the biallelic boundary mutation
Moran model, these observed counts of loci are sufficient statistics
for the probabilities of the respective monomorphic and polymorphic
events, meaning that they contain all the information from the data that
can be used to construct estimators of these events (Vogl et al., 2020).
It follows that �̂� = 𝐿1+(𝐿(0,1)∕2)

𝐿 is the minimum variance, unbiased
maximum likelihood estimator for the mutation bias (Vogl, 2014c; Vogl
et al., 2020). Hence, the mutation bias can be immediately estimated
from the observed spectrum. Then the polymorphic spectrum can be
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symmetrised, yielding unbiased sample allele occupancy probabilities
for 𝑘 = 1,… , 𝐾 − 1. These can be plugged into the left side of the
polymorphic equation for expected sample allele frequencies given the
past population history from Eq. (31). The purely spatial binomial
coefficients on the right hand side of this equation can also be readily
determined, so only the temporal coefficients 𝜏𝑛(𝑡𝐽 ) remain unknown.
Seen for all the inferred polymorphic allele frequencies simultaneously,
Eq. (31) clearly describes a consistent system of 𝐾 − 1 equations that
can be uniquely solved for the 𝐾 − 1 temporal coefficients. These are
required for the left hand side of the system of equations in Eq. (34).

As the number and duration of the past population epochs is gen-
erally unknown, specification of the scaled epoch lengths determined
by the 𝑟𝑗 must be ad hoc. Recall that only the even-order solutions of
the temporal equations are non-zero since the mutation bias is assumed
constant. For example, a sample spectrum of size 𝐾 = 6 is shaped by
the polynomials of degree 𝑛 = {2, 4, 6}. Furthermore, for Eq. (34) to
constitute a unique solution, the number of epochs 𝐽 plus one (the
additional one being for the ancestral state) must be equal to the
number of informative polynomial coefficients. In our example with
𝐾 = 6, this means we can uniquely infer the current as well as two
past overall bias-complemented overall mutation rates. A convenient
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agnostic placement of the time points at which to make these inferences
is inspired by the half-life of exponential decay: Setting 𝑟𝑗 = log(2)

𝜆2𝑗+1
,

each epoch is placed where half the change in overall-scaled mutation
compared to the preceding epoch is expected to have occurred based
on the eigenvalues of the observed spectrum. And within epoch, the
amount of change captured by each order of expansion is proportional
to the corresponding eigenvalue (see Fig. 2). There is no guarantee that
these 𝑟𝑗 are the true scaled time points at which the demographic events
occurred; they are simply ‘‘well placed’’ for characterising the effect
of exponential change. Note that only the lowest (or to a lesser extent
the second lowest) order of expansion from the first epoch significantly
influences the shape of the spectrum at the extant time, whereby all (or
almost all) orders of expansion from later epochs influence the shape
of the spectrum at the extant time, albeit less drastically.

Altogether, we can conclude that if we assume the same number of
(effective) population sizes – current and historical – as there are even
coefficients in the polynomial expansion of the observed site frequency
spectrum, and if the demographic events that caused the changes in
size are assumed to be well placed in the above sense, unique solutions
for all current and historical bias-complemented overall mutation rates
𝜃𝑗 can be found from the system of equations in Eq. (34). These
resulting estimators for all the 𝜃𝑗 are derived from sufficient statistics
via two consistent systems of equations with unique solutions (one-to-
one mappings of parameter spaces); therefore the resulting estimators
for the 𝜃𝑗 are unique minimum unbiased estimators (see Hogg and
Craig, 1995, Chapter 10).

Both the accuracy and potential for wider application of this method
are, as yet, limited by numerical instability: For our previous example
with sample size 𝐾 = 6, a total number of loci in the order of 108 is
required for the accuracy of all three estimators to be adequate (see
Fig. 3). This is, however, the upper limit of loci in a site frequency
spectrum that can be simulated using the open software program R. It
is clear that the feasibility of large-scale use of this method hinges not
only on specialised implementation being developed in the future, but
also on the availability of sets with a large enough number of loci.

In Fig. 1 panels 1D and 2D, the sample allele occupancy proba-
bilities from the single-shift examples of the previous subsection are
hypergeometrically downsampled to 𝐾 = 4 and used to generate
spectra of 2 ⋅ 108 independent loci, from which both the extant and the
ancestral overall bias-complemented scaled mutation rate are inferred.
This novel inference approach infers the true values most accurately a
touch sooner after the change in (effective) population size than the
D-statistic detects the greatest signal of departure from equilibrium
(compare Fig. 1 panels 1C and 2C). Note the pattern of inferring slightly
more extreme values for the ancestral mutation rate before and for the
current mutation rate after this point to compensate for the positioning
of the hypothetical epoch split time.

3.3. Deterministically alternating population sizes (model 2)

In this subsection, we construct a caricature model of boom-bust
population size dynamics: To do so, we assume a population that has
haploid (effective) size 𝑁𝑢 for an epoch of length 𝑠𝑢 (where 𝑢 stands for
the b𝑢st epoch), and then switches instantaneously to having haploid
(effective) size 𝑁𝑜 for an epoch of length 𝑠𝑜 (where 𝑜 stands for the
b𝑜om epoch). Together, these two epochs form a cycle that repeats
indefinitely.

Classic population genetic results apply to the overall (effective)
size of this population: If the epochs are short compared to generation
length (which is the inverse population size in the diffusion setting),
the long-term effective size can be approximated by the harmonic
mean across the two epochs (Wright, 1938; Kimura, 1963). The het-
erozygosity of populations undergoing deterministic, cyclical changes
in (effective) size has been studied extensively for various trajectories
of rapid population growth followed by instantaneous collapse; the
harmonic mean approximation holds both without mutations and when
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Fig. 2. Here we visualise the function space that demographic histories are mapped
onto for our inference approach: Specifically, this space is spanned by the values of

the exponential 𝑒−𝜆𝑛𝑟𝑗 = 𝑒
−𝜆𝑛

log(2)
𝜆2𝑗+1 (on the y-axis), which we evaluate at the orders of

expansion 𝑛 = 2, 4, 6, 8 (on the x-axis) for every epoch 𝑗 = 1, 2, 3, 4, which are represented
by circles, squares, diamonds, and triangles respectively. Assuming the epoch break
points 𝑟𝑗 =

log(2)
𝜆2𝑗+1

, the expression on the 𝑦-axis informs us of the amount of change (or
the rate of convergence) in the overall scaled bias-complemented mutation rate that is
captured by each order of expansion for every epoch.

novel mutations enter at a low rate per locus per generation (Nei
et al., 1975; Motro and Thomson, 1982). Both the ratio between the
maximum and minimum heterozygosity within each cycle as well as the
ratio between the maximum heterozygosity and the harmonic average
heterozygosity within each cycle increase with the severity and dura-
tion of the population collapse (Nei et al., 1975; Motro and Thomson,
1982). We will examine both the expected sample polymorphic site
frequency spectrum of populations undergoing boom-bust life cycles as
well as the temporal part of their spectral decomposition.

The harmonic mean of the (effective) population size across each
cycle is:

𝑁ℎ =
𝑠𝑢 + 𝑠𝑜
𝑠𝑢
𝑁𝑢

+ 𝑠𝑜
𝑁𝑜

.

Diffusion time within each epoch can be scaled relative to this harmonic
mean so that the scaled duration of the epochs become 𝑠𝑢

𝑁ℎ
𝑁𝑢

and 𝑠𝑜
𝑁ℎ
𝑁𝑜

,
i.e., in this subsection only, time is scaled in units of the harmonic mean
effective population size. Similarly, the harmonic mean of the overall
bias-complemented scaled mutation rates is defined as:

𝜃∗ℎ = 𝜇𝑁ℎ =
𝑠𝑢 + 𝑠𝑜
𝑠𝑢
𝜃∗𝑠𝑢,𝑛

+ 𝑠𝑜
𝜃∗𝑠𝑜,𝑛

.

Then the solutions to the linear differential equations for the tem-
poral dynamics of the boom and bust phases can be written as the
following, introducing the dummy index for the even epochs 𝑙 ∈ 2N:

𝜏𝑛(𝑡)𝛯−1
𝑛 = 𝜃∗𝑢 −

(

𝜃∗𝑢 − 𝜏𝑛(𝑡𝑙−1)𝛯
−1
𝑛

)

𝑒
−𝜆𝑛𝑠𝑢

𝜃∗ℎ
𝜃∗𝑢

(𝑡−𝑡𝑙−1) , for 𝑡𝑙−1 < 𝑡 ≤ 𝑡𝑙.

𝜏𝑛(𝑡)𝛯−1
𝑛 = 𝜃∗𝑜 −

(

𝜃∗𝑜 − 𝜏𝑛(𝑡𝑙)𝛯
−1
𝑛

)

𝑒
−𝜆𝑛𝑠𝑜

𝜃∗ℎ
𝜃∗𝑜

(𝑡−𝑡𝑙 ) , for 𝑡𝑙 < 𝑡 ≤ 𝑡𝑙+1.

(35)

As the number of cyclical iterations increases with 𝑙 → ∞, the
temporal dynamics of the even and odd epochs evolve towards two
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Fig. 3. The above figures assess the numerical accuracy of the proposed inference
framework by attempting to infer historic overall bias-complemented scaled mutation
rates from equilibrium distributions; any deviation in the estimated rates from their
equilibrium values must therefore be due to computational inaccuracy. We vary the
magnitude of the overall scaled mutation rate and the number of sampled loci to assess
which parameter ranges yield the most accurate results. To this end, the polymorphic
equilibrium distribution of the discrete boundary-mutation Moran model of size 𝑁 = 6
is calculated (using Eq. (4)) assuming 𝜃∗ = 0.0021 for panel (A), 𝜃∗ = 0.021 for panel
(B), and 𝜃∗ = 0.21 for panel (C). Three corresponding sample spectra comprised of 106,
107, and 108 loci respectively are then simulated according to the allele occupancy
probabilities 𝑝𝑘 of each equilibrium distribution from (A)-(C). Then, the current as
well as two past overall bias-complemented scaled mutation rates (which should be
𝜃∗1 = 𝜃∗2 = 𝜃∗3 = 𝜃∗) are inferred (via the above described method) from each of these
three sample spectra for every equilibrium value of the overall scaled mutation rate
(A)-(C). This procedure is repeated three times. For each value of the overall scaled
mutation rate in (A)-(C), the estimators of the historical overall scaled mutation rates
(y-axis) are represented in dependence of the number of loci (x-axis), where we use
the symbols ‘‘+’’, ‘‘x’’, and ‘‘o’’ to denote estimates of 𝜃∗1 , 𝜃∗2 , and 𝜃∗3 respectively.
The horizontal lines in (A)-(C) mark the true/equilibrium values of the overall scaled
bias-complemented mutation rates.

separate solutions at 𝑡𝑙 and 𝑡𝑙+1, which we will denote as 𝜗𝑠𝑢 ,𝑛 =
lim𝑙→∞ 𝜏𝑛(𝑡𝑙)𝛯−1

𝑛 and 𝜗𝑠𝑜 ,𝑛 = lim𝑙→∞ 𝜏𝑛(𝑡𝑙−1)𝛯−1
𝑛 , respectively. These

solutions follow the system of equations:

𝜗𝑠𝑢 ,𝑛 = 𝜃∗𝑢 −
(

𝜃∗𝑢 − 𝜗𝑠𝑜 ,𝑛

)

𝑒
−𝜆𝑛

𝜃∗ℎ
𝜃∗𝑢
𝑠𝑢

𝜗𝑠 ,𝑛 = 𝜃∗𝑜 −
(

𝜃∗𝑜 − 𝜗𝑠 ,𝑛

)

𝑒
𝜆𝑛
𝜃∗ℎ
𝜃∗𝑜
𝑠𝑜 .

(36)
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𝑜 𝑢
This system is easily solved:

(𝜃∗𝑢 − 𝜃
∗
𝑜 ) = −

(

𝜗𝑠𝑜 ,𝑛 − 𝜃
∗
𝑢

)

𝑒
−𝜆𝑛

𝜃∗ℎ
𝜃∗𝑢
𝑠𝑢 +

(

𝜗𝑠𝑜 ,𝑛 − 𝜃
∗
𝑜

)

𝑒
𝜆𝑛
𝜃∗ℎ
𝜃∗𝑜
𝑠𝑜

𝜗𝑠𝑜 ,𝑛 =
𝜃∗𝑢 (1 − 𝑒

−𝜆𝑛
𝜃∗ℎ
𝜃∗𝑢
𝑠𝑢 ) + 𝜃∗𝑜 (𝑒

𝜆𝑛
𝜃∗ℎ
𝜃∗𝑜
𝑠𝑜 − 1)

(1 − 𝑒
−𝜆𝑛

𝜃∗ℎ
𝜃∗𝑢
𝑠𝑢 ) + (𝑒

𝜆𝑛
𝜃∗ℎ
𝜃∗𝑜
𝑠𝑜 − 1)

𝜗𝑠𝑜 ,𝑛 =
𝜃∗𝑢 (1 − 𝑒

−𝜆𝑛
𝜃∗ℎ
𝜃∗𝑢
𝑠𝑢 ) − 𝜃∗𝑜 (1 − 𝑒

𝜆𝑛
𝜃∗ℎ
𝜃∗𝑜
𝑠𝑜 )

(1 − 𝑒
−𝜆𝑛

𝜃∗ℎ
𝜃∗𝑢
𝑠𝑢 ) − (1 − 𝑒

𝜆𝑛
𝜃∗ℎ
𝜃∗𝑜
𝑠𝑜 )

,

(37)

and

𝜗𝑠𝑢 ,𝑛 =
𝜃∗𝑜 (1 − 𝑒

−𝜆𝑛
𝜃∗ℎ
𝜃∗𝑜
𝑠𝑜 ) − 𝜃∗𝑢 (1 − 𝑒

𝜆𝑛
𝜃∗ℎ
𝜃∗𝑢
𝑠𝑢 )

(1 − 𝑒
−𝜆𝑛

𝜃∗ℎ
𝜃∗𝑜
𝑠𝑜 ) − (1 − 𝑒

𝜆𝑛
𝜃∗ℎ
𝜃∗𝑢
𝑠𝑢 )

. (38)

Thus, analytical expressions for the long-term solutions of the tem-
poral dynamics of populations of deterministically alternating (effec-
tive) population size have been found. When the epoch lengths are
relatively short, so that 𝑠𝑚𝑎𝑥𝜆𝑛 ≪ 1 with 𝑠𝑚𝑎𝑥 = max(𝑠𝑢

𝜃∗𝑢
𝜃∗ℎ
, 𝑠𝑜

𝜃∗𝑜
𝜃∗ℎ
), the

exponential decay of relative mutation effects in each epoch can be
approximated by first order Taylor series expansions:

𝜗𝑠𝑜 ,𝑛 =
𝜃∗𝑢𝜆𝑛

𝜃∗ℎ
𝜃∗𝑢
𝑠𝑢 + 𝜃∗𝑜𝜆𝑛

𝜃∗ℎ
𝜃∗𝑜
𝑠𝑜

𝜆𝑛
𝜃∗ℎ
𝜃∗𝑢
𝑠𝑢 + 𝜆𝑛

𝜃∗ℎ
𝜃∗𝑜
𝑠𝑜

+ (𝑠2𝑚𝑎𝑥)

=
𝑠𝑢 + 𝑠𝑜
𝑠𝑢
𝜃∗𝑠𝑢,𝑛

+ 𝑠𝑜
𝜃∗𝑠𝑜,𝑛

+ (𝑠2𝑚𝑎𝑥)

= 𝜃∗ℎ + (𝑠2𝑚𝑎𝑥) ,

(39)

and equivalently:

𝜗𝑠𝑢 ,𝑛 = 𝜃∗ℎ + (𝑠2𝑚𝑎𝑥) . (40)

Essentially, rapidly alternating boom and bust phases ultimately result
in the temporal coefficients of both epochs converging towards the
harmonic mean of the individual overall bias-complemented scaled mu-
tation rates. The effective population size is then accurately captured
by 𝑁ℎ, as anticipated.

Conversely, it follows immediately from Eq. (36) that for long
epoch lengths 𝑠𝑚𝑖𝑛𝜆𝑛 ≫ 1 where 𝑠𝑚𝑖𝑛 = min(𝑠𝑢

𝜃∗𝑢
𝜃∗ℎ
, 𝑠𝑜

𝜃∗𝑜
𝜃∗ℎ
), the temporal

coefficients of the epochs converge to their individual equilibrium
solutions:
𝜗𝑠𝑜 ,𝑛 = 𝜃∗𝑜
𝜗𝑠𝑢 ,𝑛 = 𝜃∗𝑢 .

(41)

Then the arithmetic mean of 𝜗𝑠𝑢 ,𝑛 and 𝜗𝑠𝑜 ,𝑛 is the appropriate approx-
imation of the expected long-term effective population size, again as
anticipated.

3.3.1. Results and discussion for model 2
In Fig. 4 panels 1A-1C, the expected polymorphic sample spectra

from boom and bust epochs are plotted relative to the harmonic mean
for relatively long (A), intermediate (B), and short (C) epoch lengths
compared to the average overall bias-complemented scaled mutation
rate. Recall that this is easily achieved by plugging the long-term
solution of the temporal dynamics of the boom epochs from Eq. (37)
and bust epochs from Eq. (38) into Eq. (31). Technically, according
to the aforementioned criteria, both scenarios A and B qualify as
intermediate: In A, only the expansion order 𝑛 = 2 can be approximated
by the harmonic mean with the remainder likely well-approximated
by the arithmetic mean. Meanwhile in B, only the expansion order
𝑛 = 2 fulfils the approximation criteria of the harmonic mean but
several higher order expansion are no longer accurately represented by



Theoretical Population Biology 157 (2024) 55–85L.C. Mikula and C. Vogl
Fig. 4. Samples of size 𝐾 = 24 drawn from a population evolving according to the caricature boom-bust model with 𝜃∗𝑜 = 0.05 in the boom epoch and 𝜃∗𝑢 = 0.005 in the bust
epoch. In (1), the log-ratio of the expected sample site frequency spectra during the boom and bust epochs vs the equilibrium distribution at the harmonic mean of the overall
bias-complemented scaled mutation rates are shown in black and grey respectively. The epoch lengths are set to 𝑠𝑢 = 𝑠𝑜 = 7 ⋅ 10−1 (A), 𝑠𝑢 = 𝑠𝑜 = 1 ⋅ 10−1 (B), and 𝑠𝑢 = 𝑠𝑜 = 1 ⋅ 10−3

(C). In (2), the temporal coefficients are plotted for both boom (Eq. (37); in black) and bust (Eq. (38); in grey) epochs for each order of expansion.
the arithmetic mean. In panel 1 A, the sample spectra from the boom
epochs show the u-shape characteristic of population growth with an
excess of low and dearth of high frequency alleles; similarly, the bust
epochs show a flat, inverted u-shape that consistently lies below the
harmonic equilibrium, characteristic of population contraction. Only
the lowest order temporal coefficients have started converging towards
the harmonic equilibrium (see panel 2 A). The result of the D-statistics
reflect these patterns (see Table 1). In our intermediate scenario B, the
sample spectrum of the boom epoch has a clear w-shape; the sample
spectrum of the bust epoch simply shows a more pronounced inverse
u-shape with the peak hitting the harmonic mean. For these epoch
lengths, the lowest order temporal coefficients are almost equal to the
harmonic mean, and some but not all the higher order coefficients have
started converging (see panel 2B). In Nawa and Tajima (2008), visual
assessment of the spectrum of segregating sites reveals w-shapes for
populations recovering from a bottleneck: the number of intermediate
alleles increase faster than the number of minor alleles, leading to
confused signals in the D-statistic (see Nawa and Tajima (2008, Table
2) alongside our Table 1). This w-shape becomes more pronounced
with bottlenecks that are further back in the population history, are
comparatively short, or are less extreme in terms of collapse in popula-
tion size. Bottlenecks with the opposite characteristics lead to such an
extreme w-shape that it becomes an inverted u-shape. The bust epoch
can therefore be considered a mild, recurrent bottleneck. In scenario C,
where the epoch lengths are relatively short, all but the highest orders
of expansion can be approximated by the harmonic mean. Both sample
spectra deviate from the harmonic mean only by a small enrichment or
diminution in the proportion of singletons respectively (see Table 1).

In Table 2, the results of applying our agnostic inference approach
from Section 3.2 to sample spectra drawn from both the boom and
the bust phases are presented for each of the previous epoch length
66
Table 1
D-statistic for sampled spectra from Fig. 4.

boom epoch (𝜃∗1 = 0.05) bust epoch (𝜃∗0 = 0.005)

(A) 𝑠𝑢 = 𝑠𝑜 = 7 ⋅ 10−1 −0.2140 0.01351
(B) 𝑠𝑢 = 𝑠𝑜 = 10−1 0.0008 0.03521
(C) 𝑠𝑢 = 𝑠𝑜 = 10−3 −0.0008 0.0008

scenarios. In order to do this, the spectra are hypergeometrically down-
sampled to size 𝐾 = 4 so that the current and one past overall-biased
mutation rate can be inferred. The results gained from the sample
spectra drawn from the bust phase are reasonably informative of the un-
derlying boom-bust population cycle: The results for long epoch lengths
are near the individual equilibrium overall bias-complemented epoch
lengths, and convergence towards the harmonic mean is noticeable
as epoch lengths decrease. The results from the bust phase are less
informative: Because the collapse in (effective) population size is so
rapid (with exp

(

−𝜆𝑛
log(2)
𝜆2𝑗+1

)

≪ exp
(

−𝜆𝑛𝑠𝑢
𝜃∗ℎ
𝜃∗𝑢
𝑡
)

for all 𝑗 when 𝑛 > 2),
the spectrum contains little to no historical information. So while the
estimators for the current overall bias-complemented scaled mutation
rates are reasonable, the past estimates (inferred from not very far back
in time) are no more than an indication that the (effective) population
size was formerly larger.

Generally, deterministic boom-bust type models are applicable to
organisms that experience major, semi-regular environmental events
on a time scale that is long compared to their generation lengths. For
example, the El Nino currents in the equatorial pacific occur roughly
every four years and are known to impact heterozygosity in some
insect populations (Franca et al., 2020). With the annual growth and
subsequent collapse of naturally occurring populations of Drosophila in
temperate climates, however, generation times are short compared to
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Table 2
Inference of temporal coefficients for sampled spectra from Fig. 4.

sample from boom epoch 𝜃∗1 𝜃∗0
(A) 𝑠𝑢 = 𝑠𝑜 = 7 ⋅ 10−1 0.00648 0.05151
(B) 𝑠𝑢 = 𝑠𝑜 = 1 ⋅ 10−1 0.00805 0.01692
(C) 𝑠𝑢 = 𝑠𝑜 = 1 ⋅ 10−3 0.00908 0.00918

sample from bust epoch 𝜃∗0 𝜃∗1
(A) 𝑠𝑢 = 𝑠𝑜 = 7 ⋅ 10−1 0.00463 0.00617
(B) 𝑠𝑢 = 𝑠𝑜 = 1 ⋅ 10−1 0.00503 0.00926
(C) 𝑠𝑢 = 𝑠𝑜 = 1 ⋅ 10−3 0.00898 0.00911

the scale of seasonal variation in the environment, making seasonal
adaptation possible (Machado et al., 2021). This comparatively rapid
turnover in generations implies that the difference between the (effec-
tive) sizes of boom and bust epochs will often be of several orders of
magnitude, so 𝑁𝑢∕𝑁𝑜 ≪ 1. Realistic values may be 𝑁𝑢∕𝑁𝑜 ≤ 10−4 with
∗
ℎ = 0.01 and epoch lengths of roughly 10

𝑁ℎ
. From such large ratios

etween 𝑁𝑢 ∶ 𝑁𝑜, it follows that 𝜃∗ℎ
𝜃∗𝑜

≈ 0. Note that then the long-
term temporal coefficients of the boom and bust epochs (respectively
Eq. (37) and Eq. (38)) can be approximated by:

𝜗𝑠𝑜 ,𝑛 =
𝜆𝑛𝜃∗ℎ𝑠𝑜 + 𝜃

∗
𝑢

(

1 − 𝑒
−𝜆𝑛

𝜃∗ℎ
𝜃∗𝑢
𝑠𝑢
)

(

1 − 𝑒
−𝜆𝑛

𝜃∗ℎ
𝜃∗𝑢
𝑠𝑢
)

+ 
( 𝜃∗ℎ
𝜃∗𝑜

)

(42)

nd

𝑠𝑢 ,𝑛 =
𝜆𝑛𝜃∗ℎ𝑠𝑜 − 𝜃

∗
𝑢

(

1 − 𝑒
𝜆𝑛
𝜃∗ℎ
𝜃∗𝑢
𝑠𝑢
)

−
(

1 − 𝑒
𝜆𝑛
𝜃∗ℎ
𝜃∗𝑢
𝑠𝑢
)

+ 
( 𝜃∗ℎ
𝜃∗𝑜

)

. (43)

urthermore, observe that 𝜃∗ℎ = 𝜃∗𝑠𝑢 ,𝑛
𝑠𝑢+𝑠𝑜
𝑠𝑢

+(
𝜃∗ℎ
𝜃∗𝑜
). Substituting this, the

difference between the long-term dynamics of the epochs becomes:

𝜗𝑠𝑜 ,𝑛 − 𝜗𝑠𝑢 ,𝑛 =
𝜆𝑛𝜃∗𝑢

𝑠𝑢+𝑠𝑜
𝑠𝑢

𝑠𝑜 + 𝜃∗𝑢

(

1 − 𝑒−𝜆𝑛(𝑠𝑢+𝑠𝑜)
)

(

1 − 𝑒−𝜆𝑛(𝑠𝑢+𝑠𝑜)
)

−
−𝜆𝑛𝜃∗𝑢

𝑠𝑢+𝑠𝑜
𝑠𝑢

𝑠𝑜 + 𝜃∗𝑢

(

1 − 𝑒𝜆𝑛(𝑠𝑢+𝑠𝑜)
)

(

1 − 𝑒𝜆𝑛(𝑠𝑢+𝑠𝑜)
) + 

( 𝜃∗ℎ
𝜃∗𝑜

)

= 𝜆𝑛𝜃
∗
𝑢
𝑠𝑢 + 𝑠𝑜
𝑠𝑢

𝑠𝑜

(

1
1 − 𝑒−𝜆𝑛(𝑠𝑢+𝑠𝑜)

+ 1
1 − 𝑒𝜆𝑛(𝑠𝑢+𝑠𝑜)

)

+ 
( 𝜃∗ℎ
𝜃∗𝑜

)

= 𝜆𝑛𝜃
∗
𝑢
𝑠𝑢 + 𝑠𝑜
𝑠𝑢

𝑠𝑜 + 
( 𝜃∗ℎ
𝜃∗𝑜

)

.

(44)

The difference between the long-term temporal mutation dynamics
f the boom and bust epochs is therefore independent of the overall
ias-complemented scaled mutation rate of the boom epoch. Rather, for
ach order 𝑛 of the temporal expansion, the corresponding eigenvalue
s scaled by a term comprised of the overall bias-complemented scaled
utation rate of the bust epoch, the cycle length, and the duration

f the boom epoch relative to the bust epoch. While this effect was
pparent from past simulations (Motro and Thomson, 1982), we have
ow shown it analytically. The accuracy of this final expression de-
ends on the conditions ahead of Eqs. (42) and (43). If necessary, upper
ounds for accuracy can be determined via the error expansion of the
aylor series. Note that one can see from these last calculations that
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nrealistically large sample sizes may be necessary to be able to detect
he signatures of the boom-bust dynamics in the spectra of Drosophila,
ince the number of generations per year will be very much lower than
ℎ.

.4. Serially correlated population sizes (model 3)

.4.1. Autoregression model for temporal dynamics
In Section 3.1 and Section 3.3, populations are subject to major

nd predictable changes in (effective) population size. However, most
luctuations in population size are responses to demographic (Lee et al.,
011) or environmental (Lande, 2014) changes that are not necessar-
ly regular over long time periods. While these fluctuations can be
rucial to the fate of the populations, they are generally not easily
uantifiable. In the following, stochastic variation in the overall bias-
omplemented scaled mutation rate is incorporated into the system of
emporal equations of the forwards population process from Eq. (28).

Let us denote the long-term solution for the temporal coefficient of
𝑛(𝑡) for each epoch 𝑡𝑗−1 < 𝑡 ≤ 𝑡𝑗 as 𝜗𝑗,𝑛𝛯𝑛. Furthermore, let us fix
he relative scaled epoch length 𝑐 = 𝑠𝑗4𝑁𝑗𝛼𝛽𝜇. This relative scaled
poch length is independent of 𝑗 because the epoch lengths 𝑠𝑗 scale
ith 1∕𝑁𝑗 on the continuum time scale and we assume that the number
f generations (and thus the mutation parameters) is the same in each
poch. The resulting long-term temporal coefficients solve the following
quation for 𝑛 ∈ 2N and 𝑗 > 0 (compare Eq. (28) and Eq. (36)):

𝑗,𝑛 = 𝜗𝑗−1,𝑛𝑒
−𝜆𝑛

𝑐
𝜃∗𝑗 + 𝜃∗𝑗

(

1 − 𝑒
−𝜆𝑛

𝑐
𝜃∗𝑗

)

. (45)

his equation has the general form 𝛾𝑗 = 𝛾𝑗−1𝑚𝑗 + 𝜖𝑗 (1 − 𝑚𝑗 ) and
s therefore a first order autoregression model. Because |𝑚𝑗 | < 1,
he process is also stationary, i.e., its moments are independent of
(Johnston, 1960, Chapter 7). In the classic case, 𝜖𝑗 enters the pro-

ess without a coefficient and is a serially uncorrelated, zero-mean
nd constant variance stochastic process (i.e., white noise). Here, it
orresponds to 𝜃∗𝑗 , and we must characterise its distribution in order to
ake statements about 𝜗𝑗,𝑛. Note that the occurrence of the overall bias-

omplemented scaled mutation rates 𝜃∗𝑗 in Eq. (45) is reminiscent of an
nverse gamma distributed variable. Therefore, we assume for 𝑗 > 0:

∗
𝑗
𝑖𝑖𝑑∼ 𝑖𝑛𝑣𝑔𝑎𝑚𝑚𝑎(𝑎, 𝑏) with 𝑎 > 2, 𝑏 > 0

(𝜃∗) = Pr(𝜃∗𝑗 = 𝜃∗∣𝑎, 𝑏) = 𝑏𝑎

𝛤 (𝑎)

(

1
𝜃∗

)𝑎+1
𝑒
−𝑏
𝜃∗

(46)

The range of the hyperparameter 𝑎 is restricted to ensure existence of
the mean and the variance.

3.4.2. Characterising the solutions to the temporal dynamics
Next, we will use the distribution of the overall scaled mutation

parameter 𝜃∗𝑗 together with the properties of the first-order autoregres-
sion processes to determine the mean, variances, and covariances of the
solutions of the long-term temporal coefficients 𝜗𝑗,𝑛.

Mean
Returning to the autoregression process in Eq. (45) and invoking

stationarity, we have for 𝑛 ∈ 2N and 𝑗 > 0:

E𝜗(𝜗𝑗,𝑛) − E𝜗(𝜗𝑗−1,𝑛) = 0

𝜗 E𝜃∗ (𝜗𝑗,𝑛) − E𝜗 𝐸𝜃∗ (𝜗𝑗−1,𝑛) = E𝜗 E𝜃∗
(

(𝜃∗ − 𝜗𝑗,𝑛)(1 − 𝑒
−𝜆𝑛

𝑐
𝜃∗ )

)

= 0

E𝜗(𝜗𝑗,𝑛) E𝜃∗
(

1 − 𝑒−𝜆𝑛
𝑐
𝜃∗

)

= E𝜃∗ (𝜃∗) E𝜃∗
(

1 − 𝑒
−𝜆𝑛

𝑐
𝜃∗′

)

(47)

Recall that E𝜃∗ = ∫ ∞
0 𝑝(𝜃∗)𝑑𝜃∗, where 𝑝(𝜃∗) is the density of the inverse

gamma distribution from Eq. (46). By straightforward application of

the substitution and integration by parts rules for evaluation of each



Theoretical Population Biology 157 (2024) 55–85L.C. Mikula and C. Vogl

U
e

m
p

E

E

C

c
i
p
w
b

𝛷

N
o

𝛷

C

𝜆

3

o
f
F
c
f
l
t
g
t
t
r
i

t
e
m
p
t
t
c
o
t
a
t
l
f

integral, we obtain for 𝑛 ∈ 2N and 𝑗 > 0:

E𝜗(𝜗𝑗,𝑛)
(

1 − 𝑏𝑎

(𝑏 + 𝜆𝑛𝑐)𝑎

)

= 𝑏
(𝑎 − 1)

− 1
(𝑎 − 1)

𝑏𝑎

(𝑏 + 𝜆𝑛𝑐)𝑎−1

E𝜗(𝜗𝑗,𝑛)
(𝑏 + 𝜆𝑛𝑐)𝑎 − 𝑏𝑎

(𝑏 + 𝜆𝑛𝑐)𝑎
= 𝑏

(𝑎 − 1)

(

(𝑏 + 𝜆𝑛𝑐)𝑎−1 − 𝑏𝑎−1

(𝑏 + 𝜆𝑛𝑐)𝑎−1

)

E𝜗(𝜗𝑗,𝑛) =
𝑏

(𝑎 − 1)

(

(𝑏 + 𝜆𝑛𝑐)𝑎 − (𝑏 + 𝜆𝑛𝑐)𝑏𝑎−1

(𝑏 + 𝜆𝑛𝑐)𝑎 − 𝑏𝑎

)

= 𝑏
(𝑎 − 1)

(

1 −
𝜆𝑛𝑐𝑏𝑎−1

(𝑏 + 𝜆𝑛𝑐)𝑎 − 𝑏𝑎

)

(48)

sing L’Hôpital’s rule, the limiting results for short and long relative
poch lengths (scaled by the eigenvalues) can be determined:

lim
𝜆𝑛𝑐→0

E𝜗(𝜗𝑗,𝑛) = lim
𝜆𝑛𝑐→0

𝑏
𝑎 − 1

(

1 − 𝑏𝑎−1

𝑎(𝑏 + 𝜆𝑛𝑐)𝑎−1

)

= 𝑏
𝑎 − 1

(

1 − 1
𝑎

)

= 𝑏
𝑎

lim
𝜆𝑛𝑐→∞

E𝜗(𝜗𝑗,𝑛) = lim
𝜆𝑛𝑐→∞

𝑏
𝑎 − 1

(

1 − 𝑏𝑎−1

𝑎(𝑏 + 𝜆𝑛𝑐)𝑎−1

)

= 𝑏
𝑎 − 1

.

(49)

When epochs are relatively short, the expected value of the long-
term temporal coefficients converges towards the harmonic mean of
the inverse gamma distribution that was chosen to model the distri-
bution of the overall bias-complemented scaled mutation parameter.
When epochs are relatively long, convergence is towards the arithmetic
mean of this inverse gamma distribution. Similar results have been
obtained for the heterozygosity and the effective size of populations
with stochastic cycles of varying size within the framework of the
(Wright–Fisher) diffusion (Iizuka, 2001; Iizuka et al., 2002; Iizuka,
2010): There, predetermined potential population sizes can easily be
modelled as finite states of a Markov Chain. Both the effective size
of the population and its heterozygosity generally converge towards
the harmonic means when the autocorrelation of transitions between
population size states is low. In contrast, high (positive) autocorrelation
generates convergence to the arithmetic mean (which is always greater
than the harmonic mean), and, when the scenario permits negative
autocorrelation, this can lead to results that lie below the harmonic
mean.

Variance
The method for calculating the variance of the solutions to the long-

term temporal coefficients 𝜗𝑗,𝑛 is analogous to that for determining the
ean. Starting again from Eq. (45) and using the stationarity of the
rocess for 𝑛 ∈ 2N and 𝑗 > 0:

𝜗(𝜗2𝑗,𝑛) E𝜃∗
(

1 − 𝑒−𝜆𝑛
𝑐
𝜃∗

)

= 2E𝜃∗
(

(1 − 𝑒−
𝑐
𝜃∗ )𝑒−

𝑐
𝜃∗ 𝜃∗

)

E𝜗(𝜗𝑗,𝑛)

+ E𝜃∗ (𝜃∗
2) E𝜃∗

(

1 − 2𝑒−
𝑐
𝜃∗ + 𝑒−𝜆𝑛

𝑐
𝜃∗

)

.

(50)

Evaluating integrals as before, one obtains for 𝑛 ∈ 2N and 𝑗 > 0:

𝜗(𝜗2𝑗,𝑛) =
1

1 − 𝑏𝑎

(𝑏+2𝜆𝑛𝑐)𝑎

(

2
(𝑎 − 1)

(

𝑏𝑎

(𝑏 + 𝜆𝑛𝑐)𝑎−1
− 𝑏𝑎

(𝑏 + 2𝜆𝑛𝑐)𝑎−1

)

E𝜗(𝜗𝑗,𝑛)

+ 𝑏𝑎

(𝑎 − 1)(𝑎 − 2)
− 2𝑏𝑎

(𝑎 − 1)(𝑎 − 2)(𝑏 + 𝜆𝑛𝑐)𝑎−2

+ 𝑏𝑎

(𝑎 − 1)(𝑎 − 2)(𝑏 + 2𝜆𝑛𝑐)𝑎−2

)

.

(51)

Clearly, the variance can then be determined by the law of total
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variance; its limiting values for both short and long relative scaled r
epoch lengths follow directly, for 𝑛 ∈ 2N and 𝑗 > 0:

Var𝜗(𝜗𝑗,𝑛) = E𝜗(𝜗2𝑗,𝑛) − E𝜗(𝜗𝑗,𝑛)2

lim
𝜆𝑛𝑐→0

Var𝜗(𝜗𝑗,𝑛) = 0

lim
𝜆𝑛𝑐→∞

Var𝜗(𝜗𝑗,𝑛) =
𝑏2

(𝑎 − 1)(𝑎 − 2)
−
(

𝑏
(𝑎 − 1)

)2
= 𝑏2

(𝑎 − 1)2(𝑎 − 2)
.

(52)

orrelations and Covariances
Note that we have implicitly assumed that the long-term coeffi-

ients 𝜗𝑗+𝑟,𝑛 are pairwise-uncorrelated for 𝑟 > 0, since there is serial
ndependence between the overall bias-complemented scaled mutation
arameters 𝜃∗𝑗 of successive epochs. Using these properties together
ith the law of total variance, the first order covariances (i.e., those
etween 𝜗𝑗+1,𝑛 and 𝜗𝑗,𝑛) are easily determined, for 𝑛 ∈ 2N and 𝑗 > 0:

(𝑟 = 1) = Cov𝜗(𝜗𝑗+1,𝑛, 𝜗𝑗,𝑛)

= Cov𝜗(𝜗𝑗,𝑛𝑒
−𝜆𝑛

𝑐
𝜃∗𝑗 + 𝜃∗𝑗 (1 − 𝑒

−𝜆𝑛
𝑐
𝜃∗𝑗 ), 𝜗𝑗,𝑛)

= Cov𝜗(𝜗𝑗,𝑛𝑒
−𝜆𝑛

𝑐
𝜃∗𝑗 , 𝜗𝑗,𝑛) + Cov𝜗((1 − 𝑒

−𝜆𝑛
𝑐
𝜃∗𝑗 )𝜃∗𝑗 , 𝜗𝑗,𝑛)

= Cov𝜗(𝜗𝑗,𝑛𝑒
−𝜆𝑛

𝑐
𝜃∗𝑗 , 𝜗𝑗,𝑛) + 0

= E𝜗 E𝜃∗ (𝑒
−𝜆𝑛

𝑐
𝜃∗ 𝜗2𝑗,𝑛) − E𝜗 E𝜃∗ (𝑒

−𝜆𝑛
𝑐
𝜃∗ 𝜗𝑗,𝑛) E𝜗(𝜗𝑗,𝑛)

= 𝑏𝑎

(𝑏 + 𝜆𝑛𝑐)𝑎
Var𝜗(𝜗𝑗,𝑛) .

(53)

ote this is simply the variance times the correlation coefficient. Higher
rders of covariance are similarly, for 𝑛 ∈ 2N and 𝑗 > 0:

(𝑟 > 1) = Cov𝜗(𝜗𝑗+𝑟,𝑛, 𝜗𝑗,𝑛) =
(

𝑏𝑎

(𝑏 + 𝜆𝑛𝑐)𝑎

)𝑟
Var𝜗(𝜗𝑗,𝑛) . (54)

learly, the limits for short and long scaled relative epoch lengths are:

lim
𝑛𝑐→0

𝛷(𝑟 > 0) = 1 × lim
𝜆𝑛𝑐→0

Var𝜗(𝜗𝑗,𝑛) = 0

lim
𝜆𝑛𝑐→∞

𝛷(𝑟 > 0) = 0 .
(55)

.4.3. Results and discussion for model 3
In Fig. 5, the behaviour of the theoretical mean, variance, and first

rder covariance of the temporal population coefficients is exemplified
or varying relative epoch lengths 𝑐 and select expansion orders 𝑛.
or low orders of expansion 𝑛, the moments of the temporal mutation
oefficients are close to the lower limits (i.e., the harmonic means) even
or rather long relative epoch lengths 𝑐; convergence towards the lower
imits is then very rapid when 𝑐 → 0. For the higher expansion orders 𝑛,
he trajectory of the moments of the temporal coefficients shows a more
radual convergence from the higher to lower limits (i.e., the arithmetic
o the harmonic mean) as the relative epoch lengths decrease. Note that
he analytical solutions examined here correspond almost precisely to
esults from simulations; snippets of these comparisons are presented
n Appendix A and Appendix D.3.

Also apparent in each panel of Fig. 5 are three little ‘x’ marks: at
hese epoch lengths, as well as at one additional epoch length that
xceeds the limit of the 𝑥-axis, we determined the expected poly-
orphic allele frequencies of a sample of size 𝐾 = 24 according to
rocedure described in Section 2.5 and using the expected value of the
emporal coefficients from Eq. (48). These are shown relative to both
he arithmetic and harmonic equilibrium spectra in Fig. 6. Scenario A
orresponds to relatively long epoch lengths; at this point the moments
f the temporal mutation coefficients have not yet fully converged to
he harmonic mean even for the expansion order 𝑛 = 2 (see Fig. 5)
nd the polymorphic sample spectrum cannot be distinguished from
he arithmetic equilibrium spectrum. Scenarios B and C show epoch
engths between those at which expansion orders 𝑛 = 2 and 𝑛 = 4
ully converge to the harmonic mean but are close to these respective
equired lengths (see Fig. 5); the expected polymorphic sample spectra
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Fig. 5. Let the overall bias-complemented scaled mutation rate be distributed according to 𝜃∗𝑗
𝑖𝑖𝑑∼ 𝐼𝐺(𝑎 = 6, 𝑏 = 0.01 ⋅ (𝑎 − 1)). The theoretical mean from Eq. (48), variance from

Eq. (52), and covariance and correlation Eq. (53) dependence of the relative scaled epoch length 𝑐. In each panel, the solutions for expansion orders 𝑛 = 𝑐(2, 4, 12) are shown in
decreasing line strength and the horizontal lines indicate the values of the statistics in the limits 𝜆𝑛𝑐 → 0 and 𝜆𝑛𝑐 → ∞ respectively. The symbols ‘x’ in each panel mark the epoch
lengths chosen for Fig. 6(A), (B), and (C), while the epoch length from (D) is beyond the limit of the 𝑥-axis.
)

for both scenarios clearly lie below the arithmetic equilibrium spectrum
– in fact, the intermediate frequency alleles have almost (B) or fully (C)
reached harmonic mean frequency while the high/low frequency alleles
exceed it. With the very short epoch length of scenario D, the moments
have fully converged to the harmonic mean for almost all orders of
expansion (note that the highest are not shown for the sake of visibility)
and the expected polymorphic allele spectrum is almost identical to
the harmonic equilibrium spectrum except for excess singletons. Note
that scenario B has epoch lengths of almost the same magnitude as the
average overall bias-complemented scaled mutation rate, and scenario
D has epoch lengths of the same magnitude as the square of the
average overall bias-complemented scaled mutation rate. In general,
the variance of the expected polymorphic sample allele spectra visibly
decreases with relative epoch length.

Interestingly, the D-statistic picks up a clear signature of population
collapse for scenario A with the relatively long comparative epoch
lengths, and equally strong signatures of population expansion for the
increasingly short relative epoch lengths of scenarios B-D (see Table 3).
Overall, it is apparent that compared to samples of the same size
drawn from a population evolving according to a boom-bust model
with the same harmonic mean of the overall mutation parameter across
epochs, the samples from populations subject to stochastic changes
in size generally harbour signatures of more distinct and consistent
demographic change. Traces of this are still present even for very short
epoch lengths. In fact, this lingering excess of singletons for very short
epoch lengths is particularly interesting: Empirically, excess singletons
are often observed and have recently been shown to be well-modelled
by multiple-merger coalescents (Freund et al., 2023). We will address
this further in our Conclusions (Section 4).
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Table 3
D-statistic for the expected sample spectra from Fig. 6.

(A) 𝑐 = 10−1 (B) 𝑐 = 2 ⋅ 10−2 (C) 𝑐 = 10−3 (D) 𝑐 = 10−4

0.1323629 −0.01156199 −0.01160323 −0.01160785

Table 4
Inference of temporal coefficients for sampled spectra from Fig. 6. The ‘‘–’’ in the
naming of epochs indicates one step back in time.

(A) 𝑐 = 1 ⋅ 10−1 (B) 𝑐 = 2 ⋅ 10−2 (C) 𝑐 = 1 ⋅ 10−3 (D) 𝑐 = 1 ⋅ 10−4

𝜃∗𝑠𝐽 0.010009 0.008603 0.008292 0.008295
𝜃∗𝑠𝐽− 0.009938 0.010889 0.008925 0.008681
𝜃∗𝑠𝐽−− 0.010132 0.009646 0.009922 0.008254

After hypergeometrically downsampling all the sample spectra to
𝐾 = 6, our agnostic inference approach from Section 3.2 can be applied
to infer the current and two historical overall bias-complemented scaled
mutation rates (see Table 4). Generally, these vary around the expected
means per scenario.

3.5. Serially correlated population size and stochastic epoch lengths (model 4

3.5.1. Rewriting the autoregression model
In Section 3.4, the relative epoch length 𝑐 = 𝑠𝑗4𝛼𝛽𝜇 is assumed

constant. Next, we wish to model the relative epoch lengths as stochas-
tic. Doing so is decently straightforward; for each epoch 𝑗 > 0, the
distribution of the bias-complemented overall scaled mutation rate
𝜃∗ is generalised from the inverse gamma distribution with constant
𝑗
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Fig. 6. Assuming 𝜃∗𝑗
𝑖𝑖𝑑∼ 𝐼𝐺(𝑎 = 6, 𝑏 = 0.01 ⋅ (𝑎−1)), 𝐽 = 1 ⋅ 106 epochs of the autoregression model for the long-term temporal coefficients 𝜗𝑗,𝑛 in Eq. (45) were simulated for relative

epoch lengths 𝑐 = 10−1 (A), 𝑐 = 2 ⋅ 10−2 (B), 𝑐 = 1 ⋅ 10−3 (C), and 𝑐 = 1 ⋅ 10−4 (D). Expected sample allele spectra of size 𝐾 = 24 were generated for each scenario at the end of
epoch 𝐽 . Visualised here are the log-ratios of the expected sample site frequency spectra vs the spectrum generated by the harmonic means of 𝜃∗𝑗 in black, and the log-ratio of the
expected sample site frequency spectra vs the spectrum determined by the arithmetic mean of 𝜃∗𝑗 in grey. The dashed lines represent the spectra obtained by adding/subtracting
one standard deviation of 𝜗𝐽 ,𝑛 to the mean and calculating the respective expected sample spectra and ratios again.
parameters in Eq. (46) to the following:

𝜃∗𝑗
𝑖𝑖𝑑∼ 𝑖𝑛𝑣𝑔𝑎𝑚𝑚𝑎(𝑎, 𝑏𝜈𝑗 ) with 𝑎 > 2, 𝑏𝜈𝑗 > 0 , (56)

where 𝑣𝑗 are unit mean exponential random variables:

𝜈𝑗
𝑖𝑖𝑑∼ 𝑒𝑥𝑝(1)

𝑝(𝜈) = Pr(𝜈𝑗 = 𝜈|1) = 𝑒−𝜈 .
(57)

Therefore, the constant relative epoch length in the autoregression pro-
cess for the solution to the long-term temporal dynamics from Eq. (45)
can be replaced with the random relative epoch length 𝑐𝑣𝑗 ; note that
this means that we no longer consider the number of generations per
epoch to be the same (compare to the reasoning at the beginning of
Section 3.4). Further setting 𝜂𝑗 =

1
𝜃∗𝑗

, the autoregression process for the
long-term temporal dynamics becomes:

for 𝑛∈ {(1,… , 𝑁) ∶ 2𝑛} and 𝑗 > 0:

𝜗𝑗,𝑛 = 𝜗𝑗−1,𝑛𝑒
−𝜆𝑛𝑐𝜈𝑗𝜂𝑗 + 𝜂−1𝑗

(

1 − 𝑒−𝜆𝑛𝑐𝜈𝑗𝜂𝑗
)

.
(58)

Again, we wish to characterise the distribution of the driving mu-
tation parameters in order to study the dynamics of the long-term
temporal coefficients 𝜗𝑗,𝑛; we therefore determine the distribution of
the 𝜂𝑗 via:

𝑝(𝜂) = ∫

∞

0

(𝑏𝜈)𝑎

𝛤 (𝑎)
𝜂𝑎−1𝑒−(𝑏𝜈)𝜂 𝑒𝜈 𝑑𝜈

= 𝑏𝑎

𝛤 (𝑎)
𝜂𝑎−1 ∫

∞

0
𝜈𝑎𝑒−(𝑏𝜂+1)𝜈 𝑑𝜈

= 𝑏𝑎

𝛤 (𝑎)
𝜂𝑎−1

𝛤 (𝑎 + 1)
(𝑏𝜂 + 1)𝑎+1

,

(59)

which can be re-stated as:
𝑖𝑖𝑑 (60)
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𝜂𝑗 ∼ 𝑔𝑒𝑛𝑏𝑒𝑡𝑎(𝑎, 1, 1, 1∕𝑏) ,
where genbeta(.) is the generalised beta prime distribution. Note that
the mean of 𝑝(𝜂) is naturally the inverse of the mean of 𝑝(𝜃∗).

Moments
As in Section 3.4, the moments of the temporal mutation parame-

ters, which correspond to the moments of the autoregression process
in Eq. (58), can readily be determined: Once again, stationarity of the
process can be invoked and then the expectations can be taken with
respect to first 𝜈 and then 𝜂. It is easily seen from there that E𝜗(𝜗𝑗,𝑛)
is identical to before. E𝜗(𝜗𝑗,𝑛)2 differs only slightly in that the final
three summands of the numerator in Eq. (51) are each multiplied by
factor 2 (observe that this corresponds with the terms multiplied with
𝐸𝜂(𝜂2𝑝(𝜂|𝜈)) from Eq. (59)). The variance, covariance and correlation
are therefore inflated compared to the model with fixed relative epoch
lengths (see also Appendix D.3).

4. Conclusions

In this article, a spectral representation of the transition density of
the forward diffusion approximation of the biallelic boundary mutation
Moran model is utilised to describe population allele trajectories evolv-
ing forwards in time. This model separates the dynamics of mutations,
which are assumed to occur at a very low overall scaled rate and are
thus restricted to the monomorphic boundaries, from those of drift,
which determine the polymorphic interior. The eigenfunctions of the
approximating diffusion process can be represented using a combina-
tion of (i) Gegenbauer polynomials, a class of orthogonal polynomials
that describe the spatial component of polymorphic allele frequency
trajectories subject to only drift, (ii) temporal coefficients that scale the
polymorphic spatial component by the effect induced by the boundary
mutations, and (iii) specialised boundary terms that balance the prob-
ability flux between the monomorphic boundaries and polymorphic
interior, taking into account that mutations enter the polymorphic
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region at a constant rate during an epoch defined by unchanging (ef-
fective) population size. The corresponding eigenvalues of the system
are 𝜆0 = 0, which is associated with the equilibrium distribution, 𝜆1 =
𝜃, which is associated with the proportion of the focal allele present
within the population, and 𝜆𝑛 = 𝑛(𝑛−1) for 𝑛 ≥ 2, which are associated
with the polymorphic spectrum. Hence the spectral decomposition
comprises both the monomorphic and polymorphic parts of the allele
frequency spectrum (compare Song and Steinrücken, 2012; Zivkovic
et al., 2015); note that classic diffusion and coalescent models only
explicitly describe the polymorphic interior. Incorporating piecewise
changes in (effective) population size into the forward diffusion of the
boundary mutation diffusion model by proxy of changes in the overall
bias-complemented scaled mutation rate requires only one full spectral
decomposition to determine the spatial component of the process,
which remains unchanged over time. One must further solve a system
of equations for the temporal coefficients, which differ by time epoch.
This is simpler and computationally advantageous to changing the
basis function for the spatial component for every piecewise change in
(effective) population size, as has been done for spectral representations
of general mutation (Wright–Fisher) diffusion models in the past (Lukic
et al., 2011; Zivkovic and Stephan, 2011; Zivkovic et al., 2015).

In this article, the exact form of expected sample site frequency
spectra was determined by coupling the spectral representation of
the diffusion equation with a forward pass of a forward–backward
algorithm (Bergman et al., 2018b). We note here that a backward pass
of the same forward–backward algorithm could have been employed
with the same numerical burden; for a fuller understanding of this, we
provided a brief exposition of the backward diffusion equation of the
boundary mutation model and its corresponding backward eigensystem
in Appendix B. For now, recall that the spectral representations of
the forward and backward processes involving orthogonal polynomials
are defined on the space of allelic proportions. In Appendix C), we
had briefly shown that a dual process to the spectral representation
of the backwards diffusion equation can be found in an embedded
jump process that runs backwards in time and operates in the space
of binomial distributions. From those derivations, it can be seen that
the rate of the jump process is intimately related to the rate of King-
man’s block counting process (see also Papaspiliopoulos and Ruggiero,
2014). As of now, it is unclear whether coalescent dual or orthogonal
polynomial approaches are numerically preferable within the context of
the forward–backwards algorithm. Similarly, the forwards-backwards
algorithm approaches have yet to be compared to the methods based
on the ‘‘matrix coalescent’’ for efficiency (Wooding and Rogers, 2002;
Polanski and Kimmel, 2003; Bhaskar et al., 2015). Doing so would also
enable an explicit comparison of our results to past literature on the
effect of demography on the branch lengths of sample genealogies (see
for example Eriksson et al., 2010). Overall, however, we hope to have
at least established an understanding of how the approaches relate to
each other as much as the scope of the current article allows.

Returning to the main part of the article: We examine the tempo-
ral coefficients of the forward pass of the spectral forward–backward
algorithm as well as the exact sample allele frequency spectra for popu-
lations with (i) single deterministic shifts in (effective) population size,
(ii) deterministic boom-bust life cycles, and (iii) two models of stochas-
tic changes in (effective) population size. To the best of our knowledge,
the stochastic models are novel. Throughout this article, we present
conjoint assessment of the temporal population dynamics and the shape
of the polymorphic sample spectra (more specifically, the shape of
the log ratio of the sample spectrum vs an equilibrium distribution).
Other authors have promoted visual inspection of sample spectra has
over summary statistics for a clearer understanding of which regions
of sample spectra deviate from equilibrium and to what extent (Nawa
and Tajima, 2008; Achaz, 2009). We see the advantages of the visual
approach ourselves: In our evaluation of the boom-bust model with
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intermediate epoch lengths in Fig. 4, the polymorphic sample spectrum
from the boom phase has a w-shape that the D-statistic interprets as
a collapsing (effective) population size (see Table 1). However, this
signal is actually caused by the rapid accrual of intermediate frequency
alleles vs high/low frequency alleles after recurrent, intermediately
spaced bust phases (i.e.,mild-effect bottlenecks) that fail to eradicate all
the population’s standing variation (compare Nawa and Tajima, 2008,
Table 2). In our evaluation of sample spectra from populations with
stochastic (effective) population size, we see that the D-statistic is blind
to the differing effect of the time scale on which the changes occur
(Tables 3 and 6). It picks up on the excess high/low frequency alleles
vs intermediate as soon as the epochs become shorter and interprets this
as population growth, but not on the decrease of excess intermediate
alleles for shortening epoch lengths. In both cases, the figures are more
informative than the summary statistic.

As informative as the polymorphic sample spectra are per se, we ar-
gue that assessing the level of convergence of the temporal coefficients
of the source populations leads to a more nuanced understanding of the
population dynamics. In practical terms, carrying out forward popula-
tion simulations and spectral decompositions as part of experimental
planning can help inform what sample sizes/orders of expansion are
needed to detect departure from equilibrium or, conversely, for what
sample size/orders of expansion equilibrium can safely be assumed.
Even retrospectively, decomposition of estimated transition rate matri-
ces from population samples can be informative of precisely how far
which regions of the sample spectrum are from equilibrium.

Recall that the effective size of a population in time- and space-
discrete (pure drift) Wright–Fisher and Moran models without mutation
is often defined via the first non-unit eigenvalue 𝜆1 of the transition
probability matrix for the respective neutral models. This is equal to
1 − 1

2𝑁 ≈ 𝑒−
1
2𝑁 or 1 − 2

𝑁2 ≈ 𝑒−
2
𝑁2 , respectively (Ewens, 2004, p. 127).

This eigenvalue determines the rate of decline in population heterozy-
gosity (𝐻) over time: In the Wright–Fisher model, heterozygosity at
the discrete time point 𝑇 is 𝐻𝑇 = 𝜆𝑇1𝐻0, which can be approximated

by 𝐻𝑇 = 𝐻0𝑒
− 𝑇
2𝑁 in the limit of large population sizes (Ewens,

1982) (but see also Crow, 1954). In the Moran model, the equivalent

approximation is 𝐻𝜄 = 𝐻0𝑒
− 2𝜄
𝑁2 per Moran step 𝜄. In the limit of

arge population sizes, the genealogical tree of a sample drawn from a
iploid Wright–Fisher or a haploid Moran model is given by Kingman’s
oalescent (Kingman, 1982) (with equilibrium coalescent times scaled
y 2𝑁 and 𝑁

2 generations, respectively). Arguably the most prevalent
definition of the effective size of a population is through the linear re-
scaling of the observed/census population size required for the limiting
genealogical tree to still correspond to Kingman’s coalescent even when
there are temporal or spatial variations in population size (Nordborg
and Krone, 2002). In the limit of large 𝑁 , Wright–Fisher/Moran models
are approximated by diffusion models; in the case of pure drift, the
first non-zero eigenvalue of the corresponding transition rate densities
converge towards the coalescent effective population size. If in addition
to drift, mutation is also considered, the first non-zero eigenvalue is
𝜆1 = 𝜃, and thus only influenced by mutation. As long as 𝜃 ≪ 1, the
second non-zero eigenvalue 𝜆2 then corresponds to 𝜆1 of the pure drift
model.

For populations of short-scale, cyclical variations in size (Wang
and Pollak, 2000a,b; Pollak, 2002) or for subdivided populations with
high migration rates and large demes (Hössjer, 2015), convergence
of the first eigenvalue informative of drift is towards the harmonic
mean across time intervals or demes. This eigenvalue is typically 𝜆1
in pure drift models, but 𝜆2 in the McKane and Waxman (2007) pure
drift model and in typical in mutation-drift models. When determinis-
tic or stochastic changes in population size or migration rates occur
on a shorter time scale than the coalescent events, the coalescent
effective population size corresponds to the harmonic mean across
epochs or demes (Jagers and Sagitov, 2004; Sjödin et al., 2005; Höss-
jer, 2011). However, when changes occur on the same time scale as
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coalescent events, the limiting ancestral genealogy of the sample is a
time-stochastic version of Kingman’s coalescent (Kaj and Krone, 2003);
and changes on longer time scales than coalescent events are negligible
in terms of the sample genealogy. In the latter two cases, the coalescent
effective population size is usually considered undefined (Sjödin et al.,
2005) (but see Sano et al., 2004, where non-linear scaling across time
is permitted so that the effective population size lies between the
harmonic and arithmetic means and converges towards the arithmetic
mean in these cases, respectively). Regardless of whether the effective
population size is assessed via heterozygosity, leading eigenvalue, or
re-scaling to Kingman’s coalescent rate, only the variation in a sample
of size 𝐾 = 2 is typically considered.

In contrast, the temporal coefficients considered in this article are
coefficients of all even orders 𝑛 ≥ 2 of expansion of the population
transition rate density into orthogonal polynomials (as the odd ones
are zero when mutation bias is constant). They are of the form 𝑐1 +
𝑐2𝑒−𝜆𝑛𝑓 (𝑛,𝑁), where 𝑛 is the order of the eigenvalue and 𝑁 the effective
population size, and describe the decline of the effect of changes in
overall-biased mutation rate on polymorphism over time. Clearly, the
temporal coefficient of order 𝑛 = 2 converges to its equilibrium value
more slowly than the higher order coefficients, which substantiates
the reasoning behind using it to estimate the effective population size.
However, when past demographic changes are cyclical or fluctuating,
the faster-responding higher-order temporal coefficients collect more
short-term information and are perturbed relatively further from the
harmonic means with every transition to a new epoch. It is therefore
not uncommon for the sample allele frequency spectra to deviate from
its equilibrium shape even after the temporal coefficient of order 𝑛 = 2
has converged, as shown repeatedly in this article (specifically, for
the boom-bust model see Fig. 4 and for the stochastic model see
Fig. 6). The deviations from equilibrium in sample spectra drawn from
populations of stochastically varying (effective) population size across
shorter epoch lengths are of particular interest (i.e., Fig. 6, scenarios B,
C, and D): The spectra exhibit excess high and low frequency alleles
for epoch lengths of the same magnitude as the average overall bias-
complemented scaled mutation rate and below (scenarios B and C),
until only excess low frequency alleles/singletons remain when the
epochs decrease to roughly the same magnitude as the square of the
average overall bias-complemented scaled mutation rate (scenario D).
While epoch lengths below the same order of magnitude as the overall-
biased mutation rate and especially on the order of magnitude of its
square may conventionally be considered ‘‘safely small’’ to assume
equilibrium, it is apparent in our analyses that this is not the case (see
Fig. 6). Fluctuations in population size therefore strongly impact the
shape of sample spectra, even when limiting results may conventionally
be assumed to hold.

Deviations from neutrality are also commonly observed empirically,
when sample allele frequency spectra are polarised into ancestral and
derived alleles using outgroup data (Freund et al., 2023). In particular,
patterns of excess high and low frequency derived alleles as well
as excess singletons have recently been noted in genome-wide data
of many species. These patterns are often considered more suitably
modelled by multiple-merger coalescents than the classic Kingman
coalescent (Freund et al., 2023). Multiple-merger coalescents reflect
skewed offspring distributions across generations, whether these are
caused by population substructure, demography, recurrent selection,
biased gene conversion, etc. Note that misleading signals of multiple-
merger genealogies can be caused by poor sampling coverage and
erroneous allele polarisation. It is well-known that extreme discrete
changes in (effective) population size, such as population growth after
a bottleneck, can also generate sample spectra with excess singletons;
there is some indication that inference procedures can discriminate
between these and multiple-merger generated sample spectra since the
entire spectrum will not exhibit the same shape between the models for
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a comparable level of singletons (Eldon et al., 2015). In this article, we
did not assume polarisation of alleles via an outgroup, but arbitrarily
assigned one of two alleles to be the focal allele. Therefore, the shape
of any of our sample spectra cannot immediately be related to this
body of literature. In particular, information on high frequency derived
alleles is not available with our approach. The main outcome from
our article in relation to this is that one cannot discount stochastic
changes in population size, especially relatively rapid ones, from being
responsible for a part of the empirical observations without further
investigation. In fact, studies such as that of Eldon et al. (2015) could
be conducted to address this in the future, alongside more theoretical
treatment of the relationship between our model and general coalescent
models allowing for simultaneous- and multiple- mergers (Spence et al.,
2016).

In terms of demographic inference alone, we have shown that
inference of population history from sample spectra can be performed
using sufficient statistics within the framework of the boundary mu-
tation diffusion model and the spectral forward–backward algorithm.
By placing hypothetical demographic events conveniently with respect
to the time scales defined by the eigenvalues 𝜆𝑛 = 𝑛(𝑛 − 1), we can
very efficiently infer population history without specific assumptions
or knowledge about past demographic events (including their timing),
other than their maximum number (compare to Myers et al., 2008;
Bhaskar and Song, 2014). This could be a starting point for future
computational implementation of demographic inference procedures.

CRediT authorship contribution statement

Lynette Caitlin Mikula: Writing – review & editing, Writing – orig-
inal draft, Visualization, Validation, Software, Project administration,
Methodology, Investigation, Formal analysis, Conceptualization. Claus
Vogl: Writing – review & editing, Writing – original draft, Supervision,
Software, Project administration, Methodology, Investigation, Formal
analysis, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

Acknowledgements

The authors would like to thank Burçin Yıldırım, Juraj Bergman,
Conrad Burden, Joachim Hermisson, and Sandra Peer for conversations
and input during this project, and are grateful to Carolin Kosiol for
feedback. Further thanks are due to the two anonymous reviewers of
this article, whose detailed comments and corrections improved the
quality of this article.

CV’s research was supported by the Austrian Science Fund (FWF):
DK W1225-B20; LCM’s by the School of Biology at the University of St.
Andrews.

Appendix A. Derivation of the forward partial differential diffu-
sion equation (FPDE) for biallelic boundary mutations

In this Appendix, we derive the forward Kolmogorov forward
(Fokker–Planck) diffusion equation for boundary-mutations from the
transition rates of the discrete boundary mutation Moran model. We do
this by first recapitulating how the general biallelic mutation diffusion
can be obtained from the transition rates of the general decoupled
Moran model (Etheridge and Griffiths, 2009a); this is largely repro-
duced from Appendix 7.1 of Bergman et al. (2018b). Then we modify

this approach for the case of boundary-mutations.
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A.1. General biallelic FPDE

In a discrete time and space Moran model, each reproduction step
(which we index by 𝜄) constitutes a randomly chosen individual haploid
individual being replaced by the offspring of another randomly chosen
individual. The expected lifetime of an individual therefore corresponds
to the generation time/population size 𝑁 .

Forward in time, the difference in the probability of observing the
focal allele at proportion 𝑖 at every genomic site per Moran step may
be written as (Bergman et al., 2018b, Eq. 76):

Pr(𝑥𝜄+1 = 𝑖) − Pr(𝑥𝜄 = 𝑖) =

𝛽𝜃
𝑁2

(

(𝑁 − 𝑖 + 1) Pr(𝑥𝜄 = 𝑖 − 1) − (𝑁 − 𝑖) Pr(𝑥𝜄 = 𝑖)
)

+ 𝛼𝜃
𝑁2

(

(𝑖 + 1) Pr(𝑥𝜄 = 𝑖 + 1) − 𝑖Pr(𝑥𝜄 = 𝑖)
)

+ 1
𝑁2

(

(𝑖 − 1)(𝑁 − 𝑖 + 1) Pr(𝑥𝜄 = 𝑖 − 1) + (𝑖 + 1)(𝑁 − 𝑖 − 1) Pr(𝑥𝜄 = 𝑖 + 1)

− 2𝑖(𝑁 − 𝑖) Pr(𝑥𝜄 = 𝑖)
)

,

(61)

here the first and second line after the equality sign correspond to
utation events that increase or decrease the proportion of the focal

llele respectively, and the final lines corresponds to the effect of drift.
Let us now introduce infinitesimal steps 𝜖𝑡 = 1∕𝑁2 and 𝜖𝑥 = 1∕𝑁 .

e use this to re-scale time via 𝑡 = 𝜄𝜖𝑡 and space, i.e., the allele
roportions, via 𝑥 = 𝑖𝜖𝑥 so that 𝜙(𝑥, 𝑡)𝜖𝑥𝜖𝑡 = Pr(𝑥𝑠 = 𝑖). Then, the

infinitesimal transition probabilities can be written, using Eq. (61),
as (compare Bergman et al., 2018b, Eq. 77) (and further compare
Etheridge, 2012, Definition 2.33):

𝜙(𝑥, 𝑡 + 𝜖𝑡) − 𝜙(𝑥, 𝑡)
𝜖𝑡

=

𝛽𝜃
𝜖𝑥

(

(1 − 𝑥 + 𝜖𝑥)𝜙(𝑥 − 𝜖𝑥, 𝑡) − (1 − 𝑥)𝜙(𝑥, 𝑡)
)

+ 𝛼𝜃
𝜖𝑥

(

(𝑥 + 𝜖𝑥)𝜙(𝑥 + 𝜖𝑥, 𝑡) − 𝑥Pr(𝜙(𝑥, 𝑡))
)

+ 1
𝜖2𝑥

(

(𝑥 − 𝜖𝑥)(1 − 𝑥 + 𝜖𝑥)𝜙(𝑥 − 𝜖𝑥, 𝑡) + (𝑥 + 𝜖𝑥)(1 − 𝑥 − 𝜖𝑥)𝜙(𝑥 + 𝜖𝑥, 𝑡)

− 2𝑥(1 − 𝑥)𝜙(𝑥, 𝑡)
)

(62)

Taking the limit 𝑁 → ∞, which implies 𝜖𝑥, 𝜖𝑡 → 0, and applying
the standard definitions for the first and second symmetric derivatives
recovers the forward partial differential diffusion equation (FPDE)
(Bergman et al., 2018b, Eq. 78):

𝜕𝜙(𝑥, 𝑡)
𝜕𝑡

= − 𝜕
𝜕𝑥

(

𝜃𝛽(1 − 𝑥)𝜙(𝑥, 𝑡) − 𝜃𝛼𝑥𝜙(𝑥, 𝑡)
)

+ 𝜕2

𝜕𝑥2
𝑥(1 − 𝑥)𝜙(𝑥, 𝑡)

= − 𝜕
𝜕𝑥
𝜃(𝛽 − 𝑥)𝜙(𝑥, 𝑡) + 𝜕2

𝜕𝑥2
𝑥(1 − 𝑥)𝜙(𝑥, 𝑡) .

(63)

A.2. Biallelic boundary mutation FPDE

In the boundary mutation model, we differentiate between the
polymorphic interior, i.e., the interval [𝜖𝑥 ≤ 𝑥 ≤ 1 − 𝜖𝑥)], where
we denote the infinitesimal transition rate density by 𝜙𝐼 (𝑥, 𝑡), and
boundary singularities, where alleles are fixed or lost. Recall that 𝑏0(𝑡) is
the proportion of the non-focal allele at time 𝑡, and 𝑏1(𝑡) that of the focal
llele. In equilibrium, 𝑏0 and 𝑏1 represent the stationary probability that
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sample of size one corresponds to the non-focal (𝑏0 = 𝛼) and focal
𝑏1 = 𝛽) alleles respectively. Convergence towards these equilibrium
alues occurs exponentially with rate 𝜃, which is low compared to

the rate of drift that governs the polymorphic interior (i.e., the time
ites spend in the latter region is negligible). For some starting value
0(𝑡𝑠) at time 𝑡𝑠 < 0, we then have 𝑏0(𝑡) = 𝛼 − (𝑏0(𝑡𝑠) − 𝛼)𝑒−𝜃(𝑡−𝑡𝑠) and
1(𝑡) = 1 − 𝑏0(𝑡).

At the boundary 𝑥 = 0, probability mass is lost to the interior 𝜙𝐼 (𝑥, 𝑡)
t a constant rate due to mutation and gained through drift from the
olymorphic region adjoining the boundary at 𝑥 = 𝜖𝑥. The infinitesimal
ransition probabilities then are:

𝜙(𝑥 = 0, 𝑡 + 𝜖𝑡) − 𝜙(𝑥 = 0, 𝑡)
𝜖𝑡

=
−𝛽𝜃𝑏0(𝑡) + 0 ⋅ 𝛼𝜃

𝜖𝑥

+
𝜖𝑥(1 − 𝜖𝑥)𝜙𝐼 (𝜖𝑥, 𝑡)𝜖𝑥 − 0

𝜖2𝑥

=
−𝛽𝜃𝑏0(𝑡) + 𝜖𝑥(1 − 𝜖𝑥)𝜙𝐼 (𝜖𝑥, 𝑡)

𝜖𝑥
.

(64)

The zero in the first (mutation) term on the right hand side is due
to the absence of mutations in the interior (which is the essence of
the boundary mutation model), and the zero in the second (drift)
term reflects the absence of drift in the mononorphic state. The other
boundary 𝑥 = 1 follows analogously:

𝜙(𝑥 = 1, 𝑡 + 𝜖𝑡) − 𝜙(𝑥 = 1, 𝑡)
𝜖𝑡

=
−𝛼𝜃𝑏1(𝑡) + (1 − 𝜖𝑥)𝜖𝑥𝜙𝐼 (1 − 𝜖𝑥, 𝑡)

𝜖𝑥
. (65)

Conversely, the same probability masses are gained and lost from
and to the boundaries by the polymorphic interior 𝜙𝐼 (𝑥, 𝑡) at the
adjacent regions 𝑥 = 𝜖𝑥 and 𝑥 = 1 − 𝜖𝑥. Overall, the infinitesimal
transition probabilities in the interior of the boundary mutation model
can be written as:

𝜙𝐼 (𝑥, 𝑡 + 𝜖𝑡) − 𝜙𝐼 (𝑥, 𝑡)
𝜖𝑡

=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

1
𝜖2𝑥
𝛽𝜃𝑏0(𝑡) +

1
𝜖2𝑥

(

0 + (2𝜖𝑥)(1 − 2𝜖𝑥)𝜙𝐼 (2𝜖𝑥, 𝑡) − 2𝜖𝑥(1 − 𝜖𝑥)𝜙𝐼 (𝜖𝑥, 𝑡)
)

for 𝑥 = 𝜖𝑥;
1
𝜖2𝑥

(

(𝑥 − 𝜖𝑥)(1 − 𝑥 + 𝜖𝑥)𝜙𝐼 (𝑥 − 𝜖𝑥, 𝑡) + (𝑥 + 𝜖𝑥)(1 − 𝑥 − 𝜖𝑥)𝜙𝐼 (𝑥 + 𝜖𝑥, 𝑡)

−2𝑥(1 − 𝑥)𝜙𝐼 (𝑥, 𝑡)
)

for 2𝜖𝑥 ≤ 𝑥 ≤ 1 − 2𝜖𝑥;

1
𝜖2𝑥
𝛼𝜃𝑏1(𝑡) +

1
𝜖2𝑥

(

(1 − 2𝜖𝑥)(2𝜖𝑥)𝜙𝐼 (1 − 2𝜖𝑥, 𝑡) + 0

−2(1 − 𝜖𝑥)𝜖𝑥𝜙𝐼 (1 − 𝜖𝑥, 𝑡)
)

for 𝑥 = 1 − 𝜖𝑥.

(66)

he zeros in the top and bottom rows above signify that drift does not
ct on the boundaries to move probability mass into the polymorphic
egion. Taking the limit 𝑁 → ∞ yields the forward boundary mutation
iffusion equation presented in Eq. (6) of the main text, as long
s 𝜙𝐼 (𝑥, 𝑡) is twice differentiable and remains finite approaching the
oundaries.

emark. Note that we divide by 𝜖𝑥 in Eqs. (64) and (65) and by 𝜖2𝑥 in
q. (66) due to the difference in scaling between the interior and the
oundary.

emark. If 𝜙𝐼 (𝑥, 𝑡) does not remain finite approaching the bound-
ries, the infinitesimal transition probabilities can still be written as
n Eqs. (64), (65), (66), but the forward boundary mutation diffusion
quation (Eq. (6)) does not hold. In particular, substituting 𝜙𝐼 (𝑥) =
𝛽𝜃 1

𝑥(1−𝑥) , which approaches infinity towards the boundaries, into
Eq. (66) shows it to be the stationary solution. On the other hand,
substituting 𝜙 (𝑥) into the diffusion equation Eq. (6), we find that the
𝐼
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second derivative 𝜕2

𝜕𝑥2
𝑥(1−𝑥)𝜙𝐼 (𝑥) = 0 for all 𝑥 ∈ ]0, 1[ and particularly

for 𝑥 = 𝜖𝑥 and 𝑥 = 1 − 𝜖𝑥.

Appendix B. Spectral representation of diffusion models

B.1. Eigensystem for the pure drift diffusion equation

B.1.1. Forwards equation
Consider the familiar forward Komolgorov (Fokker–Planck) diffu-

sion equation for pure drift (Kimura, 1955a):
𝜕𝜙𝐼 (𝑥, 𝑡)

𝜕𝑡
= 𝜕2

𝜕𝑥2
𝑥(1 − 𝑥)𝜙𝐼 (𝑥, 𝑡) . (67)

defined in the open interval 𝑥 ∈ ]0, 1[. An analytically tractable form
for the transition rate density can be found by decomposing 𝜙𝐼 (𝑥, 𝑡)
into eigenfunctions constituted by orthogonal polynomials and corre-
sponding eigenvalues. Specifically, it can be expanded into a series of
(modified) Gegenbauer polynomials 𝑈𝑛(𝑥) with temporally dependent
coefficients 𝜏𝑛(𝑡): 𝜙𝐼 (𝑥, 𝑡) =

∑∞
𝑛=2 𝜏𝑛(𝑡)𝑈𝑛(𝑥) (Kimura, 1955a; Song and

Steinrücken, 2012; Vogl and Bergman, 2016). Substituting this into the
above differential equation induces the following system of ordinary
homogeneous differential equations:

𝑑
𝑑𝑡
𝜏𝑛(𝑡)𝑈𝑛(𝑥) =

𝜕2

𝜕𝑥2
𝑥(1 − 𝑥)𝜏𝑛(𝑡)𝑈𝑛(𝑥)

𝑑
𝑑𝑡
𝜏𝑛(𝑡)𝑈𝑛(𝑥) = −𝜆𝑛𝜏𝑛(𝑡)𝑈𝑛(𝑥)

𝑑
𝑑𝑡
𝜏𝑛(𝑡) = −𝜆𝑛𝜏𝑛(𝑡) .

(68)

In order to solve this system, an initial condition must be defined. At
time 𝑡 = 𝑡𝑠 in the past, let a function 𝜌(𝑥) defined within the polymor-
phic region represent an ancestral state of the population that can also
be represented as a series of (modified) Gegenbauer polynomials 𝑈𝑛(𝑥)

ith coefficients 𝜌𝑛:

𝑛 =
1
𝛥𝑛 ∫

1

0
𝑥(1 − 𝑥)𝑈𝑛(𝑥)𝜌(𝑥)𝑑𝑥 . (69)

Following Kimura (Kimura, 1955a), 𝜌(𝑥) is commonly taken to be a
unit probability mass concentrated at a point 𝑝 (which is often taken
to represent a single mutant allele in the population, 𝑝 = 1∕𝑁 (Kimura
and Ohta, 1969)) represented as 𝛿(𝑥 − 𝑝) (e.g., McKane and Waxman,
2007, Section 4). This probability mass is then expanded into (mod-
ified) Gegenbauer polynomials 𝜙𝐼 (𝑥, 𝑡 = 𝑡𝑠) =

∑∞
𝑛=2 𝜌𝑛(𝑝)𝑈𝑛(𝑥) with

coefficients:

𝜌𝑛(𝑝) =
1
𝛥𝑛 ∫

1

0
𝑥(1 − 𝑥)𝑈𝑛(𝑥)𝛿(𝑥 − 𝑝) 𝑑𝑥

= 1
𝛥𝑛
𝑝(1 − 𝑝)𝑈𝑛(𝑝) .

(70)

For 𝑡𝑠 ≤ 𝑡 ≤ 0, the temporal component then correspond to 𝜏𝑛(𝑡𝑠, 𝜌) =
𝑛(𝑝)𝑒−𝜆𝑛(𝑡−𝑡𝑠), yielding the overall solution:

𝐼 (𝑥, 𝑡𝑠) =
∞
∑

𝑛=2
𝜌𝑛(𝑝)𝑒−𝜆𝑛(𝑡−𝑡𝑠)𝑈𝑛(𝑥).

Extending time 𝑡 into the future, i.e., to values greater than zero,
the system eventually converges to the trivial solution 𝜏𝑛(∞) = 0,
from which it follows that ∫ 1

0 𝜙𝐼 (𝑥, 𝑡) 𝑑𝑥 also converges to zero as
the entire probability accumulates at boundary singularities. Modelling
this accumulation in a way that appropriately conserves probability
requires the addition of two eigenfunctions that are linear combinations
of delta functions, as in McKane and Waxman (2007, Appendix C, last
paragraph) and see also Tran et al. (2013). Given the initial allele
frequency 𝑝, and ensuring that the average frequency of the mutant
allele must coincide with it at all times, makes the following full system
of forward eigenvalues appropriate:
74

p

⎧

⎪

⎪

⎨

⎪

⎪

⎩

 (𝑝)
0 (𝑥) = (1 − 𝑝)𝛿(𝑥) + 𝑝𝛿(𝑥 − 1)

 (𝑝)
1 (𝑥) = −𝛿(𝑥) + 𝛿(𝑥 − 1)

 (𝑝)
𝑛≥2(𝑥) = − (−1)𝑛

𝑛 𝛿(𝑥) + 𝑈𝑛(𝑥) −
1
𝑛 𝛿(𝑥 − 1) .

(71)

The corresponding eigenvalues are 𝜆0 = 𝜆1 = 0 and 𝜆𝑛 = 𝑛(𝑛 − 1)
for 𝑛 ≥ 2 (McKane and Waxman, 2007, Appendix C, last paragraph).
Note that the same spectral representation of the forward pure drift
diffusion equation has been obtained from the equivalent representa-
tion of the forward biallelic general mutation diffusion equation model
via a zeroth order Taylor series expansion in 𝜃 (Bergman et al., 2018b,
Eq. 56).

B.1.2. Backwards equation
Let us now consider the backward Kolmogorov diffusion equation

for pure drift:

−
𝜕𝜓𝐼 (𝑥, 𝑡)

𝜕𝑡
= 𝑥(1 − 𝑥) 𝜕

2

𝜕𝑥2
𝜓𝐼 (𝑥, 𝑡) , (72)

with 𝑡𝑠 ≤ 𝑡 ≤ 0. The complete set of backward eigenfunctions, including
appropriate boundary conditions, can be constructed to be orthogonal
to the forward eigenfunctions  (𝑝)

𝑛 (compare McKane and Waxman,
2007, Appendix C, last paragraph):

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(𝑝)
0 (𝑥) = 1

(𝑝)
1 (𝑥) = 𝑥 − 𝑝

(𝑝)
𝑛≥2(𝑥) = 𝑥(1 − 𝑥)𝑈𝑛(𝑥) ,

(73)

ut again compare to the alternative derivation in Bergman et al.
2018b, Eq. 56). Note that only (𝑝)

1 (𝑥) actually depends on 𝑝.
The orthogonality relation can be explicitly stated as:

∫

1

0
(𝑝)
𝑛 (𝑥) (𝑝)

𝑚 (𝑥) 𝑑𝑥 = 𝛿𝑛𝑚𝛥
(𝐵)
𝑛 (74)

or a nonzero 𝛥(𝐵)𝑛 = 𝑛−1
(2𝑛−1)𝑛 only if 𝑚 = 𝑛.

The initial condition for the backwards equation is generally a pre-
specified sampling distribution at the extant time. Recall that in this
article, we consider a binomial sample of haploid size 𝐾 conditional
on the population allele frequencies 𝑥, i.e., Pr(𝑘∣𝐾, 𝑥), drawn at time
𝑡 = 0. Any binomial likelihood Pr(𝑘∣𝐾, 𝑥) can be expressed as a sum
of (𝑝)

𝑛 (𝑥) up to order 𝑛 = 𝐾 with coefficients 𝑑𝑛(𝑘,𝐾). Note that the
probabilities of drawing monomorphic samples can only be represented
because the spectral representation was intentionally augmented with
the boundary terms. Therefore, the backwards diffusion equation can
be written as the spectral sum:

𝜓(𝑥, 𝑡) =
𝐾
∑

𝑛=0
𝑑𝑛(𝑘,𝐾)𝑒𝜆𝑛𝑡(𝑝)

𝑛 (𝑥).

.1.3. Sample probabilities
Now that explicit analytic representations of the forward and back-

ard diffusion equations have been found, the probability of observing
focal loci in our binomial sample can be determined as the following
arginal likelihood:

𝑘 = Pr(𝑘∣𝐾, 𝜌, 𝑡𝑠) = ∫

1

0
𝜓(𝑥, 𝑡)𝜙(𝑥, 𝑡) 𝑑𝑥 . (75)

his corresponds to the forward–backward algorithm introduced in
ergman et al. (2018b, Section 2.2), and can be evaluated at any
ime 𝑡𝑠 ≤ 𝑡 ≤ 0. Using the results from the previous subsections,
articularly that the orthogonality condition simplifies computation,
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we can analytically determine:

𝑝𝑘 = Pr(𝑘∣𝐾, 𝜌, 𝑡𝑠)

= ∫

1

0
𝜓(𝑥, 𝑡)𝜙(𝑥, 𝑡) 𝑑𝑥

= ∫

1

0

( 𝐾
∑

𝑚=0
𝑑𝑚(𝑘,𝐾)𝑒𝜆𝑛𝑡(𝑝)

𝑚 (𝑥)
)( ∞

∑

𝑛=0
𝜌𝑛𝑒

−𝜆𝑛(𝑡−𝑡𝑠) (𝑝)
𝑛 (𝑥)

)

𝑑𝑥

=
𝐾
∑

𝑛=0
∫

1

0
𝑑𝑛(𝑘,𝐾)𝑒𝜆𝑛𝑡(𝑝)

𝑛 (𝑥)𝜌𝑛𝑒−𝜆𝑛(𝑡−𝑡𝑠) (𝑝)
𝑛 (𝑥) 𝑑𝑥

=
𝐾
∑

𝑛=0
𝑑𝑛(𝑘,𝐾)𝜌𝑛(𝑥)𝛥(𝐵)𝑛 𝑒𝜆𝑛𝑡𝑠 .

(76)

Note that, in the main text, we choose to evaluate the probabil-
ities 𝑝𝑘 at the extant time 𝑡 = 0. In the above equation, 𝜓(𝑥, 𝑡 =
0) then equates to the expansion of the binomial sampling scheme
∑𝐾
𝑛=0 𝑑𝑛(𝑘,𝐾)(𝑝)

𝑛 (𝑥), and therefore the calculation as a whole reduces
to a forward pass of the forward–backward algorithm.

B.2. Eigensystem for the boundary mutation diffusion equation

B.2.1. Derivation of the forward system
Formally, the boundary mutation diffusion model resembles a pure

drift diffusion model that explicitly takes mutations at the boundaries
into account. In this subsection, we will discuss the modifications to
the previous results required to represent the transition rate density of
the boundary mutation diffusion equation as a spectral sum.

Let us now begin with the forward diffusion equation of the poly-
morphic interior, which we here rewrite from Eq. (6) to the more
convenient form:
𝜕𝜙𝐼 (𝑥, 𝑡)

𝜕𝑡
= lim
𝜖𝑥→0

(

𝛽𝜃𝑏0(𝑡)
𝜖𝑥

𝛿(𝑥 − 𝜖𝑥) +
𝛼𝜃𝑏1(𝑡)
𝜖𝑥

𝛿(𝑥 − 1 + 𝜖𝑥)
)

+ 𝜕2

𝜕𝑥2
𝑥(1 − 𝑥)𝜙𝐼 (𝑥, 𝑡) .

(77)

The main novelty here compared to the pure drift model is that
there are probability masses coming in from the boundaries due to the
input of biased mutation: Importantly, 𝑏0(𝑡) and 𝑏1(𝑡) have an equivalent
representation in terms of the eigenfunctions  (𝛽)

0 and  (𝛽)
1 , where

the mutation biases 𝛽 and 𝛼 determine the equilibrium proportion of
alleles of the focal and non-focal type in the population, and thus the
probability mass concentrated at each boundary in a stationary system.
These eigenfunctions are adapted from Eq. (71) to account for the fact
that the average proportion of focal and non-focal alleles may change
over time (which 𝑝 in the pure drift system does not). By comparing
to the beginning of Appendix A.2), we state that if the system starts at
time 𝑡𝑠 < 0 in the past, convergence towards the equilibrium boundary
values must follow according to:

𝑏1(𝑡)𝛿(𝑥) + 𝑏1(𝑡)𝛿(𝑥 − 1) =  (𝛽)
0 (𝑥) + (𝑏1(𝑡𝑠) − 𝛽)𝑒−𝜆1(𝑡−𝑡𝑠)

(𝛽)
1 (𝑥) , (78)

where the eigenvalue 𝜆1 is equal to the scaled mutation rate 𝜃.
Furthermore, the Dirac delta function 𝛿(𝑥 − 𝜖𝑥) in Eq. (77), which

defines the point of entry of a mutation into the polymorphic region,
can be expressed as the polynomial expansion:

lim
𝜖𝑥→0

𝛿(𝑥 − 𝜖𝑥)
𝜖𝑥

=
∞
∑

𝑛=2
𝑐𝑛𝑈𝑛(𝑥) (79)

with

𝑐𝑛 = lim
𝜖𝑥→0

1
𝛥𝑛 ∫

1−𝜖𝑥

𝜖𝑥
𝑥(1 − 𝑥)𝑈𝑛(𝑥)

𝛿(𝑥 − 𝜖𝑥)
𝜖𝑥

𝑑𝑥

= lim
𝜖𝑥→0

1
𝛥(𝐵)𝑛

𝜖𝑥(1 − 𝜖𝑥)𝑈𝑛(𝜖𝑥)∕𝜖𝑥

=
𝑈𝑛(0)

(𝐵)
= −(−1)𝑛(2𝑛 − 1)𝑛 .

(80)
75

𝛥𝑛 e
Analogous operations can of course be performed on 𝛿(𝑥−1+ 𝜖𝑥) (Vogl
and Bergman, 2016, Eq. 44); these are simplified by noting that 𝑈𝑛(0) =
(−1)𝑛𝑈𝑛(1).

Observing the above, we can rewrite the diffusion equation for
the polymorphic interior from Eq. (77); not that the last step below
substitutes in 𝜙𝐼 (𝑥, 𝑡) =

∑∞
𝑛=2 𝜏𝑛(𝑡)𝑈𝑛(𝑥):

𝜕𝜙𝐼 (𝑥, 𝑡)
𝜕𝑡

= lim
𝜖𝑥→0

(

𝛽𝜃𝑏0(𝑡)
𝜖𝑥

𝛿(𝑥 − 𝜖𝑥) +
𝛼𝜃𝑏1(𝑡)
𝜖𝑥

𝛿(𝑥 − 1 + 𝜖𝑥)
)

+ 𝜕2

𝜕𝑥2
𝑥(1 − 𝑥)𝜙𝐼 (𝑥, 𝑡)

𝜕𝜙𝐼 (𝑥, 𝑡)
𝜕𝑡

=
∞
∑

𝑛=2
𝑈𝑛(𝑥)

(

−𝛽𝜃𝑏0(𝑡)
𝑈𝑛(0)

𝜆𝑛𝛥
(𝐵)
𝑛

− 𝛼𝜃𝑏1(𝑡)
𝑈𝑛(1)

𝜆𝑛𝛥
(𝐵)
𝑛

)

+ 𝜕2

𝜕𝑥2
𝑥(1 − 𝑥)𝜙𝐼 (𝑥, 𝑡)

𝜕
𝜕𝑡

∞
∑

𝑛=2
𝜏𝑛(𝑡)𝑈𝑛(𝑥) =

∞
∑

𝑛=2
−𝜆𝑛𝑈𝑛(𝑥)

(

−𝛽𝜃𝑏0(𝑡)
𝑈𝑛(0)

𝜆𝑛𝛥
(𝐵)
𝑛

− 𝛼𝜃𝑏1(𝑡)
𝑈𝑛(1)

𝜆𝑛𝛥
(𝐵)
𝑛

+ 𝜏𝑛(𝑡)
)

.

(81)

his induces a system of equations for the temporal coefficients:

𝑑
𝑑𝑡
𝜏𝑛(𝑡) = −𝜆𝑛

(

−𝛽𝜃𝑏0(𝑡)
𝑈𝑛(0)

𝜆𝑛𝛥
(𝐵)
𝑛

− 𝛼𝜃𝑏1(𝑡)
𝑈𝑛(1)

𝜆𝑛𝛥
(𝐵)
𝑛

+ 𝜏𝑛(𝑡)
)

. (82)

he 𝑏0(𝑡) and 𝑏1(𝑡) here can be expressed using 𝜏0(𝑡) and 𝜏1(𝑡); to this
nd, define:

𝐸𝑛 =
𝑈𝑛(0) + 𝑈𝑛(1)

𝛥(𝐵)𝑛

= −(𝑛 − 1)
(−1)𝑛 + 1

𝛥(𝐵)𝑛

= −(2𝑛 − 1)𝑛((−1)𝑛 + 1)

𝑛 =
𝑈𝑛(0)𝛽 + 𝑈𝑛(1)𝛼

𝛥(𝐵)𝑛

= −(𝑛 − 1)
(−1)𝑛𝛽 − 𝛼

𝛥(𝐵)𝑛

= −(2𝑛 − 1)𝑛((−1)𝑛𝛽 − 𝛼) .

(83)

Then, we obtain:

𝑑
𝑑𝑡
𝜏𝑛(𝑡) (𝛽)

𝑛 (𝑥) = −𝜆𝑛

(

−𝛼𝛽𝜃
𝐸𝑛
𝜆𝑛
𝜏0(𝑡) − 𝜃

𝑂𝑛
𝜆𝑛
𝜏1(𝑡) + 𝜏𝑛(𝑡)

)

 (𝛽)
𝑛 (𝑥) . (84)

his system of forward temporal differential equations for the polymor-
hic interior is complemented by the following equations of the same
orm for the boundaries (compare Eq. (78)):
𝑑
𝑑𝑡
𝜏0(𝑡)

(𝛽)
0 (𝑥) = 0

𝑑
𝑑𝑡
𝜏1(𝑡)

(𝛽)
1 (𝑥) = −𝜃𝜏1(𝑡)

(𝛽)
1 (𝑥)

(85)

.2.2. Diagonalisation of the forward system
The system of temporal equations we have just derived can also

e diagonalised. This will be demonstrated below, in part in order to
ectify an erroneous equation in Bergman et al. (2018a) and in part
s a preparation for the derivations in Appendix C, which require a
iagonalised eigensystem.

Let us proceed by setting 𝜏0(𝑡) = 1 and observing that 𝜏1(𝑡) =
1𝑒−𝜃(𝑡−𝑡𝑠), where 𝜌1 = 𝑏1(𝑡𝑠) − 𝛽 (see Eq. (78)). Then the solution to
he inhomogeneous differential equation from Eq. (84) can be written
s:

𝑛(𝑡) = 𝛼𝛽𝜃
𝐸𝑛
𝜆𝑛

+ 𝜃
𝑂𝑛

𝜆𝑛 − 𝜃
𝜌1𝑒

−𝜃(𝑡−𝑡𝑠) + 𝜌(𝑑)𝑛 𝑒−𝜆𝑛(𝑡−𝑡𝑠) , (86)

where 𝜌(𝑑)𝑛 is set to

𝜌(𝑑)𝑛 = 𝜌𝑛 − 𝛼𝛽𝜃
𝐸𝑛
𝜆𝑛

− 𝜃
𝑂𝑛

𝜆𝑛 − 𝜃
𝜌1

to satisfy the starting the condition 𝜏𝑛(𝑡𝑠) = 𝜌𝑛.
Recall that 𝜙(𝑥, 𝑡) =

∑∞
𝑛=2 𝜏𝑛(𝑡)

(𝛽)
𝑛 . The eigenfunctions  (𝛽)

𝑛 (𝑥) in
𝜙(𝑥, 𝑡) associated with 𝜏0(𝑡) = 1, 𝜏1(𝑡) = 𝜌1𝑒−𝜃𝑡 and each 𝜌𝑛𝑒−𝜆𝑛𝑡

an therefore be collected to obtain a diagonalised system of forward
igenfunctions, which induces the homogeneous system of temporal
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differential equations:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

 (𝛽,𝜃)
0 (𝑥) =  (𝛽)

0 (𝑥) + 𝛼𝛽𝜃
∑∞
𝑛=2

𝐸𝑛
𝜆𝑛
 (𝛽)
𝑛 (𝑥)

 (𝛽,𝜃)
1 (𝑥) =  (𝛽)

1 (𝑥) + 𝜃
∑∞
𝑛=2

𝑂𝑛
𝜆𝑛−𝜃

 (𝛽)
𝑛 (𝑥)

 (𝛽,𝜃)
𝑛≥2 (𝑥) =  (𝛽)

𝑛≥2(𝑥) .

(87)

This corrects an error in the denominator of the summation in the  (𝛽,𝜃)
1

given by Bergman et al. (2018b, Eqs. 63-65). Note that the eigenvalues
of the diagonalised system are the same as for the original temporal
system, i.e., correspond to 𝜆0 = 0, 𝜆1 = 𝜃, and 𝜆𝑛 = 𝑛(𝑛 − 1) for
≥ 2 (Vogl, 2014a; Bergman et al., 2018b).

This diagonalised system for the eigenfunctions can easily be written
n matrix form: Defining

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 0 𝛼𝛽𝜃 𝐸2
𝜆2

𝛼𝛽𝜃 𝐸3
𝜆3

𝛼𝛽𝜃 𝐸4
𝜆4

⋯

0 1 𝜃 𝑂2
𝜆2−𝜃

𝜃 𝑂3
𝜆3−𝜃

𝜃 𝑂4
𝜆4−𝜃

⋯

0 0 1 0 0 ⋯
0 0 0 1 0 ⋯
0 0 0 0 1 ⋯
⋮ ⋮ ⋮ ⋮ ⋮ ⋱

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (88)

nd the column vectors

(𝛽)′ = ( (𝛽)
0 (𝑥), (𝛽)

1 (𝑥), (𝛽)
2 (𝑥), (𝛽)

3 (𝑥),…)′

s well as an analogous column vector for the diagonalised eigenfunc-
ions  (𝛽,𝜃)′ , the homogeneous system is given by:

(𝛽,𝜃)′ = 𝐀 (𝛽)′ . (89)

ince the inverse of 𝐀 is quite simply:

−1 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 0 −𝛼𝛽𝜃 𝐸2
𝜆2

−𝛼𝛽𝜃 𝐸3
𝜆3

−𝛼𝛽𝜃 𝐸4
𝜆4

⋯

0 1 −𝜃 𝑂2
𝜆2−𝜃

−𝜃 𝑂3
𝜆3−𝜃

−𝜃 𝑂4
𝜆4−𝜃

⋯

0 0 1 0 0 ⋯
0 0 0 1 0 ⋯
0 0 0 0 1 ⋯
⋮ ⋮ ⋮ ⋮ ⋮ ⋱

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (90)

the diagonalising transformation can be reversed easily.
The system of inhomogeneous temporal equations for the tempo-

ral coefficients alone (i.e., Eq. (86)) can also be expressed in matrix
form. To this end, define the row vector of inhomogeneous temporal
coefficients

𝝉 = (𝜏0(𝑡), 𝜏1(𝑡), 𝜏2(𝑡),…)

and the equivalent row vector of the temporal coefficients of the
homogeneous system

𝝉 (𝑑) = (1, 𝜌(𝑑)1 𝑒−𝜃(𝑡−𝑡𝑠), 𝜌(𝑑)2 𝑒−2(𝑡−𝑡𝑠),…).

The system of equations from Eq. (86) can then be stated compactly as:

𝝉 = 𝝉 (𝑑)𝐀 ; (91)

note that the matrix transformation can once again be reversed easily.

B.2.3. Derivation of the backwards system
A backwards system of diagonalised eigenfunctions for the bound-

ary mutation model, denoted as (𝛽,𝜃)
𝑛 (𝑥) for 𝑛 ≥ 0, should fulfil the

following orthogonality relation for any 𝑛, 𝑚 > 0:

∫

1

0
(𝛽,𝜃)
𝑛 (𝑥) (𝛽,𝜃)

𝑚 (𝑥) 𝑑𝑥 = 𝛿𝑛𝑚𝛥
(𝐵)
𝑛 ,

with 𝛥(𝐵)0 = 𝛥(𝐵)1 = 1 and 𝛥(𝐵)𝑛 as before. Such a system can be achieved
by performing the following diagonalising transformation concurrently
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to the diagonalisation of the forward eigensystem (Bergman et al.,
2018b, Eq. 68):

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(𝛽,𝜃)
0 (𝑥) = (𝛽)

0 (𝑥)
(𝛽,𝜃)
1 (𝑥) = (𝛽)

1 (𝑥)

(𝛽,𝜃)
𝑛≥2 (𝑥) = (𝛽)

𝑛≥2(𝑥) − 𝛼𝛽𝜃
𝐸𝑛𝛥

(𝐵)
𝑛

𝜆𝑛
(𝛽)
0 (𝑥) − 𝜃 𝑂𝑛𝛥

(𝐵)
𝑛

𝜆𝑛−𝜃
(𝛽)
1 (𝑥) .

(92)

The above equations correct an error in the (𝛽,𝜃)
𝑛≥2 (𝑥) given in Bergman

et al. (2018b, Eq. 68); aside from this, the orthogonality relationship
can be checked precisely as demonstrated in Bergman et al. (2018b,
Eq. 69).

The system of diagonalised backwards eigenfunctions can also be
written in matrix form. Specifically, defining the matrix

𝐁 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 0 0 0 0 ⋯
0 1 0 0 0 ⋯

−𝛼𝛽𝜃
𝐸2𝛥

(𝐵)
2

𝜆2
−𝜃

𝑂2𝛥
(𝐵)
2

𝜆2−𝜃
1 0 0 ⋯

−𝛼𝛽𝜃
𝐸3𝛥

(𝐵)
3

𝜆3
−𝜃

𝑂3𝛥
(𝐵)
3

𝜆3−𝜃
0 1 0 ⋯

−𝛼𝛽𝜃
𝐸4𝛥

(𝐵)
4

𝜆4
−𝜃

𝑂4𝛥
(𝐵)
4

𝜆4−𝜃
0 0 1 ⋯

⋮ ⋮ ⋮ ⋮ ⋮ ⋱

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (93)

the column vector

(𝛽)′ = ((𝛽)
0 (𝑥),(𝛽)

1 (𝑥),(𝛽)
2 (𝑥),…)′,

and an analogous column vector (𝛽,𝜃)′ , we obtain:

(𝛽,𝜃)′ = 𝐁(𝛽)′ . (94)

The matrix 𝐁 can be inverted similarly to the matrix 𝐀 above, and
therefore the diagonalising transformation can again be reversed as
easily.

Expressions for the temporal coefficients can also be found via the
backwards system. Let us expressly define the row vector

�̄� (𝑑) = (1, 𝑑1(𝑘,𝐾)𝑒−𝜃𝑡, 𝑑2(𝑘,𝐾)𝑒−𝜃(𝑡−𝑡𝑠),…).

he system of equations from Eq. (86) can then be stated compactly as:

̄ = �̄� (𝑑)𝐁 . (95)

We can use these relationships to write the solution of the inhomo-
geneous temporal equations as:

− 𝜕
𝜕𝑡
𝜏0(𝑡)

(𝛽)
0 (𝑥) = 𝛼𝛽𝜃

∞
∑

𝑛=2
𝐸𝑛𝛥𝑛𝜏𝑛(𝑡)

(𝛽)
0 (𝑥)

𝜕
𝜕𝑡
𝜏1(𝑡)

(𝛽)
1 (𝑥) = −𝜃𝜏1(𝑡)

(𝛽)
1 (𝑥) + 𝜃

∞
∑

𝑛=2
𝑂𝑛𝛥𝑛𝜏𝑛(𝑡)

(𝛽)
1 (𝑥)

− 𝜕
𝜕𝑡
𝜏𝑛(𝑡) = −𝜆𝑛𝜏𝑛(𝑡)

(96)

Thus a homogeneous temporal system can be obtained for 𝑛 ≥ 2
rom the last line above: Consider 𝑡𝑠 ≤ 𝑡 ≤ 0, which is solved by
2≤𝑛≤𝐾 (𝑥) = 𝑑𝑛(𝑘,𝐾)𝑒𝜆𝑛𝑡 if one starts with a binomial sampling scheme
t 𝑡 = 0. Substituting these temporal functions into the differential equa-
ions for 𝜏0(𝑡) and 𝜏1(𝑡) results in inhomogeneous equations analogous
o those running forward in time. In particular, we have:

𝜕
𝜕𝑡
𝜏0(𝑡)

(𝛽)
0 = 𝛼𝛽𝜃

𝐾
∑

𝑛=2
𝑑𝑛(𝑘,𝐾)𝐸𝑛𝛥𝑛𝑒𝜆𝑛𝑡

(𝛽)
0 , (97)

or which

𝜏0(𝑡) = 𝑑0(𝑘,𝐾) + 𝛼𝛽𝜃
𝐾
∑

𝑛=2

𝐸𝑛𝛥𝑛
𝜆𝑛

𝑑𝑛(𝑘,𝐾)(1 − 𝑒𝜆𝑛𝑡) (98)
is a solution that satisfies the starting condition 𝜏0(0) = 𝑑0(𝑘,𝐾).
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Proceeding similarly for 𝜏1(𝑡), we have:

− 𝜕
𝜕𝑡
𝜏1(𝑡)

(𝛽)
1 = −𝜃

(

𝜏1(𝑡) −
∞
∑

𝑛=2
𝑂𝑛𝛥𝑛𝑑𝑛(𝑘,𝐾)𝑒𝜆𝑛𝑡

)

(𝛽)
1 , (99)

for which the solution satisfying the starting condition is:

𝜏1(𝑡) = 𝑑1(𝑘,𝐾)𝑒𝜃𝑡 + 𝜃
𝐾
∑

𝑛=2
𝑑𝑛(𝑘,𝐾)

𝑂𝑛𝛥𝑛
𝜆𝑛 − 𝜃

(𝑒𝜃𝑡 − 𝑒𝜆𝑛𝑡) . (100)

This can be repeated again for higher order temporal coefficients.

Backward Partial Differential Equation
The results presented above can be used to obtain a system of

backwards PDEs corresponding to the forward PDEs of Eq. (81). Let
us first reflect on the dynamics of mutations in the boundary muta-
tion diffusion model and how these are analytically represented in
the spectral representation of the transition rate densities: Forwards
in time, the mutation terms appearing in the first line of Eq. (81)
represent the mutational flow from the monomorphic boundaries into
the polymorphic interior. The delta functions are then expanded into
the orthogonal polynomials (compare Eqs. (79) and (80)) and appear in
the diffusion operator, i.e., the polymorphic region. Backwards in time,
the mutation terms in the PDE will have to represent the conditioning
on the origin of the polymorphism-causing mutation, i.e., either the
non-focal or the focal allele, which will be represented as the backwards
eigenfunctions of order 𝑛 = 0 and 𝑛 = 1. In particular, the mutation
term for the non-focal allele is a product of the mutation rate, 𝛽𝜃, the
backward function at 𝜖𝑥, 𝜓𝐼 (𝑥 = 𝜖𝑥, 𝑡), and the scaling constant, 1∕𝜖𝑥.
Taking the limit, we obtain (compare Eqs. (79) and (80)):

lim
𝜖𝑥→0

𝛽𝜃 ⋅ 𝜓𝐼 (𝑥 = 𝜖𝑥, 𝑡) ⋅ 1∕𝜖𝑥 = lim
𝜖𝑥→0

𝛽𝜃
∞
∑

𝑛=2
𝑈𝑛(𝜖𝑥)𝜖𝑥(1 − 𝜖𝑥)∕𝜖𝑥

= 𝛽𝜃
∞
∑

𝑛=2
𝑈𝑛(0) .

(101)

The analogous operation can be performed for the focal allele. We must
now consider only the spatial dynamics of the system represented by
the eigenfunctions. Recall that analogously to the transformation in
Eq. (78), 1 − 𝑥 and 𝑥 can be represented by the eigenfunctions (𝛽)

0 = 1
and (𝛽)

0 = −𝛽 + 𝑥 = −𝛽(1 − 𝑥) + 𝛼𝑥, so that we can overall express the
boundary dynamics as:

𝛽𝑈𝑛(0)(1 − 𝑥) + 𝛼𝑈𝑛(1)𝑥 = 𝛼𝛽𝐸𝑛𝛥𝑛
(𝛽)
0 (𝑥) + 𝑂𝑛𝛥𝑛

(𝛽)
1 (𝑥),

with 𝐸𝑛 and 𝑂𝑛 as in Eq. (83). Note that for 𝐾 = 1, only the first
two eigenfunctions need to be considered, yielding a homogeneous
temporal system with rates 𝜆0 = 0 and 𝜆1 = 1; for 𝐾 ≥ 2, the
ystem is inhomogeneous. Conveniently, for polynomials of order 𝑛 ≥
the operator is identical to the pure drift operator. Dynamics are

epresented via the eigenfunctions 𝑛≥2(𝑥) resulting in a homogeneous
ystem for 𝑛 ≥ 2 (see Eq. (96)).

emark. Note that in the backward system immediately above, the
onditioning on 𝑥 is taken from 𝑡 = 0 to earlier times 𝑡. This means
hat although we consider time to be moving backwards since it is the
ackwards system, the direction of conditioning over time is the same
s in the forward system. Thus in Eq. (101), the scaling constant of
he mutational terms enters as 1∕𝜖𝑥, i.e., identical in the forward and
ackward systems, rather than as the inverse. (Compare the explanation
or the direction of the arrows in Fig. 8.)

emark. Our diagonalising transformations are similar in spirit to that
n Song and Steinrücken (2012); however while these authors diag-
nalise the spatial component of their spectral decompositions via a
inear transformation, we diagonalise the temporal component via a
inear transformation.
77

t

.2.4. Simplifying assumptions and convergence

In the main part of this article, we consider modifications of the
orwards system of inhomogeneous differential equations for the tem-
oral coefficients from Eq. (84). In this part, however, we assume that
he system has reached an evolutionary equilibrium with respect to the
utation bias at time 𝑡 = ∞, which means that 𝜏1(∞) = 0, and 𝑏0(∞) = 𝛼

nd 𝑏1(∞) = 𝛽.

Unlike the pure drift system, this system has a non-trivial stationary
olution (Vogl, 2014a, Appendix A2):

𝑛(∞) = 𝛼𝛽𝜃
𝐸𝑛
𝜆𝑛

= −𝛼𝛽𝜃
(2𝑛 − 1)𝑛((−1)𝑛 + 1)

𝜆𝑛
, (102)

whereby one can differentiate between 𝜏𝑛(∞) = −𝛼𝛽𝜃 4𝑛−2
𝑛−1 for 𝑛 ∈ 2N,

nd 𝜏𝑛(∞) = 0 otherwise. The full forwards diffusion equation therefore
as a limiting stationary distribution at 𝑡 = ∞ that can be represented
s:

(𝑥,∞) =
∞
∑

𝑛=0
𝜏𝑛(∞) (𝛽)

𝑛 (𝑥) . (103)

mportantly, this limiting distribution has singularities at the bound-
ries. We still call it a distribution since it can easily be seen from
q. (71) that 𝜙(𝑥,∞) integrates to one over the closed interval [0, 1]:
pecifically, only  (𝛽)

0 (𝑥) integrates to one while all other  (𝛽)
𝑛 integrate

o zero.

The stationary event probabilities �̄�𝑘 of observing exactly 𝑘 focal
lleles in a sample of size 𝐾 can be obtained by expanding the binomial
ampling scheme into the backward boundary polynomials given in
q. (24), multiplying the result with 𝜙(𝑥,∞), and then integrating:

�̄�𝑘 = Pr(𝑘 ∣ 𝐾, 𝛽, 𝜃) = ∫

1

0
Pr(𝑘∣𝑥,𝐾)𝜙(𝑥,∞) 𝑑𝑥

=
𝐾
∑

𝑛=0
𝑑𝑛(𝑘,𝐾)(𝛽)

𝑛 (𝑥)𝜏𝑛(∞) (𝛽)
𝑛 (𝑥)

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝛼(1 − 𝛽𝜃𝐻𝐾−1) 𝑘 = 0

𝛼𝛽𝜃 𝐾
𝑘(𝐾 − 𝑘)

1 ≤ 𝑘 ≤ 𝐾 − 1

𝛽(1 − 𝛼𝜃𝐻𝐾−1) 𝑘 = 𝐾

= 𝑏𝑜𝑢𝑛𝑑𝑏𝑖𝑛(𝑘 ∣ 𝐾, 𝛽, 𝜃) .

(104)

This is precisely the boundary-binomial distribution from Eq. (5), which
describes a sample of size 𝐾 from the stationary distribution of the
discrete boundary mutation Moran model with 𝐾 ≤ 𝑁 , where 𝑁
is the population size (Vogl and Bergman, 2015, Eq. 13). Note that
while the limiting stationary distribution 𝜙(𝑥,∞) has singularities at
the boundaries and therefore does not conform to a proper density,
the equilibrium distribution of a sample of size 𝐾 from this limiting
distribution conforms to a regular probability distribution as long as
the sample size is lower than 𝐾𝑚𝑎𝑥 ≈ 𝑒𝑚𝑖𝑛(𝛼,𝛽)∕(𝛼𝛽𝜃) (since the boundary
alues otherwise become negative). This restriction on the sample
ize follows immediately from the fact that the stationary boundary
utation Moran model corresponds to the first order expansion in the

verall mutation rate 𝜃 of the beta-binomial sampling distribution of
he general mutation drift Moran model from Eq. (4).

Overall, recovering the stationary distribution of the discrete bound-
ry mutation Moran model as the limiting stationary sampling dis-
ribution here validates our representation of the boundary mutation
iffusion model as the limiting 𝜃 → 0 approximation of the general
utation diffusion model: Considering this limit in a diffusion setting

ypically eradicates mutation and leads to a pure drift model on only
he polymorphic allele frequency space, but in the boundary mutation
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diffusion model we then re-instate mutation via constructed boundary
terms at the monomorphic states (recall derivations in Appendix B.2
and Vogl and Bergman (2016), as well as the final remark in Sec-
tion 2.4.2). While this appears indirect, we can thereby see that this
approach yields consistent results. Most importantly, we have therefore
also shown that the discrete sampling distribution from the boundary
mutation diffusion is not only a proper distribution but also a regular
density for even moderately large sample sizes as long as the appropri-
ate assumptions on the upper limits of the mutation rate and sample
sizes combined are met. Therefore, it is easily tractable as a starting
point for development of inferential procedures in suitable settings.

Remark. While it is beyond the scope of this paper to investigate this
atter in detail, the polynomial expansion of the binomial sampling

cheme acts as a test function in Eq. (104), against which the limiting
tationary distribution integrates to the equilibrium sampling distri-
ution. Although the limiting stationary distribution itself diverges
ear the boundaries, making the full integral over 𝜙(𝑥,∞) on [0, 1]

improper, it appears that this integral can still be assigned a value:
Partitioning the integral into interior and boundary regions as in the
examination of the transition rates in Eq. (66) and Eqs. (64) and
(65), it can be seen that the ‘breakpoints’ between the interior and
the boundaries can be approached smoothly from either side and that
the terms that diverge for 𝑁 → ∞ near either edge of the interior
as well as those that diverge at the boundaries themselves balance
precisely. In such cases, analytical considerations can be applied that
lead to the divergent terms cancelling out, thus assigning the improper
integral a finite value Harris and Stocker (1998, p.552, see the Cauchy
principal value). The derivation of the stationary sampling distribution
via the orthogonal polynomials in Eq. (104), however, circumvents
such analytical difficulties so that we need not expand on them further
here.

Remark. Burden and Tang (2017, Eq. 35) provide the analogous discrete
distribution to Eqs. (5) or equivalently Eq. (104) for the multiallelic
boundary mutation model, however they only show that the equality
holds up to order 1∕𝑁 (see their Eq. 41).

Remark. Substituting 0(𝑥)𝑔(𝑥, 𝑡), i.e., the limiting stationary distribu-
tion times a test function, into the interior forward PDE (see Eq. (77))
results in the pure drift backward PDE (up to a change in the direction
of time) (Bergman et al., 2018b, Section 3.2), with the exception of the
mutation terms, which must be added to first two eigenfunctions in the
backward system, as explained in previous sections.

Appendix C. Embedded dual jump processes

In this section, we aim to provide some understanding of the dual
jump processes embedded in the general biallelic reversible mutation
and the biallelic boundary mutation diffusion models. Our approach
is motivated by both Etheridge and Griffiths (2009a), who derive
a coalescent dual process for a stationary multiallelic Moran model
with selection from the generator of its limiting diffusion approxima-
tion, as well as Papaspiliopoulos and Ruggiero (2014), who present a
comprehensive method for identifying a dual processes for stationary,
reversible diffusion models from their diffusion generator. This latter
method is particularly relevant, since (similarly to us) the authors
view the continuous diffusion process as a hidden process within the
framework of a Hidden-Markov-Model, and the sampling distribution
as the emission density. In this setting, the identified dual process
is the computationally optimal filter for the diffusion. Here, we will
present embedded dual jump processes for the general biallelic re-
versible mutation and the biallelic boundary mutation diffusion models,
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specifically pure death jump processes that describe the ancestry of b
population samples. These are comparable to the dual processes of
the above articles, but we will focus specifically on their probabilistic
interpretation in the context of the forward–backward algorithm.

C.1. Recap of the forward-backward algorithm

Recall that in Appendix B.1.3, we determined 𝑝𝑘, the probability
of observing 𝑘 focal alleles in a binomial sample of size 𝐾 drawn
from a pure drift diffusion model at time 𝑡 = 0, as the marginal
likelihood of the product of the forward and backward transition rate
densities, both represented as a spectral sum, via a forward–backward
algorithm. In the main text, specifically Sections 2.4, 2.5, and 3, we
use a forward pass of the algorithm to determine the same probability
for diffusion equations with mutational input in the form of general
biallelic reversible mutations and boundary-mutations respectively; this
means that we choose to evaluate the probability of 𝑝𝑘 at 𝑡 = 0. In this
first subsection, our main aim is to establish a notation for 𝑝𝑘 that holds
for both of these patterns of mutation, allowing us to evaluate it at any
time 𝑡𝑠 ≤ 𝑡 ≤ 0 via a combination of forward and backward passes of
the forward–backward algorithm.

In order to do so, we will again assume a population allele propor-
tion that evolves forward in time via a diffusion equation; specifically,
it evolves from an ancestral distribution 𝜌(𝑥) at time 𝑡𝑠 < 0 up to the
extant time 𝑡 = 0, at which point we draw a binomial sample of haploid
size 𝐾. We will treat this as a single time epoch, assuming constancy of
mutation parameters for its duration. Note that this could be because
we do not wish to model changes in these parameters, or because we
assume that we are considering the last of a series of epochs with
piecewise constant mutation parameters as in the main text.

The core principle of the forward–backward algorithm is that the
marginal probabilities of the observations, here the event probabilities
𝑝𝑘, depend on the length of the interval between 𝑡 = 𝑡𝑠 and 𝑡 = 0 and can
be evaluated to the same result at any point 𝑡 within this interval. This
is achieved by a combination of forward probabilities of population
allele proportions covering the events from 𝑡𝑠 up to 𝑡, and backward
probabilities that evaluate the likelihood of the sampling distribution
from 𝑡 to 𝑡 = 0. Implicitly, this requires an adjoint relationship between
the forward and backward diffusion generators (Bergman et al., 2018b,
Section 3.1., specifically Eq. 32). It is more straightforward to see that
this holds in time homogeneous systems; therefore, we will from here
on use the spectral decomposition of the general mutation diffusion
model from Section 2.4 (adjoint relationship verified in Bergman et al.,
2018b, Section 3.4) as well as the diagonalised eigensystem of the
boundary mutation diffusion from Appendix B.2.3 (Bergman et al.,
2018b, Section 4.1).

Following on from this, we expand the distribution that describes
the distribution of ancestral population allele proportions at time 𝑡𝑠
into a series of polynomials 𝜌(𝑥) = 𝜙(𝑥, 𝑡 = 𝑡𝑠) =

∑∞
𝑚=0 𝜌

(𝛽,𝜃)
𝑚 F(𝛽,𝜃)

𝑚 (𝑥),
and then similarly expand the binomial sampling distribution into a
complementary series of orthogonal polynomials Pr(𝑘∣𝐾, 𝑥) = 𝜓(𝑥, 𝑡 =
0) =

∑𝐾
𝑛=0 𝑑𝑛(𝑘,𝐾)B(𝛽,𝜃)

𝑛 (𝑥). The functions of the indeterminate 𝑥 in
hese spectral sums are constituted by the orthogonal polynomials
hemselves, which here represent the eigenfunctions of either time
omogeneous eigensystem with mutational input, and the coefficients
f these function in the spectral sums therefore depend on both the
utation rate and bias.

Within either homogeneous eigensystem, the probability of observ-
ng 𝑘 focal alleles in the sample drawn at the extant time 𝑡 = 0 can then

e determined by evaluating the following marginal likelihood at any
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time 𝑡 within 𝑡𝑠 ≤ 𝑡 ≤ 0 (Bergman et al., 2018b, Section 3.1):

𝑘 = Pr(𝑘∣𝐾, 𝛽, 𝜃, 𝜌, 𝑡𝑠)

= ∫

1

0
𝜓(𝑥, 𝑡)𝜙(𝑥, 𝑡) 𝑑𝑥

= ∫

1

0

( 𝐾
∑

𝑛=0
𝑑𝑛(𝑘,𝐾)𝑒𝜆𝑛𝑡B(𝛽,𝜃)

𝑛 (𝑥)
)

×
( ∞
∑

𝑚=0
𝜌(𝛽,𝜃)𝑚 𝑒−𝜆𝑚(𝑡−𝑡𝑠)F(𝛽,𝜃)

𝑚 (𝑥)
)

𝑑𝑥

=
𝐾
∑

𝑛=0
∫

1

0
𝑑𝑛(𝑘,𝐾)𝑒𝜆𝑛𝑡B(𝛽,𝜃)

𝑛 (𝑥)𝜌(𝛽,𝜃)𝑛 𝑒−𝜆𝑛(𝑡−𝑡𝑠)F(𝛽,𝜃)
𝑛 (𝑥) 𝑑𝑥

=
𝐾
∑

𝑛=0
𝑑𝑛(𝑘,𝐾)𝜌(𝛽,𝜃)𝑛 𝛥(𝛽,𝜃)𝑛 𝑒𝜆𝑛𝑡𝑠 .

(105)

Note that the above distribution is discrete, i.e., 0 ≤ 𝑝𝑘 ≤ 1 for 0 ≤
𝑘 ≤ 𝐾, whereby ∑

𝑘 𝑝𝑘 = 1. In the remainder of this Appendix, we will
show that the transition rates 𝜓(𝑥, 𝑡) of the backwards process can be
interpreted probabilistically for 𝑡𝑠 ≤ 𝑡 ≤ 0. Specifically, we will rewrite
its representation as a spectral sum into temporally weighted mixtures
of binomial samples across time, thereby tracing the genealogy of the
observed sample back through the population history via an embedded
time-dependent jump process.

Remark. In this Section, we considered a single interval between 𝑡 = 𝑡𝑠
and 𝑡 = 0; however, multiple epochs can easily be incorporated, i.e., the
backward process can be extended to additional epochs going further
back in time. At the time where the mutation parameters change, which
we denote as 𝑡𝑗 (which may coincide with 𝑡𝑠), 𝜙(𝑥, 𝑡𝑗 ) is represented
by a weighted sum of binomial distributions. This can be used as the
initial distribution, i.e., 𝜙(𝑥, 𝑡), in determining the backwards process
for epochs further back in time; note that previously, 𝜙(𝑥, 𝑡) was set to
a single binomial distribution Pr(𝑘∣𝐾, 𝑥) at time 𝑡 = 0.

C.2. General description of dual embedded pure death jump processes

Let us begin by providing an outline of the embedded pure death
jump processes we will derive: To start, denote the observed sample
allele configuration at the extant time 𝑡 = 0 as (𝑘,𝐾), which simply
means that 𝑘 of the total 𝐾 sampled alleles are of the focal type. In the
history of this sample, we can ‘‘lose’’ alleles of both the focal or non-
focal type as they coalesce with a common ancestor as well as through
parent-independent mutation. Looking back in time, any reduction in
sample size due to these events will be considered a jump step. After 𝐾−
𝑛 of these, we will denote our allele configuration as (𝑖, 𝑛), meaning that
we have 𝑖 (where max(0, 𝑘 + 𝑛 − 𝐾) ≤ 𝑖 ≤ min(𝑘, 𝑛)) focal alleles among
our remaining total of 𝑛 ≤ 𝐾 from the original sample. The transition
probabilities between configurations of different historical sample sizes
will be denoted as Pr(𝑛∣𝐾, 𝑡), and they determine the temporal aspect
of the sample genealogy. Subordinated to this is a spatial process that
governs the number of focal alleles 𝑖 across this genealogy, whereby we
take ‘‘spatial’’ to mean ‘‘dependent on the population allele proportion
𝑥’’: This process is constituted by a sequence of pure death jump steps
on the space of binomial distributions Pr(𝑖∣𝑛, 𝑥) =

(𝑛
𝑖

)

𝑥𝑖(1 − 𝑥)𝑛−𝑖 with
0 ≤ 𝑖 ≤ 𝑘 and 0 ≤ (𝑛 − 𝑖) ≤ (𝐾 − 𝑘), with coefficients 𝑒𝑖,𝑛 recording the
probability of observing 𝑘 focal alleles in the sample at the extant time
across all possible sample paths from configuration (𝑖, 𝑛) to (𝑘,𝐾):

𝑒𝑖,𝑛 = Pr(𝑘∣𝐾, 𝑖, 𝑛, 𝛽, 𝜃).

Putting these two processes together, the transition rates 𝜓(𝑥, 𝑡) of
the backwards process can be alternatively expressed as the following
time-dependent pure death jump process:

𝜓(𝑥, 𝑡) = Pr(𝑘∣𝐾, 𝛽, 𝜃, 𝜌, 𝑥, 𝑡)

=
𝐾
∑

Pr(𝑛∣𝐾, 𝑡)
𝑛
∑

𝑒𝑖,𝑛 Pr(𝑖∣𝑛, 𝑥) .
(106)
79

𝑛=0 𝑖=0
We will now proceed to derive this representation of the backwards
transition rate density for the general biallelic reversible mutation
diffusion model, and explicitly show that it is an embedded dual
process with direct connections to the spectral sum we have typically
expanded the transition rate density into in this article. Then, we will
appropriately modify the derivation to obtain corresponding results for
the boundary mutation model.

Remark. Note that terms analogous to our Eq. (106) appear in an
expression for the stationary transition distribution of the backward
multiallelic Moran diffusion equation in Etheridge and Griffiths (2009b,
Eq. 2).

C.3. Derivation of dual embedded pure death jump processes

C.3.1. General biallelic reversible mutation model
In order to separate the temporal and spatial processes, we take

an approach comparable to Etheridge and Griffiths (2009b, Eq. 7).
Specifically, we substitute the binomial likelihood Pr(𝑖∣𝑛, 𝑥) =

(𝑛
𝑖

)

𝑥𝑖(1 −
𝑥)𝑛−𝑖 into the backwards diffusion equation of the general biallelic
reversible mutation model (see Eq. (2)):

∗ Pr(𝑖∣𝑛, 𝑥) = ∗
(

𝑛
𝑖

)

𝑥𝑖(1 − 𝑥)𝑛−𝑖

= 𝑖(𝑖 − 1 + 𝛽𝜃)
(

𝑛
𝑖

)

𝑥𝑖−1(1 − 𝑥)𝑛−𝑖+1

+ (𝑛 − 𝑖)(𝑛 − 𝑖 − 1 + 𝛼𝜃)
(

𝑛
𝑖

)

𝑥𝑖(1 − 𝑥)𝑛−𝑖−1

− (𝑖(𝑛 − 𝑖 + 𝛼𝜃) + (𝑖 + 𝛽𝜃)(𝑛 − 𝑖))
(

𝑛
𝑖

)

𝑥𝑖(1 − 𝑥)𝑛−𝑖

= 𝜆𝑛

(

𝑖−1+𝛽𝜃
𝑛−1+𝜃 Pr(𝑖 − 1∣𝑛 − 1, 𝑥)

+ 𝑛−𝑖−1+𝛼𝜃
𝑛−1+𝜃 Pr(𝑖∣𝑛 − 1, 𝑥) − Pr(𝑖∣𝑛, 𝑥)

)

.

(107)

Recall that the eigenvalues of this system, which govern its temporal
aspect, are given by 𝜆𝑛 = 𝑛(𝑛 − 1 + 𝜃). Regarding the number of
focal alleles rather than the population allele proportion 𝑥 as the
dependent variable, the last line of the above equation can be seen
as an infinitesimal generator of the spatial process within the large
parentheses (compare Etheridge and Griffiths, 2009b, Eq. 7). Setting
this spatial process zero yields a recursive set of equations on the
probability of observing 𝑖 focal alleles within historical samples of
size 𝑛:

Pr(𝑖∣𝑛, 𝑥) = 𝑖−1+𝛽𝜃
𝑛−1+𝜃 Pr(𝑖 − 1∣𝑛 − 1, 𝑥) + 𝑛−𝑖−1+𝛼𝜃

𝑛−1+𝜃 Pr(𝑖∣𝑛 − 1, 𝑥) , (108)

which can also be written as:

Pr(𝑖∣𝑛, 𝑥) = 𝑖
𝑛

𝑏𝑒𝑡𝑎𝑏𝑖𝑛(𝑖∣𝑛, 𝛽, 𝜃)
𝑏𝑒𝑡𝑎𝑏𝑖𝑛(𝑖 − 1∣𝑛 − 1, 𝛽, 𝜃)

Pr(𝑖 − 1∣𝑛 − 1, 𝑥)

+ 𝑛 − 𝑖
𝑛

𝑏𝑒𝑡𝑎𝑏𝑖𝑛(𝑖∣𝑛, 𝛽, 𝜃)
𝑏𝑒𝑡𝑎𝑏𝑖𝑛(𝑖∣𝑛 − 1, 𝛽, 𝜃)

Pr(𝑖∣𝑛 − 1, 𝑥) .
(109)

This recursion defines a time-independent, pure death jump process:
Since it goes backwards in time, it starts from the allele configuration
(𝑖 = 𝑘, 𝑛 = 𝐾) at the extant time 𝑡 = 0, proceeds via configurations
(𝑖 = 𝑘 − 1, 𝑛 = 𝐾 − 1) and (𝑖 = 𝑘, 𝑛 = 𝐾 − 1) at the next lower possible
ample size 𝑛, and down to the trivial empty sample (𝑖 = 0, 𝑛 = 0),
hich has Pr(𝑖 = 0∣𝑛 = 0, 𝑥) = 1, since the only possible value of 𝑖 after
steps is zero. Let 𝑒𝑖,𝑛 ≥ 0 be the solution of this recursive system; it

s given by:

𝑖,𝑛 = Pr(𝑘∣𝐾, 𝑖, 𝑛, 𝛽, 𝜃) =
(

𝐾 − 𝑛
𝑘 − 𝑖

)

𝛤 (𝜃 + 𝑛)
𝛤 (𝜃 +𝐾)

𝛤 (𝛽𝜃 + 𝑘)
𝛤 (𝛽𝜃 + 𝑖)

𝛤 (𝛼𝜃 +𝐾 − 𝑘)
𝛤 (𝛼𝜃 + 𝑛 − 𝑖)

= ℎ𝑦𝑝𝑒𝑟(𝑖∣𝐾, 𝑛, 𝑘)
𝑏𝑒𝑡𝑎𝑏𝑖𝑛(𝑘∣𝐾, 𝛽, 𝜃)
𝑏𝑒𝑡𝑎𝑏𝑖𝑛(𝑖∣𝑛, 𝛽, 𝜃)

.

(110)
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Fig. 7. This is a schematic for the Polya-type urn scheme that is reminiscent of Pascal’s triangle. Specifically, we trace the history of a sample allele configuration from an ancestral
tate to the observed configuration (i.e., forwards in time) under the assumption of an underlying general reversible biallelic mutation model. The entry at the tip of the triangle

represents the trivial sample (𝑖 = 0, 𝑛 = 0) (which has a probability of 1), and as we move down the triangle we proceed forwards in time in the urn process. The edges of the
arrows in this scheme denote the transition probabilities from Eq. (111). The entries in the 𝑛th row from the top correspond to the increasing values of the historic sample size 𝑛,

hile the rows represent the possible values 𝑖 of the focal allele within each row, i.e., a historic sample. Note that the expressions at each node are the stationary beta-binomial
ampling distributions from Eq. (3) for the appropriate sample configuration.
C
d

b

𝜓

w

𝜓

Note that 𝑒0,0, which is the solution for the trivial historic sample
onfiguration (𝑖 = 0, 𝑛 = 0), corresponds to the stationary beta-binomial
ampling distribution for the configuration (𝑘,𝐾) from Eq. (3). From
his, it is easy to see that the 𝑒𝑖,𝑛 are indeed the probabilities of
bserving 𝑘 focal alleles in a sample configuration (𝑘,𝐾) at the extant
ime 𝑡 = 0 given the historic sample configuration (𝑖, 𝑛) at a time 𝐾 − 𝑛
ump steps in the past; note also that this process is stationary for
onstant 𝛽 and 𝜃.

Connections to well-established models can be made by reversing
he dependency relationships in this jump process: By beginning from
he trivial historic sample configuration Pr(𝑖 = 0∣𝑛 = 0) = 1, we can con-
truct a trivially modified Polya-type urn process for the probabilities
f past sample configurations as though we were moving forwards in
ime (Hoppe, 1987, compare Eqs. (1),(16)) and Stephens and Donnelly
2000, Algorithm 2.1). The process starts from an urn containing balls
f two colours, one focal and the other non-focal, with respective
eights of 𝛽𝜃 and 𝛼𝜃. At each jump step, we randomly draw a ball

rom the urn and then return it with a ball of the same type that has
nit weight. Expressly, let the indicator variable 𝑧 record whether the
ext ball drawn is of the focal colour. The transition probabilities from
he sample configuration (𝑖, 𝑛) to the sample configuration (𝑖 + 𝑧, 𝑛 + 1)
re proportional to the weight of the focal and non-focal balls, and can
e written as:

Pr(𝑧∣𝑖, 𝑛, 𝛽, 𝜃) = 𝑝𝑧(1 − 𝑝)1−𝑧 (111)

with

𝑝 =
𝑖 + 𝛽𝜃
𝑛 + 𝜃

=
𝑏𝑒𝑡𝑎𝑏𝑖𝑛(𝑖 + 1∣𝑛 + 1, 𝛽, 𝜃)

𝑏𝑒𝑡𝑎𝑏𝑖𝑛(𝑖∣𝑛, 𝛽, 𝜃)
.

or further clarification of the spatial process, we provide a visual-
sation for both the urn model (see Fig. 7) and the jump process
etermining the 𝑒𝑖,𝑛 (see Fig. 8).

We have now characterised the spatial component of the backwards
iffusion equation operating on a binomial sampling function given in
q. (107). This leaves the temporal component: Looking backwards in
ime, a jump step in the sample genealogy corresponds to a reduction
n the historical sample size 𝑛 by either a coalescent or a parent-
ndependent mutation event. Let Pr(𝑛∣𝐾, 𝜃, 𝑡), with 0 ≤ 𝑛 ≤ 𝐾, denote

the probability of a realised historic sample of size 𝑛 at time 𝑡. Consider-
ing this as the dependent variable in the backwards diffusion equation
from Eq. (107), we can re-write the latter as the following system of
80
temporal linear differential equations:

− 𝑑
𝑑𝑡

Pr(𝑛∣𝐾, 𝜃, 𝑡) = 𝜆𝐾 Pr(𝑛∣𝐾, 𝜃, 𝑡) , for 𝑛 = 𝐾, and

− 𝑑
𝑑𝑡

Pr(𝑛∣𝐾, 𝜃, 𝑡) = −𝜆𝑛+1 Pr(𝑛 + 1∣𝐾, 𝜃, 𝑡)

+ 𝜆𝑛 Pr(𝑛∣𝐾, 𝜃, 𝑡) , for 𝐾 > 𝑛 ≥ 0.

(112)

Imposing the starting conditions Pr(𝑛 = 𝐾 ∣𝐾, 𝜃, 𝑡 = 0) = 1, and
Pr(𝐾 > 𝑛 ≥ 0∣𝐾, 𝜃, 𝑡 = 0) = 0, the solution of this system is given by the
standard solution for a pure death process, except that our historical
time 𝑡 is negative (Taylor and Karlin, 1998, chapter 6, Eq. 2.2) (and
compare Tavare, 1984, Eq. 4.7):

Pr(𝑛∣𝐾, 𝜃, 𝑡) = 𝑒𝜆𝐾 𝑡 , for 𝑛 = 𝐾

Pr(𝑛∣𝐾, 𝜃, 𝑡) =
( 𝐾

∏

𝑗=𝑛+1
𝜆𝑗

) 𝐾
∑

𝑖=𝑛

𝑒𝜆𝑖𝑡
∏𝐾

𝑗=𝑛,𝑗≠𝑖(𝜆𝑗 − 𝜆𝑖)
, for 𝐾 − 1 ≥ 𝑛 ≥ 0 .

(113)

learly, this solution requires the eigenvalues 𝜆𝑛 = 𝑛(𝑛 − 1 + 𝜃) to be
istinct, which they are in this model for realistic values of 𝜃, i.e., values

distinct from zero and infinity. Further, all Pr(𝑛∣𝐾, 𝜃, 𝑡) are positive and
it is easily seen that ∑𝐾

𝑛=0 Pr(𝑛∣𝐾, 𝜃, 𝑡) = 1 for 𝑡𝑠 ≤ 𝑡 ≤ 0, i.e., probability
must be conserved across the sample lineages at all times.

Combining the temporal pure death jump process and the subor-
dinated spatial pure death jump process yields a time-dependent pure
death jump process representation of the transition rates 𝜓(𝑥, 𝑡) of the
ackwards process:

(𝑥, 𝑡) =
𝐾
∑

𝑛=0
Pr(𝑛∣𝐾, 𝑡)

𝑛
∑

𝑖=0
𝑒𝑖,𝑛 Pr(𝑖∣𝑛, 𝑥) . (114)

If we rewrite this equation to make the exponential function visible,
e obtain the following:

(𝑥, 𝑡) =
𝐾
∑

𝑛=0
Pr(𝑛∣𝐾, 𝑡)

𝑛
∑

𝑖=0
𝑒𝑖,𝑛 Pr(𝑖∣𝑛, 𝑥)

=
𝐾
∑

𝑛=0

( 𝐾
∑

𝑗=𝑛
𝑓𝑛,𝑗𝑒

𝜆𝑗 𝑡
) 𝑛
∑

𝑖=0
ℎ𝑦𝑝𝑒𝑟(𝑖∣𝐾, 𝑛, 𝑘) 𝑔𝑖,𝑛𝑥𝑖(1 − 𝑥)𝑛−𝑖

(115)
where we use 𝑓𝑗,𝑛 and 𝑔𝑖,𝑛 as placeholders for the remaining coefficients.
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Fig. 8. This illustration elucidates the jump process determined by the probabilities 𝑒𝑖,𝑛 from Eq. (110). We assume that a sample of size 𝐾 = 5 is drawn at the extant time 𝑡 = 0.
The bottom row in the triangle shows the probabilities 𝑒𝑘,𝐾 for the number of focal alleles 𝑘 = (2, 3, 4), assuming that this configuration has evolved from the historical sample
configuration (𝑖 = 2, 𝑛 = 3) at the top of the triangle two jump steps previously. While this process runs backwards in time, the conditional probabilities are constructed forwards
in time and this is indicated by the direction of the arrows that represent the same transition probabilities as described by the Polya-type urn process in Eq. (111). Note that the
node at the tip of the triangle corresponds to a probability of 1.
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Recall that the expansion of the transition rates of the backwards
process into a sum of orthogonal polynomials yields uniquely:

𝜓(𝑥, 𝑡) =
𝐾
∑

𝑛=0
𝑒𝜆𝑛𝑡𝑑𝑛(𝑘,𝐾)𝑅(𝛽,𝜃)

𝑛 (𝑥)

Collecting the polynomials multiplied by each of the 𝑒𝜆𝑛𝑡 for 𝑛 = 0,… , 𝐾
in both the time-dependent jump process and the spectral sum, the
coefficients for every order of expansion 𝑛 can be equated between the
two representations as in the Appendix B.2.2).

We will not pursue this further here. Nevertheless, we hope to have
established that the jump process on the space of binomial distributions
and the spectral expansion on the space of orthogonal polynomials are
equivalent processes for evaluating the probability of sample genealo-
gies at each point in time. In other words, multiplication of either
representations of 𝜓(𝑥, 𝑡) with the probability measure 𝜙(𝑥, 𝑡) at any
time 𝑡 and integration over the population allele proportion will yield
the same result for the probability of the observed sample configu-
ration; i.e., these processes are both dual to the backwards diffusion
equation with respect to 𝜙(𝑥, 𝑡). Specifically, instead of determining the
probability of observing 𝑘 focal in a total of 𝐾 alleles in a sample drawn
at the extant time via the spectral expansion in the main text, we could
utilise the time-dependent jump process:

𝑝𝑘 = Pr(𝑘∣𝐾, 𝛽, 𝜃, 𝜌, 𝑡)

= ∫

1

0
𝜓(𝑥, 𝑡)𝜙(𝑥, 𝑡) 𝑑𝑥

= ∫

1

0

𝐾
∑

𝑛=0
Pr(𝑛∣𝐾, 𝑡)

𝑛
∑

𝑖=0
𝑒𝑖,𝑛 Pr(𝑖∣𝑛, 𝑥)𝜙(𝑥, 𝑡) 𝑑𝑥

=
𝐾
∑

𝑛=0
Pr(𝑛∣𝐾, 𝑡)

𝑛
∑

𝑖=0
𝑒𝑖,𝑛

𝑛
∑

𝑚=0
𝑑𝑚(𝑖, 𝑛) 𝜌(𝛽,𝜃)𝑚 𝛥(𝐺;𝛽,𝜃)𝑚 𝑒−𝜆𝑚(𝑡−𝑡𝑠) .

(116)

While this expression may be easier to interpret probabilistically in the
light of this past subsection than the equivalent calculation involving
the spectral sum, its evaluation clearly involves more intermediate
summation steps. Note however, that this is specifically true for non-
equilibrium scenarios since the final sum reduces to a single coefficient
in equilibrium.

Remark. Our embedded time-dependent jump process bears the most
similarity to Papaspiliopoulos and Ruggiero (2014, Section 3.3), where
the same general result is presented as the dual process for a reversible
multiallelic Wright–Fisher model; incidentally, our process corresponds
to the special case of theirs with only two alleles, and thus also to the
dual process derived by Chaleyat-Maurel and Genon-Catalot (2009).
Both of these articles concern filtering the Wright–Fisher model on
the basis of binomially distributed data, so that all tasks performed
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by a forward–backward algorithm involve finite mixture expansions as
in the above Eq. (116). However, whilst we arrive at the same time-
dependent pure death jump process as a dual process for the general
biallelic reversible diffusion model as Papaspiliopoulos and Ruggiero
(2014) with a superficially analogous method, we additionally elabo-
rate on the probabilistic interpretation of its component processes and
explicitly allow for non-equilibrium scenarios. We do so because the
partitioning into spatial and temporal components reflects the logic
of the orthogonal polynomial expansion. Note that the start of the
derivation of a coalescent dual process for the Wright–Fisher diffu-
sion requires a similar separation (Etheridge and Griffiths, 2009a).
However, these authors consider a model with selection and differ
methodologically in their approach in that they assume an infinite
entrance boundary rather than starting from an observed sample at a
specified time point.

Remark. In terms of determining the expected sample allele configura-
tion of a population evolving according to Moran and Wright–Fisher
diffusion models, a dual processes is generally found in Kingman’s
coalescent (Kingman, 1982) or a variant thereof (Tavare, 1984). As
pointed out in Papaspiliopoulos and Ruggiero (2014), the expression
∑𝐾
𝑖=𝑛

𝑒𝜆𝑖𝑡
∏𝐾
𝑗=𝑛,𝑗≠𝑖(𝜆𝑗−𝜆𝑖)

with 𝐾−1 ≥ 𝑛 ≥ 0, which occurs within our temporal
rocess, is precisely the transition probability of Kingman’s block-
ounting process with mutation. The duality to Kingman’s coalescent
s more explicitly shown in Tavare (1984, Eq. 7.25), who recovers an
ncestral process on the number of distinct ancestors in a population
mmediately from the diffusion equation (this is cited as Kingman’s own
iffusion time scale approximation to the original discrete time and
pace coalescent). Further, Griffiths and Spanò (2010) have shown that
he Wright–Fisher diffusion with transition rate densities expressed via
xpansion into Jacobi polynomials is dual to Kingman’s coalescent by
howing that these transition rate densities correspond to the mixture
istribution tracing the non-mutant lineages in the population arising
rom the coalescent (whereby the latter also appear in Etheridge and
riffiths (2009a)); note that these are population level considerations

nvolving infinite sums.

emark. Computational methods related to the ‘‘matrix coalescent’’
Wooding and Rogers, 2002) employ a spectral decomposition of the
ransition rate matrix of the ancestral processes of a sample (Tavare,
984, compare Section 5.1), i.e., the rate matrix describing the decrease
n distinct lineages looking back in time. For Kingman’s coalescent, this
ould be exactly the corresponding rate matrix to the transition prob-
bilities recovered within our time-homogeneous pure death process
see previous remark). Within this framework, time-inhomogeneous co-
lescent processes, which include non-constant demographic scenarios
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as well as multiple-merger coalescents, can be modelled by realising
that such inhomogeneity affects the observed site-frequency spectrum
only via the first coalescent time within each (historical) sample size
and explicitly incorporating the dynamics between it and the other
coalescent times into the system (Spence et al., 2016). Separating out
the impact of temporal changes in this way is similar in spirit to our
approach; it is simply the genealogy that is considered rather than allele
proportions.

C.3.2. Boundary mutation model
Because of the unique dynamics at the boundaries, substituting

the binomial likelihood representing the sampling scheme into the
appropriate backwards diffusion equation for the boundary mutation
model in order to derive an embedded dual process is not immediately
possible. However, the recursive system for the spatial process analo-
gous to Eq. (109) in the general mutation model can be directly given
as:

Pr(𝑖∣𝑛, 𝑥) = 𝑖
𝑛

𝑏𝑜𝑢𝑛𝑑𝑏𝑖𝑛(𝑖∣𝑛, 𝛽, 𝜃)
𝑏𝑜𝑢𝑛𝑑𝑏𝑖𝑛(𝑖 − 1∣𝑛 − 1, 𝛽, 𝜃)

Pr(𝑖 − 1∣𝑛 − 1, 𝑥)

+ 𝑛 − 𝑖
𝑛

𝑏𝑜𝑢𝑛𝑑𝑏𝑖𝑛(𝑖∣𝑛, 𝛽, 𝜃)
𝑏𝑜𝑢𝑛𝑑𝑏𝑖𝑛(𝑖∣𝑛 − 1, 𝛽, 𝜃)

Pr(𝑖∣𝑛 − 1, 𝑥) .
(117)

ecall that the factored out eigenvalues must be 𝜆0 = 0, 𝜆1 = 𝜃, and
𝑛 = 𝑛(𝑛 − 1) for 𝑛 ≥ 2 for the boundary mutation model. The above
ecursive relationship then describes a spatial process for the history of
he number of focal alleles in a sample (compare Eq. (108)); its result
s given by:

𝑖,𝑛 = ℎ𝑦𝑝𝑒𝑟(𝑖∣𝐾, 𝑛, 𝑘)
𝑏𝑜𝑢𝑛𝑑𝑏𝑖𝑛(𝑘∣𝐾, 𝛽, 𝜃)
𝑏𝑜𝑢𝑛𝑑𝑏𝑖𝑛(𝑖∣𝑛, 𝛽, 𝜃)

. (118)

Reversing time in this spatial process, a Polya-type urn model can
again be formulated to describe the system: The transition rates are
determined by a Bernoulli distributed indicator variable as in Eq. (111),
but with the following success probabilities:

𝑝 =
𝑏𝑜𝑢𝑛𝑑𝑏𝑖𝑛(𝑖 + 1∣𝑛 + 1, 𝛽, 𝜃)

𝑏𝑜𝑢𝑛𝑑𝑏𝑖𝑛(𝑖∣𝑛, 𝛽, 𝜃)
. (119)

For clarity, this urn process is visualised in Fig. 9.
Importantly, we must draw attention to the fact that this dual

embedded pure death jump process is actually not equivalent to the
process considered in the rest of this article. Instead, it is analogous to
the considerations made by Burden and Griffiths (2019a) in their proofs
of their results for the limits of low scaled mutation rates; however, to
our knowledge the spectral representation of their backwards process
for low scaled mutation rates is not known. Recall that the backwards
system considered in the rest of this article specifically contrasts the
monomorphic boundary region, consisting of the first two eigenfunc-
tions associated with eigenvalues 𝜆0 and 𝜆1 in the spectral expansion,
with the polymorphic interior. The interior eigenfunctions associated
with the eigenvalues 𝜆𝑛≥2 in the spectral expansion are assumed to
follow pure drift dynamics. Hence, the corresponding embedded dual
pure death process for Pr(𝑖∣𝑛, 𝑥) from any starting values of 𝑛 down to
𝑛 = 2 can be readily obtained from Eq. (107) by setting 𝜃 = 0 and
following the pattern in the general mutation model. In contrast, to
recover the dynamics of Pr(𝑖∣𝑛 = 1, 𝑥) in terms of this death process,
the system from Eq. (96) would need to be expressed as a function of
Pr(𝑖∣𝑛, 𝑥) for 𝑛 = 0 and 𝑛 = 1 (see Appendix B.2.3). A fuller treatment
of this approach, or also an in depth comparison of the two alternative
approaches, would over-extend the scope of our manuscript.

Remark. Note that while the general structure of the temporal pure
death process for the boundary mutation model is identical to that of
the general reversible biallelic mutation model, the transition proba-
bilities will differ slightly: Instead of the stationary distribution being
a Beta distribution, the stationary distribution of the boundary muta-
tion diffusion from Eq. (103) must be employed; thus, instead of the
Beta-binomially distributed terms in Eq. (109), boundary-binomially
distributed terms (see Eq. (5)) must be utilised as in Eq. (117). Note
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also that the eigenvalues must also be those of the boundary mutation
model.

Remark. The methodology formalised by Papaspiliopoulos and Ruggiero
(2014) for identifying a dual process for diffusion models that allows for
performing the calculations involved in a forward–backward algorithm
via finite sums appears to require diffusion models that are reversible
with respect to their stationary distribution. This is indeed the case
for the general biallelic reversible mutation model (compare Song and
Steinrücken (2012, p. 3) and Bergman et al. (2018b, Eq. 36)) where
the stationary distribution is Beta distributed (or Dirichlet distributed
when multiallelic models are considered, as in Papaspiliopoulos and
Ruggiero (2014)). However, they note that the methodology can be
extended to non-stationary diffusion processes that are reversible with
respect to a reversible measure (which is not necessarily a well-defined
distribution) as long their sampling distributions are well-defined (see
Discussion in Papaspiliopoulos and Ruggiero (2014)). While we were
not able to adapt their methodology to the boundary mutation diffusion
process without workarounds and additional reasoning, we would like
to note that it does fall into this latter category: The process is reversible
with respect to the stationary distribution with boundary singularities
from Eq. (103) (see Section 4.2 in Papaspiliopoulos and Ruggiero,
2014), and we have shown that, for 𝐾 small enough, the sampling
distribution is well-defined in the sense that it is a regular density
both in equilibrium (Appendix B.2.4) and non-equilibrium (as in this
section).

Appendix D. Miscellaneous additional results for the demographic
models

D.1. Population explosion

Note that if 𝜃∗1 ≪ 𝜃∗2 , the expression in the exponent of the solution
o Eq. (33) tends to zero. A first order Taylor expansion around it yields
or 𝑡1 < 𝑡 ≤ 0:

𝑛(𝑡)𝛯−1
𝑛 ≈ 𝜃∗2 +

(

𝜃∗1 − 𝜃
∗
2
)

(

1 − 𝜆𝑛
𝜃∗1
𝜃∗2
𝑡
)

= 𝜃∗1 +
𝜃∗2 − 𝜃

∗
1

𝜃2
𝜃∗1𝜆𝑛𝑡

≈ 𝜃∗1 (1 + 𝜆𝑛𝑡) .

(120)

D.2. D-statistic

Neutrality tests based on the infinite sites model are pervasive in
population genetics. Formulated for site frequency data, they take the
general form (Korneliussen et al., 2013):

𝐷 =
�̂�𝑊 − �̂�𝑍

√

Var(�̂�𝑊 − �̂�𝑍 )
,

where �̂�𝑊 and �̂�𝑍 are unbiased estimators for the overall scaled muta-
tion rate that differ in their weighting of polymorphic sites assuming
neutral equilibrium. In the case of Tajima’s D (Tajima, 1989), �̂�𝑊 is

atterson’s (or Ewens’ and Watterson’s) estimator (Ewens, 1972, 1974;
atterson, 1975), which counts the expected number of segregating

ites, and �̂�𝑍 is a statistic that counts the number of pairwise differences
between ancestral and derived nucleotides (Tajima, 1983). The vari-
ance in the denominator of the statistic 𝐷 is conventionally calculated
assuming complete linkage between sites, i.e., sites are not independent.
Note that �̂�𝑍 weights intermediate frequency alleles higher than �̂�𝑊 .

herefore recent positive selection or population expansion, which
ncrease the frequency of rare alleles, lead to values 𝐷 < 0; balanc-
ng selection and population collapse elevate the relative numbers of
ntermediate allele frequencies and therefore lead to values 𝐷 > 0.
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Fig. 9. This is a schematic for the Polya-type urn scheme that is reminiscent of Pascal’s triangle. Specifically, we trace the history of a sample allele configuration from an ancestral
tate to the observed configuration (i.e., forwards in time) under the assumption of an underlying boundary mutation model. The entry at the tip of the triangle represents the
rivial sample (𝑖 = 0, 𝑛 = 0) (which has a probability of 1), and as we move down the triangle we proceed forwards in time in the urn process. The edges of the arrows in this

scheme denote the transition probabilities from Eq. (119). The entries in the 𝑛th row from the top correspond to the increasing values of the historic sample size 𝑛, while the
ows represent the possible values 𝑖 of the focal allele within each row, i.e., a historic sample. Note that the expressions at each node are the stationary beta-binomial sampling
istributions from Eq. (5) for the appropriate sample configuration. For the visualisation scheme to work, we defined the trivial harmonic number 𝐻0 = 0 (so that the recurrence

relation 𝐻𝑛+1 = 𝐻𝑛 +
1
𝑛+1

still holds).
m
t
𝑗
c

Here, we reformulate Tajima’s D for the context of the biallelic
boundary mutation Moran model: Let us assume a sample site fre-
quency spectrum of size 𝐾 comprised of 𝐿 loci, and recall that 𝑦𝑘
enoted the realised count of focal alleles. We further assume recombi-
ation rates high enough for linkage to be negligible and sites therefore
ndependent, which we in fact do implicitly throughout this article.
or low overall scaled mutation rates the distribution of the counts of
ocal alleles 𝑦𝑘 of the polymorphic spectrum (𝑘 ∈ {1,… , 𝐾 −1}) can be

approximated by a Poisson distribution with :

𝑦𝑘
𝑖𝑖𝑑∼ 𝑃𝑜𝑖𝑠

(

𝐿�̄�𝑘

)

.

n this case, the stationary distribution �̄�𝑘 = 𝛼𝛽𝜃 𝐾
𝑘(𝐾−𝑘) is given by the

boundary binomial distribution from Eq. (5). Then,

�̂�𝑊 =
∑𝐾
𝑘=1 𝑦𝑘

2𝐿
∑𝐾−1
𝑘=1

1
𝑘

s the minimum variance, unbiased maximum likelihood estimator for
he bias-complemented overall scaled mutation rate 𝜃∗ = 𝛼𝛽𝜃 (Vogl
t al., 2020). Since we do not distinguish between ancestral and derived
lleles, the average pairwise distance between alleles of a sample can
lso be used as an estimator of the same parameter:

̂𝑍 =
∑𝐾
𝑘=1 𝑦𝑘 𝑘(𝐾 − 𝑘)
𝐿𝐾(𝐾 − 1)

.

ubstituting the estimator �̂�𝑊 for the parameter 𝜃∗, the estimator for
he variance of the difference between the two estimators, recalling that
ean and variance of the Poisson distribution are equal, is:

âr(�̂�𝑊 − �̂�𝑍 ) =
𝐾−1
∑

𝑘=1
E
( 𝑦𝑘
𝐿

)

(

𝑘(𝐾 − 𝑘)
𝐾(𝐾 − 1)

− 1
2
∑𝐾−1
𝑘=1

1
𝑘

)2

= �̂�𝑊
𝐾−1
∑

𝑘=1

𝐾
𝑘(𝐾 − 𝑘)

(

𝑘(𝐾 − 𝑘)
𝐾(𝐾 − 1)

− 1
2
∑𝐾−1
𝑘=1

1
𝑘

)2
.
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D.3. Tabulated comparisons of analytical and simulated results for models 3
and 4

See Tables 5–7.

Table 5
A population is assumed evolve forwards in time according to the autoregression model
from Eq. (45), with the overall bias-complemented scaled mutation rate 𝜃∗𝑗 randomly

fluctuating across epochs according to 𝜃∗𝑗
𝑖𝑖𝑑∼ 𝐼𝐺(𝑎 = 6, 𝑏 = 0.01 ⋅ (𝑎 − 1)). The arithmetic

ean of 𝜃∗𝑗 is then 0.01 and the harmonic mean 0.008333. After 𝐽 = 106 epochs,
he mean, variance, covariance, and correlations for the temporal coefficients 𝜗𝑗,𝑛 for

between 1 and 𝐽 and select 𝑛 are evaluated and compared with their theoretical
ounterparts (rounded to 6 post-decimal digits).
Additional Example 1 Mean Variance Covariance Correlation

Model 3

𝑐 = 10−4

𝑛 = 2 - Theoretical 0.008350 0 0 0.976332
Simulated 0.008351 0 0 0.976349

𝑛 = 12 - Theoretical 0.009142 0.000008 0.000002 0.245198
Simulated 0.009142 0.000008 0.000002 0.245154

𝑐 = 10−2

𝑛 = 2 - Theoretical 0.009387 0.000012 0.000002 0.132810
Simulated 0.009387 0.000012 0.000002 0.133339

𝑛 = 12 - Theoretical 0.01 0.000025 0 0
Simulated 0.009999 0.000025 0 −0.000345

𝑐 = 1

𝑛 = 2 - Theoretical 0.01 0.000025 0 0
Simulated 0.009998 0.000025 0 −0.000095

𝑛 = 12 - Theoretical 0.01 0.000025 0 0
Simulated 0.009998 0.000025 0 0.000071

Model 4

𝑐 = 1

𝑛 = 2 - Theoretical 0.01 0.000150 0 0
Simulated 0.01 0.000150 0 −0.000205

𝑛 = 12 - Theoretical 0.01 0.000150 0 0
Simulated 0.009996 0.000150 0 −0.000332
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Table 6
A population is assumed to be evolving forwards in time according to the autoregression
model from Eq. (45), with the overall bias-complemented scaled mutation rate 𝜃∗𝑗
andomly fluctuating across epochs according to 𝜃∗𝑗

𝑖𝑖𝑑∼ 𝐼𝐺(𝑎 = 3, 𝑏 = 0.01 ⋅ (𝑎 − 1)).
he arithmetic mean of 𝜃∗𝑗 is then 0.01 and the harmonic mean 0.006667. After
= 106 epochs, the mean, variance, covariance, and correlations for the temporal

oefficients 𝜗𝑗,𝑛 for 𝑗 between 1 and 𝐽 and select 𝑛 are evaluated and compared with
heir theoretical counterparts (rounded to 6 post-decimal digits).
Additional Example 2 Mean Variance Covariance Correlation

Model 3

𝑐 = 10−4

𝑛 = 2 - Theoretical 0.006700 0 0 0.970590
Simulated 0.006700 0 0 0.970490

𝑛 = 12 - Theoretical 0.008153 0.000015 0.000003 0.218613
Simulated 0.008153 0.000014 0.000003 0.218262

𝑐 = 10−2

𝑛 = 2 - Theoretical 0.008571 0.000020 0.000003 0.125
Simulated 0.008571 0.000020 0.000003 0.124526

𝑛 = 12 - Theoretical 0.009998 0.000096 0 0.000003
Simulated 0.009998 0.000096 0 −0.000071

𝑐 = 1

𝑛 = 2 - Theoretical 0.009999 0.000097 0 0.000001
Simulated 0.009999 0.000097 0 −0.000172

𝑛 = 12 - Theoretical 0.01 0.0001 0 0
Simulated 0.01 0.0001 0 0.000629

Model 4

𝑐 = 1

𝑛 = 2 - Theoretical 0.009999 0.000294 0 0.000001
Simulated 0.009995 0.000288 0 0.000387

𝑛 = 12 - Theoretical 0.01 0.0003 0 0
Simulated 0.009998 0.000299 0 0.000074

Table 7
A population is assumed to be evolving forwards in time according to the autoregression
model from Eq. (45), with the overall bias-complemented scaled mutation rate 𝜃∗𝑗
andomly fluctuating across epochs according to 𝜃∗𝑗

𝑖𝑖𝑑∼ 𝐼𝐺(𝑎 = 6, 𝑏 = 0.005 ⋅ (𝑎 − 1)).
he arithmetic mean of 𝜃∗𝑗 is then 0.005 and the harmonic mean 0.004167. After
= 106 epochs, the mean, variance, covariance, and correlations for the temporal

oefficients 𝜗𝑗,𝑛 for 𝑗 between 1 and 𝐽 and select 𝑛 are evaluated and compared with
heir theoretical counterparts (rounded to 6 post-decimal digits).
Additional Example 3 Mean Variance Covariance Correlation

Model 3

𝑐 = 10−4

𝑛 = 2 - Theoretical 0.004183 0 0 0.953316
Simulated 0.004184 0 0 0.953433

𝑛 = 12 - Theoretical 0.004775 0.000004 0 0.078571
Simulated 0.004774 0.000004 0 0.077895

𝑐 = 10−2

𝑛 = 2 - Theoretical 0.004879 0.000004 0 0.029401
Simulated 0.004880 0.000004 0 0.029057

𝑛 = 12 - Theoretical 0.0050 0.000006 0 0
Simulated 0.004999 0.000006 0 0.000088

𝑐 = 1

𝑛 = 2 - Theoretical 0.005 0.000006 0 0
Simulated 0.005001 0.000006 0 0.000084

𝑛 = 12 - Theoretical 0.005 0.000006 0 0
Simulated 0.005001 0.000006 0 0.0000273

Model 4

𝑐 = 1

𝑛 = 2 - Theoretical 0.005 0.000038 0 0
Simulated 0.004999 0.0000375 0 0.000510

𝑛 = 12 - Theoretical 0.005 0.000038 0 0
Simulated 0.005 0.000037 0 −0.000396
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