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Abstract
Aim: Some	species	thrive	in	human-	dominated	environments,	while	others	are	highly	
sensitive	to	all	human	pressures.	However,	standardized	estimates	of	species'	toler-
ances	to	human	pressures	are	lacking	at	large	spatial	extents	and	taxonomic	breadth.	
Here,	we	quantify	the	world's	bird	species'	tolerances	to	human	pressures.	The	associ-
ated	precision	values	can	be	applied	to	scientific	research	and	conservation.
Location: Global.
Time Period: 2013–2021.
Major Taxa Studied: 6094	bird	species.
Methods: We	used	binary	observation	data	from	eBird	and	modelled	species'	occur-
rences	as	a	function	of	the	Human	Footprint	Index	(HFI).	With	these	models,	we	pre-
dicted	how	likely	each	species	was	to	occur	under	different	levels	of	human	pressures.	
Then,	we	calculated	each	species'	Human	Tolerance	Index	(HTI)	as	the	level	of	the	HFI	
where	predicted	occurrence	probability	was	reduced	to	50%	of	the	maximum	species'	
occurrence	probability.	We	used	resampling	to	obtain	estimates	of	uncertainty	of	the	
Human	Tolerance	Indices.	We	also	compared	tolerances	across	species	with	increas-
ing,	stable,	and	decreasing	population	trends.
Results: We	found	that	22%	of	the	bird	species	tolerated	the	most	modified	human-	
dominated	environments,	whereas	0.001%	of	species	only	occurred	in	the	intact	en-
vironments.	We	 also	 found	 that	HTI	 varied	 according	 to	 species'	 population	 trend	
categories,	whereby	species	with	decreasing	population	trends	had	a	lower	tolerance	
than species with increasing or stable population trends.
Main Conclusions: The	estimated	HTI	indicates	the	potential	of	species	to	exist	in	a	
landscape	of	intensifying	human	pressures.	It	can	identify	species	unable	to	tolerate	
these	environments	and	inform	subsequent	conservation	efforts.	We	found	evidence	
that	species'	sensitivity	to	human-	dominated	environments	may	be	driving	birds'	use	
of	space.	Bird	species'	tolerances	are	also	linked	to	their	population	trends,	making	the	
tolerances a relevant addition to conservation planning.
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1  |  INTRODUC TION

Most	of	the	terrestrial	world	has	been	modified	by	human	actions,	
either	 through	 urbanization	 or	 through	 air	 pollution	 and	 climate	
change,	 which	 can	 have	 impacts	 on	 animal	 and	 plant	 populations	
far	 from	 human-	occupied	 areas	 (Sanderson	 et	 al.,	 2002;	 Venter	
et	al.,	2016).	All	these	changes	can	lead	to	myriad	effects	on	ecologi-
cal	communities.	Habitat	loss	and	fragmentation	are	a	common	result	
of	intense	land	use	in	forms	of	built	infrastructure	(e.g.	urban	areas	
and	roads)	and	agriculture	(e.g.	crop	areas);	they	influence	population	
dynamics,	dispersal,	and	ecological	interactions,	and	thereby	the	oc-
currences	and	abundances	of	wildlife	across	space	and	time	(Barlow	
et	al.,	2016;	Cazalis	et	al.,	2020;	Fahrig,	2017;	Gibson	et	al.,	2011; 
Haddad	 et	 al.,	 2015;	 Horváth	 et	 al.,	 2019;	McKinney,	 2006).	 The	
Human	 Footprint	 Index	 (HFI)	 summarizes	 the	 various	 facets	 of	
human	 pressures	 by	 accounting	 simultaneously	 for	 built	 environ-
ments,	 human	 population	 density,	 night-	time	 lights,	 crop	 lands,	
pasture	 lands,	 and	 accessibility	 via	 roads,	 railways,	 and	 navigable	
waterways	(Sanderson	et	al.,	2002;	Venter	et	al.,	2016).	As	human	
pressures	are	globally	widespread,	most	species	necessarily	occur	in	
impacted	habitats.	Some	species	even	thrive	in	urban	environments	
and	depend	on	humans	for	resources,	such	as	food	or	nesting	sites	
(McKinney,	2006;	Spotswood	et	al.,	2021).	Some	species	have	high	
plasticity to survive both with and without intense human pres-
sures	 (Ducatez	 et	 al.,	2018;	McKinney,	2006),	whereas	others	 are	
highly	sensitive	to	even	 low	 levels	of	human	pressure	 (Şekercioğlu	
et	 al.,	 2019),	 particularly	 during	 their	 breeding	 season.	 Sensitivity	
and	tolerance	of	species	to	human	pressures	have	been	estimated	
for	single	and	small	groups	of	species	(de	Jonge	et	al.,	2022; Gnass 
Giese	et	al.,	2015;	Guetté	et	al.,	2017;	Silva	et	al.,	2016)	but	rarely	
with	a	global	scope	and	for	an	entire,	species-	rich	taxonomic	group	
(but	see,	Cazalis	et	al.,	2021;	Neate-	Clegg	et	al.,	2023).	To	effectively	
conserve	 species,	 there	 is	 an	 urgent	 need	 to	 design	 conservation	
measures	that	are	suitable	for	different	species.

Currently,	 13.5%	of	 10,994	 recognized	 extant	 bird	 species	 are	
threatened	with	global	extinction	(Lees	et	al.,	2022),	which	calls	for	
effective	tools	for	their	conservation	in	the	Anthropocene.	A	mea-
sure	of	 species'	maximum	 tolerance	 to	 human	pressures	 can	 indi-
cate	 the	potential	 for	species	 to	exist	 in	 landscapes	with	different	
pressures	 and	 thereby	 inform	 conservation	 efforts.	 For	 the	 first	
time,	we	provide	indices	of	species'	tolerances	to	human	pressures	
(Human	Tolerance	 Index;	HTI),	with	 uncertainty	 estimates	 for	 the	
majority	of	bird	 species	 in	each	continent.	Thus,	we	contribute	 to	
the	 increasingly	 available	 functional	 trait	 data	of	 species.	We	also	
provide	a	means	for	use	of	regional	species-	specific	tolerances	while	
accounting	for	the	spatial	variation	and	the	uncertainty	in	tolerance	
indices.	As	opposed	 to	many	earlier	 studies	 (Ducatez	et	 al.,	2018; 
Guetté	et	al.,	2017;	McKinney,	2006),	our	HTI	goes	beyond	the	syn-
anthropy	of	species	that	describes	species'	sensitivity	to	urban	set-
tlements	 (Guetté	et	 al.,	 2017).	Although	 synanthropy	 can	 account	
for	a	species'	ability	to	tolerate	intense	anthropogenic	disturbances,	
a	consistent	 index	 is	 lacking,	and	urban	conditions	are	only	one	of	
the	 facets	 of	 human	 pressures	 on	 wildlife.	 Other	 facets,	 such	 as	

intensive	agriculture,	need	to	be	included	in	a	summary	measure	of	
human	 pressure	 tolerance	 of	wildlife	 species.	With	 a	 global	 index	
of	human	pressure	 tolerance	of	bird	 species,	 it	will	 be	possible	 to	
evaluate	 how	 the	 composition	 of	 tolerant	 and	 sensitive	 species	 is	
changing in ecological communities over time and how this change 
varies spatially in regions with intense human pressures.

Here,	we	quantify	 the	HTI	of	bird	 species	 to	human	pressures	
with	 bird	 observation	 data	 from	 eBird	 complete	 lists	 collected	
from	2013	to	2021	 (Sullivan	et	al.,	2009)	and	HFI	data	 from	2013	
(Williams	et	al.,	2020).	In	addition,	we	report	variation	in	HTIs	across	
continents	 and	 species.	We	 hypothesized	 that	 there	 is	 high	 inter-
specific	variation	in	the	index.	However,	we	expected	that	most	ex-
tant	 species	 tolerate	 human	 pressures	 to	 some	 extent	 due	 to	 the	
pervasive	nature	of	human	influence	globally.	We	also	hypothesized	
that Europe has on average more species that are highly tolerant to 
human	pressures	than	Africa	and	Latin	America	because	of	Europe's	
longer	history	of	intense	land	use	and	human	disturbance.	We	tested	
the	 potential	 link	 between	 HTI	 and	 population	 trends	 of	 species	
globally.	We	hypothesized	that	species	with	higher	human	tolerance	
are	more	likely	to	have	positive	population	trends	because	they	may	
benefit	from	the	intensified	land	use,	including	urbanization,	that	has	
occurred in recent decades.

2  |  METHODS

2.1  |  Bird data

To	 link	 bird	 species'	 occurrences	 to	 human	 pressures	 across	 the	
world,	we	used	data	from	eBird	(Sullivan	et	al.,	2009),	an	online	com-
munity	science	platform	containing	over	a	billion	bird	observations	
globally	(Appendix	S1,	Figure S1).	We	used	eBird	data	as	the	source	
because	it	is	the	largest	bird	database,	both	spatially	and	taxonomi-
cally.	In	addition,	many	human	pressures,	such	as	urban	areas,	roads,	
and	night	lights,	are	only	distinguishable	at	a	fine	spatial	resolution,	
and	eBird	data	allowed	us	to	spatially	link	bird	observations	to	these	
fine-	resolution	environmental	characteristics.

We	used	the	eBird	data	released	in	2022	(for	continent-	specific	
release	months,	see	Appendix	S1,	Table S1)	and	used	R	package	‘auk’	
(Strimas-	Mackey	et	al.,	2018)	to	filter	the	data	following	guidelines	
provided	by	the	eBird	team	(Johnston	et	al.,	2021;	Strimas-	Mackey	
et	 al.,	2020;	 Sullivan	 et	 al.,	 2009).	 The	 process	was	 similar	 to	 the	
data	 filtering	process	described	by	Cazalis	et	al.	 (2020,	2021).	We	
only	 considered	 recent	 observations	 (01.01.2013–31.12.2021)	 to	
minimize	the	effect	of	possible	temporal	trends	in	the	human	pres-
sure	 tolerances	of	bird	 species.	To	 reduce	 the	computational	 time	
for	the	large	North	American	dataset,	we	selected	only	observations	
from	odd	 years	 during	 the	 study	 period	 (2013,	 2015,	 2017,	 2019,	
and	2021).	We	also	only	considered	checklists	compiled	during	sta-
tionary counts or transects (distance travelled <8 km	and	duration	
between	0.5	and	10 h)	and	complete	checklists	 (for	which	observ-
ers	had	reported	all	species	identified).	Moreover,	we	included	only	
the	checklists	from	within	each	bird	species'	resident	and	breeding	
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ranges	(BirdLife	distribution	maps;	BirdLife	International,	2022).	To	
link	 the	 taxonomies	 of	 eBird	 and	BirdLife,	we	used	 the	 taxonomy	
crosswalk	from	AVONET	(Tobias	et	al.,	2022).	In	addition,	similar	to	
Santini	et	al.	(2023),	we	excluded	observations	outside	the	principal	
breeding	 season	months	 for	 coarse	 latitudinal	 bands	within	 conti-
nents	(Appendix	S1,	Table S2)	because	breeding	and	resident	ranges	
also	include	habitats	used	by	birds	at	other	times	of	the	year,	such	
as	during	migration	(La	Sorte	et	al.,	2022;	Zuckerberg	et	al.,	2016).	
Breeding-	related	demographic	parameters	are	also	often	the	most	
important	determinants	of	species'	population	dynamics,	especially	
for	smaller,	short-	lived	species,	underscoring	the	relevance	of	study-
ing	pressures	during	the	breeding	season	(Morrison	et	al.,	2021).	We	
determined the latitudinal bands that encompassed all bird species 
within	them	similarly	to	Santini	et	al.	 (2023)	but	increased	the	res-
olution	by	using	continent-	specific	latitudinal	bands.	In	addition,	we	
considered	 the	 breeding	 season	 to	 last	 year-	round	 in	 the	 tropics	
to	encompass	most	bird	 species	 that	breed	at	different	 times	and	
generally	do	not	migrate.	Use	of	latitudinal	band-	specific	definitions	
of	 the	 breeding	 season	 is	 clearly	 a	 simplification,	 but	 the	method	
provides	an	estimate	of	human	pressure	conditions	at	 the	 time	of	
reproduction	for	the	vast	majority	of	species	 (Santini	et	al.,	2023).	
Next,	we	 filtered	 the	 eBird	 data	 to	 reduce	 spatial	 bias	 by	 balanc-
ing	 the	number	of	 checklists	across	3 × 3 km	grid	cells	within	each	
continent.	We	did	this	by	using	R	package	‘ebirdst’	(Strimas-	Mackey	
et	al.,	2021)	to	randomly	select	one	checklist	per	week	per	grid	cell	
across	years.	This	allowed	us	to	obtain	a	more	uniform	distribution	
of	observations	across	space	and	to	avoid	strong	bias	towards	easily	
accessible	 locations	 that	usually	attract	more	people	 to	make	bird	
observations	 and	 that	 are	 often	 highly	 human-	modified.	We	used	
this	same	sample	of	checklists	for	the	analyses	of	all	species	in	the	
following	steps.

We	 excluded	 oceanic	 species	 as	 defined	 by	 IUCN	 Red	 List	
(IUCN,	2022)	from	our	study	due	to	their	incomplete	and	potentially	
biased	overlap	with	the	terrestrial	HFI	data.	We	included	non-	native	
species	 in	 our	 study.	 We	 calculated	 the	 HTI	 separately	 for	 each	
species	within	each	continent	(see	Section	2.3)	and	did	not	include	
whether the species is native as an additional variable in the analy-
ses.	Our	study	design	could	reflect	that	species	may	have	different	
tolerances	 to	 human	 pressures	within	 their	 native	 and	 non-	native	
ranges.	Understanding	the	tolerances	of	non-	native	species	in	their	
native	and	non-	native	ranges	can	be	particularly	useful	for	studies	in	
invasion biology.

We	transformed	both	 the	 counts	 and	detections	on	 checklists	
into	binary	occurrences,	which	reduced	the	potential	bias	related	to	
the	detection	of	large	numbers	of	individuals	during	migration	and	
allowed	inclusion	of	eBird	observations	that	do	not	specify	the	num-
ber	of	observed	individuals,	thus	increasing	the	taxonomic	coverage	
of	our	study.	The	data	for	our	main	analyses	consisted	of	84,763,985	
binary	 species	 observations,	 structured	 into	 4,429,380	 checklists.	
We	 inferred	non-	detections	of	 species	by	 their	omission	 from	 the	
complete	 checklists.	 However,	 we	 only	 included	 a	 checklist	 (with	
detection	or	non-	detection)	in	a	species'	analysis	if	it	was	collected	
within its breeding and resident ranges and within the breeding 

period.	 We	 then	 used	 all	 selected	 checklists	 within	 the	 species'	
breeding and resident ranges.

To	link	HTI	to	species'	population	trends	and	threat	category,	we	
obtained	data	on	bird	species'	population	trends	and	Red	List	cate-
gories	from	IUCN	Red	List	(www. iucn. org,	downloaded	27.04.2023).	
Because	 global	 data	 on	 quantitative	 and	 continuous	 population	
trends	of	all	bird	species	are	not	available,	we	followed	the	example	
set	by	Ceballos	et	al.	(2017)	and	Finn	et	al.	(2023)	and	used	the	cat-
egorical	population	trend	measures	of	the	IUCN	Red	List	(i.e.	declin-
ing,	stable,	or	increasing).

2.2  |  Human pressure data

We	used	the	HFI	from	the	year	2013	at	a	resolution	of	~1 km	as	a	meas-
ure	of	human	pressure	influence	on	wildlife	(Williams	et	al.,	2020).	
This	 index	 is	updated	and	more	complete	compared	 to	 the	1993–
2009	version	by	Venter	et	al.	(2016).	The	HFI	has	been	used	to	ana-
lyse	species'	responses	to	human	pressures	(Barnagaud	et	al.,	2019; 
Cazalis	et	al.,	2020;	Di	Marco	et	al.,	2018).	The	HFI	 includes	eight	
variables	(built	environments,	human	population	density,	night-	time	
lights,	crop	lands,	pasture	lands,	and	accessibility	via	roads,	railways,	
and	navigable	waterways),	and	it	ranges	from	0	(perfect	intactness)	
to	50	(extremely	high	human	pressure;	Venter	et	al.,	2016; Williams 
et	al.,	2020).	Values	between	0	and	1	are	considered	to	represent	
areas	 free	 of	mapped	 anthropogenic	 disturbance,	 values	 between	
1	and	4	are	considered	to	represent	areas	relatively	free	of	anthro-
pogenic	disturbance,	and	values	between	4	and	50	are	considered	
to represent areas highly impacted by mapped anthropogenic dis-
turbance	 (Williams	et	al.,	2020).	We	assigned	each	eBird	checklist	
a	value	of	the	HFI.	To	do	so,	we	set	a	1.5 km	radius	buffer	around	
each	eBird	checklist	and	used	the	function	‘extract’	from	R	package	
‘raster’	(Hijmans,	2023)	to	calculate	the	mean	HFI	within	the	buffer.	
We	used	the	1.5 km	radius	because	such	a	buffer	includes	most	of	
the bird observations in travelling counts <8 km	 and	 because	 the	
eBird	team	uses	such	a	buffer	in	their	Status	and	Trends	work,	allow-
ing	meaningful	comparisons	between	this	and	earlier	studies	 (Fink	
et	al.,	2022).	There	is	good	agreement	and	strong	correlations	among	
the	different	published	Human	Footprint	Indices,	which	makes	the	
selected	measure	highly	suitable	for	our	study	(Kennedy	et	al.,	2019; 
Mu	et	al.,	2022).	The	HFI	values	across	checklists	covered	the	full	ex-
tent	of	possible	values,	but	the	distribution	was	not	uniform	across	
or	within	continents	(Appendix	S2,	Figure S1).

2.3  |  Hierarchical organization of data

Human	pressures	are	context-	dependent	and	may	vary	due	to	fac-
tors	 related	 to	 administrative	 boundaries.	 For	 example,	 the	 influ-
ence	of	a	road	on	species	is	likely	different	in	different	parts	of	the	
world	because	the	road	type	and	traffic	intensity	can	differ	greatly.	
Therefore,	we	 considered	 the	measure	 of	 human	 pressures	 (here,	
the	HFI)	within	 geographically	 consistent	 areas	 of	 continents	 and	

 14668238, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/geb.13816 by T

est, W
iley O

nline L
ibrary on [23/02/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://www.iucn.org/


MARJAKANGAS et al.4 of 13  |   

quantified	the	HTIs	of	all	birds	that	were	observed	within	the	focal	
continent during their breeding season and within their breeding or 
resident range. That means that some bird species occurring on mul-
tiple	continents	were	assigned	multiple	HTIs,	one	for	each	continent	
in	which	they	occurred.	We	considered	six	continents	(Africa,	Asia,	
Europe,	 Latin	 America,	 North	 America,	 and	Oceania)	 when	 quan-
tifying	HTIs	 (for	 lists	 of	 countries	 included	 in	 each	 continent,	 see	
Appendix	S4).	Calculating	tolerance	for	each	species	in	each	conti-
nent	where	the	species	occurs	allows	comparisons	of	 intraspecific	
variation	 in	 human	 pressure	 tolerance	 across	 continents	 and	 link-
ing	 such	variation	 to	 functional	 traits	or	other	properties,	 such	as	
whether	 species	 are	 native.	 Moreover,	 it	 enables	 high-	resolution	
studies within continents.

2.4  |  Calculating species- specific human 
tolerance indices

To	estimate	HTI,	we	conducted	separate	analyses	for	each	species	
in	 each	 continent.	 In	 preparation,	 we	 performed	 several	 further	
data	manipulation	steps	to	aid	statistical	inference	and	estimate	the	
uncertainty. We repeated the modelling and predictions 50 times 
for	each	species	within	each	continent	to	estimate	uncertainty.	For	
each	model,	we	randomly	sampled	75%	of	the	checklists	within	the	
species'	breeding	and	 resident	 range	after	 the	spatial	 subsampling	
described	above.	Then,	we	divided	eBird	checklists	into	categories	
based	on	their	HFI	values	and	sampled	each	category	according	to	
assigned	target	numbers	of	detections	and	non-	detections	to	both	
maintain	the	relationship	with	the	HFI	and	balance	classes	across	the	
range	of	the	HFI	(for	details,	see	Appendix	S1,	Section	S1).

In	each	of	the	50	resampling	replicates,	we	quantified	three	mea-
sures	of	the	HTI	of	each	bird	species	 in	each	continent	 (Peak	HTI,	
Conservative	HTI,	and	Maximum	HTI)	on	the	basis	of	species'	occur-
rences	across	the	range	of	HFI	values	(Figure 1).	To	do	this,	we	mod-
elled	and	predicted	species'	occurrences	as	a	function	of	the	HFI	in	
each continent. We did this because a species may not be observed 
throughout the human pressure gradient due to either their actual 
human pressure tolerance or bias in observations towards certain 
parts	 of	 the	 HFI	 gradient.	 We	 used	 generalized	 additive	 models	
(GAMs)	to	model	the	relationship	between	the	HFI	and	occurrence	
of	each	species	on	checklists.	These	models	allow	non-	parametric	
relationships	and	thus	high	flexibility	in	the	occurrence	probability—
HFI	relationships	compared	to	linear	relationships.	However,	we	also	
wanted	to	remove	the	possibility	of	unrealistically	complex	relation-
ships,	so	we	used	R	package	‘scam’	(Pya,	2021;	R	Core	Team,	2022)	
to constrain the possible relationship shapes to be unimodal with 
monotonic	increase	and	decrease	on	each	side	of	a	peak	(bs = ‘cv’).	
We	used	the	shape-	constrained	GAMs	to	allow	non-	linear	relation-
ships	between	species'	occurrences	and	the	HFI	because	most	spe-
cies	are	assumed	to	have	a	trait	optimum,	or	an	optimal	HFI	value,	
rather than a simple positive or negative linear relationship with the 
HFI.	We	considered	the	binary	occurrence	on	a	checklist	as	the	re-
sponse variable.

We	included	as	the	main	predictor	in	the	models	the	HFI	within	
the	1.5 km	radius	buffer	of	each	checklist	with	maximum	smooth-
ing	degrees	of	freedom	set	to	k = 9.	We	also	included	the	following	
variables	as	predictors	in	the	models:	latitude,	longitude,	survey	pro-
tocol	 (stationary,	travelling),	survey	duration	(min),	survey	distance	
travelled	 (km),	 continuous	 survey	 year,	 and	 number	 of	 observers.	
We	did	not	include	these	variables	as	splines	due	to	model	run-	time	
limitations.	In	addition,	we	included	the	time	of	the	day	of	the	sur-
vey	as	a	cyclic	spline	(bs = ‘cc’)	with	maximum	smoothing	degrees	of	
freedom	set	to	k = 9.	These	additional	predictor	variables	allowed	us	
to	account	for	the	observation	process	in	the	model	fitting,	mitigat-
ing	the	effects	of	heterogeneous	detectability.	We	used	a	binomial	
error	distribution	for	the	binary	occurrence	data	response.	After	the	
model	fitting,	we	excluded	species	that	had	>10 missing resampling 
replicates	to	ensure	reliable	HTI	estimation.	Species	may	lack	resam-
pling	replicates	due	to	failed	model	convergence	or	detections	that	
are	not	well	distributed	throughout	the	HFI	continuum.	This	process	
yielded	6094	of	the	roughly	11,000	bird	species	across	continents	
and	7317	species-	continent	 combinations.	 In	 the	 results,	we	aver-
aged values within species across continents when the species oc-
curred on multiple continents.

On	the	basis	of	the	model	fit,	we	predicted	how	likely	each	spe-
cies	was	to	occur	across	the	full	gradient	of	the	HFI.	We	did	this	by	
setting	the	other	predictor	variables	as	fixed	(for	exact	values,	see	
Appendix	S1,	Section	S1)	and	using	the	GAM	model	fit	to	predict	
occurrences	across	the	full	range	(0–50)	of	HFI	values.	From	these	
predictions,	 we	 obtained	 the	 predicted	 occurrence	 probabilities	
across	 the	 range	of	HFI	 values	 and	calculated	 the	 following	val-
ues	 for	each	species	within	each	continent:	 (1)	Peak	Occurrence	
Human	Tolerance	Index	(Peak	HTI),	the	level	of	the	HFI	with	max-
imum	occurrence	probability;	 (2)	Conservative	Human	Tolerance	
Index	(Conservative	HTI),	the	level	of	the	HFI	above	the	majority	
tolerance	where	 predicted	 occurrence	 probability	 is	 50%	of	 the	
maximum	 predicted	 occurrence	 probability;	 and	 (3)	 Maximum	
Human	 Tolerance	 Index	 (Maximum	 HTI),	 the	 level	 of	 the	 HFI	
where	 predicted	 occurrence	 probability	 is	 10%	of	 the	maximum	
predicted occurrence probability (Figure 1).	We	calculated	these	
HTIs	as	 the	mean	of	each	metric	across	the	50	resampling	repli-
cates.	We	quantified	these	three	indices	rather	than	a	simple	mean	
tolerance because the mean does not indicate as clearly the po-
tential	(upper	limit	of	tolerance)	of	the	species	to	adapt	to	greater	
human	 pressures	 in	 the	 future.	 That	 is,	 two	 species	 can	 have	 a	
similar	tolerance	mean,	but	one	can	have	a	narrower	range	of	tol-
erance,	so	 it	 is	more	sensitive	 to	human	pressures.	For	example,	
urban birds have wider environmental tolerance than their rural 
relatives	 (Bonier	 et	 al.,	 2007).	 The	 Conservative	 and	 Maximum	
HTIs	show	the	species'	upper	limits	of	tolerance	to	human	distur-
bance,	which	 is	 critical	 in	understanding	 the	potential	 impact	of	
any	intensification	or	expansion	of	human	pressures.	In	addition	to	
the	HTI	estimates,	we	calculated	the	associated	80%	confidence	
intervals	for	each	of	the	three	metrics	on	the	basis	of	the	50	boot-
strap	 resampling	 replicates.	We	chose	80%	 intervals	 to	optimize	
computational	requirements	of	the	model	fitting	analysis	step,	as	
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fewer	 bootstrap	 resampling	 replicates	 are	 required	 for	 a	 robust	
estimate	of	 the	uncertainty.	We	calculated	the	confidence	 inter-
vals	to	allow	future	applications	to	account	for	uncertainty	when	
using	the	species'	tolerances.

We	compared	Conservative	HTI	values	of	bird	species	among	
IUCN	Red	List	population	trend	and	threat	categories	with	one-	way	
ANOVA.	We	 excluded	 the	Data-	Deficient	 category	 of	 threat	 be-
cause	only	two	bird	species	were	in	that	category.	We	confirmed	the	
robustness	of	the	results	of	the	above	models	to	any	phylogenetic	
correlation	between	the	studied	species.	To	do	so,	we	ran	a	sensi-
tivity	analysis	on	 the	potential	effect	of	phylogenetic	 relations	 to	
the	Conservative	HTI ~ population	trend	category	and	Conservative	
HTI ~ threat	category	relationships	with	function	phylANOVA	from	
the	R	package	‘phytools’	(Revell,	2012).	We	obtained	100	phyloge-
netic	 trees	from	birdtree.org	 (Ericson	All	Species	trees	with	9993	
OTUs	each;	Jetz	et	al.,	2012).	We	then	randomly	selected	10	of	the	
trees	 and	 repeated	 the	 phylANOVA	 test	 10	 times.	We	 averaged	
the modelled results across the trees to obtain an average phylo-
genetic	effect	of	the	modelled	relationships.	For	each	phylANOVA,	
we	 also	 tested	whether	 the	pairwise	differences	were	 significant	
and	 applied	 a	 Bonferroni	 correction	 to	 the	 p-	values.	 As	 another	
sensitivity	analysis,	for	a	subset	of	155	European	bird	species	(see	

Appendix	S2,	Table S7	for	the	full	species	 list)	with	available	con-
tinuous	population	trend	estimates	(Brlík	et	al.,	2021),	we	fitted	a	
linear	regression	model	with	the	Conservative	HTI	as	the	response	
and	continuous	per-	year	population	trend	estimate	for	years	2012–
2021 as the predictor variable.

3  |  RESULTS

We	modelled	and	predicted	HTIs	for	6094	bird	species	(Figures 2 
and S2;	 Appendix	 S2),	 which	 we	 included	 in	 the	 final	 dataset	
(Appendix	S3)	with	the	numbers	of	missing	resampling	replicates	
as an additional variable. All 50 resampling replicates were com-
pleted	 for	 5090	 species.	 The	models	 could	 not	 be	 fitted	 for	 all	
resampling	 replicates	 for	all	 species	due	 to	 insufficient	data.	On	
average,	species	had	a	Peak	HTI	of	13.7	(SD = 14.1),	whereas	the	
Conservative	 HTI	 and	 Maximum	 HTI	 were	 at	 29.1	 (SD = 13.5)	
and	 37.7	 (SD = 11.6),	 respectively	 (Figure 3).	 These	 averages	
correspond	 to	 HFI	 values	 of	 highly	 impacted	 areas	 (Williams	
et	al.,	2020).	The	mean	80%	confidence	interval	widths	across	all	
species	were	less	than	two	units	of	the	HFI	for	all	HTIs	(CI	widths:	
Peak	HTI = 1.43;	 Conservative	HTI = 1.00;	Maximum	HTI = 0.76).	

F I G U R E  1 Schematic	illustration	of	the	quantification	of	bird	species'	tolerances	to	human	pressures	globally.	The	circles	within	a	box	in	
the	left	panel	illustrate	the	spatial	hierarchy	in	the	bird	occurrences	across	the	gradient	of	human	pressures.	Hypothetical	bird	species	are	
illustrated	with	silhouettes.	The	lower	row	illustrates	the	modelling	and	prediction	steps	of	the	analyses;	the	observed	occurrences	of	each	
bird	species	across	observed	human	pressures	(coloured	bars)	are	used	as	the	basis	for	the	prediction	of	occurrence	probability	across	the	
full	gradient	of	human	pressures	(grey	lines).	The	panel	on	the	right	illustrates	the	predicted	relationship	between	the	occurrence	probability	
and	human	pressure	that	was	then	used	to	calculate	three	Human	Tolerance	Indices	(HTIs)	for	an	example	species	(represented	with	a	large	
silhouette).	The	three	HTIs	are	shown	as	green	stars	and	coloured	dashed	lines	on	the	graph	(see	legend).	These	modelling	and	prediction	
steps	were	repeated	50	times	for	each	species	to	calculate	mean	HTIs	and	80%	confidence	intervals	for	each	species.
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We	also	 found	 that	 the	 three	HTIs	were	 strongly	positively	 cor-
related	 (Pearson	 rPeak–Conservative = 0.81;	 rPeak–Maximum = 0.58;	
rConservative–Maximum = 0.89;	Appendix	S2,	Figure S9).	For	simplicity,	
from	here	onward,	we	present	results	for	Conservative	HTI	in	the	
main	 text	and	 for	Peak	and	Maximum	HTI	 in	 the	supplementary	
material	 (Appendix	 S2).	 Conservative	HTI	 showcases	 the	 poten-
tial	 upper	 limit	 of	 species'	 tolerances	 to	human	pressures	 in	 the	
future	while	maintaining	a	large	variation	in	values	to	allow	across-	
species comparisons.

Many	 species	 were	 able	 to	 tolerate	 extremely	 high	 levels	 of	
human	pressures	 (here,	HFI	>40).	Roughly	22%	(1336	of	the	6094	
species)	 tolerated	 such	 intense	 human	 pressures	 when	 tolerances	
were	quantified	as	Conservative	HTI.	For	example,	an	urbanized	com-
mon	swift	(Apus apus)	tolerated	the	most	extreme	values	of	human	
pressures within its breeding range (Figure 4).	Of	the	6094	species,	
830	(13.6%)	occurred	in	more	than	one	continent,	also	outside	their	
native	ranges.	On	average,	these	species	had	a	Conservative	HTI	of	
35.5,	higher	than	that	of	all	the	species.	For	example,	both	within	its	
native	range	in	Eurasia	and	non-	native	range	in	North	America,	com-
mon	starling	had	a	Conservative	HTI	of	50.	Similarly,	within	its	native	
range	in	Asia	and	non-	native	range	in	Europe,	rose-	ringed	parakeet	
had	a	Conservative	HTI	of	49.5	and	50,	respectively.

Within	each	continent,	we	 looked	at	 the	proportion	of	species	
that	 occurred	 in	 highly	 modified	 environments	 (HFI > 40).	 Europe	
had	a	higher	percentage	of	highly	human-	tolerant	species,	42%,	than	
North	America	(36%),	Oceania	(32%),	Asia	(32%),	Africa	(24%),	and	
Latin	America	(19%).	On	the	other	end	of	the	spectrum,	we	assessed	

the	species	that	were	strongly	associated	with	intact	areas	for	their	
breeding	(here,	HFI < 4;	Williams	et	al.,	2020).	Seven	(~0.001%)	of	the	
6094	species	had	a	low	Conservative	HTI	and	were	associated	with	
intact	 areas.	 The	 species	with	 the	 lowest	 estimated	Conservative	
HTI	of	2.57,	broad-	billed	sapayoa	(Sapayoa aenigma),	occurs	in	humid	
forests	in	Colombia,	Ecuador,	and	Panama.

The	 Conservative	 HTI	 differed	 significantly	 among	 population	
trend	 categories	 (one-	way	 ANOVA:	 F = 163.7,	 df = 3,	 p < 0.001;	
Figure 5a).	Pairwise	comparisons	showed	that	all	population	trend	
categories	 differed	 significantly	 from	 each	 other:	 increasing	 spe-
cies	 had	 the	 highest	 HTI	 and	 decreasing	 the	 lowest	 (Bonferroni-	
corrected p < 0.01).	 Conservative	HTI	 differed	 significantly	 among	
Red	 List	 threat	 categories	 (one-	way	 ANOVA:	 F = 23.1,	 df = 4,	
p < 0.001;	Figure 5b).	Pairwise	comparisons	showed	that	species	in	
the	Least	Concern	category	had	a	significantly	higher	Conservative	
HTI	than	species	in	the	Near-	Threatened	and	Vulnerable	categories	
(Bonferroni-	corrected	p < 0.001),	 but	 other	 categories	 did	 not	 sig-
nificantly	 differ	 from	each	other.	 For	 exact	 pairwise	p-	values,	 see	
Tables S3 and S4	 in	Appendix	S2.	The	phylogenetic	 effect	on	 the	
HTI ~ population	trend	category	and	HTI ~ threat	category	was	con-
sistent	and	significant	 (phylANOVA	for	population	trend	category:	
F = 162.14,	 p < 0.001;	 phylANOVA	 for	 threat	 category:	 F = 22.76,	
p = 0.003;	Appendix	S2,	Tables S5 and S6).	In	the	second	sensitivity	
analysis	with	continuous	population	trend	estimates,	we	found	that	
species	with	higher	tolerance	had	significantly	larger	positive	popu-
lation trend slope estimates (R2 = 0.04,	F = 7.45,	df = 153,	p = 0.007).

The	Conservative	HTI	 of	 threatened	 species	 varied	 from	 very	
low	 values	 to	 the	 maximum.	 For	 example,	 the	 endangered	 fern-
wren (Oreoscopus gutturalis)	 had	 a	 low	 Conservative	 HTI	 of	 3.33,	
whereas	 the	 vulnerable	 Javan	 myna	 (Acridotheres javanicus)	 had	
a	 high	Conservative	HTI	 of	 50.	 Similarly,	 the	Conservative	HTI	 of	
non-	threatened	species	varied	greatly.	For	example,	two	species	of	
least	concern,	broad-	billed	sapayoa	(Sapayoa aenigma)	and	common	
redpoll (Acanthis flammea),	 represented	 the	 opposite	 ends	 of	 the	
Conservative	HTI	spectrum	at	2.57	and	50,	respectively.	However,	
all	four	example	species	are	reported	to	have	a	decreasing	popula-
tion trend.

4  |  DISCUSSION

We	quantified	human	pressure	tolerances	of	over	6000	bird	species	
on	six	continents	and	provided	the	tolerance	values	and	uncertainty	
estimates.	We	 found	 that	 bird	 species'	 tolerances	 to	 human	pres-
sures	were	high	across	continents	regardless	of	the	tolerance	metric.	
Even	species'	peak	occurrences	were,	on	average,	observed	at	loca-
tions	with	high	HFI	values,	corresponding	to	intermediate	and	highly	
impacted	areas.	Consequently,	high	tolerances	are	inevitable	in	the	
Anthropocene as most species necessarily occur in areas under 
strong	human	pressures,	which	cover	58%	of	 the	 terrestrial	world	
(Williams	et	al.,	2020).	Our	results	also	show	that	HTI	is	associated	
with	bird	species'	population	trends	and	IUCN	threat	categories.

F I G U R E  2 Estimated	Conservative	HTIs	(black	dots)	with	
confidence	intervals	(green	error	bars)	for	all	6094	bird	species	
globally.	Species	were	ordered	by	HTI	values.	For	those	species	
with	different	tolerance	values	on	different	continents,	we	
averaged	the	tolerances	and	lower	and	upper	confidence	interval	
limits across continents (N = 830).
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4.1  |  Spatial variation in human tolerance indices

Bird	species'	tolerances	to	human	pressures	varied	across	continents,	
such	that	larger	proportions	of	species	in	Europe	and	North	America	
than	 Latin	 America	 and	 Africa	 tended	 to	 tolerate	 highly	 modified	
environments	 (HFI > 40	 of	 the	 maximum	 50).	 The	 variation	 across	
continents	 can	 arise	 from	 two	 sources:	 variation	 in	 individual	 spe-
cies'	tolerances	or	in	the	ecological	conditions	caused	by	the	human	
pressures	 (measured	 here	with	 the	HFI).	 Indeed,	much	 larger	 pro-
portions	of	Europe	and	North	America	are	modified	and	on	average	
have	higher	HFI	values	than	other	continents	(Williams	et	al.,	2020).	
Without studying the past distributions and more detailed ecology 
of	 each	 species,	 we	 cannot	 determine	 whether	 the	 high	 average	

tolerances	in	the	highly	human-	modified	continents	stem	from	disap-
pearance	of	sensitive	species	or	adaptation	of	species.

4.2  |  Species- specific variation in human 
tolerance indices

Few	species	 (~0.001%	of	6094)	had	a	 low	Conservative	HTI	and	
were	associated	with	intact	areas.	The	low	percentage	is	likely	due	
to	the	fact	that	the	most	comprehensive	data	are	associated	with	
abundant	and	broad-	ranged	species	and	from	areas	that	are	uni-
formly	under	strong	human	pressures.	The	data	for	rare	species	or	
species	with	small	distribution	ranges	are	 likely	scarce,	and	such	

F I G U R E  3 Distribution	of	Human	
Tolerance	Indices	(HTI;	ranging	from	
tolerance	to	perfect	intactness	[0]	
to	extremely	high	human	pressure	
[50])	across	bird	species	measured	as	
Conservative	HTI.	Panels	illustrate	
Conservative	HTI	for	(a)	Africa,	(b)	Asia,	
(c)	Europe,	(d)	Latin	America,	(e)	North	
America,	and	(f)	Oceania,	respectively.	The	
vertical	lines	illustrate	the	median	HTIs	
across all species within the continent. 
Note	the	different	scales	on	the	y-	axes.
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species	 have	 a	 higher	 chance	of	 being	 excluded	 from	 the	 analy-
ses.	Moreover,	the	low	number	of	species	occurring	only	in	intact	
areas	and	with	low	Conservative	HTI	values	may	be	because	areas	

with	very	low	human	influence	are	limited,	and	largely	biased	to-
wards	high	 latitudes	 (e.g.	 boreal	 zone)	where	 species	 richness	 is	
lowest	(Riggio	et	al.,	2020).	Perhaps	the	only	exception	to	this	 is	

F I G U R E  4 Examples	of	modelled	Human	Tolerance	Indices	for	common	swift	(Apus apus),	Eurasian	capercaillie	(Tetrao urogallus),	and	
Eurasian spoonbill (Platalea leucorodia)	in	Europe.	The	upper	panels	illustrate	the	predicted	relationships	from	one	resampling	replicate	
model	between	species'	occurrence	probabilities	and	the	HFI	when	other	variables	were	held	constant.	The	green	stars	illustrate	the	three	
HTIs	calculated	from	these	predicted	relationships.	In	the	lower	panels,	the	grey	background	map	illustrates	the	spatial	variation	in	human	
pressures	across	Europe,	measured	as	the	HFI	(0 = perfectly	intact,	50 = extremely	high	human	pressure).	The	coloured	transparent	polygons	
represent	the	breeding	or	resident	ranges	of	the	three	species.
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F I G U R E  5 Conservative	HTI	of	the	world's	bird	species	across	continents	depending	on	(a)	the	IUCN	population	trend	category	and	
(b)	the	IUCN	Red	List	category.	The	boxplots	illustrate	the	median	and	the	first	and	third	quartiles,	and	the	whiskers	show	the	largest	and	
smallest	values	no	further	than	1.5*inter-	quartile	ranges	from	these	quartiles,	respectively.	For	species	with	different	tolerance	values	in	
different	continents	(N = 830),	we	averaged	the	tolerances	across	continents.	We	excluded	the	Unknown	population	trend	category	(N = 323	
species)	from	the	visualization.	Red	List	categories:	CR,	critically	endangered;	EN,	endangered;	LC,	least	concern;	NT,	near-	threatened;	VU;	
vulnerable.	We	excluded	the	DD	(Data-	Deficient)	category	because	it	included	only	two	observations.
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the	Amazon,	where	large	areas	of	low	human	pressures	and	high	
numbers	of	species	exist.	The	species	with	HTI < 10	are	most	nu-
merous	 in	South	America,	although	the	sampling	effort	 is	not	as	
high as in many other continents (Figure 3).	This	suggests	that	the	
distribution	 of	 Conservative	 HTI	 values	 across	 the	 ~6000 bird 
species	may	be	driven	more	by	the	spatial	distribution	of	human	
pressures than sampling bias.

We	 found	 non-	random	 variation	 in	 bird	 species	 tolerances	 to	
human	pressures	 across	 categories	 of	 IUCN	population	 trend	 and	
Red	List	 threat	status.	This	 implies	 that	species	with	high	and	 low	
tolerances	to	human	pressures	are	characterized	by	different	popu-
lation	attributes.	Tolerances	were	strongly	linked	to	species'	popu-
lation	trends,	such	that	the	species	with	low	tolerance	had	declining	
populations.	 This	 means	 that	 populations	 are	 affected	 by	 direct	
human	 pressures,	 such	 as	 land	 use	 changes,	 although	 population	
trends also could be driven by global drivers such as climate change. 
For	instance,	in	Europe,	climate	change	does	not	explain	the	coloni-
zations	and	extinctions	of	 species	well,	which	 suggests	 that	other	
drivers,	 including	habitat	quality,	play	a	 role	 (Howard	et	al.,	2023).	
The	tolerances	were	also	linked	to	species'	threat	status,	such	that	
species	of	least	concern	had	higher	tolerances	than	near-	threatened	
and	vulnerable	species.	However,	the	tolerances	of	the	most	threat-
ened	species	 (endangered	and	critically	endangered)	did	not	differ	
from	those	of	the	 less	threatened	species.	This	 is	 likely	due	to	the	
low	number	of	species	in	the	highest	threat	categories	for	which	we	
could estimate tolerances.

The	 observed	 increase	 in	 tolerance	 of	 threatened	 species	
(Appendix	 S2,	 Figure S9)	may	 have	 ecological	 relevance	 in	 the	
form	 of	 extinction	 debt	 (Hanski	 &	 Ovaskainen,	 2002).	 When	
using	the	maximum	and	the	conservative	human	tolerance	indi-
ces,	one	should	be	aware	of	the	uncertainty	stemming	from	the	
current	 extinction	 debt	 experienced	 by	 species	 in	 poor-	quality	
habitats.	Species	may	persist	 in	 lower	quality	and	highly	modi-
fied	habitats	but	become	extinct	in	the	near	future	without	quick	
adaptation	to	increasing	human	pressures.	Therefore,	the	toler-
ance	values	may	not	accurately	represent	their	future	potential	
to	 tolerate	 intensifying	 human	 pressures.	 Our	 analyses	 partly	
account	 for	 the	 potential	 extinction	 debt	 given	 that	 the	HFI	 is	
from	 2013	 and	 the	 eBird	 data	 from	 later	 years.	 Accordingly,	 if	
the	environment	was	already	degraded	 in	2013,	 the	 tolerances	
reflect	birds	that	persisted	in	the	degraded	environment	at	least	
for	some	years.	It	is	also	possible	that	a	species	may	have	started	
to	become	more	urbanized,	but	the	process	is	not	yet	complete,	
and	the	species'	current	range	does	not	fully	represent	its	poten-
tial	 to	 tolerate	 intensifying	human	pressures.	Our	 results	make	
it	possible	to	identify	those	threatened	species	that	are	tolerant	
to	human	pressures,	which	supports	the	approach	of	conserving	
them	also	in	the	highly	modified	environments.	The	link	between	
human pressure tolerance and population trend was stronger 
than	the	link	between	human	pressure	and	Red	List	threat	status,	
likely	 because	 more	 species	 are	 declining	 than	 are	 threatened	
(Finn	et	al.,	2023).

4.3  |  Limitations and future research opportunities

Although	our	quantification	of	 species'	 tolerances	 to	human	pres-
sures	is	unprecedented	at	both	spatial	and	taxonomic	levels,	further	
attempts to understand the underlying mechanisms are needed. 
Most	 importantly,	 future	 studies	 and	 conservation	 planning	 could	
investigate	species'	tolerances	to	specific	human	pressure	variables	
(Mu	 et	 al.,	2022)	 to	 gain	 a	more	 detailed	 understanding	 of	which	
human	pressures	each	species	can	tolerate.	For	example,	 linear	in-
frastructures	such	as	roads	may	affect	some	species	more	strongly	
than	others	via	anthropogenic	sound	and	direct	mortality,	but	this	
likely	 depends	 on	 species'	 ecological	 traits,	 such	 as	 diet	 (Cooke,	
Balmford,	Donald,	et	al.,	2020;	de	Jonge	et	al.,	2022).	Similarly,	the	
HFI	we	used	does	not	fully	capture	(but	likely	is	a	proxy	for)	other	
sources	 of	 human	 pressure,	 such	 as	 air	 pollution,	 anthropogenic	
sound,	and	climate	change.	Anthropogenic	sound	and	air	pollution,	
and	to	a	lesser	extent	climate	change,	may	be	strongly	associated	at	
local	to	regional	extents	with	human	activities.	HFI	captures	well	the	
direct	human	pressures	(especially	those	driven	by	land	use)	but	not	
necessarily	 the	 indirect	 pressures,	 such	 as	 air	 pollution	 or	 climate	
change	(which	is	also	caused	partly	by	air	pollution).

We	 acknowledge	 that	 bird	 species'	 detectability	 in	 different	
vegetation	 types	 may	 affect	 the	 quantified	 tolerances	 to	 human	
pressures.	However,	we	believe	that	 the	magnitude	of	variation	 in	
detectability is small relative to the variation in occurrences depend-
ing	on	the	HFI	 (Anderson	et	al.,	2015;	Cooke,	Balmford,	Johnston,	
et	al.,	2020;	Johnston	et	al.,	2014).	This	is	partially	because	most	val-
ues	of	the	HFI	encompass	a	range	of	vegetation	and	land	use	types	
that	likely	influence	bird	detectability	in	different	ways.	For	example,	
intact	vegetation	types	with	low	HFI	values	include	forest,	wetland,	
and	shrubland;	and	locations	with	high	HFI	could	be	urban	or	under	
intense agriculture.

As	more	 eBird	 observation	data	 accumulate	 quickly,	 the	 toler-
ance	quantification	could	be	repeated	in	the	future.	It	is	likely	that	
the	 taxonomic	 coverage	will	 increase	 in	 the	 future	 repetition	 be-
cause	some	species	will	exceed	the	occurrence	threshold	set	in	our	
study.	When	more	abundance	data	accumulate,	it	will	be	possible	to	
repeat	 the	 tolerance	 quantification	with	 abundance	 data,	 giving	 a	
more	detailed	picture	of	the	gradual	response	of	species	to	human	
pressures.	Poor-	quality	habitats	(with	a	high	HFI)	may	only	support	
a	small	number	of	individuals,	whereas	high-	quality	habitats	(with	a	
low	HFI)	may	support	most	of	the	individuals,	but	both	areas	could	
have	 a	 similar	 number	 of	 recorded	 occurrences	 of	 the	 species.	 A	
potential	solution	is	to	assess	the	local	tolerances	across	a	species'	
range	against	its	population	trends	(when	available)	or	abundances	
in	those	same	parts	of	the	range.

Species'	migratory	behaviour	may	also	affect	the	quantification	
of	the	tolerances	as	the	human	pressure	tolerance	of	migratory	spe-
cies	may	 include	some	data	 that	are	outside	 the	species'	breeding	
season.	We	 could	 not	 consider	 the	 species-	specific	 breeding	 sea-
son	months	due	to	 lack	of	systematic	knowledge	but	used	region-	
specific	 breeding	 months	 to	 filter	 the	 eBird	 observations.	 During	
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migration,	 species	may	use	suboptimal	habitats	 that	do	not	 repre-
sent their actual tolerance to human pressures during their breeding 
(La	Sorte	et	al.,	2022;	Newton,	2008;	Zuckerberg	et	al.,	2016).	We	
mitigated	 the	effect	of	 this	on	our	 results	by	spatial	and	 temporal	
filtering,	which	means	that	observations	outside	the	species'	actual	
breeding	 season	 are	 still	 likely	 to	 be	 close	 in	 time	 to	 its	 breeding	
season	and	within	its	known	breeding	range.

We	used	eBird	data	from	COVID-	19	lockdown	years,	among	all	
years	used,	but	we	do	not	believe	COVID-	19	lockdowns	introduced	a	
significant	bias	in	the	eBird	observations	in	our	data	as	we	strived	to	
obtain	observations	from	the	full	range	of	human	pressure	environ-
ments	in	the	models.	We	did	not	use	eBird	data	from	North	America	
in	2020	due	to	the	filtering	procedure	(see	Section	2),	which	likely	
mitigated	any	effects	of	bird	behaviour	changes	during	lockdowns.	
Moreover,	 the	differences	 in	pre-	COVID-	19	and	during-	COVID-	19	
eBird	 data	 were	 negligible	 (Hochachka	 et	 al.,	 2021).	 However,	
COVID-	19	 lockdowns	may	have	affected	bird	behaviour,	such	that	
some	species	may	have	used	more	human-	modified	areas	due	to	a	
lower	degree	of	direct	disturbance	by	humans	(Gordo	et	al.,	2021; 
Sanderfoot	 et	 al.,	 2022;	 Schrimpf	 et	 al.,	 2021; Warrington 
et	al.,	2022).

4.4  |  Applications of human tolerance indices

We	envision	that	the	quantified	HTIs	of	the	world's	birds	can	be	
applied to both ecological and evolutionary research and con-
servation.	 We	 recommend	 using	 maximum	 and	 conservative	
tolerances	when	predicting	future	species'	distributions	under	in-
tensifying	human	pressures	as	they	best	describe	species'	poten-
tial	to	respond	to	the	pressures.	Peak	HTI	values	are	best	suited	
to understanding the contemporary situation and to assessing 
the	human	pressure	optima	of	the	species.	Further	studies	on	the	
characteristics	 of	 bird	 species	 with	 high	 and	 low	 tolerances	 to	
human	pressures	could	link	the	tolerance	indices	to	species'	traits,	
such	as	generation	lengths	(Bird	et	al.,	2020),	diet	and	habitat	spe-
cialization	 (Wilman	 et	 al.,	2014),	 or	 temperature	 niche	 (Devictor	
et	al.,	2008).	Given	that	 increasing	contact	between	wildlife	and	
humans,	 especially	 in	 urban	 environments,	 increases	 the	 risk	 of	
spreading	wildlife	diseases,	the	HTI	could	be	used	as	an	additional	
tool	 to	 predict	 species	 potential	 as	 pathogen	 vectors	 in	 the	 fu-
ture.	To	understand	community-	level	changes	in	the	composition	
of	human	pressure-	tolerant	and	pressure-	sensitive	 species,	HTIs	
can	 be	 applied	 to	 calculate	 community-	weighted	 means	 of	 the	
tolerances	over	 time	and	 space.	Suitable,	 independent,	 and	 spa-
tially	extensive	data	on	bird	occurrences	already	exist	 in	Europe	
(Keller	et	al.,	2020)	and	North	America	(Meehan	et	al.,	2019;	Sauer	
et	al.,	2017).

Our	approach	for	quantifying	species'	standardized	tolerances	
to	 human	pressures	 could	 be	 applied	 to	 taxa	 other	 than	 birds	 at	
different	spatial	 scales,	and	 for	different	pressures.	Data	on	spe-
cies occurrences at high spatial resolution are accumulating rap-
idly	 at	 regional	 and	 national	 levels	 (e.g.	 the	 Global	 Biodiversity	

Information	 Facility,	 Fink	 et	 al.,	2022),	 which	 allows	 the	 applica-
tion	of	our	methods	and	the	accompanying	code	for	management	
and	 conservation	 purposes.	 For	 species-	based	 conservation	 of	
other	taxonomic	groups,	for	example,	camera	trap	occurrences	of	
a	threatened	mammal	species	could	be	used	to	quantify	its	occur-
rence	probabilities	across	the	HFI	gradient	to	assess	the	maximum	
tolerance	to	human	pressures	within	the	remaining	range.	For	area-	
based	 conservation,	 HTIs	 could	 be	 used	 to	 identify	 areas	where	
species with high human pressure tolerance and humans can co-
exist.	 For	 example,	 there	 is	 a	 global	 target	 of	 protecting	 30%	of	
terrestrial	Earth,	but	likely	not	all	of	that	can	be	strictly	protected	
(CBD/COP/15/L.25;	CBD,	2022).	HTIs	of	bird	species	could	be	used	
to	identify	candidate	species	and	areas	for	protection	that	tolerate	
some	levels	of	human	pressures.	The	data	also	allow	identification	
of	 priority	 areas	 for	 low	 human	 tolerance	 species,	where	 human	
access	 could	 be	 restricted,	 at	 least	 during	 sensitive	 periods	 (e.g.	
breeding).	In	practice,	this	could	guide	the	expansion	of	the	current	
network	 of	 protected	 areas,	 and	 especially	 the	 identification	 of	
sensitive	areas	where	strict	nature	reserves	(IUCN	protected	area	
category	Ia)	might	need	to	be	designated.
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