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Received: 7 July 2023 / Accepted: 13 December 2023
� The Author(s) 2024

Abstract
A neural network is employed to address a non-binary classification problem of plasma instabilities in astrophysical jets,

calculated with the Legolas code. The trained models exhibit reliable performance in the identification of the two

instability types supported by these jets. We also discuss the generation of artificial data and refinement of predictions in

general eigenfunction classification problems.
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1 Introduction

For many plasma- or fluid-related disciplines the question

of stability is of central interest. In fusion research insta-

bilities break confinement [24], in solar physics they lead

to eruptions like coronal mass ejections [22], and in space

weather they affect the propagation and properties of the

solar wind [25]. Since many plasma configurations can host

a plethora of instabilities, determining the driving forces or

physical effects which give rise to them is crucial. Addi-

tionally, when several instabilities coexist, it is essential to

identify which one is dominant, i.e. grows most rapidly,

and thus governs the initial evolution of the plasma

configuration.

To address this central question, the magnetohydrody-

namic (MHD) spectroscopic code Legolas ([8], and

https://legolas.science) was developed, which allows for

the investigation of the influence of physical parameters,

such as flow and resistivity, on the dynamics of a plasma

configuration, and in particular, on its magnetohydrody-

namic stability. For a given equilibrium structure and a

choice of non-ideal effects (i.e. resistivity, viscosity, etc.),

the Legolas code computes all the waves and instabilities

supported by the plasma (also referred to as modes). Using

this tool, one can obtain a comprehensive overview of the

instabilities and their respective growth rates within the

considered parameter space. However, the results also

contain a multitude of modes which are not necessarily

relevant to stability, like sequences of slow, Alfvén, and

fast waves. Consequently, it may become difficult to track

any specific mode during the exploration of the parameter

space or pinpoint which effect is causing it. Hence, we seek

an algorithm for categorising modes, in order to distinguish

and classify the relevant instabilities.

The process of classification, where one assigns a label

from a finite, predefined set to an object, is a notoriously

time-consuming task if performed manually. Hence, it is

desirable in many fields to automate the classification of

data. With the continuous development of new machine

learning techniques, many architectures have been

explored for classification [18, 23, 27]. Here, we improve

on the results of Kuczyński et al. [19], introducing a

supervised neural network designed for the non-binary

classification of any generalised eigenvalue problem. We

apply the model to the study of an astrophysical jet [2],

which are also replicated in recent experiments [3], here
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with shear axial flow embedded in a helical magnetic field

[1], and demonstrate reliable performance.

First, we introduce the equations solved by the Legolas

code in Sect. 2, and then describe the particular physical

system used for testing the model in this work. In Sect. 3,

we describe the eigenvalue classification algorithm, and

present a method for enlarging training data and refining

model predictions. Subsequently, Sect. 4 outlines how the

described algorithm is applied to the test problem,

focussing on data preparation, suggested neural network

architectures, overall performance metrics, and the filtering

criterion for ‘uninteresting’ modes. Finally, in Sect. 5 we

verify the performance of the algorithm, comparing the

outcome between the two introduced network

architectures.

2 Astrophysical jets in the Legolas code

Before introducing the neural network-based algorithm, we

briefly describe the data generated with the Legolas code.

The MHD spectroscopic code Legolas [7, 8, 10] is a finite

element method (FEM) code that solves the generalised

eigenproblem

Af ¼ xBf ; ð1Þ

that arises after linearisation and 3D Fourier analysis of a

set of (magneto)hydrodynamic equations. For the data used

in the present classification problem, the equations are

linearised around an equilibrium representing an astro-

physical jet with shear axial flow embedded in a helical

magnetic field, as described by Baty and Keppens [1]. The

equilibrium is described by a constant density q0 and

velocity, magnetic field, and temperature profiles

v0ðrÞ ¼
V

2
tanh

Rj � r

a

� �
êz; ð2Þ

B0ðrÞ ¼ Bh
r=rc

1þ ðr=rcÞ2
êh þ Bz êz; ð3Þ

T0ðrÞ ¼ Ta �
B2
h

2q0
1� 1

½1þ ðr=rcÞ2�2

 !
; ð4Þ

where V is the asymptotic velocity, Rj is the jet radius, a is

the radial width of the shear layer, rc is the characteristic

length of the radial magnetic field variation, Bh and Bz are

magnetic field strength parameters, and Ta is the temper-

ature at the jet axis. For this study, 240 Legolas runs of

this configuration were carried out in the interval r 2 ½0; 2�
for various values of V. At r ¼ 0, a regularity condition

was imposed, whilst a perfectly conducting boundary

condition was used at r ¼ 2. Table 1 gives an overview of

all the parameter values.

In each Legolas run, the resistive, compressible MHD

equations [e.g. 13],

oq
ot

¼ �r � ðqvÞ; ð5Þ

q
ov

ot
¼ �rp� qv � rvþ J � B; ð6Þ

q
oT

ot
¼ �qv � rT � ðc� 1Þpr � vþ ðc� 1ÞgJ2; ð7Þ

oB

ot
¼ r� ðv� BÞ � r � ðgJÞ; ð8Þ

perturbed and linearised around the equilibrium (2-4), are

solved for the frequency x and Fourier amplitudes f̂1ðrÞ
after substituting a Fourier form,

f1 ¼ f̂1ðrÞ exp iðmhþ kz� xtÞ½ �; ð9Þ

for each perturbed quantity (q1, v1, T1, B1), with imposed

wave numbers m and k. In these MHD equations, p rep-

resents the pressure, governed by the ideal gas law p ¼ qT ,
and J ¼ r� B the current. Furthermore, g is the resis-

tivity, set to g ¼ 10�4, and c the adiabatic index. Since we

employ a fully ionised, non-relativistic approximation, the

adiabatic index is set to c ¼ 5=3.

For a grid discretisation with N grid points, Legolas

computes 16N complex eigenvalues x and their 8 corre-

sponding (complex) eigenfunctions q1, v1, T1, and B1 on a

grid with 2N � 1 grid points [8]. Hence, for the classifi-

cation algorithm, each of the resulting 16N data points is

treated as a 2-vector containing the real and imaginary

parts of the eigenvalue along with its corresponding com-

plex 8� ð2N � 1Þ matrix containing the eigenfunctions.

For this jet configuration, the associated spectrum of

complex eigenvalues contains up to two types of instabil-

ities: one Kelvin–Helmholtz instability (KHI) and a

parameter-dependent amount of current-driven instabilities

(CDI) [1, 15]. The spectra for two distinct parameter

choices are shown in Fig. 1a, b as examples. In Fig. 1a the

Table 1 Parameters of the data used in this study

V 1.29 1.43 1.58 1.72 1.86 2.01

N Rj rc a Bh Bz Ta q0 m

151 1 2 0.1 1 0.25 1 1 �1

The upper table shows the different values of V in the dataset. For

each value of V, k was varied from 0.5 to 7 in increments of 1/6. The

parameters in the lower table were identical in all cases
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KHI and the sequence of CDIs are indicated. Though they

are easily identifiable in this first case by their position in

the spectrum, this is harder for the case in Fig. 1b, where

some modes are not fully resolved at this resolution. In

general, we identify the instabilities by their eigenfunction

behaviour. The real part of the q-eigenfunction of the KHI,

visualised in Fig. 1c, is characterised by a maximum

located at the jet boundary (r ¼ Rj) whereas CDIs are

characterised by a smooth, oscillatory behaviour inside the

jet (r\Rj), as illustrated in Fig. 1d. Modes that do not

possess any of these characteristics are referred to as

uninteresting.

3 A mathematical framework
for classification algorithms

Here, we describe the algorithm that we applied for the

classification of KHIs and CDIs. In this section, a sufficient

degree of generality is maintained for potential applications

in related fields. We show the usefulness of maps under

which the classification algorithm is invariant for data

generation and testing. Finally, we propose a qualitative

structure of the algorithm.

3.1 Class preserving maps

The goal of classification algorithms is to associate a

unique label l 2 L with an input x 2 X, where L and X are

sets. Mathematically, this is a function from X to L, i.e.

Class : X ! L: ð10Þ

In the present work, this map is realised via a supervised

neural network and a subsequent, user-informed filtering

procedure. In order to gain a better understanding of the

structure of this algorithm, in what follows, we introduce

the concept of class preserving maps.

We define the training dataset T � X that consists of all

training data points t 2 T such that the map in Eq. (10) is

known. Consider the set of maps U from X to itself that

preserve the class label. Denoting such a map by u, we

have

u : X ! X such that 8x 2 X : Class ðuðxÞÞ ¼ Class ðxÞ:
ð11Þ

It is apparent that Class ðuðtÞÞ ¼ Class ðtÞ. If u is an

injective map satisfying uðTÞ � X n T , any element u(t)

can be used to extend the training dataset T. However, if u

is not injective or uðTÞ \ T 6¼ ;, care should be taken not to
include repeated elements in the dataset, which could

Fig. 1 Spectra of configuration Eqs. (2–4) for parameters a V ¼ 1:72 and k ¼ 1:5; b V ¼ 1:863 and k ¼ 6:5. c ReðqÞ-eigenfunction of the KHI in
a. d ReðqÞ-eigenfunction of the three fastest growing CDIs in a. (151 grid points)
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introduce an imbalance in the training data. Additionally,

let x0 2 X n T be an input whose class label must be

inferred by the neural network. Rather than making a

prediction on a single input x0, one can also compare it with

uðx0Þ which, in an ideal scenario, should result in the same

label. The user is then able to choose a prediction depen-

dent on their preferred filtering scheme. If the model is free

from systematic errors, this results in a higher likelihood of

correct classification.

However, if a certain map ul only preserves the class of

a subset Xl � X, it cannot be used for the reinforcement of

the network’s prediction, since, a priori, we do not know if

the class of the data point being predicted will be unaltered.

Nevertheless, ul can still be used for data generation. These

two types of class preserving maps are illustrated in Fig. 2.

In the context of image classification, examples of maps

denoted by u in this figure include image rotations and

translations, since all physical objects should be invariant

under these transformations, while flipping is only appli-

cable to symmetric objects and hence is an element of ui.

An overview of common maps used for data augmentation

is given in [26].

3.2 Structure of the eigenvalue classification
algorithm

In some applications, the input to the neural network is an

ordered tuple. This could be, for example, a text–image

pair or, as in our problem, an eigenmode-eigenfunction pair

ðx; fxÞ, where the subscript x now indicates that the

eigenvector fx is associated with the eigenvalue x. In such

scenarios, it is common to implement separate branches for

different constituents of the input [e.g. 4]. In our model, we

first extract convolutional features of fx in a separate

branch, which results in a reduced representation fx. Then,

x is simply concatenated with fx. The combined result

ðx; fxÞ is then further fed into a regular neural network that
in the end returns the probability of each class label l.

Then, probability thresholds are optimised in order to

maximise the chosen metric which judges the performance

of the model. Finally, once the neural network is trained

and the thresholds are chosen, a filtering scheme is incor-

porated based on the previously defined maps ui 2 U. The

complete scheme of the eigenvalue classification algorithm

as applied to the KHIs and CDIs classification problem is

shown in Fig. 3.

4 Application to Legolas jet data

Here, we apply the algorithm described in Sect. 3 on the

KHI-CDI classification problem introduced in Sect. 2.

First, we return to the data structure, and discuss how the

data is expanded with the use of class preserving maps.

Then, we describe the network architecture presenting the

network’s layers in more detail. Subsequently, we discuss

the chosen performance metrics and how we optimised

them by introducing probability thresholds and a filtering

procedure.

4.1 Data generation

Since all 240 Legolas runs were performed with N ¼ 151

grid points, each file contains 16N ¼ 2416 eigenmodes.

Every eigenmode has 8 associated complex eigenfunctions

discretised on a grid with 2N � 1 ¼ 301 points. Hence, the

network’s input consists of two parts:

1. An eigenvalue input x as a real 2-vector

ðReðxÞ; ImðxÞÞ.
2. An eigenfunction input as a complex matrix fx of

dimensions 301� 8. Its real and imaginary parts are

stored in 2 channels.

We decided to use 80% (192) of these runs for training,

10% (24) for validation, and 10% for testing. The division

of the files across the three categories was randomised. For

the exact distribution, see Table 4 at the end.

The resulting data contained 99:76% uninteresting

modes (class 0), i.e. modes that are neither KHI (class 1)

nor CDI (class 2). Therefore, in order to balance and extend

the dataset, we utilised the technique of class preserving

maps, described in Sect. 3.1. We defined the following

maps:

1. Multiplying the eigenfunctions by a complex phase

factor:Fig. 2 Types of class preserving maps. The map u 2 U, indicated by

the blue solid line, preserves the class of all eigenfunctions f 2 X. The
map u1 2 U1, indicated by the red dashed line, preserves only the

internal maps of the subspace denoted as X1 in Figure
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u : X ! X : ðx; fxÞ; 7!ðx; eiufxÞ with u 2 ð0; 2pÞ:
ð12Þ

This map u 2 U is always class preserving because

eigenfunctions are only determined up to a complex

factor. As a consequence of this property, we can also

use these maps to decrease the uncertainty of the neural

network’s prediction in the filtering step, as discussed

in Sect. 3.1.

2. Data superposition: if h ¼ z ¼ t ¼ 0 in Eq. (9), the

corresponding eigenvalue–eigenfunction tuples satisfy

the following superposition principle,

ul : Xl � Xlð Þ ! Xl;

x; fx;x
0; fx0ð Þ7! xþ x0

2
; eiufx þ eiu

0
fx0

� �
;

ð13Þ

with x ¼ x0 and u;u0 2 ð0; 2pÞ. Nevertheless, when
employed for x 6¼ x0, this map typically preserves the

inherent characteristics of the considered modes, i.e.

the peak at the jet boundary (r ¼ Rj) for KHI modes,

and the oscillatory behaviour inside the jet (r\Rj) for

CDI modes. Additionally, the purpose of the sum
1
2
ðxþ x0Þ is to artificially assign information about the

growth rate to the created mode. Therefore, we treated

Eq. (13) as an approximate class preserving map for

general modes of class l.

The resulting distribution of initial, and final training,

validation, and testing data is summarised in Table 2.

4.2 Network architecture

We propose two different neural network architectures, one

for high performance computers and one for single thread

computations. The former is a variant of the ResNet [16]

and the latter is a plain network. The models were devel-

oped in Keras [6], an open-source neural network library

written in Python.

First, we discuss the architecture of the ResNet. As

described in Sect. 3.2, the network consists of two stages.

Initially, only the input eigenvector fx is passed through a

convolutional feature extractor. Then, the result fx is

concatenated with the eigenvalue x and further fed into the

second stage. Figure 4 shows the main building blocks of

the network used in both stages, where some layers are

marked with a symbol for reference here. In the first stage,

the weights layers (*) are convolution layers whilst in the

second stage they are dense layers. The kernels of the

convolutional layers within a building block are of the

same size. Both stages consist of three such main building

blocks. The kernel sizes are (65, 5), (33, 3), (17, 2) and the

number of convolutional filters is 128, 64 and 32 accord-

ingly. The intermediate dense layers in the second stage

have sizes 34 and 17. The dropout (�) value is 0.1 for

convolution layers and 0.5 for dense layers. Average

pooling (�) is only used for convolution layers. We chose

the Adam optimizer with a learning rate of 0.001, b1 ¼ 0:9,

and b2 ¼ 0:999. The loss function is the categorical cross-

entropy.

Regarding the plain network, the main difference is that

it follows the skip connection only (§ top), and the main

branch (§ bottom) is removed. Since the training was much

more computationally inexpensive than in the case of the

ResNet, we were able to fine-tune the network’s hyperpa-

rameters more. In fact, the kernel sizes, number of filters,

and intermediate dense layer sizes listed in the previous

paragraph were chosen as such, since these were the ones

that were close to optimal for the plain network.

Fig. 3 A schematic of the employed classification algorithm
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4.3 Probability thresholds and performance
metric

In this application, the primary objective of the eigen-

function classification algorithm is to identify the relevant

modes from a large dataset, which contains predominantly

uninteresting modes. The final model should only mis-

classify a few relevant modes as uninteresting whilst cor-

rectly filtering out most of the truly uninteresting modes.

Hence, for evaluating the model’s performance, we chose

two metrics: precision and recall. As usual [see e.g. 14],

precision and recall are defined as

precision ¼ true positives

false positivesþ true positives
; ð14Þ

recall ¼ true positives

false negativesþ true positives
; ð15Þ

where positives and negatives are modes that the model

labelled as relevant (class 1 or 2) and uninteresting (class

0), respectively. Denoting the elements of the confusion

matrix as cij, where the rows correspond to the true label,

and the columns to the predicted label, the precision and

recall are given as

precision ¼ d11
d01 þ d11

; recall ¼ d11
d10 þ d11

; ð16Þ

Table 2 Distribution of initial

and generated data samples

across different classes for

neural network classification

training, validation, and testing

phases

Dataset Class 0 Class 1 Class 2 Total #modes

Raw u Raw u u1 Raw u u2

Dataset 99.76 0 0.04 0 0 0.20 0 0 579 840

Training 0 25.00 0 3.75 33.75 0 3.75 33.75 512 per batch

Validation 0 33.34 0 33.33 0 0 33.33 0 10 000

Testing 99.79 0 0.04 0 0 0.17 0 0 57 720

For each class, the values are given as a percentage (%) of the total number of modes in the last column.

Entries associated to u and ul are then the percentage generated using Eqs. (12) and (13), respectively

Fig. 4 Diagram of the main building blocks of the neural networks
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dij ¼
d00 ¼ c00; d01 ¼ c01 þ c02;
d10 ¼ c10 þ c20; d11 ¼ c11 þ c12 þ c21 þ c22:

�

ð17Þ

This way, we emphasise the priority of identifying relevant

modes over distinguishing between classes 1 and 2. Finally,

as an informative metric, we introduce the balanced

accuracy [5],

balanced accuracy ¼ 1

2

d00
d00 þ d01

þ d11
d10 þ d11

� �
: ð18Þ

After training the network, the predicted probabilities for

each class are denoted as ðp0; p1; p2Þ. In the inference step,

instead of simply selecting the class with the highest

probability, we introduce thresholds a and b. We first

determine if p1 � a. If it is, class 1 is predicted. Otherwise,

we evaluate if p2 � b. If this condition is met, class 2 is

predicted. Otherwise, class 0 is the default prediction. To

improve the classification algorithm, the thresholds a and

b are optimised using validation data. This is done by

imposing a desired recall value, i.e. a tolerance on the

number of discarded relevant modes. We then seek the

highest possible precision as a function of a and b. Since

the distributions of validation and testing data are different

(Table 2), during testing we can expect the recall and

precision values to deviate from their validation values,

that are the results of this optimisation procedure.

4.4 Filtering

Once the thresholds for a and b are established, the

eigenfunctions of the testing data can again be subjected to

the class preserving maps of the form (12). The resulting

data couples ðx; eiufxÞ are evaluated by the network and

classified according to the optimised thresholds a and b.

Repeating this for m different phases uk (k ¼ 1; . . .;mÞ
results in a total of mþ 1 predictions (including the

unmodified data). Subsequently, the final label is the label

that was predicted the most often, with ties broken in

favour of relevant over uninteresting, and if decidedly

relevant, class 1 taking precedence over class 2. This

technique could be further improved by considering the

variance of the predictions in line with the work of Gal and

Ghahramani [12]. Furthermore, both techniques could be

used simultaneously. Nevertheless, we achieved satisfac-

tory results with calculating only the most likely prediction

from the ensemble of predictions generated from class

preserving maps which we report in the next section.

5 Results

First, the plain network was trained on 900 batches of 512

modes each. Then, using validation data, probability

thresholds a and b were optimised such that the corre-

sponding validation recall was at least 90%. Next, five

predictions were generated, and a final label was extracted,

as described in Sect. 4.4. The resulting confusion matrix is

shown in Fig. 5a. From this confusion matrix, we calculate

the precision, recall, and balanced accuracy using Eqs. (16-

18). The network thus achieves a recall of 94:3%, a pre-

cision of 36:3%, and a balanced accuracy of 97:0% on the

testing data. Therefore, of the modes classified as 1 or 2,

36:3% were truly relevant modes, whilst 5:7% of all rele-

vant modes were lost.

Similarly, the ResNet was trained on 2230 batches of

512 modes each, but the a and b thresholds were optimised

for a minimal validation recall of 95%. Following the same

classification process as the plain network resulted in the

confusion matrix in Fig. 6a. Again, applying Eqs. (16–18)

to this confusion matrix, the ResNet reached a recall value

of 97:6%, precision of 38:0%, and a balanced accuracy of

98:7% on the testing data, outperforming the plain network

in all metrics.

By imposing different minimal validation recall values,

we can control how many relevant modes are lost. Of

course, adapting the validation recall also changes the

testing recall, precision, balanced accuracy, and thresholds

(a, b). For varying validation recall values, the testing

recall, precision, and thresholds are visualised in Fig. 5b

for the plain network and in Fig. 6b for the ResNet.

Unsurprisingly, higher validation recall values lead to

higher testing recall, and lower testing precision and

thresholds. As the graphs show, the testing recall is con-

sistently higher than the imposed validation recall, with a

validation recall of 95% sufficing to achieve a perfect

testing recall for the plain network (at the cost of lower

precision). It is remarkable however that the a threshold is

independent of the imposed validation recall and remains at

a constant, high value of 71%. This implies that the net-

work easily recognises class 1 modes and assigns a high

probability to them. Moreover, if the minimal validation

recall is increased to 95%, there are no additional modes

mislabelled as class 1, and the decrease in precision is

solely due to the misclassification of class 0 modes as class

2 modes.

For the ResNet this behaviour is even more pronounced.

Since its a threshold is close to 1, with the b threshold only

slightly lower, the network has to assign extremely high

probabilities to either class 1 or 2 to consider a mode rel-

evant. However, if the imposed validation recall is larger
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than 95%, all modes are classified as class 1, i.e. a and

b vanish. Thus, the precision equals zero in this case.

Returning to the confusion matrices, two more obser-

vations are noteworthy. Firstly, the lower right 2� 2 sub-

matrix is diagonal for both networks. Hence, they clearly

distinguish between class 1 and class 2 modes. This is in

line with initial expectations, based on the eigenfunction

shapes, like those shown in Fig. 1c, d, which show a strong

peak at the jet boundary at r ¼ 1 for KHI modes in contrast

with the CDI’s oscillatory behaviour in the jet’s interior

(r\1). Secondly, the relative number of class 0 modes that

were misclassified as class 1 is much smaller than the

number of class 0 modes that were misclassified as class 2

for the plain network. In addition, it is worth noting that all

Fig. 5 Plain network. a Confusion matrix for a minimal validation recall of 90%. b Recall, precision, and thresholds as functions of the imposed

validation recall

Fig. 6 ResNet. a Confusion matrix for a minimal validation recall of 95%. b Recall, precision, and thresholds as functions of imposed validation

recall
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class 1 modes were correctly identified by both networks.

For the networks in Figs. 5a and 6a, all metrics have been

computed per class and are displayed in Table 3. From this

table it is clear that the ResNet has better recall values, and

achieves a higher precision in class 2 at the cost of a lower

precision in class 1. In both cases, the network has a higher

class 1 precision than class 2 precision.

6 Conclusion

Due to the large amount of natural oscillations of a single

plasma configuration (one run of the MHD spectroscopic

code Legolas), visual inspection of the eigenmodes to

identify characteristics can be a monotonous and time-

consuming task. In this work we have applied two con-

volutional neural networks to a non-binary classification

problem of ideal MHD eigenmodes in astrophysical jets,

analysed with Legolas. For a recall of 94:3% the plain

neural network left 0:55% of all modes for manual

inspection. The ResNet offered a significant improvement

with a recall of 97:6% leaving 0:43% for inspection. Fur-

thermore, neither network confused class 1 with class 2

modes in the test data. Since even the plain network pro-

vided good results already, we conclude that neural net-

works offer a great opportunity for automated mode

detection in Legolas data, and likely, for classification of

eigenproblem data in general.

In the context of large parameter studies with the

Legolas code, these results are particularly promising.

With an automated way of reliably identifying instabilities,

various parameters can be varied simultaneously, and the

resulting parameter space can be partitioned into sections

of similar behaviour efficiently. This approach could have

many applications, e.g. in the analysis of jet stability like

the problem presented here, or the problem of current sheet

stability in various astrophysical settings, where tearing

and Kelvin–Helmholtz instabilities compete [17, 20, 21].

A significant drawback of the supervised approach

however is of course the need for a large set of pre-clas-

sified data for training purposes. To sidestep this issue,

future investigations could focus on unsupervised

clustering algorithms to search for structures in Legolas

data, like the translational-azimuthal distinction in Taylor–

Couette flows [9] or the surface-body wave dichotomy in

flux tubes [11]. For large parameter studies like those

described in the previous paragraph, this method is espe-

cially appropriate, considering it requires less prior

knowledge of the types of modes one may encounter

throughout the parameter space.

Finally, it remains an open question whether a generally

applicable neural network for Legolas data is possible. In

particular, is it feasible to develop a neural network that

can predict which physical effect, like shear flow or mag-

netic shear, is responsible for each instability in a spec-

trum? In this regard, another hurdle to overcome is that a

generally applicable network should work for various grid

resolutions, unlike the network presented here. These

questions are left for future research.
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Table 3 Precision and recall (%) per class for both the plain network

and the ResNet

Plain ResNet

Class 0 1 2 0 1 2

Precision 99.99 72.73 32.06 99.99 55.81 46.60

Recall 99.65 100 94.85 99.78 100 96.97

Table 4 Files in the dataset used for validation and testing

Validation Testing

0001-HEL1-V14333.dat 0003-HEL1-V17200.dat

0002-HEL1-V14333.dat 0007-HEL1-V12900.dat

0002-HEL1-V18633.dat 0007-HEL1-V14333.dat

0003-HEL1-V15767.dat 0009-HEL1-V17200.dat

0003-HEL1-V18633.dat 0009-HEL1-V20067.dat

0004-HEL1-V14333.dat 0013-HEL1-V15767.dat

0008-HEL1-V14333.dat 0016-HEL1-V14333.dat

0009-HEL1-V18633.dat 0017-HEL1-V20067.dat

0010-HEL1-V14333.dat 0018-HEL1-V20067.dat

0012-HEL1-V17200.dat 0026-HEL1-V12900.dat

0016-HEL1-V15767.dat 0026-HEL1-V14333.dat

0017-HEL1-V17200.dat 0026-HEL1-V15767.dat

0018-HEL1-V14333.dat 0028-HEL1-V20067.dat

0019-HEL1-V15767.dat 0029-HEL1-V14333.dat

0020-HEL1-V14333.dat 0030-HEL1-V12900.dat

0020-HEL1-V15767.dat 0031-HEL1-V20067.dat

0026-HEL1-V17200.dat 0032-HEL1-V20067.dat

0027-HEL1-V15767.dat 0034-HEL1-V12900.dat

0028-HEL1-V15767.dat 0035-HEL1-V17200.dat

0030-HEL1-V20067.dat 0037-HEL1-V15767.dat

0034-HEL1-V20067.dat 0037-HEL1-V18633.dat

0036-HEL1-V18633.dat 0039-HEL1-V14333.dat

0037-HEL1-V14333.dat 0039-HEL1-V17200.dat

0038-HEL1-V15767.dat 0040-HEL1-V15767.dat

The remaining files were used for training
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The Neural Network source code is available on request.
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