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Abstract

When purebred laying hen chicks hatch, they remain at a rearing farm until approximately

17 weeks of age, after which they are transferred to a laying farm. Chicks or pullets are

removed from the flocks during these 17 weeks if they display any rearing abnormality. The

aim of this study was to investigate associations between single nucleotide polymorphisms

(SNPs) and rearing success of 4 purebred White Leghorns layer lines by implementing a

Bayesian network approach. Phenotypic traits and SNPs of four purebred genetic White

Leghorn layer lines were available for 23,000 rearing batches obtained between 2010 and

2020. Associations between incubation traits (clutch size, embryo mortality), rearing traits

(genetic line, first week mortality, rearing abnormalities, natural death, rearing success, pul-

let flock age, and season) and SNPs were analyzed, using a two-step Bayesian Network

(BN) approach. Furthermore, the SNPs were connected to their corresponding genes,

which were further explored in bioinformatics databases. BN analysis revealed a total of 28

SNPs associated with some of the traits: ten SNPs were associated with clutch size, another

10 with rearing abnormalities, a single SNP with natural death, and seven SNPs with first

week mortality. Exploration via bioinformatics databases showed that one of the SNPs

(ENAH) had a protein predicted network composed of 11 other proteins. The major hub of

this SNP was CDC42 protein, which has a role in egg production and reproduction. The

results highlight the power of BNs in knowledge discovery and how their application in com-

plex biological systems can help getting a deeper understanding of functionality underlying

genetic variation of rearing success in laying hens. Improved welfare and production might

result from the identified SNPs. Selecting for these SNPs through breeding could reduce

stress and increase livability during rearing.
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Introduction

This study aimed to identify single nucleotide polymorphisms (SNPs) associated with success-

ful rearing to improve welfare and production of laying hens. During rearing, some pullets will

die or are culled due to rearing abnormalities. The percentage of pullets that survive until the

end of the rearing phase is considered as the rearing success. In white Leghorn layers, rearing

success has been shown to be positively affected by clutch size [1]. Furthermore, in wild birds,

a swift’s nesting success was directly proportional to clutch size, showing that a larger clutch

size during incubation resulted in a higher survival [2]. Another aspect determining rearing

success is first week mortality. Besides a performance indicator, first week mortality is also a

welfare indicator, as high mortality indicates a potential welfare problem [3]. It has been dem-

onstrated that first week mortality positively correlates with total mortality in layer breeder

flocks [4]. First week mortality in broilers has been shown to be affected by season (P<0.001),

with the highest mortality (on average 1.18%) being recorded from mid-March until mid-

April and the lowest mortality (on average 1.08%) occurring between mid-September and

mid-October [5, 6].

Another aspect determining rearing success is culling due to rearing abnormalities. Yeboah

et al. [7] gave most attention to day-old chick quality with little attention for rearing abnormal-

ities during the rest of the chick’s life, meaning that rearing abnormalities in relation to rearing

success are hardly investigated. A final aspect determining rearing success is natural death. A

strong negative correlation has been found between natural death during rearing and rearing

success. According to Samkange et al. (2020), natural death in Lohmann Brown layers reared

for 12 months from day of placement in the barn onward, contributed to mortality up to

31.6% compared to culls caused by inflammatory conditions (20.9%), trauma (19.3%), canni-

balism (16.6%), or retained eggs (11.8%) [8]. A study that was done in a tropical climate

showed, mortality of layer breeders (over 78 weeks of age) is less during rearing compared to

younger breeders, three times more for the age category 39–58 weeks and 90 times more for

the age category 19–38 weeks [9]. Consequently, rearing success of the offspring is expected to

be influenced by breeder flock age. Rearing success and its underlying factors are probably

affected by genetics. For instance, White Leghorn pullets from three pure lines (Lines 1, 2 and

3) showed differences in survival rate, the survival rates were 47.2, 72.2, and 55.6% respectively

[10]. Brinker et al. (2018) examined the heritability of survival rate in three different layer

hybrids and found that there are SNPs that can be linked to survival [11]. To better understand

the complex biological systems involved in the relationship between SNPs and rearing success,

Bayesian networks (BN) can be applied.

BNs are defined as direct acyclic graphs displaying the joint probability distribution of a

given set of variables [12–14]. The graphs consist of two elements: i) nodes that represent each

one of the variables measured, and ii) links or edges, that represent the statistical relationships

or interaction between nodes [12, 14]. The mathematical properties of BNs do not allow loops

in the graph structure (e.g., a path over links that starts and ends at the same node) and conse-

quently the graph is acyclic. Relationships within BNs are commonly referred to as a family

analogy, where nodes can be parents, represented by those nodes with outgoing links to other

nodes, children, represented by those nodes with incoming links from other nodes, and

spouses, represented by those nodes that share a common child (or children) [12, 15]. The set

of parent and child nodes can be used to put the focus on one variables and to select a small

group of variables that have a direct link with the variable of interest [12, 15]. In poultry sci-

ence, BNs have been implemented to predict the egg production in European quail [16], to fur-

ther understand the management and welfare of laying hens in different housing systems [17],

or to identify factors and processes affecting the quality of composts, specially under tropical
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weather conditions, using poultry manures [18]. In the field of poultry genetics, only a few

studies applied BN algorithms to unravel hidden interactions and informative relationships

between a set of genetic or epigenetic features (e.g., differentially expressed genes, differentially

methylation regions) [19–22]. For example, the structure of a BN was learnt with some genes

previously known to be part of the fatty acid metabolism, allowing the possibility to identify

main interactions between them, potentially revealing relevant effects on the metabolic path

[19].

The aim of this study was to investigate relationships between SNPs and rearing success of

four purebred White Leghorn layer lines by implementing a BN approach. Recorded pheno-

typic traits determining rearing success were clutch size, first week mortality, rearing abnor-

malities, natural death, flock age, genetic line, season, and embryo mortality. We applied a

Bayesian approach involving four steps: i) reduction of the dimensionality, defined by the

SNPs data, by using a Naïve Bayes Classifier algorithm, ii) learning the structure of BNs in

order to unravel hidden relationships and interactions between the previously selected set of

SNPs and the phenotypic traits, iii) identifying key SNPs associated to each one of the individ-

ual phenotypic traits based on direct links with other variables, and iv) usage of different online

sources of genetic information to understand the biology behind the findings. The knowledge

obtained in this study will allow the further understanding of the key traits related to rearing

success together with the underlying genetics behind it, with the possibility of improving ani-

mal health and welfare and, therefore, the performance of laying hens in commercial settings.

Materials and methods

Phenotypic data

Hendrix Genetics, the Netherlands, provided a dataset of approximately 23,000 rearing batches

from four purebred genetic White Leghorn layer lines. Each batch contained eggs of one indi-

vidual dam. Between 2010 and 2020, eggs per individual dam were collected over a period of

14 days and incubated thereafter. After hatching, the chicks of a batch were identified in the

rearing barn with wing bands. The dataset contained different categories of potential explain-

ing factors: animal related factors, environmental factors, genetic factors, and rearing factors.

Animal related factors were genetic line, clutch size (the number of eggs laid by a dam within

the period of 14 days; as breeder hens are laying eggs continuously, clutch size can be viewed

as rather artificial, because it only reflects eggs laid during a specific period), and embryo mor-

tality (the percentage of dead embryos during incubation relative to the number of eggs that

was set from a batch at the start of incubation). Environmental factors included season, which

was defined as the period a rearing abnormality was registered (categorized into four classes;

December, January, February = Winter; March, April, May = Spring; June, July,

August = Summer; September, October, November = Autumn). Genetic factors included pedi-

gree and genotype. Rearing factors were flock age (age at which a rearing abnormality was

recorded for a pullet in that flock), and the rearing traits first week mortality, rearing abnor-

malities, natural death, and rearing success. Young birds are referred to as pullets from hatch

onward until about 17th weeks of age, after which they are moved to laying barns as adult lay-

ing hens.

Rearing success was calculated based on the values of three phenotypic traits and expressed

as a percentage according to the following formulae:

Rearing Success ¼ 100 � ðf irst week mortality þ rearing abnormalitiesþ natural deathÞ; ð1Þ

where first week mortality is the percentage of pullets that died naturally in the first week, rear-

ing abnormalities is the percentage of pullets that were removed from the rearing barn due to
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different remarks, and natural death is the percentage of pullets that died naturally after the

first week until 17 weeks of age.

Genotypic data. Hendrix Genetics provided genotypes of 1,748 dams, which are the

maternal parents of the pullets described in this study. The dams were genotyped with the Illu-

mina 60K SNP-chip for chickens and each genotype contained exactly 62,575 SNPs. No geno-

types were available on the pullets themselves.

Data discretization. The two-step Bayesian approach requires the data to be discretized

into a reduced number of categories, considering the distribution of each phenotypic trait. Ide-

ally, data should be discretized into a set of equally distributed categories, where each one of

the categories has the same number of observations [23, 24]. This is to avoid potential artefacts

of the Bayesian algorithms due to the imbalances between categories. Each one of the genetic

lines as well as each one of the seasons were treated as 4 different categories (“Line1” = 0,

“Line2” = 1, “Line3” = 2, “Line4” = 3; “autumn” = 0, “spring” = 1, “summer” = 2, “winter” = 3,

respectively). Embryo mortality, first week mortality, and natural death had zero as the most

frequent value, thus it was not possible to divide the data into equally distributed categories.

These 3 variables were encoded as binary variables, where values equal to zero were encoded

as zero, while the rest of the values were encoded as one. Clutch size was also discretized into a

binary variable based on the distribution of the data points: values lower than or equal to 12

were encoded as zero, while the rest were encoded as one. The rest of the phenotypic traits

(rearing success, flock Age, and rearing abnormalities) were discretized into 3-state variables.

The quantile discretization method was done, using the “arules” package in R [25].

Two-step Bayesian approach: Naïve Bayes and Bayesian networks. In this study, a

Naïve Bayes Classifier algorithm was used to reduce the dimensionality of the SNPs data, fol-

lowed by a BN algorithm, to learn the structure of the networks and to unravel hidden infor-

mative interactions between the phenotypic and the SNPs data. Both algorithms are based on

the Bayes rule, considering the formula in Eq (2).

PðMjDÞ ¼ PðDjMÞ∗PðMÞ=PðDÞ ð2Þ

where P(M|D) is the posterior probability of the model given the data; P(D|M) is the prior

probability of the data given the model; P(M) is the prior probability of the model; and P(D) is

the prior probability of the data.

To reduce the dimensionality of the genotypic data and to select relevant SNPs, a Naïve

Bayes Classifier algorithm was applied to each of the phenotypic traits of interest: clutch size,

first week mortality, natural death, rearing abnormalities, and rearing success, considering

each of them as the “y” variable or the class. For each class, the algorithm assumes that the

SNPs are independent from one another, and identifies which SNPs are best at predicting the

value of the phenotypic trait by providing an ordered list [26]. The 62,575 SNPs were randomly

divided into ten groups and the five phenotypic traits were individually used as the classes to

select the top 20 most significant SNPs. Dividing the full set of SNPs into ten random sets was

done to increase the statistical/computational power while accounting for the whole genetic

variability represented by the 62,757 SNPs [27]. The R package “caret” [28] was used to apply

the Naïve Bayes Classifier algorithm. Initially the “trainControl” function was set with the

“repeatedcv” as the method, 10 as the number of folds, and 3 as the repeated k-fold cross-vali-

dation number. Subsequently, the “train” function was applied, using “naive_bayes” as the

method. Finally, the function “varImp” was applied to get the top 20 most important SNPs.

These series of steps were repeated for each one of the 10 subsets of SNPs and then used for

further analysis in the second step of the approach. If a SNP was found to be among the top 20
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most significant ones of more than one phenotypic trait of interest, it was considered as a sin-

gle entry.

A BN algorithm was used to discover informative relationships and interactions between

SNPs and phenotypes, and to identify key SNPs associated with the phenotypic traits by select-

ing those having a direct link with the variables of interest. BNs allow the possibility of includ-

ing prior pieces of evidence in the form of a list of links to be blocked. Considering that

rearing success was calculated based on natural death, first week mortality, and rearing abnor-

malities, and to avoid the risk of including confounded features, a list of links to be blocked

was included before learning the structure of the BN (Table 1 –Confounded variables). This is

because the algorithm might find a link between the confounded features that are already

known as a result of previous knowledge, and it will not look for further interactions [29].

Additionally, imbalances between the discrete categories of the data might lead to the discov-

ery of links that should not be present as consequence of an artefact of the BN algorithm. In

order to deal with this challenge, a contingency test was applied to every possible pair of phe-

notypic traits to find possible links to be blocked [24, 30]. The contingency test consisted of a

Chi-square test applied to identify the lack of dependency between a given pair of variables. A

p-value (P� 0.25) was used as a threshold for the exclusion criteria (Table 1 –Contingency

test) as in previous studies [22, 24].

BN structure learning involves the exploration of the search space, using score-based algo-

rithms with the aim of looking for the optimal network that bests fits the data [14, 31]. In the first

iteration, the search space starts from an empty or a random graph, followed by the addition,

removal, or even reversal of a link between two nodes. The scores of the old and the new network

were calculated, compared, and the network with the highest score was kept. In our study, we

used a Simulated Annealing algorithm that involves an extra parameter known as temperature,

representing the probability of accepting a link that negatively impacts the score metric. As the

process iterates, the value of this parameter decreases, reducing the probabilities of accepting the

link. The whole process (adding, removing, or reversing links) was repeated until the score was

no longer improved or until a stopping criterion was reached (e.g., number of networks visited or

a certain period of time) [12, 14]. Banjo (available from http://www.cs.duke.edu/~amink/

software/banjo/) was used to learn the structure of the BNs between the phenotypic traits and the

SNPs. For each one of the ten datasets (relevant SNPs selected by the Naïve Bayes Classifier plus

the nine phenotypic traits), an individual network was built, using a Simulated Annealing algo-

rithm, scoring the networks with the Bayesian Dirichlet score, visiting as many networks as possi-

ble in a 30-minute search, and including the list of links to be blocked. Considering that running

several times the same search retrieved the same top highest scoring BN, the top graph was used

for further analysis. After this step, 10 top highest scoring BNs were learnt, each one of them cor-

responding to one of the 10 subsets of relevant SNPs plus the phenotypic traits.

Table 1. List of links blocked when learning the structure of the Bayesian network. Considering a link as the inter-

action between two nodes, the left side of the link represents the parent node (from), while the right side of the link rep-

resents the child node (to). The list corresponding to the confounded variables includes links blocked in both

directions, from—to and vice versa.

Confounded Variables Contingency Test

natural death–rearing abnormalities embryo mortality–first week mortality

rearing abnormalities–rearing success clutch size–first week mortality

first week mortality–rearing success embryo mortality–natural death

natural death–rearing success clutch size–natural death

season–rearing success

https://doi.org/10.1371/journal.pone.0297533.t001
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Once the structures of the BNs were learnt, those variables having a direct link with the fol-

lowing traits (nodes) of interest were selected: clutch size, first week mortality, rearing abnor-

malities, natural death, and rearing Success. Both phenotypic traits as well as SNPs closely

interacting with the node of interest were selected. A final overlapped network was built by

combining the nodes having direct links with the 5 phenotypic traits into one network. Fig 1

displays an overall view of the steps taken and the decisions made to build the overlapped

network.

Biological significance

The chromosomes and positions of the key SNPs were used to search for the ENSEMBL gene

IDs of these SNPs in the chicken’s genome of “BEDTools” [32] by using the “closest” function

that searches the nearest region in the genome having an Ensemble ID. Furthermore, the

ENSEMBL gene IDs were loaded into Database for Annotation, Visualization, and Integrated

Discovery (DAVID) bioinformatic tool [33, 34] to obtain their functional annotations.

DAVID provides an individual table (the Functional Annotation Table) with the correspond-

ing annotation of the gene, as well as Gene Ontology (GO) terms, Kyoto Encyclopaedia of

Genes and Genomes (KEGG) pathways, protein-to-protein interactions, and other pieces of

information regarding their functionality. With these pieces of information, DAVID searches

for overrepresented terms, using all SNPs being part of the overlapped network (Functional

Annotation Clustering), so that these terms can be used as possible tags of the main biological

processes associated to the relevant set of SNPs. Considering the SNPs with genetic attributes

(e.g., gene symbols), we searched for KEGG pathways associated to stress in our animal model

(Gallus gallus). The aim was to identify possible links between the relevant SNPs, the pheno-

typic traits, and stress (without taking into consideration the nature of it). We used the KEGG

online bioinformatic resource (kegg.jp) and we searched for pathways using “stress” as the key

word and “Gallus gallus” (gga) as the animal model. A total of 17 pathways were retrieved as

related to stress, and the annotated SNPs were individually searched in each one of these path-

ways. Those SNPs that were found to be part of stress pathways were used for further explora-

tion of their biological implications. Finally, the STRING bioinformatic resource (Search Tool

for the Retrieval of Interactive Genes, version 11.5 (https://version-11-5.string-db.org/) was

used to search for further predicted network interactions between the SNPs related to stress

pathways and other proteins. STRING provides networks of predicted protein-to-protein

interactions and they can come from different source of evidence, such as databases, experi-

ments, text mining, among others [35]. Finally, these pieces of information were combined

into a coherent story to further understand the underlying biological processes, the mecha-

nisms, and the implications related to the SNPs in the context of rearing success traits.

Results

Overlapped network: SNPs associated to rearing success traits

Fig 2 shows the overall structure of the overlapped network of the rearing traits and the SNPs.

All phenotypic traits were included in the overlapped network, but not all of them showed

informative and functional links to the SNPs. Based on the structure of the network, two dis-

tinct groups of phenotypic traits could be observed: clutch size, rearing abnormalities, first

week mortality, natural death, flock age, and rearing success together composed one of the

groups, while embryo morality, genetic line, and season composed the other group. This last

group of 3 phenotypic traits did not interact with any of the SNPs, however, it is important to

bear in mind that only those SNPs interacting with rearing success traits (clutch size, rearing

abnormalities, first week mortality, and natural death) were selected. The following

PLOS ONE Bayesian network analysis of rearing success in laying hens

PLOS ONE | https://doi.org/10.1371/journal.pone.0297533 March 28, 2024 6 / 18

https://version-11-5.string-db.org/
https://doi.org/10.1371/journal.pone.0297533


Fig 1. Overall view of the steps taken, and the decisions made, from the data to the overlapped network. For explanation see

text. (W = Genetic Line; S = Season; FA = Flock Age, EM = Embryo Mortality; FWM = First Week Mortality; ND = Natural

Death; CS = Clutch Size; RS = Rearing Success; RA = Rearing Abnormalities).

https://doi.org/10.1371/journal.pone.0297533.g001
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interactions were found across the ten sets of top BNs between those traits belonging to the

large group containing rearing success: clutch size—rearing abnormalities (CS-RA), rearing

abnormalities—first week mortality (RA-FWM), first week mortality—natural death

(FWM-ND), first week mortality—flock age (FWM-FA), flock age—natural death (FA-ND),

Fig 2. Overlapped network of phenotypic traits (clutch Size, CS; rearing abnormalities, RA; first week mortality, FWM; natural death, ND; Flock Age,

FA; rearing Success, RS; Embryo mortality, EM; Genetic Line, W; Season, S) and SNPs in four purebred genetic lines of White Leghorn layers. Phenotypic

traits are represented by the grey nodes, while SNPs are represented by the yellow nodes. Connections between the two types of nodes and within the

phenotypic traits represent links or edges, which are the probabilistic dependencies in the network.

https://doi.org/10.1371/journal.pone.0297533.g002

PLOS ONE Bayesian network analysis of rearing success in laying hens

PLOS ONE | https://doi.org/10.1371/journal.pone.0297533 March 28, 2024 8 / 18

https://doi.org/10.1371/journal.pone.0297533.g002
https://doi.org/10.1371/journal.pone.0297533


and flock age—rearing success (FA-RS). These traits belonging to the larger group of phe-

notypic traits were linked to 28 SNPs: clutch size was linked to 10 SNPs, rearing abnormali-

ties was linked to 10 different SNPs, natural death was linked to a single SNP, and first week

mortality was linked to seven SNPs (one of which was also linked to flock age). Relation-

ships with more than one link (e.g., RA—FWM) mean that the links was found in multiple

BNs.

DAVID, KEGG, and STRING: Gene ensemble and functional annotations

DAVID Functional Annotation Clustering showed that overrepresented terms across all 16

SNPs with genetic attributes (e.g., gene symbol) were part of two clusters: Cluster 1 was repre-

sented by Nucleus (UP KW CELLULAR COMPONENT, p-value = 0.18, Benjamini adjusted

p-value = 1), Transcription regulation and Transcription (UP KW BIOLOGICAL PROCESS,

p-value = 0.22, Benjamini = 0.68; p-value = 0.25, Benjamini = 0.68, respectively), and Nucleus

(GO Term, p-value = 0.39, Benjamini = 1); Cluster 2 was represented by Integral component

of membrane (GO Term, p-value = 0.35, Benjamini = 1), Membrane (UP KW CELLULAR

COMPONENT, p-value = 0.70, Benjamini = 1), and Transmembrane and Transmembrane

helix (UP KD DOMAIN, p-value = 0.75, Benjamini = 1; p-value = 0.89, Benjamini = 1, respec-

tively). Among the SNPs found to be interacting with the traits related to rearing success, three

of them were associated with KEGG pathways involved in the stress response, highlighted in

the DAVID Functional Annotation Table (Table 2). Such terms particularly relevant to the

phenotypic traits as well as stress are regulation of actin cytoskeleton (SNP: ENAH); mito-

phagy–animal (SNP: MITF); and MAPK signaling pathway, FoxO signaling pathway, and cel-

lular senescence (SNP: TGFB2).

Since the SNPs MITF, ENAH, and TGFB2 were found to be part of at least one of the 17

KEGG pathways (Table 2, KEGG pathways highlighted in bold), further potential connections

between them and other proteins were found by using the STRING bioinformatic resource.

Three different networks were built, one per each SNP, as shown in Figs 3–5. In each one of

the networks, key proteins were identified based on their degree of connectivity (the higher

the number of connections, the more important the node is). SNP MITF interacted with ten

other proteins, and within this network, the protein CREB1 interacted with seven other pro-

teins (Fig 3, light gey node with blue links); ENAH interacted with ten other proteins, and the

protein CDC42 interacted with nine other proteins (Fig 4, light gey node with blue links);

finally, TGFB2 interacted with nine other proteins, and the protein TGFB3 interacted with ten

other proteins (Fig 5, light gey node with blue links). Considering their degree of connectivity,

CREB1, CDC42, and TGFB3 represent three major hubs of the predicted networks.

Table 2. Functional annotation table from the analysis by the Database for Annotation, Visualization, and Inte-

grated Discovery (DAVID) corresponding to only those Single Nucleotide Polymorphisms (SNPs) properly anno-

tated and related to stress pathways. Underlined are highlighted terms particularly relevant to stress and the

phenotypic traits.

ENAH actin regulator (ENAH)

KEGG

PATHWAYS

Regulation of actin cytoskeleton.

Melanogenesis associated transcription factor (MITF)

KEGG

PATHWAYS

Mitophagy–animal, Melanogenesis.

Transforming growth factor beta 2 (TGFB2)

KEGG

PATHWAYS

MAPK signalling pathway, Cytokine-cytokine receptor interaction, FoxO signalling pathway,

Cell cycle, Cellular senescence, TGF-beta signalling pathway.

https://doi.org/10.1371/journal.pone.0297533.t002
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Yellow nodes on Figs 3–5 (MITF, ENAH, and TGFB2) represent the SNPs found with

the two-step Bayesian approach and their corresponding links with other proteins are

highlighted in orange (MITF interacted with 10 other proteins; ENAH interacted with 10

Fig 3. STRING predicted network of MITF. Nodes (rectangles) represent proteins, links represent connections identified from previous studies or from

curated databases.

https://doi.org/10.1371/journal.pone.0297533.g003
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other proteins; TGFB2 interacted with 9 other proteins). Considering their degree of con-

nectivity, proteins with the highest number of interactions are highlighted in light grey and

their corresponding links are highlighted in blue (Fig 3, CDC42, interacted with 9 other

Fig 4. STRING predicted network of ENAH. Nodes (rectangles) represent proteins, links represent connections identified from previous studies or from

curated databases.

https://doi.org/10.1371/journal.pone.0297533.g004
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proteins; Fig 4, CREB1, interacted with 7 other proteins; Fig 5, TGFB3, interacted with 10

other proteins). These proteins represent major hubs of the networks provided by

STRING.

Fig 5. STRING predicted network of TGFB2. Nodes (rectangles) represent proteins, links represent connections identified from previous studies or from

curated databases.

https://doi.org/10.1371/journal.pone.0297533.g005
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Discussion

Rearing success involves features as clutch size, first week mortality, rearing abnormalities,

and natural death. The structure of the BN included all phenotypic traits, divided into two dis-

tinct clusters. SNPs highlighted as influencing rearing success by BN analysis were mostly asso-

ciated with clutch size, rearing abnormalities, and first week mortality.

The identification of clutch size as a connected node in the overlapped network on Fig 2,

may indicate clutch size as an important trait to consider for improving rearing success. The

connections between clutch size and rearing abnormalities acted as the primary bridge

between incubation and rearing phase. This connection might be because removing animals

from the barn due to rearing abnormalities resulted in a lower rearing success. Additionally,

the strong connection between first week mortality and rearing abnormalities might suggest

first week mortality is an essential performance indicator [3].

Furthermore, first week mortality interacted with natural death and flock age (strongest

association with rearing success), implying that breeder flock age during rearing can influence

rearing success of the pullets. A study found that layer breeders older than 78 weeks had a

lower risk of natural death compared to younger breeders [9].

After applying the two-step BN approach, a set of 28 SNPs were found to be closely associ-

ated with some of the phenotypic traits. DAVID Functional Annotation Clustering did sepa-

rate the SNPs into two clusters but had generally non-significant associations with functions

with both clusters. However, the DAVID Functional Annotation Table revealed corresponding

annotations and KEGG pathway for 16 of the SNPs. Among them, three SNPs, MITF, ENAH,

and TGFB2 had KEGG pathways related to stress in chickens, and they are of interest to the

current study (Table 2 –terms highlighted in bold). Although the main focus of our study was

particularly on stress, it is important to bear in mind that these SNPs (MITF, ENAH, and

TGFB2) are also playing other roles in the physiology of the chickens, as seen in Table 2 (not

highlighted terms). Stress is one of the main multifactorial problems the poultry industry is

facing nowadays, mostly because of the housing and breeding conditions and potentially

worsen by the global warming phenomenon [36–39]. Additionally, there are several other

events and/or conditions that might be stressful for poultry species, such as transportation or

social interactions [40–42]. Initially, these three SNPs had a direct link with clutch size, which

could be considered as the starting point of the life cycle of poultry in commercial settings.

Due to this potential connection between rearing success and stress based on those KEGG

pathways found by the DAVID tool, thereafter, we used the STRING database to look for pro-

teins that have associations with the SNPs of interest. The reason behind this was to, on the

one hand, increase the number of genetic factors involved in the complex biological system,

and, on the other hand, to address the potential influence of stress in the lives of laying hens

during the rearing phase. Complex networks were found by STRING, and three proteins were

found as major hubs of these networks based on their degree of connectivity: CREB1 interacted

with 7 other proteins, including MITF, CDC42 interacted with 9 other proteins, including

ENAH, and finally, TGFB3 interacted with 10 other proteins, including TGFB2.

Regarding the biology behind these SNPs and proteins, some of them have been involved in

embryonic development, neural development, performance parameters, while other have been

identified to play a role in reproduction [43–49]. Initially, it is important to highlight that the

three SNPs displayed a functional interaction with clutch size, and according to the consensus

network, this node had a close direct relationship with rearing abnormalities. Although clutch

size is mostly relevant when it comes to reproduction, as it represents the number of eggs laid

in a period of 14 days, Bouba et al. (2023) indicated there is a weak positive Pearson’s correla-

tions (R) between (clutch size and rearing success, R: 0.24) and a strong negative R between
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(rearing abnormalities and rearing success, R: -0.85) which suggests that smaller clutch size

may be related with more rearing abnormalities [1]. When it comes to development, TGFB2
and TGFB3 belong to the transforming growth factor family, and they are involved in different

type of mechanisms and processes [48–50]. They regulate chondrocyte differentiation and

hypertrophy as well as the morphogenesis of digits in the limbs, as chicks suffer from dyschon-

droplasia when the TGF levels are low, or the presence of TGF in ectopic regions leads to the

formation of extra digits in the avian limbs [49, 50]. ENAH and CDC42 have been reported to

have a role in the vascular system and the gaseous exchange of the chorioallantois membrane

during embryonic development and in defining the destiny of cells during the somatic seg-

mentation, as the absence (or low levels) of CDC42 leads to the differentiation of cells into epi-

thelial cells, while the presence of CDC42 benefits the preservation of mesenchymal cells [44,

46]. MITF and CREB1 have also been reported to have some effects on development: MITF has

been identified in chickens as well as quail with different skin and feather colours, while

CREB1 is involved in neural and retinal development [43, 47]. Considering the role of these

genes and proteins in development, reproduction, and performance, changes in their expres-

sion levels, pre-processing, and/or functionality might lead to rearing abnormalities and

increasing the odds of dying out of a natural death early in life or later during the rearing

phase. The overlapped network (Fig 2) showed some serial connections between clutch size,

rearing abnormalities, first week mortality, and natural death. As previously described, some

of the SNPs and proteins might have impacts on the visible phenotype, while others might also

have hidden consequences not visible to the human eye, especially during embryonic develop-

ment, but still affect rearing abnormalities, first week mortality, and natural death. These con-

sequences might represent a potential link with stress, as they all are welfare-related issues that

birds will face during their life. Even though the chickens are not exposed to an external source

of stress, such as heat stress or physical restraint, they are under the influence of a chronic

influence of an internal source of information, as they will not be able to express normal

behaviour, which is one of the five freedoms of animal welfare [51].

Considering that clutch size represents the capability of laying a certain number of eggs in a

particular period, one of the proteins found by STRING has a potential role in reproduction.

The protein CDC42, that interacted with ENAH, has been identified in the hypothalamus and

the pituitary of red-feather Taiwan chickens with high egg production rates [45]. Particularly,

the gene that encodes for this protein was upregulated in contrast with those chickens with

low egg production rates [45]. According to Chen et al., there were multiple biological pro-

cesses associated with this gene, such as cellular physiology, cell communication, growth, dif-

ferentiation, and adhesion, regulation of cellular and physiological processes, as well as some

KEGG pathways, such as focal adhesion, adherent junctions, tight junctions, MAPK signalling

pathway, among others [45]. In commercial settings, most commercial hens lay almost 14 eggs

in a period of 14 days, but some of them do not achieve that goal. Although it seems difficult to

increase the number of eggs laid in that particular time frame, it is plausible to think of the pos-

sibility of increasing the efficiency of those hens that have lower production eggs. Future stud-

ies can be designed to further understand the biological role ENAH and its link with CDC42 in

reproduction, with potential emphasis on fertility, follicle development, and embryonic

survival.

Conclusion

It is important to highlight the exploratory nature of our study, and the two-step Bayesian

approach can be seen as an alternative to more traditional widely used genetic approaches,

such as Genome-Wide Association Studies (GWAS). Both strategies can lead to the discovery
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of new hallmark genetic features related to phenotypes of interest. Future research studies can

be designed with the aim of using the identified SNPs in commercial setting and evaluate

whether they can be used to improve animal health and welfare, with indirect implications on

reproduction, survival, and the performance of laying hens.

Acknowledgments

The authors would like to thank Hendrix Genetics for providing the data and the ChickenS-

tress European training network for facilitating the collaboration between the different organi-

zations/institutions affiliated with this study.

Author Contributions

Conceptualization: Emiliano A. Videla Rodriguez, V. Anne Smith, Henry van den Brand, T.

Bas Rodenburg, Bram Visser.

Data curation: Ismalia Bouba.

Formal analysis: Ismalia Bouba.

Funding acquisition: V. Anne Smith, T. Bas Rodenburg, Bram Visser.

Investigation: Ismalia Bouba, Emiliano A. Videla Rodriguez.

Methodology: V. Anne Smith.

Resources: Bram Visser.

Supervision: V. Anne Smith, Henry van den Brand, T. Bas Rodenburg, Bram Visser.

Validation: V. Anne Smith, Henry van den Brand, T. Bas Rodenburg, Bram Visser.

Visualization: Emiliano A. Videla Rodriguez.

Writing – original draft: Ismalia Bouba, Emiliano A. Videla Rodriguez.

Writing – review & editing: Ismalia Bouba, Emiliano A. Videla Rodriguez, V. Anne Smith,

Henry van den Brand, T. Bas Rodenburg, Bram Visser.

References
1. Bouba I, van den Brand H, Kemp B, Rodenburg TB, Visser B. Genetics of rearing success in four pure

laying hen lines during the first 17 weeks of age. Poult Sci. 2023; 102:102576. https://doi.org/10.1016/j.

psj.2023.102576 PMID: 36913755

2. Pichorim M. The influence of clutch and brood sizes on nesting success of the biscutate swift, strepto-

procne biscutata (Aves: Apodidae). Zoologia. 2011; 28: 186–192. https://doi.org/10.1590/S1984-

46702011000200005

3. Yerpes M, Llonch P, Manteca X. Factors associated with cumulative first-week mortality in broiler

chicks. Animals. 2020; 10: 310. https://doi.org/10.3390/ani10020310 PMID: 32079179

4. Olsen RH, Frantzen C, Christensen H, Bisgaard M. An investigation on first-week mortality in layers.

Avian Dis. 2012; 56: 51–57. https://doi.org/10.1637/9777-051011-Reg.1 PMID: 22545528

5. Koknaroglu H, Atilgan A. Effect of season on broiler performance and sustainability of broiler production.

J Sustain Agric. 2007; 31: 113–124. https://doi.org/10.1300/J064v31n02_08

6. Yassin H, Velthuis AGJ, Boerjan M, van Riel J V. Field study on broilers’ first-week mortality. Poult Sci.

2009; 88: 798–804. https://doi.org/10.3382/ps.2008-00292 PMID: 19276423

7. Yeboah PP, Konadu LA, Hamidu JA, Poku EA, Wakpal D, Kudaya PY, et al. Comparative analysis of

hatcheries contribution to poor development of day-old chicks based on biological and immunological

performance. Vet World. 2019; 12: 1849–1857. https://doi.org/10.14202/vetworld.2019.1849-1857

PMID: 32009765

PLOS ONE Bayesian network analysis of rearing success in laying hens

PLOS ONE | https://doi.org/10.1371/journal.pone.0297533 March 28, 2024 15 / 18

https://doi.org/10.1016/j.psj.2023.102576
https://doi.org/10.1016/j.psj.2023.102576
http://www.ncbi.nlm.nih.gov/pubmed/36913755
https://doi.org/10.1590/S1984-46702011000200005
https://doi.org/10.1590/S1984-46702011000200005
https://doi.org/10.3390/ani10020310
http://www.ncbi.nlm.nih.gov/pubmed/32079179
https://doi.org/10.1637/9777-051011-Reg.1
http://www.ncbi.nlm.nih.gov/pubmed/22545528
https://doi.org/10.1300/J064v31n02%5F08
https://doi.org/10.3382/ps.2008-00292
http://www.ncbi.nlm.nih.gov/pubmed/19276423
https://doi.org/10.14202/vetworld.2019.1849-1857
http://www.ncbi.nlm.nih.gov/pubmed/32009765
https://doi.org/10.1371/journal.pone.0297533


8. Samkange A, Mushonga B, Kandiwa E, Ndamonako J, Mbiri P, Gorejena B, et al. Assessment of Nor-

mal Mortalities, Biosecurity and Welfare of Lohmann Brown Layers at a Farm in Central Namibia. Int J

Poult Sci. 2020; 19: 503–512. https://doi.org/10.3923/ijps.2020.503.512

9. Shittu A, Raji AA, Madugu SA, Hassan AW, Fasina FO. Predictors of death and production performance

of layer chickens in opened and sealed pens in a tropical savannah environment. BMC Vet Res. 2014;

10: 214. https://doi.org/10.1186/s12917-014-0214-7 PMID: 25212591

10. Kaiser MG, Lamont SJ. Genetic line differences in survival and pathogen load in young layer chicks

after Salmonella enterica serovar enteritidis exposure. Poult Sci. 2001; 80: 1105–1108. https://doi.org/

10.1093/ps/80.8.1105 PMID: 11495461

11. Brinker T, Bijma P, Vereijken A, Ellen ED. The genetic architecture of socially-affected traits: a GWAS

for direct and indirect genetic effects on survival time in laying hens showing cannibalism. Genet Sel

Evol. 2018; 50: 38. https://doi.org/10.1186/s12711-018-0409-7 PMID: 30037326

12. Heckerman D, Geiger D, Chickering DM. Learning Bayesian Networks: The Combination of Knowledge

and Statistical Data. Mach Learn. 1995; 20: 197–243. https://doi.org/10.1023/A:1022623210503

13. Pearl J. Probabilistic reasoning in intelligent systems:: networks of plausible inference (Morgan kauf-

mann series in representation and reasoning). Morgan Kaufmann Publishers, San Mateo, Calif; 1988.

14. Nagarajan R, Scutari M, Lèbre S. Bayesian Networks in R: with Applications in Systems Biology.

Springer; 2013. https://doi.org/10.1007/978-1-4614-6446-4

15. Aliferis CF, Statnikov A, Tsamardinos I, Mani S, Koutsoukos XD. Local causal and markov blanket

induction for causal discovery and feature selection for classification part I: Algorithms and empirical

evaluation. J Mach Learn Res. 2010; 11: 171–234.

16. Felipe VPS, Silva MA, Valente BD, Rosa GJM. Using multiple regression, Bayesian networks and artifi-

cial neural networks for prediction of total egg production in European quails based on earlier expressed

phenotypes. Poult Sci. 2014; 94: 772–780. https://doi.org/10.3382/ps/pev031 PMID: 25713397

17. Comin A, Jeremiasson A, Kratzer G, Keeling L. Revealing the structure of the associations between

housing system, facilities, management and welfare of commercial laying hens using Additive Bayesian

Networks. Prev Vet Med. 2019; 164: 23–32. https://doi.org/10.1016/j.prevetmed.2019.01.004 PMID:

30771891

18. Faverial J, Cornet D, Paul J, Sierra J. Multivariate analysis of the determinants of the end-product qual-

ity of manure-based composts and vermicomposts using Bayesian network modelling. PLoS One.

2016; 11: e0157884. https://doi.org/10.1371/journal.pone.0157884 PMID: 27314950

19. Li H, Wu G, Zhang J, Yang N. Identification of the heart-type fatty acid-binding protein as a major gene

for chicken fatty acid metabolism by bayesian network analysis. Poult Sci. 2010; 89: 1825–1833.

https://doi.org/10.3382/ps.2010-00699 PMID: 20709966

20. Hidano A, Yamamoto T, Hayama Y, Muroga N, Kobayashi S, Nishida T, et al. Unraveling antimicrobial

resistance genes and phenotype patterns among Enterococcus faecalis isolated from retail chicken

products in Japan. PLoS One. 2015; 10: e0121189. https://doi.org/10.1371/journal.pone.0121189

PMID: 25781022

21. Videla Rodriguez EA, Mitchell JBO, Smith VA. A Bayesian network structure learning approach to iden-

tify genes associated with stress in spleens of chickens. Sci Rep. 2022; 12: 7482. https://doi.org/10.

1038/s41598-022-11633-7 PMID: 35523843

22. Videla Rodriguez EA, Pértille F, Guerrero-Bosagna C, Mitchell JBO, Jensen P, Smith VA. Practical

application of a Bayesian network approach to poultry epigenetics and stress. BMC Bioinformatics.

2022; 23: 261. https://doi.org/10.1186/s12859-022-04800-0 PMID: 35778683

23. Yu J, Smith VA, Wang PP, Hartemink AJ, Jarvis ED. Advances to Bayesian network inference for gen-

erating causal networks from observational biological data. Bioinformatics. 2004; 20: 3594–3603.

https://doi.org/10.1093/bioinformatics/bth448 PMID: 15284094

24. Milns I, Beale CM, Anne Smith V. Revealing ecological networks using Bayesian network inference

algorithms. Ecology. 2010; 91: 1892–1899. https://doi.org/10.1890/09-0731.1 PMID: 20715607

25. Hahsler M, Grün B, Hornik K. Arules—A computational environment for mining association rules and

frequent item sets. J Stat Softw. 2005; 14: 1–25. https://doi.org/10.18637/jss.v014.i15
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