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Abstract—Accurate, high-resolution 3D mapping of environ-
mental terrain is critical in a range of disciplines. In this study,
we develop a new technique, called the PCFilt-94 algorithm, to
extract 3D point clouds from coarse resolution millimetre-wave
radar data cubes and quantify their associated uncertainties.
A technique to non-coherently average neighbouring waveforms
surrounding each AVTIS2 range profile was developed in order to
reduce speckle and was found to reduce point cloud uncertainty
by 13% at long range and 20% at short range. Further,
a Voronoi-based point cloud outlier removal algorithm was
implemented which iteratively removes outliers in a point cloud
until the process converges to the removal of 0 points. Taken
together, the new processing methodology produces a stable point
cloud, which means that: 1) it is repeatable even when using
different point cloud extraction and filtering parameter values
during pre-processing, and 2) is less sensitive to over-filtering
through the point cloud processing workflow. Using an optimal
number of Ground Control Points (GCPs) for georeferencing,
which was determined to be 3 at close range (<1.5 km) and 5
at long range (>3 km), point cloud uncertainty was estimated to
be approximately 1.5 m at 1.5 km to 3 m at 3 km and followed
a Lorentzian distribution. These uncertainties are smaller than
those reported for other close-range radar systems used for
terrain mapping. The results of this study should be used as
a benchmark for future application of millimetre-wave radar
systems for 3D terrain mapping.

Index Terms—Millimetre-wave radar, 3D point clouds, wave-
form averaging, point cloud filtering.

I. INTRODUCTION

MAPPING the changing shape and structure of Earth
surface phenomena is vital for understanding envi-

ronmental processes. Active sensors, such as radar or lidar,
scan across a scene of interest at multiple azimuth (θ) and
elevation (ϕ) angles, measuring the reflected signal intensity
at different range (R) bins. This leads to the construction
of a 3D data cube of signal backscatter (R, θ, ϕ). 3D point
clouds, which represent the terrain geometry in x, y, and z, are
extracted from these data cubes and are used to quantify Earth
surface topography. They have been most widely derived from
Terrestrial Laser Scanners (TLS) and Lidar [1]–[3] where the
data cubes are denser compare to those extracted from radar
measurements due to the higher angular resolution of electro-
optical techniques. Developing methodologies to extract ter-
rain elevation from these 3D data cubes and their associated
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uncertainties is critical in determining the significance of
spatial patterns that exist in such data sets, as well as the
ability to detect changes when comparing multi-temporal point
clouds.

Millimetre-wave radar, which operates in the frequency
range 30 to 300 GHz (wavelengths of 10 mm to 1 mm), can
map terrain at high angular resolution for a given aperture size
in conditions of reduced visibility using compact systems [4].
These higher radar frequencies have seldom been used for ter-
rain mapping due to its weaker performance at both long range
and in adverse weather conditions compared to conventional
lower frequency radar systems. However, the smaller physical
size of millimetre-wave radar systems enables their deploy-
ment onto vehicles for short-range perception (i.e. up to a few
km) and target detection when visibility is obscured. In this
configuration, they have been used to generate real-time maps
of quarries (both at the surface and underground) during dusty
conditions in order to aid navigation and reduce the probability
of collision with machinery and quarry cliffs [5], [6]. Similarly,
helicopter propellers create dust storms during landing, known
as ‘brown-out’, and millimetre-wave radars have enabled real-
time surface mapping (synthetic vision) in Degraded Visual
Environments (DVE) via helicopter-mountable radar systems
[7], [8]. They can also be used to detect objects such as
pylons to ensure safe landing [9] and for 3D mapping using
Interferometric Synthetic Aperture Radar (InSAR) [10].

Long-range 3D mapping of terrain up to 7 km has been
demonstrated with millimetre-wave radar by using real aper-
ture systems with narrow beams to increase antenna gain and
received signal power. The All-weather Volcano Topography
Imaging Sensor (AVTIS), which operates at 94 GHz [11], was
designed for this purpose and acquires a coarse resolution
data cube by scanning across a scene of interest. Using a
simple range to maximum received power algorithm, AVTIS
has been successfully used to map volcanic lava dome growth
since its first deployment in 2004 [11]–[13]. Results from field
trials at the Soufrière Hills volcano in Montserrat illustrated
the potential of AVTIS for measuring lava dome topography
at ranges of up to 3.8 km [12] and volcanic lava extrusion
rates [11], [14]. Macfarlane et al. [13] further demonstrated
the radar capabilities by mapping topographic changes at
Arenal Volcano in Costa Rica alongside measurements of
radar backscatter to examine an active lava flow. Despite these
successful applications of AVTIS for volcano monitoring, the
current surface elevation extraction methodology is simple
and requires improvement in order to make full use of the
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information contained within the data cube.
The primary aim of this study is to develop and demonstrate

a new technique (the PCFilt-94 algorithm) to extract and filter
3D point clouds from coarse resolution (R, θ, ϕ) radar data
cubes. The accuracy of the new algorithm is evaluated by
comparing 94 GHz radar 3D point clouds extracted using the
PCFilt-94 algorithm with a validation point cloud acquired
using TLS with centimetre accuracy. In Section II we discuss
previous studies investigating point cloud extraction and fil-
tering methodologies. In Section III, we introduce the new
PCFilt-94 algorithm, whilst in Section IV, we describe field
data collection and methods to quantify point cloud uncertain-
ties. Section V describes the performance and accuracy of the
new methodology, whilst the results are discussed in Section
VI before concluding in Section VII.

II. RELATED WORK

The angular resolution of a radar is coarser than electro-
optical instruments, hence their 3D mapping products are less
accurate. Therefore, techniques to extract 3D surfaces from
radar data cubes are generally more simplistic compared to
methodologies developed for TLS systems. Macfarlane et al.
[11] implemented a simple three-stage processing workflow
to extract 3D point clouds from AVTIS data cubes (hereafter
called the ’original algorithm’). The methodology used a
two-way low pass filter to smooth range profiles of radar
backscatter along each Line of Sight (LoS) (hereafter called a
waveform), calculated the range to maximum radar received
power along each waveform, and removed low power points
by manually thresholding the resulting histogram of radar
backscatter. The smoothing caused range migration and the
terrain detection was sensitive to speckle which altered the
apparent position of the strongest scattering target along each
LoS. Target detection based on Constant False Alarm Rate
(CFAR) approaches have also been developed [15] but these
methods are unsuitable for long-range mapping when terrain
returns have a low Signal-to-Noise Ratio (SNR). Other meth-
ods have mapped 3D surfaces using statistically significant
recurring terrain returns [16] and simple first echo detection
in pulsed radar systems [17]. The simplicity of the current set
of terrain extraction techniques from radar data cubes does not
account for the wide beams of radar systems and the impact of
speckle, both of which may lead to erroneous returns within
the terrain extraction methodology.

The range to a target in TLS data cubes was traditionally
measured as the first or last return along each waveform [1],
[18] and so full-waveform Lidar/TLS data was developed to
improve terrain extraction algorithms by digitising the full
backscatter response of the target [1]. This has led to the
development of more sophisticated algorithms to extract point
clouds of surfaces. Decomposition of a waveform into its
component Gaussian parts has been used to detect multiple
terrain returns and isolate the existence of weak echoes [19].
Whilst this method assumes that backscattered echoes are
normally distributed, they perform well in complex topo-
graphic environments. Alternatively, stacking of neighbouring
backscatter waveforms that are scaled based on their position

and relative intensities [20] can be used to improve the
waveform Signal-to-Noise Ratio (SNR). This methodology has
been applied to TLS waveforms to detect weak echoes [21],
enabling the extraction of denser 3D point clouds. Finally,
deconvolution filters have been used to remove the beam
pattern characteristics of the sensor from the backscattered
signal in order to reduce noise and improve the positional
accuracy of resultant point clouds [22]. The more sophisticated
TLS point cloud extraction methodologies have the potential to
be transfered to radar data cubes for improved surface mapping
in obscuring weather conditions.

3D point cloud filtering aims to remove non-terrain points
and outliers from the point cloud. Simple methods based on
thresholding the distribution of backscattered power values are
typically used to remove the majority of non-terrain points
from a point cloud [11], [23] and typically act as an initial
processing step. Subsequent filtering steps aim to remove point
cloud outliers that were not removed in the first stage and the
detection of these points is usually based on the statistical,
distance, and projection relationships between different points
[24]. For example, Schall et al. [25] identified point cloud
clusters related to the presence of terrain using kernel density
estimation, where outliers were identified as existing outside
of terrain point clusters. Point cloud outlier detection using
density estimators performs well on dense point clouds from
TLS sensors but is less suitable for coarse resolution radar
data cubes where the distance between points may be multiple
metres, potentially leading to the false identification of outliers
in a radar point cloud. Further, neighbourhood functions that
compute the average distance of a point to it’s neighbour
have been used to identify point cloud clusters related to
terrain [26], but this technique require manual intervention to
determine a suitable threshold for a point to be considered an
outlier.

III. THE PCFILT-94 ALGORITHM

In this section, we introduce the PCFilt-94 algorithm which
extracts and filters 3D point clouds from coarse data cubes
acquired from 94 GHz radar systems. This new algorithm
builds upon ideas developed for TLS point cloud extraction
and filtering (see section II) and adapts them for processing
coarser resolution 94 GHz radar 3D data cubes. An overview
of the new methodology is presented in Fig. 1. Here, we
provide the theoretical basis for the new methodology and use
examples from data acquired using the 2nd generation AVTIS
(AVTIS2) radar to demonstrate its application.

A. Theory
A real-aperture radar with a circular beam illuminates the

terrain at sequential angular increments, where the centre of
the footprint is given by cb(θn, ϕn) (Fig. 2). Sequential beam
footprints spatially overlap the scene and are thus at least
partially correlated [27]. The footprint centre at subsequent
azimuthal and elevation steps (cb(θn, ϕn)) is then a function
of the spatial sampling interval in azimuth (∆θ) and elevation
(∆ϕ):

cb(θn, ϕn) ≈ cb(θn ± nθ∆θ, ϕn ± nϕ∆ϕ) (1)
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Fig. 1. The PCFilt-94 processing chain used to derive 3D point clouds from
radar data cubes. The box colours represent the following: light blue = pre-
and post-processing, white = point cloud extraction and filtering, brown =
mid-processing step.

where nθ and nϕ represent the number of subsequent angular
increments in azimuth and elevation, respectively, within a
radar scan and are both equal to 0 at the first radar angular
position (c1). Two separate beam footprints along the azimuth
and elevation axes, respectively, are considered to be overlap-
ping when the distance between their respective beam centres
is at least half the two-way radar beamwidth i.e. they are over-
sampled. This is because Nyquist sampling (spatially fully
sampled) requires points be acquired at every half two-way
beamwidth. Therefore, the number of overlapping footprints
across the full beam footprint (i.e. in the positive and negative
azimuthal and elevation directions) can be calculated by:

Nθ =
θ2
∆θ

, Nϕ =
ϕ2

∆ϕ
where Nθ, Nϕ = Z (2)

where θ2 and ϕ2 are the two-way radar beamwidths in
azimuth and elevation, respectively. Using these results, the
neighbouring waveforms that are contained within a beam
footprint at position cb(θn, ϕn) along the azimuth (Wθ) and

elevation (Wϕ) axes can be formulated as follows (Fig. 2):

Wθ =

{
cb

(
θn − Nθ

2
∆θ, ϕn

)
, . . . , cb(θn − nθ∆θ, ϕn),

cb(θn, ϕn), cb(θn + nθ∆θ, ϕn),

. . . , cb

(
θn +

Nθ

2
∆θ, ϕn

)}
(3)

Wϕ =

{
cb

(
θn, ϕn − Nϕ

2
∆ϕ

)
, . . . , cb(θn, ϕn − nϕ∆ϕ),

cb(θn, ϕn), cb(θn, ϕn + nϕ∆ϕ),

. . . , cb

(
θn, ϕn +

Nϕ

2
∆ϕ

)}
(4)

Each member of the Wθ and Wϕ sets are defined by the
centre of neighbouring footprints, hence the minimum overlap

of the waveform centred on cb

(
θn ± Nθ

2
∆θ, ϕn ± Nθ

2
∆ϕ

)
is

half its beam area and therefore satisfies the Nyquist criterion
for using neighbouring samples to reconstruct the signal at
cb(θn, ϕn). For a radar transmitting a circular beam pattern,
the angular coordinates of waveforms that exist beyond the
azimuth (θ) and elevation (ϕ) axes are considered to be
contained within the beam footprint at cb(θn, ϕn) (wθϕ) under
the following condition:

{wθϕ|d [cb(θn, ϕn), cb(θn ± nθ∆θ, ϕn ± nϕ∆ϕ)]

<
β(θ2, ϕ2)

2

}
(5)

That is to say, the centre of a beam footprint given by
cb(θn ± nθ∆θ, ϕn ± nϕ∆ϕ) overlaps with cb(θn, ϕn) if the
angular distance (d) between the two is smaller than half
the two-way radar beamwidth (β(θ2, ϕ2)). Bringing all of the
above together, the complete set of waveforms overlapping
with any footprint (cb(θn, ϕn)) is given by:

Wθϕ = {WθWϕwθϕ} (6)

These equations demonstrate that the characteristics of a signal
at any particular angular position cb(θb, ϕn) estimated from
a single waveform can be reconstructed by integrating those
contained within the beam overlap area defined by the set
Wθϕ.

B. Waveform Averaging

We develop a method based on averaging neighbouring
waveforms from locally surrounding lines of sight to suppress
noise along a raw Signal-to-Noise Ratio (SNR) waveform (Fig.
3). This spatial averaging smooths the impact of rapid coherent
fluctuations due to speckle and reveals a smoother underlying
pattern. In theory, the terrain signal SNR can be improved
by non-coherently averaging all waveforms (i.e. frequency
spectra) from Wθϕ to generate an improved estimate of the
range to footprint centre (Cb):

Cb(θn, ϕn) =
1

N

N∑
N=1

Wθϕ (7)
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Fig. 2. Schematic display of a beam footprint area with a centre of
cb(θn, ϕn) overlapping with footprints whose centre points are given by
cb(θn ± nθ∆θ, ϕn) in azimuth and cb

(
θn, ϕn ± nϕ∆ϕ

)
in elevation,

where ∆θ and ∆ϕ are the angular intervals in azimuth and elevation,
respectively. For simplicity, points beyond the azimuth and elevation axes are
not shown. The vectors Wθ and Wϕ are the set of members corresponding
to those points overlapping with the footprint under interest. The substitution
C = cb(θn, ϕn) is used due to space limitations.

where N is the number of members contained in Wθϕ.
However, the path length between the radar and a target at
the centre of the beam footprint (cb(θn, ϕn)) changes as the
radar scans across the terrain to a different angular position,
resulting in increasing signal decorrelation as the radar moves
further away from the target scattering centre. This fading
decorrelation distance (Ld) is proportional to the size of
the target, which for distributed, beam-filling terrain can be
approximated by the diameter spot size in azimuth (θ) and
elevation (ϕ) [28]:

Ld(θ) =
λ

2R tan θ2/2
, Ld(ϕ) =

λ

2R tanϕ2/2
(8)

where θ2 and ϕ2 are the two-way beamwidths in azimuth and
elevation, respectively, and λ is the wavelength. Conversely,
the degree of spatial correlation for randomly rough surfaces
can be calculated using the correlation length (Lc) with a
Gaussian correlation function [29], [30]:

Lc =
√
2
σh

σm
(9)

where σh is the root mean square (rms) height deviation and
σm is the rms slope. It follows that any member of the set Wθϕ

is statistically independent from cb(θn, ϕn) when Lc < Ld.
On this basis, Cb(θn, ϕn) is estimated under the following
conditions:

Cb(θn, ϕn) =


1

N

N∑
N=1

Wθϕ, if Lc ≥ Ld

cb(θn, ϕn), if Lc < Ld

(10)

The waveform averaging method is therefore simply the appli-
cation of Equation 10 to a 3D (R, θ, ϕ) data cube. It is worth
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Fig. 3. Subset of an AVTIS2 waveform showing the improvement in SNR
when neighbouring waveforms are averaged.

noting that typical values for Lc over terrain are >0.4 m and
over sky are <0.2 m, hence the condition Lc < Ld is almost
never met over terrain but almost always met when scanning
the sky.

The value of Lc at each angular position (cb(θn, ϕn)) is
estimated from a coarse point cloud extracted from the original
(R, θ, ϕ) data cube by applying a zero-phase low pass filter to
each waveform [31] and applying the range to maximum SNR
algorithm [11]. The coarse (R, θ, ϕ) point cloud in spherical
coordinates (Rn, θn, ϕn) is then converted to a Cartesian frame
of reference with the radar at the origin (O) (see section III-F).
The rms height deviation (σh) and rms slope (σm) at each
angular position in a radar scan is calculated by extracting
all surrounding points lying within a diameter of the two-way
radar beamwidth (cnn). For these points, σh of cnn is calculated
by [28]–[30]:

σh =

√√√√ 1

N

N∑
N=1

[cnn (z)− ⟨cnn (z)⟩]2 (11)

where cnn (z) represents each sampled height from the ex-
tracted points, ⟨cnn (z)⟩ represents the mean surface height,
and N is the number of points contained in cnn. Similarly, the
rms surface slope (σm) is also calculated for cnn using:

σm =

√√√√ 1

N

N∑
N=1

[
∂2

∂x∂y
cnn −

〈
∂2

∂x∂y
cnn

〉]2
(12)

where ∂2cnn/∂x∂y represents the local surface slopes in the x
and y directions, and ⟨∂2cnn/∂x∂y⟩ represents the mean slopes
in x and y. The values of σh and σm are then used to calculate
the correlation length from Equation 9 at each angular position
in the radar data cube. Under the condition Lc ≥ Ld, the
waveform averaging technique suppresses noise and increases
SNR as shown in Fig. 3 (black line). The zero-phase low pass
filter [31] is now applied to the averaged waveform (black
line in Fig. 3) using a sliding window equal to the number of
waveforms averaged at each angular position.



IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 00, NO. 0, MAY 2023 5

C. Multiple Target Detection

In the example shown in Fig. 3, the improved SNR reveals
the existence of three bulk targets and applying the range to
maximum SNR algorithm (single-point processing) extracts
the strongest returned signal at ∼3,300 m. In the new algo-
rithm, we extract additional returns (e.g. at ∼3,100 m and
∼3,225 m) along the averaged, smoothed waveform (red line
in Fig. 3) where they exceed two standard deviations (2× σ)
of the full SNR averaged waveform (black line in Fig. 3). This
threshold was chosen because terrain returns may represent
anywhere between 50 to 500 range bins (0.61-6%) across
a waveform, hence there is a high probability (>95%) that
terrain returns will exist if they exceed the 2σ threshold. In
the example shown in Fig. 3, four individual terrain echoes
are isolated along the waveform and the range to each surface
is estimated based on the range to maximum SNR within
each local region. This process will extract noise when no
terrain returns are present along a waveform and these points
are removed during point cloud filtering (see next section).
This new point cloud extraction methodology (multiple-point
processing) increases the resultant point cloud density and also
enables multiple surfaces along a Line of Sight (LoS) to be
extracted, which was not possible using the range to maximum
SNR approach.

D. SNR Point Cloud Filtering

For single-point processing, the first stage of filtering in-
volves removing low SNR points (Fig. 1), which result from
the radar scanning across a low scattering surface/medium
such as smooth water or the sky. The reduced backscatter
in these locations results in the range to maximum SNR
algorithm measuring random fluctuations in the noise floor
rather than terrain, yielding the isolated outlier points shown
in the original point cloud in Fig. 5a and Fig. 5b. A typical
histogram of waveform-averaged SNR values with 1,000 bins
is plotted in Fig. 4, illustrating a broad range of terrain
returns above ∼5 dB and a well-defined distribution of low
SNR values below ∼3 dB representing Rayleigh distributed
noise [28], [30]. Low SNR points are removed based on
this histogram by first applying a smoothing function using a
weighted regression sliding window (i.e. the locally weighted
scatterplot smoothing, or lowess, method; Fig. 4). The sliding
window nominally has a length of 5% of the histogram size,
which represents 50 bins for a 1,000 bin histogram. The lowess
curve fitting routine is effective at removing high frequency
signal variability [32] and is thus suitable for the purposes of
smoothing the SNR histogram containing signals from radar
noise and terrain. The first trough in the smoothed histogram is
used as a threshold to remove low SNR returns (Fig. 4) and the
impact on the point cloud is shown in Fig. 5c and Fig. 5d. This
trough is detected at the point in the positive infinity direction
when the curve gradient switches from negative to positive.
This step is not applied to the multiple-point processing
methodology (Fig. 1) as the 2σ threshold avoids low noise
power returns; point cloud outliers are instead removed in the
spatial filtering step discussed next.
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Fig. 5. Effect of each filtering step on the removal of points in an AVTIS2 3D
point cloud. (a) Original point cloud (Single), (b) Original point cloud (Mul-
tiple), (c) low SNR returns removed (Single), (d) low SNR returns removed
(Multiple), (d) spatial outliers removed based on Voronoi diagrams (Single),
and (e) spatial outliers removed based on Voronoi diagrams (Multiple). Data is
taken from AVTIS2 measurements of Balmullo Quarry at Site 1 on 6 February
2014.

E. Spatial Point Cloud Filtering

Spatial outliers that persist after the SNR filtering stage are
randomly distributed in space, hence a method to identify and
remove these ‘non-terrain’ points based on Voronoi diagrams
was developed, see Fig. 6 for a summary. Voronoi diagrams
are created by computing the Euclidean distance of each point
on a plane (p) to a point in the point cloud (pi) and a line
drawn at locations where the distance between two or more
points is identical [33]. Joining multiple lines together creates
a Voronoi cell (v(pi)) for a specific point in a point cloud (pi)
and can be defined as:

v(pi) = {p|d(p, pi) ≤ d(p, pj), j ̸= i, j = [1, . . . , nj ]} (13)

where d(p, pi) represents the Euclidean distance between p
and pi, d(p, pj) represents the Euclidean distance between
p and pj , and nj represents the number of points in the
point cloud. pj is another arbitrary point in the point cloud.
Lines are mapped along the coordinates of the plane where
d (p, pi) = d (p, pj) which bound the Voronoi cell. Grouping
these Voronoi cells together creates a Voronoi diagram derived
from the point cloud (V (P )):

V (P ) = {v(pi), . . . , v(pn)} (14)
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Fig. 6. Flow chart of the Voronoi point cloud outlier detection algorithm.
The box colours represent the following: green = raw data, grey = Voronoi
diagram processing, blue = algorithm decisions, orange = point retained in
processing, red = points removed in processing, white = algorithm iteration,
and grey = the final filtered point cloud.

where n is the number of cells in the Voronoi diagram and
is equal to the number of points in the point cloud. Here, the
Voronoi diagram is computed in 2D for the three point cloud
geometries: (R, θ), (R,ϕ), and (θ, ϕ) (Fig. 7a). The area of
each Voronoi cell within each geometry is then calculated after
which the percentile value of the area distribution between 1
and 100 is computed. Voronoi cell areas surrounding point
cloud outliers are expected to be clustered towards the upper
percentile region because: 1) they are assumed to be much
larger compared to those surrounding terrain points, and 2)
represent a small contribution to the total number of points in
a point cloud. This is represented by an inflexion point along
the 1D percentile distribution (Fig. 7b) and is detected where
the gradient of the 1D percentile line exceeds the mean of
the gradient profile and continues to increase (Fig. 7b). Points
bounded by a Voronoi cell whose area is above this threshold
are considered outliers.

Points identified as outliers are removed when the following
condition is met:

1) The Voronoi cells of one or fewer neighbouring points
in the azimuth and elevation dimensions (v(θ, ϕ)) is
rectangular: Because a point cloud in spherical coor-
dinates is sampled at regular increments in azimuth (θ)
and elevation (ϕ), the distance between terrain points
is equal and the resulting Voronoi diagrams bounding
terrain points are rectangular (Fig. 7c). The clustered
set of points representing terrain then becomes a col-
lection of rectangular Voronoi cells whilst outliers are
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Fig. 7. Example of Voronoi filtering on a point cloud after removal of low
SNR returns. (a) Original point cloud (black points) overlaid with a Voronoi
diagram (black lines). Large Voronoi cells bound the locations of point cloud
outliers. (b) Percentile values for the Voronoi area distribution between 1 and
100 (black), plotted alongside the gradient along the line (red). Horizontal
dashed line is the gradient mean, whilst the vertical dashed line represents
the percentile at which the gradient line exceeds this value and continues
to increase. This is used to calculated the threshold on the area percentile
distribution. (c) Example of a section of the point cloud (red box in panel
(a)) where terrain points are clustered and bounded by rectangular Voronoi
cells. (d) Removal of points bounded by Voronoi cells that are larger than the
size of the range bin size.

represented by irregular Voronoi cells. Therefore, point
cloud outliers are identified when a maximum of one of
its neighbours is bounded by a rectangular Voronoi cell.

If this condition is not met, the two following additional
constraints must be met for the point to be considered an
outlier:

2a) The Voronoi cells of one or fewer neighbouring points
are rectangular but the width of the Voronoi cell bound-
ing the point in range and elevation (v(R,ϕ)) exceeds
the size of the range bin: Terrain points with coordinates
(R,ϕ) can extend over multiple elevation angles but
are restricted in the range direction by the size of the
AVTIS2 range bin (Fig. 7d). Therefore, (θ, ϕ) points
bounded by Voronoi cells whose width is larger than the
size of the AVTIS2 range bin are classified as outliers.

2b) The Voronoi cells of one or fewer neighbouring points
are rectangular but the point does not overlap with
other points at the same elevation angle and range
bin: A point that may be considered terrain based on
its rectangular Voronoi cell (v(θ, ϕ)) will be classified
as an outlier if it is the only point in the point cloud
representing its elevation angle and range bin.

A point cloud outlier can therefore be identified where it meets
condition (1) or where it meets both conditions (2a) and (2b).
These outliers are subsequently removed from the point cloud.

F. Georeferencing

The filtered 3D point cloud in spherical coordinates (Cp) is
next converted to a local cartesian frame of reference (CLoc):

CLoc = RpcCp (15)
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(16)

where Rpc is the spherical (R, θ, ϕ) to cartesian (x, y, z)
rotation matrix. To obtain the point cloud coordinates in
geographic space (CGeo), a 3D coordinate transformation
(Rlg) is applied to CLoc:

CGeo = A+RlgCLoc (17)xy
z


Geo

=

xA2
yA2
zA2

+Rlg

xy
z


Loc

(18)

where A represents the radar position in geographic space. In
this way, the coordinate transformation (Rlg) rotates the 3D
point cloud around the radar position and translates it into a
new geographic coordinate system using the geolocated coor-
dinates of the radar (A). Here, the cartesian Earth-Centered,
Earth-Fixed (ECEF) coordinate system is used which has an
origin at the centre of the Earth. The coordinate transform
(Rlg) is computed by comparing the orientation of Ground
Control Points (GCPs) relative to the radar in both local and
ECEF coordinates. The cartesian coordinates of the GCP in
local and ECEF coordinates (measured from dGPS) are then
normalised by the slant range distance between the radar and
the GCP.

To obtain the 3 × 3 coordinate transformation (rotation)
matrix (Rlg), Equation 17 can be expressed in terms of GCP
coordinates centred on the radar as the origin:

GrGeo = RGLoc (19)xy
z


rGeo

= R

xy
z


Loc

(20)

where GrGeo represents the GCP orientation relative to the
radar in ECEF (i.e. with no translation applied by the radar
ECEF position (A)) and GLoc are the GCP locations in local
cartesian coordinates. Multiplying both sides of Equation 19
by GT

rGeo rotates and stretches the resulting matrix:

RGLocG
T
rGeo = UΣ (21)

Rearranging gives:

GLocG
T
rGeo = UΣRT (22)

Equation 22 demonstrates that the matrix GLocG
T
rGeo can be

decomposed into two rotation matrices U and RT, and a
stretching or shrinking factor represented by Σ. This is known
as Singular Value Decomposition (SVD) and can be computed
in most software packages e.g. Matlab. The left hand side of
Equation 22 represents the covariance matrix between GLoc
and GrGeo and accumulates the combined rotation across the
three axis in x, y, and z. Given that both GLoc and GrGeo are
unit vectors, Σ can be ignored. Therefore Equation 22 can be
rewritten as:

GrGeo =
(
URT

)T
GLoc (23)

TABLE I
SPECIFICATIONS OF THE TWO SENSORS USED IN THIS STUDY: AVTIS2

AND THE LEICA SCANSTATION C10 SHORT-RANGE TLS.

Parameter
Millimetre-wave

Radar
Short-range

TLS
System AVTIS2 Leica ScanStation C10

Measurement Type FMCW Pulsed

Range Resolution
Site 1: 0.54 m
Site 2: 0.5 m 0.07 m

Centre Frequency 94 GHz 564 THz
Wavelength 3.19 mm 532 nm

Two-way Beamwidth
Azimuth (θ): = 0.33°
Elevation (ϕ): 0.35° 0.0041°

Max Range
Site 1: 4,408 m
Site 2: 4,096 m 300 m

and therefore:

Rlg =
(
URT

)T
(24)

Overall, the coordinate transformation Rlg is obtained from
the SVD of the covariance matrix between the GCPs in local
(GLoc) and ECEF (GrGeo) coordinates. Rlg can now been
used to georeference radar point clouds into ECEF coordinates
using Equation 17. Increasing the number of GCPs used to
estimate the covariance matrix will increase the accuracy
of Rlg up to a threshold number of GCPs, beyond which
the accuracy will converge with no significant impact on
georeferencing performance. The impact of using different
combinations of GCPs is analysed further in section V-E.

IV. METHODS

A. Study Site and Instruments

The topography of Balmullo Quarry in Scotland (Fig. 8)
was surveyed on 6 and 7 February 2014 using the AVTIS2 94
GHz radar and a short-range TLS (Table I). Balmullo Quarry is
approximately 300 m × 450 m in size and has been excavated
out from the side of a small hill. Its surface consists of bare
rock and rubble, whilst isolated patches of vegetation can be
found around its margin. The lack of vegetation across the
quarry face makes it an ideal location to compare point clouds
between millimetre-wave radar and TLS as we can assume
each sensor will be mapping the same surface horizon i.e. there
will be no signal penetration. However, the topography across
the quarry is complex, with steep rock faces interspersed
with horizontal vehicle access benches that lead to sharp
discontinuities in the 3D shape of the quarry.

AVTIS2 was deployed at two locations ∼3.3 km (Site 1)
and ∼1.4 km (Site 2) from the quarry to assess its mapping
capabilities at different ranges. The short-range TLS scanned
the same region from one location within the quarry at
close-range with the intention of providing a high resolution
reference point cloud. In the set-up used in this study, the
range resolution of AVTIS2 was 0.75 m, much coarser than
the 0.07 range resolution of the short-range TLS (Table I).
Eight triangular trihedral corner reflectors were placed inside
the quarry and were used as Ground Control Points (GCPs)
(Fig. 9a) for georeferencing and AVTIS2 range calibration
(see section IV-B). We scanned across each reflector multiple
times and averaged these to suppress noise, after which we
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Fig. 9. (a) Trihedral corner reflector used as a Ground Control Point (GCP)
and (b) an example AVTIS2 scan of a trihedral corner reflector. The white
circle indicates the centre of the GCP.

fit a 2D Gaussian model (Fig. 9b) and extract its centre to
represent the GCP angular position in the AVTIS2 radar frame
of reference. The corresponding angular coordinates (θ, ϕ) of
each GCP are then converted to local cartesian coordinates
(GLoc). The geolocations of each instrument and the trihedral
corner reflectors were determined using differential Global
Positioning Systems (dGPS), where the maximum errors in x,
y, and z were ∆x = 1.2 mm, ∆y = 1.5 mm, and ∆z = 2.1
mm, respectively.

B. AVTIS2 Signal Processing

AVTIS2 is a Frequency Modulated Continuous Wave
(FMCW) radar that is deployed in the field on a surveyors’
tripod, levelled, and a GPS bracket attached for geolocating the
radar position (Fig. 10). The radar is mounted onto a gimbal
and is able to scan a full 360° in azimuth, but is limited to
between -16° and 90° in elevation, where 0° is horizontal (i.e.
the gimbal is levelled). The estimated radar pointing errors are
primarily determined by the stated gimbal accuracy of 0.02°.
At each site in this study, AVTIS2 scanned the same angular
area twice to assess 3D point cloud precision. At Site 1 (∼3.3
km), AVTIS2 scanned an angular area of 13° in azimuth at
0.045° increments and 2° in elevation at 0.05° increments, with
scan times of ∼60-75 mins. Similarly at Site 2 (∼1.4 km),
AVTIS2 scanned an angular area of 25° in azimuth at 0.045°
increments and 3.5° in elevation at 0.05° increments, with scan

Power Supply 
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Radar Head
GPS Base 

Station

Cassegrain 
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Surveyors 

Tripod

x2 12V Car 
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Fig. 10. Annotated diagram of the AVTIS2 94 GHz radar system.

times of ∼60-75 mins. Along each LoS, AVTIS2 transmits a
linearly ramped frequency signal with a fixed rate of change,
called a chirp, from a circular cassegrain antenna and measures
an Intermediate Frequency time series (TIF) which is then
digitised using an Analog-to-Digital Converter (ADC). The
raw digitised Level-0 data set represents TIF at each azimuth
angle (θ) and elevation angle (ϕ) measured during an AVTIS2
scan and is time stamped with the control PC clock time to
the start of the AVTIS2 scan.

A Fast Fourier Transform (FFT) is used to convert TIF to
frequency (fIF) along each AVTIS2 LoS and a Blackman
window applied to taper the edges and suppress spectral
leakage [34]. Range is then calculated using the FMCW
equation:

R =
fIFcTs

2B
(25)

where c is the speed of light (3×108 m/s). The range resolution
(∆R) of the radar is given by:

∆R =
c

2B
(26)

from which the maximum unambiguous range (Rmax) can be
calculated:

Rmax = Nmax
c

2B
(27)

where Nmax is number of samples in the single-sided FFT
spectrum and is equal to 8,192 (i.e. there are 16,384 samples
along each LoS). In this study, B was set to 278 MHz (Site 1)
and 299 MHz (Site 2), hence ∆R = 0.54 m (Site 1) and ∆R =
0.5 m (Site 2), respectively. The maximum unambiguous range
of AVTIS2 was therefore Rmax = 4, 408 m (Site 1) and Rmax =
4, 096 m (Site 2), respectively.

Chirp non-linearity and range drift is corrected for using
a range autofocussing technique which is based on the phase
gradient algorithm [35]. This method calculates the AVTIS2
phase error by measuring the range to a stable trihedral corner
reflector and comparing it to the vector distance determined by
differential GPS (dGPS). AVTIS2 undertakes repeat measure-
ments of this trihedral reflector before each scan of the terrain
and warps the LoS signal in the time domain (TIF) by fitting an
Nth order polynomial to the AVTIS2 phase error as a function
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Fig. 11. (a) Raw range profile overlaid with the average AVTIS2 noise floor.
These are differenced to create the SNR profile shown in (b). The average
AVTIS2 noise floor is estimated for each AVTIS2 scan by noncoherently
averaging measurements of the sky or, when a sky estimate is not available,
averaging all range profiles at a single elevation angle and manually removing
terrain returns.

of time. Corrupt spectra caused by radar trigger delays and
issues with ADC time synchronisation are then removed, after
which interference lines are suppressed, see details in [11]. An
estimate of the AVTIS2 noise floor is then subtracted from
the corrected AVTIS2 range profile of received power at each
range bin to obtain a range profile in terms of Signal-to-Noise
Ratio (SNR). The final product of AVTIS2 signal processing
is therefore a 3D data cube of radar backscatter/SNR at each
range bin (R), azimuth angle (θ), and elevation angle (ϕ)
measured during an AVTIS2 scan.

C. Point Cloud Comparison

The distance between the AVTIS2 and short-range TLS
point clouds extracted over Balmullo Quarry was used to
quantify the uncertainty of AVTIS2 3D point clouds. Here,
we use the Multiscale Model to Model Cloud Comparison
(M3C2) method developed by Lague et al. [36] (Fig. 12),
which calculates the local mean C2C distance between two
point clouds, one under test (Ccom) and a reference (Cref). In
step 1, the M3C2 method defines a set of core points in Ccom
to compute the point cloud difference. Because the AVTIS2
point cloud density is low, we define each point in the AVTIS2
point cloud (CA2) as a core point. The points surrounding each
point in CA2 (cnn) are extracted by defining a search sphere
with radius D/2 (Fig. 12). The value of D/2 is estimated from
the size of the beam footprint:

D/2 = R tan

(
θ2
2

)
(28)

where R is range and θ2 is the two-way radar beamwidth in
azimuth (0.33°). The M3C2 algorithm uses a single value of
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Fig. 12. Overview of the M3C2 method. (a) Step 1 takes a point i in the point
cloud CA2, extracts neighbouring points within a search sphere of diameter
D/2, and calculates the local surface normal N relative to the surface PA2.
(b) In Step 2, this surface normal is used to construct a search cylinder, where
points from both CA2 and Cref are extracted and the local mean C2C distance
calculated to estimate the M3C2 distance (lM3C2).

D/2 and thus is not adaptable to points at different ranges.
Therefore, R is set to the average distance of the AVTIS2 radar
at each site i.e. R = 3.3 km (Site 1) and R = 1.4 km (Site 2),
giving values of D/2 = 10 m (Site 1) and D/2 = 4 m (Site 2),
respectively. A local plane (PA2) is fitted to these neighbouring
points (cnn) and used to calculate the local surface normal of
the 3D surface (N), where N is oriented positively towards
the radar (Fig. 12a).

In step 2, the local surface normal is used to define the
axis along which the point cloud comparison at each point
in CA2 is computed. Along this axis, a search cylinder of
diameter d/2 is defined and is taken to be the same as D/2
(Fig. 12b). All points lying within this search cylinder from
both point clouds are extracted and the average position of
each computed (i1 and i2). The Euclidean distance between
i1 and i2 is then calculated to estimate lM3C2 i.e. the M3C2
point cloud distance between each point in CA2 with respect
to Cref. The Level of Detection (LoD) at the 95th confidence
interval is used to estimate the associated uncertainty with the
M3C2 distance calculation:

LoD95% = ±1.96

√
σ1 (d)

2

n1
+

σ2 (d)
2

n2

 (29)

where σ1 (d) and σ2 (d) are the local point cloud roughnesses
in the search area D/2 relative to their respective local planes
(PA2 and Pref) (Fig. 12), whilst n1 and n2 are the correspond-
ing number of points in cnn. The M3C2 method accounts
for differences in point cloud densities by averaging the
position of each point cloud within a cylinder, hence reducing
the impact of local surface roughness. Further, orienting the
cylinder in the direction of the local surface normal ensures
that differences between two point clouds occur perpendicular
to the terrain rather than in any random direction.

D. 3D Point Cloud Uncertainty
The total uncertainty of the AVTIS2 point cloud (σM3C2)

is taken to be the standard deviation of lM3C2 whilst the
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average of lM3C2
(
l
)

indicates the existence of systematic
errors associated with the AVTIS2 measurements. Here, the
M3C2 point cloud comparison is computed in the direction
of the radar origin, called −(0, 0, 0) in the Cloud Compare
software [36], hence positive values indicate the range to
terrain is underestimated and negative values indicate the range
to terrain is overestimated. Several sources of uncertainty
contribute to σM3C2 which can be combined using uncertainty
propagation:

σ2
M3C2 = σ2

A2 + σ2
ref + σ2

l (30)

Here, σA2 is the AVTIS2 positional uncertainty, σref is the
stated positional uncertainty of the reference point cloud (i.e.
derived from the short-range TLS) which is 6 mm [37], and
σl is the M3C2 distance uncertainty given by LoD95% at
each point in CA2. The combined uncertainty of σl and σref
represents the total uncertainty due to the M3C2 distance com-
putation and is independent from AVTIS2 radar uncertainty
(σA2):

∆E2 = σ2
ref + σ2

l (31)

A systematic error within the AVTIS2 point cloud (CA2)
can only be detected when l > ∆E. If σM3C2 < ∆E, then
the M3C2 uncertainty dominates and the AVTIS2 uncertainty
cannot be measured. Overall, the following rules are applied
for calculating the AVTIS2 positional uncertainty (σA2):

σA2 ≈


σM3C2, if σM3C2 ≥ σl and σM3C2 ≥ σref

σl, if σl ≥ σM3C2 ≥ σref

σref, if σref ≥ σM3C2 ≥ σl

∆E, if σl ≥ σM3C2 and σref ≥ σM3C2

(32)

V. RESULTS

A. Algorithm Comparison: Original vs PCFilt-94

In this section, the performance of the new PCFilt-94
algorithm is evaluated. To do this, we compare the accuracy
of the AVTIS2 point clouds extracted using the new PCFilt-
94 algorithm and the old range to maximum SNR technique.
Comparisons are made by georeferencing each AVTIS2 point
cloud on each day using the maximum number of available
GCPs: 7 at Site 1 and 8 at Site 2. A summary of the
comparison is shown in Table II.

Overall, the PCFilt-94 algorithm improves the accuracy of
the point cloud at both short and long range (Table II). At
Site 1 (3.3 km), applying the PCFilt-94 algorithm reduces
σA2 from ±3.17 m to ±2.75 m, leading to a ±0.42 m (13%)
reduction in point cloud uncertainty. Similarly at Site 2 (1.4
km), the application of the PCFilt-94 algorithm reduces σA2
from ±1.85 m to ±1.48 m, which is a reduction of ±0.37
m (20%) in point cloud uncertainty. σA2 also increases with
range, hence point cloud uncertainty increases with distance
from the radar and is an inherent limitation of real-beam
radars. This effect is independent of whether or not the PCFilt-
94 algorithm is applied given that the reduction in σA2 is
approximately ±0.4 m in both cases. Applying the PCFilt-
94 algorithm also reduces the M3C2 error (∆E). This makes
the error component l larger than ∆E when the PCFilt-94

TABLE II
KEY STATISTICS RELATING TO THE PERFORMANCE OF THE WAVEFORM

AVERAGING TECHNIQUE.

Site Algorithm σA2 (m) l̄ (m) ∆E (m)
Site 1 (3.3 km) Original ±3.17 -0.42 ±1.02
Site 1 (3.3 km) PCFilt-94 ±2.75 -0.38 ±0.32
Site 2 (1.4 km) Original ±1.85 0.13 ±0.70
Site 2 (1.4 km) PCFilt-94 ±1.48 0.35 ±0.18

algorithm is applied and reveals the existence of a small
systematic point cloud offset of -0.38 m at Site 1 (3.3 km)
and 0.35 m at Site 1 (1.4 km). However, the values of l and
∆E when the PCFilt-94 algorithm is applied are both below
the AVTIS2 range resolution (∆R) which was set to 0.54 m
at Site 1 (3.3 km) and 0.5 m at Site 2 (1.4 km), hence are not
considered significant.

The point cloud extracted without waveform averaging is
more variable compared to when the waveform averaging is
applied as shown in Fig. 13 as a result of radar speckle.
The larger uncertainty of the raw point cloud is due to
the greater local spatial variability of the points representing
terrain, suggesting that fluctuations in the raw waveform data
can lead to less accurate retrievals of terrain using the range
to maximum SNR algorithm. A significant consequence of
the more variable point cloud that is not reflected in the
uncertainty statistics is that the Voronoi-based spatial outlier
filtering identifies a greater proportion of points in the raw
point cloud as outliers. Applying the point cloud filtering
processing to both point clouds at Site 1 (3.3 km) led to
the extraction of 8,019 (waveform averaging) and 6,107 (no
waveform averaging) points, respectively, which is a reduction
of 2,002 points when no averaging is applied. Similarly at Site
2 (1.4 km), a total of 25,774 (waveform averaging) and 10,291
(no waveform averaging) points were extracted, respectively,
which is a reduction of 15,483 points when no averaging is
applied. Therefore, a critical performance enhancement of the
waveform averaging technique is the improved stability of
the resultant point cloud and its lower sensitivity to random
fluctuations along a waveform when extracting the range to
terrain.

The spatial variability in σA2 at both sites reveals the impact
of waveform averaging on point cloud uncertainty. At Site 1
(3.3 km), the raw point cloud variability is smoothed when
the waveform averaging is applied (Fig. 14c), thus removing
small scale variability in point cloud positional uncertainty.
Locations where σA2 is large (i.e. towards the bottom of
Figs. 14b and 14c) are coincident with regions of vegetation,
suggesting that volume backscatter from such targets [38] is
large and inhibits signal penetration through to the quarry
face. Across the non-vegetated quarry face, σA2 is largely
negative and thus overestimates the range to terrain at long
range. Because the beam spot size at 3.3 km is ∼20 m, the
radar illuminates a large region of the quarry at long-range.
Therefore, any single scattering object with a large Radar
Cross Section (σ) within a beam footprint (e.g. the apex of
a quarry cliff) can dominate the terrain returns at multiple
elevation angles and obstruct the returns of the underlying
topographic signal. The result is a systematic offset of the
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Fig. 13. Impact of applying the waveform averaging technique during the
point cloud extraction process. (a) Original algorithm, and (b) point cloud
extracted from PCFilt-94.
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Fig. 14. Performance of the waveform averaging technique on long-range
mapping of Balmullo Quarry at Site 1. (a) Balmullo as viewed from Site 1,
(b) σA2 when no waveform averaging is applied, and (c) σA2 when waveform
averaging is applied. In plots (b) and (c), the full point cloud is plotted in
grey whilst the points overlapping with the short-range TLS are plotted as
a function of σA2. Positive (red) values indicate that points are offset closer
to the radar, whilst negative (blue) values indicate that points are offset at
a distance further away from the reference point cloud relative to the radar.
Note the AVTIS2 spot size at 3.3 km is ∼20.2 m. Note, the holes in the
point cloud represent the locations of trihedral reflectors which were removed
during pre-processing.

point cloud locally and causes a gradual change in σA2 as is
observed in Figs. 14b and 14c and hence cannot be suppressed
using waveform averaging.

At shorter range (Site 2 at 1.4 km), the waveform av-
eraging method clearly suppresses noise (Fig. 15). Across
the vegetation-free components of the quarry surface, σA2

(a) Balmullo Quarry Viewed from Site 2
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Fig. 15. Performance of the waveform averaging technique on short-range
mapping of Balmullo Quarry at Site 2. (a) Balmullo as viewed from Site 2,
(b) σA2 when no waveform averaging is applied, and (c) σA2 when waveform
averaging is applied. In plots (b) and (c), the full point cloud is plotted in
grey whilst the points overlapping with the short-range TLS are plotted as
a function of σA2. Positive (red) values indicate that points are offset closer
to the radar, whilst negative (blue) values indicate that points are offset at
a distance further away from the reference point cloud relative to the radar.
Note the AVTIS2 spot size at 1.4 km is ∼8.6 m.

undulates between positive and negative values as a result
of the smoothing effect of the waveform averaging which
induces a minor offset in the signal echo position within the
resulting averaged waveform. This effect is generally smaller
than at Site 1. Regions of locally higher σA2 correlate with
the locations of discontinuities across the quarry where the
incidence angle to the terrain is small. Along these edges, σA2
is more negative at the corners of the surface nearest the radar,
but more positive at the edges of the surface furthest from the
radar. This indicates that the large radar footprint along these
discontinuities smooths the signal between the two illuminated
surfaces and calculates the range to terrain as an average of
both.

B. Single vs Multiple Point Extraction

The relative performances of the single and multiple point
extraction methodologies are summarised in Table III. Fur-
thermore, Table IV summarises the total number of points
in the respective point clouds extracted in this study. In
general, the multiple-point processing methodology increases
the uncertainty (σA2) of the point cloud at both sites. At Site
1 (3.3 km), σA2 is ±2.75 m for the single point methodology
and ±3.12 m for the multiple point methodology, respectively,
resulting in a ±0.37 m (27%) increase in point cloud uncer-
tainty when extracting additional points (Table III). At Site
2 (1.4 km), point cloud uncertainty increases from ±1.48
m (single point) to ±2.05 m (multiple point), leading to an
increase in point cloud uncertainty of ±0.57 m (39%) when
applying the multiple point methodology at shorter range
(Table III). Therefore, whilst the uncertainty of point clouds
extracted using the multiple-point processing methodology
increases with range, it more significantly increases point
cloud uncertainty at short range. A minor systematic offset
characterised by l > ∆E is observed at both study locations,
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TABLE III
SUMMARY STATISTICS OF THE SINGLE AND MULTIPLE POINT EXTRACTION METHODOLOGY PERFORMANCE. THE ‘SINGLE-MULTIPLE DIFFERENCE’

REPRESENTS THE STATISTICS FOR THE ADDITIONAL POINTS EXTRACTED USING THE MULTIPLE POINT METHODOLOGY.

Site Point Cloud Number of Points σA2 (m) l (m) ∆E (m)
Site 1 (3.3 km) Single 8,019 ±2.75 -0.38 ±0.32
Site 1 (3.3 km) Multiple 14,671 ±3.12 0.15 ±0.31
Site 1 (3.3 km) Single-Multiple Difference 6,652 ±4.00 1.51 ±0.36
Site 2 (1.4 km) Single 25,774 ±1.48 0.35 ±0.18
Site 2 (1.4 km) Multiple 41,364 ±2.05 0.45 ±0.21
Site 1 (1.4 km) Single-Multiple Difference 15,590 ±3.26 0.84 ±0.35

TABLE IV
TOTAL NUMBER OF POINTS CONTAINED WITHIN EACH AVTIS2 POINT

CLOUD AND THE PERCENTAGE OVERLAP WITH THE SHORT-RANGE TLS
POINT CLOUD WHICH CONTAINED 25,414,521 POINTS.

Sensor Site Points Overlap
AVTIS2 (Single) Site 1 (3.3 km) 8,019 2,025 (25.25%)

AVTIS2 (Multiple) Site 1 (3.3 km) 14,671 2,846 (19.40%)
AVTIS2 (Single) Site 2 (1.4 km) 25,774 11,772 (45.67%)

AVTIS2 (Multiple) Site 2 (1.4 km) 41,364 15,806 (38.21%)

although not for the multiple point extraction cloud at Site 1
(3.3 km). This offset is considered negligible given that it is
below both the total point cloud uncertainty (σA2) and AVTIS2
range resolution (0.54 m at Site 1 (3.3 km) and 0.5 m at Site
2 (3.3 km)) in all cases.

Examples of point clouds extracted using both methodolo-
gies are shown in Fig. 16. The number of points extracted
using the multiple point methodology increased by 83% at Site
1 (3.3 km) and by 60% at Site 2 (1.4 km). The uncertainty
contribution from these additional points (‘Single-Multiple
Difference’ (SMD) in Table III) is ±4.00 m at Site 1, which is
±0.88 m (28%) larger than the multiple point cloud, and ±3.26
m at Site 2 (1.4 km), which is ±1.21 m (59%) larger than the
multiple point cloud. Also, there is a significant systematic
offset (l) between the SMD points and the terrain. At Site 1
(3.3 km) the offset is 1.51 m and at Site 2 (1.4 km) the offset is
0.84 m, hence in both cases the additional points underestimate
the range to terrain. The larger errors and uncertainty of the
additional points extracted in the multiple point methodology
increases the total uncertainty of the point cloud and degrades
the point cloud accuracy. This is likely due to the lower SNR
of the additional points. At Site 1 (3.3 km), the mean SNR
of the total point cloud was 14.61 dB (single) and 8.93 dB
(multiple), whilst at Site 2 (1.4) the mean SNR of the total
point cloud was 17.54 dB (single) and 12.87 dB (multiple).
Therefore, the multiple point methodology extracts additional
points with lower SNR compared to the bulk terrain returns
which have a lower probability of being detected in subsequent
scans of the terrain and may be missed if radar noise power
or atmospheric attenuation increases. Overall, the increased
uncertainty of the multiple point extraction methodology is
generally small and in circumstances where higher point cloud
densities are desired (e.g. for change detection), the multiple
point methodology is sufficiently accurate.

Histograms of σA2 for the single and multiple point method-
ologies at each site are shown in Fig. 17. Each histogram is
narrow and have long tails, particularly at Site 2 (1.4 km)

(Figs. 17c and 17d), which is broadly characteristic of a
Lorentzian distribution. This suggests that there is a higher
probability of point cloud errors exceeding ±σA2. This is con-
sistent with the results from the previous section which showed
that discontinuities across the quarry surface cause sudden
changes in point cloud uncertainty. Such complex topographic
environments may be present across other natural surfaces
and so the Lorentzian distribution may also be characteristic
of AVTIS2 point cloud uncertainties at other locations, but
additional experiments are required to confirm this. At Site 1
(3.3 km), the spread of the probability distribution is broader
which reflects the larger uncertainty of longer range point
clouds (Figs. 17a and 17b). Further, the point cloud extracted
using the multiple point methodology at Site 1 (3.3 km) is
skewed to negative values of σA2 (Fig. 17b) as a result of the
systematic offset in the additional points (SMD) introduced
into this point cloud.

C. Point Cloud Repeatability (Precision)

The repeatability of an AVTIS2 point cloud extracted us-
ing the PCFilt-94 algorithm is evaluated by differencing the
range bin position (∆Rbin) of terrain along each Line of
Sight (LoS) in two consecutive scans of Balmullo Quarry.
At Site 1 (3.3 km), ∆Rbin can be as large as ±5 bins (Fig.
18a), which is equivalent to ±2.65 m and thus close to the
uncertainty of long-range AVTIS2 point clouds calculated in
section V-B. Locations of high ∆Rbin (red) are generally
coincident with regions of vegetation and discontinuities in
terrain, hence complex topography can significantly reduce the
ranging precision of AVTIS2 measurements. The histogram of
∆Rbin at Site 1 (3.3 km) indicates that the range to terrain
over most of the quarry varies by ±1 range bin (Fig. 19a).
However, a more conservative estimate based on the standard
deviation of ∆Rbin gives a value of ±2 range bins. This is
an important result when considering using AVTIS2 point
clouds for change detection. At Site 1 (3.3 km), the point
cloud variability appears to be controlled by the complex
topography of the quarry and radar hardware limitations as
opposed to atmospheric distortion of the signal given that the
time difference between consecutive AVTIS2 measurements
was less than 1 hour (Fig. 18c).

A similar spatial pattern in point cloud precision was also
observed at Site 2 (1.4 km) (Fig. 20). Here, the range to
terrain measured by AVTIS2 varied by ±2 range bins as
demonstrated in the histogram of ∆Rbin in Fig. 19b. Given
the similarity of the ∆Rbin histograms at short- and long-range
in Fig. 19, the variability in ∆Rbin is independent of range.
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(c) Site 2: Single Point Extraction (25,774 Points)
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(d) Site 2: Multiple Point Extraction (41,364)
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Fig. 16. The four point clouds extracted during this study. At Site 1, (a) the single point and (b) multiple point extraction methodologies are shown. Similarly
from Site 2, (c) the single point and (d) multiple point extraction methodologies are shown.
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(b) Site 1 (3.3 km), Multiple Point

-10 -5 0 5 10

A2
 (m)

0

0.1

0.2

0.3

0.4

0.5

0.6

N
o

rm
al

is
ed

 F
re

q
u

en
cy

(c) Site 2 (1.4 km), Single Point
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(d) Site 2 (1.4 km), Multiple Point

Fig. 17. Histograms of the four point clouds extracted during this study: (a)
single point (Site 1), (b) multiple point (Site 1), (c) single point (Site 2) and
(d) multiple point (Site 2).

Where vegetation is present, such as below 4° elevation and
in the azimuthal range -6° to 6° (Fig. 20a), ∆Rbin is large
and varies between negative and positive values, demonstrating
that the range to fluctuating targets such as vegetation will vary
significantly between scan acquisitions. Between 3.8° and 4.8°
elevation (Fig. 20), there is a reversal in ∆Rbin from mostly
negative to positive values, indicating that the range to terrain
is underestimated. This region of terrain was scanned twice
∼2 hours apart (Fig. 18c), which suggests that the reversal
in ∆Rbin was due to a temporal change in the accuracy
of AVTIS2 range measurements. There was no precipitation
during data acquisition at Site 2 (1.4 km), hence increased
atmospheric attenuation is an unlikely cause of the ∆Rbin
change. Therefore, the cause of this discrepancy is more likely
due to variations in radar hardware altering the AVTIS2 range
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Fig. 18. (a) Balmullo Quarry viewed from Site 1, (b) range bin difference
(∆Rbin) between consecutive scans of the terrain at each angular position
across the AVTIS2 Field of View (FoV), and (c) the time difference between
measurements at each angular position.

-5 -4 -3 -2 -1 0 1 2 3 4 5

R
bin

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

N
o

rm
al

is
ed

 F
re

q
u

en
cy

(a) Site 1 (3.3 km)
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(b) Site 2 (1.4 km)

Fig. 19. Histograms showing the range bin difference (∆Rbin) between
consecutive AVTIS2 scans of the Balmullo Quarry topography at (a) Site
1 (3.3 km) and (b) Site 2 (1.4 km).

measurements and subsequently not corrected through range
autofocussing.
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(a) Balmullo Quarry Viewed from Site 2

-10 -8 -6 -4 -2 0 2 4 6 8 10 12

Azimuth (deg)

3

4

5

6

E
le

v
at

io
n

 (
d

eg
) (b) Range Bin Difference between two AVTIS2 Scans

-5

0

5

R
b
in

-10 -8 -6 -4 -2 0 2 4 6 8 10 12

Azimuth (deg)

3

4

5

6

E
le

v
at

io
n

 (
d

eg
) (c) Time Difference ( T) between Scans

00:00

01:00

02:00

T
 (

H
o

u
rs

)

Fig. 20. (a) Balmullo Quarry viewed from Site 2, (b) range bin difference
(∆Rbin) between consecutive scans of the terrain at each angular position
across the AVTIS2 Field of View (FoV), and (c) the time difference between
measurements at each angular position.

Point cloud repeatability varies by ±2 range bins at both
sites: 1.08 m at Site 1 (3.3 km) and 1.00 m at Site 2
(1.4 km). These results are independent of georeferencing
errors and thus approximate the sensor contribution to AVTIS2
point cloud uncertainty. Taking into account the total point
cloud uncertainty using the single point methodology at Site
1 (±2.75) and Site 2 (±1.48) from Table III), the relative
contribution of sensor errors to point cloud uncertainty can
therefore be summarised as follows:

• Site 1 (3.3 km): 39%
• Site 2 (1.4 km): 68%

Whilst this is a crude estimate, it suggests that AVTIS2 sensor
characteristics are responsible for over half the total uncer-
tainty at short range but under half at long range. Therefore,
long-range point cloud uncertainty is primarily a function of
georeferencing uncertainties and terrain properties.

D. Point Cloud Filtering Performance

For the single-point processing point cloud, the Voronoi-
based outlier detection method is iterated until the number of
points removed converges to 0, thus revealing the underlying
stable point cloud representing terrain. The iterative routine
typically removes visible outliers within the first few iterations,
whilst more subtle outliers embedded within the point cloud
are removed in subsequent iterations. The algorithm takes
∼30-60 seconds for a point cloud with 10,000 points and
becomes slower with larger point clouds as the iterative routine
takes longer to converge. For the multiple-point processing
point cloud, the same iterative routine is applied but with the
additional condition that points represented by the spatially fil-
tered single point processing point cloud cannot be removed as
these have already been defined as terrain points. An example
of a filtered point cloud is shown in Fig. 5c, illustrating how
spatially isolated points are efficiently detected and removed
whilst preserving the 3D shape of the terrain. In particular,
the new Voronoi-based point cloud filtering algorithm builds
upon the workflow described in [11] for AVTIS2 data and its

automation reduces the need for manual filtering of the point
cloud data, which is a significant step forward over the prior
art. The method is suitable for removing points from sparse
point clouds such as those derived from AVTIS2 as it does
not require complex plane fitting or calculation of point cloud
distance metrics that are computationally intensive.

E. Georeferencing Accuracy

In this section, the effect of changing the number of GCPs
in an AVTIS2 scan acquisition on point cloud uncertainty is
evaluated. A total of 7 GCPs were used at Site 1 (3.3 km) and
8 GCPs were used at Site 2 (1.4 km) which results in a total
of 127 GCP combinations at Site 1 (3.3 km) and 255 GCP
combinations at Site 2 (1.4 km).

At Site 1 (3.3 km), using less than 3 GCPs leads to a point
cloud uncertainty of ±3.6 m, whereas using 7 GCPs leads
to a point cloud uncertainty of ±2.75 m, hence there is a
±0.85 m (23.61%) reduction in point cloud uncertainty when
increasing the number of GCPs used for georeferencing (Fig.
21). In situations where only one or two GCPs can be deployed
(e.g. due to inaccessible terrain) or identified in point cloud
data (e.g. due to processing issues) then an additional Iterative
Closest point (ICP) [39] for the point cloud under-rotation
would be required to ensure their positional uncertainty is
small. Using fewer GCPs results in a point cloud that is
insufficiently rotated from local to geographic coordinates and
cannot be matched with a point from the short-range TLS point
cloud during the M3C2 point cloud comparison, hence it is
removed. The number of points removed during this process
is used as a proxy for the degree of under- or over-rotation
in the AVTIS2 point cloud and is plotted in Fig. 22. The
number of points removed at the longer range Site 1 (3.3 km)
(Fig. 22a) reduces negatively exponentially as the number of
GCPs used for georeferencing increases and plateaus beyond
5 GCPs. Therefore, AVTIS2 point clouds representing terrain
at long range (>3 km) should where possible use a minimum
of 5 GCPs for accurate georeferencing across the full FoV.
This rule is suitable for both the single and multiple point
extraction methodologies given that the uncertainty difference
between the two is 0.4-0.6 m for all GCP combinations (Table
III). Finally, the mean offset of both the single and multiple
point clouds varies at Site 1 (3.3 km) when using different
combinations of GCPs (Fig. 21c) although it remains within
±0.5 m of the zero-mean when using 2 or more GCPs and is
hence negligible.

At Site 2 (1.4 km), using less than 3 GCPs leads to an
increase in point cloud uncertainty by >1 m, whilst increasing
the number of GCPs to more than 3 leads to a marginal
±0.25 m reduction in point cloud uncertainty (Fig. 21b).
The relationship between σA2 and the number of GCPs used
for georeferencing follows a negative exponential relationship
which plateaus after 3 GCPs. The degree of over- or under-
rotation in the AVTIS2 point cloud is again indicated by the
number of points removed during the M3C2 process and also
follows a negative exponential relationship which plateaus
after 3 GCPs (Fig. 22b). The plateauing of both σA2 and
the number of points removed during the M3C2 process at
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Fig. 21. The effect of changing the number of GCPs used for georeferencing
AVTIS2 point clouds. The combined uncertainty (σA2) is derived by averaging
the individual uncertainties from each point cloud, whilst the combined error
(l) is calculated by averaging the individual errors from each point cloud.
Uncertainty results are shown for (a) Site 1 (3.3 km) and (b) Site 2 (1.4 km),
whilst error results are shown for (c) Site 1 (3.3 km) and (d) Site 2 (1.4 km).
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Fig. 22. The number of points removed during the M3C2 point cloud
comparison process (N) for (a) Site 1 (3.3 km) and (b) Site 2 (1.4 km).
These results are presented in terms of number of GCPs and calculated by
averaging the number of points removed for each individual point cloud given
its corresponding number of GCPs used for georeferencing.

3 GCPs provides a useful lower limit on the number of GCPs
required for accurate georeferencing at short range (<1.5
km). Therefore, a smaller number of GCPs are required to
accurately georeference short range point clouds compared to
those representing terrain at longer ranges. Also, using the
multiple point processing methodology leads to point clouds
with an uncertainty that is ±0.57 m larger than the single
point processing methodology (Fig. 21b). Despite the weaker
performance of the multiple point methodology compared to
the single point methodology, its uncertainty is ±0.75 smaller
than the single point methodology at long range (Fig.s 21a and
21b), which is sufficiently small to warrant its usage at short
range. Also, the point cloud error in Fig. 21d varies around
0.4 m, which is larger but more precise (i.e. less variation)
than at Site 1 (3.3 km) indicating that the short range data
may underestimate the range to terrain.

VI. DISCUSSION

A. Error Model

Several studies have quantified the accuracy of 3D data
sets derived from optical techniques [36], [40], [41] and
interferometric radar measurements [42], [43]. This study has
now quantified the accuracy of 3D point clouds extracted
from 94 GHz radar data cubes for the first time through the
development of a new algorithm. The uncertainty of AVTIS2
3D point clouds increases with range when using both the
single and multiple point methodologies. By calculating the
standard deviation of the point cloud uncertainties in 100 m
range windows between 1 km and 3.5 km, a linear regression
can be computed between range and σA2 yielding a linear
uncertainty model of the form:

σSA2 = 0.89R− 0.12 for 1 ≥ R ≤ 3.5 (33)
σMA2 = 0.79R− 0.59 for 1 ≥ R ≤ 3.5 (34)

where σSA2 is the single point AVTIS2 uncertainty, σMA2 is
the multiple point AVTIS2 uncertainty, and R is range in
km. The linear uncertainty models for the single and multiple
point methodologies are shown are shown in Fig. 23 and
both have a high degree of correlation (adjusted R2>0.7).
The model predicts an uncertainty of 0.76 m at 1 km and
2.54 m at 3 km using the single point methodology, whilst
it predicts an uncertainty of 1.38 m at 1 km and 3.00 m at
3 km using the multiple point methodology. These predicted
uncertainties are in general agreement with the point cloud
uncertainties calculated previously, but underestimate point
cloud uncertainty at both short and long range. Whilst a linear
model fits the available data collected in this study, there are
no data points between 1.5 km and 3 km to validate the
linearity of the relationship. Wang et al. [44] found an expo-
nential relationship between uncertainty and range for surface
elevation data acquired using the GAMMA Portable Radar
Interferometer (GPRI) over Helheim Glacier in Greenland.
Therefore, fitting an exponential function through the data in
Fig. 23 leads to:

σSA2 = 0.58 exp (0.48R) for 1 ≥ R ≤ 3.5 (35)
σMA2 = 1.07 exp (0.33R) for 1 ≥ R ≤ 3.5 (36)

This exponential model predicts an uncertainty of 0.93 m at
1 km and 2.44 m at 3 km using the single point methodology
and an uncertainty of 1.50 m at 1 km and 2.90 m at 3
km using the multiple point methodology. Additional point
cloud uncertainty data is required to confirm the exact form
of this relationship, but the exponential model is more likely to
offer better predictive performance outside the range of values
considered here.

Previous studies have quantified GPRI Digital Elevation
Model (DEM) uncertainties of 3.3 m below 2 km [43] and 5 m
below 10 km [44], both of which are 2 m larger than the short
and long range AVTIS2 point cloud uncertainties calculated
in this study. Further, the uncertainty of DEMs extracted from
Ground Based Synthetic Aperture Radar (GB-SAR) systems
can be ∼5 m <1 km and up to 15 m >2 km [42], [45] and
are thus significantly less accurate than both the GPRI and
AVTIS2 3D data sets. Both the GPRI and GB-SAR extract 3D
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Fig. 23. The linear (grey dotted line) and exponential (black line) uncertainty
models for the (a) single (σSA2) and (b) multiple (σMA2) point clouds. The
grey dots indicate the standard deviation of the point cloud uncertainty (using
all available GCPs) within 100 m range windows. The goodness of fit for
both models is given by the adjusted R2>0.7 in all four cases.

surfaces using phase-based interferometry which is sensitive
to changes in atmospheric water vapour. The high sensitivity
of both radar systems to atmospheric variability leads to a
displacement of the range to terrain in time and is likely
the underlying cause of the its larger uncertainty compared
to AVTIS2. Therefore, the reduced sensitivity of AVTIS2 to
atmospheric variability compared to the phased-based GPRI
and GB-SAR instruments supports its application to mapping
the 3D geometry of terrain for monitoring purposes.

Other studies have reported on the differences between
TLS and millimetre-wave radar terrain mapping products. For
example, Ryde and Hillier [46] measured an accuracy of 0.1-
0.3 m below 100 m range for a 95 GHz FMCW radar scanning
both a corner cube and a diffuse surface <100 m when the
environment was both clear and contained obscurants such as
dust and rain. In comparison, accuracies of TLS measurements
were <0.01 m but could not detect targets when mist, rain
and dust were present in the atmosphere. Using the same
radar system, Hillier et al. [47] quantified a 0.2 m difference
between millimetre-wave radar and TLS point clouds below
100 m range in a quarry environment. Differences between
millimetre-wave radar and TLS are therefore primarily due to
the lower range accuracy and larger beam spot size of the
radar system compared to TLS.

B. AVTIS2 Point Cloud Uncertainty

The uncertainty of AVTIS2 3D point clouds is approxi-
mately ±1.5 m below 1.5 km and ±3 m above 3 km. Where
a reference point cloud of a specific study area exists, the
AVTIS2 point cloud uncertainty could be reduced by aligning
it to the reference data set using techniques such as the
ICP algorithm [39]. However, in many circumstances such
auxiliary data sets do not exist, hence the results presented
in this study should be considered as a benchmark for future
studies that use AVTIS2 to map the 3D structure of terrain.
The AVTIS2 point cloud uncertainties are a combination of
several sources of error that propagate into the final uncertainty
estimate:

1) Point Cloud Processing: The point cloud extraction and
filtering signal processing methodologies.

2) Radar Hardware: Radar chirp non-linearity, tempera-
ture sensitivity and antenna beam pattern.

3) Positional Accuracy: Radar pointing errors, instrument
levelling, GCP alignment and radar viewing geometry.

4) Environmental Factors: Atmospheric attenuation, me-
teorological conditions (e.g. temperature), terrain dielec-
tric properties, and surface roughness.

The point cloud processing uncertainties were considered
extensively in section V, hence the subsequent discussion
focusses on points 2-4.

The accuracy of AVTIS2 point clouds is fundamentally
limited by the radar hardware. AVTIS2 measurements of range
vary over time due to both chirp non-linearity and temperature-
dependent range drift [11], [48]. These effects are mostly
corrected for by using a range autofocussing algorithm that
assesses range variability over time by measuring the range to
a trihedral reflector whose distance is precisely known using
dGPS [35]. However, the technique relies upon a physically
stable reflector whose centre is pointed directly towards the
radar, otherwise its range can be offset from the dGPS distance
vector between the reflector and the radar. Also, the radar
range to the trihedral reflector should be calculated close
in time to a subsequent AVTIS2 scan, otherwise changing
atmospheric conditions (e.g. atmospheric water vapour, pre-
cipitation, temperature) can lead to a measurement offset that
is not incorporated into the range correction. This is partic-
ularly significant for temperature-dependent range drift that
can systematically alter the AVTIS2 range measurements over
time. Therefore, errors resulting from poor range correction
may be propagated into the point cloud uncertainty.

For accurate positional measurements, AVTIS2 is levelled
on a surveyors’ tripod by centring a spirit bubble in order
to align the radar line of collimation with the vertical axis.
Because the weight of the radar head and gimbal is ∼40 kg,
and the tripod itself is ∼11 kg, the radar set-up is stable against
wind buffetting although small radar movement below the
angular and range resolution of the radar is possible. However,
soft ground and loose footscrews on the AVTIS2 tribrach can
lead to gradual changes in tripod levelling over time, which
manifest as a gradual change in radar angular measurements
over time. Previous studies have found that spirit bubble
centering errors have the largest effect at close range (e.g.
<100 m) [49] and its impact at the ranges of interest in this
study (i.e. multiple kilometres) may therefore for be as small
as ∼1 mm [49] and negligible. Also, radar pointing errors are
primarily determined by the stated gimbal accuracy of 0.02°
which is smaller than the azimuthal and elevation increments
of the AVTIS2 radar. Therefore, both tripod levelling and
radar pointing errors are expected to be small contributions
to georeferencing errors, which is not the case for TLS
instruments whose beamwidths are comparatively smaller and
hence dynamic changes in instrument position are significant
[50]. Instead, point cloud uncertainty is likely to be limited
by the radar range resolution (∆R). Larger values of ∆R
averages terrain over a wider spatial area and will be less
accurate than smaller values of ∆R. More data is required
to confirm both the form and magnitude of this relationship.
Finally, the impact of the radar beam pattern is expected to
be minimal given that sidelobes are low and the beamwidth is
symmetrical in azimuth and elevation.
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Both atmospheric and terrain properties impact radar rang-
ing performance and hence point cloud uncertainty. Atmo-
spheric attenuation varies as a result of changes in atmospheric
water vapour, obscurants (e.g. dust, fog) and precipitation,
altering the radar received power from terrain and hence
increase ranging uncertainties. Different surface types also
exhibit unique radar backscatter characteristics under different
viewing geometries [27] and this also impacts signal stability
and hence ranging performance. For example, fluctuating
targets such as vegetation are typically considered volume
scatterers [38]. As a result, the range to terrain varies within
the volumetric medium, hence in the vegetated covered regions
of this study point cloud uncertainties were larger. Increased
surface roughness may increase the uncertainty of AVTIS2
point clouds. Increased surface roughness reduces the cor-
relation length of a surface [27] and hence may lead to
greater variability in radar backscatter which impacts both the
magnitude and the shape of the returned echo. This reduces
the probability that the range to terrain measurement can
be repeated at the same location and hence increases point
cloud uncertainty. These influences are largely dependent on
the terrain scattering properties, hence future studies should
consider point cloud uncertainties over a range of surface
types.

VII. CONCLUSION

This study has quantified the uncertainty of AVTIS2 3D
point clouds using an improved surface extraction method-
ology based on waveform averaging and developed a new
methodology to automatically detect and remove spatial out-
liers using Voronoi diagrams. The analysis represents the first
detailed assessment of millimetre-wave radar point cloud un-
certainties and provides a benchmark for interpreting AVTIS2
data sets in future research. The new waveform averaging
technique suppresses noise and increases SNR, improving
the detectability of terrain returns along a radar range pro-
file. Further, using a signal threshold based on the standard
deviation of the averaged signal, multiple terrain surfaces
along a range profile can be extracted, which leads to the
generation of a more dense point cloud. Total point cloud
uncertainties approximately double between 1.5 km and 3 km
from ±1.5 m to ±3 m. For a georeferenced point cloud, using
a greater number of GCPs reduces point cloud uncertainty. A
minimum of 3 GCPs is required for accurate georeferencing
at short range (<1.5 km) and a minimum of 5 GCPs is
required for accurate georeferencing at long range (>3 km).
The greater number of GCPs required for accurate long range
georeferencing is a suggestion, but may not be necessary if a
more accurate topographic data set is available for alignment
using the Iterative Closest Point (ICP) matching algorithm.
Overall, the point clouds and their associated uncertainties
quantified in this study are considered sufficient for mapping
the 3D geometry of natural terrain, but the uncertainty and
precision of the radar must be considered if used for change
detection purposes.

Future work should consider improvements to the AVTIS2
radar and the point cloud extraction process to reduce point

cloud uncertainties. Using a Direct Digital Synthesiser (DDS)
for chirp generation would overcome the limitations of chirp
non-linearity and temperature drift, consequently improving
range accuracy and reducing the impact of range drift on radar
measurements. Also, the point cloud georeferencing method-
ology could be improved by employing direct methods which
obtain accurate positional information from two displaced GPS
antennas at the radar base position. Using DDS and direct
georeferencing would reduce the reliance on using GCPs in
the field. The development of new surface extraction methods,
such as Gaussian Decomposition of AVTIS2 range profiles,
may improve the point cloud extraction methodology and
hence improve total point cloud accuracy. Further, determining
the precise location of the terrain scattering centre within a
signal echo is central to the performance of the point cloud
processing methodology. Therefore, an improved understand-
ing of the relationship between radar viewing geometry, beam
footprint patterns and signal echo characteristics will aid the
development of more accurate terrain extraction techniques.
Finally, a more robust error model should be developed
beyond the ranges of interest considered in this chapter to
better constrain the form of the relationship and hence aid in
predicting radar performance in future studies.
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