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A B S T R A C T  

Ca me r a tr a ps or acous tic re c orde rs a re ofte n us ed to s amp le wi ld life popul ation s. Whe n a nimals ca n be individually ide n t ified , thes e d ata can 

be used with spatial captur e-r ecaptur e ( SCR ) me thods to as s es s popul ation s . How ev e r, obtaining a nimal ide n t it ies is ofte n labor-in te nsive a nd 

not always possible for all det ect ed animals. To address this pro b le m, we form ulate SCR, includin g a coustic SCR, as a m arke d Pois s on proces s, 
comprising a single counting process for the detections of all animals and a mark distribution for what is o bs erv e d ( e g, anim al identity, det ect or 
locat ion ) . The count ing proces s app lies equally when it is animals appearing in front of camera traps and when vocalizations ar e captur ed by 
microphone s, althou gh the definition of a mark cha nges. Whe n a nimals ca nnot be uniquely ide n t ified , the o bs erv e d m a rks a rise fr om a mixtur e 
of mark distributions defined by the animal activity ce n te rs a nd addition al ch a racte ris tics. Our method ge ne r aliz es exis ting late n t ide n tity SCR 

models and provides an int egrat ed framework that includes acoustic SCR. We apply our method to estimate density from a camera trap study 
of fisher ( Peka n i a p enna nti ) and an ac oustic s urv ey of Cape Penin sul a mos s fro g ( Arthrolep tell a light f ooti ) . We also te st it throu gh simul ation . We 
find late n t ide n t ity SCR with addit ion al m arks s uch as s ex or time of arriv al to be a reli ab le me thod for est imat ing a nimal de nsity. 

KEY W OR DS : acoustic r ecor de rs; ca me r a tr a ps; ma rked Pois s on proces s es; mixture model; spatial clus te ring. 
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1 I N T R O D U C T I O N 

stimates of animal density, the number of individuals per unit
 rea, a re critically importa n t for unde rs ta nding e c o lo gical pro-
es s es affecting wi ld life ma nage me n t. Spatial ca pture-reca pture
 SCR ) can be used to estimate animal density from detections
f animals at multiple points in space, when animal ident it ies are
nown ( Effor d, 2004 ; Bor che rs a nd Efford, 2008 ; Ro yle et al.,
013 ) . In the case of acoustic S CR ( AS CR ) , de tection s are of an-

m al v ocalizations, not of anim als them s e lve s. Because it is often
easible to ide n tify which det ect ors r ecor ded each vocalization
 or cue ) , but not the anim al th at v ocalize d, ASC R g e ne rally es ti -
 ates v ocalization density ( Stev en s on e t al., 2015 ) . When indi-

idual ide n t ificat ion is d iffic ult or impos sib le, there is a ne e d for
ethods that can accommodate unobserv e d ( late n t ) ide n t it ies.
e refer to these methods as “late n t ID” models. 
We are motivated by 2 d atas e ts: a ca me r a tr a p s tudy of

sher ( Peka n i a p enna nt i ) ( Bur gar et al., 2018 ) and an acous-
ic s urv ey of Ca pe Pe nin sul a mos s fro g ( Arthrolep tell a light f ooti )
 Steven s on e t al., 2021 ) . In the fisher example, a portion of
he de tection s ca n be ide n tifie d as m ale or fem ale, as w ell as
o ll ared or unco ll ared, due to a parallel telemetry study. Using
he co ll a rs to inform a nimal ide n tity res ults in a spe c i fic type
f spa tial mark-r esi gh t pro b le m with batch ma rking, as the col -
e c eiv e d: Nov e mbe r 18, 2022; Revise d: O ctober 30, 2023; Ac c epte d: Nov e mbe r 22, 2023 
The Author ( s ) 2024. P ublished b y Oxford Unive rsity Pre ss on be half of The In te rn ation al Bio

ommon s A t tribution-NonCommer c ial L icen s e ( https://creativ ec ommons .org/lic enses/by-
e dium, provide d the origin al w ork is properly cite d. For c ommer cial r e-us e, p leas e contact j o
a rs a re not uniquely ide n tifying ( Cowe n e t al., 2017 ) . The co l-
a rs we r e also r emov e d during the ca me r a tr a p s tudy, a ddin g a
nique challenge to this d atas e t that has not been explored in the

itera tur e. 
Late n t ID SCR litera tur e consists mainly of exten sion s to the

patial count ( SC ) mode l deve loped by Cha ndle r a nd Ro yle
 2013 ) that models the aggre gate d c ounts at each dete ctor of the
ate n t individuals. For cases whe n the re a re pa rtially ide n tifying
ea tur e s ( ie, pe lage or sex ) , Augustine et al. ( 2018 ) took the ap-
roach of modeling the individual de tection s in what is known
s spatial partial identity models ( SPIMs ) . Both SC and SPIM
 re exte n sion s of SCR th at m ake infe re nce b y using the spatial
ocation of each animal to s amp le from the late n t ca pture his tory
n a Markov Chain Monte Carlo ( MC MC ) frame work. T he S C
pproach models the count of de tection s at each trap across all
ndividuals, a nd the late n t ca pture his tory is the n sa mpled b y al -
ocat ing detect ions to the unobserv e d anim als or by m argin al-
zin g o ver all pos sib le ide n t it ies . Ch a ndle r a nd Ro yle ( 2013 )
how e d th a t for r eli ab le infe re nc e, it is ne c es s ary to h av e either
 trong prior knowled ge of animal home range or a proportion
f the population with fully known ide n t it ies. Spat ial capture-
 ecaptur e is then applied to the known I D port ion, and the SC

odel is applied to the additional late n t ID coun ts ( Sollma nn
me tric Socie ty. Thi s i s a n Ope n Ac c ess a rticle dis tributed unde r the te rms of the C re ative 
nc/4.0/ ) , which permits non-c ommer cial r e-use, distribution, and r epr oduction in any 
urn als .permis sion s@oup.com 
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et al., 2013 ; Rich et al., 2014 ; Alonso et al ., 2015 ; Whitt ing-
ton et al., 2018 ) . SC models h av e also be en use d whe n a nimal
ide n tity is missing randomly, such as from poor picture quality
( Jiménez et al., 2021 ) . 

Inste ad of tre ating the o bs erv e d data as c ounts, the S PIM
method tr ea ts each detection as a Bernoulli v e ctor of length
equal to the n umbe r of tra ps a nd a single indicator for which tra p
made the de tection . Augustine e t al. ( 2018 ) s amp le the latent
ca pture his tory b y c ombining the dete ction v e ct ors int o tradi-
tional capture history m atric es . As a res ult, S PIM can inc orpo-
rate addition al c ov ari a tes tha t pr ovide informa tion on which de-
te ctions c ome from which anim als ( August ine et al ., 2019 ) . In
the case when detections are known to be from the same animal
( a “m us t-link” cons train t ) or known to be fr om differ ent animals
( a “ca nnot-link” cons train t ) , SPI M uses this infor mation as addi-
tion al c ons train ts within the MCMC sa mple r ( Augus t ine et al .,
2018 ) . A lthough SPI M a nd SC sa mple the late n t a nimal ide n ti -
ties diffe re n tly within the MCMC, once s amp led, they both are
equivale n t to conve n tional SCR given the s amp led ident it ies. 

In ASCR, it is rar e tha t animal ide n tity is known. The con-
ve n tional model is used to estimate cue de nsity ( CD ) , a nd the n
give n a n indepe nde n t es tima te of cue ra te, a nimal de nsity ca n
be inferred ( Steven s on e t al., 2015 ) . When individual identity
is av ail ab le, Daws on and Efford ( 2009 ) dev elope d a model us-
ing the first det ect ed cue by each individual to estimate animal
density. Mor e r e c ently, Stev en s on e t al. ( 2021 ) modeled all the
det ect ed cues of each individual t o estimat e animal density when
individuals call at fixed locations ( ID-AS CR ) . T he time of arrival
( TOA ) of the vocalization to each micr ophone pr ovides pr ecise
informa tion about wher e each cue origina t es. St even s on e t al.
( 2021 ) us ed this spati al information to ma n ual ly al locate cues
to individuals in order to estimate animal density for the Cape
Penin sul a mos s fro g. 

We derive a general formulation for SCR models with any de-
gree of late n t ide n t it ies, including SCR and I D-ASCR as special
cases. Thi s i s done by formulating SCR as a m arke d Pois s on pro-
ces s ( MPP ) , in which de tect ion t imes arise from a counting pro-
cess and fea tur es of de tection s, such as ID, detection location,
a nd othe r individual -level fea tur es, ar e tr ea te d as m arks . Onc e w e
h av e describe d the MPP framew ork, w e the n de mons trate how it
ca n be a pp lied to l ate n t I D SCR ( LI D-SCR ) pro b lem s as a mix-
ture model. We then use our framework to es timate de nsity in
our mot ivat ing exa mples, the ca me r a tr a p s tudy of fishe r a nd the
acous tic s tudy of fro gs. Thes e examp les are v alid ated by a simu-
lation study. 

2 S PAT I A  L  C A  P T U R E - R E C A P T U R E  

2.1 Su rve y m eth ods 
We define a det ect or as a device, such as a ca me ra or a micro-
phone, tha t r ecor ds the pr ese nce of a n a nimal a nd the time of
the de tection . The survey has J det ect ors s e t up a t loca tions X =
{ x 1 , . . . , x J } in a s urv ey re gion with area A . The dete ctors are ac-
tive for a time period T . Within the r egion, ther e ar e N animals
at risk of detection, of which the study detects K , and we wish
to infer N . In this se ction, w e focus on a s urv ey using cameras as

det ect ors.  
The key notation is i l lustrated in Figure 1 . This figure shows 
J = 4 det ect ors A t o D, a nd activity ce n te rs for 2 a nimals k =
1, 2. There was a total of n ·· = 9 de tection s. Animal 1 was de- 
t ect ed twice by det ect or A ( n 11 = 2 ) and 3 times by C ( n 13 =
3 ) ; animal 2 was det ect ed once by B ( n 22 = 1 ) , once by C 

( n 23 = 1 ) , a nd twice b y D ( n 24 = 2 ) . The res ulting anim al in-
d icator s δi ( i = 1, . . . , 9 ) ide n tify which a nim al dete ction i c or-
responds to, the detector ind icator s ω = { ω 1 , . . . , ω 9 } spec i fy 
which det ect or ma de ea ch de tection, and the de tect ion t imes are 
t = { t 1 , . . . , t 9 } . The animal indicator δ = { δ1 , . . . , δ9 } is only 
o bs erv e d when anim als are individually identifiab le on de tec- 
tion; otherwise it is late n t. 

At the end of the study, det ect or j has made n kj de tection s of 
a nimal k . Whe n ID is known, a c onv e n tional ca pture his tory
for animal k is n k = { n k1 , . . . , n kJ } . When identity is unknown, 
we o bs erve n · j = 

∑ N 

k=1 n k j de tection s at det ect or j , where N is
the n umbe r of a nimal s at ri sk of de tection . We as s ume th at N
is cons ta n t throughout the s urv ey period ( ie, w e h av e a close d
popula tion ) . Acr oss all det ect ors in the study, a total of n ·· = ∑ J 

j=1 n · j de tection s are made. We as sume that de tection s of 
each animal follow a Pois s on proces s. 

When the rate of the Pois s on proces s is the same for all animals 
k = 1 , . . . , N, the detect ion t imes, t , ar e uninforma tive about 
N , whether the Poisson process is homogeneous or nonhomoge- 
neous, a nd a re the refore not re quire d to obtain infe re nce about 
N ( Borchers et al., 2014 ; Schofield et al., 2018 ) . We wi l l focus on 

the homogeneous Poisson process ( HPP ) , but keep detection 

times in our description of the model to diffe re n tiate the Pois- 
s on proces s from the Pois s on distribution . The ideas pres e n ted 

he re ge ne r aliz e to the nonhomo geneous cas e. 

2.2 Ma rked Poiss o n p rocess 
We assume animal k ( k = 1 , . . . , N) has an activity ce n te r, 
s k , tha t r emains fixed thr ough the s urv ey period but is unob- 
serv e d. T he proba bilit y densit y function ( PDF ) of s k is f ( s k ) = 

D ( s k ) / 
∫ 

A D ( s ) d s , where D ( s ) is the in te nsity of the poin t pro-
c ess th at gov erns activity c e n te rs, a t s ( Bor che rs a nd Efford,
2008 ) . Activity ce n te rs a re ass ume d to be indepe nde n tly a nd
ide n tically dis tributed in the s urv ey re gion. For notation al sim- 
plicity, we denote both probability mass functions and PDFs as 
f ( ·) . 

Animal k , w ith activ ity ce n te r s k , is o bs erv e d at dete ctor j
( j = 1 , . . . , J) ac c ording to a spatially thinned HPP with rate 
h (t, x j , s k ) = λg( x j , s k ) per unit time at time t ( Borchers et al., 
2014 ) . Here g( x j , s k ) is a detection function that is a decreasing 
function of dis ta nce, d( x j , s k ) = || x j − s k || between det ect or j 
a nd activity ce n te r k , a nd λ is the rate of de tection s at de t ect or
j , for an animal with d( x j , s k ) = 0 . A popul ar de tection func- 
tion is the hal f-nor mal, g( x j , s k ) = exp {−d( x j , s k ) 2 / (2 σ 2 ) } , 
where σ ∈ R 

+ is referred to as the scale pa ra mete r. This detec- 
t ion funct ion arises as the limit ing distribut ion of a n Orns tein- 
Uhlenbe ck proc ess for anim al mov ement ( McClintock et al., 
2022 ) . 

With the above HPP, n k j ∼ Poisson { H( x j , s k ) } , where 
H( x j , s k ) = 

∫ T 
0 h (t , x j , s k ) dt ( k = 1 , . . . , N; j = 1 , . . . , J) .

Furthe r, if activity ce n te rs a r e loca ted indepe nde n tly, a ny sum
of the n kj is also a Pois s on random v ari ab le with expe cte d value
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FIGURE 1 Illustrative example of the detection ge ne ra ting pr oc ess in spac e and time. Tw o anim al activity c e n te rs a re shown b y n umbe rs in 

circles . D ete ctors are cros s es n ame d “A”, “B”, “C”, and “D”. Arro ws sho w which det ect ors each animal w as de t ect ed by. For SCR, each detection 

is a single animal at a single det ect or; det ection 1 is defined as { t 1 , δ1 = 1, ω 1 = A }. For ASCR, each detection is a single vocalization that can 

be heard at multiple det ect ors, while the time the cue is produc e d, t 1 , is late n t { δ1 = 1 , ω 1 = (1 , 0 , 1 , 0) } . Ab brevi ation s: ASCR, acoustic 
S CR; S CR, spatial ca pture-reca pture. 

TA BLE 1 Notat ion for the count ing proc ess . 

Count Late n t Rate Expe cte d count 

Animal k at det ect or j ( n kj ) T h (t, x j , s k ) = λg( x j , s k ) H( x j , s k ) 
All animals at det ect or j ( n · j ) F h (t, x j , S ) = 

∑ N 

k=1 h (t, x j , s k ) H( x j , S ) 
Animal k across all det ect ors ( n k ·) T h (t, X , s k ) = 

∑ J 
j=1 h (t, x j , s k ) H( X , s k ) 

All de tection s ( n ··) F h (t, X , S ) = 

∑ N 

k=1 h (t, X , S ) H( X , S ) 
Late n t de scribe s dete ction ev e n ts that do not depe nd on ide n tity ( Late n t = F ) a nd eve n ts that depe nd on ide n tity ( Late n t = T ) ; λ is the rate unde r pe rfe ct dete ction, and g( x j , s k ) is 
the detection function for a det ect or at x j and an animal with an activity center at s k . In all cases, the expe cte d c ount of events in the study period is defined as H(·) = 

∫ T 
t=0 h (t , ·) dt . 
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qual to the sum of the releva n t expected counts, H( x j , s k ) .
 ee Ta ble 1 for the definitions of the v arious sum s and their
s s oci a ted ra tes . Note th at SC models treat n ·j , the total n umbe r
f de tection s at each det ect or, as the unit of o bs erv ation . In stead,
 e c onsider the c ounting proc es s for all n ·· de tection s. 
We now describe SCR as a MPP. The n ·· de tection s acros s all

et ect ors at times t = (t 1 , . . . , t n ··· ) arise from an HPP with rate
 (t i , X , S ) for i = 1 , . . . , n.. , given N animal activity ce n te rs lo-
a ted a t S = { s 1 , . . . , s N 

} . Note that under an HPP, the rate is
ot a function of time, h (t i , X , S ) ≡ h ( X , S ) . Each eve n t is as-
 oci ated with a mark, defined at minimum as the animal iden-
ity, δi , a nd whe re it w as de t ect ed, ω i . It follows from the Pois s on
rocess and Table 1 that the animal ide n tity ma rk, conditional
n being det ect ed from one of N animals located at S , is categor-
cally distributed, 

f (δi = k| t i , S , N) = 

h (t i , X , s k ) 
h (t i , X , S ) 

, ( 1 )

or δi ∈ { 1 , . . . , N}. Simila rly, give n δi = k , the det ect or mark is
lso categorically distributed, 

f (ω i = j| t i , δi = k, S , N) = 

h (t i , x j , s k ) 
h (t i , X , s k ) 

, ( 2 )

or ω i ∈ { 1 , . . . , J}. 
Given the n ·· detections at times t , the joint mark distribution

or the spec i fic animals det ect ed, δ = { δ1 , . . . , δn ··· } , at det ect ors
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the probability of detecting it decreases with dis ta nce. For ID- 
AS CR described by Ste ven s on e t al. ( 2021 ) , we as s ume th at an- 
im als produc e cues ac c ording to an HPP with rate λ per unit 
time and that the animal r emains a t a fixed activity ce n te r for 
the duration of the s urv ey. Cue i is produc e d b y a nimal k = δi , 
at time t i , and is det ect ed by det ect or j ( eve n t ω ij = 1 ) , with 

pr obability decr easing with dis ta nc e, d( x j , s k ) . A c ommon de- 
tect ion funct ion in ASCR is the h azard h al f-nor mal, g( x j , s k ) = 

1 − exp [ −g 0 exp {−d( x j , s k ) 2 / (2 σ 2 ) } ] where g 0 , σ ∈ R 

+ . In 

ASCR, a detection m us t be accurately assigned to the cue that 
produc e d it. 

Under our new MPP formulation, the dete ction m ark is a 
Bernoulli v e ct or ω i , indicating which det ect ors det ect ed cue i . 
T he proba bil ity that c ue i , produc e d b y a nim al k , is dete cte d 

at least once is g ·( X , s k ) = P (c i > 0 | s k ) = 1 − ∏ J 
j=1 { 1 −

D
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nloaded from
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ω = { ω i , . . . , ω n ··· } , is 

f ( δ, ω | n ··, t , S , N) = 

n ··∏ 

i =1 

f (δi , ω i | t i , S , N) 

= 

n ··∏ 

i =1 

h (t i , x ω i , s δi ) 
h (t i , X , S ) 

. ( 3 )

Overall, the o bs erv e d data n ··, t , δ, and ω arise from a MPP with
marks { δ, ω } , as i l lustrated in Figure 1 , with joint distribution 

f (n ··, t , δ, ω | S , N) = f (n ··, t | S , N) f ( δ, ω | n ··, t , S , N) 

= e −H( X , S ) 
n ··∏ 

i =1 

h ( t i , X , S ) 
n ··∏ 

i =1 

h ( t i , x ω i , s δi ) 
h ( t i , X , S ) 

( 4 )
= e −H( X , S ) 
n ··∏ 

i =1 

h (t i , x ω i , s δi ) . ( 5 ) 

Equation 5 shows that the MPP is equivale n t to the con tin uous- 
time SCR model in Equation 2 of Borchers et al. ( 2014 ) . Ho w - 
ever, the MPP provides a new way of thinking about the de- 
te ction proc ess in c on tin uous time. Ge ne rally, SCR a pproaches 
model de tection s c ondition ally on anim al and dete ctor ide n tity, 
but here we sho w ho w these qua n t it ies can be modeled jointly. 
Thi s allow s us to model SCR as a counting pr ocess tha t does not 
depend on animal ident it ies, and a mark distribution that does, 
pro vidin g an explicit link to con tin uous time ca ptur e-r ecaptur e 
as prese n ted in Schofield et al. ( 2018 ) . 

As we are assuming an HPP, the rest of this ma n uscript 
wi l l consider l ikel ihoods in which detection times are 
m argin alize d out, modeling the count of de tection s 
(n ··| S , N) ∼ Pois s on { H( X , S ) } and the as s oci ate d m ark 
distribution f ( δ, ω | n ··, S , N) that does not depend on when 

the eve n ts occur. 

3 A  CO U ST I C  S  C R 

In ASCR, an acoustic cue ( a vocalization ) is produc e d at some 
activity ce n te r s k a nd the cue pr opaga tes thr ough space, while 

g( x j , s k ) } , for c i = 

∑ J 
j=1 ω i j . Then, 

f ( ω i | δi , S , N) = 

∏ J 
j=1 g( x j , s δi ) ω i j { 1 − g( x j , s δi ) } 1 −ω i j 

g ·( X , s δi ) 
. ( 6 ) 

Note that conditioning on a n a nimal having produced the de- 
t ect ed cue, δi , implies that the cue was det ect ed, c i > 0. 

Animal k ( k = 1 , . . . , N) produces det ect ed cues accord- 
ing to a thinned HPP with rate h ( X , s k ) = λg ·( X , s k ) per unit 
time. The rate of dete cte d cues across all det ect ors is h ( X , S ) = ∑ N 

k=1 h ( X , s k ) . The expe cte d n umbe r of de tection s in the sur- 
vey is then H( X , S ) = T × h ( X , S ) . The anim al ID m ark, δi , is 
categor ically distr ibuted as in Equation 1 , f (δi = k| t i , S , N) ∝ 

h ( X , s k ) . The n ·· × J matrix of ca pture his tories, ω i , is denoted 

b y �. Fi gure 1 i l lustra tes the pr oces s of de tection s on 4 de t ect ors 
through time, showing how the v e ct or det ect or mark, ω i , differ- 
e n tiates ASCR from SCR. 

In ASCR, we detect cue i , on det ect or j , at time y ij , a short 
time after the unknown time of cue production t i . Given the 
spe e d of sound ν, we assume the TOA of the cue at the detec- 
tor is o bs erv e d with Gaus si an error, (y i j | ω i j = 1 , t i ) ∼ N (t i + 

d( x j , s k ) /ν, σt ) . By assuming the c ues occ ur accord ing to an 

HPP, m argin alizing f ( y i , t i |·) over the cue production time, 
Borchers e t al. ( 2015 ) o btained the fo llowing expres sion for the 
PDF of times of det ect ed calls, y i , given δi and ω i , 

f ( y i | ω i , δi , S , N) = 

{
( T 

√ 

c i ) −1 ( 2 πσ 2 
t ) (1 −c i ) / 2 exp {−( 2 σ 2 

t ) −1 ∑ J 
j=1 ω i j ( γi j − γ̄i ) 2 } c i > 1 

1 c i = 1 . 
( 7 ) 
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Here, γi j = y i j + d δi j /ν and γ̄i = 

∑ J 
j=1 c 

−1 
i ω i j γi j . 

We now h av e the distribution for m arks { δ, �, Y } , where Y =
{ y i , . . . , y n ·· } , 

f ( δ, �, Y | n ··, S , N) = 

n ··∏ 

i =1 

f (δi | S , N) f ( ω i | δi , S , N) 

× f ( y i | ω i , δi , S , N) . ( 8 )

When we use Equation 8 for the mark distribution of the MPP,
the l ikel ihood is proportional to the ID- ASCR lik elihood of

Steven s on e t al. ( 2021 ) . 
4 L AT E N T  I D  S C R 

As shown abov e, w e can formulate c onv ention al SCR s uch th at 
a nimal ide n tity, δi , is tr ea te d as a m a rk a rising fr om a ca te-
gor ical distr ibution . The other de t ect ed marks, m i , are mod- 
ele d c ondition ally on the a nimal’s ide n tity, which is defined 

by its activity center. As a result, when δi is l atent, the o b- 
serv e d m arks m i ( SCR: m i = { ω i } as in Equation 2 , ASCR: 
m i = { ω i , y i } as in Equation 8 ) can be modeled as if they 
arise from a mixture of N mark distributions c ondition al on 

the activity ce n te rs S , with mixtur e pr obabilities πk = f (δi = 

k| S , N) . Thus f ( m i | S , N) = 

∑ N 

k=1 πk f ( m i | δi = k, s k ) . The
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ixture wei gh ts, π = { π1 , . . . , πN 

} , have a pa ra metric form de-
ned by the Pois s on proces s in Equation 1 a nd depe nd only on
he dis ta nce of each a nimal t o all det ect ors. 

In s ta nda r d mixtur e mode l not ation, we write the joint
istribution for all n ·· o bs erv e d m arks, M = { m 1 , . . . , m n ·· } ,
 argin alizin g o ver all the mixture components, δ, as 

f (n ··, M | S , N) = f (n ··| S , N) 
n ··∏ 

i =1 

N ∑ 

k=1 

πk f ( m i | δi = k, s k ) . 

( 9 ) 

 n a Ba y esian fr a mework, the pos te rior dis tribution, including all
odel pa ra mete rs, θ, to be es tim ate d in Equation 9 is, 

f ( θ, S , N| n ··, M ) ∝ f (n ··, M | S , N) 

× f ( S | N) f (N) f ( θ) . ( 10 ) 

nder SCR, θ = { λ, σ, θD 

} , and ASCR θ = { λ, σ, g 0 , σt , θD 

} .
er e, θD 

r epr ese n ts a ny pa ra mete rs r ela ting to the density pro-
ess, D ( s ) . T he S C model in C ha ndle r a nd Ro yle ( 2013 ) is a
peci al cas e of Equation 10 . 

4.1 Est imat ion 

hen we consider the model as a standard finite mixture model
ith an uncertain number of clusters ( animals ) , there is a wide
 arie ty of fitting methods to choos e from . A Bayesi a n a pproach
sing MCMC is a t tractive for a mode l- bas ed s o lution to the
nknown n umbe r of clus te rs pro b lem . For this, we us e a fixed
a ra mete r space a nd a pp ly d at a au gme n tation, a common a p-
roach in the SCR literature for est imat ing uno bs erv e d anim als

or both known ID and latent ID sc en arios ( Tanner and Wong,
987 ; R oy le and D orazio, 2012 ; Ch andler and R oy le, 2013 ; Au-
ust ine et al ., 2018 ) . For cl as sical m argin al l ikel ihood methods,
oth S and N must be int egrat ed out of the l ikel ihood. How ev er,

his poses a c omputation al ch allenge as the integration of S has
imension N × 2. 
In the context of SCR, data augme n tation assi gns a superpop-

lation of L individuals, such that N << L and uses ind icator s
 k to r efer enc e whether anim al k = 1 , . . . , L is av ail ab le to be
et ect ed, z k = 1, or not, z k = 0, with z k ∼ Bernoulli ( ψ ) , for
ype rpa ra mete r ψ ( Ro yle a nd Dorazio, 2012 ) . We define the
opulation size as the n umbe r of a nimals av ail ab le for de tec-
ion, N = 

∑ L 
k=1 z k . This method fixes the dimension of the pa-

a mete r space, which allows the use of s ta nda rd MCMC sa m-
 ling algorithm s. Se tting ψ ∼ Beta ( 1, 1 ) is equivale n t to using a
r ior distr ibution of N ∼ Dis cre te-Uni for m ( 0, L ) , and is the pre-

e rred a pproach in the existing litera tur e ( Chandler and R oy le,
013 ; So llmann e t al ., 2013 ; August ine et al ., 2018 ; Jiménez
t al., 2021 ) . Link ( 2013 ) re c ommends a scale prior such that

f (N) ∝ 

1 
N 

. How ev er, for LID-SCR, we m us t ofte n diffe re n tiate
etw e en a sm all N a nd la rge σ , or a la rge N a nd small σ , a nd a n

nverse prior on N can h av e a heavy influe nce. B io lo g i s ts ofte n
 av e strong prior information about the animal’s home range, so

t makes more s en s e to put an inform ativ e prior on σ while as-
igning a flat prior on N . This situation w as exemp lified in the
a rula a n alysis from Ch a ndle r a nd Ro yle ( 2013 ) whe n, using
 flat prior on N , the pos te rior mode and 95% credible interval
ere ̂  N = 4 ( 3, 432 ) when the home range scale parameter was
∼U ( 0, ∞ ) , but ̂  N = 36 ( 18, 157 ) when the inform ativ e prior,
amma ( 13, 10 ) , w as us ed. 
To simplify the MCMC algorithm, we use data augme n tation

or both δ and z to s amp le from the comp le te-d at a like lihood
 Ta nne r a nd Wong, 1987 ) . The pos te rior dis tribution i s g iven
y 

f ( θ, δ, S , z | n ··, M ) ∝ f ( n ··| S , z ) f ( δ, M | S , z ) f ( S ) f ( z ) f ( θ) , 

( 11 )

here f ( δ, M | S , z ) is given by Equations 3 and 8 for SCR and
SCR, respe ctiv ely. By introducing z , we no longer condition
n N animals, as this information is c ontaine d in z with fixed

ength L . How ev er, w e now define a new rate, h ( x j , s k , z k ) =
 k h ( x j , s k ) . Only animals at risk of detection contribut e t o the
 ounting proc es s, n ··| S , z ∼ Pois s on ( H( X , S , z )) . Addition-
l ly, fol lowing Equation 11 , we sample the late n t a nimal ide n ti -
ies δ. 

Fr om Equa t ion 11 , the full-condit ional distribut ion for δi is, 

f (δi = k|·) ∝ z k f (δi = k| S , z ) f ( m i | δi = k, s k , z k ) , ( 12 )

or k = 1 , . . . , L . The mark distribution, f ( m i | δi = k, s k , z k ) ,
s defined for SCR in Equation 2 and ASCR in Equation 8 , and
f (δi = k| S , z ) is the mixture wei gh t defined by Equation 1 . 

A s w ith mixture models in ge ne ral, this model suffe rs from
onide n tifiability in the animal location for each index k , also re-

erred to as “label switching” ( Jasra et al., 2005 ) . An animal k may
e uno bs erv e d ( n k · = 0 and z k = 1 ) , not av ail ab le for de tection
 z k = 0 ) , or allocat ed t o det ections ( n k · > 0 and z k = 1 ) . Each
llocation of de tection s is as s oci a ted with a differ ent posterior
ode for s k . As a result, the distribution of each activity ce n te r,

 k , is mult imodal result in g in poor mixin g when usin g a daptive
roc e dures . A s o lution for this is to use a fixed-scale random walk
 amp ler or to use a proposal distribution that leads to both local
pdates and jumps to other modes to improve mixing. We know

hat the full-conditional of s k , when z k = 0, is f ( s k ) , as given at
he s ta rt of Section 2.2 . For this reason, whe n a nimals a re uni -
ormly distributed in space, we use a Metropolis-Hastings sam-
ler with proposals from a mixture distribution, 

s ∗k | s k ∼ a 0 N ( s k , b 0 ) + (1 − a 0 ) U (A ) , ( 13 )

here s ∗k is the proposed new value for s k . The us er s e ts the
ixtur e pr oportion a 0 ∈ [0, 1] and the scale b 0 ∈ R 

+ as tun-
ng pa ra mete rs. U (A ) r epr ese n ts a uni for m dis tribution ove r the
 urv ey re gion with area A . Guidance for choosing a 0 is given in

eb A ppendix A . 
We imple me n ted a n MCMC sa mple r using the software Nim-
 le ( de Valpine e t al., 2017 ; 2020 ) within R ( R Core Team,
019 ) . The default s amp ling algorithm us ed by Nimble for
on tin uous-valued pa ra mete rs is ada ptive Me tropo lis-Hastings
andom walk sampling ( Haario et al., 2001 ) . Due to the highly
orr ela ted na tur e of σ with both λ and ψ , we use Nimble’s s ta n-
ard fixed width slice s amp ler for σ to impro ve mixin g ( Neal,
003 ) . The re maining pa ra mete rs of the model ca n be sa mpled
sing s ta nda rd SCR MCMC me thods pres e n ted for Nimble by
urek et al. ( 2021 ) . We note that when the mixture wei gh ts a re
nly depe nde n t on the animal activity ce n te rs, S , it is not nec-
s s ary to allocate de tection s and we can s amp le from the pos-
er ior descr ibed in Equation 10 . Thi s i s c ommonly use d for SC

https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujad019#supplementary-data
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models including when the population is partially identifiab le
( Cha ndle r a nd Ro yle, 2013 ; Sollma nn et al ., 2013 ; Whitt ington
et al., 2018 ) . All the details of the MCMC algorithm ar e pr ovided
in Web Appendix B along with code. 

5 A P P L I C AT I O N S  

5.1 S patia l c aptur e-r ecaptur e 
5.1.1 Fish er cam er a tr ap study 

In Alberta’s UNESCO Beaver Hi l l Biosp here Res erv e, Can ada,
64 baited ca me r a tr a ps we re s e t from Ja n ua ry 1 to April 30, 2016
t o monit or fisher ( Peka n i a p enna n ti ) using b aited sta tions, r e-
p l ac e d mon thly. Motion-se nsitive ca me r a tr a ps we re deplo yed
in a sys te matic desi gn on a 4 × 4 km grid cell ( Web Fi gure 1 ) ;
see Burgar et al. ( 2018 ) for a full description of the s urv ey
me thods. Stew art e t al. ( 2017 ) ca rried out a ge netic h air sn ag
s tudy ( Ja n ua ry -April ) p aired with the ca me ra tra p s urv ey. An
ea rlie r live-tra pping s tudy w as als o c onducte d ( Nov e mbe r 2015-
Ja n ua ry 2016 ) , whe re a total of 14 co ll a rs we r e a t tached to 5 male
and 9 female individuals, as described in Stewart et al. ( 2019 ) .
Burgar e t al. ( 2018 ) us ed the gene tic d a ta fr om the concurr e n t
h air sn ag study ( 24 unique individuals; 9 m ale, 14 fem ale ) to im-
ple me n t kno wn ID SC R with e ach month as a dis cre te occasion .
They estim ate d anim al density to be 2.96 ( 2.18, 4.72 ) individ-
uals per 100 km 

2 , which is similar to published e stimate s on the
spe cies ( e g, Linden et al., 2017 ) . Gene tic d a ta wer e als o co llected
in the live-trapping study, allowing individuals to be m atche d be-
tw e en the 2 s urv eys ( Web A ppendix A , Table 1 ) . 

In Ma rch a nd April, it is though t that fe male fishe r cha nge their
be havior in pre paration for birth and matin g. Followin g Burgar
et al. ( 2018 ) , to remove the pote n tial for confounding with be-
h avioral effe cts, w e limite d our an alysis of the ca me r a tr ap data
to the end of March 4. The c ombine d known ID s urv eys ov er
this period det ect ed a total of 24 individuals ( 8 males and 15
females ) , with 11 r ecaptur es of the live-trapped individuals by
h air sn ag. We us e thes e d ata to ev aluate the a ccura cy of our la-
te n t ID model using the ca me r a tr ap data. 

Each p hoto grap h w as m arke d with sex ( m ale/fem ale ) and c ol-
l ar ( pres ent/abs ent ) when the quality of the image permitted. A
total of 207 de tection s were made over the 64 days. Sex was ob-
s erv ab le in 32% of the images, 42 fe male a nd 24 male. Addition-
ally, 40% gave co ll ar information, 52 as unco ll a red, a nd 32 as col-
lare d. The c ollars w ere not uniquely di stingui shab le s o that when
they were identified as present, we only learned that the animal
h ad be en previously physically tra pped a nd co ll ared, simil ar to
a batch marking survey. For animal k , we define the additional
cha racte ris tics: sex x k 2 ( male x k 2 = 0 or female x k 2 = 1 ) , and
co ll ar x k 3 ( unco ll ared x k 3 = 0 or co ll ared x k 3 = 1 ) . The animal’s
sex is distributed as x k 2 ∼ Bernoulli ( γ ) , where γ is the popula-
t ion proport ion of fem ales . The c o ll a rs we re assi gned to a nimals
k = 1 , . . . , 14 in our fitting algorithm, ( x k 3 = 1 ) , while animals
k = 15 , . . . , L w ere unc o ll are d ( x k 3 = 0 ) . For the c o ll a red indi -
viduals, we as sign s ex, x k 2 = 0 for k = 1 , . . . , 5 and x k 2 = 1 for k =
6 , . . . , 14. The o bs erv e d m arks for dete ction i in our model are
ther efor e the camera trap m i 1 = ω i , sex m i 2 , and co ll ar m i 3 . Marks
are ass ume d observ e d without error. The joint mark distribution
for a single dete ction, i , c ondition al on the animal cha racte ris tics
x and activity centers S , is 

f ( m i | δi , x , S , N) = f (ω i | δi , S , N) I(m i 2 = x δi 2 ) 

× I(m i 3 = x δi 3 ) , ( 14 ) 

where I ( ·) is an indicator function indicating that the detec- 
tion m us t match the a nim al ch a racte ris tic . Whe n the additional
ma rks a re missing, w e m argin alize ov er the mark. For matching 
the co ll ared de tection s to animals, we adjust the animal co ll ar 
status of the 14 individuals based on the time when animals were 
first co ll ared. For examp le, at the beginning of January, only 12 

anim als w ere c o ll ared, leaving the potential for an unco ll ared de- 
tection in early January to be allocated to 1 of the 2 individuals 
co ll a red b y mid - Ja n ua ry. 

We consider 2 different infer ential appr oaches for the fisher 
ca me r a tr ap data. As previously note d, be ca use of the p a ra met-
ric form of the mixture wei gh ts, we ca n sa mple the m argin al- 
ized model fr om Equa tion 9 directly, or we ca n sa mple the an- 
imal ide n t it ies. Addit ionally, we compare results from 4 diffe re n t 
models w ith vary ing a moun ts of ma rk information: ( 1 ) jus t the 
o bs erv e d trap m ark with m argin alize d I D ( SC ) , ( 2 ) allocat ing
I D ( LI D ) using the full-condit ional in Equation 12 , ( 3 ) a ddin g 
sex as a mark ( LID + Sex ) , and ( 4 ) a ddin g both sex and col- 
la r ma rks ( LID + Sex/Colla r ) . Prior dis tributions on all pa ra m- 
ete rs we re uni for m with ranges that did not constrain the pos- 
terior ( see Web A ppendix A for det ails ) . Inference s drawn from 

Model 1 are equivalent to those from Algorithm 2 in Chandler 
a nd Ro yle ( 2013 ) a nd for c omputation al purposes, w e aggre- 
gated the counts at each trap, reducing exactly to the SC model. 

Results of the analysis are shown in Figure 2 . For each model, 3 

ch ains w e re run, each for 60 000 ite rations afte r a n initial 40 000
burn-in . We visually in spected trace plots to assess the c onv er- 
genc e, which was de eme d sa tisfactory. Alloca ting ID gives nearly 
equivale n t results to the SC model as expected. However, the SC 

model has improved mixing over N , as it avoids the more com- 
plica ted alloca tion s tep. Both SC a nd LID de nsities a re ri gh t-
skew e d and lack precision, with mode and 95% credible in te r- 
val, ̂  D = 2 . 2 ( 1.3, 7.9 ) individuals per 100 km 

2 ( from model 2 ) . 
Note that due to the ri gh t-skew pos te rior dis tributions of these 
models, we use the pos te rior mode as the point estimate. 

Web Figure 1 highlights that any activity center equidistant 
from a ca me r a tr a p has a n equivale n t pr obability of pr oducing
the de tection . Count correl ation be tw e e n tra ps helps to inform 

whe re activity ce n te rs ca n or ca nnot be, but the det ect or mark,
ω i , alone does not con tribute m uch to the est imat ion of density. 
Adding sex alone de crease d pre cision and increased the popula- 
tion density estimate ̂  D = 3 . 3 ( 2.1, 15.4 ) . Thi s i s likely because 
s ex w as not perfectly o bs erv e d and m ay hi ghli gh t pro b lem s with
the model as sumption s such as indepe nde nc e betw e en m ale and 

female home ranges. In this cas e, s eparating de tection s by sex 
may not be very informative. 

Using both co ll a r a nd sex in mode l 4 re s ulte d in a large im-
prove me n t to the precision of density, ̂ D = 2 . 0 ( 1.5, 2.9 ) . Im- 
porta n tly, the model 4 pos te rior mea n of σ ( ̂  σ = 1 . 9 ( 1.6, 2.2 ) )
increase d c ompare d to the e stimate s from the other models and 

was more similar to that from the genetic SCR study ̂  σ = 2 . 5 

( 2, 3.5 ) . Mode l 4 e stim ate d a pos te rior mea n of ̂  K = 26 unique
individuals det ect ed ( 11 male and 15 female ) . Of these, 7 were 

https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujad019#supplementary-data
https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujad019#supplementary-data
https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujad019#supplementary-data
https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujad019#supplementary-data
https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujad019#supplementary-data
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FIGURE 2 Fisher data analysis results for 4 diffe re n t late n t ID SCR models: spatial count ( SC ) , late n t ID SCR ( LID ) , LID with Sex as a 
cov ari ate ( LID + Sex ) , and LID + Sex with the co ll ar information included ( LID + Sex/Co ll ar ) . D is animal density, σ is the scale pa ra mete r in 

the detection function, and λ is the detection in te nsity at a trap per unit time for an animal at distance 0. We ran the MCMC algorithm using 3 
chains for 60 000 iterations after an initial 40 000 burn-in. Pos te rior plots are shown as violin plots with the in te rior boxplots showing 50% 

credible in te rvals a nd the media n. Abbr evia tion : MC MC, Ma rkov Chain Mon te Ca rlo. 
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o ll ared ( 3 male and 4 female ) , an exact match to the r ecaptur es
n the genetic study of co ll ared individuals for the same months
 Web Table 1 ) . The estimate of density is slightly smaller than
he 1 from the ge netic s tudy b y Burga r et al. ( 2018 ) ( ̂  D = 2 . 96
 2.18, 4.72 ) ) . See Web A ppendix A for a de tailed dis cus sion on
hese diffe re nc es . The perform anc e of models 2, 3, and 4 is t est ed
urther using a simulation study. 

5.1.2 Sim ula tion 

o v alid ate the 3 l ate n t ID models, w e inv es ti ga ted thr ough
imulation 2 possible sc en arios with 3 different models: LID,
I D + Sex, and LI D + Sex/Co ll a r. The pa ra mete r values we re
ased on the results from the fisher study with 2 levels of density
nd de tectability: s ce na rio 1 ( D = 2.44, N = 50, σ = 1.5, λ =
.15 ) a nd sce na rio 2 ( D = 1.95, N = 40, σ = 2.0, λ = 0.10 ) .
e used the fisher survey design of 64 traps over 64 days with a

 urv ey area of 20 . 5 × 100 km 

2 . In both sc en arios, w e randomly
llocate d c o ll ars to 14 individuals ( 5 male and 9 female ) , and we
ss ume d the probability of a n a nimal being fe male was γ = 0.60.
 ete ctions w e re ra ndomly sele cte d to be of high enough quality

o ide n tify sex a nd/or co ll a r s ta tus with pr obabilities 0.32 and
.40, respe ctiv ely. 
For each sc en ario, 100 d atas e ts we re sim ulated a nd the n a na-

yzed using the 3 models. For each model, a single chain was run
or 60 000 iterations with the first 20 000 remov e d as burn-in.
hre e ch ains w ere use d for a portion of simul ation s to check for

onsis te n t conve rge nce ( see Web Appe ndix B for details ) . The
esults in Figure 3 show relative bias for each simulated dataset
nd method wher e r ela tive per centage bias is 100 × ̂ θ−θ
θ

, for any
a ra mete r θ a nd poin t es timate ̂  θ . 
The distribution of the s amp led mean s and medi an s were both

i ghly ri gh t-skew e d for density, ̂  D = 

̂ N /A , and they did not act
s an unbi as ed point estimate except when both sex and co ll ar in-
ormation w as us ed. Simil a rly to othe r s tudies, we found the pos-
e rior ma rginal mode to be nearly unbi as e d and as w e adopt uni-
orm priors, we expect that this point estimator is likely to be rel-
va n t whe n one compa res infe re nc es with fre que n tis t a n alyses .
ow ev er, the models ge ne rally pe rformed poorly whe n relying

nly on the det ect or mark. Including both the partially observ e d
ex and c ollar m arks increase d the pre cision and de crease d bias
n all sc en arios . Increasing the amount of overlap betw e en an-
mal home ranges decreased the pe rforma nce of these models.

hi s i s c ontrolle d b y both σ a nd D . For sce na rio 2, increasing
and r educing D r esulted in similar perform anc e to Sc en ario 1.
 he LID + S ex/Co ll ar mode l e stimate s we re nea rly unbi as ed for

ll pa ra mete rs a nd we re the mos t reli ab le. Our simul ation study
esults hi ghli gh t the pote n t ial for LI D-SCR when addit ional in-
ormation is av ail ab le, even if it is only partially observ e d. 

5.2 Ac ou st ic S CR 

5.2.1 Ca pe pen insu la m oss frog acousti c study 
e use an acoustic s urv ey of Cape Penin sul a mos s fro g

 Arthrolep tell a light f oo ti ) on Ste e nbe rg Plateau in Table Moun-
ain National Park, South Afr ica , which has previously been used
or est imat ing CD ( Steven s on e t al., 2015 ; Meas ey e t al., 2017 ) ,

https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujad019#supplementary-data
https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujad019#supplementary-data
https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujad019#supplementary-data
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FIGURE 3 Late n t ide n t ity spat ial captur e-r ecaptur e r ela tive bias for 3 differ ent la tent ID SCR models: latent ID SCR ( LID ) , LID with sex as a 
cov ari ate ( LID + Sex ) , and LID + Sex with the co ll ar information included ( LID + Sex/Co ll ar ) . D is animal density, σ is the scale pa ra mete r in 

the detection function, and λ is the detection in te nsity at a trap per unit time for an animal at distance 0. We ran the MCMC algorithm for 
60 000 iterations with 20 000 burn-in. Relative bias is shown for 3-point e stimate s of the posterior. The y -axis is cut-off at 150% bias, which 

removes some outl ier s of simulation sc en arios th at did not c onv e rge ( Web Appe ndix B ) . Ab brevi ation : MC MC, Ma rkov Chain Mon te Ca rlo. 
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a nd a nimal de nsity whe n ID ca n be infe rre d ( Stev en s on e t al.,
2021 ) . Mos s fro gs a re ve ry small a nd cryptic, hiding in shrubs,
makin g tra ditional count methods unrelia ble. T he males cue to
a t tract a mate and do not move in a calling period. 

A 6-ch annel re c order with a single clock was set up roughly
in a circle with microphones spac e d approxim ately 5 m a pa rt
( Web Figure 1 ; full details in Measey et al. ( 2017 ) ) . This en-
ables accurate times of det ection t o be r ecor ded. Two surveys
too k p l ace 18 d ays a pa rt. Due to hi gh cue freque ncy, each s urv ey
period was 30 se c onds, for a total of 98 and 86 det ect ed cues. In
a n a d hoc a n alysis, Stev e nson et al. ( 2021 ) ide n tified 14 a nd 9
unique individuals, respe ctiv ely, in the 2 s amp ling s es sion s. 

The da ta wer e an alyze d using ASCR in 3 w ays: ( 1 ) l ate n t ID
( LID ) , ( 2 ) known ID ( ID ) , a nd ( 3 ) CD, whe re cues a re as-
s ume d to occur from indepe nde n t cue locations. As per Steven-
s on e t al. ( 2021 ) , a hal f-nor m al h azard dete ct ion funct ion and a
cons ta n t cue rate were assumed. Prior distributions were all uni-
form with bounds well beyond the s amp led pa ra mete r spac e ( se e
Web Appendix B for de tails ) . Potenti al animal locations were
buffe red b y 15 m bey ond the tr aps . The s urv ey s es sion s, r = {1,
2}, w ere ass ume d to be independent but sh are d parameters, and
N r ∼ binomial ( ψ , L ) . For LID-ASCR, w e use d Equation 12 to 

allocat e det ections t o anim als . The R p ackage “ascr” ( S teven s on 

a nd Borche rs, 2018 ) , which giv es m aximum l ikel ihood e stimate s 
of the cue pa ra mete rs, w as us ed for C D-ASC R. For models 1 

and 2, we ran 3 chains for 30 000 iterations after an initial 20 000 

burn-in . Trace p lots for all pa ra mete rs we re vis ually che cke d for
c onv e rge nce. 

Animal density is reported as, ̂ D = 

̂ ψ ×L 
A individuals per 

he ctare ( ind/Ha ) . For ID-ASCR, w e obtaine d a pos te rior 
m argin al mode and 95% credib le interv al of ̂ D = 368 ( 250, 
539 ) . For LID-ASCR, our model estim ate d 

̂ D = 389 ( 253, 
577 ) , which agre es w ell with the known I D method . We est i- 
m ate d a pos te rior mea n of ̂  K = 27 ( 22, 33 ) det ect ed frogs in the
2 s urv eys c ombine d which agre es with the 23 inferre d by the ad 

hoc an alysis . To c ompare with C D-ASC R, we also estimated CD, 
μ = λ × D cues per se c ond per Ha. Using ID-ASCR, the poste- 
rior m argin al mode was ̂  μ = 111 ( 74, 166 ) , while with the LID- 
ASCR model it was ̂  μ = 106 ( 72, 161 ) , and w ith CD-A SCR, we 
found ̂  μ = 125 ( 104, 145 ) , based on maximum l ikel ihood es ti - 
mation and 95% confidence in te rval. See Fi gure 4 for results on 

each pa ra mete r. 

https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujad019#supplementary-data
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FIG URE 4 Fro g d a ta analysis r esults for 3 differ ent ASCR models: cue density ( CD ) , known ID ( ID ) , and latent ID ( LID ) . Model CD shows 
the maximum l ikel ihood estimator and 95% c onfidenc e intervals; μ is CD, D is animal density, λ is the cue rate, σ is the scale pa ra mete r, g 0 is 
the probability of a cue being re c orde d at dis ta nce 0 from the microphone, and σ t is the standard error of the time of arrival. Posterior plots are 
shown as violin plots with the in te rior boxplots showing 50% of the values and the median. Abbr evia tion: ASCR, acoustic SCR. 
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Unlike the ca me ra tra p s tudy, each detection in ASCR is as s o-
i ated with multip le tra ps, which ca n giv e ac curate inform ation
n where the cue originates when there are multiple r ecaptur es
f a single cue. With accurat e TO A information, we los t ve ry little

nformation about density by not knowing animal ID, accurately
e c ov ering the cue rate pa ra mete r λ. Whe n cue rate a nd the de-
ect ion funct ion are both es timable, a nimal de nsity ca n also be
stim ate d ( Stev en s on e t al., 2015 ) . Errors in the d ata can occur
rom assi gning a nimal ID via a d hoc methods, or whe n assi gning
 det ection t o a single cue. We expect both cases to positively bias
t . A sim ulation s tudy w as us ed to exp lor e the differ ences in σ t 

urther. 

5.2.2 Sim ula tion 

o test our late n t ID ASCR model, w e carrie d out a simulation
tudy matching the A. light f ooti survey de sign ; 6 traps re c ord-
ng for a total of 30 se c onds for 2 oc casions . The late n t ID a nd
nown ID models for the real data exa mple diffe re d m ainly in
heir estimate of TOA error, σ t . We c onsidere d the perform anc e
f our late n t ID model under a simulation study with 3 values
f σ t : ( A ) σ t = 0.05, ( B ) σ t = 0.001, and ( C ) σ t = 0.00055.
c en ario A r epr ese n ts a n e rr or ra te hi gh e nough that TOA no

on ger a dds new information to the model about cue location
 Web Figure 1 ) . Sc en arios B and C were chosen to match the
 ata examp le. For each s c en ario, 100 d atas e ts were simul ated,
nd for each model, a single MCMC chain was run for 40 000
tera tions, r emo vin g the first 20 000 as burn-in . A subs e t of these
imul ation s w ere vis ually inspe cte d for c onsis te n t c onv e rge nce
 y running m ultip le chain s ( See Web Appendix B for details ) .
he population N = 55 was he ld const ant betw e en the 2 ses-

ions. Othe r pa ra mete rs we re { D = 408.16, σ = 2.3, g 0 = 5.75,
= 0.28}. 
Results from the simulation study are shown in Figure 5 . As

xpe cte d, for Sc en ario A, the latent ID model w as unab le to reli-
bly allocate detections to animals with just 6 microphones, dis-
 l aying bi as in λ and σ . By losing the spa tial informa tion for an-

m al ID provide d by the addition al TOA m a rk, the sim ulation
es ults be c ome ri gh t-skew e d for the mea n a nd media n, simila r
o the ca me r a tr a p sim ul ation s. For s c en arios B and C where

t is smal l, al l pa ra mete rs a re es tim ate d with little to no bias
nd improv e d pre cision ov er sc en ario A. If TOA information is
ot av ail ab le, more de t ect ors w ould be re quire d to reli ab ly per-

orm LID-ASCR density est imat ion . Our simul ation study did
ot hi ghli gh t a ny bias in es t imat ing σ t . 

6 D I S  C U S S  I O N 

riting SCR as an MPP se parate s the counting process from
he o bs erv e d m a rks dis tribution. This makes the counting pro-
 ess spe c i fic a nd s trai gh tforwa rd to ge ne r aliz e to othe r dis tribu-
ion al ass umptions, s uch as a renewal or sel f-exc iting point pro-
ess ( Daley a nd Ve re- Jones, 2003 ; Rushing, 2023 ) . It also nat-
rally links con tin uous-time SCR ( Borche rs et al., 2014 ) , ID-
S CR ( Ste ven s on e t al., 2021 ) , a nd con tin uous-time non-SCR
ode ls ( Schofie ld et al., 2018 ) . We then conside r sepa rately the

roc ess for m arks ( e g, anim al ide n t ity, detect ion locat ion, and

https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujad019#supplementary-data
https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujad019#supplementary-data
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FIGURE 5 Acoustic spatial captur e-r ecaptur e posterior r ela tive bias for 2 diffe re n t ASCR models: known ID and Latent ID. D is animal 
density, λ is the cue rate, σ is the scale pa ra mete r, g 0 is the probability of a cue being re c orde d at dis ta nce 0 from the microphone, and σ t is the 
s ta nda rd e rror of the time of arriv al. Rel ative pos te rior bias is shown for each point estimate. The y -axis is cut-off at 150% bias, which remov e d 4 
simul ated d atas e ts from sc en ario A with latent ID. Sc en arios are σ t = ( A ) 0.05, ( B ) 0.001, and ( C ) 0.00055. Ab brevi ation: ASCR, acoustic 
SCR. 
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sex ) making it easy t o ext end kno wn ID SC R models to LID-
SCR models within the same framework. 

When the identity mark is uno bs erv e d , the MPP formulat ion
n aturally be c ome s a mixture mode l. This include s the special
case of the SC model from Cha ndle r a nd Ro yle ( 2013 ) , but also
b y incorporating pa rtially ide n tifyin g co v ari a te informa tion in-
clude s SPIM mode ls ( Au gust ine et al ., 2018 ; 2019 ) , and spatial
mark- re sight ( Whittington et al., 2018 ) models. Our methods
hi ghli gh t that these models only differ in the amount of the mark
information av ail ab le ( Sun e t al ., 2022 ) . August ine et al . ( 2019 )
applied their model to a genetic h air sn ag study where they as-
s ume d a Bernoulli data genera tion pr oc ess . In our framew ork,
the total counting process per det ect or becomes a Pois s on bino-
mial dis tribution, a nd we ca n con tin ue to a pp ly the me thods de-
scribed here. 

Anothe r adva n tage of our formula tion is tha t it does not re-
quire custom code to be written for the various models that fall
in the framework, but instead r equir es just simple adaptations
of the ge ne ral code te mp l ate. The fishe r exa mple hi ghli gh ts this
by re quiring minim al ch ange s to the mode l and MC MC sam-
pler to incorporate diffe re n t ma rk types . The sex m ark shows 
how a n a nimal fea tur e tha t is as s oci ated w ith each indiv idual
can be inc orporate d ev en when not fully o bs erv e d. Inclusion of 
the co ll a r ma rk sho ws ho w ve ry s tudy-spec i fic infor m ation m ay
be included. In this case, the co ll a rs we re pa rtially ide n tifying 
cha racte ris tics that changed over time, which would normally 
be challen gin g t o incorporat e but could be readily included in 

our framework. Our frog example de mons trates the framework’s 
flexibility by using it to s o lve a l ate n t ID-ASCR pro b lem, which 

has not been tackled in previous literature. 
Similar to other studies, we found tha t estima ting animal den- 

sity from ca me r a tr a p data without a nimal ide n t it ies is too im-
precise to be useful ( Burgar et al., 2018 ; Amburgey et al., 2021 ; 
Dor an-My ers et al., 2021 ) . How ev er, with addition al inform a- 
tion from av ail ab le m arks, s uch as sex, c olla r, a nd TOA in the
case of acoustic det ect ors, we were able to obtain practically use- 
ful e stimate s. This was true even when the addition al m arks w ere 
only partially observ e d. We re c ommend caution when applying 
thes e me thods without addition al m ark inform ation, and to de- 
sign s urv eys with this in mind. 
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We h av e prese n ted a fra mework for dealing with LID-SCR sur-
eys using a marked point process. Our methods apply to SCR-
ype s urv eys using passiv e dete ctor s, where ind ividuals may not
e fully ide n tifiab le. They als o app ly t o t o both SC and SPIM
ype pro b lem s and, thus, can be used for existing app lication s of
ID-SCR. By coding all models in Nimble, we provide a readily
ustomizab le, us er-friendly imp lementation of the methods and
ake it easy to extend these further. 
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