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ABSTRACT

Camera traps or acoustic recorders are often used to sample wildlife populations. When animals can be individually identified, these data can
be used with spatial capture-recapture (SCR) methods to assess populations. However, obtaining animal identities is often labor-intensive and
not always possible for all detected animals. To address this problem, we formulate SCR, including acoustic SCR, as a marked Poisson process,
comprising a single counting process for the detections of all animals and a mark distribution for what is observed (eg, animal identity, detector
location). The counting process applies equally when it is animals appearing in front of camera traps and when vocalizations are captured by
microphones, although the definition of a mark changes. When animals cannot be uniquely identified, the observed marks arise from a mixture
of mark distributions defined by the animal activity centers and additional characteristics. Our method generalizes existing latent identity SCR
models and provides an integrated framework that includes acoustic SCR. We apply our method to estimate density from a camera trap study
of fisher (Pekania pennanti) and an acoustic survey of Cape Peninsula moss frog (Arthroleptella lightfooti). We also test it through simulation. We

find latent identity SCR with additional marks such as sex or time of arrival to be a reliable method for estimating animal density.

KEYWORDS: acoustic recorders; camera traps; marked Poisson processes; mixture model; spatial clustering.

1 INTRODUCTION

Estimates of animal density, the number of individuals per unit
area, are critically important for understanding ecological pro-
cesses affecting wildlife management. Spatial capture-recapture
(SCR) can be used to estimate animal density from detections
of animals at multiple points in space, when animal identities are
known (Efford, 2004; Borchers and Efford, 2008; Royle et al.,
2013). In the case of acoustic SCR (ASCR), detections are of an-
imal vocalizations, not of animals themselves. Because it is often
feasible to identify which detectors recorded each vocalization
(or cue), but not the animal that vocalized, ASCR generally esti-
mates vocalization density (Stevenson et al., 2015). When indi-
vidual identification is difficult or impossible, there is a need for
methods that can accommodate unobserved (latent) identities.
We refer to these methods as “latent ID” models.

We are motivated by 2 datasets: a camera trap study of
fisher (Pekania pennanti) (Burgar et al., 2018) and an acous-
tic survey of Cape Peninsula moss frog (Arthroleptella lightfooti)
(Stevenson et al., 2021). In the fisher example, a portion of
the detections can be identified as male or female, as well as
collared or uncollared, due to a parallel telemetry study. Using
the collars to inform animal identity results in a specific type
of spatial mark-resight problem with batch marking, as the col-

lars are not uniquely identifying (Cowen et al., 2017). The col-
lars were also removed during the camera trap study, adding a
unique challenge to this dataset that has not been explored in the
literature.

Latent ID SCR literature consists mainly of extensions to the
spatial count (SC) model developed by Chandler and Royle
(2013) that models the aggregated counts at each detector of the
latent individuals. For cases when there are partially identifying
features (ie, pelage or sex), Augustine et al. (2018) took the ap-
proach of modeling the individual detections in what is known
as spatial partial identity models (SPIMs). Both SC and SPIM
are extensions of SCR that make inference by using the spatial
location of each animal to sample from the latent capture history
in a Markov Chain Monte Carlo (MCMC) framework. The SC
approach models the count of detections at each trap across all
individuals, and the latent capture history is then sampled by al-
locating detections to the unobserved animals or by marginal-
izing over all possible identities. Chandler and Royle (2013)
showed that for reliable inference, it is necessary to have either
strong prior knowledge of animal home range or a proportion
of the population with fully known identities. Spatial capture-
recapture is then applied to the known ID portion, and the SC
model is applied to the additional latent ID counts (Sollmann
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et al, 2013; Rich et al., 2014; Alonso et al., 2015; Whitting-
ton et al., 2018). SC models have also been used when animal
identity is missing randomly, such as from poor picture quality
(Jiménez et al,, 2021).

Instead of treating the observed data as counts, the SPIM
method treats each detection as a Bernoulli vector of length
equal to the number of traps and a single indicator for which trap
made the detection. Augustine et al. (2018) sample the latent
capture history by combining the detection vectors into tradi-
tional capture history matrices. As a result, SPIM can incorpo-
rate additional covariates that provide information on which de-
tections come from which animals (Augustine et al,, 2019). In
the case when detections are known to be from the same animal
(a “must-link” constraint) or known to be from different animals
(a “cannot-link” constraint), SPIM uses this information as addi-
tional constraints within the MCMC sampler (Augustine et al.,
2018). Although SPIM and SC sample the latent animal identi-
ties differently within the MCMC, once sampled, they both are
equivalent to conventional SCR given the sampled identities.

In ASCR, it is rare that animal identity is known. The con-
ventional model is used to estimate cue density (CD), and then
given an independent estimate of cue rate, animal density can
be inferred (Stevenson et al., 2015). When individual identity
is available, Dawson and Efford (2009) developed a model us-
ing the first detected cue by each individual to estimate animal
density. More recently, Stevenson et al. (2021) modeled all the
detected cues of each individual to estimate animal density when
individuals call at fixed locations (ID-ASCR). The time of arrival
(TOA) of the vocalization to each microphone provides precise
information about where each cue originates. Stevenson et al.
(2021) used this spatial information to manually allocate cues
to individuals in order to estimate animal density for the Cape
Peninsula moss frog.

We derive a general formulation for SCR models with any de-
gree of latent identities, including SCR and ID-ASCR as special
cases. This is done by formulating SCR as a marked Poisson pro-
cess (MPP), in which detection times arise from a counting pro-
cess and features of detections, such as ID, detection location,
and other individual-level features, are treated as marks. Once we
have described the MPP framework, we then demonstrate how it
can be applied to latent ID SCR (LID-SCR) problems as a mix-
ture model. We then use our framework to estimate density in
our motivating examples, the camera trap study of fisher and the
acoustic study of frogs. These examples are validated by a simu-
lation study.

2 SPATIAL CAPTURE-RECAPTURE
2.1 Survey methods

We define a detector as a device, such as a camera or a micro-
phone, that records the presence of an animal and the time of
the detection. The survey has ] detectors set up atlocations X =
{x1, ..., 7} inasurvey region with area A. The detectors are ac-
tive for a time period T. Within the region, there are N animals
at risk of detection, of which the study detects K, and we wish
to infer N. In this section, we focus on a survey using cameras as
detectors.

The key notation is illustrated in Figure 1. This figure shows
] = 4 detectors A to D, and activity centers for 2 animals k =
1, 2. There was a total of n.. = 9 detections. Animal 1 was de-
tected twice by detector A (n;; = 2) and 3 times by C (n;3 =
3); animal 2 was detected once by B (1, = 1), once by C
(na3 = 1), and twice by D (154 = 2). The resulting animal in-
dicators §; (i=1, .. ., 9) identify which animal detection i cor-
responds to, the detector indicators @ = {w;, ..., wy} specify
which detector made each detection, and the detection times are
t ={t, ..., ty}. The animal indicator § = {4y, ..., §9} is only
observed when animals are individually identifiable on detec-
tion; otherwise it is latent.

At the end of the study, detector j has made n; detections of
animal k. When ID is known, a conventional capture history
for animal kis ny = {ny1, . . ., gy} When identity is unknown,
we observe n.; = Zlk\rzl nij detections at detector j, where N is
the number of animals at risk of detection. We assume that N
is constant throughout the survey period (ie, we have a closed
population). Across all detectors in the study, a total of n.. =
Zi.:l n.; detections are made. We assume that detections of
each animal follow a Poisson process.

When the rate of the Poisson process is the same for all animals
k=1,...,N, the detection times, ¢, are uninformative about
N, whether the Poisson process is homogeneous or nonhomoge-
neous, and are therefore not required to obtain inference about
N (Borchers et al., 2014; Schofield et al., 2018). We will focus on
the homogeneous Poisson process (HPP), but keep detection
times in our description of the model to differentiate the Pois-
son process from the Poisson distribution. The ideas presented
here generalize to the nonhomogeneous case.

2.2 Marked Poisson process

We assume animal k (k=1,...,N) has an activity center,
st, that remains fixed through the survey period but is unob-
served. The probability density function (PDF) of s is f(s;) =
D(st)/ [, D(s)ds, where D(s) is the intensity of the point pro-
cess that governs activity centers, at s (Borchers and Efford,
2008). Activity centers are assumed to be independently and
identically distributed in the survey region. For notational sim-
plicity, we denote both probability mass functions and PDFs as
).

Animal k, with activity center s, is observed at detector j
(j =1,...,]) according to a spatially thinned HPP with rate
h(t, x;, s;) = kg(xj, si.) per unit time at time t (Borchers et al.,
2014). Here g(x;, st ) is a detection function that is a decreasing
function of distance, d(x]-, sp) = ||x; — si|| between detector j
and activity center k, and X is the rate of detections at detector
j, for an animal with d(x;, s;) = 0. A popular detection func-
tion is the half-normal, g(x;, s;) = exp{—d(x;, s)?/(20%)},
where 0 € R™ is referred to as the scale parameter. This detec-
tion function arises as the limiting distribution of an Ornstein-
Uhlenbeck process for animal movement (McClintock et al.,
2022).

With the above HPP, mny; ~ Poisson{H(xj, si)}, where
H(xj,s0) = [i h(t, 2, s0)dt (k=1,...,N; j=1,...,]).
Further, if activity centers are located independently, any sum
of the ny; is also a Poisson random variable with expected value
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FIGURE 1 Illustrative example of the detection generating process in space and time. Two animal activity centers are shown by numbers in
circles. Detectors are crosses named “A”, “B”, “C”, and “D”. Arrows show which detectors each animal was detected by. For SCR, each detection
is a single animal at a single detector; detection 1 is defined as {t;, §; = 1, @; = A}. For ASCR, each detection is a single vocalization that can
be heard at multiple detectors, while the time the cue is produced, ¢, is latent {§; = 1, @; = (1, 0, 1, 0)}. Abbreviations: ASCR, acoustic

SCR; SCR, spatial capture-recapture.

TABLE 1 Notation for the counting process.

Count Latent Rate Expected count
Animal k at detector j () T h(t, x;, sc) = Aglx;, si) H(xj, s)
All animals at detectorj (n.;) F h(t, x;,8) = Zgzl h(t, x;, si) H(x;,S)
Animal k across all detectors (1) T h(t,X,s) = Zgzl h(t, %, si) H(X,s;)
All detections (n..) F h(t, X, 8) =Y o h(t,X,S) H(X,S)

Latent describes detection events that do not depend on identity (Latent = F) and events that depend on identity (Latent = T); A is the rate under perfect detection, and g(x;, s; )is

the detection function for a detector at x; and an animal with an activity center at s. In all cases, the expected count of events in the study period is defined as H(-) = f[:D h(t, -)dt.

equal to the sum of the relevant expected counts, H(x;}, si).
See Table 1 for the definitions of the various sums and their
associated rates. Note that SC models treat n.;, the total number
of detections at each detector, as the unit of observation. Instead,
we consider the counting process for all .. detections.

We now describe SCR as a MPP. The n.. detections across all
detectorsattimest = (t;, ..., t, )arise froman HPP with rate
h(t,X,8)fori=1,...,n., given N animal activity centers lo-
cated at § = {sy, ..., sy}. Note that under an HPP, the rate is
not a function of time, h(t;, X, ) = h(X, S). Each event is as-
sociated with a mark, defined at minimum as the animal iden-
tity, 8;, and where it was detected, w;. It follows from the Poisson
process and Table 1 that the animal identity mark, conditional

on being detected from one of N animals located at S, is categor-
ically distributed,

h(t, X, s;)
n6.X.S) (1)

for8; € {1, ..., N}. Similarly, given §; = k, the detector mark is
also categorically distributed,

f(5, == k|ti, S, N) =

h(tiv xjv Sk)

i = jlt, 6=k, 8, N) = ————,
flon=l )= X

(2)
forw; €{1,...,]J}

Given the n.. detections at times ¢, the joint mark distribution
for the specific animals detected, § = {41, ..., §,_}, at detectors
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® = {wiv ey a)n,..}) is

1_[ f(8i, wilt;, S, N)

i=1

_ 1"—[ Bt %0, 5) 3)

i=1 h(tthS)

f(, @ln.,t,S$,N) =

Overall, the observed data n.., t, §, and @ arise from a MPP with
marks {8, @}, as illustrated in Figure 1, with joint distribution

f(n.,t,8, w8, N)= f(n.,t|S,N)f( wn.t, S N)

B h(ti, x4, 85,)
HED T h(t, X, 8 D T 55)
H (t )H h(t. X, S)

(4)

= ¢ HXS) 1_[ h(ti, %, S5, )- (5)
i=1

Equation S shows that the MPP is equivalent to the continuous-
time SCR model in Equation 2 of Borchers et al. (2014). How-
ever, the MPP provides a new way of thinking about the de-
tection process in continuous time. Generally, SCR approaches
model detections conditionally on animal and detector identity,
but here we show how these quantities can be modeled jointly.
This allows us to model SCR as a counting process that does not
depend on animal identities, and a mark distribution that does,
providing an explicit link to continuous time capture-recapture
as presented in Schofield et al. (2018).

As we are assuming an HPP, the rest of this manuscript
will consider likelihoods in which detection times are
marginalized out, modeling the count of detections
(n.|S,N) ~ Poisson{H(X, S)} and the associated mark
distribution f(8, @|n.., S, N) that does not depend on when
the events occur.

3 ACOUSTIC SCR

In ASCR, an acoustic cue (a vocalization) is produced at some
activity center s; and the cue propagates through space, while

filew,, 8, 8. N) = { (T &)™ Qo) Pexpl— Qo0 ™ Ty 0 (s = 7))
1

Here, y;; = yij +ds,j/vand y; = Zi 16 wz;%;
‘We now have the distribution for marks {§, €2, Y}, whereY =

{yi’ e ’yn..}J

Hf(8i|s’ N) f(wil$;, S, N)

i=1
Xf(yi|wi78io Sa N) (8)
When we use Equation 8 for the mark distribution of the MPP,

the likelihood is proportional to the ID-ASCR likelihood of
Stevenson et al. (2021).

£(8,Q,Y|n.,S,N) =

the probability of detecting it decreases with distance. For ID-
ASCR described by Stevenson et al. (2021), we assume that an-
imals produce cues according to an HPP with rate A per unit
time and that the animal remains at a fixed activity center for
the duration of the survey. Cue i is produced by animal k = §;,
at time t;, and is detected by detector j (event w; = 1), with
probability decreasing with distance, d(;, s¢). A common de-
tection function in ASCR is the hazard half-normal, g(x;, s;) =
1 — exp[—go exp{—d(x;, st)*/(20%)}] where g, 0 € RT. In
ASCR, a detection must be accurately assigned to the cue that
produced it.

Under our new MPP formulation, the detection mark is a
Bernoulli vector ®;, indicating which detectors detected cue i.
The probability that cue i, produced by animal k, is detected
at least once is g.(X,s) =P(¢ > 0[s;) =1 — ]_H:l{l —

g(x;, s}, forc; = Zi:l w;j. Then,

Hi‘:1 g(xj, s5,){1 — g(x;, s5, JH i
& (X ) 85, )

Note that conditioning on an animal having produced the de-

tected cue, §;, implies that the cue was detected, ¢; > 0.

Animal k (k = 1,..., N) produces detected cues accord-
ing to a thinned HPP with rate h(X, s) = Ag. (X, s) per unit
time. The rate of detected cues across all detectors is h(X, §) =
Zle h(X, s;). The expected number of detections in the sur-
veyisthen H(X,S) = T x h(X, §). The animal ID mark, §;, is
categorically distributed as in Equation 1, f(8; = k|t;, S, N)
h(X, s). The n.. x ] matrix of capture histories, w;, is denoted
by 2. Figure 1 illustrates the process of detections on 4 detectors
through time, showing how the vector detector mark, w;, differ-
entiates ASCR from SCR.

In ASCR, we detect cue i, on detector j, at time y;, a short
time after the unknown time of cue production t;. Given the
speed of sound v, we assume the TOA of the cue at the detec-
tor is observed with Gaussian error, (y;jlw; = 1,£) ~ N(t; +
d(x;, s¢)/v, 0;). By assuming the cues occur according to an
HPP, marginalizing f(y;, t;|-) over the cue production time,
Borchers et al. (2015) obtained the following expression for the
PDF of times of detected calls, y;, given §; and w;,

f(@il8;, 8, N) = (6)

Ci>1
7
Cizl. ()

4 LATENT ID SCR

As shown above, we can formulate conventional SCR such that
animal identity, §;, is treated as a mark arising from a cate-
gorical distribution. The other detected marks, m;, are mod-
eled conditionally on the animal’s identity, which is defined
by its activity center. As a result, when §; is latent, the ob-
served marks m; (SCR: m; = {w;} as in Equation 2, ASCR:
m; = {®;, y;} as in Equation 8) can be modeled as if they
arise from a mixture of N mark distributions conditional on
the activity centers S, with mixture probabilities 7, = f(§; =
k|S,N). Thus f(m|S,N) =Y, m f(m|é; =k, s;). The
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mixture weights, T = {1y, ..., n}, have a parametric form de-
fined by the Poisson process in Equation 1 and depend only on
the distance of each animal to all detectors.

In standard mixture model notation, we write the joint
distribution for all n.. observed marks, M = {m,, ..., m, },
marginalizing over all the mixture components, §, as

S, MIS,N) = £(n18, N) [T D e f(mils, = k. ).

i=1 k=1
)

In a Bayesian framework, the posterior distribution, including all
model parameters, 6, to be estimated in Equation 9 is,

£(0,S,Nn., M) o f(n., M|S,N)
x f(SIN)f(N)f(8).  (10)

Under SCR, § = {X, 0, 0p},and ASCR O = {A, 0, go, 0y, Op}.
Here, 0 represents any parameters relating to the density pro-
cess, D(s). The SC model in Chandler and Royle (2013) is a
special case of Equation 10.

4.1 Estimation

When we consider the model as a standard finite mixture model
with an uncertain number of clusters (animals), there is a wide
variety of fitting methods to choose from. A Bayesian approach
using MCMC is attractive for a model-based solution to the
unknown number of clusters problem. For this, we use a fixed
parameter space and apply data augmentation, a common ap-
proach in the SCR literature for estimating unobserved animals
for both known ID and latent ID scenarios (Tanner and Wong,
1987; Royle and Dorazio, 2012; Chandler and Royle, 2013; Au-
gustine et al., 2018). For classical marginal likelihood methods,
both § and N must be integrated out of the likelihood. However,
this poses a computational challenge as the integration of § has
dimension N x 2.

In the context of SCR, data augmentation assigns a superpop-
ulation of L individuals, such that N << L and uses indicators
zi. to reference whether animal k = 1, . ..,L is available to be
detected, z; = 1, or not, z; = 0, with z; ~ Bernoulli(y), for
hyperparameter 1/ (Royle and Dorazio, 2012). We define the
population size as the number of animals available for detec-
tion, N = ZLI zi.. This method fixes the dimension of the pa-
rameter space, which allows the use of standard MCMC sam-
pling algorithms. Setting Y ~ Beta(1, 1) is equivalent to using a
prior distribution of N ~ Discrete-Uniform (0, L), and is the pre-
ferred approach in the existing literature (Chandler and Royle,
2013; Sollmann et al., 2013; Augustine et al., 2018; Jiménez
et al,, 2021). Link (2013) recommends a scale prior such that
f(N) o +.However, for LID-SCR, we must often differentiate
between a small N and large o, or a large N and small 0, and an
inverse prior on N can have a heavy influence. Biologists often
have strong prior information about the animal’s home range, so
it makes more sense to put an informative prior on o while as-
signing a flat prior on N. This situation was exemplified in the
parula analysis from Chandler and Royle (2013) when, using
a flat prior on N, the posterior mode and 95% credible interval
were N = 4 (3, 432) when the home range scale parameter was

Biometrics, 2024, Vol. 80,No.1 e §

o ~U(0,00),but N = 36 (18,157) when the informative prior,
Gamma(13, 10), was used.

To simplify the MCMC algorithm, we use data augmentation
for both § and z to sample from the complete-data likelihood

(Tanner and Wong, 1987). The posterior distribution is given
by

£(0,8,8,zln., M)  f(n.IS,z) f(8, M|S, z) f(S) f(2) (),
(11)

where f(8, M|S, z) is given by Equations 3 and 8 for SCR and
ASCR, respectively. By introducing z, we no longer condition
on N animals, as this information is contained in z with fixed
length L. However, we now define a new rate, h(x;, s, zx) =
zieh(x;, st). Only animals at risk of detection contribute to the
counting process, n..|S, z ~ Poisson(H(X, S, z)). Addition-
ally, following Equation 11, we sample the latent animal identi-
ties 6.
From Equation 11, the full-conditional distribution for §; s,

f(5i =k|-) Zkf((si = kIS, Z)f(mi|5i =k, s, z), (12)

fork =1, ..., L. The mark distribution, f(m;|§; = k, s, z1.),
is defined for SCR in Equation 2 and ASCR in Equation 8, and
f(8; = kIS, z) is the mixture weight defined by Equation 1.

As with mixture models in general, this model suffers from
nonidentifiability in the animal location for each index k, also re-
ferred to as “label switching” (Jasra etal., 2005). An animal k may
be unobserved (n;. = 0 and z; = 1), not available for detection
(zx = 0), or allocated to detections (n;. > 0 and z; = 1). Each
allocation of detections is associated with a different posterior
mode for s. As a result, the distribution of each activity center,
st, is multimodal resulting in poor mixing when using adaptive
procedures. A solution for this is to use a fixed-scale random walk
sampler or to use a proposal distribution that leads to both local
updates and jumps to other modes to improve mixing. We know
that the full-conditional of s;, when z;. = 0, is f(s;), as given at
the start of Section 2.2. For this reason, when animals are uni-
formly distributed in space, we use a Metropolis-Hastings sam-
pler with proposals from a mixture distribution,

silsk ~ aoN (sg, bo) + (1 — ag)U(A), (13)

where s is the proposed new value for si. The user sets the
mixture proportion ay € [0, 1] and the scale by € R as tun-
ing parameters. I/ (A) represents a uniform distribution over the
survey region with area A. Guidance for choosing a is given in
Web Appendix A.

‘We implemented an MCMC sampler using the software Nim-
ble (de Valpine et al., 2017; 2020) within R (R Core Team,
2019). The default sampling algorithm used by Nimble for
continuous-valued parameters is adaptive Metropolis-Hastings
random walk sampling (Haario et al,, 2001). Due to the highly
correlated nature of o with both A and v, we use Nimble’s stan-
dard fixed width slice sampler for o' to improve mixing (Neal,
2003). The remaining parameters of the model can be sampled
using standard SCR MCMC methods presented for Nimble by
Turek et al. (2021). We note that when the mixture weights are
only dependent on the animal activity centers, §, it is not nec-
essary to allocate detections and we can sample from the pos-
terior described in Equation 10. This is commonly used for SC
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models including when the population is partially identifiable
(Chandler and Royle, 2013; Sollmann et al., 2013; Whittington
etal,, 2018). All the details of the MCMC algorithm are provided
in Web Appendix B along with code.

S APPLICATIONS

5.1 Spatial capture-recapture
S.1.1 Fisher camera trap study

In Alberta’s UNESCO Beaver Hill Biosphere Reserve, Canada,
64 baited camera traps were set from January 1 to April 30,2016
to monitor fisher (Pekania pennanti) using baited stations, re-
placed monthly. Motion-sensitive camera traps were deployed
in a systematic design on a 4 x 4 km grid cell (Web Figure 1);
see Burgar et al. (2018) for a full description of the survey
methods. Stewart et al. (2017) carried out a genetic hair snag
study (January-April) paired with the camera trap survey. An
earlier live-trapping study was also conducted (November 2015-
January 2016), where a total of 14 collars were attached to 5 male
and 9 female individuals, as described in Stewart et al. (2019).
Burgar et al. (2018) used the genetic data from the concurrent
hair snag study (24 unique individuals; 9 male, 14 female) to im-
plement known ID SCR with each month as a discrete occasion.
They estimated animal density to be 2.96 (2.18, 4.72) individ-
uals per 100 km?, which is similar to published estimates on the
species (eg, Linden etal., 2017). Genetic data were also collected
in the live-trapping study, allowing individuals to be matched be-
tween the 2 surveys (Web Appendix A, Table 1).

In March and April, it is thought that female fisher change their
behavior in preparation for birth and mating. Following Burgar
et al. (2018), to remove the potential for confounding with be-
havioral effects, we limited our analysis of the camera trap data
to the end of March 4. The combined known ID surveys over
this period detected a total of 24 individuals (8 males and 15
females), with 11 recaptures of the live-trapped individuals by
hair snag. We use these data to evaluate the accuracy of our la-
tent ID model using the camera trap data.

Each photograph was marked with sex (male/female) and col-
lar (present/absent) when the quality of the image permitted. A
total of 207 detections were made over the 64 days. Sex was ob-
servable in 32% of the images, 42 female and 24 male. Addition-
ally, 40% gave collar information, 52 as uncollared, and 32 as col-
lared. The collars were not uniquely distinguishable so that when
they were identified as present, we only learned that the animal
had been previously physically trapped and collared, similar to
a batch marking survey. For animal k, we define the additional
characteristics: sex xi, (male x; = 0 or female x;, = 1), and
collar x;3 (uncollared x¢3 = 0 or collared xx3 = 1). The animal’s
sex is distributed as xy, ~ Bernoulli(y ), where y is the popula-
tion proportion of females. The collars were assigned to animals
k=1, ..., 14in our fitting algorithm, (x;; = 1), while animals
k=18, ..., Lwere uncollared (x;; = 0). For the collared indi-
viduals, we assign sex, xy, =0fork=1, ...,5andxy, = 1fork=
6, ...,14. The observed marks for detection i in our model are
therefore the camera trap m;; = w;, sex mp,, and collar m;3. Marks
are assumed observed without error. The joint mark distribution
for a single detection, i, conditional on the animal characteristics

x and activity centers S, is

f(mi|8i7 X, S’ N) = f(wi|5ia Sa N)I(mll = x(SlZ)

X I(mz = x53), (14)

where I(-) is an indicator function indicating that the detec-
tion must match the animal characteristic. When the additional
marks are missing, we marginalize over the mark. For matching
the collared detections to animals, we adjust the animal collar
status of the 14 individuals based on the time when animals were
first collared. For example, at the beginning of January, only 12
animals were collared, leaving the potential for an uncollared de-
tection in early January to be allocated to 1 of the 2 individuals
collared by mid-January.

We consider 2 different inferential approaches for the fisher
camera trap data. As previously noted, because of the paramet-
ric form of the mixture weights, we can sample the marginal-
ized model from Equation 9 directly, or we can sample the an-
imal identities. Additionally, we compare results from 4 different
models with varying amounts of mark information: (1) just the
observed trap mark with marginalized ID (SC), (2) allocating
ID (LID) using the full-conditional in Equation 12, (3) adding
sex as a mark (LID+Sex), and (4) adding both sex and col-
lar marks (LID+Sex/Collar). Prior distributions on all param-
eters were uniform with ranges that did not constrain the pos-
terior (see Web Appendix A for details). Inferences drawn from
Model 1 are equivalent to those from Algorithm 2 in Chandler
and Royle (2013) and for computational purposes, we aggre-
gated the counts at each trap, reducing exactly to the SC model.

Results of the analysis are shown in Figure 2. For each model, 3
chains were run, each for 60 000 iterations after an initial 40 000
burn-in. We visually inspected trace plots to assess the conver-
gence, which was deemed satisfactory. Allocating ID gives nearly
equivalent results to the SC model as expected. However, the SC
model has improved mixing over N, as it avoids the more com-
plicated allocation step. Both SC and LID densities are right-
skewed and lack precision, with mode and 95% credible inter-
val, D=22 (1.3,7.9) individuals per 100 km* (from model 2).
Note that due to the right-skew posterior distributions of these
models, we use the posterior mode as the point estimate.

Web Figure 1 highlights that any activity center equidistant
from a camera trap has an equivalent probability of producing
the detection. Count correlation between traps helps to inform
where activity centers can or cannot be, but the detector mark,
w;, alone does not contribute much to the estimation of density.
Adding sex alone decreased precision and increased the popula-
tion density estimate D=323 (2.1, 15.4). This is likely because
sex was not perfectly observed and may highlight problems with
the model assumptions such as independence between male and
female home ranges. In this case, separating detections by sex
may not be very informative.

Using both collar and sex in model 4 resulted in a large im-
provement to the precision of density, D =20 (15,2 9). Im-
portantly, the model 4 posterior mean of o (¢ = 1.9 (1.6,2.2))
increased compared to the estimates from the other models and
was more similar to that from the genetic SCR study o=25
(2,3.5). Model 4 estimated a posterior mean of K =26 unique
individuals detected (11 male and 15 female). Of these, 7 were
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FIGURE 2 Fisher data analysis results for 4 different latent ID SCR models: spatial count (SC), latent ID SCR (LID), LID with Sex as a
covariate (LID+Sex), and LID+Sex with the collar information included (LID+Sex/Collar). D is animal density, o is the scale parameter in
the detection function, and X is the detection intensity at a trap per unit time for an animal at distance 0. We ran the MCMC algorithm using 3
chains for 60 000 iterations after an initial 40 000 burn-in. Posterior plots are shown as violin plots with the interior boxplots showing 50%
credible intervals and the median. Abbreviation: MCMC, Markov Chain Monte Carlo.

collared (3 male and 4 female), an exact match to the recaptures
in the genetic study of collared individuals for the same months
(Web Table 1). The estimate of density is slightly smaller than
the 1 from the genetic study by Burgar et al. (2018) (D = 2.96
(2.18,4.72)). See Web Appendix A for a detailed discussion on
these differences. The performance of models 2, 3, and 4 is tested
further using a simulation study.

S.1.2 Simulation

To validate the 3 latent ID models, we investigated through
simulation 2 possible scenarios with 3 different models: LID,
LID+Sex, and LID+-Sex/Collar. The parameter values were
based on the results from the fisher study with 2 levels of density
and detectability: scenario 1 (D =2.44, N = 50,0 = 1.5, A =
0.15) and scenario 2 (D = 1.95, N = 40, 0 = 2.0, > = 0.10).
We used the fisher survey design of 64 traps over 64 days with a
survey area of 20.5 x 100 km?. In both scenarios, we randomly
allocated collars to 14 individuals (5 male and 9 female), and we
assumed the probability of an animal being female was y = 0.60.
Detections were randomly selected to be of high enough quality
to identify sex and/or collar status with probabilities 0.32 and
0.40, respectively.

For each scenario, 100 datasets were simulated and then ana-
lyzed using the 3 models. For each model, a single chain was run
for 60 000 iterations with the first 20 000 removed as burn-in.
Three chains were used for a portion of simulations to check for
consistent convergence (see Web Appendix B for details). The
results in Figure 3 show relative bias for each simulated dataset

and method where relative percentage biasis 100 x 90%0 , forany
parameter 6 and point estimate 6.

The distribution of the sampled means and medians were both
highly right-skewed for density, D=N /A, and they did not act
asan unbiased point estimate except when both sexand collar in-
formation was used. Similarly to other studies, we found the pos-
terior marginal mode to be nearly unbiased and as we adopt uni-
form priors, we expect that this point estimator is likely to be rel-
evant when one compares inferences with frequentist analyses.
However, the models generally performed poorly when relying
only on the detector mark. Including both the partially observed
sex and collar marks increased the precision and decreased bias
in all scenarios. Increasing the amount of overlap between an-
imal home ranges decreased the performance of these models.
This is controlled by both o and D. For scenario 2, increasing
o and reducing D resulted in similar performance to Scenario 1.
The LID+Sex/Collar model estimates were nearly unbiased for
all parameters and were the most reliable. Our simulation study
results highlight the potential for LID-SCR when additional in-
formation is available, even if it is only partially observed.

5.2 Acoustic SCR
$.2.1 Cape peninsula moss frog acoustic study
We use an acoustic survey of Cape Peninsula moss frog
(Arthroleptella lightfooti) on Steenberg Plateau in Table Moun-
tain National Park, South Africa, which has previously been used
for estimating CD (Stevenson et al., 2015; Measey et al., 2017),

20z Areniged 9z uo Jasn yyws-wioofe Ay Aq 68101.9./610PEIN/L/08/2I01E/SOUIWOIG/W0D dNo"dlWspEd.//:SA)Y WOl) PAPEOJUMOQ


https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujad019#supplementary-data
https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujad019#supplementary-data
https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujad019#supplementary-data

8 e  Biometrics, 2024, Vol. 80, No. 1

D (Ind 100 km™2) o (km) A (day™)
150 4 ° . ]
100 1 ® ']
H . .
= Q
3
8 [
| | T s
.50
gwo- . =
3 : .
@ 1001 . Method
i) s . . =
g . " i ®| E3LID
@ lq lzl | (] 5 E3 LID+Sex
£ o = é%*— B2 LID+Sex/Collar
e |7 T
= 501
L -
m W—
150
1004 L]
501 * e =
| I I §
0.
-50 4 :
; 3 ; I ] I
Scenario

FIGURE 3 Latent identity spatial capture-recapture relative bias for 3 different latent ID SCR models: latent ID SCR (LID), LID with sex as a
covariate (LID+Sex), and LID+Sex with the collar information included (LID+Sex/Collar). D is animal density, o is the scale parameter in
the detection function, and A is the detection intensity at a trap per unit time for an animal at distance 0. We ran the MCMC algorithm for

60 000 iterations with 20 000 burn-in. Relative bias is shown for 3-point estimates of the posterior. The y-axis is cut-off at 150% bias, which
removes some outliers of simulation scenarios that did not converge (Web Appendix B). Abbreviation: MCMC, Markov Chain Monte Carlo.

and animal density when ID can be inferred (Stevenson et al.,
2021). Moss frogs are very small and cryptic, hiding in shrubs,
making traditional count methods unreliable. The males cue to
attract a mate and do not move in a calling period.

A 6-channel recorder with a single clock was set up roughly
in a circle with microphones spaced approximately S m apart
(Web Figure 1; full details in Measey et al. (2017)). This en-
ables accurate times of detection to be recorded. Two surveys
took place 18 days apart. Due to high cue frequency, each survey
period was 30 seconds, for a total of 98 and 86 detected cues. In
an ad hoc analysis, Stevenson et al. (2021) identified 14 and 9
unique individuals, respectively, in the 2 sampling sessions.

The data were analyzed using ASCR in 3 ways: (1) latent ID
(LID), (2) known ID (ID), and (3) CD, where cues are as-
sumed to occur from independent cue locations. As per Steven-
son et al. (2021), a half-normal hazard detection function and a
constant cue rate were assumed. Prior distributions were all uni-
form with bounds well beyond the sampled parameter space (see
Web Appendix B for details). Potential animal locations were
buffered by 15 m beyond the traps. The survey sessions, r = {1,
2}, were assumed to be independent but shared parameters, and

N, ~ binomial (1, L). For LID-ASCR, we used Equation 12 to
allocate detections to animals. The R package “ascr” (Stevenson
and Borchers, 2018), which gives maximum likelihood estimates
of the cue parameters, was used for CD-ASCR. For models 1
and 2, we ran 3 chains for 30 000 iterations after an initial 20 000
burn-in. Trace plots for all parameters were visually checked for
convergence. ~

Animal density is reported as, D= % individuals per
hectare (ind/Ha). For ID-ASCR, we obtained a posterior
marginal mode and 95% credible interval of D =368 (250,
539). For LID-ASCR, our model estimated D = 389 (253,
577), which agrees well with the known ID method. We esti-
mated a posterior mean of K =27 (22,33) detected frogs in the
2 surveys combined which agrees with the 23 inferred by the ad
hoc analysis. To compare with CD-ASCR, we also estimated CD,
=X X D cues per second per Ha. Using ID-ASCR, the poste-
rior marginal mode was /& = 111 (74, 166), while with the LID-
ASCR modelitwas it = 106 (72,161),and with CD-ASCR, we
found 1t = 125 (104, 145), based on maximum likelihood esti-
mation and 95% confidence interval. See Figure 4 for results on
each parameter.
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FIGURE 4 Frog data analysis results for 3 different ASCR models: cue density (CD), known ID (ID), and latent ID (LID). Model CD shows
the maximum likelihood estimator and 95% confidence intervals; 1t is CD, D is animal density, A is the cue rate, o is the scale parameter, gy is
the probability of a cue being recorded at distance 0 from the microphone, and o is the standard error of the time of arrival. Posterior plots are
shown as violin plots with the interior boxplots showing 50% of the values and the median. Abbreviation: ASCR, acoustic SCR.

Unlike the camera trap study, each detection in ASCR is asso-
ciated with multiple traps, which can give accurate information
on where the cue originates when there are multiple recaptures
ofasingle cue. With accurate TOA information, we lost very little
information about density by not knowing animal ID, accurately
recovering the cue rate parameter A. When cue rate and the de-
tection function are both estimable, animal density can also be
estimated (Stevenson et al., 2015). Errors in the data can occur
from assigning animal ID via ad hoc methods, or when assigning
adetection to a single cue. We expect both cases to positively bias
0. A simulation study was used to explore the differences in o
further.

5.2.2 Simulation

To test our latent ID ASCR model, we carried out a simulation
study matching the A. lightfooti survey design; 6 traps record-
ing for a total of 30 seconds for 2 occasions. The latent ID and
known ID models for the real data example differed mainly in
their estimate of TOA error, 0 ;. We considered the performance
of our latent ID model under a simulation study with 3 values
of o2 (A) o, = 0.05, (B) oy = 0.001, and (C) o, = 0.00055.
Scenario A represents an error rate high enough that TOA no
longer adds new information to the model about cue location
(Web Figure 1). Scenarios B and C were chosen to match the
data example. For each scenario, 100 datasets were simulated,
and for each model, a single MCMC chain was run for 40 000
iterations, removing the first 20 000 as burn-in. A subset of these
simulations were visually inspected for consistent convergence

by running multiple chains (See Web Appendix B for details).
The population N = 55 was held constant between the 2 ses-
sions. Other parameters were {D =408.16,0 = 2.3, g0 =15.75,
A =028}

Results from the simulation study are shown in Figure 5. As
expected, for Scenario A, the latent ID model was unable to reli-
ably allocate detections to animals with just 6 microphones, dis-
playing bias in A and o. By losing the spatial information for an-
imal ID provided by the additional TOA mark, the simulation
results become right-skewed for the mean and median, similar
to the camera trap simulations. For scenarios B and C where
o is small, all parameters are estimated with little to no bias
and improved precision over scenario A. If TOA information is
not available, more detectors would be required to reliably per-
form LID-ASCR density estimation. Our simulation study did
not highlight any bias in estimating ;.

6 DISCUSSION

Writing SCR as an MPP separates the counting process from
the observed marks distribution. This makes the counting pro-
cess specific and straightforward to generalize to other distribu-
tional assumptions, such as a renewal or self-exciting point pro-
cess (Daley and Vere-Jones, 2003; Rushing, 2023). It also nat-
urally links continuous-time SCR (Borchers et al., 2014), ID-
ASCR (Stevenson et al., 2021), and continuous-time non-SCR
models (Schofield et al., 2018). We then consider separately the
process for marks (eg, animal identity, detection location, and
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sex) making it easy to extend known ID SCR models to LID-
SCR models within the same framework.

When the identity mark is unobserved, the MPP formulation
naturally becomes a mixture model. This includes the special
case of the SC model from Chandler and Royle (2013), but also
by incorporating partially identifying covariate information in-
cludes SPIM models (Augustine et al., 2018; 2019), and spatial
mark-resight (Whittington et al., 2018) models. Our methods
highlight that these models only differ in the amount of the mark
information available (Sun et al., 2022). Augustine et al. (2019)
applied their model to a genetic hair snag study where they as-
sumed a Bernoulli data generation process. In our framework,
the total counting process per detector becomes a Poisson bino-
mial distribution, and we can continue to apply the methods de-
scribed here.

Another advantage of our formulation is that it does not re-
quire custom code to be written for the various models that fall
in the framework, but instead requires just simple adaptations
of the general code template. The fisher example highlights this
by requiring minimal changes to the model and MCMC sam-

pler to incorporate different mark types. The sex mark shows
how an animal feature that is associated with each individual
can be incorporated even when not fully observed. Inclusion of
the collar mark shows how very study-specific information may
be included. In this case, the collars were partially identifying
characteristics that changed over time, which would normally
be challenging to incorporate but could be readily included in
our framework. Our frog example demonstrates the framework’s
flexibility by using it to solve a latent ID-ASCR problem, which
has not been tackled in previous literature.

Similar to other studies, we found that estimating animal den-
sity from camera trap data without animal identities is too im-
precise to be useful (Burgar et al,, 2018; Amburgey et al., 2021;
Doran-Myers et al., 2021). However, with additional informa-
tion from available marks, such as sex, collar, and TOA in the
case of acoustic detectors, we were able to obtain practically use-
ful estimates. This was true even when the additional marks were
only partially observed. We recommend caution when applying
these methods without additional mark information, and to de-
sign surveys with this in mind.
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We have presented a framework for dealing with LID-SCR sur-
veys using a marked point process. Our methods apply to SCR-
type surveys using passive detectors, where individuals may not
be fully identifiable. They also apply to to both SC and SPIM
type problems and, thus, can be used for existing applications of
LID-SCR. By coding all models in Nimble, we provide a readily
customizable, user-friendly implementation of the methods and
make it easy to extend these further.
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